segment.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include <linux/slab.h>
  35. #include "nilfs.h"
  36. #include "btnode.h"
  37. #include "page.h"
  38. #include "segment.h"
  39. #include "sufile.h"
  40. #include "cpfile.h"
  41. #include "ifile.h"
  42. #include "segbuf.h"
  43. /*
  44. * Segment constructor
  45. */
  46. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  47. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  48. appended in collection retry loop */
  49. /* Construction mode */
  50. enum {
  51. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  52. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  53. a logical segment without a super root */
  54. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  55. creating a checkpoint */
  56. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  57. a checkpoint */
  58. };
  59. /* Stage numbers of dirty block collection */
  60. enum {
  61. NILFS_ST_INIT = 0,
  62. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  63. NILFS_ST_FILE,
  64. NILFS_ST_IFILE,
  65. NILFS_ST_CPFILE,
  66. NILFS_ST_SUFILE,
  67. NILFS_ST_DAT,
  68. NILFS_ST_SR, /* Super root */
  69. NILFS_ST_DSYNC, /* Data sync blocks */
  70. NILFS_ST_DONE,
  71. };
  72. /* State flags of collection */
  73. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  74. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  75. #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
  76. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
  77. /* Operations depending on the construction mode and file type */
  78. struct nilfs_sc_operations {
  79. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  80. struct inode *);
  81. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  82. struct inode *);
  83. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  84. struct inode *);
  85. void (*write_data_binfo)(struct nilfs_sc_info *,
  86. struct nilfs_segsum_pointer *,
  87. union nilfs_binfo *);
  88. void (*write_node_binfo)(struct nilfs_sc_info *,
  89. struct nilfs_segsum_pointer *,
  90. union nilfs_binfo *);
  91. };
  92. /*
  93. * Other definitions
  94. */
  95. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  96. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  97. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  98. static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
  99. #define nilfs_cnt32_gt(a, b) \
  100. (typecheck(__u32, a) && typecheck(__u32, b) && \
  101. ((__s32)(b) - (__s32)(a) < 0))
  102. #define nilfs_cnt32_ge(a, b) \
  103. (typecheck(__u32, a) && typecheck(__u32, b) && \
  104. ((__s32)(a) - (__s32)(b) >= 0))
  105. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  106. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  107. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  108. {
  109. struct nilfs_transaction_info *cur_ti = current->journal_info;
  110. void *save = NULL;
  111. if (cur_ti) {
  112. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  113. return ++cur_ti->ti_count;
  114. else {
  115. /*
  116. * If journal_info field is occupied by other FS,
  117. * it is saved and will be restored on
  118. * nilfs_transaction_commit().
  119. */
  120. printk(KERN_WARNING
  121. "NILFS warning: journal info from a different "
  122. "FS\n");
  123. save = current->journal_info;
  124. }
  125. }
  126. if (!ti) {
  127. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  128. if (!ti)
  129. return -ENOMEM;
  130. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  131. } else {
  132. ti->ti_flags = 0;
  133. }
  134. ti->ti_count = 0;
  135. ti->ti_save = save;
  136. ti->ti_magic = NILFS_TI_MAGIC;
  137. current->journal_info = ti;
  138. return 0;
  139. }
  140. /**
  141. * nilfs_transaction_begin - start indivisible file operations.
  142. * @sb: super block
  143. * @ti: nilfs_transaction_info
  144. * @vacancy_check: flags for vacancy rate checks
  145. *
  146. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  147. * the segment semaphore, to make a segment construction and write tasks
  148. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  149. * The region enclosed by these two functions can be nested. To avoid a
  150. * deadlock, the semaphore is only acquired or released in the outermost call.
  151. *
  152. * This function allocates a nilfs_transaction_info struct to keep context
  153. * information on it. It is initialized and hooked onto the current task in
  154. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  155. * instead; otherwise a new struct is assigned from a slab.
  156. *
  157. * When @vacancy_check flag is set, this function will check the amount of
  158. * free space, and will wait for the GC to reclaim disk space if low capacity.
  159. *
  160. * Return Value: On success, 0 is returned. On error, one of the following
  161. * negative error code is returned.
  162. *
  163. * %-ENOMEM - Insufficient memory available.
  164. *
  165. * %-ENOSPC - No space left on device
  166. */
  167. int nilfs_transaction_begin(struct super_block *sb,
  168. struct nilfs_transaction_info *ti,
  169. int vacancy_check)
  170. {
  171. struct nilfs_sb_info *sbi;
  172. struct the_nilfs *nilfs;
  173. int ret = nilfs_prepare_segment_lock(ti);
  174. if (unlikely(ret < 0))
  175. return ret;
  176. if (ret > 0)
  177. return 0;
  178. vfs_check_frozen(sb, SB_FREEZE_WRITE);
  179. sbi = NILFS_SB(sb);
  180. nilfs = sbi->s_nilfs;
  181. down_read(&nilfs->ns_segctor_sem);
  182. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  183. up_read(&nilfs->ns_segctor_sem);
  184. ret = -ENOSPC;
  185. goto failed;
  186. }
  187. return 0;
  188. failed:
  189. ti = current->journal_info;
  190. current->journal_info = ti->ti_save;
  191. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  192. kmem_cache_free(nilfs_transaction_cachep, ti);
  193. return ret;
  194. }
  195. /**
  196. * nilfs_transaction_commit - commit indivisible file operations.
  197. * @sb: super block
  198. *
  199. * nilfs_transaction_commit() releases the read semaphore which is
  200. * acquired by nilfs_transaction_begin(). This is only performed
  201. * in outermost call of this function. If a commit flag is set,
  202. * nilfs_transaction_commit() sets a timer to start the segment
  203. * constructor. If a sync flag is set, it starts construction
  204. * directly.
  205. */
  206. int nilfs_transaction_commit(struct super_block *sb)
  207. {
  208. struct nilfs_transaction_info *ti = current->journal_info;
  209. struct the_nilfs *nilfs = NILFS_SB(sb)->s_nilfs;
  210. int err = 0;
  211. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  212. ti->ti_flags |= NILFS_TI_COMMIT;
  213. if (ti->ti_count > 0) {
  214. ti->ti_count--;
  215. return 0;
  216. }
  217. if (nilfs->ns_writer) {
  218. struct nilfs_sc_info *sci = nilfs->ns_writer;
  219. if (ti->ti_flags & NILFS_TI_COMMIT)
  220. nilfs_segctor_start_timer(sci);
  221. if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
  222. nilfs_segctor_do_flush(sci, 0);
  223. }
  224. up_read(&nilfs->ns_segctor_sem);
  225. current->journal_info = ti->ti_save;
  226. if (ti->ti_flags & NILFS_TI_SYNC)
  227. err = nilfs_construct_segment(sb);
  228. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  229. kmem_cache_free(nilfs_transaction_cachep, ti);
  230. return err;
  231. }
  232. void nilfs_transaction_abort(struct super_block *sb)
  233. {
  234. struct nilfs_transaction_info *ti = current->journal_info;
  235. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  236. if (ti->ti_count > 0) {
  237. ti->ti_count--;
  238. return;
  239. }
  240. up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
  241. current->journal_info = ti->ti_save;
  242. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  243. kmem_cache_free(nilfs_transaction_cachep, ti);
  244. }
  245. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  246. {
  247. struct the_nilfs *nilfs = NILFS_SB(sb)->s_nilfs;
  248. struct nilfs_sc_info *sci = nilfs->ns_writer;
  249. if (!sci || !sci->sc_flush_request)
  250. return;
  251. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  252. up_read(&nilfs->ns_segctor_sem);
  253. down_write(&nilfs->ns_segctor_sem);
  254. if (sci->sc_flush_request &&
  255. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  256. struct nilfs_transaction_info *ti = current->journal_info;
  257. ti->ti_flags |= NILFS_TI_WRITER;
  258. nilfs_segctor_do_immediate_flush(sci);
  259. ti->ti_flags &= ~NILFS_TI_WRITER;
  260. }
  261. downgrade_write(&nilfs->ns_segctor_sem);
  262. }
  263. static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
  264. struct nilfs_transaction_info *ti,
  265. int gcflag)
  266. {
  267. struct nilfs_transaction_info *cur_ti = current->journal_info;
  268. struct the_nilfs *nilfs = sbi->s_nilfs;
  269. struct nilfs_sc_info *sci = nilfs->ns_writer;
  270. WARN_ON(cur_ti);
  271. ti->ti_flags = NILFS_TI_WRITER;
  272. ti->ti_count = 0;
  273. ti->ti_save = cur_ti;
  274. ti->ti_magic = NILFS_TI_MAGIC;
  275. INIT_LIST_HEAD(&ti->ti_garbage);
  276. current->journal_info = ti;
  277. for (;;) {
  278. down_write(&nilfs->ns_segctor_sem);
  279. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
  280. break;
  281. nilfs_segctor_do_immediate_flush(sci);
  282. up_write(&sbi->s_nilfs->ns_segctor_sem);
  283. yield();
  284. }
  285. if (gcflag)
  286. ti->ti_flags |= NILFS_TI_GC;
  287. }
  288. static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
  289. {
  290. struct nilfs_transaction_info *ti = current->journal_info;
  291. struct the_nilfs *nilfs = sbi->s_nilfs;
  292. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  293. BUG_ON(ti->ti_count > 0);
  294. up_write(&nilfs->ns_segctor_sem);
  295. current->journal_info = ti->ti_save;
  296. if (!list_empty(&ti->ti_garbage))
  297. nilfs_dispose_list(nilfs, &ti->ti_garbage, 0);
  298. }
  299. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  300. struct nilfs_segsum_pointer *ssp,
  301. unsigned bytes)
  302. {
  303. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  304. unsigned blocksize = sci->sc_super->s_blocksize;
  305. void *p;
  306. if (unlikely(ssp->offset + bytes > blocksize)) {
  307. ssp->offset = 0;
  308. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  309. &segbuf->sb_segsum_buffers));
  310. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  311. }
  312. p = ssp->bh->b_data + ssp->offset;
  313. ssp->offset += bytes;
  314. return p;
  315. }
  316. /**
  317. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  318. * @sci: nilfs_sc_info
  319. */
  320. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  321. {
  322. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  323. struct buffer_head *sumbh;
  324. unsigned sumbytes;
  325. unsigned flags = 0;
  326. int err;
  327. if (nilfs_doing_gc())
  328. flags = NILFS_SS_GC;
  329. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
  330. if (unlikely(err))
  331. return err;
  332. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  333. sumbytes = segbuf->sb_sum.sumbytes;
  334. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  335. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  336. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  337. return 0;
  338. }
