perf_event.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/interrupt.h>
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/perf_event.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/uaccess.h>
  20. #include <asm/cputype.h>
  21. #include <asm/irq.h>
  22. #include <asm/irq_regs.h>
  23. #include <asm/pmu.h>
  24. #include <asm/stacktrace.h>
  25. /*
  26. * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
  27. * another platform that supports more, we need to increase this to be the
  28. * largest of all platforms.
  29. *
  30. * ARMv7 supports up to 32 events:
  31. * cycle counter CCNT + 31 events counters CNT0..30.
  32. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  33. */
  34. #define ARMPMU_MAX_HWEVENTS 32
  35. /* The events for a given CPU. */
  36. struct cpu_hw_events {
  37. /*
  38. * The events that are active on the CPU for the given index.
  39. */
  40. struct perf_event **events;
  41. /*
  42. * A 1 bit for an index indicates that the counter is being used for
  43. * an event. A 0 means that the counter can be used.
  44. */
  45. unsigned long *used_mask;
  46. /*
  47. * Hardware lock to serialize accesses to PMU registers. Needed for the
  48. * read/modify/write sequences.
  49. */
  50. raw_spinlock_t pmu_lock;
  51. };
  52. static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
  53. static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
  54. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  55. struct arm_pmu {
  56. struct pmu pmu;
  57. enum arm_perf_pmu_ids id;
  58. enum arm_pmu_type type;
  59. cpumask_t active_irqs;
  60. const char *name;
  61. irqreturn_t (*handle_irq)(int irq_num, void *dev);
  62. void (*enable)(struct hw_perf_event *evt, int idx);
  63. void (*disable)(struct hw_perf_event *evt, int idx);
  64. int (*get_event_idx)(struct cpu_hw_events *cpuc,
  65. struct hw_perf_event *hwc);
  66. int (*set_event_filter)(struct hw_perf_event *evt,
  67. struct perf_event_attr *attr);
  68. u32 (*read_counter)(int idx);
  69. void (*write_counter)(int idx, u32 val);
  70. void (*start)(void);
  71. void (*stop)(void);
  72. void (*reset)(void *);
  73. int (*map_event)(struct perf_event *event);
  74. int num_events;
  75. atomic_t active_events;
  76. struct mutex reserve_mutex;
  77. u64 max_period;
  78. struct platform_device *plat_device;
  79. struct cpu_hw_events *(*get_hw_events)(void);
  80. };
  81. #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
  82. /* Set at runtime when we know what CPU type we are. */
  83. static struct arm_pmu *armpmu;
  84. enum arm_perf_pmu_ids
  85. armpmu_get_pmu_id(void)
  86. {
  87. int id = -ENODEV;
  88. if (armpmu != NULL)
  89. id = armpmu->id;
  90. return id;
  91. }
  92. EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
  93. int
  94. armpmu_get_max_events(void)
  95. {
  96. int max_events = 0;
  97. if (armpmu != NULL)
  98. max_events = armpmu->num_events;
  99. return max_events;
  100. }
  101. EXPORT_SYMBOL_GPL(armpmu_get_max_events);
  102. int perf_num_counters(void)
  103. {
  104. return armpmu_get_max_events();
  105. }
  106. EXPORT_SYMBOL_GPL(perf_num_counters);
  107. #define HW_OP_UNSUPPORTED 0xFFFF
  108. #define C(_x) \
  109. PERF_COUNT_HW_CACHE_##_x
  110. #define CACHE_OP_UNSUPPORTED 0xFFFF
  111. static int
  112. armpmu_map_cache_event(const unsigned (*cache_map)
  113. [PERF_COUNT_HW_CACHE_MAX]
  114. [PERF_COUNT_HW_CACHE_OP_MAX]
  115. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  116. u64 config)
  117. {
  118. unsigned int cache_type, cache_op, cache_result, ret;
  119. cache_type = (config >> 0) & 0xff;
  120. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  121. return -EINVAL;
  122. cache_op = (config >> 8) & 0xff;
  123. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  124. return -EINVAL;
  125. cache_result = (config >> 16) & 0xff;
  126. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  127. return -EINVAL;
  128. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  129. if (ret == CACHE_OP_UNSUPPORTED)
  130. return -ENOENT;
  131. return ret;
  132. }
  133. static int
  134. armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  135. {
  136. int mapping = (*event_map)[config];
