memory.c 116 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <linux/migrate.h>
  56. #include <linux/string.h>
  57. #include <asm/io.h>
  58. #include <asm/pgalloc.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/tlb.h>
  61. #include <asm/tlbflush.h>
  62. #include <asm/pgtable.h>
  63. #include "internal.h"
  64. #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
  65. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
  66. #endif
  67. #ifndef CONFIG_NEED_MULTIPLE_NODES
  68. /* use the per-pgdat data instead for discontigmem - mbligh */
  69. unsigned long max_mapnr;
  70. struct page *mem_map;
  71. EXPORT_SYMBOL(max_mapnr);
  72. EXPORT_SYMBOL(mem_map);
  73. #endif
  74. unsigned long num_physpages;
  75. /*
  76. * A number of key systems in x86 including ioremap() rely on the assumption
  77. * that high_memory defines the upper bound on direct map memory, then end
  78. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  79. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  80. * and ZONE_HIGHMEM.
  81. */
  82. void * high_memory;
  83. EXPORT_SYMBOL(num_physpages);
  84. EXPORT_SYMBOL(high_memory);
  85. /*
  86. * Randomize the address space (stacks, mmaps, brk, etc.).
  87. *
  88. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  89. * as ancient (libc5 based) binaries can segfault. )
  90. */
  91. int randomize_va_space __read_mostly =
  92. #ifdef CONFIG_COMPAT_BRK
  93. 1;
  94. #else
  95. 2;
  96. #endif
  97. static int __init disable_randmaps(char *s)
  98. {
  99. randomize_va_space = 0;
  100. return 1;
  101. }
  102. __setup("norandmaps", disable_randmaps);
  103. unsigned long zero_pfn __read_mostly;
  104. unsigned long highest_memmap_pfn __read_mostly;
  105. /*
  106. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  107. */
  108. static int __init init_zero_pfn(void)
  109. {
  110. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  111. return 0;
  112. }
  113. core_initcall(init_zero_pfn);
  114. #if defined(SPLIT_RSS_COUNTING)
  115. void sync_mm_rss(struct mm_struct *mm)
  116. {
  117. int i;
  118. for (i = 0; i < NR_MM_COUNTERS; i++) {
  119. if (current->rss_stat.count[i]) {
  120. add_mm_counter(mm, i, current->rss_stat.count[i]);
  121. current->rss_stat.count[i] = 0;
  122. }
  123. }
  124. current->rss_stat.events = 0;
  125. }
  126. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  127. {
  128. struct task_struct *task = current;
  129. if (likely(task->mm == mm))
  130. task->rss_stat.count[member] += val;
  131. else
  132. add_mm_counter(mm, member, val);
  133. }
  134. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  135. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  136. /* sync counter once per 64 page faults */
  137. #define TASK_RSS_EVENTS_THRESH (64)
  138. static void check_sync_rss_stat(struct task_struct *task)
  139. {
  140. if (unlikely(task != current))
  141. return;
  142. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  143. sync_mm_rss(task->mm);
  144. }
  145. #else /* SPLIT_RSS_COUNTING */
  146. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  147. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  148. static void check_sync_rss_stat(struct task_struct *task)
  149. {
  150. }
  151. #endif /* SPLIT_RSS_COUNTING */
  152. #ifdef HAVE_GENERIC_MMU_GATHER
  153. static int tlb_next_batch(struct mmu_gather *tlb)
  154. {
  155. struct mmu_gather_batch *batch;
  156. batch = tlb->active;
  157. if (batch->next) {
  158. tlb->active = batch->next;
  159. return 1;
  160. }
  161. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  162. return 0;
  163. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  164. if (!batch)
  165. return 0;
  166. tlb->batch_count++;
  167. batch->next = NULL;
  168. batch->nr = 0;
  169. batch->max = MAX_GATHER_BATCH;
  170. tlb->active->next = batch;
  171. tlb->active = batch;
  172. return 1;
  173. }
  174. /* tlb_gather_mmu
  175. * Called to initialize an (on-stack) mmu_gather structure for page-table
  176. * tear-down from @mm. The @fullmm argument is used when @mm is without
  177. * users and we're going to destroy the full address space (exit/execve).
  178. */
  179. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
  180. {
  181. tlb->mm = mm;
  182. tlb->fullmm = fullmm;
  183. tlb->need_flush_all = 0;
  184. tlb->start = -1UL;
  185. tlb->end = 0;
  186. tlb->need_flush = 0;
  187. tlb->fast_mode = (num_possible_cpus() == 1);
  188. tlb->local.next = NULL;
  189. tlb->local.nr = 0;
  190. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  191. tlb->active = &tlb->local;
  192. tlb->batch_count = 0;
  193. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  194. tlb->batch = NULL;
  195. #endif
  196. }
  197. void tlb_flush_mmu(struct mmu_gather *tlb)
  198. {
  199. struct mmu_gather_batch *batch;
  200. if (!tlb->need_flush)
  201. return;
  202. tlb->need_flush = 0;
  203. tlb_flush(tlb);
  204. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  205. tlb_table_flush(tlb);
  206. #endif
  207. if (tlb_fast_mode(tlb))
  208. return;
  209. for (batch = &tlb->local; batch; batch = batch->next) {
  210. free_pages_and_swap_cache(batch->pages, batch->nr);
  211. batch->nr = 0;
  212. }
  213. tlb->active = &tlb->local;
  214. }
  215. /* tlb_finish_mmu
  216. * Called at the end of the shootdown operation to free up any resources
  217. * that were required.
  218. */
  219. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  220. {
  221. struct mmu_gather_batch *batch, *next;
  222. tlb->start = start;
  223. tlb->end = end;
  224. tlb_flush_mmu(tlb);
  225. /* keep the page table cache within bounds */
  226. check_pgt_cache();
  227. for (batch = tlb->local.next; batch; batch = next) {
  228. next = batch->next;
  229. free_pages((unsigned long)batch, 0);
  230. }
  231. tlb->local.next = NULL;
  232. }
  233. /* __tlb_remove_page
  234. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  235. * handling the additional races in SMP caused by other CPUs caching valid
  236. * mappings in their TLBs. Returns the number of free page slots left.
  237. * When out of page slots we must call tlb_flush_mmu().
  238. */
  239. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  240. {
  241. struct mmu_gather_batch *batch;
  242. VM_BUG_ON(!tlb->need_flush);
  243. if (tlb_fast_mode(tlb)) {
  244. free_page_and_swap_cache(page);
  245. return 1; /* avoid calling tlb_flush_mmu() */
  246. }
  247. batch = tlb->active;
  248. batch->pages[batch->nr++] = page;
  249. if (batch->nr == batch->max) {
  250. if (!tlb_next_batch(tlb))
  251. return 0;
  252. batch = tlb->active;
  253. }
  254. VM_BUG_ON(batch->nr > batch->max);
  255. return batch->max - batch->nr;
  256. }
  257. #endif /* HAVE_GENERIC_MMU_GATHER */
  258. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  259. /*
  260. * See the comment near struct mmu_table_batch.
  261. */
  262. static void tlb_remove_table_smp_sync(void *arg)
  263. {
  264. /* Simply deliver the interrupt */
  265. }
  266. static void tlb_remove_table_one(void *table)
  267. {
  268. /*
  269. * This isn't an RCU grace period and hence the page-tables cannot be
  270. * assumed to be actually RCU-freed.
  271. *
  272. * It is however sufficient for software page-table walkers that rely on
  273. * IRQ disabling. See the comment near struct mmu_table_batch.
  274. */
  275. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  276. __tlb_remove_table(table);
  277. }
  278. static void tlb_remove_table_rcu(struct rcu_head *head)
  279. {
  280. struct mmu_table_batch *batch;
  281. int i;
  282. batch = container_of(head, struct mmu_table_batch, rcu);
  283. for (i = 0; i < batch->nr; i++)
  284. __tlb_remove_table(batch->tables[i]);
  285. free_page((unsigned long)batch);
  286. }
  287. void tlb_table_flush(struct mmu_gather *tlb)
  288. {
  289. struct mmu_table_batch **batch = &tlb->batch;
  290. if (*batch) {
  291. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  292. *batch = NULL;
  293. }
  294. }
  295. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  296. {
  297. struct mmu_table_batch **batch = &tlb->batch;
  298. tlb->need_flush = 1;
  299. /*
  300. * When there's less then two users of this mm there cannot be a
  301. * concurrent page-table walk.
  302. */
  303. if (atomic_read(&tlb->mm->mm_users) < 2) {
  304. __tlb_remove_table(table);
  305. return;
  306. }
  307. if (*batch == NULL) {
  308. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  309. if (*batch == NULL) {
  310. tlb_remove_table_one(table);
  311. return;
  312. }
  313. (*batch)->nr = 0;
  314. }
  315. (*batch)->tables[(*batch)->nr++] = table;
  316. if ((*batch)->nr == MAX_TABLE_BATCH)
  317. tlb_table_flush(tlb);
  318. }
  319. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  320. /*
  321. * If a p?d_bad entry is found while walking page tables, report
  322. * the error, before resetting entry to p?d_none. Usually (but
  323. * very seldom) called out from the p?d_none_or_clear_bad macros.
  324. */
  325. void pgd_clear_bad(pgd_t *pgd)
  326. {
  327. pgd_ERROR(*pgd);
  328. pgd_clear(pgd);
  329. }
  330. void pud_clear_bad(pud_t *pud)
  331. {
  332. pud_ERROR(*pud);
  333. pud_clear(pud);
  334. }
  335. void pmd_clear_bad(pmd_t *pmd)
  336. {
  337. pmd_ERROR(*pmd);
  338. pmd_clear(pmd);
  339. }
  340. /*
  341. * Note: this doesn't free the actual pages themselves. That
  342. * has been handled earlier when unmapping all the memory regions.
  343. */
  344. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  345. unsigned long addr)
  346. {
  347. pgtable_t token = pmd_pgtable(*pmd);
  348. pmd_clear(pmd);
  349. pte_free_tlb(tlb, token, addr);
  350. tlb->mm->nr_ptes--;
  351. }
  352. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  353. unsigned long addr, unsigned long end,
  354. unsigned long floor, unsigned long ceiling)
  355. {
  356. pmd_t *pmd;
  357. unsigned long next;
  358. unsigned long start;
  359. start = addr;
  360. pmd = pmd_offset(pud, addr);
  361. do {
  362. next = pmd_addr_end(addr, end);
  363. if (pmd_none_or_clear_bad(pmd))
  364. continue;
  365. free_pte_range(tlb, pmd, addr);
  366. } while (pmd++, addr = next, addr != end);
  367. start &= PUD_MASK;
  368. if (start < floor)
  369. return;
  370. if (ceiling) {
  371. ceiling &= PUD_MASK;
  372. if (!ceiling)
  373. return;
  374. }
  375. if (end - 1 > ceiling - 1)
  376. return;
  377. pmd = pmd_offset(pud, start);
  378. pud_clear(pud);
  379. pmd_free_tlb(tlb, pmd, start);
  380. }
  381. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  382. unsigned long addr, unsigned long end,
  383. unsigned long floor, unsigned long ceiling)
  384. {
  385. pud_t *pud;
  386. unsigned long next;
  387. unsigned long start;
  388. start = addr;
  389. pud = pud_offset(pgd, addr);
  390. do {
  391. next = pud_addr_end(addr, end);
  392. if (pud_none_or_clear_bad(pud))
  393. continue;
  394. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  395. } while (pud++, addr = next, addr != end);
  396. start &= PGDIR_MASK;
  397. if (start < floor)
  398. return;
  399. if (ceiling) {
  400. ceiling &= PGDIR_MASK;
  401. if (!ceiling)
  402. return;
  403. }
  404. if (end - 1 > ceiling - 1)
  405. return;
  406. pud = pud_offset(pgd, start);
  407. pgd_clear(pgd);
  408. pud_free_tlb(tlb, pud, start);
  409. }
  410. /*
  411. * This function frees user-level page tables of a process.
  412. *
  413. * Must be called with pagetable lock held.
  414. */
  415. void free_pgd_range(struct mmu_gather *tlb,
  416. unsigned long addr, unsigned long end,
  417. unsigned long floor, unsigned long ceiling)
  418. {
  419. pgd_t *pgd;
  420. unsigned long next;
  421. /*
  422. * The next few lines have given us lots of grief...
  423. *
  424. * Why are we testing PMD* at this top level? Because often
  425. * there will be no work to do at all, and we'd prefer not to
  426. * go all the way down to the bottom just to discover that.
  427. *
  428. * Why all these "- 1"s? Because 0 represents both the bottom
  429. * of the address space and the top of it (using -1 for the
  430. * top wouldn't help much: the masks would do the wrong thing).
  431. * The rule is that addr 0 and floor 0 refer to the bottom of
  432. * the address space, but end 0 and ceiling 0 refer to the top
  433. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  434. * that end 0 case should be mythical).
  435. *
  436. * Wherever addr is brought up or ceiling brought down, we must
  437. * be careful to reject "the opposite 0" before it confuses the
  438. * subsequent tests. But what about where end is brought down
  439. * by PMD_SIZE below? no, end can't go down to 0 there.
  440. *
  441. * Whereas we round start (addr) and ceiling down, by different
  442. * masks at different levels, in order to test whether a table
  443. * now has no other vmas using it, so can be freed, we don't
  444. * bother to round floor or end up - the tests don't need that.
  445. */
  446. addr &= PMD_MASK;
  447. if (addr < floor) {
  448. addr += PMD_SIZE;
  449. if (!addr)
  450. return;
  451. }
  452. if (ceiling) {
  453. ceiling &= PMD_MASK;
  454. if (!ceiling)
  455. return;
  456. }
  457. if (end - 1 > ceiling - 1)
  458. end -= PMD_SIZE;
  459. if (addr > end - 1)
  460. return;
  461. pgd = pgd_offset(tlb->mm, addr);
  462. do {
  463. next = pgd_addr_end(addr, end);
  464. if (pgd_none_or_clear_bad(pgd))
  465. continue;
  466. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  467. } while (pgd++, addr = next, addr != end);
  468. }
  469. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  470. unsigned long floor, unsigned long ceiling)
  471. {
  472. while (vma) {
  473. struct vm_area_struct *next = vma->vm_next;
  474. unsigned long addr = vma->vm_start;
  475. /*
  476. * Hide vma from rmap and truncate_pagecache before freeing
  477. * pgtables
  478. */
  479. unlink_anon_vmas(vma);
  480. unlink_file_vma(vma);
  481. if (is_vm_hugetlb_page(vma)) {
  482. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  483. floor, next? next->vm_start: ceiling);
  484. } else {
  485. /*
  486. * Optimization: gather nearby vmas into one call down
  487. */
  488. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  489. && !is_vm_hugetlb_page(next)) {
  490. vma = next;
  491. next = vma->vm_next;
  492. unlink_anon_vmas(vma);
  493. unlink_file_vma(vma);
  494. }
  495. free_pgd_range(tlb, addr, vma->vm_end,
  496. floor, next? next->vm_start: ceiling);
  497. }
  498. vma = next;
  499. }
  500. }
  501. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  502. pmd_t *pmd, unsigned long address)
  503. {
  504. pgtable_t new = pte_alloc_one(mm, address);
  505. int wait_split_huge_page;
  506. if (!new)
  507. return -ENOMEM;
  508. /*
  509. * Ensure all pte setup (eg. pte page lock and page clearing) are
  510. * visible before the pte is made visible to other CPUs by being
  511. * put into page tables.
  512. *
  513. * The other side of the story is the pointer chasing in the page
  514. * table walking code (when walking the page table without locking;
  515. * ie. most of the time). Fortunately, these data accesses consist
  516. * of a chain of data-dependent loads, meaning most CPUs (alpha
  517. * being the notable exception) will already guarantee loads are
  518. * seen in-order. See the alpha page table accessors for the
  519. * smp_read_barrier_depends() barriers in page table walking code.
  520. */
  521. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  522. spin_lock(&mm->page_table_lock);
  523. wait_split_huge_page = 0;
  524. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  525. mm->nr_ptes++;
  526. pmd_populate(mm, pmd, new);
  527. new = NULL;
  528. } else if (unlikely(pmd_trans_splitting(*pmd)))
  529. wait_split_huge_page = 1;
  530. spin_unlock(&mm->page_table_lock);
  531. if (new)
  532. pte_free(mm, new);
  533. if (wait_split_huge_page)
  534. wait_split_huge_page(vma->anon_vma, pmd);
  535. return 0;
  536. }
  537. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  538. {
  539. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  540. if (!new)
  541. return -ENOMEM;
  542. smp_wmb(); /* See comment in __pte_alloc */
  543. spin_lock(&init_mm.page_table_lock);
  544. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  545. pmd_populate_kernel(&init_mm, pmd, new);
  546. new = NULL;
  547. } else
  548. VM_BUG_ON(pmd_trans_splitting(*pmd));
  549. spin_unlock(&init_mm.page_table_lock);
  550. if (new)
  551. pte_free_kernel(&init_mm, new);
  552. return 0;
  553. }
  554. static inline void init_rss_vec(int *rss)
  555. {
  556. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  557. }
  558. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  559. {
  560. int i;
  561. if (current->mm == mm)
  562. sync_mm_rss(mm);
  563. for (i = 0; i < NR_MM_COUNTERS; i++)
  564. if (rss[i])
  565. add_mm_counter(mm, i, rss[i]);
  566. }
  567. /*
  568. * This function is called to print an error when a bad pte
  569. * is found. For example, we might have a PFN-mapped pte in
  570. * a region that doesn't allow it.
