x86.c 129 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <trace/events/kvm.h>
  40. #undef TRACE_INCLUDE_FILE
  41. #define CREATE_TRACE_POINTS
  42. #include "trace.h"
  43. #include <asm/debugreg.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/msr.h>
  46. #include <asm/desc.h>
  47. #include <asm/mtrr.h>
  48. #include <asm/mce.h>
  49. #define MAX_IO_MSRS 256
  50. #define CR0_RESERVED_BITS \
  51. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  52. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  53. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  54. #define CR4_RESERVED_BITS \
  55. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  56. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  57. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  58. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  59. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  60. #define KVM_MAX_MCE_BANKS 32
  61. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  62. /* EFER defaults:
  63. * - enable syscall per default because its emulated by KVM
  64. * - enable LME and LMA per default on 64 bit KVM
  65. */
  66. #ifdef CONFIG_X86_64
  67. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  68. #else
  69. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  70. #endif
  71. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  72. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  73. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  74. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  75. struct kvm_cpuid_entry2 __user *entries);
  76. struct kvm_x86_ops *kvm_x86_ops;
  77. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  78. int ignore_msrs = 0;
  79. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  80. #define KVM_NR_SHARED_MSRS 16
  81. struct kvm_shared_msrs_global {
  82. int nr;
  83. struct kvm_shared_msr {
  84. u32 msr;
  85. u64 value;
  86. } msrs[KVM_NR_SHARED_MSRS];
  87. };
  88. struct kvm_shared_msrs {
  89. struct user_return_notifier urn;
  90. bool registered;
  91. u64 current_value[KVM_NR_SHARED_MSRS];
  92. };
  93. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  94. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  95. struct kvm_stats_debugfs_item debugfs_entries[] = {
  96. { "pf_fixed", VCPU_STAT(pf_fixed) },
  97. { "pf_guest", VCPU_STAT(pf_guest) },
  98. { "tlb_flush", VCPU_STAT(tlb_flush) },
  99. { "invlpg", VCPU_STAT(invlpg) },
  100. { "exits", VCPU_STAT(exits) },
  101. { "io_exits", VCPU_STAT(io_exits) },
  102. { "mmio_exits", VCPU_STAT(mmio_exits) },
  103. { "signal_exits", VCPU_STAT(signal_exits) },
  104. { "irq_window", VCPU_STAT(irq_window_exits) },
  105. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  106. { "halt_exits", VCPU_STAT(halt_exits) },
  107. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  108. { "hypercalls", VCPU_STAT(hypercalls) },
  109. { "request_irq", VCPU_STAT(request_irq_exits) },
  110. { "irq_exits", VCPU_STAT(irq_exits) },
  111. { "host_state_reload", VCPU_STAT(host_state_reload) },
  112. { "efer_reload", VCPU_STAT(efer_reload) },
  113. { "fpu_reload", VCPU_STAT(fpu_reload) },
  114. { "insn_emulation", VCPU_STAT(insn_emulation) },
  115. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  116. { "irq_injections", VCPU_STAT(irq_injections) },
  117. { "nmi_injections", VCPU_STAT(nmi_injections) },
  118. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  119. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  120. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  121. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  122. { "mmu_flooded", VM_STAT(mmu_flooded) },
  123. { "mmu_recycled", VM_STAT(mmu_recycled) },
  124. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  125. { "mmu_unsync", VM_STAT(mmu_unsync) },
  126. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  127. { "largepages", VM_STAT(lpages) },
  128. { NULL }
  129. };
  130. static void kvm_on_user_return(struct user_return_notifier *urn)
  131. {
  132. unsigned slot;
  133. struct kvm_shared_msr *global;
  134. struct kvm_shared_msrs *locals
  135. = container_of(urn, struct kvm_shared_msrs, urn);
  136. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  137. global = &shared_msrs_global.msrs[slot];
  138. if (global->value != locals->current_value[slot]) {
  139. wrmsrl(global->msr, global->value);
  140. locals->current_value[slot] = global->value;
  141. }
  142. }
  143. locals->registered = false;
  144. user_return_notifier_unregister(urn);
  145. }
  146. void kvm_define_shared_msr(unsigned slot, u32 msr)
  147. {
  148. int cpu;
  149. u64 value;
  150. if (slot >= shared_msrs_global.nr)
  151. shared_msrs_global.nr = slot + 1;
  152. shared_msrs_global.msrs[slot].msr = msr;
  153. rdmsrl_safe(msr, &value);
  154. shared_msrs_global.msrs[slot].value = value;
  155. for_each_online_cpu(cpu)
  156. per_cpu(shared_msrs, cpu).current_value[slot] = value;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  159. static void kvm_shared_msr_cpu_online(void)
  160. {
  161. unsigned i;
  162. struct kvm_shared_msrs *locals = &__get_cpu_var(shared_msrs);
  163. for (i = 0; i < shared_msrs_global.nr; ++i)
  164. locals->current_value[i] = shared_msrs_global.msrs[i].value;
  165. }
  166. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  167. {
  168. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  169. if (((value ^ smsr->current_value[slot]) & mask) == 0)
  170. return;
  171. smsr->current_value[slot] = value;
  172. wrmsrl(shared_msrs_global.msrs[slot].msr, value);
  173. if (!smsr->registered) {
  174. smsr->urn.on_user_return = kvm_on_user_return;
  175. user_return_notifier_register(&smsr->urn);
  176. smsr->registered = true;
  177. }
  178. }
  179. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  180. static void drop_user_return_notifiers(void *ignore)
  181. {
  182. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  183. if (smsr->registered)
  184. kvm_on_user_return(&smsr->urn);
  185. }
  186. unsigned long segment_base(u16 selector)
  187. {
  188. struct descriptor_table gdt;
  189. struct desc_struct *d;
  190. unsigned long table_base;
  191. unsigned long v;
  192. if (selector == 0)
  193. return 0;
  194. kvm_get_gdt(&gdt);
  195. table_base = gdt.base;
  196. if (selector & 4) { /* from ldt */
  197. u16 ldt_selector = kvm_read_ldt();
  198. table_base = segment_base(ldt_selector);
  199. }
  200. d = (struct desc_struct *)(table_base + (selector & ~7));
  201. v = get_desc_base(d);
  202. #ifdef CONFIG_X86_64
  203. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  204. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  205. #endif
  206. return v;
  207. }
  208. EXPORT_SYMBOL_GPL(segment_base);
  209. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  210. {
  211. if (irqchip_in_kernel(vcpu->kvm))
  212. return vcpu->arch.apic_base;
  213. else
  214. return vcpu->arch.apic_base;
  215. }
  216. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  217. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  218. {
  219. /* TODO: reserve bits check */
  220. if (irqchip_in_kernel(vcpu->kvm))
  221. kvm_lapic_set_base(vcpu, data);
  222. else
  223. vcpu->arch.apic_base = data;
  224. }
  225. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  226. #define EXCPT_BENIGN 0
  227. #define EXCPT_CONTRIBUTORY 1
  228. #define EXCPT_PF 2
  229. static int exception_class(int vector)
  230. {
  231. switch (vector) {
  232. case PF_VECTOR:
  233. return EXCPT_PF;
  234. case DE_VECTOR:
  235. case TS_VECTOR:
  236. case NP_VECTOR:
  237. case SS_VECTOR:
  238. case GP_VECTOR:
  239. return EXCPT_CONTRIBUTORY;
  240. default:
  241. break;
  242. }
  243. return EXCPT_BENIGN;
  244. }
  245. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  246. unsigned nr, bool has_error, u32 error_code)
  247. {
  248. u32 prev_nr;
  249. int class1, class2;
  250. if (!vcpu->arch.exception.pending) {
  251. queue:
  252. vcpu->arch.exception.pending = true;
  253. vcpu->arch.exception.has_error_code = has_error;
  254. vcpu->arch.exception.nr = nr;
  255. vcpu->arch.exception.error_code = error_code;
  256. return;
  257. }
  258. /* to check exception */
  259. prev_nr = vcpu->arch.exception.nr;
  260. if (prev_nr == DF_VECTOR) {
  261. /* triple fault -> shutdown */
  262. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  263. return;
  264. }
  265. class1 = exception_class(prev_nr);
  266. class2 = exception_class(nr);
  267. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  268. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  269. /* generate double fault per SDM Table 5-5 */
  270. vcpu->arch.exception.pending = true;
  271. vcpu->arch.exception.has_error_code = true;
  272. vcpu->arch.exception.nr = DF_VECTOR;
  273. vcpu->arch.exception.error_code = 0;
  274. } else
  275. /* replace previous exception with a new one in a hope
  276. that instruction re-execution will regenerate lost
  277. exception */
  278. goto queue;
  279. }
  280. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  281. {
  282. kvm_multiple_exception(vcpu, nr, false, 0);
  283. }
  284. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  285. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  286. u32 error_code)
  287. {
  288. ++vcpu->stat.pf_guest;
  289. vcpu->arch.cr2 = addr;
  290. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  291. }
  292. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  293. {
  294. vcpu->arch.nmi_pending = 1;
  295. }
  296. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  297. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  298. {
  299. kvm_multiple_exception(vcpu, nr, true, error_code);
  300. }
  301. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  302. /*
  303. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  304. * a #GP and return false.
  305. */
  306. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  307. {
  308. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  309. return true;
  310. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  311. return false;
  312. }
  313. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  314. /*
  315. * Load the pae pdptrs. Return true is they are all valid.
  316. */
  317. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  318. {
  319. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  320. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  321. int i;
  322. int ret;
  323. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  324. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  325. offset * sizeof(u64), sizeof(pdpte));
  326. if (ret < 0) {
  327. ret = 0;
  328. goto out;
  329. }
  330. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  331. if (is_present_gpte(pdpte[i]) &&
  332. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  333. ret = 0;
  334. goto out;
  335. }
  336. }
  337. ret = 1;
  338. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  339. __set_bit(VCPU_EXREG_PDPTR,
  340. (unsigned long *)&vcpu->arch.regs_avail);
  341. __set_bit(VCPU_EXREG_PDPTR,
  342. (unsigned long *)&vcpu->arch.regs_dirty);
  343. out:
  344. return ret;
  345. }
  346. EXPORT_SYMBOL_GPL(load_pdptrs);
  347. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  348. {
  349. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  350. bool changed = true;
  351. int r;
  352. if (is_long_mode(vcpu) || !is_pae(vcpu))
  353. return false;
  354. if (!test_bit(VCPU_EXREG_PDPTR,
  355. (unsigned long *)&vcpu->arch.regs_avail))
  356. return true;
  357. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  358. if (r < 0)
  359. goto out;
  360. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  361. out:
  362. return changed;
  363. }
  364. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  365. {
  366. if (cr0 & CR0_RESERVED_BITS) {
  367. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  368. cr0, vcpu->arch.cr0);
  369. kvm_inject_gp(vcpu, 0);
  370. return;
  371. }
  372. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  373. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  374. kvm_inject_gp(vcpu, 0);
  375. return;
  376. }
  377. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  378. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  379. "and a clear PE flag\n");
  380. kvm_inject_gp(vcpu, 0);
  381. return;
  382. }
  383. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  384. #ifdef CONFIG_X86_64
  385. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  386. int cs_db, cs_l;
  387. if (!is_pae(vcpu)) {
  388. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  389. "in long mode while PAE is disabled\n");
  390. kvm_inject_gp(vcpu, 0);
  391. return;
  392. }
  393. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  394. if (cs_l) {
  395. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  396. "in long mode while CS.L == 1\n");
  397. kvm_inject_gp(vcpu, 0);
  398. return;
  399. }
  400. } else
  401. #endif
  402. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  403. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  404. "reserved bits\n");
  405. kvm_inject_gp(vcpu, 0);
  406. return;
  407. }
  408. }
  409. kvm_x86_ops->set_cr0(vcpu, cr0);
  410. vcpu->arch.cr0 = cr0;
  411. kvm_mmu_reset_context(vcpu);
  412. return;
  413. }
  414. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  415. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  416. {
  417. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  418. }
  419. EXPORT_SYMBOL_GPL(kvm_lmsw);
  420. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  421. {
  422. unsigned long old_cr4 = vcpu->arch.cr4;
  423. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  424. if (cr4 & CR4_RESERVED_BITS) {
  425. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  426. kvm_inject_gp(vcpu, 0);
  427. return;
  428. }
  429. if (is_long_mode(vcpu)) {
  430. if (!(cr4 & X86_CR4_PAE)) {
  431. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  432. "in long mode\n");
  433. kvm_inject_gp(vcpu, 0);
  434. return;
  435. }
  436. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  437. && ((cr4 ^ old_cr4) & pdptr_bits)
  438. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  439. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  440. kvm_inject_gp(vcpu, 0);
  441. return;
  442. }
  443. if (cr4 & X86_CR4_VMXE) {
  444. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  445. kvm_inject_gp(vcpu, 0);
  446. return;
  447. }
  448. kvm_x86_ops->set_cr4(vcpu, cr4);
  449. vcpu->arch.cr4 = cr4;
  450. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  451. kvm_mmu_reset_context(vcpu);
  452. }
  453. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  454. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  455. {
  456. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  457. kvm_mmu_sync_roots(vcpu);
  458. kvm_mmu_flush_tlb(vcpu);
  459. return;
  460. }
  461. if (is_long_mode(vcpu)) {
  462. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  463. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  464. kvm_inject_gp(vcpu, 0);
  465. return;
  466. }
  467. } else {
  468. if (is_pae(vcpu)) {
  469. if (cr3 & CR3_PAE_RESERVED_BITS) {
  470. printk(KERN_DEBUG
  471. "set_cr3: #GP, reserved bits\n");
  472. kvm_inject_gp(vcpu, 0);
  473. return;
  474. }
  475. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  476. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  477. "reserved bits\n");
  478. kvm_inject_gp(vcpu, 0);
  479. return;
  480. }
  481. }
  482. /*
  483. * We don't check reserved bits in nonpae mode, because
  484. * this isn't enforced, and VMware depends on this.
  485. */
  486. }
  487. /*
  488. * Does the new cr3 value map to physical memory? (Note, we
  489. * catch an invalid cr3 even in real-mode, because it would
  490. * cause trouble later on when we turn on paging anyway.)
  491. *
  492. * A real CPU would silently accept an invalid cr3 and would
  493. * attempt to use it - with largely undefined (and often hard
  494. * to debug) behavior on the guest side.
  495. */
  496. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  497. kvm_inject_gp(vcpu, 0);
  498. else {
  499. vcpu->arch.cr3 = cr3;
  500. vcpu->arch.mmu.new_cr3(vcpu);
  501. }
  502. }
  503. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  504. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  505. {
  506. if (cr8 & CR8_RESERVED_BITS) {
  507. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  508. kvm_inject_gp(vcpu, 0);
  509. return;
  510. }
  511. if (irqchip_in_kernel(vcpu->kvm))
  512. kvm_lapic_set_tpr(vcpu, cr8);
  513. else
  514. vcpu->arch.cr8 = cr8;
  515. }
  516. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  517. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  518. {
  519. if (irqchip_in_kernel(vcpu->kvm))
  520. return kvm_lapic_get_cr8(vcpu);
  521. else
  522. return vcpu->arch.cr8;
  523. }
  524. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  525. static inline u32 bit(int bitno)
  526. {
  527. return 1 << (bitno & 31);
  528. }
  529. /*
  530. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  531. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  532. *
  533. * This list is modified at module load time to reflect the
  534. * capabilities of the host cpu. This capabilities test skips MSRs that are
  535. * kvm-specific. Those are put in the beginning of the list.
  536. */
  537. #define KVM_SAVE_MSRS_BEGIN 2
  538. static u32 msrs_to_save[] = {
  539. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  540. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  541. MSR_K6_STAR,
  542. #ifdef CONFIG_X86_64
  543. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  544. #endif
  545. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  546. };
  547. static unsigned num_msrs_to_save;
  548. static u32 emulated_msrs[] = {
  549. MSR_IA32_MISC_ENABLE,
  550. };
  551. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  552. {
  553. if (efer & efer_reserved_bits) {
  554. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  555. efer);
  556. kvm_inject_gp(vcpu, 0);
  557. return;
  558. }
  559. if (is_paging(vcpu)
  560. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  561. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  562. kvm_inject_gp(vcpu, 0);
  563. return;
  564. }
  565. if (efer & EFER_FFXSR) {
  566. struct kvm_cpuid_entry2 *feat;
  567. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  568. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  569. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  570. kvm_inject_gp(vcpu, 0);
  571. return;
  572. }
  573. }
  574. if (efer & EFER_SVME) {
  575. struct kvm_cpuid_entry2 *feat;
  576. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  577. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  578. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  579. kvm_inject_gp(vcpu, 0);
  580. return;
  581. }
  582. }
  583. kvm_x86_ops->set_efer(vcpu, efer);
  584. efer &= ~EFER_LMA;
  585. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  586. vcpu->arch.shadow_efer = efer;
  587. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  588. kvm_mmu_reset_context(vcpu);
  589. }
  590. void kvm_enable_efer_bits(u64 mask)
  591. {
  592. efer_reserved_bits &= ~mask;
  593. }
  594. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  595. /*
  596. * Writes msr value into into the appropriate "register".
  597. * Returns 0 on success, non-0 otherwise.
  598. * Assumes vcpu_load() was already called.
  599. */
  600. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  601. {
  602. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  603. }
  604. /*
  605. * Adapt set_msr() to msr_io()'s calling convention
  606. */
  607. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  608. {
  609. return kvm_set_msr(vcpu, index, *data);
  610. }
  611. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  612. {
  613. static int version;
  614. struct pvclock_wall_clock wc;
  615. struct timespec boot;
  616. if (!wall_clock)
  617. return;
  618. version++;
  619. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  620. /*
  621. * The guest calculates current wall clock time by adding
  622. * system time (updated by kvm_write_guest_time below) to the
  623. * wall clock specified here. guest system time equals host
  624. * system time for us, thus we must fill in host boot time here.