  339. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  340. {
  341. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  342. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  343. return -E2BIG; /* The current segment is filled up
  344. (internal code) */
  345. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  346. return nilfs_segctor_reset_segment_buffer(sci);
  347. }
  348. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  349. {
  350. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  351. int err;
  352. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  353. err = nilfs_segctor_feed_segment(sci);
  354. if (err)
  355. return err;
  356. segbuf = sci->sc_curseg;
  357. }
  358. err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
  359. if (likely(!err))
  360. segbuf->sb_sum.flags |= NILFS_SS_SR;
  361. return err;
  362. }
  363. /*
  364. * Functions for making segment summary and payloads
  365. */
  366. static int nilfs_segctor_segsum_block_required(
  367. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  368. unsigned binfo_size)
  369. {
  370. unsigned blocksize = sci->sc_super->s_blocksize;
  371. /* Size of finfo and binfo is enough small against blocksize */
  372. return ssp->offset + binfo_size +
  373. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  374. blocksize;
  375. }
  376. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  377. struct inode *inode)
  378. {
  379. sci->sc_curseg->sb_sum.nfinfo++;
  380. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  381. nilfs_segctor_map_segsum_entry(
  382. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  383. if (NILFS_I(inode)->i_root &&
  384. !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  385. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  386. /* skip finfo */
  387. }
  388. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  389. struct inode *inode)
  390. {
  391. struct nilfs_finfo *finfo;
  392. struct nilfs_inode_info *ii;
  393. struct nilfs_segment_buffer *segbuf;
  394. __u64 cno;
  395. if (sci->sc_blk_cnt == 0)
  396. return;
  397. ii = NILFS_I(inode);
  398. if (test_bit(NILFS_I_GCINODE, &ii->i_state))
  399. cno = ii->i_cno;
  400. else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
  401. cno = 0;
  402. else
  403. cno = sci->sc_cno;
  404. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  405. sizeof(*finfo));
  406. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  407. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  408. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  409. finfo->fi_cno = cpu_to_le64(cno);
  410. segbuf = sci->sc_curseg;
  411. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  412. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  413. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  414. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  415. }
  416. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  417. struct buffer_head *bh,
  418. struct inode *inode,
  419. unsigned binfo_size)
  420. {
  421. struct nilfs_segment_buffer *segbuf;
  422. int required, err = 0;
  423. retry:
  424. segbuf = sci->sc_curseg;
  425. required = nilfs_segctor_segsum_block_required(
  426. sci, &sci->sc_binfo_ptr, binfo_size);
  427. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  428. nilfs_segctor_end_finfo(sci, inode);
  429. err = nilfs_segctor_feed_segment(sci);
  430. if (err)
  431. return err;
  432. goto retry;
  433. }
  434. if (unlikely(required)) {
  435. err = nilfs_segbuf_extend_segsum(segbuf);
  436. if (unlikely(err))
  437. goto failed;
  438. }
  439. if (sci->sc_blk_cnt == 0)
  440. nilfs_segctor_begin_finfo(sci, inode);
  441. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  442. /* Substitution to vblocknr is delayed until update_blocknr() */
  443. nilfs_segbuf_add_file_buffer(segbuf, bh);
  444. sci->sc_blk_cnt++;
  445. failed:
  446. return err;
  447. }
  448. /*
  449. * Callback functions that enumerate, mark, and collect dirty blocks
  450. */
  451. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  452. struct buffer_head *bh, struct inode *inode)
  453. {
  454. int err;
  455. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  456. if (err < 0)
  457. return err;
  458. err = nilfs_segctor_add_file_block(sci, bh, inode,
  459. sizeof(struct nilfs_binfo_v));
  460. if (!err)
  461. sci->sc_datablk_cnt++;
  462. return err;
  463. }
  464. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  465. struct buffer_head *bh,
  466. struct inode *inode)
  467. {
  468. return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  469. }
  470. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  471. struct buffer_head *bh,
  472. struct inode *inode)
  473. {
  474. WARN_ON(!buffer_dirty(bh));
  475. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  476. }
  477. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  478. struct nilfs_segsum_pointer *ssp,
  479. union nilfs_binfo *binfo)
  480. {
  481. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  482. sci, ssp, sizeof(*binfo_v));
  483. *binfo_v = binfo->bi_v;
  484. }
  485. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  486. struct nilfs_segsum_pointer *ssp,
  487. union nilfs_binfo *binfo)
  488. {
  489. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  490. sci, ssp, sizeof(*vblocknr));
  491. *vblocknr = binfo->bi_v.bi_vblocknr;
  492. }
  493. static struct nilfs_sc_operations nilfs_sc_file_ops = {
  494. .collect_data = nilfs_collect_file_data,
  495. .collect_node = nilfs_collect_file_node,
  496. .collect_bmap = nilfs_collect_file_bmap,
  497. .write_data_binfo = nilfs_write_file_data_binfo,
  498. .write_node_binfo = nilfs_write_file_node_binfo,
  499. };
  500. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  501. struct buffer_head *bh, struct inode *inode)
  502. {
  503. int err;
  504. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  505. if (err < 0)
  506. return err;
  507. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  508. if (!err)
  509. sci->sc_datablk_cnt++;
  510. return err;
  511. }
  512. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  513. struct buffer_head *bh, struct inode *inode)
  514. {
  515. WARN_ON(!buffer_dirty(bh));
  516. return nilfs_segctor_add_file_block(sci, bh, inode,
  517. sizeof(struct nilfs_binfo_dat));
  518. }
  519. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  520. struct nilfs_segsum_pointer *ssp,
  521. union nilfs_binfo *binfo)
  522. {
  523. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  524. sizeof(*blkoff));
  525. *blkoff = binfo->bi_dat.bi_blkoff;
  526. }
  527. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  528. struct nilfs_segsum_pointer *ssp,
  529. union nilfs_binfo *binfo)
  530. {
  531. struct nilfs_binfo_dat *binfo_dat =
  532. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  533. *binfo_dat = binfo->bi_dat;
  534. }
  535. static struct nilfs_sc_operations nilfs_sc_dat_ops = {
  536. .collect_data = nilfs_collect_dat_data,
  537. .collect_node = nilfs_collect_file_node,
  538. .collect_bmap = nilfs_collect_dat_bmap,
  539. .write_data_binfo = nilfs_write_dat_data_binfo,
  540. .write_node_binfo = nilfs_write_dat_node_binfo,
  541. };
  542. static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  543. .collect_data = nilfs_collect_file_data,
  544. .collect_node = NULL,
  545. .collect_bmap = NULL,
  546. .write_data_binfo = nilfs_write_file_data_binfo,
  547. .write_node_binfo = NULL,
  548. };
  549. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  550. struct list_head *listp,
  551. size_t nlimit,
  552. loff_t start, loff_t end)
  553. {
  554. struct address_space *mapping = inode->i_mapping;
  555. struct pagevec pvec;
  556. pgoff_t index = 0, last = ULONG_MAX;
  557. size_t ndirties = 0;
  558. int i;
  559. if (unlikely(start != 0 || end != LLONG_MAX)) {
  560. /*
  561. * A valid range is given for sync-ing data pages. The
  562. * range is rounded to per-page; extra dirty buffers
  563. * may be included if blocksize < pagesize.
  564. */
  565. index = start >> PAGE_SHIFT;
  566. last = end >> PAGE_SHIFT;
  567. }
  568. pagevec_init(&pvec, 0);
  569. repeat:
  570. if (unlikely(index > last) ||
  571. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  572. min_t(pgoff_t, last - index,
  573. PAGEVEC_SIZE - 1) + 1))
  574. return ndirties;
  575. for (i = 0; i < pagevec_count(&pvec); i++) {
  576. struct buffer_head *bh, *head;
  577. struct page *page = pvec.pages[i];
  578. if (unlikely(page->index > last))
  579. break;
  580. if (mapping->host) {
  581. lock_page(page);
  582. if (!page_has_buffers(page))
  583. create_empty_buffers(page,
  584. 1 << inode->i_blkbits, 0);
  585. unlock_page(page);
  586. }
  587. bh = head = page_buffers(page);
  588. do {
  589. if (!buffer_dirty(bh))
  590. continue;
  591. get_bh(bh);
  592. list_add_tail(&bh->b_assoc_buffers, listp);
  593. ndirties++;
  594. if (unlikely(ndirties >= nlimit)) {
  595. pagevec_release(&pvec);
  596. cond_resched();
  597. return ndirties;
  598. }
  599. } while (bh = bh->b_this_page, bh != head);
  600. }
  601. pagevec_release(&pvec);
  602. cond_resched();
  603. goto repeat;
  604. }
  605. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  606. struct list_head *listp)
  607. {
  608. struct nilfs_inode_info *ii = NILFS_I(inode);
  609. struct address_space *mapping = &ii->i_btnode_cache;
  610. struct pagevec pvec;
  611. struct buffer_head *bh, *head;
  612. unsigned int i;
  613. pgoff_t index = 0;
  614. pagevec_init(&pvec, 0);
  615. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  616. PAGEVEC_SIZE)) {
  617. for (i = 0; i < pagevec_count(&pvec); i++) {
  618. bh = head = page_buffers(pvec.pages[i]);
  619. do {
  620. if (buffer_dirty(bh)) {
  621. get_bh(bh);
  622. list_add_tail(&bh->b_assoc_buffers,
  623. listp);
  624. }
  625. bh = bh->b_this_page;
  626. } while (bh != head);
  627. }
  628. pagevec_release(&pvec);
  629. cond_resched();
  630. }
  631. }
  632. static void nilfs_dispose_list(struct the_nilfs *nilfs,
  633. struct list_head *head, int force)
  634. {
  635. struct nilfs_inode_info *ii, *n;
  636. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  637. unsigned nv = 0;
  638. while (!list_empty(head)) {
  639. spin_lock(&nilfs->ns_inode_lock);
  640. list_for_each_entry_safe(ii, n, head, i_dirty) {
  641. list_del_init(&ii->i_dirty);
  642. if (force) {
  643. if (unlikely(ii->i_bh)) {
  644. brelse(ii->i_bh);
  645. ii->i_bh = NULL;
  646. }
  647. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  648. set_bit(NILFS_I_QUEUED, &ii->i_state);
  649. list_add_tail(&ii->i_dirty,
  650. &nilfs->ns_dirty_files);
  651. continue;
  652. }
  653. ivec[nv++] = ii;
  654. if (nv == SC_N_INODEVEC)
  655. break;
  656. }
  657. spin_unlock(&nilfs->ns_inode_lock);
  658. for (pii = ivec; nv > 0; pii++, nv--)
  659. iput(&(*pii)->vfs_inode);
  660. }
  661. }
  662. static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
  663. struct nilfs_root *root)
  664. {
  665. int ret = 0;
  666. if (nilfs_mdt_fetch_dirty(root->ifile))
  667. ret++;
  668. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  669. ret++;
  670. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  671. ret++;
  672. if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
