ll_rw_blk.c 99 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/bio.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/highmem.h>
  18. #include <linux/mm.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/string.h>
  21. #include <linux/init.h>
  22. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  23. #include <linux/completion.h>
  24. #include <linux/slab.h>
  25. #include <linux/swap.h>
  26. #include <linux/writeback.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/cpu.h>
  29. #include <linux/blktrace_api.h>
  30. /*
  31. * for max sense size
  32. */
  33. #include <scsi/scsi_cmnd.h>
  34. static void blk_unplug_work(void *data);
  35. static void blk_unplug_timeout(unsigned long data);
  36. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  37. static void init_request_from_bio(struct request *req, struct bio *bio);
  38. static int __make_request(request_queue_t *q, struct bio *bio);
  39. static struct io_context *current_io_context(gfp_t gfp_flags, int node);
  40. /*
  41. * For the allocated request tables
  42. */
  43. static kmem_cache_t *request_cachep;
  44. /*
  45. * For queue allocation
  46. */
  47. static kmem_cache_t *requestq_cachep;
  48. /*
  49. * For io context allocations
  50. */
  51. static kmem_cache_t *iocontext_cachep;
  52. /*
  53. * Controlling structure to kblockd
  54. */
  55. static struct workqueue_struct *kblockd_workqueue;
  56. unsigned long blk_max_low_pfn, blk_max_pfn;
  57. EXPORT_SYMBOL(blk_max_low_pfn);
  58. EXPORT_SYMBOL(blk_max_pfn);
  59. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  60. /* Amount of time in which a process may batch requests */
  61. #define BLK_BATCH_TIME (HZ/50UL)
  62. /* Number of requests a "batching" process may submit */
  63. #define BLK_BATCH_REQ 32
  64. /*
  65. * Return the threshold (number of used requests) at which the queue is
  66. * considered to be congested. It include a little hysteresis to keep the
  67. * context switch rate down.
  68. */
  69. static inline int queue_congestion_on_threshold(struct request_queue *q)
  70. {
  71. return q->nr_congestion_on;
  72. }
  73. /*
  74. * The threshold at which a queue is considered to be uncongested
  75. */
  76. static inline int queue_congestion_off_threshold(struct request_queue *q)
  77. {
  78. return q->nr_congestion_off;
  79. }
  80. static void blk_queue_congestion_threshold(struct request_queue *q)
  81. {
  82. int nr;
  83. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  84. if (nr > q->nr_requests)
  85. nr = q->nr_requests;
  86. q->nr_congestion_on = nr;
  87. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  88. if (nr < 1)
  89. nr = 1;
  90. q->nr_congestion_off = nr;
  91. }
  92. /**
  93. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  94. * @bdev: device
  95. *
  96. * Locates the passed device's request queue and returns the address of its
  97. * backing_dev_info
  98. *
  99. * Will return NULL if the request queue cannot be located.
  100. */
  101. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  102. {
  103. struct backing_dev_info *ret = NULL;
  104. request_queue_t *q = bdev_get_queue(bdev);
  105. if (q)
  106. ret = &q->backing_dev_info;
  107. return ret;
  108. }
  109. EXPORT_SYMBOL(blk_get_backing_dev_info);
  110. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  111. {
  112. q->activity_fn = fn;
  113. q->activity_data = data;
  114. }
  115. EXPORT_SYMBOL(blk_queue_activity_fn);
  116. /**
  117. * blk_queue_prep_rq - set a prepare_request function for queue
  118. * @q: queue
  119. * @pfn: prepare_request function
  120. *
  121. * It's possible for a queue to register a prepare_request callback which
  122. * is invoked before the request is handed to the request_fn. The goal of
  123. * the function is to prepare a request for I/O, it can be used to build a
  124. * cdb from the request data for instance.
  125. *
  126. */
  127. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  128. {
  129. q->prep_rq_fn = pfn;
  130. }
  131. EXPORT_SYMBOL(blk_queue_prep_rq);
  132. /**
  133. * blk_queue_merge_bvec - set a merge_bvec function for queue
  134. * @q: queue
  135. * @mbfn: merge_bvec_fn
  136. *
  137. * Usually queues have static limitations on the max sectors or segments that
  138. * we can put in a request. Stacking drivers may have some settings that
  139. * are dynamic, and thus we have to query the queue whether it is ok to
  140. * add a new bio_vec to a bio at a given offset or not. If the block device
  141. * has such limitations, it needs to register a merge_bvec_fn to control
  142. * the size of bio's sent to it. Note that a block device *must* allow a
  143. * single page to be added to an empty bio. The block device driver may want
  144. * to use the bio_split() function to deal with these bio's. By default
  145. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  146. * honored.
  147. */
  148. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  149. {
  150. q->merge_bvec_fn = mbfn;
  151. }
  152. EXPORT_SYMBOL(blk_queue_merge_bvec);
  153. void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
  154. {
  155. q->softirq_done_fn = fn;
  156. }
  157. EXPORT_SYMBOL(blk_queue_softirq_done);
  158. /**
  159. * blk_queue_make_request - define an alternate make_request function for a device
  160. * @q: the request queue for the device to be affected
  161. * @mfn: the alternate make_request function
  162. *
  163. * Description:
  164. * The normal way for &struct bios to be passed to a device
  165. * driver is for them to be collected into requests on a request
  166. * queue, and then to allow the device driver to select requests
  167. * off that queue when it is ready. This works well for many block
  168. * devices. However some block devices (typically virtual devices
  169. * such as md or lvm) do not benefit from the processing on the
  170. * request queue, and are served best by having the requests passed
  171. * directly to them. This can be achieved by providing a function
  172. * to blk_queue_make_request().
  173. *
  174. * Caveat:
  175. * The driver that does this *must* be able to deal appropriately
  176. * with buffers in "highmemory". This can be accomplished by either calling
  177. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  178. * blk_queue_bounce() to create a buffer in normal memory.
  179. **/
  180. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  181. {
  182. /*
  183. * set defaults
  184. */
  185. q->nr_requests = BLKDEV_MAX_RQ;
  186. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  187. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  188. q->make_request_fn = mfn;
  189. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  190. q->backing_dev_info.state = 0;
  191. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  192. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  193. blk_queue_hardsect_size(q, 512);
  194. blk_queue_dma_alignment(q, 511);
  195. blk_queue_congestion_threshold(q);
  196. q->nr_batching = BLK_BATCH_REQ;
  197. q->unplug_thresh = 4; /* hmm */
  198. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  199. if (q->unplug_delay == 0)
  200. q->unplug_delay = 1;
  201. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  202. q->unplug_timer.function = blk_unplug_timeout;
  203. q->unplug_timer.data = (unsigned long)q;
  204. /*
  205. * by default assume old behaviour and bounce for any highmem page
  206. */
  207. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  208. blk_queue_activity_fn(q, NULL, NULL);
  209. }
  210. EXPORT_SYMBOL(blk_queue_make_request);
  211. static void rq_init(request_queue_t *q, struct request *rq)
  212. {
  213. INIT_LIST_HEAD(&rq->queuelist);
  214. INIT_LIST_HEAD(&rq->donelist);
  215. rq->errors = 0;
  216. rq->bio = rq->biotail = NULL;
  217. INIT_HLIST_NODE(&rq->hash);
  218. RB_CLEAR_NODE(&rq->rb_node);
  219. rq->ioprio = 0;
  220. rq->buffer = NULL;
  221. rq->ref_count = 1;
  222. rq->q = q;
  223. rq->special = NULL;
  224. rq->data_len = 0;
  225. rq->data = NULL;
  226. rq->nr_phys_segments = 0;
  227. rq->sense = NULL;
  228. rq->end_io = NULL;
  229. rq->end_io_data = NULL;
  230. rq->completion_data = NULL;
  231. }
  232. /**
  233. * blk_queue_ordered - does this queue support ordered writes
  234. * @q: the request queue
  235. * @ordered: one of QUEUE_ORDERED_*
  236. * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  237. *
  238. * Description:
  239. * For journalled file systems, doing ordered writes on a commit
  240. * block instead of explicitly doing wait_on_buffer (which is bad
  241. * for performance) can be a big win. Block drivers supporting this
  242. * feature should call this function and indicate so.
  243. *
  244. **/
  245. int blk_queue_ordered(request_queue_t *q, unsigned ordered,
  246. prepare_flush_fn *prepare_flush_fn)
  247. {
  248. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  249. prepare_flush_fn == NULL) {
  250. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  251. return -EINVAL;
  252. }
  253. if (ordered != QUEUE_ORDERED_NONE &&
  254. ordered != QUEUE_ORDERED_DRAIN &&
  255. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  256. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  257. ordered != QUEUE_ORDERED_TAG &&
  258. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  259. ordered != QUEUE_ORDERED_TAG_FUA) {
  260. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  261. return -EINVAL;
  262. }
  263. q->ordered = ordered;
  264. q->next_ordered = ordered;
  265. q->prepare_flush_fn = prepare_flush_fn;
  266. return 0;
  267. }
  268. EXPORT_SYMBOL(blk_queue_ordered);
  269. /**
  270. * blk_queue_issue_flush_fn - set function for issuing a flush
  271. * @q: the request queue
  272. * @iff: the function to be called issuing the flush
  273. *
  274. * Description:
  275. * If a driver supports issuing a flush command, the support is notified
  276. * to the block layer by defining it through this call.
  277. *
  278. **/
  279. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  280. {
  281. q->issue_flush_fn = iff;
  282. }
  283. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  284. /*
  285. * Cache flushing for ordered writes handling
  286. */
  287. inline unsigned blk_ordered_cur_seq(request_queue_t *q)
  288. {
  289. if (!q->ordseq)
  290. return 0;
  291. return 1 << ffz(q->ordseq);
  292. }
  293. unsigned blk_ordered_req_seq(struct request *rq)
  294. {
  295. request_queue_t *q = rq->q;
  296. BUG_ON(q->ordseq == 0);
  297. if (rq == &q->pre_flush_rq)
  298. return QUEUE_ORDSEQ_PREFLUSH;
  299. if (rq == &q->bar_rq)
  300. return QUEUE_ORDSEQ_BAR;
  301. if (rq == &q->post_flush_rq)
  302. return QUEUE_ORDSEQ_POSTFLUSH;
  303. if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
  304. (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
  305. return QUEUE_ORDSEQ_DRAIN;
  306. else
  307. return QUEUE_ORDSEQ_DONE;
  308. }
  309. void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
  310. {
  311. struct request *rq;
  312. int uptodate;
  313. if (error && !q->orderr)
  314. q->orderr = error;
  315. BUG_ON(q->ordseq & seq);
  316. q->ordseq |= seq;
  317. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  318. return;
  319. /*
  320. * Okay, sequence complete.
  321. */
  322. rq = q->orig_bar_rq;
  323. uptodate = q->orderr ? q->orderr : 1;
  324. q->ordseq = 0;
  325. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  326. end_that_request_last(rq, uptodate);
  327. }
  328. static void pre_flush_end_io(struct request *rq, int error)
  329. {
  330. elv_completed_request(rq->q, rq);
  331. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  332. }
  333. static void bar_end_io(struct request *rq, int error)
  334. {
  335. elv_completed_request(rq->q, rq);
  336. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  337. }
  338. static void post_flush_end_io(struct request *rq, int error)
  339. {
  340. elv_completed_request(rq->q, rq);
  341. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  342. }
  343. static void queue_flush(request_queue_t *q, unsigned which)
  344. {
  345. struct request *rq;
  346. rq_end_io_fn *end_io;
  347. if (which == QUEUE_ORDERED_PREFLUSH) {
  348. rq = &q->pre_flush_rq;
  349. end_io = pre_flush_end_io;
  350. } else {
  351. rq = &q->post_flush_rq;
  352. end_io = post_flush_end_io;
  353. }
  354. rq->cmd_flags = REQ_HARDBARRIER;
  355. rq_init(q, rq);
  356. rq->elevator_private = NULL;
  357. rq->elevator_private2 = NULL;
  358. rq->rq_disk = q->bar_rq.rq_disk;
  359. rq->end_io = end_io;
  360. q->prepare_flush_fn(q, rq);
  361. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  362. }
  363. static inline struct request *start_ordered(request_queue_t *q,
  364. struct request *rq)
  365. {
  366. q->bi_size = 0;
  367. q->orderr = 0;
  368. q->ordered = q->next_ordered;
  369. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  370. /*
  371. * Prep proxy barrier request.
  372. */
  373. blkdev_dequeue_request(rq);
  374. q->orig_bar_rq = rq;
  375. rq = &q->bar_rq;
  376. rq->cmd_flags = 0;
  377. rq_init(q, rq);
  378. if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
  379. rq->cmd_flags |= REQ_RW;
  380. rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
  381. rq->elevator_private = NULL;
  382. rq->elevator_private2 = NULL;
  383. init_request_from_bio(rq, q->orig_bar_rq->bio);
  384. rq->end_io = bar_end_io;
  385. /*
  386. * Queue ordered sequence. As we stack them at the head, we
  387. * need to queue in reverse order. Note that we rely on that
  388. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  389. * request gets inbetween ordered sequence.
  390. */
  391. if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
  392. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  393. else
  394. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  395. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  396. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  397. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  398. rq = &q->pre_flush_rq;
  399. } else
  400. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  401. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  402. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  403. else
  404. rq = NULL;
  405. return rq;
  406. }
  407. int blk_do_ordered(request_queue_t *q, struct request **rqp)
  408. {
  409. struct request *rq = *rqp;
  410. int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  411. if (!q->ordseq) {
  412. if (!is_barrier)
  413. return 1;
  414. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  415. *rqp = start_ordered(q, rq);
  416. return 1;
  417. } else {
  418. /*
  419. * This can happen when the queue switches to
  420. * ORDERED_NONE while this request is on it.
  421. */
  422. blkdev_dequeue_request(rq);
  423. end_that_request_first(rq, -EOPNOTSUPP,
  424. rq->hard_nr_sectors);
  425. end_that_request_last(rq, -EOPNOTSUPP);
  426. *rqp = NULL;
  427. return 0;
  428. }
  429. }
  430. /*
  431. * Ordered sequence in progress
  432. */
  433. /* Special requests are not subject to ordering rules. */
  434. if (!blk_fs_request(rq) &&
  435. rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
  436. return 1;
  437. if (q->ordered & QUEUE_ORDERED_TAG) {
  438. /* Ordered by tag. Blocking the next barrier is enough. */
  439. if (is_barrier && rq != &q->bar_rq)
  440. *rqp = NULL;
  441. } else {
  442. /* Ordered by draining. Wait for turn. */
  443. WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
  444. if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
  445. *rqp = NULL;
  446. }
  447. return 1;
  448. }
  449. static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
  450. {
  451. request_queue_t *q = bio->bi_private;
  452. struct bio_vec *bvec;
  453. int i;
  454. /*
  455. * This is dry run, restore bio_sector and size. We'll finish
  456. * this request again with the original bi_end_io after an
  457. * error occurs or post flush is complete.