  625. */
  626. getboottime(&boot);
  627. wc.sec = boot.tv_sec;
  628. wc.nsec = boot.tv_nsec;
  629. wc.version = version;
  630. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  631. version++;
  632. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  633. }
  634. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  635. {
  636. uint32_t quotient, remainder;
  637. /* Don't try to replace with do_div(), this one calculates
  638. * "(dividend << 32) / divisor" */
  639. __asm__ ( "divl %4"
  640. : "=a" (quotient), "=d" (remainder)
  641. : "0" (0), "1" (dividend), "r" (divisor) );
  642. return quotient;
  643. }
  644. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  645. {
  646. uint64_t nsecs = 1000000000LL;
  647. int32_t shift = 0;
  648. uint64_t tps64;
  649. uint32_t tps32;
  650. tps64 = tsc_khz * 1000LL;
  651. while (tps64 > nsecs*2) {
  652. tps64 >>= 1;
  653. shift--;
  654. }
  655. tps32 = (uint32_t)tps64;
  656. while (tps32 <= (uint32_t)nsecs) {
  657. tps32 <<= 1;
  658. shift++;
  659. }
  660. hv_clock->tsc_shift = shift;
  661. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  662. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  663. __func__, tsc_khz, hv_clock->tsc_shift,
  664. hv_clock->tsc_to_system_mul);
  665. }
  666. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  667. static void kvm_write_guest_time(struct kvm_vcpu *v)
  668. {
  669. struct timespec ts;
  670. unsigned long flags;
  671. struct kvm_vcpu_arch *vcpu = &v->arch;
  672. void *shared_kaddr;
  673. unsigned long this_tsc_khz;
  674. if ((!vcpu->time_page))
  675. return;
  676. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  677. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  678. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  679. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  680. }
  681. put_cpu_var(cpu_tsc_khz);
  682. /* Keep irq disabled to prevent changes to the clock */
  683. local_irq_save(flags);
  684. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  685. ktime_get_ts(&ts);
  686. monotonic_to_bootbased(&ts);
  687. local_irq_restore(flags);
  688. /* With all the info we got, fill in the values */
  689. vcpu->hv_clock.system_time = ts.tv_nsec +
  690. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  691. /*
  692. * The interface expects us to write an even number signaling that the
  693. * update is finished. Since the guest won't see the intermediate
  694. * state, we just increase by 2 at the end.
  695. */
  696. vcpu->hv_clock.version += 2;
  697. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  698. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  699. sizeof(vcpu->hv_clock));
  700. kunmap_atomic(shared_kaddr, KM_USER0);
  701. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  702. }
  703. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  704. {
  705. struct kvm_vcpu_arch *vcpu = &v->arch;
  706. if (!vcpu->time_page)
  707. return 0;
  708. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  709. return 1;
  710. }
  711. static bool msr_mtrr_valid(unsigned msr)
  712. {
  713. switch (msr) {
  714. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  715. case MSR_MTRRfix64K_00000:
  716. case MSR_MTRRfix16K_80000:
  717. case MSR_MTRRfix16K_A0000:
  718. case MSR_MTRRfix4K_C0000:
  719. case MSR_MTRRfix4K_C8000:
  720. case MSR_MTRRfix4K_D0000:
  721. case MSR_MTRRfix4K_D8000:
  722. case MSR_MTRRfix4K_E0000:
  723. case MSR_MTRRfix4K_E8000:
  724. case MSR_MTRRfix4K_F0000:
  725. case MSR_MTRRfix4K_F8000:
  726. case MSR_MTRRdefType:
  727. case MSR_IA32_CR_PAT:
  728. return true;
  729. case 0x2f8:
  730. return true;
  731. }
  732. return false;
  733. }
  734. static bool valid_pat_type(unsigned t)
  735. {
  736. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  737. }
  738. static bool valid_mtrr_type(unsigned t)
  739. {
  740. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  741. }
  742. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  743. {
  744. int i;
  745. if (!msr_mtrr_valid(msr))
  746. return false;
  747. if (msr == MSR_IA32_CR_PAT) {
  748. for (i = 0; i < 8; i++)
  749. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  750. return false;
  751. return true;
  752. } else if (msr == MSR_MTRRdefType) {
  753. if (data & ~0xcff)
  754. return false;
  755. return valid_mtrr_type(data & 0xff);
  756. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  757. for (i = 0; i < 8 ; i++)
  758. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  759. return false;
  760. return true;
  761. }
  762. /* variable MTRRs */
  763. return valid_mtrr_type(data & 0xff);
  764. }
  765. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  766. {
  767. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  768. if (!mtrr_valid(vcpu, msr, data))
  769. return 1;
  770. if (msr == MSR_MTRRdefType) {
  771. vcpu->arch.mtrr_state.def_type = data;
  772. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  773. } else if (msr == MSR_MTRRfix64K_00000)
  774. p[0] = data;
  775. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  776. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  777. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  778. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  779. else if (msr == MSR_IA32_CR_PAT)
  780. vcpu->arch.pat = data;
  781. else { /* Variable MTRRs */
  782. int idx, is_mtrr_mask;
  783. u64 *pt;
  784. idx = (msr - 0x200) / 2;
  785. is_mtrr_mask = msr - 0x200 - 2 * idx;
  786. if (!is_mtrr_mask)
  787. pt =
  788. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  789. else
  790. pt =
  791. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  792. *pt = data;
  793. }
  794. kvm_mmu_reset_context(vcpu);
  795. return 0;
  796. }
  797. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  798. {
  799. u64 mcg_cap = vcpu->arch.mcg_cap;
  800. unsigned bank_num = mcg_cap & 0xff;
  801. switch (msr) {
  802. case MSR_IA32_MCG_STATUS:
  803. vcpu->arch.mcg_status = data;
  804. break;
  805. case MSR_IA32_MCG_CTL:
  806. if (!(mcg_cap & MCG_CTL_P))
  807. return 1;
  808. if (data != 0 && data != ~(u64)0)
  809. return -1;
  810. vcpu->arch.mcg_ctl = data;
  811. break;
  812. default:
  813. if (msr >= MSR_IA32_MC0_CTL &&
  814. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  815. u32 offset = msr - MSR_IA32_MC0_CTL;
  816. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  817. if ((offset & 0x3) == 0 &&
  818. data != 0 && data != ~(u64)0)
  819. return -1;
  820. vcpu->arch.mce_banks[offset] = data;
  821. break;
  822. }
  823. return 1;
  824. }
  825. return 0;
  826. }
  827. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  828. {
  829. struct kvm *kvm = vcpu->kvm;
  830. int lm = is_long_mode(vcpu);
  831. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  832. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  833. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  834. : kvm->arch.xen_hvm_config.blob_size_32;
  835. u32 page_num = data & ~PAGE_MASK;
  836. u64 page_addr = data & PAGE_MASK;
  837. u8 *page;
  838. int r;
  839. r = -E2BIG;
  840. if (page_num >= blob_size)
  841. goto out;
  842. r = -ENOMEM;
  843. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  844. if (!page)
  845. goto out;
  846. r = -EFAULT;
  847. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  848. goto out_free;
  849. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  850. goto out_free;
  851. r = 0;
  852. out_free:
  853. kfree(page);
  854. out:
  855. return r;
  856. }
  857. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  858. {
  859. switch (msr) {
  860. case MSR_EFER:
  861. set_efer(vcpu, data);
  862. break;
  863. case MSR_K7_HWCR:
  864. data &= ~(u64)0x40; /* ignore flush filter disable */
  865. if (data != 0) {
  866. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  867. data);
  868. return 1;
  869. }
  870. break;
  871. case MSR_FAM10H_MMIO_CONF_BASE:
  872. if (data != 0) {
  873. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  874. "0x%llx\n", data);
  875. return 1;
  876. }
  877. break;
  878. case MSR_AMD64_NB_CFG:
  879. break;
  880. case MSR_IA32_DEBUGCTLMSR:
  881. if (!data) {
  882. /* We support the non-activated case already */
  883. break;
  884. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  885. /* Values other than LBR and BTF are vendor-specific,
  886. thus reserved and should throw a #GP */
  887. return 1;
  888. }
  889. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  890. __func__, data);
  891. break;
  892. case MSR_IA32_UCODE_REV:
  893. case MSR_IA32_UCODE_WRITE:
  894. case MSR_VM_HSAVE_PA:
  895. case MSR_AMD64_PATCH_LOADER:
  896. break;
  897. case 0x200 ... 0x2ff:
  898. return set_msr_mtrr(vcpu, msr, data);
  899. case MSR_IA32_APICBASE:
  900. kvm_set_apic_base(vcpu, data);
  901. break;
  902. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  903. return kvm_x2apic_msr_write(vcpu, msr, data);
  904. case MSR_IA32_MISC_ENABLE:
  905. vcpu->arch.ia32_misc_enable_msr = data;
  906. break;
  907. case MSR_KVM_WALL_CLOCK:
  908. vcpu->kvm->arch.wall_clock = data;
  909. kvm_write_wall_clock(vcpu->kvm, data);
  910. break;
  911. case MSR_KVM_SYSTEM_TIME: {
  912. if (vcpu->arch.time_page) {
  913. kvm_release_page_dirty(vcpu->arch.time_page);
  914. vcpu->arch.time_page = NULL;
  915. }
  916. vcpu->arch.time = data;
  917. /* we verify if the enable bit is set... */
  918. if (!(data & 1))
  919. break;
  920. /* ...but clean it before doing the actual write */
  921. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  922. vcpu->arch.time_page =
  923. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  924. if (is_error_page(vcpu->arch.time_page)) {
  925. kvm_release_page_clean(vcpu->arch.time_page);
  926. vcpu->arch.time_page = NULL;
  927. }
  928. kvm_request_guest_time_update(vcpu);
  929. break;
  930. }
  931. case MSR_IA32_MCG_CTL:
  932. case MSR_IA32_MCG_STATUS:
  933. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  934. return set_msr_mce(vcpu, msr, data);
  935. /* Performance counters are not protected by a CPUID bit,
  936. * so we should check all of them in the generic path for the sake of
  937. * cross vendor migration.
  938. * Writing a zero into the event select MSRs disables them,
  939. * which we perfectly emulate ;-). Any other value should be at least
  940. * reported, some guests depend on them.
  941. */
  942. case MSR_P6_EVNTSEL0:
  943. case MSR_P6_EVNTSEL1:
  944. case MSR_K7_EVNTSEL0:
  945. case MSR_K7_EVNTSEL1:
  946. case MSR_K7_EVNTSEL2:
  947. case MSR_K7_EVNTSEL3:
  948. if (data != 0)
  949. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  950. "0x%x data 0x%llx\n", msr, data);
  951. break;
  952. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  953. * so we ignore writes to make it happy.
  954. */
  955. case MSR_P6_PERFCTR0:
  956. case MSR_P6_PERFCTR1:
  957. case MSR_K7_PERFCTR0:
  958. case MSR_K7_PERFCTR1:
  959. case MSR_K7_PERFCTR2:
  960. case MSR_K7_PERFCTR3:
  961. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  962. "0x%x data 0x%llx\n", msr, data);
  963. break;
  964. default:
  965. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  966. return xen_hvm_config(vcpu, data);
  967. if (!ignore_msrs) {
  968. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  969. msr, data);
  970. return 1;
  971. } else {
  972. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  973. msr, data);
  974. break;
  975. }
  976. }
  977. return 0;
  978. }
  979. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  980. /*
  981. * Reads an msr value (of 'msr_index') into 'pdata'.
  982. * Returns 0 on success, non-0 otherwise.
  983. * Assumes vcpu_load() was already called.
  984. */
  985. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  986. {
  987. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  988. }
  989. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  990. {
  991. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  992. if (!msr_mtrr_valid(msr))
  993. return 1;
  994. if (msr == MSR_MTRRdefType)
  995. *pdata = vcpu->arch.mtrr_state.def_type +
  996. (vcpu->arch.mtrr_state.enabled << 10);
  997. else if (msr == MSR_MTRRfix64K_00000)
  998. *pdata = p[0];
  999. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1000. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1001. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1002. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1003. else if (msr == MSR_IA32_CR_PAT)
  1004. *pdata = vcpu->arch.pat;
  1005. else { /* Variable MTRRs */
  1006. int idx, is_mtrr_mask;
  1007. u64 *pt;
  1008. idx = (msr - 0x200) / 2;
  1009. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1010. if (!is_mtrr_mask)
  1011. pt =
  1012. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1013. else
  1014. pt =
  1015. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1016. *pdata = *pt;
  1017. }
  1018. return 0;
  1019. }
  1020. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1021. {
  1022. u64 data;
  1023. u64 mcg_cap = vcpu->arch.mcg_cap;
  1024. unsigned bank_num = mcg_cap & 0xff;
  1025. switch (msr) {
  1026. case MSR_IA32_P5_MC_ADDR:
  1027. case MSR_IA32_P5_MC_TYPE:
  1028. data = 0;
  1029. break;
  1030. case MSR_IA32_MCG_CAP:
  1031. data = vcpu->arch.mcg_cap;
  1032. break;
  1033. case MSR_IA32_MCG_CTL:
  1034. if (!(mcg_cap & MCG_CTL_P))
  1035. return 1;
  1036. data = vcpu->arch.mcg_ctl;
  1037. break;
  1038. case MSR_IA32_MCG_STATUS:
  1039. data = vcpu->arch.mcg_status;
  1040. break;
  1041. default:
  1042. if (msr >= MSR_IA32_MC0_CTL &&
  1043. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1044. u32 offset = msr - MSR_IA32_MC0_CTL;
  1045. data = vcpu->arch.mce_banks[offset];
  1046. break;
  1047. }
  1048. return 1;
  1049. }
  1050. *pdata = data;
  1051. return 0;
  1052. }
  1053. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1054. {
  1055. u64 data;
  1056. switch (msr) {
  1057. case MSR_IA32_PLATFORM_ID:
  1058. case MSR_IA32_UCODE_REV:
  1059. case MSR_IA32_EBL_CR_POWERON:
  1060. case MSR_IA32_DEBUGCTLMSR:
  1061. case MSR_IA32_LASTBRANCHFROMIP:
  1062. case MSR_IA32_LASTBRANCHTOIP:
  1063. case MSR_IA32_LASTINTFROMIP:
  1064. case MSR_IA32_LASTINTTOIP:
  1065. case MSR_K8_SYSCFG:
  1066. case MSR_K7_HWCR:
  1067. case MSR_VM_HSAVE_PA:
  1068. case MSR_P6_PERFCTR0:
  1069. case MSR_P6_PERFCTR1:
  1070. case MSR_P6_EVNTSEL0:
  1071. case MSR_P6_EVNTSEL1:
  1072. case MSR_K7_EVNTSEL0:
  1073. case MSR_K7_PERFCTR0:
  1074. case MSR_K8_INT_PENDING_MSG:
  1075. case MSR_AMD64_NB_CFG:
  1076. case MSR_FAM10H_MMIO_CONF_BASE:
  1077. data = 0;
  1078. break;
  1079. case MSR_MTRRcap:
  1080. data = 0x500 | KVM_NR_VAR_MTRR;
  1081. break;
  1082. case 0x200 ... 0x2ff:
  1083. return get_msr_mtrr(vcpu, msr, pdata);
  1084. case 0xcd: /* fsb frequency */
  1085. data = 3;
  1086. break;
  1087. case MSR_IA32_APICBASE:
  1088. data = kvm_get_apic_base(vcpu);
  1089. break;
  1090. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1091. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1092. break;
  1093. case MSR_IA32_MISC_ENABLE:
  1094. data = vcpu->arch.ia32_misc_enable_msr;
  1095. break;
  1096. case MSR_IA32_PERF_STATUS:
  1097. /* TSC increment by tick */
  1098. data = 1000ULL;
  1099. /* CPU multiplier */
  1100. data |= (((uint64_t)4ULL) << 40);
  1101. break;
  1102. case MSR_EFER:
  1103. data = vcpu->arch.shadow_efer;
  1104. break;
  1105. case MSR_KVM_WALL_CLOCK:
  1106. data = vcpu->kvm->arch.wall_clock;
  1107. break;
  1108. case MSR_KVM_SYSTEM_TIME:
  1109. data = vcpu->arch.time;
  1110. break;
  1111. case MSR_IA32_P5_MC_ADDR:
  1112. case MSR_IA32_P5_MC_TYPE:
  1113. case MSR_IA32_MCG_CAP:
  1114. case MSR_IA32_MCG_CTL:
  1115. case MSR_IA32_MCG_STATUS:
  1116. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1117. return get_msr_mce(vcpu, msr, pdata);
  1118. default:
  1119. if (!ignore_msrs) {
  1120. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1121. return 1;
  1122. } else {
  1123. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1124. data = 0;
  1125. }
  1126. break;
  1127. }
  1128. *pdata = data;
  1129. return 0;
  1130. }
  1131. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1132. /*
  1133. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1134. *
  1135. * @return number of msrs set successfully.
  1136. */
  1137. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1138. struct kvm_msr_entry *entries,
  1139. int (*do_msr)(struct kvm_vcpu *vcpu,
  1140. unsigned index, u64 *data))
  1141. {
  1142. int i;
  1143. vcpu_load(vcpu);
  1144. down_read(&vcpu->kvm->slots_lock);
  1145. for (i = 0; i < msrs->nmsrs; ++i)
  1146. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1147. break;
  1148. up_read(&vcpu->kvm->slots_lock);
  1149. vcpu_put(vcpu);
  1150. return i;
  1151. }
  1152. /*
  1153. * Read or write a bunch of msrs. Parameters are user addresses.
  1154. *
  1155. * @return number of msrs set successfully.