  137. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  138. }
  139. static int
  140. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  141. {
  142. return (int)(config & raw_event_mask);
  143. }
  144. static int map_cpu_event(struct perf_event *event,
  145. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  146. const unsigned (*cache_map)
  147. [PERF_COUNT_HW_CACHE_MAX]
  148. [PERF_COUNT_HW_CACHE_OP_MAX]
  149. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  150. u32 raw_event_mask)
  151. {
  152. u64 config = event->attr.config;
  153. switch (event->attr.type) {
  154. case PERF_TYPE_HARDWARE:
  155. return armpmu_map_event(event_map, config);
  156. case PERF_TYPE_HW_CACHE:
  157. return armpmu_map_cache_event(cache_map, config);
  158. case PERF_TYPE_RAW:
  159. return armpmu_map_raw_event(raw_event_mask, config);
  160. }
  161. return -ENOENT;
  162. }
  163. static int
  164. armpmu_event_set_period(struct perf_event *event,
  165. struct hw_perf_event *hwc,
  166. int idx)
  167. {
  168. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  169. s64 left = local64_read(&hwc->period_left);
  170. s64 period = hwc->sample_period;
  171. int ret = 0;
  172. if (unlikely(left <= -period)) {
  173. left = period;
  174. local64_set(&hwc->period_left, left);
  175. hwc->last_period = period;
  176. ret = 1;
  177. }
  178. if (unlikely(left <= 0)) {
  179. left += period;
  180. local64_set(&hwc->period_left, left);
  181. hwc->last_period = period;
  182. ret = 1;
  183. }
  184. if (left > (s64)armpmu->max_period)
  185. left = armpmu->max_period;
  186. local64_set(&hwc->prev_count, (u64)-left);
  187. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  188. perf_event_update_userpage(event);
  189. return ret;
  190. }
  191. static u64
  192. armpmu_event_update(struct perf_event *event,
  193. struct hw_perf_event *hwc,
  194. int idx, int overflow)
  195. {
  196. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  197. u64 delta, prev_raw_count, new_raw_count;
  198. again:
  199. prev_raw_count = local64_read(&hwc->prev_count);
  200. new_raw_count = armpmu->read_counter(idx);
  201. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  202. new_raw_count) != prev_raw_count)
  203. goto again;
  204. new_raw_count &= armpmu->max_period;
  205. prev_raw_count &= armpmu->max_period;
  206. if (overflow)
  207. delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
  208. else
  209. delta = new_raw_count - prev_raw_count;
  210. local64_add(delta, &event->count);
  211. local64_sub(delta, &hwc->period_left);
  212. return new_raw_count;
  213. }
  214. static void
  215. armpmu_read(struct perf_event *event)
  216. {
  217. struct hw_perf_event *hwc = &event->hw;
  218. /* Don't read disabled counters! */
  219. if (hwc->idx < 0)
  220. return;
  221. armpmu_event_update(event, hwc, hwc->idx, 0);
  222. }
  223. static void
  224. armpmu_stop(struct perf_event *event, int flags)
  225. {
  226. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  227. struct hw_perf_event *hwc = &event->hw;
  228. /*
  229. * ARM pmu always has to update the counter, so ignore
  230. * PERF_EF_UPDATE, see comments in armpmu_start().
  231. */
  232. if (!(hwc->state & PERF_HES_STOPPED)) {
  233. armpmu->disable(hwc, hwc->idx);
  234. barrier(); /* why? */
  235. armpmu_event_update(event, hwc, hwc->idx, 0);
  236. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  237. }
  238. }
  239. static void
  240. armpmu_start(struct perf_event *event, int flags)
  241. {
  242. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  243. struct hw_perf_event *hwc = &event->hw;
  244. /*
  245. * ARM pmu always has to reprogram the period, so ignore
  246. * PERF_EF_RELOAD, see the comment below.
  247. */
  248. if (flags & PERF_EF_RELOAD)
  249. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  250. hwc->state = 0;
  251. /*
  252. * Set the period again. Some counters can't be stopped, so when we
  253. * were stopped we simply disabled the IRQ source and the counter
  254. * may have been left counting. If we don't do this step then we may
  255. * get an interrupt too soon or *way* too late if the overflow has
  256. * happened since disabling.