  458. */
  459. q->bi_size += bytes;
  460. if (bio->bi_size)
  461. return 1;
  462. /* Rewind bvec's */
  463. bio->bi_idx = 0;
  464. bio_for_each_segment(bvec, bio, i) {
  465. bvec->bv_len += bvec->bv_offset;
  466. bvec->bv_offset = 0;
  467. }
  468. /* Reset bio */
  469. set_bit(BIO_UPTODATE, &bio->bi_flags);
  470. bio->bi_size = q->bi_size;
  471. bio->bi_sector -= (q->bi_size >> 9);
  472. q->bi_size = 0;
  473. return 0;
  474. }
  475. static int ordered_bio_endio(struct request *rq, struct bio *bio,
  476. unsigned int nbytes, int error)
  477. {
  478. request_queue_t *q = rq->q;
  479. bio_end_io_t *endio;
  480. void *private;
  481. if (&q->bar_rq != rq)
  482. return 0;
  483. /*
  484. * Okay, this is the barrier request in progress, dry finish it.
  485. */
  486. if (error && !q->orderr)
  487. q->orderr = error;
  488. endio = bio->bi_end_io;
  489. private = bio->bi_private;
  490. bio->bi_end_io = flush_dry_bio_endio;
  491. bio->bi_private = q;
  492. bio_endio(bio, nbytes, error);
  493. bio->bi_end_io = endio;
  494. bio->bi_private = private;
  495. return 1;
  496. }
  497. /**
  498. * blk_queue_bounce_limit - set bounce buffer limit for queue
  499. * @q: the request queue for the device
  500. * @dma_addr: bus address limit
  501. *
  502. * Description:
  503. * Different hardware can have different requirements as to what pages
  504. * it can do I/O directly to. A low level driver can call
  505. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  506. * buffers for doing I/O to pages residing above @page.
  507. **/
  508. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  509. {
  510. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  511. int dma = 0;
  512. q->bounce_gfp = GFP_NOIO;
  513. #if BITS_PER_LONG == 64
  514. /* Assume anything <= 4GB can be handled by IOMMU.
  515. Actually some IOMMUs can handle everything, but I don't
  516. know of a way to test this here. */
  517. if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  518. dma = 1;
  519. q->bounce_pfn = max_low_pfn;
  520. #else
  521. if (bounce_pfn < blk_max_low_pfn)
  522. dma = 1;
  523. q->bounce_pfn = bounce_pfn;
  524. #endif
  525. if (dma) {
  526. init_emergency_isa_pool();
  527. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  528. q->bounce_pfn = bounce_pfn;
  529. }
  530. }
  531. EXPORT_SYMBOL(blk_queue_bounce_limit);
  532. /**
  533. * blk_queue_max_sectors - set max sectors for a request for this queue
  534. * @q: the request queue for the device
  535. * @max_sectors: max sectors in the usual 512b unit
  536. *
  537. * Description:
  538. * Enables a low level driver to set an upper limit on the size of
  539. * received requests.
  540. **/
  541. void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
  542. {
  543. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  544. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  545. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  546. }
  547. if (BLK_DEF_MAX_SECTORS > max_sectors)
  548. q->max_hw_sectors = q->max_sectors = max_sectors;
  549. else {
  550. q->max_sectors = BLK_DEF_MAX_SECTORS;
  551. q->max_hw_sectors = max_sectors;
  552. }
  553. }
  554. EXPORT_SYMBOL(blk_queue_max_sectors);
  555. /**
  556. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  557. * @q: the request queue for the device
  558. * @max_segments: max number of segments
  559. *
  560. * Description:
  561. * Enables a low level driver to set an upper limit on the number of
  562. * physical data segments in a request. This would be the largest sized
  563. * scatter list the driver could handle.
  564. **/
  565. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  566. {
  567. if (!max_segments) {
  568. max_segments = 1;
  569. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  570. }
  571. q->max_phys_segments = max_segments;
  572. }
  573. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  574. /**
  575. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  576. * @q: the request queue for the device
  577. * @max_segments: max number of segments
  578. *
  579. * Description:
  580. * Enables a low level driver to set an upper limit on the number of
  581. * hw data segments in a request. This would be the largest number of
  582. * address/length pairs the host adapter can actually give as once
  583. * to the device.
  584. **/
  585. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  586. {
  587. if (!max_segments) {
  588. max_segments = 1;
  589. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  590. }
  591. q->max_hw_segments = max_segments;
  592. }
  593. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  594. /**
  595. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  596. * @q: the request queue for the device
  597. * @max_size: max size of segment in bytes
  598. *
  599. * Description:
  600. * Enables a low level driver to set an upper limit on the size of a
  601. * coalesced segment
  602. **/
  603. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  604. {
  605. if (max_size < PAGE_CACHE_SIZE) {
  606. max_size = PAGE_CACHE_SIZE;
  607. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  608. }
  609. q->max_segment_size = max_size;
  610. }
  611. EXPORT_SYMBOL(blk_queue_max_segment_size);
  612. /**
  613. * blk_queue_hardsect_size - set hardware sector size for the queue
  614. * @q: the request queue for the device
  615. * @size: the hardware sector size, in bytes
  616. *
  617. * Description:
  618. * This should typically be set to the lowest possible sector size
  619. * that the hardware can operate on (possible without reverting to
  620. * even internal read-modify-write operations). Usually the default
  621. * of 512 covers most hardware.
  622. **/
  623. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  624. {
  625. q->hardsect_size = size;
  626. }
  627. EXPORT_SYMBOL(blk_queue_hardsect_size);
  628. /*
  629. * Returns the minimum that is _not_ zero, unless both are zero.
  630. */
  631. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  632. /**
  633. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  634. * @t: the stacking driver (top)
  635. * @b: the underlying device (bottom)
  636. **/
  637. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  638. {
  639. /* zero is "infinity" */
  640. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  641. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  642. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  643. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  644. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  645. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  646. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  647. clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
  648. }
  649. EXPORT_SYMBOL(blk_queue_stack_limits);
  650. /**
  651. * blk_queue_segment_boundary - set boundary rules for segment merging
  652. * @q: the request queue for the device
  653. * @mask: the memory boundary mask
  654. **/
  655. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  656. {
  657. if (mask < PAGE_CACHE_SIZE - 1) {
  658. mask = PAGE_CACHE_SIZE - 1;
  659. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  660. }
  661. q->seg_boundary_mask = mask;
  662. }
  663. EXPORT_SYMBOL(blk_queue_segment_boundary);
  664. /**
  665. * blk_queue_dma_alignment - set dma length and memory alignment
  666. * @q: the request queue for the device
  667. * @mask: alignment mask
  668. *
  669. * description:
  670. * set required memory and length aligment for direct dma transactions.
  671. * this is used when buiding direct io requests for the queue.
  672. *
  673. **/
  674. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  675. {
  676. q->dma_alignment = mask;
  677. }
  678. EXPORT_SYMBOL(blk_queue_dma_alignment);
  679. /**
  680. * blk_queue_find_tag - find a request by its tag and queue
  681. * @q: The request queue for the device
  682. * @tag: The tag of the request
  683. *
  684. * Notes:
  685. * Should be used when a device returns a tag and you want to match
  686. * it with a request.
  687. *
  688. * no locks need be held.
  689. **/
  690. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  691. {
  692. return blk_map_queue_find_tag(q->queue_tags, tag);
  693. }
  694. EXPORT_SYMBOL(blk_queue_find_tag);
  695. /**
  696. * __blk_free_tags - release a given set of tag maintenance info
  697. * @bqt: the tag map to free
  698. *
  699. * Tries to free the specified @bqt@. Returns true if it was
  700. * actually freed and false if there are still references using it
  701. */
  702. static int __blk_free_tags(struct blk_queue_tag *bqt)
  703. {
  704. int retval;
  705. retval = atomic_dec_and_test(&bqt->refcnt);
  706. if (retval) {
  707. BUG_ON(bqt->busy);
  708. BUG_ON(!list_empty(&bqt->busy_list));
  709. kfree(bqt->tag_index);
  710. bqt->tag_index = NULL;
  711. kfree(bqt->tag_map);
  712. bqt->tag_map = NULL;
  713. kfree(bqt);
  714. }
  715. return retval;
  716. }
  717. /**
  718. * __blk_queue_free_tags - release tag maintenance info
  719. * @q: the request queue for the device
  720. *
  721. * Notes:
  722. * blk_cleanup_queue() will take care of calling this function, if tagging
  723. * has been used. So there's no need to call this directly.
  724. **/
  725. static void __blk_queue_free_tags(request_queue_t *q)
  726. {
  727. struct blk_queue_tag *bqt = q->queue_tags;
  728. if (!bqt)
  729. return;
  730. __blk_free_tags(bqt);
  731. q->queue_tags = NULL;
  732. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  733. }
  734. /**
  735. * blk_free_tags - release a given set of tag maintenance info
  736. * @bqt: the tag map to free
  737. *
  738. * For externally managed @bqt@ frees the map. Callers of this
  739. * function must guarantee to have released all the queues that
  740. * might have been using this tag map.
  741. */
  742. void blk_free_tags(struct blk_queue_tag *bqt)
  743. {
  744. if (unlikely(!__blk_free_tags(bqt)))
  745. BUG();
  746. }
  747. EXPORT_SYMBOL(blk_free_tags);
  748. /**
  749. * blk_queue_free_tags - release tag maintenance info
  750. * @q: the request queue for the device
  751. *
  752. * Notes:
  753. * This is used to disabled tagged queuing to a device, yet leave
  754. * queue in function.
  755. **/
  756. void blk_queue_free_tags(request_queue_t *q)
  757. {
  758. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  759. }
  760. EXPORT_SYMBOL(blk_queue_free_tags);
  761. static int
  762. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  763. {
  764. struct request **tag_index;
  765. unsigned long *tag_map;
  766. int nr_ulongs;
  767. if (q && depth > q->nr_requests * 2) {
  768. depth = q->nr_requests * 2;
  769. printk(KERN_ERR "%s: adjusted depth to %d\n",
  770. __FUNCTION__, depth);
  771. }
  772. tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  773. if (!tag_index)
  774. goto fail;
  775. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  776. tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  777. if (!tag_map)
  778. goto fail;
  779. tags->real_max_depth = depth;
  780. tags->max_depth = depth;
  781. tags->tag_index = tag_index;
  782. tags->tag_map = tag_map;
  783. return 0;
  784. fail:
  785. kfree(tag_index);
  786. return -ENOMEM;
  787. }
  788. static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
  789. int depth)
  790. {
  791. struct blk_queue_tag *tags;
  792. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  793. if (!tags)
  794. goto fail;
  795. if (init_tag_map(q, tags, depth))
  796. goto fail;
  797. INIT_LIST_HEAD(&tags->busy_list);
  798. tags->busy = 0;
  799. atomic_set(&tags->refcnt, 1);
  800. return tags;
  801. fail:
  802. kfree(tags);
  803. return NULL;
  804. }
  805. /**
  806. * blk_init_tags - initialize the tag info for an external tag map
  807. * @depth: the maximum queue depth supported
  808. * @tags: the tag to use
  809. **/
  810. struct blk_queue_tag *blk_init_tags(int depth)
  811. {
  812. return __blk_queue_init_tags(NULL, depth);
  813. }
  814. EXPORT_SYMBOL(blk_init_tags);
  815. /**
  816. * blk_queue_init_tags - initialize the queue tag info
  817. * @q: the request queue for the device
  818. * @depth: the maximum queue depth supported
  819. * @tags: the tag to use
  820. **/
  821. int blk_queue_init_tags(request_queue_t *q, int depth,
  822. struct blk_queue_tag *tags)
  823. {
  824. int rc;
  825. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  826. if (!tags && !q->queue_tags) {
  827. tags = __blk_queue_init_tags(q, depth);
  828. if (!tags)
  829. goto fail;
  830. } else if (q->queue_tags) {
  831. if ((rc = blk_queue_resize_tags(q, depth)))
  832. return rc;
  833. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  834. return 0;
  835. } else
  836. atomic_inc(&tags->refcnt);
  837. /*
  838. * assign it, all done
  839. */
  840. q->queue_tags = tags;
  841. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  842. return 0;
  843. fail:
  844. kfree(tags);
  845. return -ENOMEM;
  846. }
  847. EXPORT_SYMBOL(blk_queue_init_tags);
  848. /**
  849. * blk_queue_resize_tags - change the queueing depth
  850. * @q: the request queue for the device
  851. * @new_depth: the new max command queueing depth
  852. *
  853. * Notes:
  854. * Must be called with the queue lock held.
  855. **/
  856. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  857. {
  858. struct blk_queue_tag *bqt = q->queue_tags;
  859. struct request **tag_index;
  860. unsigned long *tag_map;
  861. int max_depth, nr_ulongs;
  862. if (!bqt)
  863. return -ENXIO;
  864. /*
  865. * if we already have large enough real_max_depth. just
  866. * adjust max_depth. *NOTE* as requests with tag value
  867. * between new_depth and real_max_depth can be in-flight, tag
  868. * map can not be shrunk blindly here.
  869. */
  870. if (new_depth <= bqt->real_max_depth) {
  871. bqt->max_depth = new_depth;
  872. return 0;
  873. }
  874. /*
  875. * Currently cannot replace a shared tag map with a new
  876. * one, so error out if this is the case
  877. */
  878. if (atomic_read(&bqt->refcnt) != 1)
  879. return -EBUSY;
  880. /*
  881. * save the old state info, so we can copy it back
  882. */
  883. tag_index = bqt->tag_index;
  884. tag_map = bqt->tag_map;
  885. max_depth = bqt->real_max_depth;
  886. if (init_tag_map(q, bqt, new_depth))
  887. return -ENOMEM;
  888. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  889. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  890. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  891. kfree(tag_index);
  892. kfree(tag_map);
  893. return 0;
  894. }
  895. EXPORT_SYMBOL(blk_queue_resize_tags);
  896. /**
  897. * blk_queue_end_tag - end tag operations for a request
  898. * @q: the request queue for the device
  899. * @rq: the request that has completed
  900. *
  901. * Description:
  902. * Typically called when end_that_request_first() returns 0, meaning
  903. * all transfers have been done for a request. It's important to call
  904. * this function before end_that_request_last(), as that will put the
  905. * request back on the free list thus corrupting the internal tag list.