  1156. */
  1157. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1158. int (*do_msr)(struct kvm_vcpu *vcpu,
  1159. unsigned index, u64 *data),
  1160. int writeback)
  1161. {
  1162. struct kvm_msrs msrs;
  1163. struct kvm_msr_entry *entries;
  1164. int r, n;
  1165. unsigned size;
  1166. r = -EFAULT;
  1167. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1168. goto out;
  1169. r = -E2BIG;
  1170. if (msrs.nmsrs >= MAX_IO_MSRS)
  1171. goto out;
  1172. r = -ENOMEM;
  1173. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1174. entries = vmalloc(size);
  1175. if (!entries)
  1176. goto out;
  1177. r = -EFAULT;
  1178. if (copy_from_user(entries, user_msrs->entries, size))
  1179. goto out_free;
  1180. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1181. if (r < 0)
  1182. goto out_free;
  1183. r = -EFAULT;
  1184. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1185. goto out_free;
  1186. r = n;
  1187. out_free:
  1188. vfree(entries);
  1189. out:
  1190. return r;
  1191. }
  1192. int kvm_dev_ioctl_check_extension(long ext)
  1193. {
  1194. int r;
  1195. switch (ext) {
  1196. case KVM_CAP_IRQCHIP:
  1197. case KVM_CAP_HLT:
  1198. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1199. case KVM_CAP_SET_TSS_ADDR:
  1200. case KVM_CAP_EXT_CPUID:
  1201. case KVM_CAP_CLOCKSOURCE:
  1202. case KVM_CAP_PIT:
  1203. case KVM_CAP_NOP_IO_DELAY:
  1204. case KVM_CAP_MP_STATE:
  1205. case KVM_CAP_SYNC_MMU:
  1206. case KVM_CAP_REINJECT_CONTROL:
  1207. case KVM_CAP_IRQ_INJECT_STATUS:
  1208. case KVM_CAP_ASSIGN_DEV_IRQ:
  1209. case KVM_CAP_IRQFD:
  1210. case KVM_CAP_IOEVENTFD:
  1211. case KVM_CAP_PIT2:
  1212. case KVM_CAP_PIT_STATE2:
  1213. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1214. case KVM_CAP_XEN_HVM:
  1215. case KVM_CAP_ADJUST_CLOCK:
  1216. case KVM_CAP_VCPU_EVENTS:
  1217. r = 1;
  1218. break;
  1219. case KVM_CAP_COALESCED_MMIO:
  1220. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1221. break;
  1222. case KVM_CAP_VAPIC:
  1223. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1224. break;
  1225. case KVM_CAP_NR_VCPUS:
  1226. r = KVM_MAX_VCPUS;
  1227. break;
  1228. case KVM_CAP_NR_MEMSLOTS:
  1229. r = KVM_MEMORY_SLOTS;
  1230. break;
  1231. case KVM_CAP_PV_MMU: /* obsolete */
  1232. r = 0;
  1233. break;
  1234. case KVM_CAP_IOMMU:
  1235. r = iommu_found();
  1236. break;
  1237. case KVM_CAP_MCE:
  1238. r = KVM_MAX_MCE_BANKS;
  1239. break;
  1240. default:
  1241. r = 0;
  1242. break;
  1243. }
  1244. return r;
  1245. }
  1246. long kvm_arch_dev_ioctl(struct file *filp,
  1247. unsigned int ioctl, unsigned long arg)
  1248. {
  1249. void __user *argp = (void __user *)arg;
  1250. long r;
  1251. switch (ioctl) {
  1252. case KVM_GET_MSR_INDEX_LIST: {
  1253. struct kvm_msr_list __user *user_msr_list = argp;
  1254. struct kvm_msr_list msr_list;
  1255. unsigned n;
  1256. r = -EFAULT;
  1257. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1258. goto out;
  1259. n = msr_list.nmsrs;
  1260. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1261. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1262. goto out;
  1263. r = -E2BIG;
  1264. if (n < msr_list.nmsrs)
  1265. goto out;
  1266. r = -EFAULT;
  1267. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1268. num_msrs_to_save * sizeof(u32)))
  1269. goto out;
  1270. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1271. &emulated_msrs,
  1272. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1273. goto out;
  1274. r = 0;
  1275. break;
  1276. }
  1277. case KVM_GET_SUPPORTED_CPUID: {
  1278. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1279. struct kvm_cpuid2 cpuid;
  1280. r = -EFAULT;
  1281. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1282. goto out;
  1283. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1284. cpuid_arg->entries);
  1285. if (r)
  1286. goto out;
  1287. r = -EFAULT;
  1288. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1289. goto out;
  1290. r = 0;
  1291. break;
  1292. }
  1293. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1294. u64 mce_cap;
  1295. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1296. r = -EFAULT;
  1297. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1298. goto out;
  1299. r = 0;
  1300. break;
  1301. }
  1302. default:
  1303. r = -EINVAL;
  1304. }
  1305. out:
  1306. return r;
  1307. }
  1308. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1309. {
  1310. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1311. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1312. unsigned long khz = cpufreq_quick_get(cpu);
  1313. if (!khz)
  1314. khz = tsc_khz;
  1315. per_cpu(cpu_tsc_khz, cpu) = khz;
  1316. }
  1317. kvm_request_guest_time_update(vcpu);
  1318. }
  1319. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1320. {
  1321. kvm_x86_ops->vcpu_put(vcpu);
  1322. kvm_put_guest_fpu(vcpu);
  1323. }
  1324. static int is_efer_nx(void)
  1325. {
  1326. unsigned long long efer = 0;
  1327. rdmsrl_safe(MSR_EFER, &efer);
  1328. return efer & EFER_NX;
  1329. }
  1330. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1331. {
  1332. int i;
  1333. struct kvm_cpuid_entry2 *e, *entry;
  1334. entry = NULL;
  1335. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1336. e = &vcpu->arch.cpuid_entries[i];
  1337. if (e->function == 0x80000001) {
  1338. entry = e;
  1339. break;
  1340. }
  1341. }
  1342. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1343. entry->edx &= ~(1 << 20);
  1344. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1345. }
  1346. }
  1347. /* when an old userspace process fills a new kernel module */
  1348. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1349. struct kvm_cpuid *cpuid,
  1350. struct kvm_cpuid_entry __user *entries)
  1351. {
  1352. int r, i;
  1353. struct kvm_cpuid_entry *cpuid_entries;
  1354. r = -E2BIG;
  1355. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1356. goto out;
  1357. r = -ENOMEM;
  1358. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1359. if (!cpuid_entries)
  1360. goto out;
  1361. r = -EFAULT;
  1362. if (copy_from_user(cpuid_entries, entries,
  1363. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1364. goto out_free;
  1365. for (i = 0; i < cpuid->nent; i++) {
  1366. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1367. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1368. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1369. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1370. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1371. vcpu->arch.cpuid_entries[i].index = 0;
  1372. vcpu->arch.cpuid_entries[i].flags = 0;
  1373. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1374. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1375. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1376. }
  1377. vcpu->arch.cpuid_nent = cpuid->nent;
  1378. cpuid_fix_nx_cap(vcpu);
  1379. r = 0;
  1380. kvm_apic_set_version(vcpu);
  1381. out_free:
  1382. vfree(cpuid_entries);
  1383. out:
  1384. return r;
  1385. }
  1386. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1387. struct kvm_cpuid2 *cpuid,
  1388. struct kvm_cpuid_entry2 __user *entries)
  1389. {
  1390. int r;
  1391. r = -E2BIG;
  1392. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1393. goto out;
  1394. r = -EFAULT;
  1395. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1396. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1397. goto out;
  1398. vcpu->arch.cpuid_nent = cpuid->nent;
  1399. kvm_apic_set_version(vcpu);
  1400. return 0;
  1401. out:
  1402. return r;
  1403. }
  1404. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1405. struct kvm_cpuid2 *cpuid,
  1406. struct kvm_cpuid_entry2 __user *entries)
  1407. {
  1408. int r;
  1409. r = -E2BIG;
  1410. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1411. goto out;
  1412. r = -EFAULT;
  1413. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1414. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1415. goto out;
  1416. return 0;
  1417. out:
  1418. cpuid->nent = vcpu->arch.cpuid_nent;
  1419. return r;
  1420. }
  1421. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1422. u32 index)
  1423. {
  1424. entry->function = function;
  1425. entry->index = index;
  1426. cpuid_count(entry->function, entry->index,
  1427. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1428. entry->flags = 0;
  1429. }
  1430. #define F(x) bit(X86_FEATURE_##x)
  1431. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1432. u32 index, int *nent, int maxnent)
  1433. {
  1434. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1435. unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
  1436. #ifdef CONFIG_X86_64
  1437. unsigned f_lm = F(LM);
  1438. #else
  1439. unsigned f_lm = 0;
  1440. #endif
  1441. /* cpuid 1.edx */
  1442. const u32 kvm_supported_word0_x86_features =
  1443. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1444. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1445. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1446. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1447. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1448. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1449. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1450. 0 /* HTT, TM, Reserved, PBE */;
  1451. /* cpuid 0x80000001.edx */
  1452. const u32 kvm_supported_word1_x86_features =
  1453. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1454. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1455. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1456. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1457. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1458. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1459. F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
  1460. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1461. /* cpuid 1.ecx */
  1462. const u32 kvm_supported_word4_x86_features =
  1463. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1464. 0 /* DS-CPL, VMX, SMX, EST */ |
  1465. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1466. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1467. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1468. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1469. 0 /* Reserved, XSAVE, OSXSAVE */;
  1470. /* cpuid 0x80000001.ecx */
  1471. const u32 kvm_supported_word6_x86_features =
  1472. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1473. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1474. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1475. 0 /* SKINIT */ | 0 /* WDT */;
  1476. /* all calls to cpuid_count() should be made on the same cpu */
  1477. get_cpu();
  1478. do_cpuid_1_ent(entry, function, index);
  1479. ++*nent;
  1480. switch (function) {
  1481. case 0:
  1482. entry->eax = min(entry->eax, (u32)0xb);
  1483. break;
  1484. case 1:
  1485. entry->edx &= kvm_supported_word0_x86_features;
  1486. entry->ecx &= kvm_supported_word4_x86_features;
  1487. /* we support x2apic emulation even if host does not support
  1488. * it since we emulate x2apic in software */
  1489. entry->ecx |= F(X2APIC);
  1490. break;
  1491. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1492. * may return different values. This forces us to get_cpu() before
  1493. * issuing the first command, and also to emulate this annoying behavior
  1494. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1495. case 2: {
  1496. int t, times = entry->eax & 0xff;
  1497. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1498. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1499. for (t = 1; t < times && *nent < maxnent; ++t) {
  1500. do_cpuid_1_ent(&entry[t], function, 0);
  1501. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1502. ++*nent;
  1503. }
  1504. break;
  1505. }
  1506. /* function 4 and 0xb have additional index. */
  1507. case 4: {
  1508. int i, cache_type;
  1509. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1510. /* read more entries until cache_type is zero */
  1511. for (i = 1; *nent < maxnent; ++i) {
  1512. cache_type = entry[i - 1].eax & 0x1f;
  1513. if (!cache_type)
  1514. break;
  1515. do_cpuid_1_ent(&entry[i], function, i);
  1516. entry[i].flags |=
  1517. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1518. ++*nent;
  1519. }
  1520. break;
  1521. }
  1522. case 0xb: {
  1523. int i, level_type;
  1524. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1525. /* read more entries until level_type is zero */
  1526. for (i = 1; *nent < maxnent; ++i) {
  1527. level_type = entry[i - 1].ecx & 0xff00;
  1528. if (!level_type)
  1529. break;
  1530. do_cpuid_1_ent(&entry[i], function, i);
  1531. entry[i].flags |=
  1532. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1533. ++*nent;
  1534. }
  1535. break;
  1536. }
  1537. case 0x80000000:
  1538. entry->eax = min(entry->eax, 0x8000001a);
  1539. break;
  1540. case 0x80000001:
  1541. entry->edx &= kvm_supported_word1_x86_features;
  1542. entry->ecx &= kvm_supported_word6_x86_features;
  1543. break;
  1544. }
  1545. put_cpu();
  1546. }
  1547. #undef F
  1548. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1549. struct kvm_cpuid_entry2 __user *entries)
  1550. {
  1551. struct kvm_cpuid_entry2 *cpuid_entries;
  1552. int limit, nent = 0, r = -E2BIG;
  1553. u32 func;
  1554. if (cpuid->nent < 1)
  1555. goto out;
  1556. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1557. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1558. r = -ENOMEM;
  1559. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1560. if (!cpuid_entries)
  1561. goto out;
  1562. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1563. limit = cpuid_entries[0].eax;
  1564. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1565. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1566. &nent, cpuid->nent);
  1567. r = -E2BIG;
  1568. if (nent >= cpuid->nent)
  1569. goto out_free;
  1570. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1571. limit = cpuid_entries[nent - 1].eax;
  1572. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1573. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1574. &nent, cpuid->nent);
  1575. r = -E2BIG;
  1576. if (nent >= cpuid->nent)
  1577. goto out_free;
  1578. r = -EFAULT;
  1579. if (copy_to_user(entries, cpuid_entries,
  1580. nent * sizeof(struct kvm_cpuid_entry2)))
  1581. goto out_free;
  1582. cpuid->nent = nent;
  1583. r = 0;
  1584. out_free:
  1585. vfree(cpuid_entries);
  1586. out:
  1587. return r;
  1588. }
  1589. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1590. struct kvm_lapic_state *s)
  1591. {
  1592. vcpu_load(vcpu);
  1593. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1594. vcpu_put(vcpu);
  1595. return 0;
  1596. }
  1597. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1598. struct kvm_lapic_state *s)
  1599. {
  1600. vcpu_load(vcpu);
  1601. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1602. kvm_apic_post_state_restore(vcpu);
  1603. update_cr8_intercept(vcpu);
  1604. vcpu_put(vcpu);
  1605. return 0;
  1606. }
  1607. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1608. struct kvm_interrupt *irq)
  1609. {
  1610. if (irq->irq < 0 || irq->irq >= 256)
  1611. return -EINVAL;
  1612. if (irqchip_in_kernel(vcpu->kvm))
  1613. return -ENXIO;
  1614. vcpu_load(vcpu);
  1615. kvm_queue_interrupt(vcpu, irq->irq, false);
  1616. vcpu_put(vcpu);
  1617. return 0;
  1618. }
  1619. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1620. {
  1621. vcpu_load(vcpu);
  1622. kvm_inject_nmi(vcpu);
  1623. vcpu_put(vcpu);
  1624. return 0;
  1625. }
  1626. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1627. struct kvm_tpr_access_ctl *tac)
  1628. {
  1629. if (tac->flags)
  1630. return -EINVAL;
  1631. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1632. return 0;
  1633. }
  1634. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1635. u64 mcg_cap)
  1636. {
  1637. int r;
  1638. unsigned bank_num = mcg_cap & 0xff, bank;
  1639. r = -EINVAL;
  1640. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1641. goto out;
  1642. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1643. goto out;
  1644. r = 0;
  1645. vcpu->arch.mcg_cap = mcg_cap;
  1646. /* Init IA32_MCG_CTL to all 1s */
  1647. if (mcg_cap & MCG_CTL_P)
  1648. vcpu->arch.mcg_ctl = ~(u64)0;
  1649. /* Init IA32_MCi_CTL to all 1s */
  1650. for (bank = 0; bank < bank_num; bank++)