  571. *
  572. * The calling function must still handle the error.
  573. */
  574. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  575. pte_t pte, struct page *page)
  576. {
  577. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  578. pud_t *pud = pud_offset(pgd, addr);
  579. pmd_t *pmd = pmd_offset(pud, addr);
  580. struct address_space *mapping;
  581. pgoff_t index;
  582. static unsigned long resume;
  583. static unsigned long nr_shown;
  584. static unsigned long nr_unshown;
  585. /*
  586. * Allow a burst of 60 reports, then keep quiet for that minute;
  587. * or allow a steady drip of one report per second.
  588. */
  589. if (nr_shown == 60) {
  590. if (time_before(jiffies, resume)) {
  591. nr_unshown++;
  592. return;
  593. }
  594. if (nr_unshown) {
  595. printk(KERN_ALERT
  596. "BUG: Bad page map: %lu messages suppressed\n",
  597. nr_unshown);
  598. nr_unshown = 0;
  599. }
  600. nr_shown = 0;
  601. }
  602. if (nr_shown++ == 0)
  603. resume = jiffies + 60 * HZ;
  604. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  605. index = linear_page_index(vma, addr);
  606. printk(KERN_ALERT
  607. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  608. current->comm,
  609. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  610. if (page)
  611. dump_page(page);
  612. printk(KERN_ALERT
  613. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  614. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  615. /*
  616. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  617. */
  618. if (vma->vm_ops)
  619. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  620. (unsigned long)vma->vm_ops->fault);
  621. if (vma->vm_file && vma->vm_file->f_op)
  622. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  623. (unsigned long)vma->vm_file->f_op->mmap);
  624. dump_stack();
  625. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  626. }
  627. static inline bool is_cow_mapping(vm_flags_t flags)
  628. {
  629. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  630. }
  631. /*
  632. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  633. *
  634. * "Special" mappings do not wish to be associated with a "struct page" (either
  635. * it doesn't exist, or it exists but they don't want to touch it). In this
  636. * case, NULL is returned here. "Normal" mappings do have a struct page.
  637. *
  638. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  639. * pte bit, in which case this function is trivial. Secondly, an architecture
  640. * may not have a spare pte bit, which requires a more complicated scheme,
  641. * described below.
  642. *
  643. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  644. * special mapping (even if there are underlying and valid "struct pages").
  645. * COWed pages of a VM_PFNMAP are always normal.
  646. *
  647. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  648. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  649. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  650. * mapping will always honor the rule
  651. *
  652. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  653. *
  654. * And for normal mappings this is false.
  655. *
  656. * This restricts such mappings to be a linear translation from virtual address
  657. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  658. * as the vma is not a COW mapping; in that case, we know that all ptes are
  659. * special (because none can have been COWed).
  660. *
  661. *
  662. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  663. *
  664. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  665. * page" backing, however the difference is that _all_ pages with a struct
  666. * page (that is, those where pfn_valid is true) are refcounted and considered
  667. * normal pages by the VM. The disadvantage is that pages are refcounted
  668. * (which can be slower and simply not an option for some PFNMAP users). The
  669. * advantage is that we don't have to follow the strict linearity rule of
  670. * PFNMAP mappings in order to support COWable mappings.
  671. *
  672. */
  673. #ifdef __HAVE_ARCH_PTE_SPECIAL
  674. # define HAVE_PTE_SPECIAL 1
  675. #else
  676. # define HAVE_PTE_SPECIAL 0
  677. #endif
  678. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  679. pte_t pte)
  680. {
  681. unsigned long pfn = pte_pfn(pte);
  682. if (HAVE_PTE_SPECIAL) {
  683. if (likely(!pte_special(pte)))
  684. goto check_pfn;
  685. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  686. return NULL;
  687. if (!is_zero_pfn(pfn))
  688. print_bad_pte(vma, addr, pte, NULL);
  689. return NULL;
  690. }
  691. /* !HAVE_PTE_SPECIAL case follows: */
  692. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  693. if (vma->vm_flags & VM_MIXEDMAP) {
  694. if (!pfn_valid(pfn))
  695. return NULL;
  696. goto out;
  697. } else {
  698. unsigned long off;
  699. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  700. if (pfn == vma->vm_pgoff + off)
  701. return NULL;
  702. if (!is_cow_mapping(vma->vm_flags))
  703. return NULL;
  704. }
  705. }
  706. if (is_zero_pfn(pfn))
  707. return NULL;
  708. check_pfn:
  709. if (unlikely(pfn > highest_memmap_pfn)) {
  710. print_bad_pte(vma, addr, pte, NULL);
  711. return NULL;
  712. }
  713. /*
  714. * NOTE! We still have PageReserved() pages in the page tables.
  715. * eg. VDSO mappings can cause them to exist.
  716. */
  717. out:
  718. return pfn_to_page(pfn);
  719. }
  720. /*
  721. * copy one vm_area from one task to the other. Assumes the page tables
  722. * already present in the new task to be cleared in the whole range
  723. * covered by this vma.
  724. */
  725. static inline unsigned long
  726. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  727. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  728. unsigned long addr, int *rss)
  729. {
  730. unsigned long vm_flags = vma->vm_flags;
  731. pte_t pte = *src_pte;
  732. struct page *page;
  733. /* pte contains position in swap or file, so copy. */
  734. if (unlikely(!pte_present(pte))) {
  735. if (!pte_file(pte)) {
  736. swp_entry_t entry = pte_to_swp_entry(pte);
  737. if (swap_duplicate(entry) < 0)
  738. return entry.val;
  739. /* make sure dst_mm is on swapoff's mmlist. */
  740. if (unlikely(list_empty(&dst_mm->mmlist))) {
  741. spin_lock(&mmlist_lock);
  742. if (list_empty(&dst_mm->mmlist))
  743. list_add(&dst_mm->mmlist,
  744. &src_mm->mmlist);
  745. spin_unlock(&mmlist_lock);
  746. }
  747. if (likely(!non_swap_entry(entry)))
  748. rss[MM_SWAPENTS]++;
  749. else if (is_migration_entry(entry)) {
  750. page = migration_entry_to_page(entry);
  751. if (PageAnon(page))
  752. rss[MM_ANONPAGES]++;
  753. else
  754. rss[MM_FILEPAGES]++;
  755. if (is_write_migration_entry(entry) &&
  756. is_cow_mapping(vm_flags)) {
  757. /*
  758. * COW mappings require pages in both
  759. * parent and child to be set to read.
  760. */
  761. make_migration_entry_read(&entry);
  762. pte = swp_entry_to_pte(entry);
  763. set_pte_at(src_mm, addr, src_pte, pte);
  764. }
  765. }
  766. }
  767. goto out_set_pte;
  768. }
  769. /*
  770. * If it's a COW mapping, write protect it both
  771. * in the parent and the child
  772. */
  773. if (is_cow_mapping(vm_flags)) {
  774. ptep_set_wrprotect(src_mm, addr, src_pte);
  775. pte = pte_wrprotect(pte);
  776. }
  777. /*
  778. * If it's a shared mapping, mark it clean in
  779. * the child
  780. */
  781. if (vm_flags & VM_SHARED)
  782. pte = pte_mkclean(pte);
  783. pte = pte_mkold(pte);
  784. page = vm_normal_page(vma, addr, pte);
  785. if (page) {
  786. get_page(page);
  787. page_dup_rmap(page);
  788. if (PageAnon(page))
  789. rss[MM_ANONPAGES]++;
  790. else
  791. rss[MM_FILEPAGES]++;
  792. }
  793. out_set_pte:
  794. set_pte_at(dst_mm, addr, dst_pte, pte);
  795. return 0;
  796. }
  797. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  798. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  799. unsigned long addr, unsigned long end)
  800. {
  801. pte_t *orig_src_pte, *orig_dst_pte;
  802. pte_t *src_pte, *dst_pte;
  803. spinlock_t *src_ptl, *dst_ptl;
  804. int progress = 0;
  805. int rss[NR_MM_COUNTERS];
  806. swp_entry_t entry = (swp_entry_t){0};
  807. again:
  808. init_rss_vec(rss);
  809. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  810. if (!dst_pte)
  811. return -ENOMEM;
  812. src_pte = pte_offset_map(src_pmd, addr);
  813. src_ptl = pte_lockptr(src_mm, src_pmd);
  814. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  815. orig_src_pte = src_pte;
  816. orig_dst_pte = dst_pte;
  817. arch_enter_lazy_mmu_mode();
  818. do {
  819. /*
  820. * We are holding two locks at this point - either of them
  821. * could generate latencies in another task on another CPU.
  822. */
  823. if (progress >= 32) {
  824. progress = 0;
  825. if (need_resched() ||
  826. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  827. break;
  828. }
  829. if (pte_none(*src_pte)) {
  830. progress++;
  831. continue;
  832. }
  833. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  834. vma, addr, rss);
  835. if (entry.val)
  836. break;
  837. progress += 8;
  838. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  839. arch_leave_lazy_mmu_mode();
  840. spin_unlock(src_ptl);
  841. pte_unmap(orig_src_pte);
  842. add_mm_rss_vec(dst_mm, rss);
  843. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  844. cond_resched();
  845. if (entry.val) {
  846. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  847. return -ENOMEM;
  848. progress = 0;
  849. }
  850. if (addr != end)
  851. goto again;
  852. return 0;
  853. }
  854. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  855. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  856. unsigned long addr, unsigned long end)
  857. {
  858. pmd_t *src_pmd, *dst_pmd;
  859. unsigned long next;
  860. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  861. if (!dst_pmd)
  862. return -ENOMEM;
  863. src_pmd = pmd_offset(src_pud, addr);
  864. do {
  865. next = pmd_addr_end(addr, end);
  866. if (pmd_trans_huge(*src_pmd)) {
  867. int err;
  868. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  869. err = copy_huge_pmd(dst_mm, src_mm,
  870. dst_pmd, src_pmd, addr, vma);
  871. if (err == -ENOMEM)
  872. return -ENOMEM;
  873. if (!err)
  874. continue;
  875. /* fall through */
  876. }
  877. if (pmd_none_or_clear_bad(src_pmd))
  878. continue;
  879. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  880. vma, addr, next))
  881. return -ENOMEM;
  882. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  883. return 0;
  884. }
  885. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  886. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  887. unsigned long addr, unsigned long end)
  888. {
  889. pud_t *src_pud, *dst_pud;
  890. unsigned long next;
  891. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  892. if (!dst_pud)
  893. return -ENOMEM;
  894. src_pud = pud_offset(src_pgd, addr);
  895. do {
  896. next = pud_addr_end(addr, end);
  897. if (pud_none_or_clear_bad(src_pud))
  898. continue;
  899. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  900. vma, addr, next))
  901. return -ENOMEM;
  902. } while (dst_pud++, src_pud++, addr = next, addr != end);
  903. return 0;
  904. }
  905. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  906. struct vm_area_struct *vma)
  907. {
  908. pgd_t *src_pgd, *dst_pgd;
  909. unsigned long next;
  910. unsigned long addr = vma->vm_start;
  911. unsigned long end = vma->vm_end;
  912. unsigned long mmun_start; /* For mmu_notifiers */
  913. unsigned long mmun_end; /* For mmu_notifiers */
  914. bool is_cow;
  915. int ret;
  916. /*
  917. * Don't copy ptes where a page fault will fill them correctly.
  918. * Fork becomes much lighter when there are big shared or private
  919. * readonly mappings. The tradeoff is that copy_page_range is more
  920. * efficient than faulting.
  921. */
  922. if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
  923. VM_PFNMAP | VM_MIXEDMAP))) {
  924. if (!vma->anon_vma)
  925. return 0;
  926. }
  927. if (is_vm_hugetlb_page(vma))
  928. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  929. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  930. /*
  931. * We do not free on error cases below as remove_vma
  932. * gets called on error from higher level routine
  933. */
  934. ret = track_pfn_copy(vma);
  935. if (ret)
  936. return ret;
  937. }
  938. /*
  939. * We need to invalidate the secondary MMU mappings only when
  940. * there could be a permission downgrade on the ptes of the
  941. * parent mm. And a permission downgrade will only happen if
  942. * is_cow_mapping() returns true.
  943. */
  944. is_cow = is_cow_mapping(vma->vm_flags);
  945. mmun_start = addr;
  946. mmun_end = end;
  947. if (is_cow)
  948. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  949. mmun_end);
  950. ret = 0;
  951. dst_pgd = pgd_offset(dst_mm, addr);
  952. src_pgd = pgd_offset(src_mm, addr);
  953. do {
  954. next = pgd_addr_end(addr, end);
  955. if (pgd_none_or_clear_bad(src_pgd))
  956. continue;
  957. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  958. vma, addr, next))) {
  959. ret = -ENOMEM;
  960. break;
  961. }
  962. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  963. if (is_cow)
  964. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  965. return ret;
  966. }
  967. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  968. struct vm_area_struct *vma, pmd_t *pmd,
  969. unsigned long addr, unsigned long end,
  970. struct zap_details *details)
  971. {
  972. struct mm_struct *mm = tlb->mm;
  973. int force_flush = 0;
  974. int rss[NR_MM_COUNTERS];
  975. spinlock_t *ptl;
  976. pte_t *start_pte;
  977. pte_t *pte;
  978. again:
  979. init_rss_vec(rss);
  980. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  981. pte = start_pte;
  982. arch_enter_lazy_mmu_mode();
  983. do {
  984. pte_t ptent = *pte;
  985. if (pte_none(ptent)) {
  986. continue;
  987. }
  988. if (pte_present(ptent)) {
  989. struct page *page;
  990. page = vm_normal_page(vma, addr, ptent);
  991. if (unlikely(details) && page) {
  992. /*
  993. * unmap_shared_mapping_pages() wants to
  994. * invalidate cache without truncating:
  995. * unmap shared but keep private pages.
  996. */
  997. if (details->check_mapping &&
  998. details->check_mapping != page->mapping)
  999. continue;
  1000. /*
  1001. * Each page->index must be checked when
  1002. * invalidating or truncating nonlinear.
  1003. */
  1004. if (details->nonlinear_vma &&
  1005. (page->index < details->first_index ||
  1006. page->index > details->last_index))
  1007. continue;
  1008. }
  1009. ptent = ptep_get_and_clear_full(mm, addr, pte,
  1010. tlb->fullmm);
  1011. tlb_remove_tlb_entry(tlb, pte, addr);
  1012. if (unlikely(!page))
  1013. continue;
  1014. if (unlikely(details) && details->nonlinear_vma
  1015. && linear_page_index(details->nonlinear_vma,
  1016. addr) != page->index)
  1017. set_pte_at(mm, addr, pte,
  1018. pgoff_to_pte(page->index));
  1019. if (PageAnon(page))
  1020. rss[MM_ANONPAGES]--;
  1021. else {
  1022. if (pte_dirty(ptent))
  1023. set_page_dirty(page);
  1024. if (pte_young(ptent) &&
  1025. likely(!VM_SequentialReadHint(vma)))
  1026. mark_page_accessed(page);
  1027. rss[MM_FILEPAGES]--;
  1028. }
  1029. page_remove_rmap(page);
  1030. if (unlikely(page_mapcount(page) < 0))
  1031. print_bad_pte(vma, addr, ptent, page);
  1032. force_flush = !__tlb_remove_page(tlb, page);
  1033. if (force_flush)
  1034. break;
  1035. continue;
  1036. }
  1037. /*
  1038. * If details->check_mapping, we leave swap entries;
  1039. * if details->nonlinear_vma, we leave file entries.
  1040. */
  1041. if (unlikely(details))
  1042. continue;
  1043. if (pte_file(ptent)) {
  1044. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1045. print_bad_pte(vma, addr, ptent, NULL);
  1046. } else {
  1047. swp_entry_t entry = pte_to_swp_entry(ptent);
  1048. if (!non_swap_entry(entry))
  1049. rss[MM_SWAPENTS]--;
  1050. else if (is_migration_entry(entry)) {
  1051. struct page *page;
  1052. page = migration_entry_to_page(entry);
  1053. if (PageAnon(page))
  1054. rss[MM_ANONPAGES]--;
  1055. else
  1056. rss[MM_FILEPAGES]--;
  1057. }
  1058. if (unlikely(!free_swap_and_cache(entry)))
  1059. print_bad_pte(vma, addr, ptent, NULL);
  1060. }
  1061. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1062. } while (pte++, addr += PAGE_SIZE, addr != end);
  1063. add_mm_rss_vec(mm, rss);
  1064. arch_leave_lazy_mmu_mode();
  1065. pte_unmap_unlock(start_pte, ptl);
  1066. /*
  1067. * mmu_gather ran out of room to batch pages, we break out of
  1068. * the PTE lock to avoid doing the potential expensive TLB invalidate
  1069. * and page-free while holding it.