  906. *
  907. * Notes:
  908. * queue lock must be held.
  909. **/
  910. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  911. {
  912. struct blk_queue_tag *bqt = q->queue_tags;
  913. int tag = rq->tag;
  914. BUG_ON(tag == -1);
  915. if (unlikely(tag >= bqt->real_max_depth))
  916. /*
  917. * This can happen after tag depth has been reduced.
  918. * FIXME: how about a warning or info message here?
  919. */
  920. return;
  921. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  922. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  923. __FUNCTION__, tag);
  924. return;
  925. }
  926. list_del_init(&rq->queuelist);
  927. rq->cmd_flags &= ~REQ_QUEUED;
  928. rq->tag = -1;
  929. if (unlikely(bqt->tag_index[tag] == NULL))
  930. printk(KERN_ERR "%s: tag %d is missing\n",
  931. __FUNCTION__, tag);
  932. bqt->tag_index[tag] = NULL;
  933. bqt->busy--;
  934. }
  935. EXPORT_SYMBOL(blk_queue_end_tag);
  936. /**
  937. * blk_queue_start_tag - find a free tag and assign it
  938. * @q: the request queue for the device
  939. * @rq: the block request that needs tagging
  940. *
  941. * Description:
  942. * This can either be used as a stand-alone helper, or possibly be
  943. * assigned as the queue &prep_rq_fn (in which case &struct request
  944. * automagically gets a tag assigned). Note that this function
  945. * assumes that any type of request can be queued! if this is not
  946. * true for your device, you must check the request type before
  947. * calling this function. The request will also be removed from
  948. * the request queue, so it's the drivers responsibility to readd
  949. * it if it should need to be restarted for some reason.
  950. *
  951. * Notes:
  952. * queue lock must be held.
  953. **/
  954. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  955. {
  956. struct blk_queue_tag *bqt = q->queue_tags;
  957. int tag;
  958. if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
  959. printk(KERN_ERR
  960. "%s: request %p for device [%s] already tagged %d",
  961. __FUNCTION__, rq,
  962. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  963. BUG();
  964. }
  965. /*
  966. * Protect against shared tag maps, as we may not have exclusive
  967. * access to the tag map.
  968. */
  969. do {
  970. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  971. if (tag >= bqt->max_depth)
  972. return 1;
  973. } while (test_and_set_bit(tag, bqt->tag_map));
  974. rq->cmd_flags |= REQ_QUEUED;
  975. rq->tag = tag;
  976. bqt->tag_index[tag] = rq;
  977. blkdev_dequeue_request(rq);
  978. list_add(&rq->queuelist, &bqt->busy_list);
  979. bqt->busy++;
  980. return 0;
  981. }
  982. EXPORT_SYMBOL(blk_queue_start_tag);
  983. /**
  984. * blk_queue_invalidate_tags - invalidate all pending tags
  985. * @q: the request queue for the device
  986. *
  987. * Description:
  988. * Hardware conditions may dictate a need to stop all pending requests.
  989. * In this case, we will safely clear the block side of the tag queue and
  990. * readd all requests to the request queue in the right order.
  991. *
  992. * Notes:
  993. * queue lock must be held.
  994. **/
  995. void blk_queue_invalidate_tags(request_queue_t *q)
  996. {
  997. struct blk_queue_tag *bqt = q->queue_tags;
  998. struct list_head *tmp, *n;
  999. struct request *rq;
  1000. list_for_each_safe(tmp, n, &bqt->busy_list) {
  1001. rq = list_entry_rq(tmp);
  1002. if (rq->tag == -1) {
  1003. printk(KERN_ERR
  1004. "%s: bad tag found on list\n", __FUNCTION__);
  1005. list_del_init(&rq->queuelist);
  1006. rq->cmd_flags &= ~REQ_QUEUED;
  1007. } else
  1008. blk_queue_end_tag(q, rq);
  1009. rq->cmd_flags &= ~REQ_STARTED;
  1010. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  1011. }
  1012. }
  1013. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  1014. void blk_dump_rq_flags(struct request *rq, char *msg)
  1015. {
  1016. int bit;
  1017. printk("%s: dev %s: type=%x, flags=%x\n", msg,
  1018. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
  1019. rq->cmd_flags);
  1020. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1021. rq->nr_sectors,
  1022. rq->current_nr_sectors);
  1023. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1024. if (blk_pc_request(rq)) {
  1025. printk("cdb: ");
  1026. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1027. printk("%02x ", rq->cmd[bit]);
  1028. printk("\n");
  1029. }
  1030. }
  1031. EXPORT_SYMBOL(blk_dump_rq_flags);
  1032. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  1033. {
  1034. struct bio_vec *bv, *bvprv = NULL;
  1035. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  1036. int high, highprv = 1;
  1037. if (unlikely(!bio->bi_io_vec))
  1038. return;
  1039. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1040. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  1041. bio_for_each_segment(bv, bio, i) {
  1042. /*
  1043. * the trick here is making sure that a high page is never
  1044. * considered part of another segment, since that might
  1045. * change with the bounce page.
  1046. */
  1047. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  1048. if (high || highprv)
  1049. goto new_hw_segment;
  1050. if (cluster) {
  1051. if (seg_size + bv->bv_len > q->max_segment_size)
  1052. goto new_segment;
  1053. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1054. goto new_segment;
  1055. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1056. goto new_segment;
  1057. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1058. goto new_hw_segment;
  1059. seg_size += bv->bv_len;
  1060. hw_seg_size += bv->bv_len;
  1061. bvprv = bv;
  1062. continue;
  1063. }
  1064. new_segment:
  1065. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1066. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  1067. hw_seg_size += bv->bv_len;
  1068. } else {
  1069. new_hw_segment:
  1070. if (hw_seg_size > bio->bi_hw_front_size)
  1071. bio->bi_hw_front_size = hw_seg_size;
  1072. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1073. nr_hw_segs++;
  1074. }
  1075. nr_phys_segs++;
  1076. bvprv = bv;
  1077. seg_size = bv->bv_len;
  1078. highprv = high;
  1079. }
  1080. if (hw_seg_size > bio->bi_hw_back_size)
  1081. bio->bi_hw_back_size = hw_seg_size;
  1082. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  1083. bio->bi_hw_front_size = hw_seg_size;
  1084. bio->bi_phys_segments = nr_phys_segs;
  1085. bio->bi_hw_segments = nr_hw_segs;
  1086. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1087. }
  1088. static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  1089. struct bio *nxt)
  1090. {
  1091. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1092. return 0;
  1093. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1094. return 0;
  1095. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1096. return 0;
  1097. /*
  1098. * bio and nxt are contigous in memory, check if the queue allows
  1099. * these two to be merged into one
  1100. */
  1101. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1102. return 1;
  1103. return 0;
  1104. }
  1105. static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  1106. struct bio *nxt)
  1107. {
  1108. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1109. blk_recount_segments(q, bio);
  1110. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1111. blk_recount_segments(q, nxt);
  1112. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1113. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1114. return 0;
  1115. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1116. return 0;
  1117. return 1;
  1118. }
  1119. /*
  1120. * map a request to scatterlist, return number of sg entries setup. Caller
  1121. * must make sure sg can hold rq->nr_phys_segments entries
  1122. */
  1123. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1124. {
  1125. struct bio_vec *bvec, *bvprv;
  1126. struct bio *bio;
  1127. int nsegs, i, cluster;
  1128. nsegs = 0;
  1129. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1130. /*
  1131. * for each bio in rq
  1132. */
  1133. bvprv = NULL;
  1134. rq_for_each_bio(bio, rq) {
  1135. /*
  1136. * for each segment in bio
  1137. */
  1138. bio_for_each_segment(bvec, bio, i) {
  1139. int nbytes = bvec->bv_len;
  1140. if (bvprv && cluster) {
  1141. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1142. goto new_segment;
  1143. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1144. goto new_segment;
  1145. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1146. goto new_segment;
  1147. sg[nsegs - 1].length += nbytes;
  1148. } else {
  1149. new_segment:
  1150. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1151. sg[nsegs].page = bvec->bv_page;
  1152. sg[nsegs].length = nbytes;
  1153. sg[nsegs].offset = bvec->bv_offset;
  1154. nsegs++;
  1155. }
  1156. bvprv = bvec;
  1157. } /* segments in bio */
  1158. } /* bios in rq */
  1159. return nsegs;
  1160. }
  1161. EXPORT_SYMBOL(blk_rq_map_sg);
  1162. /*
  1163. * the standard queue merge functions, can be overridden with device
  1164. * specific ones if so desired
  1165. */
  1166. static inline int ll_new_mergeable(request_queue_t *q,
  1167. struct request *req,
  1168. struct bio *bio)
  1169. {
  1170. int nr_phys_segs = bio_phys_segments(q, bio);
  1171. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1172. req->cmd_flags |= REQ_NOMERGE;
  1173. if (req == q->last_merge)
  1174. q->last_merge = NULL;
  1175. return 0;
  1176. }
  1177. /*
  1178. * A hw segment is just getting larger, bump just the phys
  1179. * counter.
  1180. */
  1181. req->nr_phys_segments += nr_phys_segs;
  1182. return 1;
  1183. }
  1184. static inline int ll_new_hw_segment(request_queue_t *q,
  1185. struct request *req,
  1186. struct bio *bio)
  1187. {
  1188. int nr_hw_segs = bio_hw_segments(q, bio);
  1189. int nr_phys_segs = bio_phys_segments(q, bio);
  1190. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1191. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1192. req->cmd_flags |= REQ_NOMERGE;
  1193. if (req == q->last_merge)
  1194. q->last_merge = NULL;
  1195. return 0;
  1196. }
  1197. /*
  1198. * This will form the start of a new hw segment. Bump both
  1199. * counters.
  1200. */
  1201. req->nr_hw_segments += nr_hw_segs;
  1202. req->nr_phys_segments += nr_phys_segs;
  1203. return 1;
  1204. }
  1205. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1206. struct bio *bio)
  1207. {
  1208. unsigned short max_sectors;
  1209. int len;
  1210. if (unlikely(blk_pc_request(req)))
  1211. max_sectors = q->max_hw_sectors;
  1212. else
  1213. max_sectors = q->max_sectors;
  1214. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1215. req->cmd_flags |= REQ_NOMERGE;
  1216. if (req == q->last_merge)
  1217. q->last_merge = NULL;
  1218. return 0;
  1219. }
  1220. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1221. blk_recount_segments(q, req->biotail);
  1222. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1223. blk_recount_segments(q, bio);
  1224. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1225. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1226. !BIOVEC_VIRT_OVERSIZE(len)) {
  1227. int mergeable = ll_new_mergeable(q, req, bio);
  1228. if (mergeable) {
  1229. if (req->nr_hw_segments == 1)
  1230. req->bio->bi_hw_front_size = len;
  1231. if (bio->bi_hw_segments == 1)
  1232. bio->bi_hw_back_size = len;
  1233. }
  1234. return mergeable;
  1235. }
  1236. return ll_new_hw_segment(q, req, bio);
  1237. }
  1238. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1239. struct bio *bio)
  1240. {
  1241. unsigned short max_sectors;
  1242. int len;
  1243. if (unlikely(blk_pc_request(req)))
  1244. max_sectors = q->max_hw_sectors;
  1245. else
  1246. max_sectors = q->max_sectors;
  1247. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1248. req->cmd_flags |= REQ_NOMERGE;
  1249. if (req == q->last_merge)
  1250. q->last_merge = NULL;
  1251. return 0;
  1252. }
  1253. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1254. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1255. blk_recount_segments(q, bio);
  1256. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1257. blk_recount_segments(q, req->bio);
  1258. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1259. !BIOVEC_VIRT_OVERSIZE(len)) {
  1260. int mergeable = ll_new_mergeable(q, req, bio);
  1261. if (mergeable) {
  1262. if (bio->bi_hw_segments == 1)
  1263. bio->bi_hw_front_size = len;
  1264. if (req->nr_hw_segments == 1)
  1265. req->biotail->bi_hw_back_size = len;
  1266. }
  1267. return mergeable;
  1268. }
  1269. return ll_new_hw_segment(q, req, bio);
  1270. }
  1271. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1272. struct request *next)
  1273. {
  1274. int total_phys_segments;
  1275. int total_hw_segments;
  1276. /*
  1277. * First check if the either of the requests are re-queued
  1278. * requests. Can't merge them if they are.
  1279. */
  1280. if (req->special || next->special)
  1281. return 0;
  1282. /*
  1283. * Will it become too large?
  1284. */
  1285. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1286. return 0;
  1287. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1288. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1289. total_phys_segments--;
  1290. if (total_phys_segments > q->max_phys_segments)
  1291. return 0;
  1292. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1293. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1294. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1295. /*
  1296. * propagate the combined length to the end of the requests
  1297. */
  1298. if (req->nr_hw_segments == 1)
  1299. req->bio->bi_hw_front_size = len;
  1300. if (next->nr_hw_segments == 1)
  1301. next->biotail->bi_hw_back_size = len;
  1302. total_hw_segments--;
  1303. }
  1304. if (total_hw_segments > q->max_hw_segments)
  1305. return 0;
  1306. /* Merge is OK... */
  1307. req->nr_phys_segments = total_phys_segments;
  1308. req->nr_hw_segments = total_hw_segments;
  1309. return 1;
  1310. }
  1311. /*
  1312. * "plug" the device if there are no outstanding requests: this will
  1313. * force the transfer to start only after we have put all the requests
  1314. * on the list.
  1315. *
  1316. * This is called with interrupts off and no requests on the queue and
  1317. * with the queue lock held.
  1318. */
  1319. void blk_plug_device(request_queue_t *q)
  1320. {
  1321. WARN_ON(!irqs_disabled());
  1322. /*
  1323. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1324. * which will restart the queueing
  1325. */
  1326. if (blk_queue_stopped(q))
  1327. return;
  1328. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
  1329. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1330. blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
  1331. }
  1332. }
  1333. EXPORT_SYMBOL(blk_plug_device);
  1334. /*
  1335. * remove the queue from the plugged list, if present. called with
  1336. * queue lock held and interrupts disabled.