  1651. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1652. out:
  1653. return r;
  1654. }
  1655. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1656. struct kvm_x86_mce *mce)
  1657. {
  1658. u64 mcg_cap = vcpu->arch.mcg_cap;
  1659. unsigned bank_num = mcg_cap & 0xff;
  1660. u64 *banks = vcpu->arch.mce_banks;
  1661. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1662. return -EINVAL;
  1663. /*
  1664. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1665. * reporting is disabled
  1666. */
  1667. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1668. vcpu->arch.mcg_ctl != ~(u64)0)
  1669. return 0;
  1670. banks += 4 * mce->bank;
  1671. /*
  1672. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1673. * reporting is disabled for the bank
  1674. */
  1675. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1676. return 0;
  1677. if (mce->status & MCI_STATUS_UC) {
  1678. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1679. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1680. printk(KERN_DEBUG "kvm: set_mce: "
  1681. "injects mce exception while "
  1682. "previous one is in progress!\n");
  1683. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1684. return 0;
  1685. }
  1686. if (banks[1] & MCI_STATUS_VAL)
  1687. mce->status |= MCI_STATUS_OVER;
  1688. banks[2] = mce->addr;
  1689. banks[3] = mce->misc;
  1690. vcpu->arch.mcg_status = mce->mcg_status;
  1691. banks[1] = mce->status;
  1692. kvm_queue_exception(vcpu, MC_VECTOR);
  1693. } else if (!(banks[1] & MCI_STATUS_VAL)
  1694. || !(banks[1] & MCI_STATUS_UC)) {
  1695. if (banks[1] & MCI_STATUS_VAL)
  1696. mce->status |= MCI_STATUS_OVER;
  1697. banks[2] = mce->addr;
  1698. banks[3] = mce->misc;
  1699. banks[1] = mce->status;
  1700. } else
  1701. banks[1] |= MCI_STATUS_OVER;
  1702. return 0;
  1703. }
  1704. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  1705. struct kvm_vcpu_events *events)
  1706. {
  1707. vcpu_load(vcpu);
  1708. events->exception.injected = vcpu->arch.exception.pending;
  1709. events->exception.nr = vcpu->arch.exception.nr;
  1710. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  1711. events->exception.error_code = vcpu->arch.exception.error_code;
  1712. events->interrupt.injected = vcpu->arch.interrupt.pending;
  1713. events->interrupt.nr = vcpu->arch.interrupt.nr;
  1714. events->interrupt.soft = vcpu->arch.interrupt.soft;
  1715. events->nmi.injected = vcpu->arch.nmi_injected;
  1716. events->nmi.pending = vcpu->arch.nmi_pending;
  1717. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  1718. events->sipi_vector = vcpu->arch.sipi_vector;
  1719. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  1720. | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
  1721. vcpu_put(vcpu);
  1722. }
  1723. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  1724. struct kvm_vcpu_events *events)
  1725. {
  1726. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  1727. | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
  1728. return -EINVAL;
  1729. vcpu_load(vcpu);
  1730. vcpu->arch.exception.pending = events->exception.injected;
  1731. vcpu->arch.exception.nr = events->exception.nr;
  1732. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  1733. vcpu->arch.exception.error_code = events->exception.error_code;
  1734. vcpu->arch.interrupt.pending = events->interrupt.injected;
  1735. vcpu->arch.interrupt.nr = events->interrupt.nr;
  1736. vcpu->arch.interrupt.soft = events->interrupt.soft;
  1737. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  1738. kvm_pic_clear_isr_ack(vcpu->kvm);
  1739. vcpu->arch.nmi_injected = events->nmi.injected;
  1740. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  1741. vcpu->arch.nmi_pending = events->nmi.pending;
  1742. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  1743. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  1744. vcpu->arch.sipi_vector = events->sipi_vector;
  1745. vcpu_put(vcpu);
  1746. return 0;
  1747. }
  1748. long kvm_arch_vcpu_ioctl(struct file *filp,
  1749. unsigned int ioctl, unsigned long arg)
  1750. {
  1751. struct kvm_vcpu *vcpu = filp->private_data;
  1752. void __user *argp = (void __user *)arg;
  1753. int r;
  1754. struct kvm_lapic_state *lapic = NULL;
  1755. switch (ioctl) {
  1756. case KVM_GET_LAPIC: {
  1757. r = -EINVAL;
  1758. if (!vcpu->arch.apic)
  1759. goto out;
  1760. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1761. r = -ENOMEM;
  1762. if (!lapic)
  1763. goto out;
  1764. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1765. if (r)
  1766. goto out;
  1767. r = -EFAULT;
  1768. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1769. goto out;
  1770. r = 0;
  1771. break;
  1772. }
  1773. case KVM_SET_LAPIC: {
  1774. r = -EINVAL;
  1775. if (!vcpu->arch.apic)
  1776. goto out;
  1777. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1778. r = -ENOMEM;
  1779. if (!lapic)
  1780. goto out;
  1781. r = -EFAULT;
  1782. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1783. goto out;
  1784. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1785. if (r)
  1786. goto out;
  1787. r = 0;
  1788. break;
  1789. }
  1790. case KVM_INTERRUPT: {
  1791. struct kvm_interrupt irq;
  1792. r = -EFAULT;
  1793. if (copy_from_user(&irq, argp, sizeof irq))
  1794. goto out;
  1795. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1796. if (r)
  1797. goto out;
  1798. r = 0;
  1799. break;
  1800. }
  1801. case KVM_NMI: {
  1802. r = kvm_vcpu_ioctl_nmi(vcpu);
  1803. if (r)
  1804. goto out;
  1805. r = 0;
  1806. break;
  1807. }
  1808. case KVM_SET_CPUID: {
  1809. struct kvm_cpuid __user *cpuid_arg = argp;
  1810. struct kvm_cpuid cpuid;
  1811. r = -EFAULT;
  1812. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1813. goto out;
  1814. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1815. if (r)
  1816. goto out;
  1817. break;
  1818. }
  1819. case KVM_SET_CPUID2: {
  1820. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1821. struct kvm_cpuid2 cpuid;
  1822. r = -EFAULT;
  1823. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1824. goto out;
  1825. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1826. cpuid_arg->entries);
  1827. if (r)
  1828. goto out;
  1829. break;
  1830. }
  1831. case KVM_GET_CPUID2: {
  1832. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1833. struct kvm_cpuid2 cpuid;
  1834. r = -EFAULT;
  1835. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1836. goto out;
  1837. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1838. cpuid_arg->entries);
  1839. if (r)
  1840. goto out;
  1841. r = -EFAULT;
  1842. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1843. goto out;
  1844. r = 0;
  1845. break;
  1846. }
  1847. case KVM_GET_MSRS:
  1848. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1849. break;
  1850. case KVM_SET_MSRS:
  1851. r = msr_io(vcpu, argp, do_set_msr, 0);
  1852. break;
  1853. case KVM_TPR_ACCESS_REPORTING: {
  1854. struct kvm_tpr_access_ctl tac;
  1855. r = -EFAULT;
  1856. if (copy_from_user(&tac, argp, sizeof tac))
  1857. goto out;
  1858. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1859. if (r)
  1860. goto out;
  1861. r = -EFAULT;
  1862. if (copy_to_user(argp, &tac, sizeof tac))
  1863. goto out;
  1864. r = 0;
  1865. break;
  1866. };
  1867. case KVM_SET_VAPIC_ADDR: {
  1868. struct kvm_vapic_addr va;
  1869. r = -EINVAL;
  1870. if (!irqchip_in_kernel(vcpu->kvm))
  1871. goto out;
  1872. r = -EFAULT;
  1873. if (copy_from_user(&va, argp, sizeof va))
  1874. goto out;
  1875. r = 0;
  1876. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1877. break;
  1878. }
  1879. case KVM_X86_SETUP_MCE: {
  1880. u64 mcg_cap;
  1881. r = -EFAULT;
  1882. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1883. goto out;
  1884. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1885. break;
  1886. }
  1887. case KVM_X86_SET_MCE: {
  1888. struct kvm_x86_mce mce;
  1889. r = -EFAULT;
  1890. if (copy_from_user(&mce, argp, sizeof mce))
  1891. goto out;
  1892. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1893. break;
  1894. }
  1895. case KVM_GET_VCPU_EVENTS: {
  1896. struct kvm_vcpu_events events;
  1897. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  1898. r = -EFAULT;
  1899. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  1900. break;
  1901. r = 0;
  1902. break;
  1903. }
  1904. case KVM_SET_VCPU_EVENTS: {
  1905. struct kvm_vcpu_events events;
  1906. r = -EFAULT;
  1907. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  1908. break;
  1909. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  1910. break;
  1911. }
  1912. default:
  1913. r = -EINVAL;
  1914. }
  1915. out:
  1916. kfree(lapic);
  1917. return r;
  1918. }
  1919. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1920. {
  1921. int ret;
  1922. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1923. return -1;
  1924. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1925. return ret;
  1926. }
  1927. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  1928. u64 ident_addr)
  1929. {
  1930. kvm->arch.ept_identity_map_addr = ident_addr;
  1931. return 0;
  1932. }
  1933. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1934. u32 kvm_nr_mmu_pages)
  1935. {
  1936. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1937. return -EINVAL;
  1938. down_write(&kvm->slots_lock);
  1939. spin_lock(&kvm->mmu_lock);
  1940. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1941. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1942. spin_unlock(&kvm->mmu_lock);
  1943. up_write(&kvm->slots_lock);
  1944. return 0;
  1945. }
  1946. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1947. {
  1948. return kvm->arch.n_alloc_mmu_pages;
  1949. }
  1950. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1951. {
  1952. int i;
  1953. struct kvm_mem_alias *alias;
  1954. for (i = 0; i < kvm->arch.naliases; ++i) {
  1955. alias = &kvm->arch.aliases[i];
  1956. if (gfn >= alias->base_gfn
  1957. && gfn < alias->base_gfn + alias->npages)
  1958. return alias->target_gfn + gfn - alias->base_gfn;
  1959. }
  1960. return gfn;
  1961. }
  1962. /*
  1963. * Set a new alias region. Aliases map a portion of physical memory into
  1964. * another portion. This is useful for memory windows, for example the PC
  1965. * VGA region.
  1966. */
  1967. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1968. struct kvm_memory_alias *alias)
  1969. {
  1970. int r, n;
  1971. struct kvm_mem_alias *p;
  1972. r = -EINVAL;
  1973. /* General sanity checks */
  1974. if (alias->memory_size & (PAGE_SIZE - 1))
  1975. goto out;
  1976. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1977. goto out;
  1978. if (alias->slot >= KVM_ALIAS_SLOTS)
  1979. goto out;
  1980. if (alias->guest_phys_addr + alias->memory_size
  1981. < alias->guest_phys_addr)
  1982. goto out;
  1983. if (alias->target_phys_addr + alias->memory_size
  1984. < alias->target_phys_addr)
  1985. goto out;
  1986. down_write(&kvm->slots_lock);
  1987. spin_lock(&kvm->mmu_lock);
  1988. p = &kvm->arch.aliases[alias->slot];
  1989. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1990. p->npages = alias->memory_size >> PAGE_SHIFT;
  1991. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1992. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1993. if (kvm->arch.aliases[n - 1].npages)
  1994. break;
  1995. kvm->arch.naliases = n;
  1996. spin_unlock(&kvm->mmu_lock);
  1997. kvm_mmu_zap_all(kvm);
  1998. up_write(&kvm->slots_lock);
  1999. return 0;
  2000. out:
  2001. return r;
  2002. }
  2003. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2004. {
  2005. int r;
  2006. r = 0;
  2007. switch (chip->chip_id) {
  2008. case KVM_IRQCHIP_PIC_MASTER:
  2009. memcpy(&chip->chip.pic,
  2010. &pic_irqchip(kvm)->pics[0],
  2011. sizeof(struct kvm_pic_state));
  2012. break;
  2013. case KVM_IRQCHIP_PIC_SLAVE:
  2014. memcpy(&chip->chip.pic,
  2015. &pic_irqchip(kvm)->pics[1],
  2016. sizeof(struct kvm_pic_state));
  2017. break;
  2018. case KVM_IRQCHIP_IOAPIC:
  2019. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2020. break;
  2021. default:
  2022. r = -EINVAL;
  2023. break;
  2024. }
  2025. return r;
  2026. }
  2027. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2028. {
  2029. int r;
  2030. r = 0;
  2031. switch (chip->chip_id) {
  2032. case KVM_IRQCHIP_PIC_MASTER:
  2033. spin_lock(&pic_irqchip(kvm)->lock);
  2034. memcpy(&pic_irqchip(kvm)->pics[0],
  2035. &chip->chip.pic,
  2036. sizeof(struct kvm_pic_state));
  2037. spin_unlock(&pic_irqchip(kvm)->lock);
  2038. break;
  2039. case KVM_IRQCHIP_PIC_SLAVE:
  2040. spin_lock(&pic_irqchip(kvm)->lock);
  2041. memcpy(&pic_irqchip(kvm)->pics[1],
  2042. &chip->chip.pic,
  2043. sizeof(struct kvm_pic_state));
  2044. spin_unlock(&pic_irqchip(kvm)->lock);
  2045. break;
  2046. case KVM_IRQCHIP_IOAPIC:
  2047. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2048. break;
  2049. default:
  2050. r = -EINVAL;
  2051. break;
  2052. }
  2053. kvm_pic_update_irq(pic_irqchip(kvm));
  2054. return r;
  2055. }
  2056. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2057. {
  2058. int r = 0;
  2059. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2060. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2061. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2062. return r;
  2063. }
  2064. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2065. {
  2066. int r = 0;
  2067. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2068. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2069. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2070. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2071. return r;
  2072. }
  2073. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2074. {
  2075. int r = 0;
  2076. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2077. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2078. sizeof(ps->channels));
  2079. ps->flags = kvm->arch.vpit->pit_state.flags;
  2080. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2081. return r;
  2082. }
  2083. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2084. {
  2085. int r = 0, start = 0;
  2086. u32 prev_legacy, cur_legacy;
  2087. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2088. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2089. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2090. if (!prev_legacy && cur_legacy)
  2091. start = 1;
  2092. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2093. sizeof(kvm->arch.vpit->pit_state.channels));
  2094. kvm->arch.vpit->pit_state.flags = ps->flags;
  2095. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2096. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2097. return r;
  2098. }
  2099. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2100. struct kvm_reinject_control *control)
  2101. {
  2102. if (!kvm->arch.vpit)
  2103. return -ENXIO;
  2104. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2105. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2106. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2107. return 0;
  2108. }
  2109. /*
  2110. * Get (and clear) the dirty memory log for a memory slot.
  2111. */
  2112. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2113. struct kvm_dirty_log *log)
  2114. {
  2115. int r;
  2116. int n;
  2117. struct kvm_memory_slot *memslot;
  2118. int is_dirty = 0;
  2119. down_write(&kvm->slots_lock);
  2120. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  2121. if (r)
  2122. goto out;
  2123. /* If nothing is dirty, don't bother messing with page tables. */
  2124. if (is_dirty) {
  2125. spin_lock(&kvm->mmu_lock);
  2126. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2127. spin_unlock(&kvm->mmu_lock);
  2128. memslot = &kvm->memslots[log->slot];
  2129. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  2130. memset(memslot->dirty_bitmap, 0, n);
  2131. }
  2132. r = 0;
  2133. out:
  2134. up_write(&kvm->slots_lock);
  2135. return r;
  2136. }
  2137. long kvm_arch_vm_ioctl(struct file *filp,
  2138. unsigned int ioctl, unsigned long arg)
  2139. {
  2140. struct kvm *kvm = filp->private_data;
  2141. void __user *argp = (void __user *)arg;
  2142. int r = -ENOTTY;
  2143. /*
  2144. * This union makes it completely explicit to gcc-3.x
  2145. * that these two variables' stack usage should be
  2146. * combined, not added together.