  1070. */
  1071. if (force_flush) {
  1072. force_flush = 0;
  1073. #ifdef HAVE_GENERIC_MMU_GATHER
  1074. tlb->start = addr;
  1075. tlb->end = end;
  1076. #endif
  1077. tlb_flush_mmu(tlb);
  1078. if (addr != end)
  1079. goto again;
  1080. }
  1081. return addr;
  1082. }
  1083. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1084. struct vm_area_struct *vma, pud_t *pud,
  1085. unsigned long addr, unsigned long end,
  1086. struct zap_details *details)
  1087. {
  1088. pmd_t *pmd;
  1089. unsigned long next;
  1090. pmd = pmd_offset(pud, addr);
  1091. do {
  1092. next = pmd_addr_end(addr, end);
  1093. if (pmd_trans_huge(*pmd)) {
  1094. if (next - addr != HPAGE_PMD_SIZE) {
  1095. #ifdef CONFIG_DEBUG_VM
  1096. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1097. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1098. __func__, addr, end,
  1099. vma->vm_start,
  1100. vma->vm_end);
  1101. BUG();
  1102. }
  1103. #endif
  1104. split_huge_page_pmd(vma, addr, pmd);
  1105. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1106. goto next;
  1107. /* fall through */
  1108. }
  1109. /*
  1110. * Here there can be other concurrent MADV_DONTNEED or
  1111. * trans huge page faults running, and if the pmd is
  1112. * none or trans huge it can change under us. This is
  1113. * because MADV_DONTNEED holds the mmap_sem in read
  1114. * mode.
  1115. */
  1116. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1117. goto next;
  1118. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1119. next:
  1120. cond_resched();
  1121. } while (pmd++, addr = next, addr != end);
  1122. return addr;
  1123. }
  1124. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1125. struct vm_area_struct *vma, pgd_t *pgd,
  1126. unsigned long addr, unsigned long end,
  1127. struct zap_details *details)
  1128. {
  1129. pud_t *pud;
  1130. unsigned long next;
  1131. pud = pud_offset(pgd, addr);
  1132. do {
  1133. next = pud_addr_end(addr, end);
  1134. if (pud_none_or_clear_bad(pud))
  1135. continue;
  1136. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1137. } while (pud++, addr = next, addr != end);
  1138. return addr;
  1139. }
  1140. static void unmap_page_range(struct mmu_gather *tlb,
  1141. struct vm_area_struct *vma,
  1142. unsigned long addr, unsigned long end,
  1143. struct zap_details *details)
  1144. {
  1145. pgd_t *pgd;
  1146. unsigned long next;
  1147. if (details && !details->check_mapping && !details->nonlinear_vma)
  1148. details = NULL;
  1149. BUG_ON(addr >= end);
  1150. mem_cgroup_uncharge_start();
  1151. tlb_start_vma(tlb, vma);
  1152. pgd = pgd_offset(vma->vm_mm, addr);
  1153. do {
  1154. next = pgd_addr_end(addr, end);
  1155. if (pgd_none_or_clear_bad(pgd))
  1156. continue;
  1157. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1158. } while (pgd++, addr = next, addr != end);
  1159. tlb_end_vma(tlb, vma);
  1160. mem_cgroup_uncharge_end();
  1161. }
  1162. static void unmap_single_vma(struct mmu_gather *tlb,
  1163. struct vm_area_struct *vma, unsigned long start_addr,
  1164. unsigned long end_addr,
  1165. struct zap_details *details)
  1166. {
  1167. unsigned long start = max(vma->vm_start, start_addr);
  1168. unsigned long end;
  1169. if (start >= vma->vm_end)
  1170. return;
  1171. end = min(vma->vm_end, end_addr);
  1172. if (end <= vma->vm_start)
  1173. return;
  1174. if (vma->vm_file)
  1175. uprobe_munmap(vma, start, end);
  1176. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1177. untrack_pfn(vma, 0, 0);
  1178. if (start != end) {
  1179. if (unlikely(is_vm_hugetlb_page(vma))) {
  1180. /*
  1181. * It is undesirable to test vma->vm_file as it
  1182. * should be non-null for valid hugetlb area.
  1183. * However, vm_file will be NULL in the error
  1184. * cleanup path of do_mmap_pgoff. When
  1185. * hugetlbfs ->mmap method fails,
  1186. * do_mmap_pgoff() nullifies vma->vm_file
  1187. * before calling this function to clean up.
  1188. * Since no pte has actually been setup, it is
  1189. * safe to do nothing in this case.
  1190. */
  1191. if (vma->vm_file) {
  1192. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1193. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1194. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1195. }
  1196. } else
  1197. unmap_page_range(tlb, vma, start, end, details);
  1198. }
  1199. }
  1200. /**
  1201. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1202. * @tlb: address of the caller's struct mmu_gather
  1203. * @vma: the starting vma
  1204. * @start_addr: virtual address at which to start unmapping
  1205. * @end_addr: virtual address at which to end unmapping
  1206. *
  1207. * Unmap all pages in the vma list.
  1208. *
  1209. * Only addresses between `start' and `end' will be unmapped.
  1210. *
  1211. * The VMA list must be sorted in ascending virtual address order.
  1212. *
  1213. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1214. * range after unmap_vmas() returns. So the only responsibility here is to
  1215. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1216. * drops the lock and schedules.
  1217. */
  1218. void unmap_vmas(struct mmu_gather *tlb,
  1219. struct vm_area_struct *vma, unsigned long start_addr,
  1220. unsigned long end_addr)
  1221. {
  1222. struct mm_struct *mm = vma->vm_mm;
  1223. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1224. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1225. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1226. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1227. }
  1228. /**
  1229. * zap_page_range - remove user pages in a given range
  1230. * @vma: vm_area_struct holding the applicable pages
  1231. * @start: starting address of pages to zap
  1232. * @size: number of bytes to zap
  1233. * @details: details of nonlinear truncation or shared cache invalidation
  1234. *
  1235. * Caller must protect the VMA list
  1236. */
  1237. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1238. unsigned long size, struct zap_details *details)
  1239. {
  1240. struct mm_struct *mm = vma->vm_mm;
  1241. struct mmu_gather tlb;
  1242. unsigned long end = start + size;
  1243. lru_add_drain();
  1244. tlb_gather_mmu(&tlb, mm, 0);
  1245. update_hiwater_rss(mm);
  1246. mmu_notifier_invalidate_range_start(mm, start, end);
  1247. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1248. unmap_single_vma(&tlb, vma, start, end, details);
  1249. mmu_notifier_invalidate_range_end(mm, start, end);
  1250. tlb_finish_mmu(&tlb, start, end);
  1251. }
  1252. /**
  1253. * zap_page_range_single - remove user pages in a given range
  1254. * @vma: vm_area_struct holding the applicable pages
  1255. * @address: starting address of pages to zap
  1256. * @size: number of bytes to zap
  1257. * @details: details of nonlinear truncation or shared cache invalidation
  1258. *
  1259. * The range must fit into one VMA.
  1260. */
  1261. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1262. unsigned long size, struct zap_details *details)
  1263. {
  1264. struct mm_struct *mm = vma->vm_mm;
  1265. struct mmu_gather tlb;
  1266. unsigned long end = address + size;
  1267. lru_add_drain();
  1268. tlb_gather_mmu(&tlb, mm, 0);
  1269. update_hiwater_rss(mm);
  1270. mmu_notifier_invalidate_range_start(mm, address, end);
  1271. unmap_single_vma(&tlb, vma, address, end, details);
  1272. mmu_notifier_invalidate_range_end(mm, address, end);
  1273. tlb_finish_mmu(&tlb, address, end);
  1274. }
  1275. /**
  1276. * zap_vma_ptes - remove ptes mapping the vma
  1277. * @vma: vm_area_struct holding ptes to be zapped
  1278. * @address: starting address of pages to zap
  1279. * @size: number of bytes to zap
  1280. *
  1281. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1282. *
  1283. * The entire address range must be fully contained within the vma.
  1284. *
  1285. * Returns 0 if successful.
  1286. */
  1287. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1288. unsigned long size)
  1289. {
  1290. if (address < vma->vm_start || address + size > vma->vm_end ||
  1291. !(vma->vm_flags & VM_PFNMAP))
  1292. return -1;
  1293. zap_page_range_single(vma, address, size, NULL);
  1294. return 0;
  1295. }
  1296. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1297. /**
  1298. * follow_page_mask - look up a page descriptor from a user-virtual address
  1299. * @vma: vm_area_struct mapping @address
  1300. * @address: virtual address to look up
  1301. * @flags: flags modifying lookup behaviour
  1302. * @page_mask: on output, *page_mask is set according to the size of the page
  1303. *
  1304. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1305. *
  1306. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1307. * an error pointer if there is a mapping to something not represented
  1308. * by a page descriptor (see also vm_normal_page()).
  1309. */
  1310. struct page *follow_page_mask(struct vm_area_struct *vma,
  1311. unsigned long address, unsigned int flags,
  1312. unsigned int *page_mask)
  1313. {
  1314. pgd_t *pgd;
  1315. pud_t *pud;
  1316. pmd_t *pmd;
  1317. pte_t *ptep, pte;
  1318. spinlock_t *ptl;
  1319. struct page *page;
  1320. struct mm_struct *mm = vma->vm_mm;
  1321. *page_mask = 0;
  1322. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1323. if (!IS_ERR(page)) {
  1324. BUG_ON(flags & FOLL_GET);
  1325. goto out;
  1326. }
  1327. page = NULL;
  1328. pgd = pgd_offset(mm, address);
  1329. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1330. goto no_page_table;
  1331. pud = pud_offset(pgd, address);
  1332. if (pud_none(*pud))
  1333. goto no_page_table;
  1334. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1335. BUG_ON(flags & FOLL_GET);
  1336. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1337. goto out;
  1338. }
  1339. if (unlikely(pud_bad(*pud)))
  1340. goto no_page_table;
  1341. pmd = pmd_offset(pud, address);
  1342. if (pmd_none(*pmd))
  1343. goto no_page_table;
  1344. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1345. BUG_ON(flags & FOLL_GET);
  1346. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1347. goto out;
  1348. }
  1349. if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
  1350. goto no_page_table;
  1351. if (pmd_trans_huge(*pmd)) {
  1352. if (flags & FOLL_SPLIT) {
  1353. split_huge_page_pmd(vma, address, pmd);
  1354. goto split_fallthrough;
  1355. }
  1356. spin_lock(&mm->page_table_lock);
  1357. if (likely(pmd_trans_huge(*pmd))) {
  1358. if (unlikely(pmd_trans_splitting(*pmd))) {
  1359. spin_unlock(&mm->page_table_lock);
  1360. wait_split_huge_page(vma->anon_vma, pmd);
  1361. } else {
  1362. page = follow_trans_huge_pmd(vma, address,
  1363. pmd, flags);
  1364. spin_unlock(&mm->page_table_lock);
  1365. *page_mask = HPAGE_PMD_NR - 1;
  1366. goto out;
  1367. }
  1368. } else
  1369. spin_unlock(&mm->page_table_lock);
  1370. /* fall through */
  1371. }
  1372. split_fallthrough:
  1373. if (unlikely(pmd_bad(*pmd)))
  1374. goto no_page_table;
  1375. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1376. pte = *ptep;
  1377. if (!pte_present(pte)) {
  1378. swp_entry_t entry;
  1379. /*
  1380. * KSM's break_ksm() relies upon recognizing a ksm page
  1381. * even while it is being migrated, so for that case we
  1382. * need migration_entry_wait().
  1383. */
  1384. if (likely(!(flags & FOLL_MIGRATION)))
  1385. goto no_page;
  1386. if (pte_none(pte) || pte_file(pte))
  1387. goto no_page;
  1388. entry = pte_to_swp_entry(pte);
  1389. if (!is_migration_entry(entry))
  1390. goto no_page;
  1391. pte_unmap_unlock(ptep, ptl);
  1392. migration_entry_wait(mm, pmd, address);
  1393. goto split_fallthrough;
  1394. }
  1395. if ((flags & FOLL_NUMA) && pte_numa(pte))
  1396. goto no_page;
  1397. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1398. goto unlock;
  1399. page = vm_normal_page(vma, address, pte);
  1400. if (unlikely(!page)) {
  1401. if ((flags & FOLL_DUMP) ||
  1402. !is_zero_pfn(pte_pfn(pte)))
  1403. goto bad_page;
  1404. page = pte_page(pte);
  1405. }
  1406. if (flags & FOLL_GET)
  1407. get_page_foll(page);
  1408. if (flags & FOLL_TOUCH) {
  1409. if ((flags & FOLL_WRITE) &&
  1410. !pte_dirty(pte) && !PageDirty(page))
  1411. set_page_dirty(page);
  1412. /*
  1413. * pte_mkyoung() would be more correct here, but atomic care
  1414. * is needed to avoid losing the dirty bit: it is easier to use
  1415. * mark_page_accessed().
  1416. */
  1417. mark_page_accessed(page);
  1418. }
  1419. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1420. /*
  1421. * The preliminary mapping check is mainly to avoid the
  1422. * pointless overhead of lock_page on the ZERO_PAGE
  1423. * which might bounce very badly if there is contention.
  1424. *
  1425. * If the page is already locked, we don't need to
  1426. * handle it now - vmscan will handle it later if and
  1427. * when it attempts to reclaim the page.
  1428. */
  1429. if (page->mapping && trylock_page(page)) {
  1430. lru_add_drain(); /* push cached pages to LRU */
  1431. /*
  1432. * Because we lock page here, and migration is
  1433. * blocked by the pte's page reference, and we
  1434. * know the page is still mapped, we don't even
  1435. * need to check for file-cache page truncation.
  1436. */
  1437. mlock_vma_page(page);
  1438. unlock_page(page);
  1439. }
  1440. }
  1441. unlock:
  1442. pte_unmap_unlock(ptep, ptl);
  1443. out:
  1444. return page;
  1445. bad_page:
  1446. pte_unmap_unlock(ptep, ptl);
  1447. return ERR_PTR(-EFAULT);
  1448. no_page:
  1449. pte_unmap_unlock(ptep, ptl);
  1450. if (!pte_none(pte))
  1451. return page;
  1452. no_page_table:
  1453. /*
  1454. * When core dumping an enormous anonymous area that nobody
  1455. * has touched so far, we don't want to allocate unnecessary pages or
  1456. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1457. * then get_dump_page() will return NULL to leave a hole in the dump.
  1458. * But we can only make this optimization where a hole would surely
  1459. * be zero-filled if handle_mm_fault() actually did handle it.
  1460. */
  1461. if ((flags & FOLL_DUMP) &&
  1462. (!vma->vm_ops || !vma->vm_ops->fault))
  1463. return ERR_PTR(-EFAULT);
  1464. return page;
  1465. }
  1466. static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
  1467. {
  1468. return stack_guard_page_start(vma, addr) ||
  1469. stack_guard_page_end(vma, addr+PAGE_SIZE);
  1470. }
  1471. /**
  1472. * __get_user_pages() - pin user pages in memory
  1473. * @tsk: task_struct of target task
  1474. * @mm: mm_struct of target mm
  1475. * @start: starting user address
  1476. * @nr_pages: number of pages from start to pin
  1477. * @gup_flags: flags modifying pin behaviour
  1478. * @pages: array that receives pointers to the pages pinned.
  1479. * Should be at least nr_pages long. Or NULL, if caller
  1480. * only intends to ensure the pages are faulted in.
  1481. * @vmas: array of pointers to vmas corresponding to each page.
  1482. * Or NULL if the caller does not require them.
  1483. * @nonblocking: whether waiting for disk IO or mmap_sem contention
  1484. *
  1485. * Returns number of pages pinned. This may be fewer than the number
  1486. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1487. * were pinned, returns -errno. Each page returned must be released
  1488. * with a put_page() call when it is finished with. vmas will only
  1489. * remain valid while mmap_sem is held.
  1490. *
  1491. * Must be called with mmap_sem held for read or write.
  1492. *
  1493. * __get_user_pages walks a process's page tables and takes a reference to
  1494. * each struct page that each user address corresponds to at a given
  1495. * instant. That is, it takes the page that would be accessed if a user
  1496. * thread accesses the given user virtual address at that instant.
  1497. *
  1498. * This does not guarantee that the page exists in the user mappings when
  1499. * __get_user_pages returns, and there may even be a completely different
  1500. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1501. * and subsequently re faulted). However it does guarantee that the page
  1502. * won't be freed completely. And mostly callers simply care that the page
  1503. * contains data that was valid *at some point in time*. Typically, an IO
  1504. * or similar operation cannot guarantee anything stronger anyway because
  1505. * locks can't be held over the syscall boundary.