  1337. */
  1338. int blk_remove_plug(request_queue_t *q)
  1339. {
  1340. WARN_ON(!irqs_disabled());
  1341. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1342. return 0;
  1343. del_timer(&q->unplug_timer);
  1344. return 1;
  1345. }
  1346. EXPORT_SYMBOL(blk_remove_plug);
  1347. /*
  1348. * remove the plug and let it rip..
  1349. */
  1350. void __generic_unplug_device(request_queue_t *q)
  1351. {
  1352. if (unlikely(blk_queue_stopped(q)))
  1353. return;
  1354. if (!blk_remove_plug(q))
  1355. return;
  1356. q->request_fn(q);
  1357. }
  1358. EXPORT_SYMBOL(__generic_unplug_device);
  1359. /**
  1360. * generic_unplug_device - fire a request queue
  1361. * @q: The &request_queue_t in question
  1362. *
  1363. * Description:
  1364. * Linux uses plugging to build bigger requests queues before letting
  1365. * the device have at them. If a queue is plugged, the I/O scheduler
  1366. * is still adding and merging requests on the queue. Once the queue
  1367. * gets unplugged, the request_fn defined for the queue is invoked and
  1368. * transfers started.
  1369. **/
  1370. void generic_unplug_device(request_queue_t *q)
  1371. {
  1372. spin_lock_irq(q->queue_lock);
  1373. __generic_unplug_device(q);
  1374. spin_unlock_irq(q->queue_lock);
  1375. }
  1376. EXPORT_SYMBOL(generic_unplug_device);
  1377. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1378. struct page *page)
  1379. {
  1380. request_queue_t *q = bdi->unplug_io_data;
  1381. /*
  1382. * devices don't necessarily have an ->unplug_fn defined
  1383. */
  1384. if (q->unplug_fn) {
  1385. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1386. q->rq.count[READ] + q->rq.count[WRITE]);
  1387. q->unplug_fn(q);
  1388. }
  1389. }
  1390. static void blk_unplug_work(void *data)
  1391. {
  1392. request_queue_t *q = data;
  1393. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1394. q->rq.count[READ] + q->rq.count[WRITE]);
  1395. q->unplug_fn(q);
  1396. }
  1397. static void blk_unplug_timeout(unsigned long data)
  1398. {
  1399. request_queue_t *q = (request_queue_t *)data;
  1400. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
  1401. q->rq.count[READ] + q->rq.count[WRITE]);
  1402. kblockd_schedule_work(&q->unplug_work);
  1403. }
  1404. /**
  1405. * blk_start_queue - restart a previously stopped queue
  1406. * @q: The &request_queue_t in question
  1407. *
  1408. * Description:
  1409. * blk_start_queue() will clear the stop flag on the queue, and call
  1410. * the request_fn for the queue if it was in a stopped state when
  1411. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1412. **/
  1413. void blk_start_queue(request_queue_t *q)
  1414. {
  1415. WARN_ON(!irqs_disabled());
  1416. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1417. /*
  1418. * one level of recursion is ok and is much faster than kicking
  1419. * the unplug handling
  1420. */
  1421. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1422. q->request_fn(q);
  1423. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1424. } else {
  1425. blk_plug_device(q);
  1426. kblockd_schedule_work(&q->unplug_work);
  1427. }
  1428. }
  1429. EXPORT_SYMBOL(blk_start_queue);
  1430. /**
  1431. * blk_stop_queue - stop a queue
  1432. * @q: The &request_queue_t in question
  1433. *
  1434. * Description:
  1435. * The Linux block layer assumes that a block driver will consume all
  1436. * entries on the request queue when the request_fn strategy is called.
  1437. * Often this will not happen, because of hardware limitations (queue
  1438. * depth settings). If a device driver gets a 'queue full' response,
  1439. * or if it simply chooses not to queue more I/O at one point, it can
  1440. * call this function to prevent the request_fn from being called until
  1441. * the driver has signalled it's ready to go again. This happens by calling
  1442. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1443. **/
  1444. void blk_stop_queue(request_queue_t *q)
  1445. {
  1446. blk_remove_plug(q);
  1447. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1448. }
  1449. EXPORT_SYMBOL(blk_stop_queue);
  1450. /**
  1451. * blk_sync_queue - cancel any pending callbacks on a queue
  1452. * @q: the queue
  1453. *
  1454. * Description:
  1455. * The block layer may perform asynchronous callback activity
  1456. * on a queue, such as calling the unplug function after a timeout.
  1457. * A block device may call blk_sync_queue to ensure that any
  1458. * such activity is cancelled, thus allowing it to release resources
  1459. * the the callbacks might use. The caller must already have made sure
  1460. * that its ->make_request_fn will not re-add plugging prior to calling
  1461. * this function.
  1462. *
  1463. */
  1464. void blk_sync_queue(struct request_queue *q)
  1465. {
  1466. del_timer_sync(&q->unplug_timer);
  1467. kblockd_flush();
  1468. }
  1469. EXPORT_SYMBOL(blk_sync_queue);
  1470. /**
  1471. * blk_run_queue - run a single device queue
  1472. * @q: The queue to run
  1473. */
  1474. void blk_run_queue(struct request_queue *q)
  1475. {
  1476. unsigned long flags;
  1477. spin_lock_irqsave(q->queue_lock, flags);
  1478. blk_remove_plug(q);
  1479. /*
  1480. * Only recurse once to avoid overrunning the stack, let the unplug
  1481. * handling reinvoke the handler shortly if we already got there.
  1482. */
  1483. if (!elv_queue_empty(q)) {
  1484. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1485. q->request_fn(q);
  1486. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1487. } else {
  1488. blk_plug_device(q);
  1489. kblockd_schedule_work(&q->unplug_work);
  1490. }
  1491. }
  1492. spin_unlock_irqrestore(q->queue_lock, flags);
  1493. }
  1494. EXPORT_SYMBOL(blk_run_queue);
  1495. /**
  1496. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1497. * @kobj: the kobj belonging of the request queue to be released
  1498. *
  1499. * Description:
  1500. * blk_cleanup_queue is the pair to blk_init_queue() or
  1501. * blk_queue_make_request(). It should be called when a request queue is
  1502. * being released; typically when a block device is being de-registered.
  1503. * Currently, its primary task it to free all the &struct request
  1504. * structures that were allocated to the queue and the queue itself.
  1505. *
  1506. * Caveat:
  1507. * Hopefully the low level driver will have finished any
  1508. * outstanding requests first...
  1509. **/
  1510. static void blk_release_queue(struct kobject *kobj)
  1511. {
  1512. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  1513. struct request_list *rl = &q->rq;
  1514. blk_sync_queue(q);
  1515. if (rl->rq_pool)
  1516. mempool_destroy(rl->rq_pool);
  1517. if (q->queue_tags)
  1518. __blk_queue_free_tags(q);
  1519. blk_trace_shutdown(q);
  1520. kmem_cache_free(requestq_cachep, q);
  1521. }
  1522. void blk_put_queue(request_queue_t *q)
  1523. {
  1524. kobject_put(&q->kobj);
  1525. }
  1526. EXPORT_SYMBOL(blk_put_queue);
  1527. void blk_cleanup_queue(request_queue_t * q)
  1528. {
  1529. mutex_lock(&q->sysfs_lock);
  1530. set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
  1531. mutex_unlock(&q->sysfs_lock);
  1532. if (q->elevator)
  1533. elevator_exit(q->elevator);
  1534. blk_put_queue(q);
  1535. }
  1536. EXPORT_SYMBOL(blk_cleanup_queue);
  1537. static int blk_init_free_list(request_queue_t *q)
  1538. {
  1539. struct request_list *rl = &q->rq;
  1540. rl->count[READ] = rl->count[WRITE] = 0;
  1541. rl->starved[READ] = rl->starved[WRITE] = 0;
  1542. rl->elvpriv = 0;
  1543. init_waitqueue_head(&rl->wait[READ]);
  1544. init_waitqueue_head(&rl->wait[WRITE]);
  1545. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1546. mempool_free_slab, request_cachep, q->node);
  1547. if (!rl->rq_pool)
  1548. return -ENOMEM;
  1549. return 0;
  1550. }
  1551. request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
  1552. {
  1553. return blk_alloc_queue_node(gfp_mask, -1);
  1554. }
  1555. EXPORT_SYMBOL(blk_alloc_queue);
  1556. static struct kobj_type queue_ktype;
  1557. request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1558. {
  1559. request_queue_t *q;
  1560. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1561. if (!q)
  1562. return NULL;
  1563. memset(q, 0, sizeof(*q));
  1564. init_timer(&q->unplug_timer);
  1565. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  1566. q->kobj.ktype = &queue_ktype;
  1567. kobject_init(&q->kobj);
  1568. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1569. q->backing_dev_info.unplug_io_data = q;
  1570. mutex_init(&q->sysfs_lock);
  1571. return q;
  1572. }
  1573. EXPORT_SYMBOL(blk_alloc_queue_node);
  1574. /**
  1575. * blk_init_queue - prepare a request queue for use with a block device
  1576. * @rfn: The function to be called to process requests that have been
  1577. * placed on the queue.
  1578. * @lock: Request queue spin lock
  1579. *
  1580. * Description:
  1581. * If a block device wishes to use the standard request handling procedures,
  1582. * which sorts requests and coalesces adjacent requests, then it must
  1583. * call blk_init_queue(). The function @rfn will be called when there
  1584. * are requests on the queue that need to be processed. If the device
  1585. * supports plugging, then @rfn may not be called immediately when requests
  1586. * are available on the queue, but may be called at some time later instead.
  1587. * Plugged queues are generally unplugged when a buffer belonging to one
  1588. * of the requests on the queue is needed, or due to memory pressure.
  1589. *
  1590. * @rfn is not required, or even expected, to remove all requests off the
  1591. * queue, but only as many as it can handle at a time. If it does leave
  1592. * requests on the queue, it is responsible for arranging that the requests
  1593. * get dealt with eventually.
  1594. *
  1595. * The queue spin lock must be held while manipulating the requests on the
  1596. * request queue; this lock will be taken also from interrupt context, so irq
  1597. * disabling is needed for it.
  1598. *
  1599. * Function returns a pointer to the initialized request queue, or NULL if
  1600. * it didn't succeed.
  1601. *
  1602. * Note:
  1603. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1604. * when the block device is deactivated (such as at module unload).
  1605. **/
  1606. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1607. {
  1608. return blk_init_queue_node(rfn, lock, -1);
  1609. }
  1610. EXPORT_SYMBOL(blk_init_queue);
  1611. request_queue_t *
  1612. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1613. {
  1614. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1615. if (!q)
  1616. return NULL;
  1617. q->node = node_id;
  1618. if (blk_init_free_list(q)) {
  1619. kmem_cache_free(requestq_cachep, q);
  1620. return NULL;
  1621. }
  1622. /*
  1623. * if caller didn't supply a lock, they get per-queue locking with
  1624. * our embedded lock
  1625. */
  1626. if (!lock) {
  1627. spin_lock_init(&q->__queue_lock);
  1628. lock = &q->__queue_lock;
  1629. }
  1630. q->request_fn = rfn;
  1631. q->back_merge_fn = ll_back_merge_fn;
  1632. q->front_merge_fn = ll_front_merge_fn;
  1633. q->merge_requests_fn = ll_merge_requests_fn;
  1634. q->prep_rq_fn = NULL;
  1635. q->unplug_fn = generic_unplug_device;
  1636. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1637. q->queue_lock = lock;
  1638. blk_queue_segment_boundary(q, 0xffffffff);
  1639. blk_queue_make_request(q, __make_request);
  1640. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1641. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1642. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1643. /*
  1644. * all done
  1645. */
  1646. if (!elevator_init(q, NULL)) {
  1647. blk_queue_congestion_threshold(q);
  1648. return q;
  1649. }
  1650. blk_put_queue(q);
  1651. return NULL;
  1652. }
  1653. EXPORT_SYMBOL(blk_init_queue_node);
  1654. int blk_get_queue(request_queue_t *q)
  1655. {
  1656. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1657. kobject_get(&q->kobj);
  1658. return 0;
  1659. }
  1660. return 1;
  1661. }
  1662. EXPORT_SYMBOL(blk_get_queue);
  1663. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1664. {
  1665. if (rq->cmd_flags & REQ_ELVPRIV)
  1666. elv_put_request(q, rq);
  1667. mempool_free(rq, q->rq.rq_pool);
  1668. }
  1669. static struct request *
  1670. blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
  1671. {
  1672. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1673. if (!rq)
  1674. return NULL;
  1675. /*
  1676. * first three bits are identical in rq->cmd_flags and bio->bi_rw,
  1677. * see bio.h and blkdev.h
  1678. */
  1679. rq->cmd_flags = rw | REQ_ALLOCED;
  1680. if (priv) {
  1681. if (unlikely(elv_set_request(q, rq, gfp_mask))) {
  1682. mempool_free(rq, q->rq.rq_pool);
  1683. return NULL;
  1684. }
  1685. rq->cmd_flags |= REQ_ELVPRIV;
  1686. }
  1687. return rq;
  1688. }
  1689. /*
  1690. * ioc_batching returns true if the ioc is a valid batching request and
  1691. * should be given priority access to a request.
  1692. */
  1693. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1694. {
  1695. if (!ioc)
  1696. return 0;
  1697. /*
  1698. * Make sure the process is able to allocate at least 1 request
  1699. * even if the batch times out, otherwise we could theoretically
  1700. * lose wakeups.
  1701. */
  1702. return ioc->nr_batch_requests == q->nr_batching ||
  1703. (ioc->nr_batch_requests > 0
  1704. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1705. }
  1706. /*
  1707. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1708. * will cause the process to be a "batcher" on all queues in the system. This
  1709. * is the behaviour we want though - once it gets a wakeup it should be given
  1710. * a nice run.
  1711. */
  1712. static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1713. {
  1714. if (!ioc || ioc_batching(q, ioc))
  1715. return;
  1716. ioc->nr_batch_requests = q->nr_batching;
  1717. ioc->last_waited = jiffies;
  1718. }
  1719. static void __freed_request(request_queue_t *q, int rw)
  1720. {
  1721. struct request_list *rl = &q->rq;
  1722. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1723. blk_clear_queue_congested(q, rw);
  1724. if (rl->count[rw] + 1 <= q->nr_requests) {
  1725. if (waitqueue_active(&rl->wait[rw]))
  1726. wake_up(&rl->wait[rw]);
  1727. blk_clear_queue_full(q, rw);
  1728. }
  1729. }
  1730. /*
  1731. * A request has just been released. Account for it, update the full and
  1732. * congestion status, wake up any waiters. Called under q->queue_lock.