  673. ret++;
  674. return ret;
  675. }
  676. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  677. {
  678. return list_empty(&sci->sc_dirty_files) &&
  679. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  680. sci->sc_nfreesegs == 0 &&
  681. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  682. }
  683. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  684. {
  685. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  686. int ret = 0;
  687. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  688. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  689. spin_lock(&nilfs->ns_inode_lock);
  690. if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
  691. ret++;
  692. spin_unlock(&nilfs->ns_inode_lock);
  693. return ret;
  694. }
  695. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  696. {
  697. struct nilfs_sb_info *sbi = sci->sc_sbi;
  698. struct the_nilfs *nilfs = sbi->s_nilfs;
  699. nilfs_mdt_clear_dirty(sci->sc_root->ifile);
  700. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  701. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  702. nilfs_mdt_clear_dirty(nilfs->ns_dat);
  703. }
  704. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  705. {
  706. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  707. struct buffer_head *bh_cp;
  708. struct nilfs_checkpoint *raw_cp;
  709. int err;
  710. /* XXX: this interface will be changed */
  711. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  712. &raw_cp, &bh_cp);
  713. if (likely(!err)) {
  714. /* The following code is duplicated with cpfile. But, it is
  715. needed to collect the checkpoint even if it was not newly
  716. created */
  717. nilfs_mdt_mark_buffer_dirty(bh_cp);
  718. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  719. nilfs_cpfile_put_checkpoint(
  720. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  721. } else
  722. WARN_ON(err == -EINVAL || err == -ENOENT);
  723. return err;
  724. }
  725. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  726. {
  727. struct nilfs_sb_info *sbi = sci->sc_sbi;
  728. struct the_nilfs *nilfs = sbi->s_nilfs;
  729. struct buffer_head *bh_cp;
  730. struct nilfs_checkpoint *raw_cp;
  731. int err;
  732. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  733. &raw_cp, &bh_cp);
  734. if (unlikely(err)) {
  735. WARN_ON(err == -EINVAL || err == -ENOENT);
  736. goto failed_ibh;
  737. }
  738. raw_cp->cp_snapshot_list.ssl_next = 0;
  739. raw_cp->cp_snapshot_list.ssl_prev = 0;
  740. raw_cp->cp_inodes_count =
  741. cpu_to_le64(atomic_read(&sci->sc_root->inodes_count));
  742. raw_cp->cp_blocks_count =
  743. cpu_to_le64(atomic_read(&sci->sc_root->blocks_count));
  744. raw_cp->cp_nblk_inc =
  745. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  746. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  747. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  748. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  749. nilfs_checkpoint_clear_minor(raw_cp);
  750. else
  751. nilfs_checkpoint_set_minor(raw_cp);
  752. nilfs_write_inode_common(sci->sc_root->ifile,
  753. &raw_cp->cp_ifile_inode, 1);
  754. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  755. return 0;
  756. failed_ibh:
  757. return err;
  758. }
  759. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  760. struct nilfs_inode_info *ii)
  761. {
  762. struct buffer_head *ibh;
  763. struct nilfs_inode *raw_inode;
  764. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  765. ibh = ii->i_bh;
  766. BUG_ON(!ibh);
  767. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  768. ibh);
  769. nilfs_bmap_write(ii->i_bmap, raw_inode);
  770. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  771. }
  772. }
  773. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
  774. {
  775. struct nilfs_inode_info *ii;
  776. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  777. nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
  778. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  779. }
  780. }
  781. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  782. struct the_nilfs *nilfs)
  783. {
  784. struct buffer_head *bh_sr;
  785. struct nilfs_super_root *raw_sr;
  786. unsigned isz = nilfs->ns_inode_size;
  787. bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
  788. raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
  789. raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
  790. raw_sr->sr_nongc_ctime
  791. = cpu_to_le64(nilfs_doing_gc() ?
  792. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  793. raw_sr->sr_flags = 0;
  794. nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
  795. NILFS_SR_DAT_OFFSET(isz), 1);
  796. nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
  797. NILFS_SR_CPFILE_OFFSET(isz), 1);
  798. nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
  799. NILFS_SR_SUFILE_OFFSET(isz), 1);
  800. }
  801. static void nilfs_redirty_inodes(struct list_head *head)
  802. {
  803. struct nilfs_inode_info *ii;
  804. list_for_each_entry(ii, head, i_dirty) {
  805. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  806. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  807. }
  808. }
  809. static void nilfs_drop_collected_inodes(struct list_head *head)
  810. {
  811. struct nilfs_inode_info *ii;
  812. list_for_each_entry(ii, head, i_dirty) {
  813. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  814. continue;
  815. clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
  816. set_bit(NILFS_I_UPDATED, &ii->i_state);
  817. }
  818. }
  819. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  820. struct inode *inode,
  821. struct list_head *listp,
  822. int (*collect)(struct nilfs_sc_info *,
  823. struct buffer_head *,
  824. struct inode *))
  825. {
  826. struct buffer_head *bh, *n;
  827. int err = 0;
  828. if (collect) {
  829. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  830. list_del_init(&bh->b_assoc_buffers);
  831. err = collect(sci, bh, inode);
  832. brelse(bh);
  833. if (unlikely(err))
  834. goto dispose_buffers;
  835. }
  836. return 0;
  837. }
  838. dispose_buffers:
  839. while (!list_empty(listp)) {
  840. bh = list_entry(listp->next, struct buffer_head,
  841. b_assoc_buffers);
  842. list_del_init(&bh->b_assoc_buffers);
  843. brelse(bh);
  844. }
  845. return err;
  846. }
  847. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  848. {
  849. /* Remaining number of blocks within segment buffer */
  850. return sci->sc_segbuf_nblocks -
  851. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  852. }
  853. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  854. struct inode *inode,
  855. struct nilfs_sc_operations *sc_ops)
  856. {
  857. LIST_HEAD(data_buffers);
  858. LIST_HEAD(node_buffers);
  859. int err;
  860. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  861. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  862. n = nilfs_lookup_dirty_data_buffers(
  863. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  864. if (n > rest) {
  865. err = nilfs_segctor_apply_buffers(
  866. sci, inode, &data_buffers,
  867. sc_ops->collect_data);
  868. BUG_ON(!err); /* always receive -E2BIG or true error */
  869. goto break_or_fail;
  870. }
  871. }
  872. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  873. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  874. err = nilfs_segctor_apply_buffers(
  875. sci, inode, &data_buffers, sc_ops->collect_data);
  876. if (unlikely(err)) {
  877. /* dispose node list */
  878. nilfs_segctor_apply_buffers(
  879. sci, inode, &node_buffers, NULL);
  880. goto break_or_fail;
  881. }
  882. sci->sc_stage.flags |= NILFS_CF_NODE;
  883. }
  884. /* Collect node */
  885. err = nilfs_segctor_apply_buffers(
  886. sci, inode, &node_buffers, sc_ops->collect_node);
  887. if (unlikely(err))
  888. goto break_or_fail;
  889. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  890. err = nilfs_segctor_apply_buffers(
  891. sci, inode, &node_buffers, sc_ops->collect_bmap);
  892. if (unlikely(err))
  893. goto break_or_fail;
  894. nilfs_segctor_end_finfo(sci, inode);
  895. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  896. break_or_fail:
  897. return err;
  898. }
  899. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  900. struct inode *inode)
  901. {
  902. LIST_HEAD(data_buffers);
  903. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  904. int err;
  905. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  906. sci->sc_dsync_start,
  907. sci->sc_dsync_end);
  908. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  909. nilfs_collect_file_data);
  910. if (!err) {
  911. nilfs_segctor_end_finfo(sci, inode);
  912. BUG_ON(n > rest);
  913. /* always receive -E2BIG or true error if n > rest */
  914. }
  915. return err;
  916. }
  917. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  918. {
  919. struct nilfs_sb_info *sbi = sci->sc_sbi;
  920. struct the_nilfs *nilfs = sbi->s_nilfs;
  921. struct list_head *head;
  922. struct nilfs_inode_info *ii;
  923. size_t ndone;
  924. int err = 0;
  925. switch (sci->sc_stage.scnt) {
  926. case NILFS_ST_INIT:
  927. /* Pre-processes */
  928. sci->sc_stage.flags = 0;
  929. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  930. sci->sc_nblk_inc = 0;
  931. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  932. if (mode == SC_LSEG_DSYNC) {
  933. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  934. goto dsync_mode;
  935. }
  936. }
  937. sci->sc_stage.dirty_file_ptr = NULL;
  938. sci->sc_stage.gc_inode_ptr = NULL;
  939. if (mode == SC_FLUSH_DAT) {
  940. sci->sc_stage.scnt = NILFS_ST_DAT;
  941. goto dat_stage;
  942. }
  943. sci->sc_stage.scnt++; /* Fall through */
  944. case NILFS_ST_GC:
  945. if (nilfs_doing_gc()) {
  946. head = &sci->sc_gc_inodes;
  947. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  948. head, i_dirty);
  949. list_for_each_entry_continue(ii, head, i_dirty) {
  950. err = nilfs_segctor_scan_file(
  951. sci, &ii->vfs_inode,
  952. &nilfs_sc_file_ops);
  953. if (unlikely(err)) {
  954. sci->sc_stage.gc_inode_ptr = list_entry(
  955. ii->i_dirty.prev,
  956. struct nilfs_inode_info,
  957. i_dirty);
  958. goto break_or_fail;
  959. }
  960. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  961. }
  962. sci->sc_stage.gc_inode_ptr = NULL;
  963. }
  964. sci->sc_stage.scnt++; /* Fall through */
  965. case NILFS_ST_FILE:
  966. head = &sci->sc_dirty_files;
  967. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  968. i_dirty);
  969. list_for_each_entry_continue(ii, head, i_dirty) {
  970. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  971. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  972. &nilfs_sc_file_ops);
  973. if (unlikely(err)) {
  974. sci->sc_stage.dirty_file_ptr =
  975. list_entry(ii->i_dirty.prev,
  976. struct nilfs_inode_info,
  977. i_dirty);
  978. goto break_or_fail;
  979. }
  980. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  981. /* XXX: required ? */
  982. }
  983. sci->sc_stage.dirty_file_ptr = NULL;
  984. if (mode == SC_FLUSH_FILE) {
  985. sci->sc_stage.scnt = NILFS_ST_DONE;
  986. return 0;
  987. }
  988. sci->sc_stage.scnt++;
  989. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  990. /* Fall through */