  1506. *
  1507. * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
  1508. * the page is written to, set_page_dirty (or set_page_dirty_lock, as
  1509. * appropriate) must be called after the page is finished with, and
  1510. * before put_page is called.
  1511. *
  1512. * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
  1513. * or mmap_sem contention, and if waiting is needed to pin all pages,
  1514. * *@nonblocking will be set to 0.
  1515. *
  1516. * In most cases, get_user_pages or get_user_pages_fast should be used
  1517. * instead of __get_user_pages. __get_user_pages should be used only if
  1518. * you need some special @gup_flags.
  1519. */
  1520. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1521. unsigned long start, unsigned long nr_pages,
  1522. unsigned int gup_flags, struct page **pages,
  1523. struct vm_area_struct **vmas, int *nonblocking)
  1524. {
  1525. long i;
  1526. unsigned long vm_flags;
  1527. unsigned int page_mask;
  1528. if (!nr_pages)
  1529. return 0;
  1530. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1531. /*
  1532. * Require read or write permissions.
  1533. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1534. */
  1535. vm_flags = (gup_flags & FOLL_WRITE) ?
  1536. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1537. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1538. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1539. /*
  1540. * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
  1541. * would be called on PROT_NONE ranges. We must never invoke
  1542. * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
  1543. * page faults would unprotect the PROT_NONE ranges if
  1544. * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
  1545. * bitflag. So to avoid that, don't set FOLL_NUMA if
  1546. * FOLL_FORCE is set.
  1547. */
  1548. if (!(gup_flags & FOLL_FORCE))
  1549. gup_flags |= FOLL_NUMA;
  1550. i = 0;
  1551. do {
  1552. struct vm_area_struct *vma;
  1553. vma = find_extend_vma(mm, start);
  1554. if (!vma && in_gate_area(mm, start)) {
  1555. unsigned long pg = start & PAGE_MASK;
  1556. pgd_t *pgd;
  1557. pud_t *pud;
  1558. pmd_t *pmd;
  1559. pte_t *pte;
  1560. /* user gate pages are read-only */
  1561. if (gup_flags & FOLL_WRITE)
  1562. return i ? : -EFAULT;
  1563. if (pg > TASK_SIZE)
  1564. pgd = pgd_offset_k(pg);
  1565. else
  1566. pgd = pgd_offset_gate(mm, pg);
  1567. BUG_ON(pgd_none(*pgd));
  1568. pud = pud_offset(pgd, pg);
  1569. BUG_ON(pud_none(*pud));
  1570. pmd = pmd_offset(pud, pg);
  1571. if (pmd_none(*pmd))
  1572. return i ? : -EFAULT;
  1573. VM_BUG_ON(pmd_trans_huge(*pmd));
  1574. pte = pte_offset_map(pmd, pg);
  1575. if (pte_none(*pte)) {
  1576. pte_unmap(pte);
  1577. return i ? : -EFAULT;
  1578. }
  1579. vma = get_gate_vma(mm);
  1580. if (pages) {
  1581. struct page *page;
  1582. page = vm_normal_page(vma, start, *pte);
  1583. if (!page) {
  1584. if (!(gup_flags & FOLL_DUMP) &&
  1585. is_zero_pfn(pte_pfn(*pte)))
  1586. page = pte_page(*pte);
  1587. else {
  1588. pte_unmap(pte);
  1589. return i ? : -EFAULT;
  1590. }
  1591. }
  1592. pages[i] = page;
  1593. get_page(page);
  1594. }
  1595. pte_unmap(pte);
  1596. page_mask = 0;
  1597. goto next_page;
  1598. }
  1599. if (!vma ||
  1600. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1601. !(vm_flags & vma->vm_flags))
  1602. return i ? : -EFAULT;
  1603. if (is_vm_hugetlb_page(vma)) {
  1604. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1605. &start, &nr_pages, i, gup_flags);
  1606. continue;
  1607. }
  1608. do {
  1609. struct page *page;
  1610. unsigned int foll_flags = gup_flags;
  1611. unsigned int page_increm;
  1612. /*
  1613. * If we have a pending SIGKILL, don't keep faulting
  1614. * pages and potentially allocating memory.
  1615. */
  1616. if (unlikely(fatal_signal_pending(current)))
  1617. return i ? i : -ERESTARTSYS;
  1618. cond_resched();
  1619. while (!(page = follow_page_mask(vma, start,
  1620. foll_flags, &page_mask))) {
  1621. int ret;
  1622. unsigned int fault_flags = 0;
  1623. /* For mlock, just skip the stack guard page. */
  1624. if (foll_flags & FOLL_MLOCK) {
  1625. if (stack_guard_page(vma, start))
  1626. goto next_page;
  1627. }
  1628. if (foll_flags & FOLL_WRITE)
  1629. fault_flags |= FAULT_FLAG_WRITE;
  1630. if (nonblocking)
  1631. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1632. if (foll_flags & FOLL_NOWAIT)
  1633. fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
  1634. ret = handle_mm_fault(mm, vma, start,
  1635. fault_flags);
  1636. if (ret & VM_FAULT_ERROR) {
  1637. if (ret & VM_FAULT_OOM)
  1638. return i ? i : -ENOMEM;
  1639. if (ret & (VM_FAULT_HWPOISON |
  1640. VM_FAULT_HWPOISON_LARGE)) {
  1641. if (i)
  1642. return i;
  1643. else if (gup_flags & FOLL_HWPOISON)
  1644. return -EHWPOISON;
  1645. else
  1646. return -EFAULT;
  1647. }
  1648. if (ret & VM_FAULT_SIGBUS)
  1649. return i ? i : -EFAULT;
  1650. BUG();
  1651. }
  1652. if (tsk) {
  1653. if (ret & VM_FAULT_MAJOR)
  1654. tsk->maj_flt++;
  1655. else
  1656. tsk->min_flt++;
  1657. }
  1658. if (ret & VM_FAULT_RETRY) {
  1659. if (nonblocking)
  1660. *nonblocking = 0;
  1661. return i;
  1662. }
  1663. /*
  1664. * The VM_FAULT_WRITE bit tells us that
  1665. * do_wp_page has broken COW when necessary,
  1666. * even if maybe_mkwrite decided not to set
  1667. * pte_write. We can thus safely do subsequent
  1668. * page lookups as if they were reads. But only
  1669. * do so when looping for pte_write is futile:
  1670. * in some cases userspace may also be wanting
  1671. * to write to the gotten user page, which a
  1672. * read fault here might prevent (a readonly
  1673. * page might get reCOWed by userspace write).
  1674. */
  1675. if ((ret & VM_FAULT_WRITE) &&
  1676. !(vma->vm_flags & VM_WRITE))
  1677. foll_flags &= ~FOLL_WRITE;
  1678. cond_resched();
  1679. }
  1680. if (IS_ERR(page))
  1681. return i ? i : PTR_ERR(page);
  1682. if (pages) {
  1683. pages[i] = page;
  1684. flush_anon_page(vma, page, start);
  1685. flush_dcache_page(page);
  1686. page_mask = 0;
  1687. }
  1688. next_page:
  1689. if (vmas) {
  1690. vmas[i] = vma;
  1691. page_mask = 0;
  1692. }
  1693. page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
  1694. if (page_increm > nr_pages)
  1695. page_increm = nr_pages;
  1696. i += page_increm;
  1697. start += page_increm * PAGE_SIZE;
  1698. nr_pages -= page_increm;
  1699. } while (nr_pages && start < vma->vm_end);
  1700. } while (nr_pages);
  1701. return i;
  1702. }
  1703. EXPORT_SYMBOL(__get_user_pages);
  1704. /*
  1705. * fixup_user_fault() - manually resolve a user page fault
  1706. * @tsk: the task_struct to use for page fault accounting, or
  1707. * NULL if faults are not to be recorded.
  1708. * @mm: mm_struct of target mm
  1709. * @address: user address
  1710. * @fault_flags:flags to pass down to handle_mm_fault()
  1711. *
  1712. * This is meant to be called in the specific scenario where for locking reasons
  1713. * we try to access user memory in atomic context (within a pagefault_disable()
  1714. * section), this returns -EFAULT, and we want to resolve the user fault before
  1715. * trying again.
  1716. *
  1717. * Typically this is meant to be used by the futex code.
  1718. *
  1719. * The main difference with get_user_pages() is that this function will
  1720. * unconditionally call handle_mm_fault() which will in turn perform all the
  1721. * necessary SW fixup of the dirty and young bits in the PTE, while
  1722. * handle_mm_fault() only guarantees to update these in the struct page.
  1723. *
  1724. * This is important for some architectures where those bits also gate the
  1725. * access permission to the page because they are maintained in software. On
  1726. * such architectures, gup() will not be enough to make a subsequent access
  1727. * succeed.
  1728. *
  1729. * This should be called with the mm_sem held for read.
  1730. */
  1731. int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1732. unsigned long address, unsigned int fault_flags)
  1733. {
  1734. struct vm_area_struct *vma;
  1735. int ret;
  1736. vma = find_extend_vma(mm, address);
  1737. if (!vma || address < vma->vm_start)
  1738. return -EFAULT;
  1739. ret = handle_mm_fault(mm, vma, address, fault_flags);
  1740. if (ret & VM_FAULT_ERROR) {
  1741. if (ret & VM_FAULT_OOM)
  1742. return -ENOMEM;
  1743. if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  1744. return -EHWPOISON;
  1745. if (ret & VM_FAULT_SIGBUS)
  1746. return -EFAULT;
  1747. BUG();
  1748. }
  1749. if (tsk) {
  1750. if (ret & VM_FAULT_MAJOR)
  1751. tsk->maj_flt++;
  1752. else
  1753. tsk->min_flt++;
  1754. }
  1755. return 0;
  1756. }
  1757. /*
  1758. * get_user_pages() - pin user pages in memory
  1759. * @tsk: the task_struct to use for page fault accounting, or
  1760. * NULL if faults are not to be recorded.
  1761. * @mm: mm_struct of target mm
  1762. * @start: starting user address
  1763. * @nr_pages: number of pages from start to pin
  1764. * @write: whether pages will be written to by the caller
  1765. * @force: whether to force write access even if user mapping is
  1766. * readonly. This will result in the page being COWed even
  1767. * in MAP_SHARED mappings. You do not want this.
  1768. * @pages: array that receives pointers to the pages pinned.
  1769. * Should be at least nr_pages long. Or NULL, if caller
  1770. * only intends to ensure the pages are faulted in.
  1771. * @vmas: array of pointers to vmas corresponding to each page.
  1772. * Or NULL if the caller does not require them.
  1773. *
  1774. * Returns number of pages pinned. This may be fewer than the number
  1775. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1776. * were pinned, returns -errno. Each page returned must be released
  1777. * with a put_page() call when it is finished with. vmas will only
  1778. * remain valid while mmap_sem is held.
  1779. *
  1780. * Must be called with mmap_sem held for read or write.
  1781. *
  1782. * get_user_pages walks a process's page tables and takes a reference to
  1783. * each struct page that each user address corresponds to at a given
  1784. * instant. That is, it takes the page that would be accessed if a user
  1785. * thread accesses the given user virtual address at that instant.
  1786. *
  1787. * This does not guarantee that the page exists in the user mappings when
  1788. * get_user_pages returns, and there may even be a completely different
  1789. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1790. * and subsequently re faulted). However it does guarantee that the page
  1791. * won't be freed completely. And mostly callers simply care that the page
  1792. * contains data that was valid *at some point in time*. Typically, an IO
  1793. * or similar operation cannot guarantee anything stronger anyway because
  1794. * locks can't be held over the syscall boundary.
  1795. *
  1796. * If write=0, the page must not be written to. If the page is written to,
  1797. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1798. * after the page is finished with, and before put_page is called.
  1799. *
  1800. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1801. * handle on the memory by some means other than accesses via the user virtual
  1802. * addresses. The pages may be submitted for DMA to devices or accessed via
  1803. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1804. * use the correct cache flushing APIs.
  1805. *
  1806. * See also get_user_pages_fast, for performance critical applications.
  1807. */
  1808. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1809. unsigned long start, unsigned long nr_pages, int write,
  1810. int force, struct page **pages, struct vm_area_struct **vmas)
  1811. {
  1812. int flags = FOLL_TOUCH;
  1813. if (pages)
  1814. flags |= FOLL_GET;
  1815. if (write)
  1816. flags |= FOLL_WRITE;
  1817. if (force)
  1818. flags |= FOLL_FORCE;
  1819. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1820. NULL);
  1821. }
  1822. EXPORT_SYMBOL(get_user_pages);
  1823. /**
  1824. * get_dump_page() - pin user page in memory while writing it to core dump
  1825. * @addr: user address
  1826. *
  1827. * Returns struct page pointer of user page pinned for dump,
  1828. * to be freed afterwards by page_cache_release() or put_page().
  1829. *
  1830. * Returns NULL on any kind of failure - a hole must then be inserted into
  1831. * the corefile, to preserve alignment with its headers; and also returns
  1832. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1833. * allowing a hole to be left in the corefile to save diskspace.
  1834. *
  1835. * Called without mmap_sem, but after all other threads have been killed.
  1836. */
  1837. #ifdef CONFIG_ELF_CORE
  1838. struct page *get_dump_page(unsigned long addr)
  1839. {
  1840. struct vm_area_struct *vma;
  1841. struct page *page;
  1842. if (__get_user_pages(current, current->mm, addr, 1,
  1843. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1844. NULL) < 1)
  1845. return NULL;
  1846. flush_cache_page(vma, addr, page_to_pfn(page));
  1847. return page;
  1848. }
  1849. #endif /* CONFIG_ELF_CORE */
  1850. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1851. spinlock_t **ptl)
  1852. {
  1853. pgd_t * pgd = pgd_offset(mm, addr);
  1854. pud_t * pud = pud_alloc(mm, pgd, addr);
  1855. if (pud) {
  1856. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1857. if (pmd) {
  1858. VM_BUG_ON(pmd_trans_huge(*pmd));
  1859. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1860. }
  1861. }
  1862. return NULL;
  1863. }
  1864. /*
  1865. * This is the old fallback for page remapping.
  1866. *
  1867. * For historical reasons, it only allows reserved pages. Only
  1868. * old drivers should use this, and they needed to mark their
  1869. * pages reserved for the old functions anyway.
  1870. */
  1871. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1872. struct page *page, pgprot_t prot)
  1873. {
  1874. struct mm_struct *mm = vma->vm_mm;
  1875. int retval;
  1876. pte_t *pte;
  1877. spinlock_t *ptl;
  1878. retval = -EINVAL;
  1879. if (PageAnon(page))
  1880. goto out;
  1881. retval = -ENOMEM;
  1882. flush_dcache_page(page);
  1883. pte = get_locked_pte(mm, addr, &ptl);
  1884. if (!pte)
  1885. goto out;
  1886. retval = -EBUSY;
  1887. if (!pte_none(*pte))
  1888. goto out_unlock;
  1889. /* Ok, finally just insert the thing.. */
  1890. get_page(page);
  1891. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1892. page_add_file_rmap(page);
  1893. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1894. retval = 0;
  1895. pte_unmap_unlock(pte, ptl);
  1896. return retval;
  1897. out_unlock:
  1898. pte_unmap_unlock(pte, ptl);
  1899. out:
  1900. return retval;
  1901. }
  1902. /**
  1903. * vm_insert_page - insert single page into user vma
  1904. * @vma: user vma to map to
  1905. * @addr: target user address of this page
  1906. * @page: source kernel page
  1907. *
  1908. * This allows drivers to insert individual pages they've allocated
  1909. * into a user vma.
  1910. *
  1911. * The page has to be a nice clean _individual_ kernel allocation.
  1912. * If you allocate a compound page, you need to have marked it as
  1913. * such (__GFP_COMP), or manually just split the page up yourself
  1914. * (see split_page()).
  1915. *
  1916. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1917. * took an arbitrary page protection parameter. This doesn't allow
  1918. * that. Your vma protection will have to be set up correctly, which
  1919. * means that if you want a shared writable mapping, you'd better
  1920. * ask for a shared writable mapping!
  1921. *
  1922. * The page does not need to be reserved.
  1923. *
  1924. * Usually this function is called from f_op->mmap() handler
  1925. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1926. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1927. * function from other places, for example from page-fault handler.