  1733. */
  1734. static void freed_request(request_queue_t *q, int rw, int priv)
  1735. {
  1736. struct request_list *rl = &q->rq;
  1737. rl->count[rw]--;
  1738. if (priv)
  1739. rl->elvpriv--;
  1740. __freed_request(q, rw);
  1741. if (unlikely(rl->starved[rw ^ 1]))
  1742. __freed_request(q, rw ^ 1);
  1743. }
  1744. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1745. /*
  1746. * Get a free request, queue_lock must be held.
  1747. * Returns NULL on failure, with queue_lock held.
  1748. * Returns !NULL on success, with queue_lock *not held*.
  1749. */
  1750. static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
  1751. gfp_t gfp_mask)
  1752. {
  1753. struct request *rq = NULL;
  1754. struct request_list *rl = &q->rq;
  1755. struct io_context *ioc = NULL;
  1756. int may_queue, priv;
  1757. may_queue = elv_may_queue(q, rw);
  1758. if (may_queue == ELV_MQUEUE_NO)
  1759. goto rq_starved;
  1760. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1761. if (rl->count[rw]+1 >= q->nr_requests) {
  1762. ioc = current_io_context(GFP_ATOMIC, q->node);
  1763. /*
  1764. * The queue will fill after this allocation, so set
  1765. * it as full, and mark this process as "batching".
  1766. * This process will be allowed to complete a batch of
  1767. * requests, others will be blocked.
  1768. */
  1769. if (!blk_queue_full(q, rw)) {
  1770. ioc_set_batching(q, ioc);
  1771. blk_set_queue_full(q, rw);
  1772. } else {
  1773. if (may_queue != ELV_MQUEUE_MUST
  1774. && !ioc_batching(q, ioc)) {
  1775. /*
  1776. * The queue is full and the allocating
  1777. * process is not a "batcher", and not
  1778. * exempted by the IO scheduler
  1779. */
  1780. goto out;
  1781. }
  1782. }
  1783. }
  1784. blk_set_queue_congested(q, rw);
  1785. }
  1786. /*
  1787. * Only allow batching queuers to allocate up to 50% over the defined
  1788. * limit of requests, otherwise we could have thousands of requests
  1789. * allocated with any setting of ->nr_requests
  1790. */
  1791. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1792. goto out;
  1793. rl->count[rw]++;
  1794. rl->starved[rw] = 0;
  1795. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1796. if (priv)
  1797. rl->elvpriv++;
  1798. spin_unlock_irq(q->queue_lock);
  1799. rq = blk_alloc_request(q, rw, priv, gfp_mask);
  1800. if (unlikely(!rq)) {
  1801. /*
  1802. * Allocation failed presumably due to memory. Undo anything
  1803. * we might have messed up.
  1804. *
  1805. * Allocating task should really be put onto the front of the
  1806. * wait queue, but this is pretty rare.
  1807. */
  1808. spin_lock_irq(q->queue_lock);
  1809. freed_request(q, rw, priv);
  1810. /*
  1811. * in the very unlikely event that allocation failed and no
  1812. * requests for this direction was pending, mark us starved
  1813. * so that freeing of a request in the other direction will
  1814. * notice us. another possible fix would be to split the
  1815. * rq mempool into READ and WRITE
  1816. */
  1817. rq_starved:
  1818. if (unlikely(rl->count[rw] == 0))
  1819. rl->starved[rw] = 1;
  1820. goto out;
  1821. }
  1822. /*
  1823. * ioc may be NULL here, and ioc_batching will be false. That's
  1824. * OK, if the queue is under the request limit then requests need
  1825. * not count toward the nr_batch_requests limit. There will always
  1826. * be some limit enforced by BLK_BATCH_TIME.
  1827. */
  1828. if (ioc_batching(q, ioc))
  1829. ioc->nr_batch_requests--;
  1830. rq_init(q, rq);
  1831. blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
  1832. out:
  1833. return rq;
  1834. }
  1835. /*
  1836. * No available requests for this queue, unplug the device and wait for some
  1837. * requests to become available.
  1838. *
  1839. * Called with q->queue_lock held, and returns with it unlocked.
  1840. */
  1841. static struct request *get_request_wait(request_queue_t *q, int rw,
  1842. struct bio *bio)
  1843. {
  1844. struct request *rq;
  1845. rq = get_request(q, rw, bio, GFP_NOIO);
  1846. while (!rq) {
  1847. DEFINE_WAIT(wait);
  1848. struct request_list *rl = &q->rq;
  1849. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1850. TASK_UNINTERRUPTIBLE);
  1851. rq = get_request(q, rw, bio, GFP_NOIO);
  1852. if (!rq) {
  1853. struct io_context *ioc;
  1854. blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
  1855. __generic_unplug_device(q);
  1856. spin_unlock_irq(q->queue_lock);
  1857. io_schedule();
  1858. /*
  1859. * After sleeping, we become a "batching" process and
  1860. * will be able to allocate at least one request, and
  1861. * up to a big batch of them for a small period time.
  1862. * See ioc_batching, ioc_set_batching
  1863. */
  1864. ioc = current_io_context(GFP_NOIO, q->node);
  1865. ioc_set_batching(q, ioc);
  1866. spin_lock_irq(q->queue_lock);
  1867. }
  1868. finish_wait(&rl->wait[rw], &wait);
  1869. }
  1870. return rq;
  1871. }
  1872. struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
  1873. {
  1874. struct request *rq;
  1875. BUG_ON(rw != READ && rw != WRITE);
  1876. spin_lock_irq(q->queue_lock);
  1877. if (gfp_mask & __GFP_WAIT) {
  1878. rq = get_request_wait(q, rw, NULL);
  1879. } else {
  1880. rq = get_request(q, rw, NULL, gfp_mask);
  1881. if (!rq)
  1882. spin_unlock_irq(q->queue_lock);
  1883. }
  1884. /* q->queue_lock is unlocked at this point */
  1885. return rq;
  1886. }
  1887. EXPORT_SYMBOL(blk_get_request);
  1888. /**
  1889. * blk_start_queueing - initiate dispatch of requests to device
  1890. * @q: request queue to kick into gear
  1891. *
  1892. * This is basically a helper to remove the need to know whether a queue
  1893. * is plugged or not if someone just wants to initiate dispatch of requests
  1894. * for this queue.
  1895. *
  1896. * The queue lock must be held with interrupts disabled.
  1897. */
  1898. void blk_start_queueing(request_queue_t *q)
  1899. {
  1900. if (!blk_queue_plugged(q))
  1901. q->request_fn(q);
  1902. else
  1903. __generic_unplug_device(q);
  1904. }
  1905. EXPORT_SYMBOL(blk_start_queueing);
  1906. /**
  1907. * blk_requeue_request - put a request back on queue
  1908. * @q: request queue where request should be inserted
  1909. * @rq: request to be inserted
  1910. *
  1911. * Description:
  1912. * Drivers often keep queueing requests until the hardware cannot accept
  1913. * more, when that condition happens we need to put the request back
  1914. * on the queue. Must be called with queue lock held.
  1915. */
  1916. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1917. {
  1918. blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
  1919. if (blk_rq_tagged(rq))
  1920. blk_queue_end_tag(q, rq);
  1921. elv_requeue_request(q, rq);
  1922. }
  1923. EXPORT_SYMBOL(blk_requeue_request);
  1924. /**
  1925. * blk_insert_request - insert a special request in to a request queue
  1926. * @q: request queue where request should be inserted
  1927. * @rq: request to be inserted
  1928. * @at_head: insert request at head or tail of queue
  1929. * @data: private data
  1930. *
  1931. * Description:
  1932. * Many block devices need to execute commands asynchronously, so they don't
  1933. * block the whole kernel from preemption during request execution. This is
  1934. * accomplished normally by inserting aritficial requests tagged as
  1935. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1936. * scheduled for actual execution by the request queue.
  1937. *
  1938. * We have the option of inserting the head or the tail of the queue.
  1939. * Typically we use the tail for new ioctls and so forth. We use the head
  1940. * of the queue for things like a QUEUE_FULL message from a device, or a
  1941. * host that is unable to accept a particular command.
  1942. */
  1943. void blk_insert_request(request_queue_t *q, struct request *rq,
  1944. int at_head, void *data)
  1945. {
  1946. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1947. unsigned long flags;
  1948. /*
  1949. * tell I/O scheduler that this isn't a regular read/write (ie it
  1950. * must not attempt merges on this) and that it acts as a soft
  1951. * barrier
  1952. */
  1953. rq->cmd_type = REQ_TYPE_SPECIAL;
  1954. rq->cmd_flags |= REQ_SOFTBARRIER;
  1955. rq->special = data;
  1956. spin_lock_irqsave(q->queue_lock, flags);
  1957. /*
  1958. * If command is tagged, release the tag
  1959. */
  1960. if (blk_rq_tagged(rq))
  1961. blk_queue_end_tag(q, rq);
  1962. drive_stat_acct(rq, rq->nr_sectors, 1);
  1963. __elv_add_request(q, rq, where, 0);
  1964. blk_start_queueing(q);
  1965. spin_unlock_irqrestore(q->queue_lock, flags);
  1966. }
  1967. EXPORT_SYMBOL(blk_insert_request);
  1968. /**
  1969. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  1970. * @q: request queue where request should be inserted
  1971. * @rq: request structure to fill
  1972. * @ubuf: the user buffer
  1973. * @len: length of user data
  1974. *
  1975. * Description:
  1976. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1977. * a kernel bounce buffer is used.
  1978. *
  1979. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1980. * still in process context.
  1981. *
  1982. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1983. * before being submitted to the device, as pages mapped may be out of
  1984. * reach. It's the callers responsibility to make sure this happens. The
  1985. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1986. * unmapping.
  1987. */
  1988. int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
  1989. unsigned int len)
  1990. {
  1991. unsigned long uaddr;
  1992. struct bio *bio;
  1993. int reading;
  1994. if (len > (q->max_hw_sectors << 9))
  1995. return -EINVAL;
  1996. if (!len || !ubuf)
  1997. return -EINVAL;
  1998. reading = rq_data_dir(rq) == READ;
  1999. /*
  2000. * if alignment requirement is satisfied, map in user pages for
  2001. * direct dma. else, set up kernel bounce buffers
  2002. */
  2003. uaddr = (unsigned long) ubuf;
  2004. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  2005. bio = bio_map_user(q, NULL, uaddr, len, reading);
  2006. else
  2007. bio = bio_copy_user(q, uaddr, len, reading);
  2008. if (!IS_ERR(bio)) {
  2009. rq->bio = rq->biotail = bio;
  2010. blk_rq_bio_prep(q, rq, bio);
  2011. rq->buffer = rq->data = NULL;
  2012. rq->data_len = len;
  2013. return 0;
  2014. }
  2015. /*
  2016. * bio is the err-ptr
  2017. */
  2018. return PTR_ERR(bio);
  2019. }
  2020. EXPORT_SYMBOL(blk_rq_map_user);
  2021. /**
  2022. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  2023. * @q: request queue where request should be inserted
  2024. * @rq: request to map data to
  2025. * @iov: pointer to the iovec
  2026. * @iov_count: number of elements in the iovec
  2027. *
  2028. * Description:
  2029. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2030. * a kernel bounce buffer is used.
  2031. *
  2032. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2033. * still in process context.
  2034. *
  2035. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2036. * before being submitted to the device, as pages mapped may be out of
  2037. * reach. It's the callers responsibility to make sure this happens. The
  2038. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2039. * unmapping.
  2040. */
  2041. int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
  2042. struct sg_iovec *iov, int iov_count)
  2043. {
  2044. struct bio *bio;
  2045. if (!iov || iov_count <= 0)
  2046. return -EINVAL;
  2047. /* we don't allow misaligned data like bio_map_user() does. If the
  2048. * user is using sg, they're expected to know the alignment constraints
  2049. * and respect them accordingly */
  2050. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  2051. if (IS_ERR(bio))
  2052. return PTR_ERR(bio);
  2053. rq->bio = rq->biotail = bio;
  2054. blk_rq_bio_prep(q, rq, bio);
  2055. rq->buffer = rq->data = NULL;
  2056. rq->data_len = bio->bi_size;
  2057. return 0;
  2058. }
  2059. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2060. /**
  2061. * blk_rq_unmap_user - unmap a request with user data
  2062. * @bio: bio to be unmapped
  2063. * @ulen: length of user buffer
  2064. *
  2065. * Description:
  2066. * Unmap a bio previously mapped by blk_rq_map_user().
  2067. */
  2068. int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
  2069. {
  2070. int ret = 0;
  2071. if (bio) {
  2072. if (bio_flagged(bio, BIO_USER_MAPPED))
  2073. bio_unmap_user(bio);
  2074. else
  2075. ret = bio_uncopy_user(bio);
  2076. }
  2077. return 0;
  2078. }
  2079. EXPORT_SYMBOL(blk_rq_unmap_user);
  2080. /**
  2081. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2082. * @q: request queue where request should be inserted
  2083. * @rq: request to fill
  2084. * @kbuf: the kernel buffer
  2085. * @len: length of user data
  2086. * @gfp_mask: memory allocation flags
  2087. */
  2088. int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
  2089. unsigned int len, gfp_t gfp_mask)
  2090. {
  2091. struct bio *bio;
  2092. if (len > (q->max_hw_sectors << 9))
  2093. return -EINVAL;
  2094. if (!len || !kbuf)
  2095. return -EINVAL;
  2096. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2097. if (IS_ERR(bio))
  2098. return PTR_ERR(bio);
  2099. if (rq_data_dir(rq) == WRITE)
  2100. bio->bi_rw |= (1 << BIO_RW);
  2101. rq->bio = rq->biotail = bio;
  2102. blk_rq_bio_prep(q, rq, bio);
  2103. rq->buffer = rq->data = NULL;
  2104. rq->data_len = len;
  2105. return 0;
  2106. }
  2107. EXPORT_SYMBOL(blk_rq_map_kern);
  2108. /**
  2109. * blk_execute_rq_nowait - insert a request into queue for execution
  2110. * @q: queue to insert the request in
  2111. * @bd_disk: matching gendisk
  2112. * @rq: request to insert
  2113. * @at_head: insert request at head or tail of queue
  2114. * @done: I/O completion handler
  2115. *
  2116. * Description:
  2117. * Insert a fully prepared request at the back of the io scheduler queue
  2118. * for execution. Don't wait for completion.