  991. case NILFS_ST_IFILE:
  992. err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
  993. &nilfs_sc_file_ops);
  994. if (unlikely(err))
  995. break;
  996. sci->sc_stage.scnt++;
  997. /* Creating a checkpoint */
  998. err = nilfs_segctor_create_checkpoint(sci);
  999. if (unlikely(err))
  1000. break;
  1001. /* Fall through */
  1002. case NILFS_ST_CPFILE:
  1003. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1004. &nilfs_sc_file_ops);
  1005. if (unlikely(err))
  1006. break;
  1007. sci->sc_stage.scnt++; /* Fall through */
  1008. case NILFS_ST_SUFILE:
  1009. err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
  1010. sci->sc_nfreesegs, &ndone);
  1011. if (unlikely(err)) {
  1012. nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1013. sci->sc_freesegs, ndone,
  1014. NULL);
  1015. break;
  1016. }
  1017. sci->sc_stage.flags |= NILFS_CF_SUFREED;
  1018. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1019. &nilfs_sc_file_ops);
  1020. if (unlikely(err))
  1021. break;
  1022. sci->sc_stage.scnt++; /* Fall through */
  1023. case NILFS_ST_DAT:
  1024. dat_stage:
  1025. err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
  1026. &nilfs_sc_dat_ops);
  1027. if (unlikely(err))
  1028. break;
  1029. if (mode == SC_FLUSH_DAT) {
  1030. sci->sc_stage.scnt = NILFS_ST_DONE;
  1031. return 0;
  1032. }
  1033. sci->sc_stage.scnt++; /* Fall through */
  1034. case NILFS_ST_SR:
  1035. if (mode == SC_LSEG_SR) {
  1036. /* Appending a super root */
  1037. err = nilfs_segctor_add_super_root(sci);
  1038. if (unlikely(err))
  1039. break;
  1040. }
  1041. /* End of a logical segment */
  1042. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1043. sci->sc_stage.scnt = NILFS_ST_DONE;
  1044. return 0;
  1045. case NILFS_ST_DSYNC:
  1046. dsync_mode:
  1047. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1048. ii = sci->sc_dsync_inode;
  1049. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1050. break;
  1051. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1052. if (unlikely(err))
  1053. break;
  1054. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1055. sci->sc_stage.scnt = NILFS_ST_DONE;
  1056. return 0;
  1057. case NILFS_ST_DONE:
  1058. return 0;
  1059. default:
  1060. BUG();
  1061. }
  1062. break_or_fail:
  1063. return err;
  1064. }
  1065. /**
  1066. * nilfs_segctor_begin_construction - setup segment buffer to make a new log
  1067. * @sci: nilfs_sc_info
  1068. * @nilfs: nilfs object
  1069. */
  1070. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1071. struct the_nilfs *nilfs)
  1072. {
  1073. struct nilfs_segment_buffer *segbuf, *prev;
  1074. __u64 nextnum;
  1075. int err, alloc = 0;
  1076. segbuf = nilfs_segbuf_new(sci->sc_super);
  1077. if (unlikely(!segbuf))
  1078. return -ENOMEM;
  1079. if (list_empty(&sci->sc_write_logs)) {
  1080. nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1081. nilfs->ns_pseg_offset, nilfs);
  1082. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1083. nilfs_shift_to_next_segment(nilfs);
  1084. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1085. }
  1086. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1087. nextnum = nilfs->ns_nextnum;
  1088. if (nilfs->ns_segnum == nilfs->ns_nextnum)
  1089. /* Start from the head of a new full segment */
  1090. alloc++;
  1091. } else {
  1092. /* Continue logs */
  1093. prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1094. nilfs_segbuf_map_cont(segbuf, prev);
  1095. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
  1096. nextnum = prev->sb_nextnum;
  1097. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1098. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1099. segbuf->sb_sum.seg_seq++;
  1100. alloc++;
  1101. }
  1102. }
  1103. err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
  1104. if (err)
  1105. goto failed;
  1106. if (alloc) {
  1107. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1108. if (err)
  1109. goto failed;
  1110. }
  1111. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1112. BUG_ON(!list_empty(&sci->sc_segbufs));
  1113. list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
  1114. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1115. return 0;
  1116. failed:
  1117. nilfs_segbuf_free(segbuf);
  1118. return err;
  1119. }
  1120. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1121. struct the_nilfs *nilfs, int nadd)
  1122. {
  1123. struct nilfs_segment_buffer *segbuf, *prev;
  1124. struct inode *sufile = nilfs->ns_sufile;
  1125. __u64 nextnextnum;
  1126. LIST_HEAD(list);
  1127. int err, ret, i;
  1128. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1129. /*
  1130. * Since the segment specified with nextnum might be allocated during
  1131. * the previous construction, the buffer including its segusage may
  1132. * not be dirty. The following call ensures that the buffer is dirty
  1133. * and will pin the buffer on memory until the sufile is written.
  1134. */
  1135. err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
  1136. if (unlikely(err))
  1137. return err;
  1138. for (i = 0; i < nadd; i++) {
  1139. /* extend segment info */
  1140. err = -ENOMEM;
  1141. segbuf = nilfs_segbuf_new(sci->sc_super);
  1142. if (unlikely(!segbuf))
  1143. goto failed;
  1144. /* map this buffer to region of segment on-disk */
  1145. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1146. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1147. /* allocate the next next full segment */
  1148. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1149. if (unlikely(err))
  1150. goto failed_segbuf;
  1151. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1152. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1153. list_add_tail(&segbuf->sb_list, &list);
  1154. prev = segbuf;
  1155. }
  1156. list_splice_tail(&list, &sci->sc_segbufs);
  1157. return 0;
  1158. failed_segbuf:
  1159. nilfs_segbuf_free(segbuf);
  1160. failed:
  1161. list_for_each_entry(segbuf, &list, sb_list) {
  1162. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1163. WARN_ON(ret); /* never fails */
  1164. }
  1165. nilfs_destroy_logs(&list);
  1166. return err;
  1167. }
  1168. static void nilfs_free_incomplete_logs(struct list_head *logs,
  1169. struct the_nilfs *nilfs)
  1170. {
  1171. struct nilfs_segment_buffer *segbuf, *prev;
  1172. struct inode *sufile = nilfs->ns_sufile;
  1173. int ret;
  1174. segbuf = NILFS_FIRST_SEGBUF(logs);
  1175. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1176. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1177. WARN_ON(ret); /* never fails */
  1178. }
  1179. if (atomic_read(&segbuf->sb_err)) {
  1180. /* Case 1: The first segment failed */
  1181. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1182. /* Case 1a: Partial segment appended into an existing
  1183. segment */
  1184. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1185. segbuf->sb_fseg_end);
  1186. else /* Case 1b: New full segment */
  1187. set_nilfs_discontinued(nilfs);
  1188. }
  1189. prev = segbuf;
  1190. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1191. if (prev->sb_nextnum != segbuf->sb_nextnum) {
  1192. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1193. WARN_ON(ret); /* never fails */
  1194. }
  1195. if (atomic_read(&segbuf->sb_err) &&
  1196. segbuf->sb_segnum != nilfs->ns_nextnum)
  1197. /* Case 2: extended segment (!= next) failed */
  1198. nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
  1199. prev = segbuf;
  1200. }
  1201. }
  1202. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1203. struct inode *sufile)
  1204. {
  1205. struct nilfs_segment_buffer *segbuf;
  1206. unsigned long live_blocks;
  1207. int ret;
  1208. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1209. live_blocks = segbuf->sb_sum.nblocks +
  1210. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1211. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1212. live_blocks,
  1213. sci->sc_seg_ctime);
  1214. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1215. }
  1216. }
  1217. static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
  1218. {
  1219. struct nilfs_segment_buffer *segbuf;
  1220. int ret;
  1221. segbuf = NILFS_FIRST_SEGBUF(logs);
  1222. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1223. segbuf->sb_pseg_start -
  1224. segbuf->sb_fseg_start, 0);
  1225. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1226. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1227. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1228. 0, 0);
  1229. WARN_ON(ret); /* always succeed */
  1230. }
  1231. }
  1232. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1233. struct nilfs_segment_buffer *last,
  1234. struct inode *sufile)
  1235. {
  1236. struct nilfs_segment_buffer *segbuf = last;
  1237. int ret;
  1238. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1239. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1240. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1241. WARN_ON(ret);
  1242. }
  1243. nilfs_truncate_logs(&sci->sc_segbufs, last);
  1244. }
  1245. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1246. struct the_nilfs *nilfs, int mode)
  1247. {
  1248. struct nilfs_cstage prev_stage = sci->sc_stage;
  1249. int err, nadd = 1;
  1250. /* Collection retry loop */
  1251. for (;;) {
  1252. sci->sc_nblk_this_inc = 0;
  1253. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1254. err = nilfs_segctor_reset_segment_buffer(sci);
  1255. if (unlikely(err))
  1256. goto failed;
  1257. err = nilfs_segctor_collect_blocks(sci, mode);
  1258. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1259. if (!err)
  1260. break;
  1261. if (unlikely(err != -E2BIG))
  1262. goto failed;
  1263. /* The current segment is filled up */
  1264. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1265. break;
  1266. nilfs_clear_logs(&sci->sc_segbufs);
  1267. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1268. if (unlikely(err))
  1269. return err;
  1270. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1271. err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1272. sci->sc_freesegs,
  1273. sci->sc_nfreesegs,
  1274. NULL);
  1275. WARN_ON(err); /* do not happen */
  1276. }
  1277. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1278. sci->sc_stage = prev_stage;
  1279. }
  1280. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1281. return 0;
  1282. failed:
  1283. return err;
  1284. }
  1285. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1286. struct buffer_head *new_bh)
  1287. {
  1288. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1289. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1290. /* The caller must release old_bh */
  1291. }
  1292. static int
  1293. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1294. struct nilfs_segment_buffer *segbuf,
  1295. int mode)
  1296. {
  1297. struct inode *inode = NULL;
  1298. sector_t blocknr;
  1299. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1300. unsigned long nblocks = 0, ndatablk = 0;
  1301. struct nilfs_sc_operations *sc_op = NULL;
  1302. struct nilfs_segsum_pointer ssp;
  1303. struct nilfs_finfo *finfo = NULL;
  1304. union nilfs_binfo binfo;
  1305. struct buffer_head *bh, *bh_org;
  1306. ino_t ino = 0;
  1307. int err = 0;
  1308. if (!nfinfo)