  1928. */
  1929. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1930. struct page *page)
  1931. {
  1932. if (addr < vma->vm_start || addr >= vma->vm_end)
  1933. return -EFAULT;
  1934. if (!page_count(page))
  1935. return -EINVAL;
  1936. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1937. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1938. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1939. vma->vm_flags |= VM_MIXEDMAP;
  1940. }
  1941. return insert_page(vma, addr, page, vma->vm_page_prot);
  1942. }
  1943. EXPORT_SYMBOL(vm_insert_page);
  1944. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1945. unsigned long pfn, pgprot_t prot)
  1946. {
  1947. struct mm_struct *mm = vma->vm_mm;
  1948. int retval;
  1949. pte_t *pte, entry;
  1950. spinlock_t *ptl;
  1951. retval = -ENOMEM;
  1952. pte = get_locked_pte(mm, addr, &ptl);
  1953. if (!pte)
  1954. goto out;
  1955. retval = -EBUSY;
  1956. if (!pte_none(*pte))
  1957. goto out_unlock;
  1958. /* Ok, finally just insert the thing.. */
  1959. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1960. set_pte_at(mm, addr, pte, entry);
  1961. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1962. retval = 0;
  1963. out_unlock:
  1964. pte_unmap_unlock(pte, ptl);
  1965. out:
  1966. return retval;
  1967. }
  1968. /**
  1969. * vm_insert_pfn - insert single pfn into user vma
  1970. * @vma: user vma to map to
  1971. * @addr: target user address of this page
  1972. * @pfn: source kernel pfn
  1973. *
  1974. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1975. * they've allocated into a user vma. Same comments apply.
  1976. *
  1977. * This function should only be called from a vm_ops->fault handler, and
  1978. * in that case the handler should return NULL.
  1979. *
  1980. * vma cannot be a COW mapping.
  1981. *
  1982. * As this is called only for pages that do not currently exist, we
  1983. * do not need to flush old virtual caches or the TLB.
  1984. */
  1985. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1986. unsigned long pfn)
  1987. {
  1988. int ret;
  1989. pgprot_t pgprot = vma->vm_page_prot;
  1990. /*
  1991. * Technically, architectures with pte_special can avoid all these
  1992. * restrictions (same for remap_pfn_range). However we would like
  1993. * consistency in testing and feature parity among all, so we should
  1994. * try to keep these invariants in place for everybody.
  1995. */
  1996. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1997. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1998. (VM_PFNMAP|VM_MIXEDMAP));
  1999. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  2000. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  2001. if (addr < vma->vm_start || addr >= vma->vm_end)
  2002. return -EFAULT;
  2003. if (track_pfn_insert(vma, &pgprot, pfn))
  2004. return -EINVAL;
  2005. ret = insert_pfn(vma, addr, pfn, pgprot);
  2006. return ret;
  2007. }
  2008. EXPORT_SYMBOL(vm_insert_pfn);
  2009. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  2010. unsigned long pfn)
  2011. {
  2012. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  2013. if (addr < vma->vm_start || addr >= vma->vm_end)
  2014. return -EFAULT;
  2015. /*
  2016. * If we don't have pte special, then we have to use the pfn_valid()
  2017. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  2018. * refcount the page if pfn_valid is true (hence insert_page rather
  2019. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  2020. * without pte special, it would there be refcounted as a normal page.
  2021. */
  2022. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  2023. struct page *page;
  2024. page = pfn_to_page(pfn);
  2025. return insert_page(vma, addr, page, vma->vm_page_prot);
  2026. }
  2027. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  2028. }
  2029. EXPORT_SYMBOL(vm_insert_mixed);
  2030. /*
  2031. * maps a range of physical memory into the requested pages. the old
  2032. * mappings are removed. any references to nonexistent pages results
  2033. * in null mappings (currently treated as "copy-on-access")
  2034. */
  2035. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2036. unsigned long addr, unsigned long end,
  2037. unsigned long pfn, pgprot_t prot)
  2038. {
  2039. pte_t *pte;
  2040. spinlock_t *ptl;
  2041. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2042. if (!pte)
  2043. return -ENOMEM;
  2044. arch_enter_lazy_mmu_mode();
  2045. do {
  2046. BUG_ON(!pte_none(*pte));
  2047. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  2048. pfn++;
  2049. } while (pte++, addr += PAGE_SIZE, addr != end);
  2050. arch_leave_lazy_mmu_mode();
  2051. pte_unmap_unlock(pte - 1, ptl);
  2052. return 0;
  2053. }
  2054. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  2055. unsigned long addr, unsigned long end,
  2056. unsigned long pfn, pgprot_t prot)
  2057. {
  2058. pmd_t *pmd;
  2059. unsigned long next;
  2060. pfn -= addr >> PAGE_SHIFT;
  2061. pmd = pmd_alloc(mm, pud, addr);
  2062. if (!pmd)
  2063. return -ENOMEM;
  2064. VM_BUG_ON(pmd_trans_huge(*pmd));
  2065. do {
  2066. next = pmd_addr_end(addr, end);
  2067. if (remap_pte_range(mm, pmd, addr, next,
  2068. pfn + (addr >> PAGE_SHIFT), prot))
  2069. return -ENOMEM;
  2070. } while (pmd++, addr = next, addr != end);
  2071. return 0;
  2072. }
  2073. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2074. unsigned long addr, unsigned long end,
  2075. unsigned long pfn, pgprot_t prot)
  2076. {
  2077. pud_t *pud;
  2078. unsigned long next;
  2079. pfn -= addr >> PAGE_SHIFT;
  2080. pud = pud_alloc(mm, pgd, addr);
  2081. if (!pud)
  2082. return -ENOMEM;
  2083. do {
  2084. next = pud_addr_end(addr, end);
  2085. if (remap_pmd_range(mm, pud, addr, next,
  2086. pfn + (addr >> PAGE_SHIFT), prot))
  2087. return -ENOMEM;
  2088. } while (pud++, addr = next, addr != end);
  2089. return 0;
  2090. }
  2091. /**
  2092. * remap_pfn_range - remap kernel memory to userspace
  2093. * @vma: user vma to map to
  2094. * @addr: target user address to start at
  2095. * @pfn: physical address of kernel memory
  2096. * @size: size of map area
  2097. * @prot: page protection flags for this mapping
  2098. *
  2099. * Note: this is only safe if the mm semaphore is held when called.
  2100. */
  2101. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  2102. unsigned long pfn, unsigned long size, pgprot_t prot)
  2103. {
  2104. pgd_t *pgd;
  2105. unsigned long next;
  2106. unsigned long end = addr + PAGE_ALIGN(size);
  2107. struct mm_struct *mm = vma->vm_mm;
  2108. int err;
  2109. /*
  2110. * Physically remapped pages are special. Tell the
  2111. * rest of the world about it:
  2112. * VM_IO tells people not to look at these pages
  2113. * (accesses can have side effects).
  2114. * VM_PFNMAP tells the core MM that the base pages are just
  2115. * raw PFN mappings, and do not have a "struct page" associated
  2116. * with them.
  2117. * VM_DONTEXPAND
  2118. * Disable vma merging and expanding with mremap().
  2119. * VM_DONTDUMP
  2120. * Omit vma from core dump, even when VM_IO turned off.
  2121. *
  2122. * There's a horrible special case to handle copy-on-write
  2123. * behaviour that some programs depend on. We mark the "original"
  2124. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  2125. * See vm_normal_page() for details.
  2126. */
  2127. if (is_cow_mapping(vma->vm_flags)) {
  2128. if (addr != vma->vm_start || end != vma->vm_end)
  2129. return -EINVAL;
  2130. vma->vm_pgoff = pfn;
  2131. }
  2132. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  2133. if (err)
  2134. return -EINVAL;
  2135. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  2136. BUG_ON(addr >= end);
  2137. pfn -= addr >> PAGE_SHIFT;
  2138. pgd = pgd_offset(mm, addr);
  2139. flush_cache_range(vma, addr, end);
  2140. do {
  2141. next = pgd_addr_end(addr, end);
  2142. err = remap_pud_range(mm, pgd, addr, next,
  2143. pfn + (addr >> PAGE_SHIFT), prot);
  2144. if (err)
  2145. break;
  2146. } while (pgd++, addr = next, addr != end);
  2147. if (err)
  2148. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  2149. return err;
  2150. }
  2151. EXPORT_SYMBOL(remap_pfn_range);
  2152. /**
  2153. * vm_iomap_memory - remap memory to userspace
  2154. * @vma: user vma to map to
  2155. * @start: start of area
  2156. * @len: size of area
  2157. *
  2158. * This is a simplified io_remap_pfn_range() for common driver use. The
  2159. * driver just needs to give us the physical memory range to be mapped,
  2160. * we'll figure out the rest from the vma information.
  2161. *
  2162. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  2163. * whatever write-combining details or similar.
  2164. */
  2165. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  2166. {
  2167. unsigned long vm_len, pfn, pages;
  2168. /* Check that the physical memory area passed in looks valid */
  2169. if (start + len < start)
  2170. return -EINVAL;
  2171. /*
  2172. * You *really* shouldn't map things that aren't page-aligned,
  2173. * but we've historically allowed it because IO memory might
  2174. * just have smaller alignment.
  2175. */
  2176. len += start & ~PAGE_MASK;
  2177. pfn = start >> PAGE_SHIFT;
  2178. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  2179. if (pfn + pages < pfn)
  2180. return -EINVAL;
  2181. /* We start the mapping 'vm_pgoff' pages into the area */
  2182. if (vma->vm_pgoff > pages)
  2183. return -EINVAL;
  2184. pfn += vma->vm_pgoff;
  2185. pages -= vma->vm_pgoff;
  2186. /* Can we fit all of the mapping? */
  2187. vm_len = vma->vm_end - vma->vm_start;
  2188. if (vm_len >> PAGE_SHIFT > pages)
  2189. return -EINVAL;
  2190. /* Ok, let it rip */
  2191. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  2192. }
  2193. EXPORT_SYMBOL(vm_iomap_memory);
  2194. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2195. unsigned long addr, unsigned long end,
  2196. pte_fn_t fn, void *data)
  2197. {
  2198. pte_t *pte;
  2199. int err;
  2200. pgtable_t token;
  2201. spinlock_t *uninitialized_var(ptl);
  2202. pte = (mm == &init_mm) ?
  2203. pte_alloc_kernel(pmd, addr) :
  2204. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2205. if (!pte)
  2206. return -ENOMEM;
  2207. BUG_ON(pmd_huge(*pmd));
  2208. arch_enter_lazy_mmu_mode();
  2209. token = pmd_pgtable(*pmd);
  2210. do {
  2211. err = fn(pte++, token, addr, data);
  2212. if (err)
  2213. break;
  2214. } while (addr += PAGE_SIZE, addr != end);
  2215. arch_leave_lazy_mmu_mode();
  2216. if (mm != &init_mm)
  2217. pte_unmap_unlock(pte-1, ptl);
  2218. return err;
  2219. }
  2220. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  2221. unsigned long addr, unsigned long end,
  2222. pte_fn_t fn, void *data)
  2223. {
  2224. pmd_t *pmd;
  2225. unsigned long next;
  2226. int err;
  2227. BUG_ON(pud_huge(*pud));
  2228. pmd = pmd_alloc(mm, pud, addr);
  2229. if (!pmd)
  2230. return -ENOMEM;
  2231. do {
  2232. next = pmd_addr_end(addr, end);
  2233. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  2234. if (err)
  2235. break;
  2236. } while (pmd++, addr = next, addr != end);
  2237. return err;
  2238. }
  2239. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2240. unsigned long addr, unsigned long end,
  2241. pte_fn_t fn, void *data)
  2242. {
  2243. pud_t *pud;
  2244. unsigned long next;
  2245. int err;
  2246. pud = pud_alloc(mm, pgd, addr);
  2247. if (!pud)
  2248. return -ENOMEM;
  2249. do {
  2250. next = pud_addr_end(addr, end);
  2251. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  2252. if (err)
  2253. break;
  2254. } while (pud++, addr = next, addr != end);
  2255. return err;
  2256. }
  2257. /*
  2258. * Scan a region of virtual memory, filling in page tables as necessary
  2259. * and calling a provided function on each leaf page table.
  2260. */
  2261. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  2262. unsigned long size, pte_fn_t fn, void *data)
  2263. {
  2264. pgd_t *pgd;
  2265. unsigned long next;
  2266. unsigned long end = addr + size;
  2267. int err;
  2268. BUG_ON(addr >= end);
  2269. pgd = pgd_offset(mm, addr);
  2270. do {
  2271. next = pgd_addr_end(addr, end);
  2272. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  2273. if (err)
  2274. break;
  2275. } while (pgd++, addr = next, addr != end);
  2276. return err;
  2277. }
  2278. EXPORT_SYMBOL_GPL(apply_to_page_range);
  2279. /*
  2280. * handle_pte_fault chooses page fault handler according to an entry
  2281. * which was read non-atomically. Before making any commitment, on
  2282. * those architectures or configurations (e.g. i386 with PAE) which
  2283. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  2284. * must check under lock before unmapping the pte and proceeding
  2285. * (but do_wp_page is only called after already making such a check;
  2286. * and do_anonymous_page can safely check later on).
  2287. */
  2288. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  2289. pte_t *page_table, pte_t orig_pte)
  2290. {
  2291. int same = 1;
  2292. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  2293. if (sizeof(pte_t) > sizeof(unsigned long)) {
  2294. spinlock_t *ptl = pte_lockptr(mm, pmd);
  2295. spin_lock(ptl);
  2296. same = pte_same(*page_table, orig_pte);
  2297. spin_unlock(ptl);
  2298. }
  2299. #endif
  2300. pte_unmap(page_table);
  2301. return same;
  2302. }
  2303. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  2304. {
  2305. /*
  2306. * If the source page was a PFN mapping, we don't have
  2307. * a "struct page" for it. We do a best-effort copy by
  2308. * just copying from the original user address. If that
  2309. * fails, we just zero-fill it. Live with it.
  2310. */
  2311. if (unlikely(!src)) {
  2312. void *kaddr = kmap_atomic(dst);
  2313. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  2314. /*
  2315. * This really shouldn't fail, because the page is there
  2316. * in the page tables. But it might just be unreadable,
  2317. * in which case we just give up and fill the result with
  2318. * zeroes.
  2319. */
  2320. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  2321. clear_page(kaddr);
  2322. kunmap_atomic(kaddr);
  2323. flush_dcache_page(dst);
  2324. } else
  2325. copy_user_highpage(dst, src, va, vma);
  2326. }
  2327. /*
  2328. * This routine handles present pages, when users try to write
  2329. * to a shared page. It is done by copying the page to a new address
  2330. * and decrementing the shared-page counter for the old page.
  2331. *
  2332. * Note that this routine assumes that the protection checks have been
  2333. * done by the caller (the low-level page fault routine in most cases).
  2334. * Thus we can safely just mark it writable once we've done any necessary
  2335. * COW.
  2336. *
  2337. * We also mark the page dirty at this point even though the page will
  2338. * change only once the write actually happens. This avoids a few races,
  2339. * and potentially makes it more efficient.
  2340. *
  2341. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2342. * but allow concurrent faults), with pte both mapped and locked.
  2343. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2344. */
  2345. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2346. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2347. spinlock_t *ptl, pte_t orig_pte)
  2348. __releases(ptl)
  2349. {
  2350. struct page *old_page, *new_page = NULL;
  2351. pte_t entry;
  2352. int ret = 0;
  2353. int page_mkwrite = 0;
  2354. struct page *dirty_page = NULL;
  2355. unsigned long mmun_start = 0; /* For mmu_notifiers */
  2356. unsigned long mmun_end = 0; /* For mmu_notifiers */
  2357. old_page = vm_normal_page(vma, address, orig_pte);
  2358. if (!old_page) {
  2359. /*
  2360. * VM_MIXEDMAP !pfn_valid() case
  2361. *
  2362. * We should not cow pages in a shared writeable mapping.
  2363. * Just mark the pages writable as we can't do any dirty
  2364. * accounting on raw pfn maps.
  2365. */
  2366. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2367. (VM_WRITE|VM_SHARED))
  2368. goto reuse;
  2369. goto gotten;
  2370. }
  2371. /*
  2372. * Take out anonymous pages first, anonymous shared vmas are
  2373. * not dirty accountable.
  2374. */
  2375. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2376. if (!trylock_page(old_page)) {
  2377. page_cache_get(old_page);
  2378. pte_unmap_unlock(page_table, ptl);
  2379. lock_page(old_page);
  2380. page_table = pte_offset_map_lock(mm, pmd, address,
  2381. &ptl);
  2382. if (!pte_same(*page_table, orig_pte)) {
  2383. unlock_page(old_page);
  2384. goto unlock;
  2385. }
  2386. page_cache_release(old_page);
  2387. }
  2388. if (reuse_swap_page(old_page)) {
  2389. /*
  2390. * The page is all ours. Move it to our anon_vma so
  2391. * the rmap code will not search our parent or siblings.
  2392. * Protected against the rmap code by the page lock.
  2393. */
  2394. page_move_anon_rmap(old_page, vma, address);
  2395. unlock_page(old_page);
  2396. goto reuse;
  2397. }
  2398. unlock_page(old_page);
  2399. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2400. (VM_WRITE|VM_SHARED))) {
  2401. /*
  2402. * Only catch write-faults on shared writable pages,
  2403. * read-only shared pages can get COWed by
  2404. * get_user_pages(.write=1, .force=1).