  2119. */
  2120. void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
  2121. struct request *rq, int at_head,
  2122. rq_end_io_fn *done)
  2123. {
  2124. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2125. rq->rq_disk = bd_disk;
  2126. rq->cmd_flags |= REQ_NOMERGE;
  2127. rq->end_io = done;
  2128. WARN_ON(irqs_disabled());
  2129. spin_lock_irq(q->queue_lock);
  2130. __elv_add_request(q, rq, where, 1);
  2131. __generic_unplug_device(q);
  2132. spin_unlock_irq(q->queue_lock);
  2133. }
  2134. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2135. /**
  2136. * blk_execute_rq - insert a request into queue for execution
  2137. * @q: queue to insert the request in
  2138. * @bd_disk: matching gendisk
  2139. * @rq: request to insert
  2140. * @at_head: insert request at head or tail of queue
  2141. *
  2142. * Description:
  2143. * Insert a fully prepared request at the back of the io scheduler queue
  2144. * for execution and wait for completion.
  2145. */
  2146. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  2147. struct request *rq, int at_head)
  2148. {
  2149. DECLARE_COMPLETION_ONSTACK(wait);
  2150. char sense[SCSI_SENSE_BUFFERSIZE];
  2151. int err = 0;
  2152. /*
  2153. * we need an extra reference to the request, so we can look at
  2154. * it after io completion
  2155. */
  2156. rq->ref_count++;
  2157. if (!rq->sense) {
  2158. memset(sense, 0, sizeof(sense));
  2159. rq->sense = sense;
  2160. rq->sense_len = 0;
  2161. }
  2162. rq->end_io_data = &wait;
  2163. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2164. wait_for_completion(&wait);
  2165. if (rq->errors)
  2166. err = -EIO;
  2167. return err;
  2168. }
  2169. EXPORT_SYMBOL(blk_execute_rq);
  2170. /**
  2171. * blkdev_issue_flush - queue a flush
  2172. * @bdev: blockdev to issue flush for
  2173. * @error_sector: error sector
  2174. *
  2175. * Description:
  2176. * Issue a flush for the block device in question. Caller can supply
  2177. * room for storing the error offset in case of a flush error, if they
  2178. * wish to. Caller must run wait_for_completion() on its own.
  2179. */
  2180. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2181. {
  2182. request_queue_t *q;
  2183. if (bdev->bd_disk == NULL)
  2184. return -ENXIO;
  2185. q = bdev_get_queue(bdev);
  2186. if (!q)
  2187. return -ENXIO;
  2188. if (!q->issue_flush_fn)
  2189. return -EOPNOTSUPP;
  2190. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2191. }
  2192. EXPORT_SYMBOL(blkdev_issue_flush);
  2193. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2194. {
  2195. int rw = rq_data_dir(rq);
  2196. if (!blk_fs_request(rq) || !rq->rq_disk)
  2197. return;
  2198. if (!new_io) {
  2199. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2200. } else {
  2201. disk_round_stats(rq->rq_disk);
  2202. rq->rq_disk->in_flight++;
  2203. }
  2204. }
  2205. /*
  2206. * add-request adds a request to the linked list.
  2207. * queue lock is held and interrupts disabled, as we muck with the
  2208. * request queue list.
  2209. */
  2210. static inline void add_request(request_queue_t * q, struct request * req)
  2211. {
  2212. drive_stat_acct(req, req->nr_sectors, 1);
  2213. if (q->activity_fn)
  2214. q->activity_fn(q->activity_data, rq_data_dir(req));
  2215. /*
  2216. * elevator indicated where it wants this request to be
  2217. * inserted at elevator_merge time
  2218. */
  2219. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2220. }
  2221. /*
  2222. * disk_round_stats() - Round off the performance stats on a struct
  2223. * disk_stats.
  2224. *
  2225. * The average IO queue length and utilisation statistics are maintained
  2226. * by observing the current state of the queue length and the amount of
  2227. * time it has been in this state for.
  2228. *
  2229. * Normally, that accounting is done on IO completion, but that can result
  2230. * in more than a second's worth of IO being accounted for within any one
  2231. * second, leading to >100% utilisation. To deal with that, we call this
  2232. * function to do a round-off before returning the results when reading
  2233. * /proc/diskstats. This accounts immediately for all queue usage up to
  2234. * the current jiffies and restarts the counters again.
  2235. */
  2236. void disk_round_stats(struct gendisk *disk)
  2237. {
  2238. unsigned long now = jiffies;
  2239. if (now == disk->stamp)
  2240. return;
  2241. if (disk->in_flight) {
  2242. __disk_stat_add(disk, time_in_queue,
  2243. disk->in_flight * (now - disk->stamp));
  2244. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2245. }
  2246. disk->stamp = now;
  2247. }
  2248. EXPORT_SYMBOL_GPL(disk_round_stats);
  2249. /*
  2250. * queue lock must be held
  2251. */
  2252. void __blk_put_request(request_queue_t *q, struct request *req)
  2253. {
  2254. if (unlikely(!q))
  2255. return;
  2256. if (unlikely(--req->ref_count))
  2257. return;
  2258. elv_completed_request(q, req);
  2259. /*
  2260. * Request may not have originated from ll_rw_blk. if not,
  2261. * it didn't come out of our reserved rq pools
  2262. */
  2263. if (req->cmd_flags & REQ_ALLOCED) {
  2264. int rw = rq_data_dir(req);
  2265. int priv = req->cmd_flags & REQ_ELVPRIV;
  2266. BUG_ON(!list_empty(&req->queuelist));
  2267. BUG_ON(!hlist_unhashed(&req->hash));
  2268. blk_free_request(q, req);
  2269. freed_request(q, rw, priv);
  2270. }
  2271. }
  2272. EXPORT_SYMBOL_GPL(__blk_put_request);
  2273. void blk_put_request(struct request *req)
  2274. {
  2275. unsigned long flags;
  2276. request_queue_t *q = req->q;
  2277. /*
  2278. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2279. * following if (q) test.
  2280. */
  2281. if (q) {
  2282. spin_lock_irqsave(q->queue_lock, flags);
  2283. __blk_put_request(q, req);
  2284. spin_unlock_irqrestore(q->queue_lock, flags);
  2285. }
  2286. }
  2287. EXPORT_SYMBOL(blk_put_request);
  2288. /**
  2289. * blk_end_sync_rq - executes a completion event on a request
  2290. * @rq: request to complete
  2291. * @error: end io status of the request
  2292. */
  2293. void blk_end_sync_rq(struct request *rq, int error)
  2294. {
  2295. struct completion *waiting = rq->end_io_data;
  2296. rq->end_io_data = NULL;
  2297. __blk_put_request(rq->q, rq);
  2298. /*
  2299. * complete last, if this is a stack request the process (and thus
  2300. * the rq pointer) could be invalid right after this complete()
  2301. */
  2302. complete(waiting);
  2303. }
  2304. EXPORT_SYMBOL(blk_end_sync_rq);
  2305. /*
  2306. * Has to be called with the request spinlock acquired
  2307. */
  2308. static int attempt_merge(request_queue_t *q, struct request *req,
  2309. struct request *next)
  2310. {
  2311. if (!rq_mergeable(req) || !rq_mergeable(next))
  2312. return 0;
  2313. /*
  2314. * not contiguous
  2315. */
  2316. if (req->sector + req->nr_sectors != next->sector)
  2317. return 0;
  2318. if (rq_data_dir(req) != rq_data_dir(next)
  2319. || req->rq_disk != next->rq_disk
  2320. || next->special)
  2321. return 0;
  2322. /*
  2323. * If we are allowed to merge, then append bio list
  2324. * from next to rq and release next. merge_requests_fn
  2325. * will have updated segment counts, update sector
  2326. * counts here.
  2327. */
  2328. if (!q->merge_requests_fn(q, req, next))
  2329. return 0;
  2330. /*
  2331. * At this point we have either done a back merge
  2332. * or front merge. We need the smaller start_time of
  2333. * the merged requests to be the current request
  2334. * for accounting purposes.
  2335. */
  2336. if (time_after(req->start_time, next->start_time))
  2337. req->start_time = next->start_time;
  2338. req->biotail->bi_next = next->bio;
  2339. req->biotail = next->biotail;
  2340. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2341. elv_merge_requests(q, req, next);
  2342. if (req->rq_disk) {
  2343. disk_round_stats(req->rq_disk);
  2344. req->rq_disk->in_flight--;
  2345. }
  2346. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2347. __blk_put_request(q, next);
  2348. return 1;
  2349. }
  2350. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2351. {
  2352. struct request *next = elv_latter_request(q, rq);
  2353. if (next)
  2354. return attempt_merge(q, rq, next);
  2355. return 0;
  2356. }
  2357. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2358. {
  2359. struct request *prev = elv_former_request(q, rq);
  2360. if (prev)
  2361. return attempt_merge(q, prev, rq);
  2362. return 0;
  2363. }
  2364. static void init_request_from_bio(struct request *req, struct bio *bio)
  2365. {
  2366. req->cmd_type = REQ_TYPE_FS;
  2367. /*
  2368. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2369. */
  2370. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2371. req->cmd_flags |= REQ_FAILFAST;
  2372. /*
  2373. * REQ_BARRIER implies no merging, but lets make it explicit
  2374. */
  2375. if (unlikely(bio_barrier(bio)))
  2376. req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2377. if (bio_sync(bio))
  2378. req->cmd_flags |= REQ_RW_SYNC;
  2379. if (bio_rw_meta(bio))
  2380. req->cmd_flags |= REQ_RW_META;
  2381. req->errors = 0;
  2382. req->hard_sector = req->sector = bio->bi_sector;
  2383. req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
  2384. req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
  2385. req->nr_phys_segments = bio_phys_segments(req->q, bio);
  2386. req->nr_hw_segments = bio_hw_segments(req->q, bio);
  2387. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2388. req->bio = req->biotail = bio;
  2389. req->ioprio = bio_prio(bio);
  2390. req->rq_disk = bio->bi_bdev->bd_disk;
  2391. req->start_time = jiffies;
  2392. }
  2393. static int __make_request(request_queue_t *q, struct bio *bio)
  2394. {
  2395. struct request *req;
  2396. int el_ret, nr_sectors, barrier, err;
  2397. const unsigned short prio = bio_prio(bio);
  2398. const int sync = bio_sync(bio);
  2399. nr_sectors = bio_sectors(bio);
  2400. /*
  2401. * low level driver can indicate that it wants pages above a
  2402. * certain limit bounced to low memory (ie for highmem, or even
  2403. * ISA dma in theory)
  2404. */
  2405. blk_queue_bounce(q, &bio);
  2406. barrier = bio_barrier(bio);
  2407. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2408. err = -EOPNOTSUPP;
  2409. goto end_io;
  2410. }
  2411. spin_lock_irq(q->queue_lock);
  2412. if (unlikely(barrier) || elv_queue_empty(q))
  2413. goto get_rq;
  2414. el_ret = elv_merge(q, &req, bio);
  2415. switch (el_ret) {
  2416. case ELEVATOR_BACK_MERGE:
  2417. BUG_ON(!rq_mergeable(req));
  2418. if (!q->back_merge_fn(q, req, bio))
  2419. break;
  2420. blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
  2421. req->biotail->bi_next = bio;
  2422. req->biotail = bio;
  2423. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2424. req->ioprio = ioprio_best(req->ioprio, prio);
  2425. drive_stat_acct(req, nr_sectors, 0);
  2426. if (!attempt_back_merge(q, req))
  2427. elv_merged_request(q, req, el_ret);
  2428. goto out;
  2429. case ELEVATOR_FRONT_MERGE:
  2430. BUG_ON(!rq_mergeable(req));
  2431. if (!q->front_merge_fn(q, req, bio))
  2432. break;
  2433. blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
  2434. bio->bi_next = req->bio;
  2435. req->bio = bio;
  2436. /*
  2437. * may not be valid. if the low level driver said
  2438. * it didn't need a bounce buffer then it better
  2439. * not touch req->buffer either...
  2440. */
  2441. req->buffer = bio_data(bio);
  2442. req->current_nr_sectors = bio_cur_sectors(bio);
  2443. req->hard_cur_sectors = req->current_nr_sectors;
  2444. req->sector = req->hard_sector = bio->bi_sector;
  2445. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2446. req->ioprio = ioprio_best(req->ioprio, prio);
  2447. drive_stat_acct(req, nr_sectors, 0);
  2448. if (!attempt_front_merge(q, req))
  2449. elv_merged_request(q, req, el_ret);
  2450. goto out;
  2451. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2452. default:
  2453. ;
  2454. }
  2455. get_rq:
  2456. /*
  2457. * Grab a free request. This is might sleep but can not fail.
  2458. * Returns with the queue unlocked.
  2459. */
  2460. req = get_request_wait(q, bio_data_dir(bio), bio);
  2461. /*
  2462. * After dropping the lock and possibly sleeping here, our request
  2463. * may now be mergeable after it had proven unmergeable (above).
  2464. * We don't worry about that case for efficiency. It won't happen
  2465. * often, and the elevators are able to handle it.
  2466. */
  2467. init_request_from_bio(req, bio);
  2468. spin_lock_irq(q->queue_lock);
  2469. if (elv_queue_empty(q))
  2470. blk_plug_device(q);
  2471. add_request(q, req);
  2472. out:
  2473. if (sync)
  2474. __generic_unplug_device(q);
  2475. spin_unlock_irq(q->queue_lock);
  2476. return 0;
  2477. end_io:
  2478. bio_endio(bio, nr_sectors << 9, err);
  2479. return 0;
  2480. }
  2481. /*
  2482. * If bio->bi_dev is a partition, remap the location
  2483. */
  2484. static inline void blk_partition_remap(struct bio *bio)
  2485. {
  2486. struct block_device *bdev = bio->bi_bdev;
  2487. if (bdev != bdev->bd_contains) {
  2488. struct hd_struct *p = bdev->bd_part;
  2489. const int rw = bio_data_dir(bio);
  2490. p->sectors[rw] += bio_sectors(bio);
  2491. p->ios[rw]++;
  2492. bio->bi_sector += p->start_sect;
  2493. bio->bi_bdev = bdev->bd_contains;
  2494. }
  2495. }
  2496. static void handle_bad_sector(struct bio *bio)
  2497. {
  2498. char b[BDEVNAME_SIZE];
  2499. printk(KERN_INFO "attempt to access beyond end of device\n");
  2500. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2501. bdevname(bio->bi_bdev, b),
  2502. bio->bi_rw,
  2503. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2504. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2505. set_bit(BIO_EOF, &bio->bi_flags);
  2506. }
  2507. /**
  2508. * generic_make_request: hand a buffer to its device driver for I/O
  2509. * @bio: The bio describing the location in memory and on the device.