  2147. */
  2148. union {
  2149. struct kvm_pit_state ps;
  2150. struct kvm_pit_state2 ps2;
  2151. struct kvm_memory_alias alias;
  2152. struct kvm_pit_config pit_config;
  2153. } u;
  2154. switch (ioctl) {
  2155. case KVM_SET_TSS_ADDR:
  2156. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2157. if (r < 0)
  2158. goto out;
  2159. break;
  2160. case KVM_SET_IDENTITY_MAP_ADDR: {
  2161. u64 ident_addr;
  2162. r = -EFAULT;
  2163. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2164. goto out;
  2165. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2166. if (r < 0)
  2167. goto out;
  2168. break;
  2169. }
  2170. case KVM_SET_MEMORY_REGION: {
  2171. struct kvm_memory_region kvm_mem;
  2172. struct kvm_userspace_memory_region kvm_userspace_mem;
  2173. r = -EFAULT;
  2174. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2175. goto out;
  2176. kvm_userspace_mem.slot = kvm_mem.slot;
  2177. kvm_userspace_mem.flags = kvm_mem.flags;
  2178. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2179. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2180. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2181. if (r)
  2182. goto out;
  2183. break;
  2184. }
  2185. case KVM_SET_NR_MMU_PAGES:
  2186. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2187. if (r)
  2188. goto out;
  2189. break;
  2190. case KVM_GET_NR_MMU_PAGES:
  2191. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2192. break;
  2193. case KVM_SET_MEMORY_ALIAS:
  2194. r = -EFAULT;
  2195. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2196. goto out;
  2197. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2198. if (r)
  2199. goto out;
  2200. break;
  2201. case KVM_CREATE_IRQCHIP: {
  2202. struct kvm_pic *vpic;
  2203. mutex_lock(&kvm->lock);
  2204. r = -EEXIST;
  2205. if (kvm->arch.vpic)
  2206. goto create_irqchip_unlock;
  2207. r = -ENOMEM;
  2208. vpic = kvm_create_pic(kvm);
  2209. if (vpic) {
  2210. r = kvm_ioapic_init(kvm);
  2211. if (r) {
  2212. kfree(vpic);
  2213. goto create_irqchip_unlock;
  2214. }
  2215. } else
  2216. goto create_irqchip_unlock;
  2217. smp_wmb();
  2218. kvm->arch.vpic = vpic;
  2219. smp_wmb();
  2220. r = kvm_setup_default_irq_routing(kvm);
  2221. if (r) {
  2222. mutex_lock(&kvm->irq_lock);
  2223. kfree(kvm->arch.vpic);
  2224. kfree(kvm->arch.vioapic);
  2225. kvm->arch.vpic = NULL;
  2226. kvm->arch.vioapic = NULL;
  2227. mutex_unlock(&kvm->irq_lock);
  2228. }
  2229. create_irqchip_unlock:
  2230. mutex_unlock(&kvm->lock);
  2231. break;
  2232. }
  2233. case KVM_CREATE_PIT:
  2234. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2235. goto create_pit;
  2236. case KVM_CREATE_PIT2:
  2237. r = -EFAULT;
  2238. if (copy_from_user(&u.pit_config, argp,
  2239. sizeof(struct kvm_pit_config)))
  2240. goto out;
  2241. create_pit:
  2242. down_write(&kvm->slots_lock);
  2243. r = -EEXIST;
  2244. if (kvm->arch.vpit)
  2245. goto create_pit_unlock;
  2246. r = -ENOMEM;
  2247. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2248. if (kvm->arch.vpit)
  2249. r = 0;
  2250. create_pit_unlock:
  2251. up_write(&kvm->slots_lock);
  2252. break;
  2253. case KVM_IRQ_LINE_STATUS:
  2254. case KVM_IRQ_LINE: {
  2255. struct kvm_irq_level irq_event;
  2256. r = -EFAULT;
  2257. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2258. goto out;
  2259. if (irqchip_in_kernel(kvm)) {
  2260. __s32 status;
  2261. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2262. irq_event.irq, irq_event.level);
  2263. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2264. irq_event.status = status;
  2265. if (copy_to_user(argp, &irq_event,
  2266. sizeof irq_event))
  2267. goto out;
  2268. }
  2269. r = 0;
  2270. }
  2271. break;
  2272. }
  2273. case KVM_GET_IRQCHIP: {
  2274. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2275. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2276. r = -ENOMEM;
  2277. if (!chip)
  2278. goto out;
  2279. r = -EFAULT;
  2280. if (copy_from_user(chip, argp, sizeof *chip))
  2281. goto get_irqchip_out;
  2282. r = -ENXIO;
  2283. if (!irqchip_in_kernel(kvm))
  2284. goto get_irqchip_out;
  2285. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2286. if (r)
  2287. goto get_irqchip_out;
  2288. r = -EFAULT;
  2289. if (copy_to_user(argp, chip, sizeof *chip))
  2290. goto get_irqchip_out;
  2291. r = 0;
  2292. get_irqchip_out:
  2293. kfree(chip);
  2294. if (r)
  2295. goto out;
  2296. break;
  2297. }
  2298. case KVM_SET_IRQCHIP: {
  2299. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2300. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2301. r = -ENOMEM;
  2302. if (!chip)
  2303. goto out;
  2304. r = -EFAULT;
  2305. if (copy_from_user(chip, argp, sizeof *chip))
  2306. goto set_irqchip_out;
  2307. r = -ENXIO;
  2308. if (!irqchip_in_kernel(kvm))
  2309. goto set_irqchip_out;
  2310. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2311. if (r)
  2312. goto set_irqchip_out;
  2313. r = 0;
  2314. set_irqchip_out:
  2315. kfree(chip);
  2316. if (r)
  2317. goto out;
  2318. break;
  2319. }
  2320. case KVM_GET_PIT: {
  2321. r = -EFAULT;
  2322. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2323. goto out;
  2324. r = -ENXIO;
  2325. if (!kvm->arch.vpit)
  2326. goto out;
  2327. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2328. if (r)
  2329. goto out;
  2330. r = -EFAULT;
  2331. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2332. goto out;
  2333. r = 0;
  2334. break;
  2335. }
  2336. case KVM_SET_PIT: {
  2337. r = -EFAULT;
  2338. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2339. goto out;
  2340. r = -ENXIO;
  2341. if (!kvm->arch.vpit)
  2342. goto out;
  2343. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2344. if (r)
  2345. goto out;
  2346. r = 0;
  2347. break;
  2348. }
  2349. case KVM_GET_PIT2: {
  2350. r = -ENXIO;
  2351. if (!kvm->arch.vpit)
  2352. goto out;
  2353. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2354. if (r)
  2355. goto out;
  2356. r = -EFAULT;
  2357. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2358. goto out;
  2359. r = 0;
  2360. break;
  2361. }
  2362. case KVM_SET_PIT2: {
  2363. r = -EFAULT;
  2364. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2365. goto out;
  2366. r = -ENXIO;
  2367. if (!kvm->arch.vpit)
  2368. goto out;
  2369. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2370. if (r)
  2371. goto out;
  2372. r = 0;
  2373. break;
  2374. }
  2375. case KVM_REINJECT_CONTROL: {
  2376. struct kvm_reinject_control control;
  2377. r = -EFAULT;
  2378. if (copy_from_user(&control, argp, sizeof(control)))
  2379. goto out;
  2380. r = kvm_vm_ioctl_reinject(kvm, &control);
  2381. if (r)
  2382. goto out;
  2383. r = 0;
  2384. break;
  2385. }
  2386. case KVM_XEN_HVM_CONFIG: {
  2387. r = -EFAULT;
  2388. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2389. sizeof(struct kvm_xen_hvm_config)))
  2390. goto out;
  2391. r = -EINVAL;
  2392. if (kvm->arch.xen_hvm_config.flags)
  2393. goto out;
  2394. r = 0;
  2395. break;
  2396. }
  2397. case KVM_SET_CLOCK: {
  2398. struct timespec now;
  2399. struct kvm_clock_data user_ns;
  2400. u64 now_ns;
  2401. s64 delta;
  2402. r = -EFAULT;
  2403. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2404. goto out;
  2405. r = -EINVAL;
  2406. if (user_ns.flags)
  2407. goto out;
  2408. r = 0;
  2409. ktime_get_ts(&now);
  2410. now_ns = timespec_to_ns(&now);
  2411. delta = user_ns.clock - now_ns;
  2412. kvm->arch.kvmclock_offset = delta;
  2413. break;
  2414. }
  2415. case KVM_GET_CLOCK: {
  2416. struct timespec now;
  2417. struct kvm_clock_data user_ns;
  2418. u64 now_ns;
  2419. ktime_get_ts(&now);
  2420. now_ns = timespec_to_ns(&now);
  2421. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2422. user_ns.flags = 0;
  2423. r = -EFAULT;
  2424. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2425. goto out;
  2426. r = 0;
  2427. break;
  2428. }
  2429. default:
  2430. ;
  2431. }
  2432. out:
  2433. return r;
  2434. }
  2435. static void kvm_init_msr_list(void)
  2436. {
  2437. u32 dummy[2];
  2438. unsigned i, j;
  2439. /* skip the first msrs in the list. KVM-specific */
  2440. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2441. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2442. continue;
  2443. if (j < i)
  2444. msrs_to_save[j] = msrs_to_save[i];
  2445. j++;
  2446. }
  2447. num_msrs_to_save = j;
  2448. }
  2449. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2450. const void *v)
  2451. {
  2452. if (vcpu->arch.apic &&
  2453. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2454. return 0;
  2455. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2456. }
  2457. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2458. {
  2459. if (vcpu->arch.apic &&
  2460. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2461. return 0;
  2462. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2463. }
  2464. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2465. struct kvm_vcpu *vcpu)
  2466. {
  2467. void *data = val;
  2468. int r = X86EMUL_CONTINUE;
  2469. while (bytes) {
  2470. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2471. unsigned offset = addr & (PAGE_SIZE-1);
  2472. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2473. int ret;
  2474. if (gpa == UNMAPPED_GVA) {
  2475. r = X86EMUL_PROPAGATE_FAULT;
  2476. goto out;
  2477. }
  2478. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2479. if (ret < 0) {
  2480. r = X86EMUL_UNHANDLEABLE;
  2481. goto out;
  2482. }
  2483. bytes -= toread;
  2484. data += toread;
  2485. addr += toread;
  2486. }
  2487. out:
  2488. return r;
  2489. }
  2490. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2491. struct kvm_vcpu *vcpu)
  2492. {
  2493. void *data = val;
  2494. int r = X86EMUL_CONTINUE;
  2495. while (bytes) {
  2496. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2497. unsigned offset = addr & (PAGE_SIZE-1);
  2498. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2499. int ret;
  2500. if (gpa == UNMAPPED_GVA) {
  2501. r = X86EMUL_PROPAGATE_FAULT;
  2502. goto out;
  2503. }
  2504. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2505. if (ret < 0) {
  2506. r = X86EMUL_UNHANDLEABLE;
  2507. goto out;
  2508. }
  2509. bytes -= towrite;
  2510. data += towrite;
  2511. addr += towrite;
  2512. }
  2513. out:
  2514. return r;
  2515. }
  2516. static int emulator_read_emulated(unsigned long addr,
  2517. void *val,
  2518. unsigned int bytes,
  2519. struct kvm_vcpu *vcpu)
  2520. {
  2521. gpa_t gpa;
  2522. if (vcpu->mmio_read_completed) {
  2523. memcpy(val, vcpu->mmio_data, bytes);
  2524. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2525. vcpu->mmio_phys_addr, *(u64 *)val);
  2526. vcpu->mmio_read_completed = 0;
  2527. return X86EMUL_CONTINUE;
  2528. }
  2529. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2530. /* For APIC access vmexit */
  2531. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2532. goto mmio;
  2533. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2534. == X86EMUL_CONTINUE)
  2535. return X86EMUL_CONTINUE;
  2536. if (gpa == UNMAPPED_GVA)
  2537. return X86EMUL_PROPAGATE_FAULT;
  2538. mmio:
  2539. /*
  2540. * Is this MMIO handled locally?
  2541. */
  2542. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2543. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2544. return X86EMUL_CONTINUE;
  2545. }
  2546. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2547. vcpu->mmio_needed = 1;
  2548. vcpu->mmio_phys_addr = gpa;
  2549. vcpu->mmio_size = bytes;
  2550. vcpu->mmio_is_write = 0;
  2551. return X86EMUL_UNHANDLEABLE;
  2552. }
  2553. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2554. const void *val, int bytes)
  2555. {
  2556. int ret;
  2557. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2558. if (ret < 0)
  2559. return 0;
  2560. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2561. return 1;
  2562. }
  2563. static int emulator_write_emulated_onepage(unsigned long addr,
  2564. const void *val,
  2565. unsigned int bytes,
  2566. struct kvm_vcpu *vcpu)
  2567. {
  2568. gpa_t gpa;
  2569. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2570. if (gpa == UNMAPPED_GVA) {
  2571. kvm_inject_page_fault(vcpu, addr, 2);
  2572. return X86EMUL_PROPAGATE_FAULT;
  2573. }
  2574. /* For APIC access vmexit */
  2575. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2576. goto mmio;
  2577. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2578. return X86EMUL_CONTINUE;
  2579. mmio:
  2580. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2581. /*
  2582. * Is this MMIO handled locally?
  2583. */
  2584. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2585. return X86EMUL_CONTINUE;
  2586. vcpu->mmio_needed = 1;
  2587. vcpu->mmio_phys_addr = gpa;
  2588. vcpu->mmio_size = bytes;
  2589. vcpu->mmio_is_write = 1;
  2590. memcpy(vcpu->mmio_data, val, bytes);
  2591. return X86EMUL_CONTINUE;
  2592. }
  2593. int emulator_write_emulated(unsigned long addr,
  2594. const void *val,
  2595. unsigned int bytes,
  2596. struct kvm_vcpu *vcpu)
  2597. {
  2598. /* Crossing a page boundary? */
  2599. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2600. int rc, now;
  2601. now = -addr & ~PAGE_MASK;
  2602. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2603. if (rc != X86EMUL_CONTINUE)
  2604. return rc;
  2605. addr += now;
  2606. val += now;
  2607. bytes -= now;
  2608. }
  2609. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2610. }
  2611. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2612. static int emulator_cmpxchg_emulated(unsigned long addr,
  2613. const void *old,
  2614. const void *new,
  2615. unsigned int bytes,
  2616. struct kvm_vcpu *vcpu)
  2617. {
  2618. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2619. #ifndef CONFIG_X86_64
  2620. /* guests cmpxchg8b have to be emulated atomically */
  2621. if (bytes == 8) {
  2622. gpa_t gpa;
  2623. struct page *page;
  2624. char *kaddr;
  2625. u64 val;
  2626. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2627. if (gpa == UNMAPPED_GVA ||
  2628. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2629. goto emul_write;
  2630. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2631. goto emul_write;
  2632. val = *(u64 *)new;
  2633. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2634. kaddr = kmap_atomic(page, KM_USER0);
  2635. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2636. kunmap_atomic(kaddr, KM_USER0);
  2637. kvm_release_page_dirty(page);
  2638. }
  2639. emul_write:
  2640. #endif
  2641. return emulator_write_emulated(addr, new, bytes, vcpu);
  2642. }
  2643. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2644. {
  2645. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2646. }
  2647. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2648. {
  2649. kvm_mmu_invlpg(vcpu, address);
  2650. return X86EMUL_CONTINUE;
  2651. }
  2652. int emulate_clts(struct kvm_vcpu *vcpu)
  2653. {
  2654. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2655. return X86EMUL_CONTINUE;
  2656. }
  2657. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2658. {
  2659. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2660. switch (dr) {
  2661. case 0 ... 3:
  2662. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2663. return X86EMUL_CONTINUE;
  2664. default:
  2665. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2666. return X86EMUL_UNHANDLEABLE;
  2667. }
  2668. }
  2669. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2670. {
  2671. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2672. int exception;
  2673. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2674. if (exception) {
  2675. /* FIXME: better handling */
  2676. return X86EMUL_UNHANDLEABLE;
  2677. }
  2678. return X86EMUL_CONTINUE;
  2679. }
  2680. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2681. {
  2682. u8 opcodes[4];
  2683. unsigned long rip = kvm_rip_read(vcpu);
  2684. unsigned long rip_linear;
  2685. if (!printk_ratelimit())
  2686. return;
  2687. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2688. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2689. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2690. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2691. }
  2692. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2693. static struct x86_emulate_ops emulate_ops = {
  2694. .read_std = kvm_read_guest_virt,
  2695. .read_emulated = emulator_read_emulated,
  2696. .write_emulated = emulator_write_emulated,
  2697. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2698. };
  2699. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2700. {
  2701. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2702. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2703. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2704. vcpu->arch.regs_dirty = ~0;
  2705. }
  2706. int emulate_instruction(struct kvm_vcpu *vcpu,
  2707. unsigned long cr2,
  2708. u16 error_code,
  2709. int emulation_type)
  2710. {
  2711. int r, shadow_mask;
  2712. struct decode_cache *c;
  2713. struct kvm_run *run = vcpu->run;
  2714. kvm_clear_exception_queue(vcpu);
  2715. vcpu->arch.mmio_fault_cr2 = cr2;
  2716. /*
  2717. * TODO: fix emulate.c to use guest_read/write_register
  2718. * instead of direct ->regs accesses, can save hundred cycles
  2719. * on Intel for instructions that don't read/change RSP, for
  2720. * for example.
  2721. */
  2722. cache_all_regs(vcpu);
  2723. vcpu->mmio_is_write = 0;
  2724. vcpu->arch.pio.string = 0;
  2725. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2726. int cs_db, cs_l;
  2727. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2728. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2729. vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
  2730. vcpu->arch.emulate_ctxt.mode =
  2731. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2732. ? X86EMUL_MODE_REAL : cs_l
  2733. ? X86EMUL_MODE_PROT64 : cs_db
  2734. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2735. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2736. /* Only allow emulation of specific instructions on #UD
  2737. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2738. c = &vcpu->arch.emulate_ctxt.decode;
  2739. if (emulation_type & EMULTYPE_TRAP_UD) {
  2740. if (!c->twobyte)
  2741. return EMULATE_FAIL;
  2742. switch (c->b) {
  2743. case 0x01: /* VMMCALL */
  2744. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2745. return EMULATE_FAIL;
  2746. break;
  2747. case 0x34: /* sysenter */
  2748. case 0x35: /* sysexit */
  2749. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2750. return EMULATE_FAIL;
  2751. break;
  2752. case 0x05: /* syscall */
  2753. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2754. return EMULATE_FAIL;
  2755. break;
  2756. default:
  2757. return EMULATE_FAIL;
  2758. }
  2759. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2760. return EMULATE_FAIL;
  2761. }
  2762. ++vcpu->stat.insn_emulation;
  2763. if (r) {
  2764. ++vcpu->stat.insn_emulation_fail;
  2765. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2766. return EMULATE_DONE;
  2767. return EMULATE_FAIL;
  2768. }
  2769. }
  2770. if (emulation_type & EMULTYPE_SKIP) {
  2771. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2772. return EMULATE_DONE;
  2773. }
  2774. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2775. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2776. if (r == 0)
  2777. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2778. if (vcpu->arch.pio.string)
  2779. return EMULATE_DO_MMIO;
  2780. if ((r || vcpu->mmio_is_write) && run) {
  2781. run->exit_reason = KVM_EXIT_MMIO;
  2782. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2783. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2784. run->mmio.len = vcpu->mmio_size;
  2785. run->mmio.is_write = vcpu->mmio_is_write;
  2786. }
  2787. if (r) {
  2788. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2789. return EMULATE_DONE;
  2790. if (!vcpu->mmio_needed) {
  2791. kvm_report_emulation_failure(vcpu, "mmio");
  2792. return EMULATE_FAIL;
  2793. }
  2794. return EMULATE_DO_MMIO;
  2795. }
  2796. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2797. if (vcpu->mmio_is_write) {
  2798. vcpu->mmio_needed = 0;
  2799. return EMULATE_DO_MMIO;
  2800. }
  2801. return EMULATE_DONE;
  2802. }
  2803. EXPORT_SYMBOL_GPL(emulate_instruction);
  2804. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2805. {
  2806. void *p = vcpu->arch.pio_data;
  2807. gva_t q = vcpu->arch.pio.guest_gva;
  2808. unsigned bytes;
  2809. int ret;
  2810. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2811. if (vcpu->arch.pio.in)
  2812. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2813. else
  2814. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2815. return ret;
  2816. }
  2817. int complete_pio(struct kvm_vcpu *vcpu)
  2818. {
  2819. struct kvm_pio_request *io = &vcpu->arch.pio;
  2820. long delta;
  2821. int r;
  2822. unsigned long val;
  2823. if (!io->string) {
  2824. if (io->in) {
  2825. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2826. memcpy(&val, vcpu->arch.pio_data, io->size);
  2827. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2828. }
  2829. } else {
  2830. if (io->in) {
  2831. r = pio_copy_data(vcpu);
  2832. if (r)
  2833. return r;
  2834. }
  2835. delta = 1;
  2836. if (io->rep) {
  2837. delta *= io->cur_count;
  2838. /*
  2839. * The size of the register should really depend on
  2840. * current address size.