  2405. */
  2406. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2407. struct vm_fault vmf;
  2408. int tmp;
  2409. vmf.virtual_address = (void __user *)(address &
  2410. PAGE_MASK);
  2411. vmf.pgoff = old_page->index;
  2412. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2413. vmf.page = old_page;
  2414. /*
  2415. * Notify the address space that the page is about to
  2416. * become writable so that it can prohibit this or wait
  2417. * for the page to get into an appropriate state.
  2418. *
  2419. * We do this without the lock held, so that it can
  2420. * sleep if it needs to.
  2421. */
  2422. page_cache_get(old_page);
  2423. pte_unmap_unlock(page_table, ptl);
  2424. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2425. if (unlikely(tmp &
  2426. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2427. ret = tmp;
  2428. goto unwritable_page;
  2429. }
  2430. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2431. lock_page(old_page);
  2432. if (!old_page->mapping) {
  2433. ret = 0; /* retry the fault */
  2434. unlock_page(old_page);
  2435. goto unwritable_page;
  2436. }
  2437. } else
  2438. VM_BUG_ON(!PageLocked(old_page));
  2439. /*
  2440. * Since we dropped the lock we need to revalidate
  2441. * the PTE as someone else may have changed it. If
  2442. * they did, we just return, as we can count on the
  2443. * MMU to tell us if they didn't also make it writable.
  2444. */
  2445. page_table = pte_offset_map_lock(mm, pmd, address,
  2446. &ptl);
  2447. if (!pte_same(*page_table, orig_pte)) {
  2448. unlock_page(old_page);
  2449. goto unlock;
  2450. }
  2451. page_mkwrite = 1;
  2452. }
  2453. dirty_page = old_page;
  2454. get_page(dirty_page);
  2455. reuse:
  2456. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2457. entry = pte_mkyoung(orig_pte);
  2458. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2459. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2460. update_mmu_cache(vma, address, page_table);
  2461. pte_unmap_unlock(page_table, ptl);
  2462. ret |= VM_FAULT_WRITE;
  2463. if (!dirty_page)
  2464. return ret;
  2465. /*
  2466. * Yes, Virginia, this is actually required to prevent a race
  2467. * with clear_page_dirty_for_io() from clearing the page dirty
  2468. * bit after it clear all dirty ptes, but before a racing
  2469. * do_wp_page installs a dirty pte.
  2470. *
  2471. * __do_fault is protected similarly.
  2472. */
  2473. if (!page_mkwrite) {
  2474. wait_on_page_locked(dirty_page);
  2475. set_page_dirty_balance(dirty_page, page_mkwrite);
  2476. /* file_update_time outside page_lock */
  2477. if (vma->vm_file)
  2478. file_update_time(vma->vm_file);
  2479. }
  2480. put_page(dirty_page);
  2481. if (page_mkwrite) {
  2482. struct address_space *mapping = dirty_page->mapping;
  2483. set_page_dirty(dirty_page);
  2484. unlock_page(dirty_page);
  2485. page_cache_release(dirty_page);
  2486. if (mapping) {
  2487. /*
  2488. * Some device drivers do not set page.mapping
  2489. * but still dirty their pages
  2490. */
  2491. balance_dirty_pages_ratelimited(mapping);
  2492. }
  2493. }
  2494. return ret;
  2495. }
  2496. /*
  2497. * Ok, we need to copy. Oh, well..
  2498. */
  2499. page_cache_get(old_page);
  2500. gotten:
  2501. pte_unmap_unlock(page_table, ptl);
  2502. if (unlikely(anon_vma_prepare(vma)))
  2503. goto oom;
  2504. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2505. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2506. if (!new_page)
  2507. goto oom;
  2508. } else {
  2509. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2510. if (!new_page)
  2511. goto oom;
  2512. cow_user_page(new_page, old_page, address, vma);
  2513. }
  2514. __SetPageUptodate(new_page);
  2515. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2516. goto oom_free_new;
  2517. mmun_start = address & PAGE_MASK;
  2518. mmun_end = mmun_start + PAGE_SIZE;
  2519. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2520. /*
  2521. * Re-check the pte - we dropped the lock
  2522. */
  2523. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2524. if (likely(pte_same(*page_table, orig_pte))) {
  2525. if (old_page) {
  2526. if (!PageAnon(old_page)) {
  2527. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2528. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2529. }
  2530. } else
  2531. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2532. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2533. entry = mk_pte(new_page, vma->vm_page_prot);
  2534. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2535. /*
  2536. * Clear the pte entry and flush it first, before updating the
  2537. * pte with the new entry. This will avoid a race condition
  2538. * seen in the presence of one thread doing SMC and another
  2539. * thread doing COW.
  2540. */
  2541. ptep_clear_flush(vma, address, page_table);
  2542. page_add_new_anon_rmap(new_page, vma, address);
  2543. /*
  2544. * We call the notify macro here because, when using secondary
  2545. * mmu page tables (such as kvm shadow page tables), we want the
  2546. * new page to be mapped directly into the secondary page table.
  2547. */
  2548. set_pte_at_notify(mm, address, page_table, entry);
  2549. update_mmu_cache(vma, address, page_table);
  2550. if (old_page) {
  2551. /*
  2552. * Only after switching the pte to the new page may
  2553. * we remove the mapcount here. Otherwise another
  2554. * process may come and find the rmap count decremented
  2555. * before the pte is switched to the new page, and
  2556. * "reuse" the old page writing into it while our pte
  2557. * here still points into it and can be read by other
  2558. * threads.
  2559. *
  2560. * The critical issue is to order this
  2561. * page_remove_rmap with the ptp_clear_flush above.
  2562. * Those stores are ordered by (if nothing else,)
  2563. * the barrier present in the atomic_add_negative
  2564. * in page_remove_rmap.
  2565. *
  2566. * Then the TLB flush in ptep_clear_flush ensures that
  2567. * no process can access the old page before the
  2568. * decremented mapcount is visible. And the old page
  2569. * cannot be reused until after the decremented
  2570. * mapcount is visible. So transitively, TLBs to
  2571. * old page will be flushed before it can be reused.
  2572. */
  2573. page_remove_rmap(old_page);
  2574. }
  2575. /* Free the old page.. */
  2576. new_page = old_page;
  2577. ret |= VM_FAULT_WRITE;
  2578. } else
  2579. mem_cgroup_uncharge_page(new_page);
  2580. if (new_page)
  2581. page_cache_release(new_page);
  2582. unlock:
  2583. pte_unmap_unlock(page_table, ptl);
  2584. if (mmun_end > mmun_start)
  2585. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2586. if (old_page) {
  2587. /*
  2588. * Don't let another task, with possibly unlocked vma,
  2589. * keep the mlocked page.
  2590. */
  2591. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2592. lock_page(old_page); /* LRU manipulation */
  2593. munlock_vma_page(old_page);
  2594. unlock_page(old_page);
  2595. }
  2596. page_cache_release(old_page);
  2597. }
  2598. return ret;
  2599. oom_free_new:
  2600. page_cache_release(new_page);
  2601. oom:
  2602. if (old_page)
  2603. page_cache_release(old_page);
  2604. return VM_FAULT_OOM;
  2605. unwritable_page:
  2606. page_cache_release(old_page);
  2607. return ret;
  2608. }
  2609. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2610. unsigned long start_addr, unsigned long end_addr,
  2611. struct zap_details *details)
  2612. {
  2613. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2614. }
  2615. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2616. struct zap_details *details)
  2617. {
  2618. struct vm_area_struct *vma;
  2619. pgoff_t vba, vea, zba, zea;
  2620. vma_interval_tree_foreach(vma, root,
  2621. details->first_index, details->last_index) {
  2622. vba = vma->vm_pgoff;
  2623. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2624. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2625. zba = details->first_index;
  2626. if (zba < vba)
  2627. zba = vba;
  2628. zea = details->last_index;
  2629. if (zea > vea)
  2630. zea = vea;
  2631. unmap_mapping_range_vma(vma,
  2632. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2633. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2634. details);
  2635. }
  2636. }
  2637. static inline void unmap_mapping_range_list(struct list_head *head,
  2638. struct zap_details *details)
  2639. {
  2640. struct vm_area_struct *vma;
  2641. /*
  2642. * In nonlinear VMAs there is no correspondence between virtual address
  2643. * offset and file offset. So we must perform an exhaustive search
  2644. * across *all* the pages in each nonlinear VMA, not just the pages
  2645. * whose virtual address lies outside the file truncation point.
  2646. */
  2647. list_for_each_entry(vma, head, shared.nonlinear) {
  2648. details->nonlinear_vma = vma;
  2649. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2650. }
  2651. }
  2652. /**
  2653. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2654. * @mapping: the address space containing mmaps to be unmapped.
  2655. * @holebegin: byte in first page to unmap, relative to the start of
  2656. * the underlying file. This will be rounded down to a PAGE_SIZE
  2657. * boundary. Note that this is different from truncate_pagecache(), which
  2658. * must keep the partial page. In contrast, we must get rid of
  2659. * partial pages.
  2660. * @holelen: size of prospective hole in bytes. This will be rounded
  2661. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2662. * end of the file.
  2663. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2664. * but 0 when invalidating pagecache, don't throw away private data.
  2665. */
  2666. void unmap_mapping_range(struct address_space *mapping,
  2667. loff_t const holebegin, loff_t const holelen, int even_cows)
  2668. {
  2669. struct zap_details details;
  2670. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2671. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2672. /* Check for overflow. */
  2673. if (sizeof(holelen) > sizeof(hlen)) {
  2674. long long holeend =
  2675. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2676. if (holeend & ~(long long)ULONG_MAX)
  2677. hlen = ULONG_MAX - hba + 1;
  2678. }
  2679. details.check_mapping = even_cows? NULL: mapping;
  2680. details.nonlinear_vma = NULL;
  2681. details.first_index = hba;
  2682. details.last_index = hba + hlen - 1;
  2683. if (details.last_index < details.first_index)
  2684. details.last_index = ULONG_MAX;
  2685. mutex_lock(&mapping->i_mmap_mutex);
  2686. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2687. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2688. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2689. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2690. mutex_unlock(&mapping->i_mmap_mutex);
  2691. }
  2692. EXPORT_SYMBOL(unmap_mapping_range);
  2693. /*
  2694. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2695. * but allow concurrent faults), and pte mapped but not yet locked.
  2696. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2697. */
  2698. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2699. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2700. unsigned int flags, pte_t orig_pte)
  2701. {
  2702. spinlock_t *ptl;
  2703. struct page *page, *swapcache;
  2704. swp_entry_t entry;
  2705. pte_t pte;
  2706. int locked;
  2707. struct mem_cgroup *ptr;
  2708. int exclusive = 0;
  2709. int ret = 0;
  2710. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2711. goto out;
  2712. entry = pte_to_swp_entry(orig_pte);
  2713. if (unlikely(non_swap_entry(entry))) {
  2714. if (is_migration_entry(entry)) {
  2715. migration_entry_wait(mm, pmd, address);
  2716. } else if (is_hwpoison_entry(entry)) {
  2717. ret = VM_FAULT_HWPOISON;
  2718. } else {
  2719. print_bad_pte(vma, address, orig_pte, NULL);
  2720. ret = VM_FAULT_SIGBUS;
  2721. }
  2722. goto out;
  2723. }
  2724. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2725. page = lookup_swap_cache(entry);
  2726. if (!page) {
  2727. page = swapin_readahead(entry,
  2728. GFP_HIGHUSER_MOVABLE, vma, address);
  2729. if (!page) {
  2730. /*
  2731. * Back out if somebody else faulted in this pte
  2732. * while we released the pte lock.
  2733. */
  2734. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2735. if (likely(pte_same(*page_table, orig_pte)))
  2736. ret = VM_FAULT_OOM;
  2737. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2738. goto unlock;
  2739. }
  2740. /* Had to read the page from swap area: Major fault */
  2741. ret = VM_FAULT_MAJOR;
  2742. count_vm_event(PGMAJFAULT);
  2743. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2744. } else if (PageHWPoison(page)) {
  2745. /*
  2746. * hwpoisoned dirty swapcache pages are kept for killing
  2747. * owner processes (which may be unknown at hwpoison time)
  2748. */
  2749. ret = VM_FAULT_HWPOISON;
  2750. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2751. swapcache = page;
  2752. goto out_release;
  2753. }
  2754. swapcache = page;
  2755. locked = lock_page_or_retry(page, mm, flags);
  2756. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2757. if (!locked) {
  2758. ret |= VM_FAULT_RETRY;
  2759. goto out_release;
  2760. }
  2761. /*
  2762. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2763. * release the swapcache from under us. The page pin, and pte_same
  2764. * test below, are not enough to exclude that. Even if it is still
  2765. * swapcache, we need to check that the page's swap has not changed.
  2766. */
  2767. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2768. goto out_page;
  2769. page = ksm_might_need_to_copy(page, vma, address);
  2770. if (unlikely(!page)) {
  2771. ret = VM_FAULT_OOM;
  2772. page = swapcache;
  2773. goto out_page;
  2774. }
  2775. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2776. ret = VM_FAULT_OOM;
  2777. goto out_page;
  2778. }
  2779. /*
  2780. * Back out if somebody else already faulted in this pte.
  2781. */
  2782. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2783. if (unlikely(!pte_same(*page_table, orig_pte)))
  2784. goto out_nomap;
  2785. if (unlikely(!PageUptodate(page))) {
  2786. ret = VM_FAULT_SIGBUS;
  2787. goto out_nomap;
  2788. }
  2789. /*
  2790. * The page isn't present yet, go ahead with the fault.
  2791. *
  2792. * Be careful about the sequence of operations here.
  2793. * To get its accounting right, reuse_swap_page() must be called
  2794. * while the page is counted on swap but not yet in mapcount i.e.
  2795. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2796. * must be called after the swap_free(), or it will never succeed.
  2797. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2798. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2799. * in page->private. In this case, a record in swap_cgroup is silently
  2800. * discarded at swap_free().
  2801. */
  2802. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2803. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2804. pte = mk_pte(page, vma->vm_page_prot);
  2805. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2806. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2807. flags &= ~FAULT_FLAG_WRITE;
  2808. ret |= VM_FAULT_WRITE;
  2809. exclusive = 1;
  2810. }
  2811. flush_icache_page(vma, page);
  2812. set_pte_at(mm, address, page_table, pte);
  2813. if (page == swapcache)
  2814. do_page_add_anon_rmap(page, vma, address, exclusive);
  2815. else /* ksm created a completely new copy */
  2816. page_add_new_anon_rmap(page, vma, address);
  2817. /* It's better to call commit-charge after rmap is established */
  2818. mem_cgroup_commit_charge_swapin(page, ptr);
  2819. swap_free(entry);
  2820. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2821. try_to_free_swap(page);
  2822. unlock_page(page);
  2823. if (page != swapcache) {
  2824. /*
  2825. * Hold the lock to avoid the swap entry to be reused
  2826. * until we take the PT lock for the pte_same() check
  2827. * (to avoid false positives from pte_same). For
  2828. * further safety release the lock after the swap_free
  2829. * so that the swap count won't change under a
  2830. * parallel locked swapcache.
  2831. */
  2832. unlock_page(swapcache);
  2833. page_cache_release(swapcache);
  2834. }
  2835. if (flags & FAULT_FLAG_WRITE) {
  2836. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2837. if (ret & VM_FAULT_ERROR)
  2838. ret &= VM_FAULT_ERROR;
  2839. goto out;
  2840. }
  2841. /* No need to invalidate - it was non-present before */
  2842. update_mmu_cache(vma, address, page_table);
  2843. unlock:
  2844. pte_unmap_unlock(page_table, ptl);
  2845. out:
  2846. return ret;
  2847. out_nomap:
  2848. mem_cgroup_cancel_charge_swapin(ptr);
  2849. pte_unmap_unlock(page_table, ptl);
  2850. out_page:
  2851. unlock_page(page);
  2852. out_release:
  2853. page_cache_release(page);
  2854. if (page != swapcache) {
  2855. unlock_page(swapcache);
  2856. page_cache_release(swapcache);
  2857. }
  2858. return ret;
  2859. }
  2860. /*
  2861. * This is like a special single-page "expand_{down|up}wards()",
  2862. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2863. * doesn't hit another vma.
  2864. */
  2865. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2866. {
  2867. address &= PAGE_MASK;
  2868. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2869. struct vm_area_struct *prev = vma->vm_prev;
  2870. /*
  2871. * Is there a mapping abutting this one below?
  2872. *
  2873. * That's only ok if it's the same stack mapping
  2874. * that has gotten split..
  2875. */
  2876. if (prev && prev->vm_end == address)
  2877. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2878. expand_downwards(vma, address - PAGE_SIZE);
  2879. }
  2880. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2881. struct vm_area_struct *next = vma->vm_next;
  2882. /* As VM_GROWSDOWN but s/below/above/ */
  2883. if (next && next->vm_start == address + PAGE_SIZE)
  2884. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2885. expand_upwards(vma, address + PAGE_SIZE);
  2886. }
  2887. return 0;
  2888. }
  2889. /*
  2890. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2891. * but allow concurrent faults), and pte mapped but not yet locked.