  2510. *
  2511. * generic_make_request() is used to make I/O requests of block
  2512. * devices. It is passed a &struct bio, which describes the I/O that needs
  2513. * to be done.
  2514. *
  2515. * generic_make_request() does not return any status. The
  2516. * success/failure status of the request, along with notification of
  2517. * completion, is delivered asynchronously through the bio->bi_end_io
  2518. * function described (one day) else where.
  2519. *
  2520. * The caller of generic_make_request must make sure that bi_io_vec
  2521. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2522. * set to describe the device address, and the
  2523. * bi_end_io and optionally bi_private are set to describe how
  2524. * completion notification should be signaled.
  2525. *
  2526. * generic_make_request and the drivers it calls may use bi_next if this
  2527. * bio happens to be merged with someone else, and may change bi_dev and
  2528. * bi_sector for remaps as it sees fit. So the values of these fields
  2529. * should NOT be depended on after the call to generic_make_request.
  2530. */
  2531. void generic_make_request(struct bio *bio)
  2532. {
  2533. request_queue_t *q;
  2534. sector_t maxsector;
  2535. int ret, nr_sectors = bio_sectors(bio);
  2536. dev_t old_dev;
  2537. might_sleep();
  2538. /* Test device or partition size, when known. */
  2539. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2540. if (maxsector) {
  2541. sector_t sector = bio->bi_sector;
  2542. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2543. /*
  2544. * This may well happen - the kernel calls bread()
  2545. * without checking the size of the device, e.g., when
  2546. * mounting a device.
  2547. */
  2548. handle_bad_sector(bio);
  2549. goto end_io;
  2550. }
  2551. }
  2552. /*
  2553. * Resolve the mapping until finished. (drivers are
  2554. * still free to implement/resolve their own stacking
  2555. * by explicitly returning 0)
  2556. *
  2557. * NOTE: we don't repeat the blk_size check for each new device.
  2558. * Stacking drivers are expected to know what they are doing.
  2559. */
  2560. maxsector = -1;
  2561. old_dev = 0;
  2562. do {
  2563. char b[BDEVNAME_SIZE];
  2564. q = bdev_get_queue(bio->bi_bdev);
  2565. if (!q) {
  2566. printk(KERN_ERR
  2567. "generic_make_request: Trying to access "
  2568. "nonexistent block-device %s (%Lu)\n",
  2569. bdevname(bio->bi_bdev, b),
  2570. (long long) bio->bi_sector);
  2571. end_io:
  2572. bio_endio(bio, bio->bi_size, -EIO);
  2573. break;
  2574. }
  2575. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2576. printk("bio too big device %s (%u > %u)\n",
  2577. bdevname(bio->bi_bdev, b),
  2578. bio_sectors(bio),
  2579. q->max_hw_sectors);
  2580. goto end_io;
  2581. }
  2582. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2583. goto end_io;
  2584. /*
  2585. * If this device has partitions, remap block n
  2586. * of partition p to block n+start(p) of the disk.
  2587. */
  2588. blk_partition_remap(bio);
  2589. if (maxsector != -1)
  2590. blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
  2591. maxsector);
  2592. blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
  2593. maxsector = bio->bi_sector;
  2594. old_dev = bio->bi_bdev->bd_dev;
  2595. ret = q->make_request_fn(q, bio);
  2596. } while (ret);
  2597. }
  2598. EXPORT_SYMBOL(generic_make_request);
  2599. /**
  2600. * submit_bio: submit a bio to the block device layer for I/O
  2601. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2602. * @bio: The &struct bio which describes the I/O
  2603. *
  2604. * submit_bio() is very similar in purpose to generic_make_request(), and
  2605. * uses that function to do most of the work. Both are fairly rough
  2606. * interfaces, @bio must be presetup and ready for I/O.
  2607. *
  2608. */
  2609. void submit_bio(int rw, struct bio *bio)
  2610. {
  2611. int count = bio_sectors(bio);
  2612. BIO_BUG_ON(!bio->bi_size);
  2613. BIO_BUG_ON(!bio->bi_io_vec);
  2614. bio->bi_rw |= rw;
  2615. if (rw & WRITE)
  2616. count_vm_events(PGPGOUT, count);
  2617. else
  2618. count_vm_events(PGPGIN, count);
  2619. if (unlikely(block_dump)) {
  2620. char b[BDEVNAME_SIZE];
  2621. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2622. current->comm, current->pid,
  2623. (rw & WRITE) ? "WRITE" : "READ",
  2624. (unsigned long long)bio->bi_sector,
  2625. bdevname(bio->bi_bdev,b));
  2626. }
  2627. generic_make_request(bio);
  2628. }
  2629. EXPORT_SYMBOL(submit_bio);
  2630. static void blk_recalc_rq_segments(struct request *rq)
  2631. {
  2632. struct bio *bio, *prevbio = NULL;
  2633. int nr_phys_segs, nr_hw_segs;
  2634. unsigned int phys_size, hw_size;
  2635. request_queue_t *q = rq->q;
  2636. if (!rq->bio)
  2637. return;
  2638. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2639. rq_for_each_bio(bio, rq) {
  2640. /* Force bio hw/phys segs to be recalculated. */
  2641. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2642. nr_phys_segs += bio_phys_segments(q, bio);
  2643. nr_hw_segs += bio_hw_segments(q, bio);
  2644. if (prevbio) {
  2645. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2646. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2647. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2648. pseg <= q->max_segment_size) {
  2649. nr_phys_segs--;
  2650. phys_size += prevbio->bi_size + bio->bi_size;
  2651. } else
  2652. phys_size = 0;
  2653. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2654. hseg <= q->max_segment_size) {
  2655. nr_hw_segs--;
  2656. hw_size += prevbio->bi_size + bio->bi_size;
  2657. } else
  2658. hw_size = 0;
  2659. }
  2660. prevbio = bio;
  2661. }
  2662. rq->nr_phys_segments = nr_phys_segs;
  2663. rq->nr_hw_segments = nr_hw_segs;
  2664. }
  2665. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2666. {
  2667. if (blk_fs_request(rq)) {
  2668. rq->hard_sector += nsect;
  2669. rq->hard_nr_sectors -= nsect;
  2670. /*
  2671. * Move the I/O submission pointers ahead if required.
  2672. */
  2673. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2674. (rq->sector <= rq->hard_sector)) {
  2675. rq->sector = rq->hard_sector;
  2676. rq->nr_sectors = rq->hard_nr_sectors;
  2677. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2678. rq->current_nr_sectors = rq->hard_cur_sectors;
  2679. rq->buffer = bio_data(rq->bio);
  2680. }
  2681. /*
  2682. * if total number of sectors is less than the first segment
  2683. * size, something has gone terribly wrong
  2684. */
  2685. if (rq->nr_sectors < rq->current_nr_sectors) {
  2686. printk("blk: request botched\n");
  2687. rq->nr_sectors = rq->current_nr_sectors;
  2688. }
  2689. }
  2690. }
  2691. static int __end_that_request_first(struct request *req, int uptodate,
  2692. int nr_bytes)
  2693. {
  2694. int total_bytes, bio_nbytes, error, next_idx = 0;
  2695. struct bio *bio;
  2696. blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
  2697. /*
  2698. * extend uptodate bool to allow < 0 value to be direct io error
  2699. */
  2700. error = 0;
  2701. if (end_io_error(uptodate))
  2702. error = !uptodate ? -EIO : uptodate;
  2703. /*
  2704. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2705. * sense key with us all the way through
  2706. */
  2707. if (!blk_pc_request(req))
  2708. req->errors = 0;
  2709. if (!uptodate) {
  2710. if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
  2711. printk("end_request: I/O error, dev %s, sector %llu\n",
  2712. req->rq_disk ? req->rq_disk->disk_name : "?",
  2713. (unsigned long long)req->sector);
  2714. }
  2715. if (blk_fs_request(req) && req->rq_disk) {
  2716. const int rw = rq_data_dir(req);
  2717. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2718. }
  2719. total_bytes = bio_nbytes = 0;
  2720. while ((bio = req->bio) != NULL) {
  2721. int nbytes;
  2722. if (nr_bytes >= bio->bi_size) {
  2723. req->bio = bio->bi_next;
  2724. nbytes = bio->bi_size;
  2725. if (!ordered_bio_endio(req, bio, nbytes, error))
  2726. bio_endio(bio, nbytes, error);
  2727. next_idx = 0;
  2728. bio_nbytes = 0;
  2729. } else {
  2730. int idx = bio->bi_idx + next_idx;
  2731. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2732. blk_dump_rq_flags(req, "__end_that");
  2733. printk("%s: bio idx %d >= vcnt %d\n",
  2734. __FUNCTION__,
  2735. bio->bi_idx, bio->bi_vcnt);
  2736. break;
  2737. }
  2738. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2739. BIO_BUG_ON(nbytes > bio->bi_size);
  2740. /*
  2741. * not a complete bvec done
  2742. */
  2743. if (unlikely(nbytes > nr_bytes)) {
  2744. bio_nbytes += nr_bytes;
  2745. total_bytes += nr_bytes;
  2746. break;
  2747. }
  2748. /*
  2749. * advance to the next vector
  2750. */
  2751. next_idx++;
  2752. bio_nbytes += nbytes;
  2753. }
  2754. total_bytes += nbytes;
  2755. nr_bytes -= nbytes;
  2756. if ((bio = req->bio)) {
  2757. /*
  2758. * end more in this run, or just return 'not-done'
  2759. */
  2760. if (unlikely(nr_bytes <= 0))
  2761. break;
  2762. }
  2763. }
  2764. /*
  2765. * completely done
  2766. */
  2767. if (!req->bio)
  2768. return 0;
  2769. /*
  2770. * if the request wasn't completed, update state
  2771. */
  2772. if (bio_nbytes) {
  2773. if (!ordered_bio_endio(req, bio, bio_nbytes, error))
  2774. bio_endio(bio, bio_nbytes, error);
  2775. bio->bi_idx += next_idx;
  2776. bio_iovec(bio)->bv_offset += nr_bytes;
  2777. bio_iovec(bio)->bv_len -= nr_bytes;
  2778. }
  2779. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2780. blk_recalc_rq_segments(req);
  2781. return 1;
  2782. }
  2783. /**
  2784. * end_that_request_first - end I/O on a request
  2785. * @req: the request being processed
  2786. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2787. * @nr_sectors: number of sectors to end I/O on
  2788. *
  2789. * Description:
  2790. * Ends I/O on a number of sectors attached to @req, and sets it up
  2791. * for the next range of segments (if any) in the cluster.
  2792. *
  2793. * Return:
  2794. * 0 - we are done with this request, call end_that_request_last()
  2795. * 1 - still buffers pending for this request
  2796. **/
  2797. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2798. {
  2799. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2800. }
  2801. EXPORT_SYMBOL(end_that_request_first);
  2802. /**
  2803. * end_that_request_chunk - end I/O on a request
  2804. * @req: the request being processed
  2805. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2806. * @nr_bytes: number of bytes to complete
  2807. *
  2808. * Description:
  2809. * Ends I/O on a number of bytes attached to @req, and sets it up
  2810. * for the next range of segments (if any). Like end_that_request_first(),
  2811. * but deals with bytes instead of sectors.
  2812. *
  2813. * Return:
  2814. * 0 - we are done with this request, call end_that_request_last()
  2815. * 1 - still buffers pending for this request
  2816. **/
  2817. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2818. {
  2819. return __end_that_request_first(req, uptodate, nr_bytes);
  2820. }
  2821. EXPORT_SYMBOL(end_that_request_chunk);
  2822. /*
  2823. * splice the completion data to a local structure and hand off to
  2824. * process_completion_queue() to complete the requests
  2825. */
  2826. static void blk_done_softirq(struct softirq_action *h)
  2827. {
  2828. struct list_head *cpu_list, local_list;
  2829. local_irq_disable();
  2830. cpu_list = &__get_cpu_var(blk_cpu_done);
  2831. list_replace_init(cpu_list, &local_list);
  2832. local_irq_enable();
  2833. while (!list_empty(&local_list)) {
  2834. struct request *rq = list_entry(local_list.next, struct request, donelist);
  2835. list_del_init(&rq->donelist);
  2836. rq->q->softirq_done_fn(rq);
  2837. }
  2838. }
  2839. #ifdef CONFIG_HOTPLUG_CPU
  2840. static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
  2841. void *hcpu)
  2842. {
  2843. /*
  2844. * If a CPU goes away, splice its entries to the current CPU
  2845. * and trigger a run of the softirq
  2846. */
  2847. if (action == CPU_DEAD) {
  2848. int cpu = (unsigned long) hcpu;
  2849. local_irq_disable();
  2850. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  2851. &__get_cpu_var(blk_cpu_done));
  2852. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2853. local_irq_enable();
  2854. }
  2855. return NOTIFY_OK;
  2856. }
  2857. static struct notifier_block __devinitdata blk_cpu_notifier = {
  2858. .notifier_call = blk_cpu_notify,
  2859. };
  2860. #endif /* CONFIG_HOTPLUG_CPU */
  2861. /**
  2862. * blk_complete_request - end I/O on a request
  2863. * @req: the request being processed
  2864. *
  2865. * Description:
  2866. * Ends all I/O on a request. It does not handle partial completions,
  2867. * unless the driver actually implements this in its completion callback
  2868. * through requeueing. Theh actual completion happens out-of-order,
  2869. * through a softirq handler. The user must have registered a completion
  2870. * callback through blk_queue_softirq_done().
  2871. **/
  2872. void blk_complete_request(struct request *req)
  2873. {
  2874. struct list_head *cpu_list;
  2875. unsigned long flags;
  2876. BUG_ON(!req->q->softirq_done_fn);
  2877. local_irq_save(flags);
  2878. cpu_list = &__get_cpu_var(blk_cpu_done);
  2879. list_add_tail(&req->donelist, cpu_list);
  2880. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2881. local_irq_restore(flags);
  2882. }
  2883. EXPORT_SYMBOL(blk_complete_request);
  2884. /*
  2885. * queue lock must be held
  2886. */
  2887. void end_that_request_last(struct request *req, int uptodate)
  2888. {
  2889. struct gendisk *disk = req->rq_disk;
  2890. int error;
  2891. /*
  2892. * extend uptodate bool to allow < 0 value to be direct io error
  2893. */
  2894. error = 0;
  2895. if (end_io_error(uptodate))
  2896. error = !uptodate ? -EIO : uptodate;
  2897. if (unlikely(laptop_mode) && blk_fs_request(req))
  2898. laptop_io_completion();
  2899. /*
  2900. * Account IO completion. bar_rq isn't accounted as a normal
  2901. * IO on queueing nor completion. Accounting the containing
  2902. * request is enough.
  2903. */
  2904. if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
  2905. unsigned long duration = jiffies - req->start_time;
  2906. const int rw = rq_data_dir(req);
  2907. __disk_stat_inc(disk, ios[rw]);
  2908. __disk_stat_add(disk, ticks[rw], duration);
  2909. disk_round_stats(disk);
  2910. disk->in_flight--;
  2911. }
  2912. if (req->end_io)
  2913. req->end_io(req, error);
  2914. else
  2915. __blk_put_request(req->q, req);
  2916. }
  2917. EXPORT_SYMBOL(end_that_request_last);
  2918. void end_request(struct request *req, int uptodate)
  2919. {
  2920. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2921. add_disk_randomness(req->rq_disk);
  2922. blkdev_dequeue_request(req);
  2923. end_that_request_last(req, uptodate);
  2924. }
  2925. }
  2926. EXPORT_SYMBOL(end_request);
  2927. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2928. {
  2929. /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
  2930. rq->cmd_flags |= (bio->bi_rw & 3);
  2931. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2932. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2933. rq->current_nr_sectors = bio_cur_sectors(bio);
  2934. rq->hard_cur_sectors = rq->current_nr_sectors;
  2935. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2936. rq->buffer = bio_data(bio);
  2937. rq->bio = rq->biotail = bio;
  2938. }
  2939. EXPORT_SYMBOL(blk_rq_bio_prep);
  2940. int kblockd_schedule_work(struct work_struct *work)
  2941. {
  2942. return queue_work(kblockd_workqueue, work);
  2943. }
  2944. EXPORT_SYMBOL(kblockd_schedule_work);
  2945. void kblockd_flush(void)
  2946. {
  2947. flush_workqueue(kblockd_workqueue);
  2948. }
  2949. EXPORT_SYMBOL(kblockd_flush);
  2950. int __init blk_dev_init(void)
  2951. {
  2952. int i;
  2953. kblockd_workqueue = create_workqueue("kblockd");
  2954. if (!kblockd_workqueue)
  2955. panic("Failed to create kblockd\n");
  2956. request_cachep = kmem_cache_create("blkdev_requests",
  2957. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  2958. requestq_cachep = kmem_cache_create("blkdev_queue",
  2959. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  2960. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  2961. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  2962. for_each_possible_cpu(i)
  2963. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  2964. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  2965. register_hotcpu_notifier(&blk_cpu_notifier);
  2966. blk_max_low_pfn = max_low_pfn;
  2967. blk_max_pfn = max_pfn;
  2968. return 0;
  2969. }
  2970. /*
  2971. * IO Context helper functions
  2972. */
  2973. void put_io_context(struct io_context *ioc)
  2974. {
  2975. if (ioc == NULL)
  2976. return;
  2977. BUG_ON(atomic_read(&ioc->refcount) == 0);
  2978. if (atomic_dec_and_test(&ioc->refcount)) {
  2979. struct cfq_io_context *cic;
  2980. rcu_read_lock();
  2981. if (ioc->aic && ioc->aic->dtor)
  2982. ioc->aic->dtor(ioc->aic);
  2983. if (ioc->cic_root.rb_node != NULL) {
  2984. struct rb_node *n = rb_first(&ioc->cic_root);
  2985. cic = rb_entry(n, struct cfq_io_context, rb_node);
  2986. cic->dtor(ioc);
  2987. }
  2988. rcu_read_unlock();
  2989. kmem_cache_free(iocontext_cachep, ioc);
  2990. }
  2991. }
  2992. EXPORT_SYMBOL(put_io_context);
  2993. /* Called by the exitting task */
  2994. void exit_io_context(void)
  2995. {
  2996. struct io_context *ioc;
  2997. struct cfq_io_context *cic;
  2998. task_lock(current);
  2999. ioc = current->io_context;
  3000. current->io_context = NULL;
  3001. task_unlock(current);
  3002. ioc->task = NULL;
  3003. if (ioc->aic && ioc->aic->exit)
  3004. ioc->aic->exit(ioc->aic);
  3005. if (ioc->cic_root.rb_node != NULL) {
  3006. cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
  3007. cic->exit(ioc);
  3008. }
  3009. put_io_context(ioc);
  3010. }
  3011. /*
  3012. * If the current task has no IO context then create one and initialise it.
  3013. * Otherwise, return its existing IO context.
  3014. *
  3015. * This returned IO context doesn't have a specifically elevated refcount,
  3016. * but since the current task itself holds a reference, the context can be
  3017. * used in general code, so long as it stays within `current` context.
  3018. */
  3019. static struct io_context *current_io_context(gfp_t gfp_flags, int node)
  3020. {
  3021. struct task_struct *tsk = current;
  3022. struct io_context *ret;
  3023. ret = tsk->io_context;
  3024. if (likely(ret))
  3025. return ret;
  3026. ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
  3027. if (ret) {
  3028. atomic_set(&ret->refcount, 1);
  3029. ret->task = current;
  3030. ret->ioprio_changed = 0;
  3031. ret->last_waited = jiffies; /* doesn't matter... */
  3032. ret->nr_batch_requests = 0; /* because this is 0 */
  3033. ret->aic = NULL;
  3034. ret->cic_root.rb_node = NULL;
  3035. /* make sure set_task_ioprio() sees the settings above */
  3036. smp_wmb();
  3037. tsk->io_context = ret;
  3038. }
  3039. return ret;
  3040. }
  3041. EXPORT_SYMBOL(current_io_context);
  3042. /*
  3043. * If the current task has no IO context then create one and initialise it.
  3044. * If it does have a context, take a ref on it.
  3045. *
  3046. * This is always called in the context of the task which submitted the I/O.
  3047. */
  3048. struct io_context *get_io_context(gfp_t gfp_flags, int node)
  3049. {
  3050. struct io_context *ret;
  3051. ret = current_io_context(gfp_flags, node);
  3052. if (likely(ret))
  3053. atomic_inc(&ret->refcount);
  3054. return ret;
  3055. }
  3056. EXPORT_SYMBOL(get_io_context);
  3057. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3058. {
  3059. struct io_context *src = *psrc;
  3060. struct io_context *dst = *pdst;
  3061. if (src) {
  3062. BUG_ON(atomic_read(&src->refcount) == 0);
  3063. atomic_inc(&src->refcount);
  3064. put_io_context(dst);
  3065. *pdst = src;
  3066. }
  3067. }
  3068. EXPORT_SYMBOL(copy_io_context);
  3069. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3070. {
  3071. struct io_context *temp;
  3072. temp = *ioc1;
  3073. *ioc1 = *ioc2;
  3074. *ioc2 = temp;
  3075. }
  3076. EXPORT_SYMBOL(swap_io_context);
  3077. /*
  3078. * sysfs parts below
  3079. */
  3080. struct queue_sysfs_entry {
  3081. struct attribute attr;
  3082. ssize_t (*show)(struct request_queue *, char *);
  3083. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3084. };
  3085. static ssize_t
  3086. queue_var_show(unsigned int var, char *page)
  3087. {
  3088. return sprintf(page, "%d\n", var);
  3089. }
  3090. static ssize_t
  3091. queue_var_store(unsigned long *var, const char *page, size_t count)
  3092. {
  3093. char *p = (char *) page;
  3094. *var = simple_strtoul(p, &p, 10);
  3095. return count;
  3096. }
  3097. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3098. {
  3099. return queue_var_show(q->nr_requests, (page));
  3100. }
  3101. static ssize_t
  3102. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3103. {
  3104. struct request_list *rl = &q->rq;
  3105. unsigned long nr;
  3106. int ret = queue_var_store(&nr, page, count);
  3107. if (nr < BLKDEV_MIN_RQ)
  3108. nr = BLKDEV_MIN_RQ;
  3109. spin_lock_irq(q->queue_lock);
  3110. q->nr_requests = nr;
  3111. blk_queue_congestion_threshold(q);
  3112. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3113. blk_set_queue_congested(q, READ);
  3114. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3115. blk_clear_queue_congested(q, READ);
  3116. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3117. blk_set_queue_congested(q, WRITE);
  3118. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3119. blk_clear_queue_congested(q, WRITE);
  3120. if (rl->count[READ] >= q->nr_requests) {
  3121. blk_set_queue_full(q, READ);
  3122. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3123. blk_clear_queue_full(q, READ);
  3124. wake_up(&rl->wait[READ]);
  3125. }
  3126. if (rl->count[WRITE] >= q->nr_requests) {
  3127. blk_set_queue_full(q, WRITE);
  3128. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3129. blk_clear_queue_full(q, WRITE);
  3130. wake_up(&rl->wait[WRITE]);
  3131. }
  3132. spin_unlock_irq(q->queue_lock);
  3133. return ret;
  3134. }
  3135. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3136. {
  3137. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3138. return queue_var_show(ra_kb, (page));
  3139. }
  3140. static ssize_t
  3141. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3142. {
  3143. unsigned long ra_kb;
  3144. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3145. spin_lock_irq(q->queue_lock);
  3146. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3147. spin_unlock_irq(q->queue_lock);
  3148. return ret;
  3149. }
  3150. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3151. {
  3152. int max_sectors_kb = q->max_sectors >> 1;
  3153. return queue_var_show(max_sectors_kb, (page));
  3154. }
  3155. static ssize_t
  3156. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3157. {
  3158. unsigned long max_sectors_kb,
  3159. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3160. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3161. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3162. int ra_kb;
  3163. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3164. return -EINVAL;
  3165. /*
  3166. * Take the queue lock to update the readahead and max_sectors
  3167. * values synchronously:
  3168. */
  3169. spin_lock_irq(q->queue_lock);
  3170. /*
  3171. * Trim readahead window as well, if necessary:
  3172. */
  3173. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3174. if (ra_kb > max_sectors_kb)
  3175. q->backing_dev_info.ra_pages =
  3176. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  3177. q->max_sectors = max_sectors_kb << 1;
  3178. spin_unlock_irq(q->queue_lock);
  3179. return ret;
  3180. }
  3181. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3182. {
  3183. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3184. return queue_var_show(max_hw_sectors_kb, (page));
  3185. }
  3186. static struct queue_sysfs_entry queue_requests_entry = {
  3187. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3188. .show = queue_requests_show,
  3189. .store = queue_requests_store,
  3190. };
  3191. static struct queue_sysfs_entry queue_ra_entry = {
  3192. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3193. .show = queue_ra_show,
  3194. .store = queue_ra_store,
  3195. };
  3196. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3197. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3198. .show = queue_max_sectors_show,
  3199. .store = queue_max_sectors_store,
  3200. };
  3201. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3202. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3203. .show = queue_max_hw_sectors_show,
  3204. };
  3205. static struct queue_sysfs_entry queue_iosched_entry = {
  3206. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3207. .show = elv_iosched_show,
  3208. .store = elv_iosched_store,
  3209. };
  3210. static struct attribute *default_attrs[] = {
  3211. &queue_requests_entry.attr,
  3212. &queue_ra_entry.attr,
  3213. &queue_max_hw_sectors_entry.attr,
  3214. &queue_max_sectors_entry.attr,
  3215. &queue_iosched_entry.attr,
  3216. NULL,
  3217. };
  3218. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3219. static ssize_t
  3220. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3221. {
  3222. struct queue_sysfs_entry *entry = to_queue(attr);
  3223. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  3224. ssize_t res;
  3225. if (!entry->show)
  3226. return -EIO;
  3227. mutex_lock(&q->sysfs_lock);
  3228. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3229. mutex_unlock(&q->sysfs_lock);
  3230. return -ENOENT;
  3231. }
  3232. res = entry->show(q, page);
  3233. mutex_unlock(&q->sysfs_lock);
  3234. return res;
  3235. }
  3236. static ssize_t
  3237. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3238. const char *page, size_t length)
  3239. {
  3240. struct queue_sysfs_entry *entry = to_queue(attr);
  3241. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  3242. ssize_t res;
  3243. if (!entry->store)
  3244. return -EIO;
  3245. mutex_lock(&q->sysfs_lock);
  3246. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3247. mutex_unlock(&q->sysfs_lock);
  3248. return -ENOENT;
  3249. }
  3250. res = entry->store(q, page, length);
  3251. mutex_unlock(&q->sysfs_lock);
  3252. return res;
  3253. }
  3254. static struct sysfs_ops queue_sysfs_ops = {
  3255. .show = queue_attr_show,
  3256. .store = queue_attr_store,
  3257. };
  3258. static struct kobj_type queue_ktype = {
  3259. .sysfs_ops = &queue_sysfs_ops,
  3260. .default_attrs = default_attrs,
  3261. .release = blk_release_queue,
  3262. };
  3263. int blk_register_queue(struct gendisk *disk)
  3264. {
  3265. int ret;
  3266. request_queue_t *q = disk->queue;
  3267. if (!q || !q->request_fn)
  3268. return -ENXIO;
  3269. q->kobj.parent = kobject_get(&disk->kobj);
  3270. ret = kobject_add(&q->kobj);
  3271. if (ret < 0)
  3272. return ret;
  3273. kobject_uevent(&q->kobj, KOBJ_ADD);
  3274. ret = elv_register_queue(q);
  3275. if (ret) {
  3276. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3277. kobject_del(&q->kobj);
  3278. return ret;
  3279. }
  3280. return 0;
  3281. }
  3282. void blk_unregister_queue(struct gendisk *disk)
  3283. {
  3284. request_queue_t *q = disk->queue;
  3285. if (q && q->request_fn) {
  3286. elv_unregister_queue(q);
  3287. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3288. kobject_del(&q->kobj);
  3289. kobject_put(&disk->kobj);
  3290. }
  3291. }