  1309. goto out;
  1310. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1311. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1312. ssp.offset = sizeof(struct nilfs_segment_summary);
  1313. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1314. if (bh == segbuf->sb_super_root)
  1315. break;
  1316. if (!finfo) {
  1317. finfo = nilfs_segctor_map_segsum_entry(
  1318. sci, &ssp, sizeof(*finfo));
  1319. ino = le64_to_cpu(finfo->fi_ino);
  1320. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1321. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1322. if (buffer_nilfs_node(bh))
  1323. inode = NILFS_BTNC_I(bh->b_page->mapping);
  1324. else
  1325. inode = NILFS_AS_I(bh->b_page->mapping);
  1326. if (mode == SC_LSEG_DSYNC)
  1327. sc_op = &nilfs_sc_dsync_ops;
  1328. else if (ino == NILFS_DAT_INO)
  1329. sc_op = &nilfs_sc_dat_ops;
  1330. else /* file blocks */
  1331. sc_op = &nilfs_sc_file_ops;
  1332. }
  1333. bh_org = bh;
  1334. get_bh(bh_org);
  1335. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1336. &binfo);
  1337. if (bh != bh_org)
  1338. nilfs_list_replace_buffer(bh_org, bh);
  1339. brelse(bh_org);
  1340. if (unlikely(err))
  1341. goto failed_bmap;
  1342. if (ndatablk > 0)
  1343. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1344. else
  1345. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1346. blocknr++;
  1347. if (--nblocks == 0) {
  1348. finfo = NULL;
  1349. if (--nfinfo == 0)
  1350. break;
  1351. } else if (ndatablk > 0)
  1352. ndatablk--;
  1353. }
  1354. out:
  1355. return 0;
  1356. failed_bmap:
  1357. return err;
  1358. }
  1359. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1360. {
  1361. struct nilfs_segment_buffer *segbuf;
  1362. int err;
  1363. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1364. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1365. if (unlikely(err))
  1366. return err;
  1367. nilfs_segbuf_fill_in_segsum(segbuf);
  1368. }
  1369. return 0;
  1370. }
  1371. static int
  1372. nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
  1373. {
  1374. struct page *clone_page;
  1375. struct buffer_head *bh, *head, *bh2;
  1376. void *kaddr;
  1377. bh = head = page_buffers(page);
  1378. clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
  1379. if (unlikely(!clone_page))
  1380. return -ENOMEM;
  1381. bh2 = page_buffers(clone_page);
  1382. kaddr = kmap_atomic(page, KM_USER0);
  1383. do {
  1384. if (list_empty(&bh->b_assoc_buffers))
  1385. continue;
  1386. get_bh(bh2);
  1387. page_cache_get(clone_page); /* for each bh */
  1388. memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
  1389. bh2->b_blocknr = bh->b_blocknr;
  1390. list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
  1391. list_add_tail(&bh->b_assoc_buffers, out);
  1392. } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
  1393. kunmap_atomic(kaddr, KM_USER0);
  1394. if (!TestSetPageWriteback(clone_page))
  1395. account_page_writeback(clone_page);
  1396. unlock_page(clone_page);
  1397. return 0;
  1398. }
  1399. static int nilfs_test_page_to_be_frozen(struct page *page)
  1400. {
  1401. struct address_space *mapping = page->mapping;
  1402. if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
  1403. return 0;
  1404. if (page_mapped(page)) {
  1405. ClearPageChecked(page);
  1406. return 1;
  1407. }
  1408. return PageChecked(page);
  1409. }
  1410. static int nilfs_begin_page_io(struct page *page, struct list_head *out)
  1411. {
  1412. if (!page || PageWriteback(page))
  1413. /* For split b-tree node pages, this function may be called
  1414. twice. We ignore the 2nd or later calls by this check. */
  1415. return 0;
  1416. lock_page(page);
  1417. clear_page_dirty_for_io(page);
  1418. set_page_writeback(page);
  1419. unlock_page(page);
  1420. if (nilfs_test_page_to_be_frozen(page)) {
  1421. int err = nilfs_copy_replace_page_buffers(page, out);
  1422. if (unlikely(err))
  1423. return err;
  1424. }
  1425. return 0;
  1426. }
  1427. static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
  1428. struct page **failed_page)
  1429. {
  1430. struct nilfs_segment_buffer *segbuf;
  1431. struct page *bd_page = NULL, *fs_page = NULL;
  1432. struct list_head *list = &sci->sc_copied_buffers;
  1433. int err;
  1434. *failed_page = NULL;
  1435. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1436. struct buffer_head *bh;
  1437. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1438. b_assoc_buffers) {
  1439. if (bh->b_page != bd_page) {
  1440. if (bd_page) {
  1441. lock_page(bd_page);
  1442. clear_page_dirty_for_io(bd_page);
  1443. set_page_writeback(bd_page);
  1444. unlock_page(bd_page);
  1445. }
  1446. bd_page = bh->b_page;
  1447. }
  1448. }
  1449. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1450. b_assoc_buffers) {
  1451. if (bh == segbuf->sb_super_root) {
  1452. if (bh->b_page != bd_page) {
  1453. lock_page(bd_page);
  1454. clear_page_dirty_for_io(bd_page);
  1455. set_page_writeback(bd_page);
  1456. unlock_page(bd_page);
  1457. bd_page = bh->b_page;
  1458. }
  1459. break;
  1460. }
  1461. if (bh->b_page != fs_page) {
  1462. err = nilfs_begin_page_io(fs_page, list);
  1463. if (unlikely(err)) {
  1464. *failed_page = fs_page;
  1465. goto out;
  1466. }
  1467. fs_page = bh->b_page;
  1468. }
  1469. }
  1470. }
  1471. if (bd_page) {
  1472. lock_page(bd_page);
  1473. clear_page_dirty_for_io(bd_page);
  1474. set_page_writeback(bd_page);
  1475. unlock_page(bd_page);
  1476. }
  1477. err = nilfs_begin_page_io(fs_page, list);
  1478. if (unlikely(err))
  1479. *failed_page = fs_page;
  1480. out:
  1481. return err;
  1482. }
  1483. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1484. struct the_nilfs *nilfs)
  1485. {
  1486. int ret;
  1487. ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
  1488. list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
  1489. return ret;
  1490. }
  1491. static void __nilfs_end_page_io(struct page *page, int err)
  1492. {
  1493. if (!err) {
  1494. if (!nilfs_page_buffers_clean(page))
  1495. __set_page_dirty_nobuffers(page);
  1496. ClearPageError(page);
  1497. } else {
  1498. __set_page_dirty_nobuffers(page);
  1499. SetPageError(page);
  1500. }
  1501. if (buffer_nilfs_allocated(page_buffers(page))) {
  1502. if (TestClearPageWriteback(page))
  1503. dec_zone_page_state(page, NR_WRITEBACK);
  1504. } else
  1505. end_page_writeback(page);
  1506. }
  1507. static void nilfs_end_page_io(struct page *page, int err)
  1508. {
  1509. if (!page)
  1510. return;
  1511. if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
  1512. /*
  1513. * For b-tree node pages, this function may be called twice
  1514. * or more because they might be split in a segment.
  1515. */
  1516. if (PageDirty(page)) {
  1517. /*
  1518. * For pages holding split b-tree node buffers, dirty
  1519. * flag on the buffers may be cleared discretely.
  1520. * In that case, the page is once redirtied for
  1521. * remaining buffers, and it must be cancelled if
  1522. * all the buffers get cleaned later.
  1523. */
  1524. lock_page(page);
  1525. if (nilfs_page_buffers_clean(page))
  1526. __nilfs_clear_page_dirty(page);
  1527. unlock_page(page);
  1528. }
  1529. return;
  1530. }
  1531. __nilfs_end_page_io(page, err);
  1532. }
  1533. static void nilfs_clear_copied_buffers(struct list_head *list, int err)
  1534. {
  1535. struct buffer_head *bh, *head;
  1536. struct page *page;
  1537. while (!list_empty(list)) {
  1538. bh = list_entry(list->next, struct buffer_head,
  1539. b_assoc_buffers);
  1540. page = bh->b_page;
  1541. page_cache_get(page);
  1542. head = bh = page_buffers(page);
  1543. do {
  1544. if (!list_empty(&bh->b_assoc_buffers)) {
  1545. list_del_init(&bh->b_assoc_buffers);
  1546. if (!err) {
  1547. set_buffer_uptodate(bh);
  1548. clear_buffer_dirty(bh);
  1549. clear_buffer_delay(bh);
  1550. clear_buffer_nilfs_volatile(bh);
  1551. }
  1552. brelse(bh); /* for b_assoc_buffers */
  1553. }
  1554. } while ((bh = bh->b_this_page) != head);
  1555. __nilfs_end_page_io(page, err);
  1556. page_cache_release(page);
  1557. }
  1558. }
  1559. static void nilfs_abort_logs(struct list_head *logs, struct page *failed_page,
  1560. int err)
  1561. {
  1562. struct nilfs_segment_buffer *segbuf;
  1563. struct page *bd_page = NULL, *fs_page = NULL;
  1564. struct buffer_head *bh;
  1565. if (list_empty(logs))
  1566. return;
  1567. list_for_each_entry(segbuf, logs, sb_list) {
  1568. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1569. b_assoc_buffers) {
  1570. if (bh->b_page != bd_page) {
  1571. if (bd_page)
  1572. end_page_writeback(bd_page);
  1573. bd_page = bh->b_page;
  1574. }
  1575. }
  1576. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1577. b_assoc_buffers) {
  1578. if (bh == segbuf->sb_super_root) {
  1579. if (bh->b_page != bd_page) {
  1580. end_page_writeback(bd_page);
  1581. bd_page = bh->b_page;
  1582. }
  1583. break;
  1584. }
  1585. if (bh->b_page != fs_page) {
  1586. nilfs_end_page_io(fs_page, err);
  1587. if (fs_page && fs_page == failed_page)
  1588. return;
  1589. fs_page = bh->b_page;
  1590. }
  1591. }
  1592. }
  1593. if (bd_page)
  1594. end_page_writeback(bd_page);
  1595. nilfs_end_page_io(fs_page, err);
  1596. }
  1597. static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
  1598. struct the_nilfs *nilfs, int err)
  1599. {
  1600. LIST_HEAD(logs);
  1601. int ret;
  1602. list_splice_tail_init(&sci->sc_write_logs, &logs);
  1603. ret = nilfs_wait_on_logs(&logs);
  1604. nilfs_abort_logs(&logs, NULL, ret ? : err);
  1605. list_splice_tail_init(&sci->sc_segbufs, &logs);
  1606. nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
  1607. nilfs_free_incomplete_logs(&logs, nilfs);
  1608. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
  1609. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1610. ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1611. sci->sc_freesegs,
  1612. sci->sc_nfreesegs,
  1613. NULL);
  1614. WARN_ON(ret); /* do not happen */
  1615. }
  1616. nilfs_destroy_logs(&logs);
  1617. }
  1618. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1619. struct nilfs_segment_buffer *segbuf)
  1620. {
  1621. nilfs->ns_segnum = segbuf->sb_segnum;
  1622. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1623. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1624. + segbuf->sb_sum.nblocks;
  1625. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1626. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1627. }
  1628. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1629. {
  1630. struct nilfs_segment_buffer *segbuf;
  1631. struct page *bd_page = NULL, *fs_page = NULL;
  1632. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  1633. int update_sr = false;
  1634. list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
  1635. struct buffer_head *bh;
  1636. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1637. b_assoc_buffers) {
  1638. set_buffer_uptodate(bh);
  1639. clear_buffer_dirty(bh);
  1640. if (bh->b_page != bd_page) {
  1641. if (bd_page)
  1642. end_page_writeback(bd_page);
  1643. bd_page = bh->b_page;
  1644. }
  1645. }
  1646. /*
  1647. * We assume that the buffers which belong to the same page
  1648. * continue over the buffer list.
  1649. * Under this assumption, the last BHs of pages is
  1650. * identifiable by the discontinuity of bh->b_page
  1651. * (page != fs_page).
  1652. *
  1653. * For B-tree node blocks, however, this assumption is not
  1654. * guaranteed. The cleanup code of B-tree node pages needs
  1655. * special care.
  1656. */
  1657. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1658. b_assoc_buffers) {
  1659. set_buffer_uptodate(bh);
  1660. clear_buffer_dirty(bh);
  1661. clear_buffer_delay(bh);
  1662. clear_buffer_nilfs_volatile(bh);
  1663. clear_buffer_nilfs_redirected(bh);
  1664. if (bh == segbuf->sb_super_root) {
  1665. if (bh->b_page != bd_page) {
  1666. end_page_writeback(bd_page);
  1667. bd_page = bh->b_page;
  1668. }
  1669. update_sr = true;
  1670. break;
  1671. }
  1672. if (bh->b_page != fs_page) {
  1673. nilfs_end_page_io(fs_page, 0);
  1674. fs_page = bh->b_page;
  1675. }
  1676. }
  1677. if (!nilfs_segbuf_simplex(segbuf)) {
  1678. if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
  1679. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1680. sci->sc_lseg_stime = jiffies;
  1681. }
  1682. if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
  1683. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1684. }
  1685. }
  1686. /*
  1687. * Since pages may continue over multiple segment buffers,
  1688. * end of the last page must be checked outside of the loop.
  1689. */
  1690. if (bd_page)
  1691. end_page_writeback(bd_page);
  1692. nilfs_end_page_io(fs_page, 0);
  1693. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
  1694. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1695. if (nilfs_doing_gc())
  1696. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1697. else
  1698. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1699. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1700. segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1701. nilfs_set_next_segment(nilfs, segbuf);
  1702. if (update_sr) {
  1703. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1704. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1705. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1706. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1707. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1708. nilfs_segctor_clear_metadata_dirty(sci);
  1709. } else
  1710. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1711. }
  1712. static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
  1713. {
  1714. int ret;
  1715. ret = nilfs_wait_on_logs(&sci->sc_write_logs);
  1716. if (!ret) {
  1717. nilfs_segctor_complete_write(sci);
  1718. nilfs_destroy_logs(&sci->sc_write_logs);
  1719. }
  1720. return ret;
  1721. }
  1722. static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
  1723. struct the_nilfs *nilfs)
  1724. {
  1725. struct nilfs_inode_info *ii, *n;
  1726. struct inode *ifile = sci->sc_root->ifile;
  1727. spin_lock(&nilfs->ns_inode_lock);
  1728. retry:
  1729. list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
  1730. if (!ii->i_bh) {
  1731. struct buffer_head *ibh;
  1732. int err;
  1733. spin_unlock(&nilfs->ns_inode_lock);
  1734. err = nilfs_ifile_get_inode_block(
  1735. ifile, ii->vfs_inode.i_ino, &ibh);
  1736. if (unlikely(err)) {
  1737. nilfs_warning(sci->sc_super, __func__,
  1738. "failed to get inode block.\n");
  1739. return err;
  1740. }
  1741. nilfs_mdt_mark_buffer_dirty(ibh);
  1742. nilfs_mdt_mark_dirty(ifile);
  1743. spin_lock(&nilfs->ns_inode_lock);
  1744. if (likely(!ii->i_bh))
  1745. ii->i_bh = ibh;
  1746. else
  1747. brelse(ibh);
  1748. goto retry;
  1749. }
  1750. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1751. set_bit(NILFS_I_BUSY, &ii->i_state);
  1752. list_del(&ii->i_dirty);
  1753. list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1754. }
  1755. spin_unlock(&nilfs->ns_inode_lock);
  1756. return 0;
  1757. }
  1758. static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
  1759. struct the_nilfs *nilfs)
  1760. {
  1761. struct nilfs_transaction_info *ti = current->journal_info;
  1762. struct nilfs_inode_info *ii, *n;
  1763. spin_lock(&nilfs->ns_inode_lock);
  1764. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1765. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1766. test_bit(NILFS_I_DIRTY, &ii->i_state))
  1767. continue;
  1768. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1769. brelse(ii->i_bh);
  1770. ii->i_bh = NULL;
  1771. list_del(&ii->i_dirty);
  1772. list_add_tail(&ii->i_dirty, &ti->ti_garbage);
  1773. }
  1774. spin_unlock(&nilfs->ns_inode_lock);
  1775. }
  1776. /*
  1777. * Main procedure of segment constructor
  1778. */
  1779. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1780. {
  1781. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1782. struct the_nilfs *nilfs = sbi->s_nilfs;
  1783. struct page *failed_page;
  1784. int err;
  1785. sci->sc_stage.scnt = NILFS_ST_INIT;
  1786. sci->sc_cno = nilfs->ns_cno;
  1787. err = nilfs_segctor_collect_dirty_files(sci, nilfs);
  1788. if (unlikely(err))
  1789. goto out;
  1790. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  1791. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1792. if (nilfs_segctor_clean(sci))
  1793. goto out;
  1794. do {
  1795. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1796. err = nilfs_segctor_begin_construction(sci, nilfs);
  1797. if (unlikely(err))
  1798. goto out;
  1799. /* Update time stamp */
  1800. sci->sc_seg_ctime = get_seconds();
  1801. err = nilfs_segctor_collect(sci, nilfs, mode);
  1802. if (unlikely(err))
  1803. goto failed;
  1804. /* Avoid empty segment */
  1805. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  1806. nilfs_segbuf_empty(sci->sc_curseg)) {
  1807. nilfs_segctor_abort_construction(sci, nilfs, 1);
  1808. goto out;
  1809. }
  1810. err = nilfs_segctor_assign(sci, mode);
  1811. if (unlikely(err))
  1812. goto failed;
  1813. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1814. nilfs_segctor_fill_in_file_bmap(sci);
  1815. if (mode == SC_LSEG_SR &&
  1816. sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
  1817. err = nilfs_segctor_fill_in_checkpoint(sci);
  1818. if (unlikely(err))
  1819. goto failed_to_write;
  1820. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1821. }
  1822. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1823. /* Write partial segments */
  1824. err = nilfs_segctor_prepare_write(sci, &failed_page);
  1825. if (err) {
  1826. nilfs_abort_logs(&sci->sc_segbufs, failed_page, err);
  1827. goto failed_to_write;
  1828. }
  1829. nilfs_add_checksums_on_logs(&sci->sc_segbufs,
  1830. nilfs->ns_crc_seed);
  1831. err = nilfs_segctor_write(sci, nilfs);
  1832. if (unlikely(err))
  1833. goto failed_to_write;
  1834. if (sci->sc_stage.scnt == NILFS_ST_DONE ||
  1835. nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
  1836. /*
  1837. * At this point, we avoid double buffering
  1838. * for blocksize < pagesize because page dirty
  1839. * flag is turned off during write and dirty
  1840. * buffers are not properly collected for
  1841. * pages crossing over segments.
  1842. */
  1843. err = nilfs_segctor_wait(sci);
  1844. if (err)
  1845. goto failed_to_write;
  1846. }
  1847. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  1848. out:
  1849. nilfs_segctor_drop_written_files(sci, nilfs);
  1850. return err;
  1851. failed_to_write:
  1852. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1853. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1854. failed:
  1855. if (nilfs_doing_gc())
  1856. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1857. nilfs_segctor_abort_construction(sci, nilfs, err);
  1858. goto out;
  1859. }
  1860. /**
  1861. * nilfs_segctor_start_timer - set timer of background write
  1862. * @sci: nilfs_sc_info
  1863. *
  1864. * If the timer has already been set, it ignores the new request.
  1865. * This function MUST be called within a section locking the segment
  1866. * semaphore.
  1867. */
  1868. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1869. {
  1870. spin_lock(&sci->sc_state_lock);
  1871. if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1872. sci->sc_timer.expires = jiffies + sci->sc_interval;
  1873. add_timer(&sci->sc_timer);
  1874. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1875. }
  1876. spin_unlock(&sci->sc_state_lock);
  1877. }
  1878. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1879. {
  1880. spin_lock(&sci->sc_state_lock);
  1881. if (!(sci->sc_flush_request & (1 << bn))) {
  1882. unsigned long prev_req = sci->sc_flush_request;
  1883. sci->sc_flush_request |= (1 << bn);
  1884. if (!prev_req)
  1885. wake_up(&sci->sc_wait_daemon);
  1886. }
  1887. spin_unlock(&sci->sc_state_lock);
  1888. }
  1889. /**
  1890. * nilfs_flush_segment - trigger a segment construction for resource control
  1891. * @sb: super block
  1892. * @ino: inode number of the file to be flushed out.
  1893. */
  1894. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  1895. {
  1896. struct the_nilfs *nilfs = NILFS_SB(sb)->s_nilfs;
  1897. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1898. if (!sci || nilfs_doing_construction())
  1899. return;
  1900. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  1901. /* assign bit 0 to data files */
  1902. }
  1903. struct nilfs_segctor_wait_request {
  1904. wait_queue_t wq;
  1905. __u32 seq;
  1906. int err;
  1907. atomic_t done;
  1908. };
  1909. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  1910. {
  1911. struct nilfs_segctor_wait_request wait_req;
  1912. int err = 0;
  1913. spin_lock(&sci->sc_state_lock);
  1914. init_wait(&wait_req.wq);
  1915. wait_req.err = 0;
  1916. atomic_set(&wait_req.done, 0);
  1917. wait_req.seq = ++sci->sc_seq_request;
  1918. spin_unlock(&sci->sc_state_lock);
  1919. init_waitqueue_entry(&wait_req.wq, current);
  1920. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  1921. set_current_state(TASK_INTERRUPTIBLE);
  1922. wake_up(&sci->sc_wait_daemon);
  1923. for (;;) {
  1924. if (atomic_read(&wait_req.done)) {
  1925. err = wait_req.err;
  1926. break;
  1927. }
  1928. if (!signal_pending(current)) {
  1929. schedule();
  1930. continue;
  1931. }
  1932. err = -ERESTARTSYS;
  1933. break;
  1934. }
  1935. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  1936. return err;
  1937. }
  1938. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  1939. {
  1940. struct nilfs_segctor_wait_request *wrq, *n;
  1941. unsigned long flags;
  1942. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  1943. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  1944. wq.task_list) {
  1945. if (!atomic_read(&wrq->done) &&
  1946. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  1947. wrq->err = err;
  1948. atomic_set(&wrq->done, 1);
  1949. }
  1950. if (atomic_read(&wrq->done)) {
  1951. wrq->wq.func(&wrq->wq,
  1952. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  1953. 0, NULL);
  1954. }
  1955. }
  1956. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  1957. }
  1958. /**
  1959. * nilfs_construct_segment - construct a logical segment
  1960. * @sb: super block
  1961. *
  1962. * Return Value: On success, 0 is retured. On errors, one of the following
  1963. * negative error code is returned.
  1964. *
  1965. * %-EROFS - Read only filesystem.
  1966. *
  1967. * %-EIO - I/O error
  1968. *
  1969. * %-ENOSPC - No space left on device (only in a panic state).
  1970. *
  1971. * %-ERESTARTSYS - Interrupted.
  1972. *
  1973. * %-ENOMEM - Insufficient memory available.
  1974. */
  1975. int nilfs_construct_segment(struct super_block *sb)
  1976. {
  1977. struct the_nilfs *nilfs = NILFS_SB(sb)->s_nilfs;
  1978. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1979. struct nilfs_transaction_info *ti;
  1980. int err;
  1981. if (!sci)
  1982. return -EROFS;
  1983. /* A call inside transactions causes a deadlock. */
  1984. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  1985. err = nilfs_segctor_sync(sci);
  1986. return err;
  1987. }
  1988. /**
  1989. * nilfs_construct_dsync_segment - construct a data-only logical segment
  1990. * @sb: super block
  1991. * @inode: inode whose data blocks should be written out
  1992. * @start: start byte offset
  1993. * @end: end byte offset (inclusive)
  1994. *
  1995. * Return Value: On success, 0 is retured. On errors, one of the following
  1996. * negative error code is returned.
  1997. *
  1998. * %-EROFS - Read only filesystem.
  1999. *
  2000. * %-EIO - I/O error
  2001. *
  2002. * %-ENOSPC - No space left on device (only in a panic state).
  2003. *
  2004. * %-ERESTARTSYS - Interrupted.
  2005. *
  2006. * %-ENOMEM - Insufficient memory available.
  2007. */
  2008. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  2009. loff_t start, loff_t end)
  2010. {
  2011. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2012. struct the_nilfs *nilfs = sbi->s_nilfs;
  2013. struct nilfs_sc_info *sci = nilfs->ns_writer;
  2014. struct nilfs_inode_info *ii;
  2015. struct nilfs_transaction_info ti;
  2016. int err = 0;
  2017. if (!sci)
  2018. return -EROFS;
  2019. nilfs_transaction_lock(sbi, &ti, 0);
  2020. ii = NILFS_I(inode);
  2021. if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
  2022. nilfs_test_opt(nilfs, STRICT_ORDER) ||
  2023. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2024. nilfs_discontinued(nilfs)) {
  2025. nilfs_transaction_unlock(sbi);
  2026. err = nilfs_segctor_sync(sci);
  2027. return err;
  2028. }
  2029. spin_lock(&nilfs->ns_inode_lock);
  2030. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  2031. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  2032. spin_unlock(&nilfs->ns_inode_lock);
  2033. nilfs_transaction_unlock(sbi);
  2034. return 0;
  2035. }
  2036. spin_unlock(&nilfs->ns_inode_lock);
  2037. sci->sc_dsync_inode = ii;
  2038. sci->sc_dsync_start = start;
  2039. sci->sc_dsync_end = end;
  2040. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  2041. nilfs_transaction_unlock(sbi);
  2042. return err;
  2043. }
  2044. #define FLUSH_FILE_BIT (0x1) /* data file only */
  2045. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  2046. /**
  2047. * nilfs_segctor_accept - record accepted sequence count of log-write requests
  2048. * @sci: segment constructor object
  2049. */
  2050. static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
  2051. {
  2052. spin_lock(&sci->sc_state_lock);
  2053. sci->sc_seq_accepted = sci->sc_seq_request;
  2054. spin_unlock(&sci->sc_state_lock);
  2055. del_timer_sync(&sci->sc_timer);
  2056. }
  2057. /**
  2058. * nilfs_segctor_notify - notify the result of request to caller threads
  2059. * @sci: segment constructor object
  2060. * @mode: mode of log forming
  2061. * @err: error code to be notified
  2062. */
  2063. static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
  2064. {
  2065. /* Clear requests (even when the construction failed) */
  2066. spin_lock(&sci->sc_state_lock);
  2067. if (mode == SC_LSEG_SR) {
  2068. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  2069. sci->sc_seq_done = sci->sc_seq_accepted;
  2070. nilfs_segctor_wakeup(sci, err);
  2071. sci->sc_flush_request = 0;
  2072. } else {
  2073. if (mode == SC_FLUSH_FILE)
  2074. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  2075. else if (mode == SC_FLUSH_DAT)
  2076. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  2077. /* re-enable timer if checkpoint creation was not done */
  2078. if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2079. time_before(jiffies, sci->sc_timer.expires))
  2080. add_timer(&sci->sc_timer);
  2081. }
  2082. spin_unlock(&sci->sc_state_lock);
  2083. }
  2084. /**
  2085. * nilfs_segctor_construct - form logs and write them to disk
  2086. * @sci: segment constructor object
  2087. * @mode: mode of log forming
  2088. */
  2089. static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
  2090. {
  2091. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2092. struct the_nilfs *nilfs = sbi->s_nilfs;
  2093. struct nilfs_super_block **sbp;
  2094. int err = 0;
  2095. nilfs_segctor_accept(sci);
  2096. if (nilfs_discontinued(nilfs))
  2097. mode = SC_LSEG_SR;
  2098. if (!nilfs_segctor_confirm(sci))
  2099. err = nilfs_segctor_do_construct(sci, mode);
  2100. if (likely(!err)) {
  2101. if (mode != SC_FLUSH_DAT)
  2102. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2103. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2104. nilfs_discontinued(nilfs)) {
  2105. down_write(&nilfs->ns_sem);
  2106. err = -EIO;
  2107. sbp = nilfs_prepare_super(sbi,
  2108. nilfs_sb_will_flip(nilfs));
  2109. if (likely(sbp)) {
  2110. nilfs_set_log_cursor(sbp[0], nilfs);
  2111. err = nilfs_commit_super(sbi, NILFS_SB_COMMIT);
  2112. }
  2113. up_write(&nilfs->ns_sem);
  2114. }
  2115. }
  2116. nilfs_segctor_notify(sci, mode, err);
  2117. return err;
  2118. }
  2119. static void nilfs_construction_timeout(unsigned long data)
  2120. {
  2121. struct task_struct *p = (struct task_struct *)data;
  2122. wake_up_process(p);
  2123. }
  2124. static void
  2125. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2126. {
  2127. struct nilfs_inode_info *ii, *n;
  2128. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2129. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2130. continue;
  2131. list_del_init(&ii->i_dirty);
  2132. iput(&ii->vfs_inode);
  2133. }
  2134. }
  2135. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2136. void **kbufs)
  2137. {
  2138. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2139. struct the_nilfs *nilfs = sbi->s_nilfs;
  2140. struct nilfs_sc_info *sci = nilfs->ns_writer;
  2141. struct nilfs_transaction_info ti;
  2142. int err;
  2143. if (unlikely(!sci))
  2144. return -EROFS;
  2145. nilfs_transaction_lock(sbi, &ti, 1);
  2146. err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
  2147. if (unlikely(err))
  2148. goto out_unlock;
  2149. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2150. if (unlikely(err)) {
  2151. nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
  2152. goto out_unlock;
  2153. }
  2154. sci->sc_freesegs = kbufs[4];
  2155. sci->sc_nfreesegs = argv[4].v_nmembs;
  2156. list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
  2157. for (;;) {
  2158. err = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2159. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2160. if (likely(!err))
  2161. break;
  2162. nilfs_warning(sb, __func__,
  2163. "segment construction failed. (err=%d)", err);
  2164. set_current_state(TASK_INTERRUPTIBLE);
  2165. schedule_timeout(sci->sc_interval);
  2166. }
  2167. if (nilfs_test_opt(nilfs, DISCARD)) {
  2168. int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
  2169. sci->sc_nfreesegs);
  2170. if (ret) {
  2171. printk(KERN_WARNING
  2172. "NILFS warning: error %d on discard request, "
  2173. "turning discards off for the device\n", ret);
  2174. nilfs_clear_opt(nilfs, DISCARD);
  2175. }
  2176. }
  2177. out_unlock:
  2178. sci->sc_freesegs = NULL;
  2179. sci->sc_nfreesegs = 0;
  2180. nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
  2181. nilfs_transaction_unlock(sbi);
  2182. return err;
  2183. }
  2184. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2185. {
  2186. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2187. struct nilfs_transaction_info ti;
  2188. nilfs_transaction_lock(sbi, &ti, 0);
  2189. nilfs_segctor_construct(sci, mode);
  2190. /*
  2191. * Unclosed segment should be retried. We do this using sc_timer.
  2192. * Timeout of sc_timer will invoke complete construction which leads
  2193. * to close the current logical segment.
  2194. */
  2195. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2196. nilfs_segctor_start_timer(sci);
  2197. nilfs_transaction_unlock(sbi);
  2198. }
  2199. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2200. {
  2201. int mode = 0;
  2202. int err;
  2203. spin_lock(&sci->sc_state_lock);
  2204. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2205. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2206. spin_unlock(&sci->sc_state_lock);
  2207. if (mode) {
  2208. err = nilfs_segctor_do_construct(sci, mode);
  2209. spin_lock(&sci->sc_state_lock);
  2210. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2211. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2212. spin_unlock(&sci->sc_state_lock);
  2213. }
  2214. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2215. }
  2216. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2217. {
  2218. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2219. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2220. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2221. return SC_FLUSH_FILE;
  2222. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2223. return SC_FLUSH_DAT;
  2224. }
  2225. return SC_LSEG_SR;
  2226. }
  2227. /**
  2228. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2229. * @arg: pointer to a struct nilfs_sc_info.
  2230. *
  2231. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2232. * to execute segment constructions.
  2233. */
  2234. static int nilfs_segctor_thread(void *arg)
  2235. {
  2236. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2237. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  2238. int timeout = 0;
  2239. sci->sc_timer.data = (unsigned long)current;
  2240. sci->sc_timer.function = nilfs_construction_timeout;
  2241. /* start sync. */
  2242. sci->sc_task = current;
  2243. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2244. printk(KERN_INFO
  2245. "segctord starting. Construction interval = %lu seconds, "
  2246. "CP frequency < %lu seconds\n",
  2247. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2248. spin_lock(&sci->sc_state_lock);
  2249. loop:
  2250. for (;;) {
  2251. int mode;
  2252. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2253. goto end_thread;
  2254. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2255. mode = SC_LSEG_SR;
  2256. else if (!sci->sc_flush_request)
  2257. break;
  2258. else
  2259. mode = nilfs_segctor_flush_mode(sci);
  2260. spin_unlock(&sci->sc_state_lock);
  2261. nilfs_segctor_thread_construct(sci, mode);
  2262. spin_lock(&sci->sc_state_lock);
  2263. timeout = 0;
  2264. }
  2265. if (freezing(current)) {
  2266. spin_unlock(&sci->sc_state_lock);
  2267. refrigerator();
  2268. spin_lock(&sci->sc_state_lock);
  2269. } else {
  2270. DEFINE_WAIT(wait);
  2271. int should_sleep = 1;
  2272. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2273. TASK_INTERRUPTIBLE);
  2274. if (sci->sc_seq_request != sci->sc_seq_done)
  2275. should_sleep = 0;
  2276. else if (sci->sc_flush_request)
  2277. should_sleep = 0;
  2278. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2279. should_sleep = time_before(jiffies,
  2280. sci->sc_timer.expires);
  2281. if (should_sleep) {
  2282. spin_unlock(&sci->sc_state_lock);
  2283. schedule();
  2284. spin_lock(&sci->sc_state_lock);
  2285. }
  2286. finish_wait(&sci->sc_wait_daemon, &wait);
  2287. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2288. time_after_eq(jiffies, sci->sc_timer.expires));
  2289. if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
  2290. set_nilfs_discontinued(nilfs);
  2291. }
  2292. goto loop;
  2293. end_thread:
  2294. spin_unlock(&sci->sc_state_lock);
  2295. /* end sync. */
  2296. sci->sc_task = NULL;
  2297. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2298. return 0;
  2299. }
  2300. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2301. {
  2302. struct task_struct *t;
  2303. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2304. if (IS_ERR(t)) {
  2305. int err = PTR_ERR(t);
  2306. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2307. err);
  2308. return err;
  2309. }
  2310. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2311. return 0;
  2312. }
  2313. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2314. __acquires(&sci->sc_state_lock)
  2315. __releases(&sci->sc_state_lock)
  2316. {
  2317. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2318. while (sci->sc_task) {
  2319. wake_up(&sci->sc_wait_daemon);
  2320. spin_unlock(&sci->sc_state_lock);
  2321. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2322. spin_lock(&sci->sc_state_lock);
  2323. }
  2324. }
  2325. /*
  2326. * Setup & clean-up functions
  2327. */
  2328. static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi,
  2329. struct nilfs_root *root)
  2330. {
  2331. struct the_nilfs *nilfs = sbi->s_nilfs;
  2332. struct nilfs_sc_info *sci;
  2333. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2334. if (!sci)
  2335. return NULL;
  2336. sci->sc_sbi = sbi;
  2337. sci->sc_super = sbi->s_super;
  2338. nilfs_get_root(root);
  2339. sci->sc_root = root;
  2340. init_waitqueue_head(&sci->sc_wait_request);
  2341. init_waitqueue_head(&sci->sc_wait_daemon);
  2342. init_waitqueue_head(&sci->sc_wait_task);
  2343. spin_lock_init(&sci->sc_state_lock);
  2344. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2345. INIT_LIST_HEAD(&sci->sc_segbufs);
  2346. INIT_LIST_HEAD(&sci->sc_write_logs);
  2347. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2348. INIT_LIST_HEAD(&sci->sc_copied_buffers);
  2349. init_timer(&sci->sc_timer);
  2350. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2351. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2352. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2353. if (nilfs->ns_interval)
  2354. sci->sc_interval = nilfs->ns_interval;
  2355. if (nilfs->ns_watermark)
  2356. sci->sc_watermark = nilfs->ns_watermark;
  2357. return sci;
  2358. }
  2359. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2360. {
  2361. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2362. /* The segctord thread was stopped and its timer was removed.
  2363. But some tasks remain. */
  2364. do {
  2365. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2366. struct nilfs_transaction_info ti;
  2367. nilfs_transaction_lock(sbi, &ti, 0);
  2368. ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2369. nilfs_transaction_unlock(sbi);
  2370. } while (ret && retrycount-- > 0);
  2371. }
  2372. /**
  2373. * nilfs_segctor_destroy - destroy the segment constructor.
  2374. * @sci: nilfs_sc_info
  2375. *
  2376. * nilfs_segctor_destroy() kills the segctord thread and frees
  2377. * the nilfs_sc_info struct.
  2378. * Caller must hold the segment semaphore.
  2379. */
  2380. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2381. {
  2382. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  2383. int flag;
  2384. up_write(&nilfs->ns_segctor_sem);
  2385. spin_lock(&sci->sc_state_lock);
  2386. nilfs_segctor_kill_thread(sci);
  2387. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2388. || sci->sc_seq_request != sci->sc_seq_done);
  2389. spin_unlock(&sci->sc_state_lock);
  2390. if (flag || !nilfs_segctor_confirm(sci))
  2391. nilfs_segctor_write_out(sci);
  2392. WARN_ON(!list_empty(&sci->sc_copied_buffers));
  2393. if (!list_empty(&sci->sc_dirty_files)) {
  2394. nilfs_warning(sci->sc_super, __func__,
  2395. "dirty file(s) after the final construction\n");
  2396. nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
  2397. }
  2398. WARN_ON(!list_empty(&sci->sc_segbufs));
  2399. WARN_ON(!list_empty(&sci->sc_write_logs));
  2400. nilfs_put_root(sci->sc_root);
  2401. down_write(&nilfs->ns_segctor_sem);
  2402. del_timer_sync(&sci->sc_timer);
  2403. kfree(sci);
  2404. }
  2405. /**
  2406. * nilfs_attach_segment_constructor - attach a segment constructor
  2407. * @sbi: nilfs_sb_info
  2408. * @root: root object of the current filesystem tree
  2409. *
  2410. * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
  2411. * initializes it, and starts the segment constructor.
  2412. *
  2413. * Return Value: On success, 0 is returned. On error, one of the following
  2414. * negative error code is returned.
  2415. *
  2416. * %-ENOMEM - Insufficient memory available.
  2417. */
  2418. int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi,
  2419. struct nilfs_root *root)
  2420. {
  2421. struct the_nilfs *nilfs = sbi->s_nilfs;
  2422. int err;
  2423. if (nilfs->ns_writer) {
  2424. /*
  2425. * This happens if the filesystem was remounted
  2426. * read/write after nilfs_error degenerated it into a
  2427. * read-only mount.
  2428. */
  2429. nilfs_detach_segment_constructor(sbi);
  2430. }
  2431. nilfs->ns_writer = nilfs_segctor_new(sbi, root);
  2432. if (!nilfs->ns_writer)
  2433. return -ENOMEM;
  2434. err = nilfs_segctor_start_thread(nilfs->ns_writer);
  2435. if (err) {
  2436. kfree(nilfs->ns_writer);
  2437. nilfs->ns_writer = NULL;
  2438. }
  2439. return err;
  2440. }
  2441. /**
  2442. * nilfs_detach_segment_constructor - destroy the segment constructor
  2443. * @sbi: nilfs_sb_info
  2444. *
  2445. * nilfs_detach_segment_constructor() kills the segment constructor daemon,
  2446. * frees the struct nilfs_sc_info, and destroy the dirty file list.
  2447. */
  2448. void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
  2449. {
  2450. struct the_nilfs *nilfs = sbi->s_nilfs;
  2451. LIST_HEAD(garbage_list);
  2452. down_write(&nilfs->ns_segctor_sem);
  2453. if (nilfs->ns_writer) {
  2454. nilfs_segctor_destroy(nilfs->ns_writer);
  2455. nilfs->ns_writer = NULL;
  2456. }
  2457. /* Force to free the list of dirty files */
  2458. spin_lock(&nilfs->ns_inode_lock);
  2459. if (!list_empty(&nilfs->ns_dirty_files)) {
  2460. list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
  2461. nilfs_warning(sbi->s_super, __func__,
  2462. "Non empty dirty list after the last "
  2463. "segment construction\n");
  2464. }
  2465. spin_unlock(&nilfs->ns_inode_lock);
  2466. up_write(&nilfs->ns_segctor_sem);
  2467. nilfs_dispose_list(nilfs, &garbage_list, 1);
  2468. }