  2892. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2893. */
  2894. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2895. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2896. unsigned int flags)
  2897. {
  2898. struct page *page;
  2899. spinlock_t *ptl;
  2900. pte_t entry;
  2901. pte_unmap(page_table);
  2902. /* Check if we need to add a guard page to the stack */
  2903. if (check_stack_guard_page(vma, address) < 0)
  2904. return VM_FAULT_SIGBUS;
  2905. /* Use the zero-page for reads */
  2906. if (!(flags & FAULT_FLAG_WRITE)) {
  2907. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2908. vma->vm_page_prot));
  2909. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2910. if (!pte_none(*page_table))
  2911. goto unlock;
  2912. goto setpte;
  2913. }
  2914. /* Allocate our own private page. */
  2915. if (unlikely(anon_vma_prepare(vma)))
  2916. goto oom;
  2917. page = alloc_zeroed_user_highpage_movable(vma, address);
  2918. if (!page)
  2919. goto oom;
  2920. __SetPageUptodate(page);
  2921. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2922. goto oom_free_page;
  2923. entry = mk_pte(page, vma->vm_page_prot);
  2924. if (vma->vm_flags & VM_WRITE)
  2925. entry = pte_mkwrite(pte_mkdirty(entry));
  2926. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2927. if (!pte_none(*page_table))
  2928. goto release;
  2929. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2930. page_add_new_anon_rmap(page, vma, address);
  2931. setpte:
  2932. set_pte_at(mm, address, page_table, entry);
  2933. /* No need to invalidate - it was non-present before */
  2934. update_mmu_cache(vma, address, page_table);
  2935. unlock:
  2936. pte_unmap_unlock(page_table, ptl);
  2937. return 0;
  2938. release:
  2939. mem_cgroup_uncharge_page(page);
  2940. page_cache_release(page);
  2941. goto unlock;
  2942. oom_free_page:
  2943. page_cache_release(page);
  2944. oom:
  2945. return VM_FAULT_OOM;
  2946. }
  2947. /*
  2948. * __do_fault() tries to create a new page mapping. It aggressively
  2949. * tries to share with existing pages, but makes a separate copy if
  2950. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2951. * the next page fault.
  2952. *
  2953. * As this is called only for pages that do not currently exist, we
  2954. * do not need to flush old virtual caches or the TLB.
  2955. *
  2956. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2957. * but allow concurrent faults), and pte neither mapped nor locked.
  2958. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2959. */
  2960. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2961. unsigned long address, pmd_t *pmd,
  2962. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2963. {
  2964. pte_t *page_table;
  2965. spinlock_t *ptl;
  2966. struct page *page;
  2967. struct page *cow_page;
  2968. pte_t entry;
  2969. int anon = 0;
  2970. struct page *dirty_page = NULL;
  2971. struct vm_fault vmf;
  2972. int ret;
  2973. int page_mkwrite = 0;
  2974. /*
  2975. * If we do COW later, allocate page befor taking lock_page()
  2976. * on the file cache page. This will reduce lock holding time.
  2977. */
  2978. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2979. if (unlikely(anon_vma_prepare(vma)))
  2980. return VM_FAULT_OOM;
  2981. cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2982. if (!cow_page)
  2983. return VM_FAULT_OOM;
  2984. if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
  2985. page_cache_release(cow_page);
  2986. return VM_FAULT_OOM;
  2987. }
  2988. } else
  2989. cow_page = NULL;
  2990. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2991. vmf.pgoff = pgoff;
  2992. vmf.flags = flags;
  2993. vmf.page = NULL;
  2994. ret = vma->vm_ops->fault(vma, &vmf);
  2995. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2996. VM_FAULT_RETRY)))
  2997. goto uncharge_out;
  2998. if (unlikely(PageHWPoison(vmf.page))) {
  2999. if (ret & VM_FAULT_LOCKED)
  3000. unlock_page(vmf.page);
  3001. ret = VM_FAULT_HWPOISON;
  3002. goto uncharge_out;
  3003. }
  3004. /*
  3005. * For consistency in subsequent calls, make the faulted page always
  3006. * locked.
  3007. */
  3008. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  3009. lock_page(vmf.page);
  3010. else
  3011. VM_BUG_ON(!PageLocked(vmf.page));
  3012. /*
  3013. * Should we do an early C-O-W break?
  3014. */
  3015. page = vmf.page;
  3016. if (flags & FAULT_FLAG_WRITE) {
  3017. if (!(vma->vm_flags & VM_SHARED)) {
  3018. page = cow_page;
  3019. anon = 1;
  3020. copy_user_highpage(page, vmf.page, address, vma);
  3021. __SetPageUptodate(page);
  3022. } else {
  3023. /*
  3024. * If the page will be shareable, see if the backing
  3025. * address space wants to know that the page is about
  3026. * to become writable
  3027. */
  3028. if (vma->vm_ops->page_mkwrite) {
  3029. int tmp;
  3030. unlock_page(page);
  3031. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  3032. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  3033. if (unlikely(tmp &
  3034. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  3035. ret = tmp;
  3036. goto unwritable_page;
  3037. }
  3038. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  3039. lock_page(page);
  3040. if (!page->mapping) {
  3041. ret = 0; /* retry the fault */
  3042. unlock_page(page);
  3043. goto unwritable_page;
  3044. }
  3045. } else
  3046. VM_BUG_ON(!PageLocked(page));
  3047. page_mkwrite = 1;
  3048. }
  3049. }
  3050. }
  3051. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  3052. /*
  3053. * This silly early PAGE_DIRTY setting removes a race
  3054. * due to the bad i386 page protection. But it's valid
  3055. * for other architectures too.
  3056. *
  3057. * Note that if FAULT_FLAG_WRITE is set, we either now have
  3058. * an exclusive copy of the page, or this is a shared mapping,
  3059. * so we can make it writable and dirty to avoid having to
  3060. * handle that later.
  3061. */
  3062. /* Only go through if we didn't race with anybody else... */
  3063. if (likely(pte_same(*page_table, orig_pte))) {
  3064. flush_icache_page(vma, page);
  3065. entry = mk_pte(page, vma->vm_page_prot);
  3066. if (flags & FAULT_FLAG_WRITE)
  3067. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  3068. if (anon) {
  3069. inc_mm_counter_fast(mm, MM_ANONPAGES);
  3070. page_add_new_anon_rmap(page, vma, address);
  3071. } else {
  3072. inc_mm_counter_fast(mm, MM_FILEPAGES);
  3073. page_add_file_rmap(page);
  3074. if (flags & FAULT_FLAG_WRITE) {
  3075. dirty_page = page;
  3076. get_page(dirty_page);
  3077. }
  3078. }
  3079. set_pte_at(mm, address, page_table, entry);
  3080. /* no need to invalidate: a not-present page won't be cached */
  3081. update_mmu_cache(vma, address, page_table);
  3082. } else {
  3083. if (cow_page)
  3084. mem_cgroup_uncharge_page(cow_page);
  3085. if (anon)
  3086. page_cache_release(page);
  3087. else
  3088. anon = 1; /* no anon but release faulted_page */
  3089. }
  3090. pte_unmap_unlock(page_table, ptl);
  3091. if (dirty_page) {
  3092. struct address_space *mapping = page->mapping;
  3093. int dirtied = 0;
  3094. if (set_page_dirty(dirty_page))
  3095. dirtied = 1;
  3096. unlock_page(dirty_page);
  3097. put_page(dirty_page);
  3098. if ((dirtied || page_mkwrite) && mapping) {
  3099. /*
  3100. * Some device drivers do not set page.mapping but still
  3101. * dirty their pages
  3102. */
  3103. balance_dirty_pages_ratelimited(mapping);
  3104. }
  3105. /* file_update_time outside page_lock */
  3106. if (vma->vm_file && !page_mkwrite)
  3107. file_update_time(vma->vm_file);
  3108. } else {
  3109. unlock_page(vmf.page);
  3110. if (anon)
  3111. page_cache_release(vmf.page);
  3112. }
  3113. return ret;
  3114. unwritable_page:
  3115. page_cache_release(page);
  3116. return ret;
  3117. uncharge_out:
  3118. /* fs's fault handler get error */
  3119. if (cow_page) {
  3120. mem_cgroup_uncharge_page(cow_page);
  3121. page_cache_release(cow_page);
  3122. }
  3123. return ret;
  3124. }
  3125. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3126. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3127. unsigned int flags, pte_t orig_pte)
  3128. {
  3129. pgoff_t pgoff = (((address & PAGE_MASK)
  3130. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  3131. pte_unmap(page_table);
  3132. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3133. }
  3134. /*
  3135. * Fault of a previously existing named mapping. Repopulate the pte
  3136. * from the encoded file_pte if possible. This enables swappable
  3137. * nonlinear vmas.
  3138. *
  3139. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3140. * but allow concurrent faults), and pte mapped but not yet locked.
  3141. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3142. */
  3143. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3144. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3145. unsigned int flags, pte_t orig_pte)
  3146. {
  3147. pgoff_t pgoff;
  3148. flags |= FAULT_FLAG_NONLINEAR;
  3149. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  3150. return 0;
  3151. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  3152. /*
  3153. * Page table corrupted: show pte and kill process.
  3154. */
  3155. print_bad_pte(vma, address, orig_pte, NULL);
  3156. return VM_FAULT_SIGBUS;
  3157. }
  3158. pgoff = pte_to_pgoff(orig_pte);
  3159. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3160. }
  3161. int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  3162. unsigned long addr, int current_nid)
  3163. {
  3164. get_page(page);
  3165. count_vm_numa_event(NUMA_HINT_FAULTS);
  3166. if (current_nid == numa_node_id())
  3167. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  3168. return mpol_misplaced(page, vma, addr);
  3169. }
  3170. int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3171. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  3172. {
  3173. struct page *page = NULL;
  3174. spinlock_t *ptl;
  3175. int current_nid = -1;
  3176. int target_nid;
  3177. bool migrated = false;
  3178. /*
  3179. * The "pte" at this point cannot be used safely without
  3180. * validation through pte_unmap_same(). It's of NUMA type but
  3181. * the pfn may be screwed if the read is non atomic.
  3182. *
  3183. * ptep_modify_prot_start is not called as this is clearing
  3184. * the _PAGE_NUMA bit and it is not really expected that there
  3185. * would be concurrent hardware modifications to the PTE.
  3186. */
  3187. ptl = pte_lockptr(mm, pmd);
  3188. spin_lock(ptl);
  3189. if (unlikely(!pte_same(*ptep, pte))) {
  3190. pte_unmap_unlock(ptep, ptl);
  3191. goto out;
  3192. }
  3193. pte = pte_mknonnuma(pte);
  3194. set_pte_at(mm, addr, ptep, pte);
  3195. update_mmu_cache(vma, addr, ptep);
  3196. page = vm_normal_page(vma, addr, pte);
  3197. if (!page) {
  3198. pte_unmap_unlock(ptep, ptl);
  3199. return 0;
  3200. }
  3201. current_nid = page_to_nid(page);
  3202. target_nid = numa_migrate_prep(page, vma, addr, current_nid);
  3203. pte_unmap_unlock(ptep, ptl);
  3204. if (target_nid == -1) {
  3205. /*
  3206. * Account for the fault against the current node if it not
  3207. * being replaced regardless of where the page is located.
  3208. */
  3209. current_nid = numa_node_id();
  3210. put_page(page);
  3211. goto out;
  3212. }
  3213. /* Migrate to the requested node */
  3214. migrated = migrate_misplaced_page(page, target_nid);
  3215. if (migrated)
  3216. current_nid = target_nid;
  3217. out:
  3218. if (current_nid != -1)
  3219. task_numa_fault(current_nid, 1, migrated);
  3220. return 0;
  3221. }
  3222. /* NUMA hinting page fault entry point for regular pmds */
  3223. #ifdef CONFIG_NUMA_BALANCING
  3224. static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3225. unsigned long addr, pmd_t *pmdp)
  3226. {
  3227. pmd_t pmd;
  3228. pte_t *pte, *orig_pte;
  3229. unsigned long _addr = addr & PMD_MASK;
  3230. unsigned long offset;
  3231. spinlock_t *ptl;
  3232. bool numa = false;
  3233. int local_nid = numa_node_id();
  3234. spin_lock(&mm->page_table_lock);
  3235. pmd = *pmdp;
  3236. if (pmd_numa(pmd)) {
  3237. set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
  3238. numa = true;
  3239. }
  3240. spin_unlock(&mm->page_table_lock);
  3241. if (!numa)
  3242. return 0;
  3243. /* we're in a page fault so some vma must be in the range */
  3244. BUG_ON(!vma);
  3245. BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
  3246. offset = max(_addr, vma->vm_start) & ~PMD_MASK;
  3247. VM_BUG_ON(offset >= PMD_SIZE);
  3248. orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
  3249. pte += offset >> PAGE_SHIFT;
  3250. for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
  3251. pte_t pteval = *pte;
  3252. struct page *page;
  3253. int curr_nid = local_nid;
  3254. int target_nid;
  3255. bool migrated;
  3256. if (!pte_present(pteval))
  3257. continue;
  3258. if (!pte_numa(pteval))
  3259. continue;
  3260. if (addr >= vma->vm_end) {
  3261. vma = find_vma(mm, addr);
  3262. /* there's a pte present so there must be a vma */
  3263. BUG_ON(!vma);
  3264. BUG_ON(addr < vma->vm_start);
  3265. }
  3266. if (pte_numa(pteval)) {
  3267. pteval = pte_mknonnuma(pteval);
  3268. set_pte_at(mm, addr, pte, pteval);
  3269. }
  3270. page = vm_normal_page(vma, addr, pteval);
  3271. if (unlikely(!page))
  3272. continue;
  3273. /* only check non-shared pages */
  3274. if (unlikely(page_mapcount(page) != 1))
  3275. continue;
  3276. /*
  3277. * Note that the NUMA fault is later accounted to either
  3278. * the node that is currently running or where the page is
  3279. * migrated to.
  3280. */
  3281. curr_nid = local_nid;
  3282. target_nid = numa_migrate_prep(page, vma, addr,
  3283. page_to_nid(page));
  3284. if (target_nid == -1) {
  3285. put_page(page);
  3286. continue;
  3287. }
  3288. /* Migrate to the requested node */
  3289. pte_unmap_unlock(pte, ptl);
  3290. migrated = migrate_misplaced_page(page, target_nid);
  3291. if (migrated)
  3292. curr_nid = target_nid;
  3293. task_numa_fault(curr_nid, 1, migrated);
  3294. pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
  3295. }
  3296. pte_unmap_unlock(orig_pte, ptl);
  3297. return 0;
  3298. }
  3299. #else
  3300. static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3301. unsigned long addr, pmd_t *pmdp)
  3302. {
  3303. BUG();
  3304. return 0;
  3305. }
  3306. #endif /* CONFIG_NUMA_BALANCING */
  3307. /*
  3308. * These routines also need to handle stuff like marking pages dirty
  3309. * and/or accessed for architectures that don't do it in hardware (most
  3310. * RISC architectures). The early dirtying is also good on the i386.
  3311. *
  3312. * There is also a hook called "update_mmu_cache()" that architectures
  3313. * with external mmu caches can use to update those (ie the Sparc or
  3314. * PowerPC hashed page tables that act as extended TLBs).
  3315. *
  3316. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3317. * but allow concurrent faults), and pte mapped but not yet locked.
  3318. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3319. */
  3320. int handle_pte_fault(struct mm_struct *mm,
  3321. struct vm_area_struct *vma, unsigned long address,
  3322. pte_t *pte, pmd_t *pmd, unsigned int flags)
  3323. {
  3324. pte_t entry;
  3325. spinlock_t *ptl;
  3326. entry = *pte;
  3327. if (!pte_present(entry)) {
  3328. if (pte_none(entry)) {
  3329. if (vma->vm_ops) {
  3330. if (likely(vma->vm_ops->fault))
  3331. return do_linear_fault(mm, vma, address,
  3332. pte, pmd, flags, entry);
  3333. }
  3334. return do_anonymous_page(mm, vma, address,
  3335. pte, pmd, flags);
  3336. }
  3337. if (pte_file(entry))
  3338. return do_nonlinear_fault(mm, vma, address,
  3339. pte, pmd, flags, entry);
  3340. return do_swap_page(mm, vma, address,
  3341. pte, pmd, flags, entry);
  3342. }
  3343. if (pte_numa(entry))
  3344. return do_numa_page(mm, vma, address, entry, pte, pmd);
  3345. ptl = pte_lockptr(mm, pmd);
  3346. spin_lock(ptl);
  3347. if (unlikely(!pte_same(*pte, entry)))
  3348. goto unlock;
  3349. if (flags & FAULT_FLAG_WRITE) {
  3350. if (!pte_write(entry))
  3351. return do_wp_page(mm, vma, address,
  3352. pte, pmd, ptl, entry);
  3353. entry = pte_mkdirty(entry);
  3354. }
  3355. entry = pte_mkyoung(entry);
  3356. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  3357. update_mmu_cache(vma, address, pte);
  3358. } else {
  3359. /*
  3360. * This is needed only for protection faults but the arch code
  3361. * is not yet telling us if this is a protection fault or not.