  2841. */
  2842. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2843. val -= delta;
  2844. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2845. }
  2846. if (io->down)
  2847. delta = -delta;
  2848. delta *= io->size;
  2849. if (io->in) {
  2850. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2851. val += delta;
  2852. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2853. } else {
  2854. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2855. val += delta;
  2856. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2857. }
  2858. }
  2859. io->count -= io->cur_count;
  2860. io->cur_count = 0;
  2861. return 0;
  2862. }
  2863. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2864. {
  2865. /* TODO: String I/O for in kernel device */
  2866. int r;
  2867. if (vcpu->arch.pio.in)
  2868. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2869. vcpu->arch.pio.size, pd);
  2870. else
  2871. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2872. vcpu->arch.pio.size, pd);
  2873. return r;
  2874. }
  2875. static int pio_string_write(struct kvm_vcpu *vcpu)
  2876. {
  2877. struct kvm_pio_request *io = &vcpu->arch.pio;
  2878. void *pd = vcpu->arch.pio_data;
  2879. int i, r = 0;
  2880. for (i = 0; i < io->cur_count; i++) {
  2881. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2882. io->port, io->size, pd)) {
  2883. r = -EOPNOTSUPP;
  2884. break;
  2885. }
  2886. pd += io->size;
  2887. }
  2888. return r;
  2889. }
  2890. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  2891. {
  2892. unsigned long val;
  2893. vcpu->run->exit_reason = KVM_EXIT_IO;
  2894. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2895. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2896. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2897. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2898. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2899. vcpu->arch.pio.in = in;
  2900. vcpu->arch.pio.string = 0;
  2901. vcpu->arch.pio.down = 0;
  2902. vcpu->arch.pio.rep = 0;
  2903. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2904. size, 1);
  2905. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2906. memcpy(vcpu->arch.pio_data, &val, 4);
  2907. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2908. complete_pio(vcpu);
  2909. return 1;
  2910. }
  2911. return 0;
  2912. }
  2913. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2914. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  2915. int size, unsigned long count, int down,
  2916. gva_t address, int rep, unsigned port)
  2917. {
  2918. unsigned now, in_page;
  2919. int ret = 0;
  2920. vcpu->run->exit_reason = KVM_EXIT_IO;
  2921. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2922. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2923. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2924. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2925. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2926. vcpu->arch.pio.in = in;
  2927. vcpu->arch.pio.string = 1;
  2928. vcpu->arch.pio.down = down;
  2929. vcpu->arch.pio.rep = rep;
  2930. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2931. size, count);
  2932. if (!count) {
  2933. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2934. return 1;
  2935. }
  2936. if (!down)
  2937. in_page = PAGE_SIZE - offset_in_page(address);
  2938. else
  2939. in_page = offset_in_page(address) + size;
  2940. now = min(count, (unsigned long)in_page / size);
  2941. if (!now)
  2942. now = 1;
  2943. if (down) {
  2944. /*
  2945. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2946. */
  2947. pr_unimpl(vcpu, "guest string pio down\n");
  2948. kvm_inject_gp(vcpu, 0);
  2949. return 1;
  2950. }
  2951. vcpu->run->io.count = now;
  2952. vcpu->arch.pio.cur_count = now;
  2953. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2954. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2955. vcpu->arch.pio.guest_gva = address;
  2956. if (!vcpu->arch.pio.in) {
  2957. /* string PIO write */
  2958. ret = pio_copy_data(vcpu);
  2959. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2960. kvm_inject_gp(vcpu, 0);
  2961. return 1;
  2962. }
  2963. if (ret == 0 && !pio_string_write(vcpu)) {
  2964. complete_pio(vcpu);
  2965. if (vcpu->arch.pio.count == 0)
  2966. ret = 1;
  2967. }
  2968. }
  2969. /* no string PIO read support yet */
  2970. return ret;
  2971. }
  2972. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2973. static void bounce_off(void *info)
  2974. {
  2975. /* nothing */
  2976. }
  2977. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2978. void *data)
  2979. {
  2980. struct cpufreq_freqs *freq = data;
  2981. struct kvm *kvm;
  2982. struct kvm_vcpu *vcpu;
  2983. int i, send_ipi = 0;
  2984. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2985. return 0;
  2986. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2987. return 0;
  2988. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  2989. spin_lock(&kvm_lock);
  2990. list_for_each_entry(kvm, &vm_list, vm_list) {
  2991. kvm_for_each_vcpu(i, vcpu, kvm) {
  2992. if (vcpu->cpu != freq->cpu)
  2993. continue;
  2994. if (!kvm_request_guest_time_update(vcpu))
  2995. continue;
  2996. if (vcpu->cpu != smp_processor_id())
  2997. send_ipi++;
  2998. }
  2999. }
  3000. spin_unlock(&kvm_lock);
  3001. if (freq->old < freq->new && send_ipi) {
  3002. /*
  3003. * We upscale the frequency. Must make the guest
  3004. * doesn't see old kvmclock values while running with
  3005. * the new frequency, otherwise we risk the guest sees
  3006. * time go backwards.
  3007. *
  3008. * In case we update the frequency for another cpu
  3009. * (which might be in guest context) send an interrupt
  3010. * to kick the cpu out of guest context. Next time
  3011. * guest context is entered kvmclock will be updated,
  3012. * so the guest will not see stale values.
  3013. */
  3014. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3015. }
  3016. return 0;
  3017. }
  3018. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3019. .notifier_call = kvmclock_cpufreq_notifier
  3020. };
  3021. static void kvm_timer_init(void)
  3022. {
  3023. int cpu;
  3024. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3025. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3026. CPUFREQ_TRANSITION_NOTIFIER);
  3027. for_each_online_cpu(cpu) {
  3028. unsigned long khz = cpufreq_get(cpu);
  3029. if (!khz)
  3030. khz = tsc_khz;
  3031. per_cpu(cpu_tsc_khz, cpu) = khz;
  3032. }
  3033. } else {
  3034. for_each_possible_cpu(cpu)
  3035. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3036. }
  3037. }
  3038. int kvm_arch_init(void *opaque)
  3039. {
  3040. int r;
  3041. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3042. if (kvm_x86_ops) {
  3043. printk(KERN_ERR "kvm: already loaded the other module\n");
  3044. r = -EEXIST;
  3045. goto out;
  3046. }
  3047. if (!ops->cpu_has_kvm_support()) {
  3048. printk(KERN_ERR "kvm: no hardware support\n");
  3049. r = -EOPNOTSUPP;
  3050. goto out;
  3051. }
  3052. if (ops->disabled_by_bios()) {
  3053. printk(KERN_ERR "kvm: disabled by bios\n");
  3054. r = -EOPNOTSUPP;
  3055. goto out;
  3056. }
  3057. r = kvm_mmu_module_init();
  3058. if (r)
  3059. goto out;
  3060. kvm_init_msr_list();
  3061. kvm_x86_ops = ops;
  3062. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3063. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3064. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3065. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3066. kvm_timer_init();
  3067. return 0;
  3068. out:
  3069. return r;
  3070. }
  3071. void kvm_arch_exit(void)
  3072. {
  3073. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3074. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3075. CPUFREQ_TRANSITION_NOTIFIER);
  3076. kvm_x86_ops = NULL;
  3077. kvm_mmu_module_exit();
  3078. }
  3079. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3080. {
  3081. ++vcpu->stat.halt_exits;
  3082. if (irqchip_in_kernel(vcpu->kvm)) {
  3083. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3084. return 1;
  3085. } else {
  3086. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3087. return 0;
  3088. }
  3089. }
  3090. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3091. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3092. unsigned long a1)
  3093. {
  3094. if (is_long_mode(vcpu))
  3095. return a0;
  3096. else
  3097. return a0 | ((gpa_t)a1 << 32);
  3098. }
  3099. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3100. {
  3101. unsigned long nr, a0, a1, a2, a3, ret;
  3102. int r = 1;
  3103. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3104. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3105. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3106. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3107. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3108. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3109. if (!is_long_mode(vcpu)) {
  3110. nr &= 0xFFFFFFFF;
  3111. a0 &= 0xFFFFFFFF;
  3112. a1 &= 0xFFFFFFFF;
  3113. a2 &= 0xFFFFFFFF;
  3114. a3 &= 0xFFFFFFFF;
  3115. }
  3116. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3117. ret = -KVM_EPERM;
  3118. goto out;
  3119. }
  3120. switch (nr) {
  3121. case KVM_HC_VAPIC_POLL_IRQ:
  3122. ret = 0;
  3123. break;
  3124. case KVM_HC_MMU_OP:
  3125. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3126. break;
  3127. default:
  3128. ret = -KVM_ENOSYS;
  3129. break;
  3130. }
  3131. out:
  3132. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3133. ++vcpu->stat.hypercalls;
  3134. return r;
  3135. }
  3136. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3137. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3138. {
  3139. char instruction[3];
  3140. int ret = 0;
  3141. unsigned long rip = kvm_rip_read(vcpu);
  3142. /*
  3143. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3144. * to ensure that the updated hypercall appears atomically across all
  3145. * VCPUs.
  3146. */
  3147. kvm_mmu_zap_all(vcpu->kvm);
  3148. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3149. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  3150. != X86EMUL_CONTINUE)
  3151. ret = -EFAULT;
  3152. return ret;
  3153. }
  3154. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3155. {
  3156. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3157. }
  3158. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3159. {
  3160. struct descriptor_table dt = { limit, base };
  3161. kvm_x86_ops->set_gdt(vcpu, &dt);
  3162. }
  3163. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3164. {
  3165. struct descriptor_table dt = { limit, base };
  3166. kvm_x86_ops->set_idt(vcpu, &dt);
  3167. }
  3168. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  3169. unsigned long *rflags)
  3170. {
  3171. kvm_lmsw(vcpu, msw);
  3172. *rflags = kvm_get_rflags(vcpu);
  3173. }
  3174. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  3175. {
  3176. unsigned long value;
  3177. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3178. switch (cr) {
  3179. case 0:
  3180. value = vcpu->arch.cr0;
  3181. break;
  3182. case 2:
  3183. value = vcpu->arch.cr2;
  3184. break;
  3185. case 3:
  3186. value = vcpu->arch.cr3;
  3187. break;
  3188. case 4:
  3189. value = vcpu->arch.cr4;
  3190. break;
  3191. case 8:
  3192. value = kvm_get_cr8(vcpu);
  3193. break;
  3194. default:
  3195. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3196. return 0;
  3197. }
  3198. return value;
  3199. }
  3200. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  3201. unsigned long *rflags)
  3202. {
  3203. switch (cr) {
  3204. case 0:
  3205. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  3206. *rflags = kvm_get_rflags(vcpu);
  3207. break;
  3208. case 2:
  3209. vcpu->arch.cr2 = val;
  3210. break;
  3211. case 3:
  3212. kvm_set_cr3(vcpu, val);
  3213. break;
  3214. case 4:
  3215. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  3216. break;
  3217. case 8:
  3218. kvm_set_cr8(vcpu, val & 0xfUL);
  3219. break;
  3220. default:
  3221. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3222. }
  3223. }
  3224. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3225. {
  3226. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3227. int j, nent = vcpu->arch.cpuid_nent;
  3228. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3229. /* when no next entry is found, the current entry[i] is reselected */
  3230. for (j = i + 1; ; j = (j + 1) % nent) {
  3231. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3232. if (ej->function == e->function) {
  3233. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3234. return j;
  3235. }
  3236. }
  3237. return 0; /* silence gcc, even though control never reaches here */
  3238. }
  3239. /* find an entry with matching function, matching index (if needed), and that
  3240. * should be read next (if it's stateful) */
  3241. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3242. u32 function, u32 index)
  3243. {
  3244. if (e->function != function)
  3245. return 0;
  3246. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3247. return 0;
  3248. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3249. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3250. return 0;
  3251. return 1;
  3252. }
  3253. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3254. u32 function, u32 index)
  3255. {
  3256. int i;
  3257. struct kvm_cpuid_entry2 *best = NULL;
  3258. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3259. struct kvm_cpuid_entry2 *e;
  3260. e = &vcpu->arch.cpuid_entries[i];
  3261. if (is_matching_cpuid_entry(e, function, index)) {
  3262. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3263. move_to_next_stateful_cpuid_entry(vcpu, i);
  3264. best = e;
  3265. break;
  3266. }
  3267. /*
  3268. * Both basic or both extended?
  3269. */
  3270. if (((e->function ^ function) & 0x80000000) == 0)
  3271. if (!best || e->function > best->function)
  3272. best = e;
  3273. }
  3274. return best;
  3275. }
  3276. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3277. {
  3278. struct kvm_cpuid_entry2 *best;
  3279. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3280. if (best)
  3281. return best->eax & 0xff;
  3282. return 36;
  3283. }
  3284. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3285. {
  3286. u32 function, index;
  3287. struct kvm_cpuid_entry2 *best;
  3288. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3289. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3290. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3291. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3292. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3293. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3294. best = kvm_find_cpuid_entry(vcpu, function, index);
  3295. if (best) {
  3296. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3297. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3298. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3299. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3300. }
  3301. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3302. trace_kvm_cpuid(function,
  3303. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3304. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3305. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3306. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3307. }
  3308. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3309. /*
  3310. * Check if userspace requested an interrupt window, and that the
  3311. * interrupt window is open.
  3312. *
  3313. * No need to exit to userspace if we already have an interrupt queued.
  3314. */
  3315. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3316. {
  3317. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3318. vcpu->run->request_interrupt_window &&
  3319. kvm_arch_interrupt_allowed(vcpu));
  3320. }
  3321. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3322. {
  3323. struct kvm_run *kvm_run = vcpu->run;
  3324. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3325. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3326. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3327. if (irqchip_in_kernel(vcpu->kvm))
  3328. kvm_run->ready_for_interrupt_injection = 1;
  3329. else
  3330. kvm_run->ready_for_interrupt_injection =
  3331. kvm_arch_interrupt_allowed(vcpu) &&
  3332. !kvm_cpu_has_interrupt(vcpu) &&
  3333. !kvm_event_needs_reinjection(vcpu);
  3334. }
  3335. static void vapic_enter(struct kvm_vcpu *vcpu)
  3336. {
  3337. struct kvm_lapic *apic = vcpu->arch.apic;
  3338. struct page *page;
  3339. if (!apic || !apic->vapic_addr)
  3340. return;
  3341. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3342. vcpu->arch.apic->vapic_page = page;
  3343. }
  3344. static void vapic_exit(struct kvm_vcpu *vcpu)
  3345. {
  3346. struct kvm_lapic *apic = vcpu->arch.apic;
  3347. if (!apic || !apic->vapic_addr)
  3348. return;
  3349. down_read(&vcpu->kvm->slots_lock);
  3350. kvm_release_page_dirty(apic->vapic_page);
  3351. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3352. up_read(&vcpu->kvm->slots_lock);
  3353. }
  3354. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3355. {
  3356. int max_irr, tpr;
  3357. if (!kvm_x86_ops->update_cr8_intercept)
  3358. return;
  3359. if (!vcpu->arch.apic)
  3360. return;
  3361. if (!vcpu->arch.apic->vapic_addr)
  3362. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3363. else
  3364. max_irr = -1;
  3365. if (max_irr != -1)
  3366. max_irr >>= 4;
  3367. tpr = kvm_lapic_get_cr8(vcpu);
  3368. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3369. }
  3370. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3371. {
  3372. /* try to reinject previous events if any */
  3373. if (vcpu->arch.exception.pending) {
  3374. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3375. vcpu->arch.exception.has_error_code,
  3376. vcpu->arch.exception.error_code);
  3377. return;
  3378. }
  3379. if (vcpu->arch.nmi_injected) {
  3380. kvm_x86_ops->set_nmi(vcpu);
  3381. return;
  3382. }
  3383. if (vcpu->arch.interrupt.pending) {
  3384. kvm_x86_ops->set_irq(vcpu);
  3385. return;
  3386. }
  3387. /* try to inject new event if pending */
  3388. if (vcpu->arch.nmi_pending) {
  3389. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3390. vcpu->arch.nmi_pending = false;
  3391. vcpu->arch.nmi_injected = true;
  3392. kvm_x86_ops->set_nmi(vcpu);
  3393. }
  3394. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3395. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3396. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3397. false);
  3398. kvm_x86_ops->set_irq(vcpu);
  3399. }
  3400. }
  3401. }
  3402. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3403. {
  3404. int r;
  3405. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3406. vcpu->run->request_interrupt_window;
  3407. if (vcpu->requests)
  3408. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3409. kvm_mmu_unload(vcpu);
  3410. r = kvm_mmu_reload(vcpu);
  3411. if (unlikely(r))
  3412. goto out;
  3413. if (vcpu->requests) {
  3414. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3415. __kvm_migrate_timers(vcpu);
  3416. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3417. kvm_write_guest_time(vcpu);
  3418. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3419. kvm_mmu_sync_roots(vcpu);
  3420. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3421. kvm_x86_ops->tlb_flush(vcpu);
  3422. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3423. &vcpu->requests)) {
  3424. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3425. r = 0;
  3426. goto out;
  3427. }
  3428. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3429. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3430. r = 0;
  3431. goto out;
  3432. }
  3433. }
  3434. preempt_disable();
  3435. kvm_x86_ops->prepare_guest_switch(vcpu);
  3436. kvm_load_guest_fpu(vcpu);
  3437. local_irq_disable();
  3438. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3439. smp_mb__after_clear_bit();
  3440. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3441. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3442. local_irq_enable();
  3443. preempt_enable();
  3444. r = 1;
  3445. goto out;
  3446. }
  3447. inject_pending_event(vcpu);
  3448. /* enable NMI/IRQ window open exits if needed */
  3449. if (vcpu->arch.nmi_pending)
  3450. kvm_x86_ops->enable_nmi_window(vcpu);
  3451. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3452. kvm_x86_ops->enable_irq_window(vcpu);
  3453. if (kvm_lapic_enabled(vcpu)) {
  3454. update_cr8_intercept(vcpu);
  3455. kvm_lapic_sync_to_vapic(vcpu);
  3456. }
  3457. up_read(&vcpu->kvm->slots_lock);
  3458. kvm_guest_enter();
  3459. if (unlikely(vcpu->arch.switch_db_regs)) {
  3460. set_debugreg(0, 7);
  3461. set_debugreg(vcpu->arch.eff_db[0], 0);
  3462. set_debugreg(vcpu->arch.eff_db[1], 1);
  3463. set_debugreg(vcpu->arch.eff_db[2], 2);
  3464. set_debugreg(vcpu->arch.eff_db[3], 3);
  3465. }
  3466. trace_kvm_entry(vcpu->vcpu_id);
  3467. kvm_x86_ops->run(vcpu);
  3468. /*
  3469. * If the guest has used debug registers, at least dr7
  3470. * will be disabled while returning to the host.
  3471. * If we don't have active breakpoints in the host, we don't
  3472. * care about the messed up debug address registers. But if
  3473. * we have some of them active, restore the old state.
  3474. */
  3475. if (hw_breakpoint_active())
  3476. hw_breakpoint_restore();
  3477. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3478. local_irq_enable();
  3479. ++vcpu->stat.exits;
  3480. /*
  3481. * We must have an instruction between local_irq_enable() and
  3482. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3483. * the interrupt shadow. The stat.exits increment will do nicely.
  3484. * But we need to prevent reordering, hence this barrier():
  3485. */
  3486. barrier();
  3487. kvm_guest_exit();
  3488. preempt_enable();
  3489. down_read(&vcpu->kvm->slots_lock);
  3490. /*
  3491. * Profile KVM exit RIPs:
  3492. */
  3493. if (unlikely(prof_on == KVM_PROFILING)) {
  3494. unsigned long rip = kvm_rip_read(vcpu);
  3495. profile_hit(KVM_PROFILING, (void *)rip);
  3496. }
  3497. kvm_lapic_sync_from_vapic(vcpu);
  3498. r = kvm_x86_ops->handle_exit(vcpu);
  3499. out:
  3500. return r;
  3501. }
  3502. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3503. {
  3504. int r;
  3505. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3506. pr_debug("vcpu %d received sipi with vector # %x\n",
  3507. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3508. kvm_lapic_reset(vcpu);
  3509. r = kvm_arch_vcpu_reset(vcpu);
  3510. if (r)
  3511. return r;
  3512. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3513. }
  3514. down_read(&vcpu->kvm->slots_lock);
  3515. vapic_enter(vcpu);
  3516. r = 1;
  3517. while (r > 0) {
  3518. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3519. r = vcpu_enter_guest(vcpu);
  3520. else {
  3521. up_read(&vcpu->kvm->slots_lock);
  3522. kvm_vcpu_block(vcpu);
  3523. down_read(&vcpu->kvm->slots_lock);
  3524. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3525. {
  3526. switch(vcpu->arch.mp_state) {
  3527. case KVM_MP_STATE_HALTED:
  3528. vcpu->arch.mp_state =
  3529. KVM_MP_STATE_RUNNABLE;
  3530. case KVM_MP_STATE_RUNNABLE:
  3531. break;
  3532. case KVM_MP_STATE_SIPI_RECEIVED:
  3533. default:
  3534. r = -EINTR;
  3535. break;
  3536. }
  3537. }
  3538. }
  3539. if (r <= 0)
  3540. break;
  3541. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3542. if (kvm_cpu_has_pending_timer(vcpu))
  3543. kvm_inject_pending_timer_irqs(vcpu);
  3544. if (dm_request_for_irq_injection(vcpu)) {
  3545. r = -EINTR;
  3546. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3547. ++vcpu->stat.request_irq_exits;
  3548. }
  3549. if (signal_pending(current)) {
  3550. r = -EINTR;
  3551. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3552. ++vcpu->stat.signal_exits;
  3553. }
  3554. if (need_resched()) {
  3555. up_read(&vcpu->kvm->slots_lock);
  3556. kvm_resched(vcpu);
  3557. down_read(&vcpu->kvm->slots_lock);
  3558. }
  3559. }
  3560. up_read(&vcpu->kvm->slots_lock);
  3561. post_kvm_run_save(vcpu);
  3562. vapic_exit(vcpu);
  3563. return r;
  3564. }
  3565. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3566. {
  3567. int r;
  3568. sigset_t sigsaved;
  3569. vcpu_load(vcpu);
  3570. if (vcpu->sigset_active)
  3571. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3572. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3573. kvm_vcpu_block(vcpu);
  3574. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3575. r = -EAGAIN;
  3576. goto out;
  3577. }
  3578. /* re-sync apic's tpr */
  3579. if (!irqchip_in_kernel(vcpu->kvm))
  3580. kvm_set_cr8(vcpu, kvm_run->cr8);
  3581. if (vcpu->arch.pio.cur_count) {
  3582. r = complete_pio(vcpu);
  3583. if (r)
  3584. goto out;
  3585. }
  3586. if (vcpu->mmio_needed) {
  3587. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3588. vcpu->mmio_read_completed = 1;
  3589. vcpu->mmio_needed = 0;
  3590. down_read(&vcpu->kvm->slots_lock);
  3591. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3592. EMULTYPE_NO_DECODE);
  3593. up_read(&vcpu->kvm->slots_lock);
  3594. if (r == EMULATE_DO_MMIO) {
  3595. /*
  3596. * Read-modify-write. Back to userspace.
  3597. */
  3598. r = 0;
  3599. goto out;
  3600. }
  3601. }
  3602. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3603. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3604. kvm_run->hypercall.ret);
  3605. r = __vcpu_run(vcpu);
  3606. out:
  3607. if (vcpu->sigset_active)
  3608. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3609. vcpu_put(vcpu);
  3610. return r;
  3611. }
  3612. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3613. {
  3614. vcpu_load(vcpu);
  3615. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3616. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3617. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3618. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3619. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3620. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3621. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3622. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3623. #ifdef CONFIG_X86_64
  3624. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3625. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3626. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3627. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3628. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3629. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3630. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3631. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3632. #endif
  3633. regs->rip = kvm_rip_read(vcpu);
  3634. regs->rflags = kvm_get_rflags(vcpu);
  3635. vcpu_put(vcpu);
  3636. return 0;
  3637. }
  3638. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3639. {
  3640. vcpu_load(vcpu);
  3641. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3642. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3643. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3644. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3645. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3646. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3647. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3648. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3649. #ifdef CONFIG_X86_64
  3650. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3651. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3652. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3653. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3654. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3655. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3656. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3657. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3658. #endif
  3659. kvm_rip_write(vcpu, regs->rip);
  3660. kvm_set_rflags(vcpu, regs->rflags);
  3661. vcpu->arch.exception.pending = false;
  3662. vcpu_put(vcpu);
  3663. return 0;
  3664. }
  3665. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3666. struct kvm_segment *var, int seg)
  3667. {
  3668. kvm_x86_ops->get_segment(vcpu, var, seg);
  3669. }
  3670. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3671. {
  3672. struct kvm_segment cs;
  3673. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3674. *db = cs.db;
  3675. *l = cs.l;
  3676. }
  3677. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3678. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3679. struct kvm_sregs *sregs)
  3680. {
  3681. struct descriptor_table dt;
  3682. vcpu_load(vcpu);
  3683. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3684. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3685. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3686. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3687. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3688. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3689. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3690. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3691. kvm_x86_ops->get_idt(vcpu, &dt);
  3692. sregs->idt.limit = dt.limit;
  3693. sregs->idt.base = dt.base;
  3694. kvm_x86_ops->get_gdt(vcpu, &dt);
  3695. sregs->gdt.limit = dt.limit;
  3696. sregs->gdt.base = dt.base;
  3697. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3698. sregs->cr0 = vcpu->arch.cr0;
  3699. sregs->cr2 = vcpu->arch.cr2;
  3700. sregs->cr3 = vcpu->arch.cr3;
  3701. sregs->cr4 = vcpu->arch.cr4;
  3702. sregs->cr8 = kvm_get_cr8(vcpu);
  3703. sregs->efer = vcpu->arch.shadow_efer;
  3704. sregs->apic_base = kvm_get_apic_base(vcpu);
  3705. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3706. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3707. set_bit(vcpu->arch.interrupt.nr,
  3708. (unsigned long *)sregs->interrupt_bitmap);
  3709. vcpu_put(vcpu);
  3710. return 0;
  3711. }
  3712. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3713. struct kvm_mp_state *mp_state)
  3714. {
  3715. vcpu_load(vcpu);
  3716. mp_state->mp_state = vcpu->arch.mp_state;
  3717. vcpu_put(vcpu);
  3718. return 0;
  3719. }
  3720. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3721. struct kvm_mp_state *mp_state)
  3722. {
  3723. vcpu_load(vcpu);
  3724. vcpu->arch.mp_state = mp_state->mp_state;
  3725. vcpu_put(vcpu);
  3726. return 0;
  3727. }
  3728. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3729. struct kvm_segment *var, int seg)
  3730. {
  3731. kvm_x86_ops->set_segment(vcpu, var, seg);
  3732. }
  3733. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3734. struct kvm_segment *kvm_desct)
  3735. {
  3736. kvm_desct->base = get_desc_base(seg_desc);
  3737. kvm_desct->limit = get_desc_limit(seg_desc);
  3738. if (seg_desc->g) {
  3739. kvm_desct->limit <<= 12;
  3740. kvm_desct->limit |= 0xfff;
  3741. }
  3742. kvm_desct->selector = selector;
  3743. kvm_desct->type = seg_desc->type;
  3744. kvm_desct->present = seg_desc->p;
  3745. kvm_desct->dpl = seg_desc->dpl;
  3746. kvm_desct->db = seg_desc->d;
  3747. kvm_desct->s = seg_desc->s;
  3748. kvm_desct->l = seg_desc->l;
  3749. kvm_desct->g = seg_desc->g;
  3750. kvm_desct->avl = seg_desc->avl;
  3751. if (!selector)
  3752. kvm_desct->unusable = 1;
  3753. else
  3754. kvm_desct->unusable = 0;
  3755. kvm_desct->padding = 0;
  3756. }
  3757. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3758. u16 selector,
  3759. struct descriptor_table *dtable)
  3760. {
  3761. if (selector & 1 << 2) {
  3762. struct kvm_segment kvm_seg;
  3763. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3764. if (kvm_seg.unusable)
  3765. dtable->limit = 0;
  3766. else
  3767. dtable->limit = kvm_seg.limit;
  3768. dtable->base = kvm_seg.base;
  3769. }
  3770. else
  3771. kvm_x86_ops->get_gdt(vcpu, dtable);
  3772. }
  3773. /* allowed just for 8 bytes segments */
  3774. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3775. struct desc_struct *seg_desc)
  3776. {
  3777. struct descriptor_table dtable;
  3778. u16 index = selector >> 3;
  3779. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3780. if (dtable.limit < index * 8 + 7) {
  3781. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3782. return 1;
  3783. }
  3784. return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3785. }
  3786. /* allowed just for 8 bytes segments */
  3787. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3788. struct desc_struct *seg_desc)
  3789. {
  3790. struct descriptor_table dtable;
  3791. u16 index = selector >> 3;
  3792. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3793. if (dtable.limit < index * 8 + 7)
  3794. return 1;
  3795. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3796. }
  3797. static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
  3798. struct desc_struct *seg_desc)
  3799. {
  3800. u32 base_addr = get_desc_base(seg_desc);
  3801. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3802. }
  3803. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3804. {
  3805. struct kvm_segment kvm_seg;
  3806. kvm_get_segment(vcpu, &kvm_seg, seg);
  3807. return kvm_seg.selector;
  3808. }
  3809. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3810. u16 selector,
  3811. struct kvm_segment *kvm_seg)
  3812. {
  3813. struct desc_struct seg_desc;
  3814. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3815. return 1;
  3816. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3817. return 0;
  3818. }
  3819. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3820. {
  3821. struct kvm_segment segvar = {
  3822. .base = selector << 4,
  3823. .limit = 0xffff,
  3824. .selector = selector,
  3825. .type = 3,
  3826. .present = 1,
  3827. .dpl = 3,
  3828. .db = 0,
  3829. .s = 1,
  3830. .l = 0,
  3831. .g = 0,
  3832. .avl = 0,
  3833. .unusable = 0,
  3834. };
  3835. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3836. return 0;
  3837. }
  3838. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  3839. {
  3840. return (seg != VCPU_SREG_LDTR) &&
  3841. (seg != VCPU_SREG_TR) &&
  3842. (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
  3843. }
  3844. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3845. int type_bits, int seg)
  3846. {
  3847. struct kvm_segment kvm_seg;
  3848. if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
  3849. return kvm_load_realmode_segment(vcpu, selector, seg);
  3850. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3851. return 1;
  3852. kvm_seg.type |= type_bits;
  3853. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3854. seg != VCPU_SREG_LDTR)
  3855. if (!kvm_seg.s)
  3856. kvm_seg.unusable = 1;
  3857. kvm_set_segment(vcpu, &kvm_seg, seg);
  3858. return 0;
  3859. }
  3860. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3861. struct tss_segment_32 *tss)
  3862. {
  3863. tss->cr3 = vcpu->arch.cr3;
  3864. tss->eip = kvm_rip_read(vcpu);
  3865. tss->eflags = kvm_get_rflags(vcpu);
  3866. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3867. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3868. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3869. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3870. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3871. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3872. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3873. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3874. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3875. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3876. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3877. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3878. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3879. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3880. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3881. }
  3882. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3883. struct tss_segment_32 *tss)
  3884. {
  3885. kvm_set_cr3(vcpu, tss->cr3);
  3886. kvm_rip_write(vcpu, tss->eip);
  3887. kvm_set_rflags(vcpu, tss->eflags | 2);
  3888. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3889. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3890. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3891. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3892. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3893. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3894. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3895. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3896. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3897. return 1;
  3898. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3899. return 1;
  3900. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3901. return 1;
  3902. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3903. return 1;
  3904. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3905. return 1;
  3906. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3907. return 1;
  3908. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3909. return 1;
  3910. return 0;
  3911. }
  3912. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3913. struct tss_segment_16 *tss)
  3914. {
  3915. tss->ip = kvm_rip_read(vcpu);
  3916. tss->flag = kvm_get_rflags(vcpu);
  3917. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3918. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3919. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3920. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3921. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3922. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3923. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3924. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3925. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3926. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3927. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3928. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3929. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3930. }
  3931. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3932. struct tss_segment_16 *tss)
  3933. {
  3934. kvm_rip_write(vcpu, tss->ip);
  3935. kvm_set_rflags(vcpu, tss->flag | 2);
  3936. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3937. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3938. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3939. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3940. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3941. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3942. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3943. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3944. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3945. return 1;
  3946. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3947. return 1;
  3948. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3949. return 1;
  3950. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3951. return 1;
  3952. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3953. return 1;
  3954. return 0;
  3955. }
  3956. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3957. u16 old_tss_sel, u32 old_tss_base,
  3958. struct desc_struct *nseg_desc)
  3959. {
  3960. struct tss_segment_16 tss_segment_16;
  3961. int ret = 0;
  3962. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3963. sizeof tss_segment_16))
  3964. goto out;
  3965. save_state_to_tss16(vcpu, &tss_segment_16);
  3966. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3967. sizeof tss_segment_16))
  3968. goto out;
  3969. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3970. &tss_segment_16, sizeof tss_segment_16))
  3971. goto out;
  3972. if (old_tss_sel != 0xffff) {
  3973. tss_segment_16.prev_task_link = old_tss_sel;
  3974. if (kvm_write_guest(vcpu->kvm,
  3975. get_tss_base_addr(vcpu, nseg_desc),
  3976. &tss_segment_16.prev_task_link,
  3977. sizeof tss_segment_16.prev_task_link))
  3978. goto out;
  3979. }
  3980. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3981. goto out;
  3982. ret = 1;
  3983. out:
  3984. return ret;
  3985. }
  3986. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3987. u16 old_tss_sel, u32 old_tss_base,
  3988. struct desc_struct *nseg_desc)
  3989. {
  3990. struct tss_segment_32 tss_segment_32;
  3991. int ret = 0;
  3992. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3993. sizeof tss_segment_32))
  3994. goto out;
  3995. save_state_to_tss32(vcpu, &tss_segment_32);
  3996. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3997. sizeof tss_segment_32))
  3998. goto out;
  3999. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  4000. &tss_segment_32, sizeof tss_segment_32))
  4001. goto out;
  4002. if (old_tss_sel != 0xffff) {
  4003. tss_segment_32.prev_task_link = old_tss_sel;
  4004. if (kvm_write_guest(vcpu->kvm,
  4005. get_tss_base_addr(vcpu, nseg_desc),
  4006. &tss_segment_32.prev_task_link,
  4007. sizeof tss_segment_32.prev_task_link))
  4008. goto out;
  4009. }
  4010. if (load_state_from_tss32(vcpu, &tss_segment_32))
  4011. goto out;
  4012. ret = 1;
  4013. out:
  4014. return ret;
  4015. }
  4016. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  4017. {
  4018. struct kvm_segment tr_seg;
  4019. struct desc_struct cseg_desc;
  4020. struct desc_struct nseg_desc;
  4021. int ret = 0;
  4022. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  4023. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  4024. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  4025. /* FIXME: Handle errors. Failure to read either TSS or their
  4026. * descriptors should generate a pagefault.
  4027. */
  4028. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  4029. goto out;
  4030. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  4031. goto out;
  4032. if (reason != TASK_SWITCH_IRET) {
  4033. int cpl;
  4034. cpl = kvm_x86_ops->get_cpl(vcpu);
  4035. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  4036. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  4037. return 1;
  4038. }
  4039. }
  4040. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  4041. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  4042. return 1;
  4043. }
  4044. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  4045. cseg_desc.type &= ~(1 << 1); //clear the B flag
  4046. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  4047. }
  4048. if (reason == TASK_SWITCH_IRET) {
  4049. u32 eflags = kvm_get_rflags(vcpu);
  4050. kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  4051. }
  4052. /* set back link to prev task only if NT bit is set in eflags
  4053. note that old_tss_sel is not used afetr this point */
  4054. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  4055. old_tss_sel = 0xffff;
  4056. if (nseg_desc.type & 8)
  4057. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  4058. old_tss_base, &nseg_desc);
  4059. else
  4060. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  4061. old_tss_base, &nseg_desc);
  4062. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  4063. u32 eflags = kvm_get_rflags(vcpu);
  4064. kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  4065. }
  4066. if (reason != TASK_SWITCH_IRET) {
  4067. nseg_desc.type |= (1 << 1);
  4068. save_guest_segment_descriptor(vcpu, tss_selector,
  4069. &nseg_desc);
  4070. }
  4071. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  4072. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  4073. tr_seg.type = 11;
  4074. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  4075. out:
  4076. return ret;
  4077. }
  4078. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4079. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4080. struct kvm_sregs *sregs)
  4081. {
  4082. int mmu_reset_needed = 0;
  4083. int pending_vec, max_bits;
  4084. struct descriptor_table dt;
  4085. vcpu_load(vcpu);
  4086. dt.limit = sregs->idt.limit;
  4087. dt.base = sregs->idt.base;
  4088. kvm_x86_ops->set_idt(vcpu, &dt);
  4089. dt.limit = sregs->gdt.limit;
  4090. dt.base = sregs->gdt.base;
  4091. kvm_x86_ops->set_gdt(vcpu, &dt);
  4092. vcpu->arch.cr2 = sregs->cr2;
  4093. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4094. vcpu->arch.cr3 = sregs->cr3;
  4095. kvm_set_cr8(vcpu, sregs->cr8);
  4096. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  4097. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4098. kvm_set_apic_base(vcpu, sregs->apic_base);
  4099. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  4100. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  4101. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4102. vcpu->arch.cr0 = sregs->cr0;
  4103. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  4104. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4105. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4106. load_pdptrs(vcpu, vcpu->arch.cr3);
  4107. mmu_reset_needed = 1;
  4108. }
  4109. if (mmu_reset_needed)
  4110. kvm_mmu_reset_context(vcpu);
  4111. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4112. pending_vec = find_first_bit(
  4113. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4114. if (pending_vec < max_bits) {
  4115. kvm_queue_interrupt(vcpu, pending_vec, false);
  4116. pr_debug("Set back pending irq %d\n", pending_vec);
  4117. if (irqchip_in_kernel(vcpu->kvm))
  4118. kvm_pic_clear_isr_ack(vcpu->kvm);
  4119. }
  4120. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4121. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4122. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4123. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4124. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4125. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4126. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4127. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4128. update_cr8_intercept(vcpu);
  4129. /* Older userspace won't unhalt the vcpu on reset. */
  4130. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4131. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4132. !(vcpu->arch.cr0 & X86_CR0_PE))
  4133. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4134. vcpu_put(vcpu);
  4135. return 0;
  4136. }
  4137. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4138. struct kvm_guest_debug *dbg)
  4139. {
  4140. unsigned long rflags;
  4141. int i, r;
  4142. vcpu_load(vcpu);
  4143. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4144. r = -EBUSY;
  4145. if (vcpu->arch.exception.pending)
  4146. goto unlock_out;
  4147. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4148. kvm_queue_exception(vcpu, DB_VECTOR);
  4149. else
  4150. kvm_queue_exception(vcpu, BP_VECTOR);
  4151. }
  4152. /*
  4153. * Read rflags as long as potentially injected trace flags are still
  4154. * filtered out.
  4155. */
  4156. rflags = kvm_get_rflags(vcpu);
  4157. vcpu->guest_debug = dbg->control;
  4158. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4159. vcpu->guest_debug = 0;
  4160. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4161. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4162. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4163. vcpu->arch.switch_db_regs =
  4164. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4165. } else {
  4166. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4167. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4168. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4169. }
  4170. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
  4171. vcpu->arch.singlestep_cs =
  4172. get_segment_selector(vcpu, VCPU_SREG_CS);
  4173. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
  4174. }
  4175. /*
  4176. * Trigger an rflags update that will inject or remove the trace
  4177. * flags.
  4178. */
  4179. kvm_set_rflags(vcpu, rflags);
  4180. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4181. r = 0;
  4182. unlock_out:
  4183. vcpu_put(vcpu);
  4184. return r;
  4185. }
  4186. /*
  4187. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4188. * we have asm/x86/processor.h
  4189. */
  4190. struct fxsave {
  4191. u16 cwd;
  4192. u16 swd;
  4193. u16 twd;
  4194. u16 fop;
  4195. u64 rip;
  4196. u64 rdp;
  4197. u32 mxcsr;
  4198. u32 mxcsr_mask;
  4199. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4200. #ifdef CONFIG_X86_64
  4201. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4202. #else
  4203. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4204. #endif
  4205. };
  4206. /*
  4207. * Translate a guest virtual address to a guest physical address.
  4208. */
  4209. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4210. struct kvm_translation *tr)
  4211. {
  4212. unsigned long vaddr = tr->linear_address;
  4213. gpa_t gpa;
  4214. vcpu_load(vcpu);
  4215. down_read(&vcpu->kvm->slots_lock);
  4216. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  4217. up_read(&vcpu->kvm->slots_lock);
  4218. tr->physical_address = gpa;
  4219. tr->valid = gpa != UNMAPPED_GVA;
  4220. tr->writeable = 1;
  4221. tr->usermode = 0;
  4222. vcpu_put(vcpu);
  4223. return 0;
  4224. }
  4225. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4226. {
  4227. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4228. vcpu_load(vcpu);
  4229. memcpy(fpu->fpr, fxsave->st_space, 128);
  4230. fpu->fcw = fxsave->cwd;
  4231. fpu->fsw = fxsave->swd;
  4232. fpu->ftwx = fxsave->twd;
  4233. fpu->last_opcode = fxsave->fop;
  4234. fpu->last_ip = fxsave->rip;
  4235. fpu->last_dp = fxsave->rdp;
  4236. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4237. vcpu_put(vcpu);
  4238. return 0;
  4239. }
  4240. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4241. {
  4242. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4243. vcpu_load(vcpu);
  4244. memcpy(fxsave->st_space, fpu->fpr, 128);
  4245. fxsave->cwd = fpu->fcw;
  4246. fxsave->swd = fpu->fsw;
  4247. fxsave->twd = fpu->ftwx;
  4248. fxsave->fop = fpu->last_opcode;
  4249. fxsave->rip = fpu->last_ip;
  4250. fxsave->rdp = fpu->last_dp;
  4251. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4252. vcpu_put(vcpu);
  4253. return 0;
  4254. }
  4255. void fx_init(struct kvm_vcpu *vcpu)
  4256. {
  4257. unsigned after_mxcsr_mask;
  4258. /*
  4259. * Touch the fpu the first time in non atomic context as if
  4260. * this is the first fpu instruction the exception handler
  4261. * will fire before the instruction returns and it'll have to
  4262. * allocate ram with GFP_KERNEL.
  4263. */
  4264. if (!used_math())
  4265. kvm_fx_save(&vcpu->arch.host_fx_image);
  4266. /* Initialize guest FPU by resetting ours and saving into guest's */
  4267. preempt_disable();
  4268. kvm_fx_save(&vcpu->arch.host_fx_image);
  4269. kvm_fx_finit();
  4270. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4271. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4272. preempt_enable();
  4273. vcpu->arch.cr0 |= X86_CR0_ET;
  4274. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4275. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4276. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4277. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4278. }
  4279. EXPORT_SYMBOL_GPL(fx_init);
  4280. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4281. {
  4282. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  4283. return;
  4284. vcpu->guest_fpu_loaded = 1;
  4285. kvm_fx_save(&vcpu->arch.host_fx_image);
  4286. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4287. }
  4288. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  4289. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4290. {
  4291. if (!vcpu->guest_fpu_loaded)
  4292. return;
  4293. vcpu->guest_fpu_loaded = 0;
  4294. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4295. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4296. ++vcpu->stat.fpu_reload;
  4297. }
  4298. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  4299. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4300. {
  4301. if (vcpu->arch.time_page) {
  4302. kvm_release_page_dirty(vcpu->arch.time_page);
  4303. vcpu->arch.time_page = NULL;
  4304. }
  4305. kvm_x86_ops->vcpu_free(vcpu);
  4306. }
  4307. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4308. unsigned int id)
  4309. {
  4310. return kvm_x86_ops->vcpu_create(kvm, id);
  4311. }
  4312. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4313. {
  4314. int r;
  4315. /* We do fxsave: this must be aligned. */
  4316. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4317. vcpu->arch.mtrr_state.have_fixed = 1;
  4318. vcpu_load(vcpu);
  4319. r = kvm_arch_vcpu_reset(vcpu);
  4320. if (r == 0)
  4321. r = kvm_mmu_setup(vcpu);
  4322. vcpu_put(vcpu);
  4323. if (r < 0)
  4324. goto free_vcpu;
  4325. return 0;
  4326. free_vcpu:
  4327. kvm_x86_ops->vcpu_free(vcpu);
  4328. return r;
  4329. }
  4330. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4331. {
  4332. vcpu_load(vcpu);
  4333. kvm_mmu_unload(vcpu);
  4334. vcpu_put(vcpu);
  4335. kvm_x86_ops->vcpu_free(vcpu);
  4336. }
  4337. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4338. {
  4339. vcpu->arch.nmi_pending = false;
  4340. vcpu->arch.nmi_injected = false;
  4341. vcpu->arch.switch_db_regs = 0;
  4342. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4343. vcpu->arch.dr6 = DR6_FIXED_1;
  4344. vcpu->arch.dr7 = DR7_FIXED_1;
  4345. return kvm_x86_ops->vcpu_reset(vcpu);
  4346. }
  4347. int kvm_arch_hardware_enable(void *garbage)
  4348. {
  4349. /*
  4350. * Since this may be called from a hotplug notifcation,
  4351. * we can't get the CPU frequency directly.
  4352. */
  4353. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4354. int cpu = raw_smp_processor_id();
  4355. per_cpu(cpu_tsc_khz, cpu) = 0;
  4356. }
  4357. kvm_shared_msr_cpu_online();
  4358. return kvm_x86_ops->hardware_enable(garbage);
  4359. }
  4360. void kvm_arch_hardware_disable(void *garbage)
  4361. {
  4362. kvm_x86_ops->hardware_disable(garbage);
  4363. drop_user_return_notifiers(garbage);
  4364. }
  4365. int kvm_arch_hardware_setup(void)
  4366. {
  4367. return kvm_x86_ops->hardware_setup();
  4368. }
  4369. void kvm_arch_hardware_unsetup(void)
  4370. {
  4371. kvm_x86_ops->hardware_unsetup();
  4372. }
  4373. void kvm_arch_check_processor_compat(void *rtn)
  4374. {
  4375. kvm_x86_ops->check_processor_compatibility(rtn);
  4376. }
  4377. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4378. {
  4379. struct page *page;
  4380. struct kvm *kvm;
  4381. int r;
  4382. BUG_ON(vcpu->kvm == NULL);
  4383. kvm = vcpu->kvm;
  4384. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4385. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4386. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4387. else
  4388. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4389. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4390. if (!page) {
  4391. r = -ENOMEM;
  4392. goto fail;
  4393. }
  4394. vcpu->arch.pio_data = page_address(page);
  4395. r = kvm_mmu_create(vcpu);
  4396. if (r < 0)
  4397. goto fail_free_pio_data;
  4398. if (irqchip_in_kernel(kvm)) {
  4399. r = kvm_create_lapic(vcpu);
  4400. if (r < 0)
  4401. goto fail_mmu_destroy;
  4402. }
  4403. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4404. GFP_KERNEL);
  4405. if (!vcpu->arch.mce_banks) {
  4406. r = -ENOMEM;
  4407. goto fail_free_lapic;
  4408. }
  4409. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4410. return 0;
  4411. fail_free_lapic:
  4412. kvm_free_lapic(vcpu);
  4413. fail_mmu_destroy:
  4414. kvm_mmu_destroy(vcpu);
  4415. fail_free_pio_data:
  4416. free_page((unsigned long)vcpu->arch.pio_data);
  4417. fail:
  4418. return r;
  4419. }
  4420. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4421. {
  4422. kfree(vcpu->arch.mce_banks);
  4423. kvm_free_lapic(vcpu);
  4424. down_read(&vcpu->kvm->slots_lock);
  4425. kvm_mmu_destroy(vcpu);
  4426. up_read(&vcpu->kvm->slots_lock);
  4427. free_page((unsigned long)vcpu->arch.pio_data);
  4428. }
  4429. struct kvm *kvm_arch_create_vm(void)
  4430. {
  4431. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4432. if (!kvm)
  4433. return ERR_PTR(-ENOMEM);
  4434. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4435. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4436. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4437. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4438. rdtscll(kvm->arch.vm_init_tsc);
  4439. return kvm;
  4440. }
  4441. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4442. {
  4443. vcpu_load(vcpu);
  4444. kvm_mmu_unload(vcpu);
  4445. vcpu_put(vcpu);
  4446. }
  4447. static void kvm_free_vcpus(struct kvm *kvm)
  4448. {
  4449. unsigned int i;
  4450. struct kvm_vcpu *vcpu;
  4451. /*
  4452. * Unpin any mmu pages first.
  4453. */
  4454. kvm_for_each_vcpu(i, vcpu, kvm)
  4455. kvm_unload_vcpu_mmu(vcpu);
  4456. kvm_for_each_vcpu(i, vcpu, kvm)
  4457. kvm_arch_vcpu_free(vcpu);
  4458. mutex_lock(&kvm->lock);
  4459. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4460. kvm->vcpus[i] = NULL;
  4461. atomic_set(&kvm->online_vcpus, 0);
  4462. mutex_unlock(&kvm->lock);
  4463. }
  4464. void kvm_arch_sync_events(struct kvm *kvm)
  4465. {
  4466. kvm_free_all_assigned_devices(kvm);
  4467. }
  4468. void kvm_arch_destroy_vm(struct kvm *kvm)
  4469. {
  4470. kvm_iommu_unmap_guest(kvm);
  4471. kvm_free_pit(kvm);
  4472. kfree(kvm->arch.vpic);
  4473. kfree(kvm->arch.vioapic);
  4474. kvm_free_vcpus(kvm);
  4475. kvm_free_physmem(kvm);
  4476. if (kvm->arch.apic_access_page)
  4477. put_page(kvm->arch.apic_access_page);
  4478. if (kvm->arch.ept_identity_pagetable)
  4479. put_page(kvm->arch.ept_identity_pagetable);
  4480. kfree(kvm);
  4481. }
  4482. int kvm_arch_set_memory_region(struct kvm *kvm,
  4483. struct kvm_userspace_memory_region *mem,
  4484. struct kvm_memory_slot old,
  4485. int user_alloc)
  4486. {
  4487. int npages = mem->memory_size >> PAGE_SHIFT;
  4488. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4489. /*To keep backward compatibility with older userspace,
  4490. *x86 needs to hanlde !user_alloc case.
  4491. */
  4492. if (!user_alloc) {
  4493. if (npages && !old.rmap) {
  4494. unsigned long userspace_addr;
  4495. down_write(&current->mm->mmap_sem);
  4496. userspace_addr = do_mmap(NULL, 0,
  4497. npages * PAGE_SIZE,
  4498. PROT_READ | PROT_WRITE,
  4499. MAP_PRIVATE | MAP_ANONYMOUS,
  4500. 0);
  4501. up_write(&current->mm->mmap_sem);
  4502. if (IS_ERR((void *)userspace_addr))
  4503. return PTR_ERR((void *)userspace_addr);
  4504. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4505. spin_lock(&kvm->mmu_lock);
  4506. memslot->userspace_addr = userspace_addr;
  4507. spin_unlock(&kvm->mmu_lock);
  4508. } else {
  4509. if (!old.user_alloc && old.rmap) {
  4510. int ret;
  4511. down_write(&current->mm->mmap_sem);
  4512. ret = do_munmap(current->mm, old.userspace_addr,
  4513. old.npages * PAGE_SIZE);
  4514. up_write(&current->mm->mmap_sem);
  4515. if (ret < 0)
  4516. printk(KERN_WARNING
  4517. "kvm_vm_ioctl_set_memory_region: "
  4518. "failed to munmap memory\n");
  4519. }
  4520. }
  4521. }
  4522. spin_lock(&kvm->mmu_lock);
  4523. if (!kvm->arch.n_requested_mmu_pages) {
  4524. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4525. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4526. }
  4527. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4528. spin_unlock(&kvm->mmu_lock);
  4529. return 0;
  4530. }
  4531. void kvm_arch_flush_shadow(struct kvm *kvm)
  4532. {
  4533. kvm_mmu_zap_all(kvm);
  4534. kvm_reload_remote_mmus(kvm);
  4535. }
  4536. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4537. {
  4538. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4539. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4540. || vcpu->arch.nmi_pending ||
  4541. (kvm_arch_interrupt_allowed(vcpu) &&
  4542. kvm_cpu_has_interrupt(vcpu));
  4543. }
  4544. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4545. {
  4546. int me;
  4547. int cpu = vcpu->cpu;
  4548. if (waitqueue_active(&vcpu->wq)) {
  4549. wake_up_interruptible(&vcpu->wq);
  4550. ++vcpu->stat.halt_wakeup;
  4551. }
  4552. me = get_cpu();
  4553. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4554. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4555. smp_send_reschedule(cpu);
  4556. put_cpu();
  4557. }
  4558. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4559. {
  4560. return kvm_x86_ops->interrupt_allowed(vcpu);
  4561. }
  4562. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4563. {
  4564. unsigned long rflags;
  4565. rflags = kvm_x86_ops->get_rflags(vcpu);
  4566. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4567. rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
  4568. return rflags;
  4569. }
  4570. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4571. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4572. {
  4573. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4574. vcpu->arch.singlestep_cs ==
  4575. get_segment_selector(vcpu, VCPU_SREG_CS) &&
  4576. vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
  4577. rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  4578. kvm_x86_ops->set_rflags(vcpu, rflags);
  4579. }
  4580. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4581. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4582. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4583. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4584. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4585. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4586. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4587. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4588. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4589. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4590. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4591. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);