  257. */
  258. armpmu_event_set_period(event, hwc, hwc->idx);
  259. armpmu->enable(hwc, hwc->idx);
  260. }
  261. static void
  262. armpmu_del(struct perf_event *event, int flags)
  263. {
  264. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  265. struct cpu_hw_events *cpuc = armpmu->get_hw_events();
  266. struct hw_perf_event *hwc = &event->hw;
  267. int idx = hwc->idx;
  268. WARN_ON(idx < 0);
  269. armpmu_stop(event, PERF_EF_UPDATE);
  270. cpuc->events[idx] = NULL;
  271. clear_bit(idx, cpuc->used_mask);
  272. perf_event_update_userpage(event);
  273. }
  274. static int
  275. armpmu_add(struct perf_event *event, int flags)
  276. {
  277. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  278. struct cpu_hw_events *cpuc = armpmu->get_hw_events();
  279. struct hw_perf_event *hwc = &event->hw;
  280. int idx;
  281. int err = 0;
  282. perf_pmu_disable(event->pmu);
  283. /* If we don't have a space for the counter then finish early. */
  284. idx = armpmu->get_event_idx(cpuc, hwc);
  285. if (idx < 0) {
  286. err = idx;
  287. goto out;
  288. }
  289. /*
  290. * If there is an event in the counter we are going to use then make
  291. * sure it is disabled.
  292. */
  293. event->hw.idx = idx;
  294. armpmu->disable(hwc, idx);
  295. cpuc->events[idx] = event;
  296. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  297. if (flags & PERF_EF_START)
  298. armpmu_start(event, PERF_EF_RELOAD);
  299. /* Propagate our changes to the userspace mapping. */
  300. perf_event_update_userpage(event);
  301. out:
  302. perf_pmu_enable(event->pmu);
  303. return err;
  304. }
  305. static int
  306. validate_event(struct cpu_hw_events *cpuc,
  307. struct perf_event *event)
  308. {
  309. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  310. struct hw_perf_event fake_event = event->hw;
  311. struct pmu *leader_pmu = event->group_leader->pmu;
  312. if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
  313. return 1;
  314. return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
  315. }
  316. static int
  317. validate_group(struct perf_event *event)
  318. {
  319. struct perf_event *sibling, *leader = event->group_leader;
  320. struct cpu_hw_events fake_pmu;
  321. memset(&fake_pmu, 0, sizeof(fake_pmu));
  322. if (!validate_event(&fake_pmu, leader))
  323. return -ENOSPC;
  324. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  325. if (!validate_event(&fake_pmu, sibling))
  326. return -ENOSPC;
  327. }
  328. if (!validate_event(&fake_pmu, event))
  329. return -ENOSPC;
  330. return 0;
  331. }
  332. static irqreturn_t armpmu_platform_irq(int irq, void *dev)
  333. {
  334. struct arm_pmu *armpmu = (struct arm_pmu *) dev;
  335. struct platform_device *plat_device = armpmu->plat_device;
  336. struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
  337. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  338. }
  339. static void
  340. armpmu_release_hardware(struct arm_pmu *armpmu)
  341. {
  342. int i, irq, irqs;
  343. struct platform_device *pmu_device = armpmu->plat_device;
  344. irqs = min(pmu_device->num_resources, num_possible_cpus());
  345. for (i = 0; i < irqs; ++i) {
  346. if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
  347. continue;
  348. irq = platform_get_irq(pmu_device, i);
  349. if (irq >= 0)
  350. free_irq(irq, armpmu);
  351. }
  352. release_pmu(armpmu->type);
  353. }
  354. static int
  355. armpmu_reserve_hardware(struct arm_pmu *armpmu)
  356. {
  357. struct arm_pmu_platdata *plat;
  358. irq_handler_t handle_irq;
  359. int i, err, irq, irqs;
  360. struct platform_device *pmu_device = armpmu->plat_device;
  361. err = reserve_pmu(armpmu->type);
  362. if (err) {
  363. pr_warning("unable to reserve pmu\n");
  364. return err;
  365. }
  366. plat = dev_get_platdata(&pmu_device->dev);
  367. if (plat && plat->handle_irq)
  368. handle_irq = armpmu_platform_irq;
  369. else
  370. handle_irq = armpmu->handle_irq;
  371. irqs = min(pmu_device->num_resources, num_possible_cpus());
  372. if (irqs < 1) {
  373. pr_err("no irqs for PMUs defined\n");
  374. return -ENODEV;
  375. }
  376. for (i = 0; i < irqs; ++i) {
  377. err = 0;
  378. irq = platform_get_irq(pmu_device, i);
  379. if (irq < 0)
  380. continue;
  381. /*
  382. * If we have a single PMU interrupt that we can't shift,
  383. * assume that we're running on a uniprocessor machine and
  384. * continue. Otherwise, continue without this interrupt.
  385. */
  386. if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
  387. pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
  388. irq, i);
  389. continue;
  390. }
  391. err = request_irq(irq, handle_irq,
  392. IRQF_DISABLED | IRQF_NOBALANCING,
  393. "arm-pmu", armpmu);
  394. if (err) {
  395. pr_err("unable to request IRQ%d for ARM PMU counters\n",
  396. irq);
  397. armpmu_release_hardware(armpmu);
  398. return err;
  399. }
  400. cpumask_set_cpu(i, &armpmu->active_irqs);
  401. }
  402. return 0;
  403. }
  404. static void
  405. hw_perf_event_destroy(struct perf_event *event)
  406. {
  407. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  408. atomic_t *active_events = &armpmu->active_events;
  409. struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
  410. if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
  411. armpmu_release_hardware(armpmu);
  412. mutex_unlock(pmu_reserve_mutex);
  413. }
  414. }
  415. static int
  416. event_requires_mode_exclusion(struct perf_event_attr *attr)
  417. {
  418. return attr->exclude_idle || attr->exclude_user ||
  419. attr->exclude_kernel || attr->exclude_hv;
  420. }
  421. static int
  422. __hw_perf_event_init(struct perf_event *event)
  423. {
  424. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  425. struct hw_perf_event *hwc = &event->hw;
  426. int mapping, err;
  427. mapping = armpmu->map_event(event);
  428. if (mapping < 0) {
  429. pr_debug("event %x:%llx not supported\n", event->attr.type,
  430. event->attr.config);
  431. return mapping;
  432. }
  433. /*
  434. * We don't assign an index until we actually place the event onto
  435. * hardware. Use -1 to signify that we haven't decided where to put it
  436. * yet. For SMP systems, each core has it's own PMU so we can't do any
  437. * clever allocation or constraints checking at this point.
  438. */
  439. hwc->idx = -1;
  440. hwc->config_base = 0;
  441. hwc->config = 0;
  442. hwc->event_base = 0;
  443. /*
  444. * Check whether we need to exclude the counter from certain modes.
  445. */
  446. if ((!armpmu->set_event_filter ||
  447. armpmu->set_event_filter(hwc, &event->attr)) &&
  448. event_requires_mode_exclusion(&event->attr)) {
  449. pr_debug("ARM performance counters do not support "
  450. "mode exclusion\n");
  451. return -EPERM;
  452. }
  453. /*
  454. * Store the event encoding into the config_base field.
  455. */
  456. hwc->config_base |= (unsigned long)mapping;
  457. if (!hwc->sample_period) {
  458. hwc->sample_period = armpmu->max_period;
  459. hwc->last_period = hwc->sample_period;
  460. local64_set(&hwc->period_left, hwc->sample_period);
  461. }
  462. err = 0;
  463. if (event->group_leader != event) {
  464. err = validate_group(event);
  465. if (err)
  466. return -EINVAL;
  467. }
  468. return err;
  469. }
  470. static int armpmu_event_init(struct perf_event *event)
  471. {
  472. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  473. int err = 0;
  474. atomic_t *active_events = &armpmu->active_events;
  475. if (armpmu->map_event(event) == -ENOENT)
  476. return -ENOENT;
  477. event->destroy = hw_perf_event_destroy;
  478. if (!atomic_inc_not_zero(active_events)) {
  479. mutex_lock(&armpmu->reserve_mutex);
  480. if (atomic_read(active_events) == 0)
  481. err = armpmu_reserve_hardware(armpmu);
  482. if (!err)
  483. atomic_inc(active_events);
  484. mutex_unlock(&armpmu->reserve_mutex);
  485. }
  486. if (err)
  487. return err;
  488. err = __hw_perf_event_init(event);
  489. if (err)
  490. hw_perf_event_destroy(event);
  491. return err;
  492. }
  493. static void armpmu_enable(struct pmu *pmu)
  494. {
  495. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  496. /* Enable all of the perf events on hardware. */
  497. int idx, enabled = 0;
  498. struct cpu_hw_events *cpuc = armpmu->get_hw_events();
  499. for (idx = 0; idx < armpmu->num_events; ++idx) {
  500. struct perf_event *event = cpuc->events[idx];
  501. if (!event)
  502. continue;
  503. armpmu->enable(&event->hw, idx);
  504. enabled = 1;
  505. }
  506. if (enabled)
  507. armpmu->start();
  508. }
  509. static void armpmu_disable(struct pmu *pmu)
  510. {
  511. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  512. armpmu->stop();
  513. }
  514. static void __init armpmu_init(struct arm_pmu *armpmu)
  515. {
  516. atomic_set(&armpmu->active_events, 0);
  517. mutex_init(&armpmu->reserve_mutex);
  518. armpmu->pmu = (struct pmu) {
  519. .pmu_enable = armpmu_enable,
  520. .pmu_disable = armpmu_disable,
  521. .event_init = armpmu_event_init,
  522. .add = armpmu_add,
  523. .del = armpmu_del,
  524. .start = armpmu_start,
  525. .stop = armpmu_stop,
  526. .read = armpmu_read,
  527. };
  528. }
  529. static int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
  530. {
  531. armpmu_init(armpmu);
  532. return perf_pmu_register(&armpmu->pmu, name, type);
  533. }
  534. /* Include the PMU-specific implementations. */
  535. #include "perf_event_xscale.c"
  536. #include "perf_event_v6.c"
  537. #include "perf_event_v7.c"
  538. /*
  539. * Ensure the PMU has sane values out of reset.
  540. * This requires SMP to be available, so exists as a separate initcall.
  541. */
  542. static int __init
  543. armpmu_reset(void)
  544. {
  545. if (armpmu && armpmu->reset)
  546. return on_each_cpu(armpmu->reset, NULL, 1);
  547. return 0;
  548. }
  549. arch_initcall(armpmu_reset);
  550. /*
  551. * PMU platform driver and devicetree bindings.
  552. */
  553. static struct of_device_id armpmu_of_device_ids[] = {
  554. {.compatible = "arm,cortex-a9-pmu"},
  555. {.compatible = "arm,cortex-a8-pmu"},
  556. {.compatible = "arm,arm1136-pmu"},
  557. {.compatible = "arm,arm1176-pmu"},
  558. {},
  559. };
  560. static struct platform_device_id armpmu_plat_device_ids[] = {
  561. {.name = "arm-pmu"},
  562. {},
  563. };
  564. static int __devinit armpmu_device_probe(struct platform_device *pdev)
  565. {
  566. armpmu->plat_device = pdev;
  567. return 0;
  568. }
  569. static struct platform_driver armpmu_driver = {
  570. .driver = {
  571. .name = "arm-pmu",
  572. .of_match_table = armpmu_of_device_ids,
  573. },
  574. .probe = armpmu_device_probe,
  575. .id_table = armpmu_plat_device_ids,
  576. };
  577. static int __init register_pmu_driver(void)
  578. {
  579. return platform_driver_register(&armpmu_driver);
  580. }
  581. device_initcall(register_pmu_driver);
  582. static struct cpu_hw_events *armpmu_get_cpu_events(void)
  583. {
  584. return &__get_cpu_var(cpu_hw_events);
  585. }
  586. static void __init cpu_pmu_init(struct arm_pmu *armpmu)
  587. {
  588. int cpu;
  589. for_each_possible_cpu(cpu) {
  590. struct cpu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
  591. events->events = per_cpu(hw_events, cpu);
  592. events->used_mask = per_cpu(used_mask, cpu);
  593. raw_spin_lock_init(&events->pmu_lock);
  594. }
  595. armpmu->get_hw_events = armpmu_get_cpu_events;
  596. armpmu->type = ARM_PMU_DEVICE_CPU;
  597. }
  598. /*
  599. * CPU PMU identification and registration.
  600. */
  601. static int __init
  602. init_hw_perf_events(void)
  603. {
  604. unsigned long cpuid = read_cpuid_id();
  605. unsigned long implementor = (cpuid & 0xFF000000) >> 24;
  606. unsigned long part_number = (cpuid & 0xFFF0);
  607. /* ARM Ltd CPUs. */
  608. if (0x41 == implementor) {
  609. switch (part_number) {
  610. case 0xB360: /* ARM1136 */
  611. case 0xB560: /* ARM1156 */
  612. case 0xB760: /* ARM1176 */
  613. armpmu = armv6pmu_init();
  614. break;
  615. case 0xB020: /* ARM11mpcore */
  616. armpmu = armv6mpcore_pmu_init();
  617. break;
  618. case 0xC080: /* Cortex-A8 */
  619. armpmu = armv7_a8_pmu_init();
  620. break;
  621. case 0xC090: /* Cortex-A9 */
  622. armpmu = armv7_a9_pmu_init();
  623. break;
  624. case 0xC050: /* Cortex-A5 */
  625. armpmu = armv7_a5_pmu_init();
  626. break;
  627. case 0xC0F0: /* Cortex-A15 */
  628. armpmu = armv7_a15_pmu_init();
  629. break;
  630. }
  631. /* Intel CPUs [xscale]. */
  632. } else if (0x69 == implementor) {
  633. part_number = (cpuid >> 13) & 0x7;
  634. switch (part_number) {
  635. case 1:
  636. armpmu = xscale1pmu_init();
  637. break;
  638. case 2:
  639. armpmu = xscale2pmu_init();
  640. break;
  641. }
  642. }
  643. if (armpmu) {
  644. pr_info("enabled with %s PMU driver, %d counters available\n",
  645. armpmu->name, armpmu->num_events);
  646. cpu_pmu_init(armpmu);
  647. armpmu_register(armpmu, "cpu", PERF_TYPE_RAW);
  648. } else {
  649. pr_info("no hardware support available\n");
  650. }
  651. return 0;
  652. }
  653. early_initcall(init_hw_perf_events);
  654. /*
  655. * Callchain handling code.
  656. */
  657. /*
  658. * The registers we're interested in are at the end of the variable
  659. * length saved register structure. The fp points at the end of this
  660. * structure so the address of this struct is:
  661. * (struct frame_tail *)(xxx->fp)-1
  662. *
  663. * This code has been adapted from the ARM OProfile support.
  664. */
  665. struct frame_tail {
  666. struct frame_tail __user *fp;
  667. unsigned long sp;
  668. unsigned long lr;
  669. } __attribute__((packed));
  670. /*
  671. * Get the return address for a single stackframe and return a pointer to the
  672. * next frame tail.
  673. */
  674. static struct frame_tail __user *
  675. user_backtrace(struct frame_tail __user *tail,
  676. struct perf_callchain_entry *entry)
  677. {
  678. struct frame_tail buftail;
  679. /* Also check accessibility of one struct frame_tail beyond */
  680. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  681. return NULL;
  682. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  683. return NULL;
  684. perf_callchain_store(entry, buftail.lr);
  685. /*
  686. * Frame pointers should strictly progress back up the stack
  687. * (towards higher addresses).
  688. */
  689. if (tail + 1 >= buftail.fp)
  690. return NULL;
  691. return buftail.fp - 1;
  692. }
  693. void
  694. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  695. {
  696. struct frame_tail __user *tail;
  697. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  698. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  699. tail && !((unsigned long)tail & 0x3))
  700. tail = user_backtrace(tail, entry);
  701. }
  702. /*
  703. * Gets called by walk_stackframe() for every stackframe. This will be called
  704. * whist unwinding the stackframe and is like a subroutine return so we use
  705. * the PC.
  706. */
  707. static int
  708. callchain_trace(struct stackframe *fr,
  709. void *data)
  710. {
  711. struct perf_callchain_entry *entry = data;
  712. perf_callchain_store(entry, fr->pc);
  713. return 0;
  714. }
  715. void
  716. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  717. {
  718. struct stackframe fr;
  719. fr.fp = regs->ARM_fp;
  720. fr.sp = regs->ARM_sp;
  721. fr.lr = regs->ARM_lr;
  722. fr.pc = regs->ARM_pc;
  723. walk_stackframe(&fr, callchain_trace, entry);
  724. }