  3362. * This still avoids useless tlb flushes for .text page faults
  3363. * with threads.
  3364. */
  3365. if (flags & FAULT_FLAG_WRITE)
  3366. flush_tlb_fix_spurious_fault(vma, address);
  3367. }
  3368. unlock:
  3369. pte_unmap_unlock(pte, ptl);
  3370. return 0;
  3371. }
  3372. /*
  3373. * By the time we get here, we already hold the mm semaphore
  3374. */
  3375. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3376. unsigned long address, unsigned int flags)
  3377. {
  3378. pgd_t *pgd;
  3379. pud_t *pud;
  3380. pmd_t *pmd;
  3381. pte_t *pte;
  3382. __set_current_state(TASK_RUNNING);
  3383. count_vm_event(PGFAULT);
  3384. mem_cgroup_count_vm_event(mm, PGFAULT);
  3385. /* do counter updates before entering really critical section. */
  3386. check_sync_rss_stat(current);
  3387. if (unlikely(is_vm_hugetlb_page(vma)))
  3388. return hugetlb_fault(mm, vma, address, flags);
  3389. retry:
  3390. pgd = pgd_offset(mm, address);
  3391. pud = pud_alloc(mm, pgd, address);
  3392. if (!pud)
  3393. return VM_FAULT_OOM;
  3394. pmd = pmd_alloc(mm, pud, address);
  3395. if (!pmd)
  3396. return VM_FAULT_OOM;
  3397. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3398. if (!vma->vm_ops)
  3399. return do_huge_pmd_anonymous_page(mm, vma, address,
  3400. pmd, flags);
  3401. } else {
  3402. pmd_t orig_pmd = *pmd;
  3403. int ret;
  3404. barrier();
  3405. if (pmd_trans_huge(orig_pmd)) {
  3406. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  3407. /*
  3408. * If the pmd is splitting, return and retry the
  3409. * the fault. Alternative: wait until the split
  3410. * is done, and goto retry.
  3411. */
  3412. if (pmd_trans_splitting(orig_pmd))
  3413. return 0;
  3414. if (pmd_numa(orig_pmd))
  3415. return do_huge_pmd_numa_page(mm, vma, address,
  3416. orig_pmd, pmd);
  3417. if (dirty && !pmd_write(orig_pmd)) {
  3418. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  3419. orig_pmd);
  3420. /*
  3421. * If COW results in an oom, the huge pmd will
  3422. * have been split, so retry the fault on the
  3423. * pte for a smaller charge.
  3424. */
  3425. if (unlikely(ret & VM_FAULT_OOM))
  3426. goto retry;
  3427. return ret;
  3428. } else {
  3429. huge_pmd_set_accessed(mm, vma, address, pmd,
  3430. orig_pmd, dirty);
  3431. }
  3432. return 0;
  3433. }
  3434. }
  3435. if (pmd_numa(*pmd))
  3436. return do_pmd_numa_page(mm, vma, address, pmd);
  3437. /*
  3438. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3439. * run pte_offset_map on the pmd, if an huge pmd could
  3440. * materialize from under us from a different thread.
  3441. */
  3442. if (unlikely(pmd_none(*pmd)) &&
  3443. unlikely(__pte_alloc(mm, vma, pmd, address)))
  3444. return VM_FAULT_OOM;
  3445. /* if an huge pmd materialized from under us just retry later */
  3446. if (unlikely(pmd_trans_huge(*pmd)))
  3447. return 0;
  3448. /*
  3449. * A regular pmd is established and it can't morph into a huge pmd
  3450. * from under us anymore at this point because we hold the mmap_sem
  3451. * read mode and khugepaged takes it in write mode. So now it's
  3452. * safe to run pte_offset_map().
  3453. */
  3454. pte = pte_offset_map(pmd, address);
  3455. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3456. }
  3457. #ifndef __PAGETABLE_PUD_FOLDED
  3458. /*
  3459. * Allocate page upper directory.
  3460. * We've already handled the fast-path in-line.
  3461. */
  3462. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3463. {
  3464. pud_t *new = pud_alloc_one(mm, address);
  3465. if (!new)
  3466. return -ENOMEM;
  3467. smp_wmb(); /* See comment in __pte_alloc */
  3468. spin_lock(&mm->page_table_lock);
  3469. if (pgd_present(*pgd)) /* Another has populated it */
  3470. pud_free(mm, new);
  3471. else
  3472. pgd_populate(mm, pgd, new);
  3473. spin_unlock(&mm->page_table_lock);
  3474. return 0;
  3475. }
  3476. #endif /* __PAGETABLE_PUD_FOLDED */
  3477. #ifndef __PAGETABLE_PMD_FOLDED
  3478. /*
  3479. * Allocate page middle directory.
  3480. * We've already handled the fast-path in-line.
  3481. */
  3482. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3483. {
  3484. pmd_t *new = pmd_alloc_one(mm, address);
  3485. if (!new)
  3486. return -ENOMEM;
  3487. smp_wmb(); /* See comment in __pte_alloc */
  3488. spin_lock(&mm->page_table_lock);
  3489. #ifndef __ARCH_HAS_4LEVEL_HACK
  3490. if (pud_present(*pud)) /* Another has populated it */
  3491. pmd_free(mm, new);
  3492. else
  3493. pud_populate(mm, pud, new);
  3494. #else
  3495. if (pgd_present(*pud)) /* Another has populated it */
  3496. pmd_free(mm, new);
  3497. else
  3498. pgd_populate(mm, pud, new);
  3499. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3500. spin_unlock(&mm->page_table_lock);
  3501. return 0;
  3502. }
  3503. #endif /* __PAGETABLE_PMD_FOLDED */
  3504. #if !defined(__HAVE_ARCH_GATE_AREA)
  3505. #if defined(AT_SYSINFO_EHDR)
  3506. static struct vm_area_struct gate_vma;
  3507. static int __init gate_vma_init(void)
  3508. {
  3509. gate_vma.vm_mm = NULL;
  3510. gate_vma.vm_start = FIXADDR_USER_START;
  3511. gate_vma.vm_end = FIXADDR_USER_END;
  3512. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3513. gate_vma.vm_page_prot = __P101;
  3514. return 0;
  3515. }
  3516. __initcall(gate_vma_init);
  3517. #endif
  3518. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3519. {
  3520. #ifdef AT_SYSINFO_EHDR
  3521. return &gate_vma;
  3522. #else
  3523. return NULL;
  3524. #endif
  3525. }
  3526. int in_gate_area_no_mm(unsigned long addr)
  3527. {
  3528. #ifdef AT_SYSINFO_EHDR
  3529. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3530. return 1;
  3531. #endif
  3532. return 0;
  3533. }
  3534. #endif /* __HAVE_ARCH_GATE_AREA */
  3535. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3536. pte_t **ptepp, spinlock_t **ptlp)
  3537. {
  3538. pgd_t *pgd;
  3539. pud_t *pud;
  3540. pmd_t *pmd;
  3541. pte_t *ptep;
  3542. pgd = pgd_offset(mm, address);
  3543. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3544. goto out;
  3545. pud = pud_offset(pgd, address);
  3546. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3547. goto out;
  3548. pmd = pmd_offset(pud, address);
  3549. VM_BUG_ON(pmd_trans_huge(*pmd));
  3550. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3551. goto out;
  3552. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3553. if (pmd_huge(*pmd))
  3554. goto out;
  3555. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3556. if (!ptep)
  3557. goto out;
  3558. if (!pte_present(*ptep))
  3559. goto unlock;
  3560. *ptepp = ptep;
  3561. return 0;
  3562. unlock:
  3563. pte_unmap_unlock(ptep, *ptlp);
  3564. out:
  3565. return -EINVAL;
  3566. }
  3567. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3568. pte_t **ptepp, spinlock_t **ptlp)
  3569. {
  3570. int res;
  3571. /* (void) is needed to make gcc happy */
  3572. (void) __cond_lock(*ptlp,
  3573. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3574. return res;
  3575. }
  3576. /**
  3577. * follow_pfn - look up PFN at a user virtual address
  3578. * @vma: memory mapping
  3579. * @address: user virtual address
  3580. * @pfn: location to store found PFN
  3581. *
  3582. * Only IO mappings and raw PFN mappings are allowed.
  3583. *
  3584. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3585. */
  3586. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3587. unsigned long *pfn)
  3588. {
  3589. int ret = -EINVAL;
  3590. spinlock_t *ptl;
  3591. pte_t *ptep;
  3592. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3593. return ret;
  3594. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3595. if (ret)
  3596. return ret;
  3597. *pfn = pte_pfn(*ptep);
  3598. pte_unmap_unlock(ptep, ptl);
  3599. return 0;
  3600. }
  3601. EXPORT_SYMBOL(follow_pfn);
  3602. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3603. int follow_phys(struct vm_area_struct *vma,
  3604. unsigned long address, unsigned int flags,
  3605. unsigned long *prot, resource_size_t *phys)
  3606. {
  3607. int ret = -EINVAL;
  3608. pte_t *ptep, pte;
  3609. spinlock_t *ptl;
  3610. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3611. goto out;
  3612. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3613. goto out;
  3614. pte = *ptep;
  3615. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3616. goto unlock;
  3617. *prot = pgprot_val(pte_pgprot(pte));
  3618. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3619. ret = 0;
  3620. unlock:
  3621. pte_unmap_unlock(ptep, ptl);
  3622. out:
  3623. return ret;
  3624. }
  3625. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3626. void *buf, int len, int write)
  3627. {
  3628. resource_size_t phys_addr;
  3629. unsigned long prot = 0;
  3630. void __iomem *maddr;
  3631. int offset = addr & (PAGE_SIZE-1);
  3632. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3633. return -EINVAL;
  3634. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3635. if (write)
  3636. memcpy_toio(maddr + offset, buf, len);
  3637. else
  3638. memcpy_fromio(buf, maddr + offset, len);
  3639. iounmap(maddr);
  3640. return len;
  3641. }
  3642. #endif
  3643. /*
  3644. * Access another process' address space as given in mm. If non-NULL, use the
  3645. * given task for page fault accounting.
  3646. */
  3647. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3648. unsigned long addr, void *buf, int len, int write)
  3649. {
  3650. struct vm_area_struct *vma;
  3651. void *old_buf = buf;
  3652. down_read(&mm->mmap_sem);
  3653. /* ignore errors, just check how much was successfully transferred */
  3654. while (len) {
  3655. int bytes, ret, offset;
  3656. void *maddr;
  3657. struct page *page = NULL;
  3658. ret = get_user_pages(tsk, mm, addr, 1,
  3659. write, 1, &page, &vma);
  3660. if (ret <= 0) {
  3661. /*
  3662. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3663. * we can access using slightly different code.
  3664. */
  3665. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3666. vma = find_vma(mm, addr);
  3667. if (!vma || vma->vm_start > addr)
  3668. break;
  3669. if (vma->vm_ops && vma->vm_ops->access)
  3670. ret = vma->vm_ops->access(vma, addr, buf,
  3671. len, write);
  3672. if (ret <= 0)
  3673. #endif
  3674. break;
  3675. bytes = ret;
  3676. } else {
  3677. bytes = len;
  3678. offset = addr & (PAGE_SIZE-1);
  3679. if (bytes > PAGE_SIZE-offset)
  3680. bytes = PAGE_SIZE-offset;
  3681. maddr = kmap(page);
  3682. if (write) {
  3683. copy_to_user_page(vma, page, addr,
  3684. maddr + offset, buf, bytes);
  3685. set_page_dirty_lock(page);
  3686. } else {
  3687. copy_from_user_page(vma, page, addr,
  3688. buf, maddr + offset, bytes);
  3689. }
  3690. kunmap(page);
  3691. page_cache_release(page);
  3692. }
  3693. len -= bytes;
  3694. buf += bytes;
  3695. addr += bytes;
  3696. }
  3697. up_read(&mm->mmap_sem);
  3698. return buf - old_buf;
  3699. }
  3700. /**
  3701. * access_remote_vm - access another process' address space
  3702. * @mm: the mm_struct of the target address space
  3703. * @addr: start address to access
  3704. * @buf: source or destination buffer
  3705. * @len: number of bytes to transfer
  3706. * @write: whether the access is a write
  3707. *
  3708. * The caller must hold a reference on @mm.
  3709. */
  3710. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3711. void *buf, int len, int write)
  3712. {
  3713. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3714. }
  3715. /*
  3716. * Access another process' address space.
  3717. * Source/target buffer must be kernel space,
  3718. * Do not walk the page table directly, use get_user_pages
  3719. */
  3720. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3721. void *buf, int len, int write)
  3722. {
  3723. struct mm_struct *mm;
  3724. int ret;
  3725. mm = get_task_mm(tsk);
  3726. if (!mm)
  3727. return 0;
  3728. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3729. mmput(mm);
  3730. return ret;
  3731. }
  3732. /*
  3733. * Print the name of a VMA.
  3734. */
  3735. void print_vma_addr(char *prefix, unsigned long ip)
  3736. {
  3737. struct mm_struct *mm = current->mm;
  3738. struct vm_area_struct *vma;
  3739. /*
  3740. * Do not print if we are in atomic
  3741. * contexts (in exception stacks, etc.):
  3742. */
  3743. if (preempt_count())
  3744. return;
  3745. down_read(&mm->mmap_sem);
  3746. vma = find_vma(mm, ip);
  3747. if (vma && vma->vm_file) {
  3748. struct file *f = vma->vm_file;
  3749. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3750. if (buf) {
  3751. char *p;
  3752. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3753. if (IS_ERR(p))
  3754. p = "?";
  3755. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3756. vma->vm_start,
  3757. vma->vm_end - vma->vm_start);
  3758. free_page((unsigned long)buf);
  3759. }
  3760. }
  3761. up_read(&mm->mmap_sem);
  3762. }
  3763. #ifdef CONFIG_PROVE_LOCKING
  3764. void might_fault(void)
  3765. {
  3766. /*
  3767. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3768. * holding the mmap_sem, this is safe because kernel memory doesn't
  3769. * get paged out, therefore we'll never actually fault, and the
  3770. * below annotations will generate false positives.
  3771. */
  3772. if (segment_eq(get_fs(), KERNEL_DS))
  3773. return;
  3774. might_sleep();
  3775. /*
  3776. * it would be nicer only to annotate paths which are not under
  3777. * pagefault_disable, however that requires a larger audit and
  3778. * providing helpers like get_user_atomic.
  3779. */
  3780. if (!in_atomic() && current->mm)
  3781. might_lock_read(&current->mm->mmap_sem);
  3782. }
  3783. EXPORT_SYMBOL(might_fault);
  3784. #endif
  3785. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3786. static void clear_gigantic_page(struct page *page,
  3787. unsigned long addr,
  3788. unsigned int pages_per_huge_page)
  3789. {
  3790. int i;
  3791. struct page *p = page;
  3792. might_sleep();
  3793. for (i = 0; i < pages_per_huge_page;
  3794. i++, p = mem_map_next(p, page, i)) {
  3795. cond_resched();
  3796. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3797. }
  3798. }
  3799. void clear_huge_page(struct page *page,
  3800. unsigned long addr, unsigned int pages_per_huge_page)
  3801. {
  3802. int i;
  3803. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3804. clear_gigantic_page(page, addr, pages_per_huge_page);
  3805. return;
  3806. }
  3807. might_sleep();
  3808. for (i = 0; i < pages_per_huge_page; i++) {
  3809. cond_resched();
  3810. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3811. }
  3812. }
  3813. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3814. unsigned long addr,
  3815. struct vm_area_struct *vma,
  3816. unsigned int pages_per_huge_page)
  3817. {
  3818. int i;
  3819. struct page *dst_base = dst;
  3820. struct page *src_base = src;
  3821. for (i = 0; i < pages_per_huge_page; ) {
  3822. cond_resched();
  3823. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3824. i++;
  3825. dst = mem_map_next(dst, dst_base, i);
  3826. src = mem_map_next(src, src_base, i);
  3827. }
  3828. }
  3829. void copy_user_huge_page(struct page *dst, struct page *src,
  3830. unsigned long addr, struct vm_area_struct *vma,
  3831. unsigned int pages_per_huge_page)
  3832. {
  3833. int i;
  3834. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3835. copy_user_gigantic_page(dst, src, addr, vma,
  3836. pages_per_huge_page);
  3837. return;
  3838. }
  3839. might_sleep();
  3840. for (i = 0; i < pages_per_huge_page; i++) {
  3841. cond_resched();
  3842. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3843. }
  3844. }
  3845. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */