rcutree.c 96 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * Copyright IBM Corporation, 2008
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23. *
  24. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26. *
  27. * For detailed explanation of Read-Copy Update mechanism see -
  28. * Documentation/RCU
  29. */
  30. #include <linux/types.h>
  31. #include <linux/kernel.h>
  32. #include <linux/init.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/smp.h>
  35. #include <linux/rcupdate.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/sched.h>
  38. #include <linux/nmi.h>
  39. #include <linux/atomic.h>
  40. #include <linux/bitops.h>
  41. #include <linux/export.h>
  42. #include <linux/completion.h>
  43. #include <linux/moduleparam.h>
  44. #include <linux/percpu.h>
  45. #include <linux/notifier.h>
  46. #include <linux/cpu.h>
  47. #include <linux/mutex.h>
  48. #include <linux/time.h>
  49. #include <linux/kernel_stat.h>
  50. #include <linux/wait.h>
  51. #include <linux/kthread.h>
  52. #include <linux/prefetch.h>
  53. #include <linux/delay.h>
  54. #include <linux/stop_machine.h>
  55. #include <linux/random.h>
  56. #include "rcutree.h"
  57. #include <trace/events/rcu.h>
  58. #include "rcu.h"
  59. /* Data structures. */
  60. static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  61. static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  62. #define RCU_STATE_INITIALIZER(sname, cr) { \
  63. .level = { &sname##_state.node[0] }, \
  64. .call = cr, \
  65. .fqs_state = RCU_GP_IDLE, \
  66. .gpnum = 0UL - 300UL, \
  67. .completed = 0UL - 300UL, \
  68. .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  69. .orphan_nxttail = &sname##_state.orphan_nxtlist, \
  70. .orphan_donetail = &sname##_state.orphan_donelist, \
  71. .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  72. .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
  73. .name = #sname, \
  74. }
  75. struct rcu_state rcu_sched_state =
  76. RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
  77. DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
  78. struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
  79. DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
  80. static struct rcu_state *rcu_state;
  81. LIST_HEAD(rcu_struct_flavors);
  82. /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
  83. static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
  84. module_param(rcu_fanout_leaf, int, 0444);
  85. int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
  86. static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
  87. NUM_RCU_LVL_0,
  88. NUM_RCU_LVL_1,
  89. NUM_RCU_LVL_2,
  90. NUM_RCU_LVL_3,
  91. NUM_RCU_LVL_4,
  92. };
  93. int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
  94. /*
  95. * The rcu_scheduler_active variable transitions from zero to one just
  96. * before the first task is spawned. So when this variable is zero, RCU
  97. * can assume that there is but one task, allowing RCU to (for example)
  98. * optimized synchronize_sched() to a simple barrier(). When this variable
  99. * is one, RCU must actually do all the hard work required to detect real
  100. * grace periods. This variable is also used to suppress boot-time false
  101. * positives from lockdep-RCU error checking.
  102. */
  103. int rcu_scheduler_active __read_mostly;
  104. EXPORT_SYMBOL_GPL(rcu_scheduler_active);
  105. /*
  106. * The rcu_scheduler_fully_active variable transitions from zero to one
  107. * during the early_initcall() processing, which is after the scheduler
  108. * is capable of creating new tasks. So RCU processing (for example,
  109. * creating tasks for RCU priority boosting) must be delayed until after
  110. * rcu_scheduler_fully_active transitions from zero to one. We also
  111. * currently delay invocation of any RCU callbacks until after this point.
  112. *
  113. * It might later prove better for people registering RCU callbacks during
  114. * early boot to take responsibility for these callbacks, but one step at
  115. * a time.
  116. */
  117. static int rcu_scheduler_fully_active __read_mostly;
  118. #ifdef CONFIG_RCU_BOOST
  119. /*
  120. * Control variables for per-CPU and per-rcu_node kthreads. These
  121. * handle all flavors of RCU.
  122. */
  123. static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  124. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  125. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  126. DEFINE_PER_CPU(char, rcu_cpu_has_work);
  127. #endif /* #ifdef CONFIG_RCU_BOOST */
  128. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
  129. static void invoke_rcu_core(void);
  130. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
  131. /*
  132. * Track the rcutorture test sequence number and the update version
  133. * number within a given test. The rcutorture_testseq is incremented
  134. * on every rcutorture module load and unload, so has an odd value
  135. * when a test is running. The rcutorture_vernum is set to zero
  136. * when rcutorture starts and is incremented on each rcutorture update.
  137. * These variables enable correlating rcutorture output with the
  138. * RCU tracing information.
  139. */
  140. unsigned long rcutorture_testseq;
  141. unsigned long rcutorture_vernum;
  142. /*
  143. * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
  144. * permit this function to be invoked without holding the root rcu_node
  145. * structure's ->lock, but of course results can be subject to change.
  146. */
  147. static int rcu_gp_in_progress(struct rcu_state *rsp)
  148. {
  149. return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
  150. }
  151. /*
  152. * Note a quiescent state. Because we do not need to know
  153. * how many quiescent states passed, just if there was at least
  154. * one since the start of the grace period, this just sets a flag.
  155. * The caller must have disabled preemption.
  156. */
  157. void rcu_sched_qs(int cpu)
  158. {
  159. struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
  160. if (rdp->passed_quiesce == 0)
  161. trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
  162. rdp->passed_quiesce = 1;
  163. }
  164. void rcu_bh_qs(int cpu)
  165. {
  166. struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
  167. if (rdp->passed_quiesce == 0)
  168. trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
  169. rdp->passed_quiesce = 1;
  170. }
  171. /*
  172. * Note a context switch. This is a quiescent state for RCU-sched,
  173. * and requires special handling for preemptible RCU.
  174. * The caller must have disabled preemption.
  175. */
  176. void rcu_note_context_switch(int cpu)
  177. {
  178. trace_rcu_utilization("Start context switch");
  179. rcu_sched_qs(cpu);
  180. rcu_preempt_note_context_switch(cpu);
  181. trace_rcu_utilization("End context switch");
  182. }
  183. EXPORT_SYMBOL_GPL(rcu_note_context_switch);
  184. DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
  185. .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
  186. .dynticks = ATOMIC_INIT(1),
  187. #if defined(CONFIG_RCU_USER_QS) && !defined(CONFIG_RCU_USER_QS_FORCE)
  188. .ignore_user_qs = true,
  189. #endif
  190. };
  191. static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
  192. static long qhimark = 10000; /* If this many pending, ignore blimit. */
  193. static long qlowmark = 100; /* Once only this many pending, use blimit. */
  194. module_param(blimit, long, 0444);
  195. module_param(qhimark, long, 0444);
  196. module_param(qlowmark, long, 0444);
  197. int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
  198. int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
  199. module_param(rcu_cpu_stall_suppress, int, 0644);
  200. module_param(rcu_cpu_stall_timeout, int, 0644);
  201. static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
  202. static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
  203. module_param(jiffies_till_first_fqs, ulong, 0644);
  204. module_param(jiffies_till_next_fqs, ulong, 0644);
  205. static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
  206. static void force_quiescent_state(struct rcu_state *rsp);
  207. static int rcu_pending(int cpu);
  208. /*
  209. * Return the number of RCU-sched batches processed thus far for debug & stats.
  210. */
  211. long rcu_batches_completed_sched(void)
  212. {
  213. return rcu_sched_state.completed;
  214. }
  215. EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
  216. /*
  217. * Return the number of RCU BH batches processed thus far for debug & stats.
  218. */
  219. long rcu_batches_completed_bh(void)
  220. {
  221. return rcu_bh_state.completed;
  222. }
  223. EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
  224. /*
  225. * Force a quiescent state for RCU BH.
  226. */
  227. void rcu_bh_force_quiescent_state(void)
  228. {
  229. force_quiescent_state(&rcu_bh_state);
  230. }
  231. EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
  232. /*
  233. * Record the number of times rcutorture tests have been initiated and
  234. * terminated. This information allows the debugfs tracing stats to be
  235. * correlated to the rcutorture messages, even when the rcutorture module
  236. * is being repeatedly loaded and unloaded. In other words, we cannot
  237. * store this state in rcutorture itself.
  238. */
  239. void rcutorture_record_test_transition(void)
  240. {
  241. rcutorture_testseq++;
  242. rcutorture_vernum = 0;
  243. }
  244. EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
  245. /*
  246. * Record the number of writer passes through the current rcutorture test.
  247. * This is also used to correlate debugfs tracing stats with the rcutorture
  248. * messages.
  249. */
  250. void rcutorture_record_progress(unsigned long vernum)
  251. {
  252. rcutorture_vernum++;
  253. }
  254. EXPORT_SYMBOL_GPL(rcutorture_record_progress);
  255. /*
  256. * Force a quiescent state for RCU-sched.
  257. */
  258. void rcu_sched_force_quiescent_state(void)
  259. {
  260. force_quiescent_state(&rcu_sched_state);
  261. }
  262. EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
  263. /*
  264. * Does the CPU have callbacks ready to be invoked?
  265. */
  266. static int
  267. cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
  268. {
  269. return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
  270. rdp->nxttail[RCU_DONE_TAIL] != NULL;
  271. }
  272. /*
  273. * Does the current CPU require a yet-as-unscheduled grace period?
  274. */
  275. static int
  276. cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
  277. {
  278. struct rcu_head **ntp;
  279. ntp = rdp->nxttail[RCU_DONE_TAIL +
  280. (ACCESS_ONCE(rsp->completed) != rdp->completed)];
  281. return rdp->nxttail[RCU_DONE_TAIL] && ntp && *ntp &&
  282. !rcu_gp_in_progress(rsp);
  283. }
  284. /*
  285. * Return the root node of the specified rcu_state structure.
  286. */
  287. static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
  288. {
  289. return &rsp->node[0];
  290. }
  291. /*
  292. * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
  293. *
  294. * If the new value of the ->dynticks_nesting counter now is zero,
  295. * we really have entered idle, and must do the appropriate accounting.
  296. * The caller must have disabled interrupts.
  297. */
  298. static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
  299. bool user)
  300. {
  301. trace_rcu_dyntick("Start", oldval, 0);
  302. if (!user && !is_idle_task(current)) {
  303. struct task_struct *idle = idle_task(smp_processor_id());
  304. trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
  305. ftrace_dump(DUMP_ORIG);
  306. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  307. current->pid, current->comm,
  308. idle->pid, idle->comm); /* must be idle task! */
  309. }
  310. rcu_prepare_for_idle(smp_processor_id());
  311. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  312. smp_mb__before_atomic_inc(); /* See above. */
  313. atomic_inc(&rdtp->dynticks);
  314. smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
  315. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  316. /*
  317. * It is illegal to enter an extended quiescent state while
  318. * in an RCU read-side critical section.
  319. */
  320. rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
  321. "Illegal idle entry in RCU read-side critical section.");
  322. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
  323. "Illegal idle entry in RCU-bh read-side critical section.");
  324. rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
  325. "Illegal idle entry in RCU-sched read-side critical section.");
  326. }
  327. /*
  328. * Enter an RCU extended quiescent state, which can be either the
  329. * idle loop or adaptive-tickless usermode execution.
  330. */
  331. static void rcu_eqs_enter(bool user)
  332. {
  333. long long oldval;
  334. struct rcu_dynticks *rdtp;
  335. rdtp = &__get_cpu_var(rcu_dynticks);
  336. oldval = rdtp->dynticks_nesting;
  337. WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
  338. if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
  339. rdtp->dynticks_nesting = 0;
  340. else
  341. rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
  342. rcu_eqs_enter_common(rdtp, oldval, user);
  343. }
  344. /**
  345. * rcu_idle_enter - inform RCU that current CPU is entering idle
  346. *
  347. * Enter idle mode, in other words, -leave- the mode in which RCU
  348. * read-side critical sections can occur. (Though RCU read-side
  349. * critical sections can occur in irq handlers in idle, a possibility
  350. * handled by irq_enter() and irq_exit().)
  351. *
  352. * We crowbar the ->dynticks_nesting field to zero to allow for
  353. * the possibility of usermode upcalls having messed up our count
  354. * of interrupt nesting level during the prior busy period.
  355. */
  356. void rcu_idle_enter(void)
  357. {
  358. unsigned long flags;
  359. local_irq_save(flags);
  360. rcu_eqs_enter(false);
  361. local_irq_restore(flags);
  362. }
  363. EXPORT_SYMBOL_GPL(rcu_idle_enter);
  364. #ifdef CONFIG_RCU_USER_QS
  365. /**
  366. * rcu_user_enter - inform RCU that we are resuming userspace.
  367. *
  368. * Enter RCU idle mode right before resuming userspace. No use of RCU
  369. * is permitted between this call and rcu_user_exit(). This way the
  370. * CPU doesn't need to maintain the tick for RCU maintenance purposes
  371. * when the CPU runs in userspace.
  372. */
  373. void rcu_user_enter(void)
  374. {
  375. unsigned long flags;
  376. struct rcu_dynticks *rdtp;
  377. /*
  378. * Some contexts may involve an exception occuring in an irq,
  379. * leading to that nesting:
  380. * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
  381. * This would mess up the dyntick_nesting count though. And rcu_irq_*()
  382. * helpers are enough to protect RCU uses inside the exception. So
  383. * just return immediately if we detect we are in an IRQ.
  384. */
  385. if (in_interrupt())
  386. return;
  387. WARN_ON_ONCE(!current->mm);
  388. local_irq_save(flags);
  389. rdtp = &__get_cpu_var(rcu_dynticks);
  390. if (!rdtp->ignore_user_qs && !rdtp->in_user) {
  391. rdtp->in_user = true;
  392. rcu_eqs_enter(true);
  393. }
  394. local_irq_restore(flags);
  395. }
  396. /**
  397. * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
  398. * after the current irq returns.
  399. *
  400. * This is similar to rcu_user_enter() but in the context of a non-nesting
  401. * irq. After this call, RCU enters into idle mode when the interrupt
  402. * returns.
  403. */
  404. void rcu_user_enter_after_irq(void)
  405. {
  406. unsigned long flags;
  407. struct rcu_dynticks *rdtp;
  408. local_irq_save(flags);
  409. rdtp = &__get_cpu_var(rcu_dynticks);
  410. /* Ensure this irq is interrupting a non-idle RCU state. */
  411. WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
  412. rdtp->dynticks_nesting = 1;
  413. local_irq_restore(flags);
  414. }
  415. #endif /* CONFIG_RCU_USER_QS */
  416. /**
  417. * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
  418. *
  419. * Exit from an interrupt handler, which might possibly result in entering
  420. * idle mode, in other words, leaving the mode in which read-side critical
  421. * sections can occur.
  422. *
  423. * This code assumes that the idle loop never does anything that might
  424. * result in unbalanced calls to irq_enter() and irq_exit(). If your
  425. * architecture violates this assumption, RCU will give you what you
  426. * deserve, good and hard. But very infrequently and irreproducibly.
  427. *
  428. * Use things like work queues to work around this limitation.
  429. *
  430. * You have been warned.
  431. */
  432. void rcu_irq_exit(void)
  433. {
  434. unsigned long flags;
  435. long long oldval;
  436. struct rcu_dynticks *rdtp;
  437. local_irq_save(flags);
  438. rdtp = &__get_cpu_var(rcu_dynticks);
  439. oldval = rdtp->dynticks_nesting;
  440. rdtp->dynticks_nesting--;
  441. WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
  442. if (rdtp->dynticks_nesting)
  443. trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
  444. else
  445. rcu_eqs_enter_common(rdtp, oldval, true);
  446. local_irq_restore(flags);
  447. }
  448. /*
  449. * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
  450. *
  451. * If the new value of the ->dynticks_nesting counter was previously zero,
  452. * we really have exited idle, and must do the appropriate accounting.
  453. * The caller must have disabled interrupts.
  454. */
  455. static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
  456. int user)
  457. {
  458. smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
  459. atomic_inc(&rdtp->dynticks);
  460. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  461. smp_mb__after_atomic_inc(); /* See above. */
  462. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  463. rcu_cleanup_after_idle(smp_processor_id());
  464. trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
  465. if (!user && !is_idle_task(current)) {
  466. struct task_struct *idle = idle_task(smp_processor_id());
  467. trace_rcu_dyntick("Error on exit: not idle task",
  468. oldval, rdtp->dynticks_nesting);
  469. ftrace_dump(DUMP_ORIG);
  470. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  471. current->pid, current->comm,
  472. idle->pid, idle->comm); /* must be idle task! */
  473. }
  474. }
  475. /*
  476. * Exit an RCU extended quiescent state, which can be either the
  477. * idle loop or adaptive-tickless usermode execution.
  478. */
  479. static void rcu_eqs_exit(bool user)
  480. {
  481. struct rcu_dynticks *rdtp;
  482. long long oldval;
  483. rdtp = &__get_cpu_var(rcu_dynticks);
  484. oldval = rdtp->dynticks_nesting;
  485. WARN_ON_ONCE(oldval < 0);
  486. if (oldval & DYNTICK_TASK_NEST_MASK)
  487. rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
  488. else
  489. rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  490. rcu_eqs_exit_common(rdtp, oldval, user);
  491. }
  492. /**
  493. * rcu_idle_exit - inform RCU that current CPU is leaving idle
  494. *
  495. * Exit idle mode, in other words, -enter- the mode in which RCU
  496. * read-side critical sections can occur.
  497. *
  498. * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
  499. * allow for the possibility of usermode upcalls messing up our count
  500. * of interrupt nesting level during the busy period that is just
  501. * now starting.
  502. */
  503. void rcu_idle_exit(void)
  504. {
  505. unsigned long flags;
  506. local_irq_save(flags);
  507. rcu_eqs_exit(false);
  508. local_irq_restore(flags);
  509. }
  510. EXPORT_SYMBOL_GPL(rcu_idle_exit);
  511. #ifdef CONFIG_RCU_USER_QS
  512. /**
  513. * rcu_user_exit - inform RCU that we are exiting userspace.
  514. *
  515. * Exit RCU idle mode while entering the kernel because it can
  516. * run a RCU read side critical section anytime.
  517. */
  518. void rcu_user_exit(void)
  519. {
  520. unsigned long flags;
  521. struct rcu_dynticks *rdtp;
  522. /*
  523. * Some contexts may involve an exception occuring in an irq,
  524. * leading to that nesting:
  525. * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
  526. * This would mess up the dyntick_nesting count though. And rcu_irq_*()
  527. * helpers are enough to protect RCU uses inside the exception. So
  528. * just return immediately if we detect we are in an IRQ.
  529. */
  530. if (in_interrupt())
  531. return;
  532. local_irq_save(flags);
  533. rdtp = &__get_cpu_var(rcu_dynticks);
  534. if (rdtp->in_user) {
  535. rdtp->in_user = false;
  536. rcu_eqs_exit(true);
  537. }
  538. local_irq_restore(flags);
  539. }
  540. /**
  541. * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
  542. * idle mode after the current non-nesting irq returns.
  543. *
  544. * This is similar to rcu_user_exit() but in the context of an irq.
  545. * This is called when the irq has interrupted a userspace RCU idle mode
  546. * context. When the current non-nesting interrupt returns after this call,
  547. * the CPU won't restore the RCU idle mode.
  548. */
  549. void rcu_user_exit_after_irq(void)
  550. {
  551. unsigned long flags;
  552. struct rcu_dynticks *rdtp;
  553. local_irq_save(flags);
  554. rdtp = &__get_cpu_var(rcu_dynticks);
  555. /* Ensure we are interrupting an RCU idle mode. */
  556. WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
  557. rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
  558. local_irq_restore(flags);
  559. }
  560. #endif /* CONFIG_RCU_USER_QS */
  561. /**
  562. * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
  563. *
  564. * Enter an interrupt handler, which might possibly result in exiting
  565. * idle mode, in other words, entering the mode in which read-side critical
  566. * sections can occur.
  567. *
  568. * Note that the Linux kernel is fully capable of entering an interrupt
  569. * handler that it never exits, for example when doing upcalls to
  570. * user mode! This code assumes that the idle loop never does upcalls to
  571. * user mode. If your architecture does do upcalls from the idle loop (or
  572. * does anything else that results in unbalanced calls to the irq_enter()
  573. * and irq_exit() functions), RCU will give you what you deserve, good
  574. * and hard. But very infrequently and irreproducibly.
  575. *
  576. * Use things like work queues to work around this limitation.
  577. *
  578. * You have been warned.
  579. */
  580. void rcu_irq_enter(void)
  581. {
  582. unsigned long flags;
  583. struct rcu_dynticks *rdtp;
  584. long long oldval;
  585. local_irq_save(flags);
  586. rdtp = &__get_cpu_var(rcu_dynticks);
  587. oldval = rdtp->dynticks_nesting;
  588. rdtp->dynticks_nesting++;
  589. WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
  590. if (oldval)
  591. trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
  592. else
  593. rcu_eqs_exit_common(rdtp, oldval, true);
  594. local_irq_restore(flags);
  595. }
  596. /**
  597. * rcu_nmi_enter - inform RCU of entry to NMI context
  598. *
  599. * If the CPU was idle with dynamic ticks active, and there is no
  600. * irq handler running, this updates rdtp->dynticks_nmi to let the
  601. * RCU grace-period handling know that the CPU is active.
  602. */
  603. void rcu_nmi_enter(void)
  604. {
  605. struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
  606. if (rdtp->dynticks_nmi_nesting == 0 &&
  607. (atomic_read(&rdtp->dynticks) & 0x1))
  608. return;
  609. rdtp->dynticks_nmi_nesting++;
  610. smp_mb__before_atomic_inc(); /* Force delay from prior write. */
  611. atomic_inc(&rdtp->dynticks);
  612. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  613. smp_mb__after_atomic_inc(); /* See above. */
  614. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  615. }
  616. /**
  617. * rcu_nmi_exit - inform RCU of exit from NMI context
  618. *
  619. * If the CPU was idle with dynamic ticks active, and there is no
  620. * irq handler running, this updates rdtp->dynticks_nmi to let the
  621. * RCU grace-period handling know that the CPU is no longer active.
  622. */
  623. void rcu_nmi_exit(void)
  624. {
  625. struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
  626. if (rdtp->dynticks_nmi_nesting == 0 ||
  627. --rdtp->dynticks_nmi_nesting != 0)
  628. return;
  629. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  630. smp_mb__before_atomic_inc(); /* See above. */
  631. atomic_inc(&rdtp->dynticks);
  632. smp_mb__after_atomic_inc(); /* Force delay to next write. */
  633. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  634. }
  635. /**
  636. * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
  637. *
  638. * If the current CPU is in its idle loop and is neither in an interrupt
  639. * or NMI handler, return true.
  640. */
  641. int rcu_is_cpu_idle(void)
  642. {
  643. int ret;
  644. preempt_disable();
  645. ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
  646. preempt_enable();
  647. return ret;
  648. }
  649. EXPORT_SYMBOL(rcu_is_cpu_idle);
  650. #ifdef CONFIG_RCU_USER_QS
  651. void rcu_user_hooks_switch(struct task_struct *prev,
  652. struct task_struct *next)
  653. {
  654. struct rcu_dynticks *rdtp;
  655. /* Interrupts are disabled in context switch */
  656. rdtp = &__get_cpu_var(rcu_dynticks);
  657. if (!rdtp->ignore_user_qs) {
  658. clear_tsk_thread_flag(prev, TIF_NOHZ);
  659. set_tsk_thread_flag(next, TIF_NOHZ);
  660. }
  661. }
  662. #endif /* #ifdef CONFIG_RCU_USER_QS */
  663. #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
  664. /*
  665. * Is the current CPU online? Disable preemption to avoid false positives
  666. * that could otherwise happen due to the current CPU number being sampled,
  667. * this task being preempted, its old CPU being taken offline, resuming
  668. * on some other CPU, then determining that its old CPU is now offline.
  669. * It is OK to use RCU on an offline processor during initial boot, hence
  670. * the check for rcu_scheduler_fully_active. Note also that it is OK
  671. * for a CPU coming online to use RCU for one jiffy prior to marking itself
  672. * online in the cpu_online_mask. Similarly, it is OK for a CPU going
  673. * offline to continue to use RCU for one jiffy after marking itself
  674. * offline in the cpu_online_mask. This leniency is necessary given the
  675. * non-atomic nature of the online and offline processing, for example,
  676. * the fact that a CPU enters the scheduler after completing the CPU_DYING
  677. * notifiers.
  678. *
  679. * This is also why RCU internally marks CPUs online during the
  680. * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
  681. *
  682. * Disable checking if in an NMI handler because we cannot safely report
  683. * errors from NMI handlers anyway.
  684. */
  685. bool rcu_lockdep_current_cpu_online(void)
  686. {
  687. struct rcu_data *rdp;
  688. struct rcu_node *rnp;
  689. bool ret;
  690. if (in_nmi())
  691. return 1;
  692. preempt_disable();
  693. rdp = &__get_cpu_var(rcu_sched_data);
  694. rnp = rdp->mynode;
  695. ret = (rdp->grpmask & rnp->qsmaskinit) ||
  696. !rcu_scheduler_fully_active;
  697. preempt_enable();
  698. return ret;
  699. }
  700. EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
  701. #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
  702. /**
  703. * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
  704. *
  705. * If the current CPU is idle or running at a first-level (not nested)
  706. * interrupt from idle, return true. The caller must have at least
  707. * disabled preemption.
  708. */
  709. int rcu_is_cpu_rrupt_from_idle(void)
  710. {
  711. return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
  712. }
  713. /*
  714. * Snapshot the specified CPU's dynticks counter so that we can later
  715. * credit them with an implicit quiescent state. Return 1 if this CPU
  716. * is in dynticks idle mode, which is an extended quiescent state.
  717. */
  718. static int dyntick_save_progress_counter(struct rcu_data *rdp)
  719. {
  720. rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
  721. return (rdp->dynticks_snap & 0x1) == 0;
  722. }
  723. /*
  724. * Return true if the specified CPU has passed through a quiescent
  725. * state by virtue of being in or having passed through an dynticks
  726. * idle state since the last call to dyntick_save_progress_counter()
  727. * for this same CPU, or by virtue of having been offline.
  728. */
  729. static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
  730. {
  731. unsigned int curr;
  732. unsigned int snap;
  733. curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
  734. snap = (unsigned int)rdp->dynticks_snap;
  735. /*
  736. * If the CPU passed through or entered a dynticks idle phase with
  737. * no active irq/NMI handlers, then we can safely pretend that the CPU
  738. * already acknowledged the request to pass through a quiescent
  739. * state. Either way, that CPU cannot possibly be in an RCU
  740. * read-side critical section that started before the beginning
  741. * of the current RCU grace period.
  742. */
  743. if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
  744. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
  745. rdp->dynticks_fqs++;
  746. return 1;
  747. }
  748. /*
  749. * Check for the CPU being offline, but only if the grace period
  750. * is old enough. We don't need to worry about the CPU changing
  751. * state: If we see it offline even once, it has been through a
  752. * quiescent state.
  753. *
  754. * The reason for insisting that the grace period be at least
  755. * one jiffy old is that CPUs that are not quite online and that
  756. * have just gone offline can still execute RCU read-side critical
  757. * sections.
  758. */
  759. if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
  760. return 0; /* Grace period is not old enough. */
  761. barrier();
  762. if (cpu_is_offline(rdp->cpu)) {
  763. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
  764. rdp->offline_fqs++;
  765. return 1;
  766. }
  767. return 0;
  768. }
  769. static int jiffies_till_stall_check(void)
  770. {
  771. int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
  772. /*
  773. * Limit check must be consistent with the Kconfig limits
  774. * for CONFIG_RCU_CPU_STALL_TIMEOUT.
  775. */
  776. if (till_stall_check < 3) {
  777. ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
  778. till_stall_check = 3;
  779. } else if (till_stall_check > 300) {
  780. ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
  781. till_stall_check = 300;
  782. }
  783. return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
  784. }
  785. static void record_gp_stall_check_time(struct rcu_state *rsp)
  786. {
  787. rsp->gp_start = jiffies;
  788. rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
  789. }
  790. /*
  791. * Dump stacks of all tasks running on stalled CPUs. This is a fallback
  792. * for architectures that do not implement trigger_all_cpu_backtrace().
  793. * The NMI-triggered stack traces are more accurate because they are
  794. * printed by the target CPU.
  795. */
  796. static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
  797. {
  798. int cpu;
  799. unsigned long flags;
  800. struct rcu_node *rnp;
  801. rcu_for_each_leaf_node(rsp, rnp) {
  802. raw_spin_lock_irqsave(&rnp->lock, flags);
  803. if (rnp->qsmask != 0) {
  804. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  805. if (rnp->qsmask & (1UL << cpu))
  806. dump_cpu_task(rnp->grplo + cpu);
  807. }
  808. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  809. }
  810. }
  811. static void print_other_cpu_stall(struct rcu_state *rsp)
  812. {
  813. int cpu;
  814. long delta;
  815. unsigned long flags;
  816. int ndetected = 0;
  817. struct rcu_node *rnp = rcu_get_root(rsp);
  818. long totqlen = 0;
  819. /* Only let one CPU complain about others per time interval. */
  820. raw_spin_lock_irqsave(&rnp->lock, flags);
  821. delta = jiffies - rsp->jiffies_stall;
  822. if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
  823. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  824. return;
  825. }
  826. rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
  827. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  828. /*
  829. * OK, time to rat on our buddy...
  830. * See Documentation/RCU/stallwarn.txt for info on how to debug
  831. * RCU CPU stall warnings.
  832. */
  833. printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
  834. rsp->name);
  835. print_cpu_stall_info_begin();
  836. rcu_for_each_leaf_node(rsp, rnp) {
  837. raw_spin_lock_irqsave(&rnp->lock, flags);
  838. ndetected += rcu_print_task_stall(rnp);
  839. if (rnp->qsmask != 0) {
  840. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  841. if (rnp->qsmask & (1UL << cpu)) {
  842. print_cpu_stall_info(rsp,
  843. rnp->grplo + cpu);
  844. ndetected++;
  845. }
  846. }
  847. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  848. }
  849. /*
  850. * Now rat on any tasks that got kicked up to the root rcu_node
  851. * due to CPU offlining.
  852. */
  853. rnp = rcu_get_root(rsp);
  854. raw_spin_lock_irqsave(&rnp->lock, flags);
  855. ndetected += rcu_print_task_stall(rnp);
  856. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  857. print_cpu_stall_info_end();
  858. for_each_possible_cpu(cpu)
  859. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  860. pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
  861. smp_processor_id(), (long)(jiffies - rsp->gp_start),
  862. rsp->gpnum, rsp->completed, totqlen);
  863. if (ndetected == 0)
  864. printk(KERN_ERR "INFO: Stall ended before state dump start\n");
  865. else if (!trigger_all_cpu_backtrace())
  866. rcu_dump_cpu_stacks(rsp);
  867. /* Complain about tasks blocking the grace period. */
  868. rcu_print_detail_task_stall(rsp);
  869. force_quiescent_state(rsp); /* Kick them all. */
  870. }
  871. static void print_cpu_stall(struct rcu_state *rsp)
  872. {
  873. int cpu;
  874. unsigned long flags;
  875. struct rcu_node *rnp = rcu_get_root(rsp);
  876. long totqlen = 0;
  877. /*
  878. * OK, time to rat on ourselves...
  879. * See Documentation/RCU/stallwarn.txt for info on how to debug
  880. * RCU CPU stall warnings.
  881. */
  882. printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
  883. print_cpu_stall_info_begin();
  884. print_cpu_stall_info(rsp, smp_processor_id());
  885. print_cpu_stall_info_end();
  886. for_each_possible_cpu(cpu)
  887. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  888. pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
  889. jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
  890. if (!trigger_all_cpu_backtrace())
  891. dump_stack();
  892. raw_spin_lock_irqsave(&rnp->lock, flags);
  893. if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
  894. rsp->jiffies_stall = jiffies +
  895. 3 * jiffies_till_stall_check() + 3;
  896. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  897. set_need_resched(); /* kick ourselves to get things going. */
  898. }
  899. static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
  900. {
  901. unsigned long j;
  902. unsigned long js;
  903. struct rcu_node *rnp;
  904. if (rcu_cpu_stall_suppress)
  905. return;
  906. j = ACCESS_ONCE(jiffies);
  907. js = ACCESS_ONCE(rsp->jiffies_stall);
  908. rnp = rdp->mynode;
  909. if (rcu_gp_in_progress(rsp) &&
  910. (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
  911. /* We haven't checked in, so go dump stack. */
  912. print_cpu_stall(rsp);
  913. } else if (rcu_gp_in_progress(rsp) &&
  914. ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
  915. /* They had a few time units to dump stack, so complain. */
  916. print_other_cpu_stall(rsp);
  917. }
  918. }
  919. static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
  920. {
  921. rcu_cpu_stall_suppress = 1;
  922. return NOTIFY_DONE;
  923. }
  924. /**
  925. * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
  926. *
  927. * Set the stall-warning timeout way off into the future, thus preventing
  928. * any RCU CPU stall-warning messages from appearing in the current set of
  929. * RCU grace periods.
  930. *
  931. * The caller must disable hard irqs.
  932. */
  933. void rcu_cpu_stall_reset(void)
  934. {
  935. struct rcu_state *rsp;
  936. for_each_rcu_flavor(rsp)
  937. rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
  938. }
  939. static struct notifier_block rcu_panic_block = {
  940. .notifier_call = rcu_panic,
  941. };
  942. static void __init check_cpu_stall_init(void)
  943. {
  944. atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
  945. }
  946. /*
  947. * Update CPU-local rcu_data state to record the newly noticed grace period.
  948. * This is used both when we started the grace period and when we notice
  949. * that someone else started the grace period. The caller must hold the
  950. * ->lock of the leaf rcu_node structure corresponding to the current CPU,
  951. * and must have irqs disabled.
  952. */
  953. static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
  954. {
  955. if (rdp->gpnum != rnp->gpnum) {
  956. /*
  957. * If the current grace period is waiting for this CPU,
  958. * set up to detect a quiescent state, otherwise don't
  959. * go looking for one.
  960. */
  961. rdp->gpnum = rnp->gpnum;
  962. trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
  963. rdp->passed_quiesce = 0;
  964. rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
  965. zero_cpu_stall_ticks(rdp);
  966. }
  967. }
  968. static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
  969. {
  970. unsigned long flags;
  971. struct rcu_node *rnp;
  972. local_irq_save(flags);
  973. rnp = rdp->mynode;
  974. if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
  975. !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
  976. local_irq_restore(flags);
  977. return;
  978. }
  979. __note_new_gpnum(rsp, rnp, rdp);
  980. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  981. }
  982. /*
  983. * Did someone else start a new RCU grace period start since we last
  984. * checked? Update local state appropriately if so. Must be called
  985. * on the CPU corresponding to rdp.
  986. */
  987. static int
  988. check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
  989. {
  990. unsigned long flags;
  991. int ret = 0;
  992. local_irq_save(flags);
  993. if (rdp->gpnum != rsp->gpnum) {
  994. note_new_gpnum(rsp, rdp);
  995. ret = 1;
  996. }
  997. local_irq_restore(flags);
  998. return ret;
  999. }
  1000. /*
  1001. * Initialize the specified rcu_data structure's callback list to empty.
  1002. */
  1003. static void init_callback_list(struct rcu_data *rdp)
  1004. {
  1005. int i;
  1006. rdp->nxtlist = NULL;
  1007. for (i = 0; i < RCU_NEXT_SIZE; i++)
  1008. rdp->nxttail[i] = &rdp->nxtlist;
  1009. init_nocb_callback_list(rdp);
  1010. }
  1011. /*
  1012. * Advance this CPU's callbacks, but only if the current grace period
  1013. * has ended. This may be called only from the CPU to whom the rdp
  1014. * belongs. In addition, the corresponding leaf rcu_node structure's
  1015. * ->lock must be held by the caller, with irqs disabled.
  1016. */
  1017. static void
  1018. __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
  1019. {
  1020. /* Did another grace period end? */
  1021. if (rdp->completed != rnp->completed) {
  1022. /* Advance callbacks. No harm if list empty. */
  1023. rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
  1024. rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
  1025. rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
  1026. /* Remember that we saw this grace-period completion. */
  1027. rdp->completed = rnp->completed;
  1028. trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
  1029. /*
  1030. * If we were in an extended quiescent state, we may have
  1031. * missed some grace periods that others CPUs handled on
  1032. * our behalf. Catch up with this state to avoid noting
  1033. * spurious new grace periods. If another grace period
  1034. * has started, then rnp->gpnum will have advanced, so
  1035. * we will detect this later on. Of course, any quiescent
  1036. * states we found for the old GP are now invalid.
  1037. */
  1038. if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
  1039. rdp->gpnum = rdp->completed;
  1040. rdp->passed_quiesce = 0;
  1041. }
  1042. /*
  1043. * If RCU does not need a quiescent state from this CPU,
  1044. * then make sure that this CPU doesn't go looking for one.
  1045. */
  1046. if ((rnp->qsmask & rdp->grpmask) == 0)
  1047. rdp->qs_pending = 0;
  1048. }
  1049. }
  1050. /*
  1051. * Advance this CPU's callbacks, but only if the current grace period
  1052. * has ended. This may be called only from the CPU to whom the rdp
  1053. * belongs.
  1054. */
  1055. static void
  1056. rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
  1057. {
  1058. unsigned long flags;
  1059. struct rcu_node *rnp;
  1060. local_irq_save(flags);
  1061. rnp = rdp->mynode;
  1062. if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
  1063. !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
  1064. local_irq_restore(flags);
  1065. return;
  1066. }
  1067. __rcu_process_gp_end(rsp, rnp, rdp);
  1068. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1069. }
  1070. /*
  1071. * Do per-CPU grace-period initialization for running CPU. The caller
  1072. * must hold the lock of the leaf rcu_node structure corresponding to
  1073. * this CPU.
  1074. */
  1075. static void
  1076. rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
  1077. {
  1078. /* Prior grace period ended, so advance callbacks for current CPU. */
  1079. __rcu_process_gp_end(rsp, rnp, rdp);
  1080. /* Set state so that this CPU will detect the next quiescent state. */
  1081. __note_new_gpnum(rsp, rnp, rdp);
  1082. }
  1083. /*
  1084. * Initialize a new grace period.
  1085. */
  1086. static int rcu_gp_init(struct rcu_state *rsp)
  1087. {
  1088. struct rcu_data *rdp;
  1089. struct rcu_node *rnp = rcu_get_root(rsp);
  1090. raw_spin_lock_irq(&rnp->lock);
  1091. rsp->gp_flags = 0; /* Clear all flags: New grace period. */
  1092. if (rcu_gp_in_progress(rsp)) {
  1093. /* Grace period already in progress, don't start another. */
  1094. raw_spin_unlock_irq(&rnp->lock);
  1095. return 0;
  1096. }
  1097. /* Advance to a new grace period and initialize state. */
  1098. rsp->gpnum++;
  1099. trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
  1100. record_gp_stall_check_time(rsp);
  1101. raw_spin_unlock_irq(&rnp->lock);
  1102. /* Exclude any concurrent CPU-hotplug operations. */
  1103. mutex_lock(&rsp->onoff_mutex);
  1104. /*
  1105. * Set the quiescent-state-needed bits in all the rcu_node
  1106. * structures for all currently online CPUs in breadth-first order,
  1107. * starting from the root rcu_node structure, relying on the layout
  1108. * of the tree within the rsp->node[] array. Note that other CPUs
  1109. * will access only the leaves of the hierarchy, thus seeing that no
  1110. * grace period is in progress, at least until the corresponding
  1111. * leaf node has been initialized. In addition, we have excluded
  1112. * CPU-hotplug operations.
  1113. *
  1114. * The grace period cannot complete until the initialization
  1115. * process finishes, because this kthread handles both.
  1116. */
  1117. rcu_for_each_node_breadth_first(rsp, rnp) {
  1118. raw_spin_lock_irq(&rnp->lock);
  1119. rdp = this_cpu_ptr(rsp->rda);
  1120. rcu_preempt_check_blocked_tasks(rnp);
  1121. rnp->qsmask = rnp->qsmaskinit;
  1122. rnp->gpnum = rsp->gpnum;
  1123. WARN_ON_ONCE(rnp->completed != rsp->completed);
  1124. rnp->completed = rsp->completed;
  1125. if (rnp == rdp->mynode)
  1126. rcu_start_gp_per_cpu(rsp, rnp, rdp);
  1127. rcu_preempt_boost_start_gp(rnp);
  1128. trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
  1129. rnp->level, rnp->grplo,
  1130. rnp->grphi, rnp->qsmask);
  1131. raw_spin_unlock_irq(&rnp->lock);
  1132. #ifdef CONFIG_PROVE_RCU_DELAY
  1133. if ((random32() % (rcu_num_nodes * 8)) == 0)
  1134. schedule_timeout_uninterruptible(2);
  1135. #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
  1136. cond_resched();
  1137. }
  1138. mutex_unlock(&rsp->onoff_mutex);
  1139. return 1;
  1140. }
  1141. /*
  1142. * Do one round of quiescent-state forcing.
  1143. */
  1144. int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
  1145. {
  1146. int fqs_state = fqs_state_in;
  1147. struct rcu_node *rnp = rcu_get_root(rsp);
  1148. rsp->n_force_qs++;
  1149. if (fqs_state == RCU_SAVE_DYNTICK) {
  1150. /* Collect dyntick-idle snapshots. */
  1151. force_qs_rnp(rsp, dyntick_save_progress_counter);
  1152. fqs_state = RCU_FORCE_QS;
  1153. } else {
  1154. /* Handle dyntick-idle and offline CPUs. */
  1155. force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
  1156. }
  1157. /* Clear flag to prevent immediate re-entry. */
  1158. if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1159. raw_spin_lock_irq(&rnp->lock);
  1160. rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
  1161. raw_spin_unlock_irq(&rnp->lock);
  1162. }
  1163. return fqs_state;
  1164. }
  1165. /*
  1166. * Clean up after the old grace period.
  1167. */
  1168. static void rcu_gp_cleanup(struct rcu_state *rsp)
  1169. {
  1170. unsigned long gp_duration;
  1171. struct rcu_data *rdp;
  1172. struct rcu_node *rnp = rcu_get_root(rsp);
  1173. raw_spin_lock_irq(&rnp->lock);
  1174. gp_duration = jiffies - rsp->gp_start;
  1175. if (gp_duration > rsp->gp_max)
  1176. rsp->gp_max = gp_duration;
  1177. /*
  1178. * We know the grace period is complete, but to everyone else
  1179. * it appears to still be ongoing. But it is also the case
  1180. * that to everyone else it looks like there is nothing that
  1181. * they can do to advance the grace period. It is therefore
  1182. * safe for us to drop the lock in order to mark the grace
  1183. * period as completed in all of the rcu_node structures.
  1184. */
  1185. raw_spin_unlock_irq(&rnp->lock);
  1186. /*
  1187. * Propagate new ->completed value to rcu_node structures so
  1188. * that other CPUs don't have to wait until the start of the next
  1189. * grace period to process their callbacks. This also avoids
  1190. * some nasty RCU grace-period initialization races by forcing
  1191. * the end of the current grace period to be completely recorded in
  1192. * all of the rcu_node structures before the beginning of the next
  1193. * grace period is recorded in any of the rcu_node structures.
  1194. */
  1195. rcu_for_each_node_breadth_first(rsp, rnp) {
  1196. raw_spin_lock_irq(&rnp->lock);
  1197. rnp->completed = rsp->gpnum;
  1198. raw_spin_unlock_irq(&rnp->lock);
  1199. cond_resched();
  1200. }
  1201. rnp = rcu_get_root(rsp);
  1202. raw_spin_lock_irq(&rnp->lock);
  1203. rsp->completed = rsp->gpnum; /* Declare grace period done. */
  1204. trace_rcu_grace_period(rsp->name, rsp->completed, "end");
  1205. rsp->fqs_state = RCU_GP_IDLE;
  1206. rdp = this_cpu_ptr(rsp->rda);
  1207. if (cpu_needs_another_gp(rsp, rdp))
  1208. rsp->gp_flags = 1;
  1209. raw_spin_unlock_irq(&rnp->lock);
  1210. }
  1211. /*
  1212. * Body of kthread that handles grace periods.
  1213. */
  1214. static int __noreturn rcu_gp_kthread(void *arg)
  1215. {
  1216. int fqs_state;
  1217. unsigned long j;
  1218. int ret;
  1219. struct rcu_state *rsp = arg;
  1220. struct rcu_node *rnp = rcu_get_root(rsp);
  1221. for (;;) {
  1222. /* Handle grace-period start. */
  1223. for (;;) {
  1224. wait_event_interruptible(rsp->gp_wq,
  1225. rsp->gp_flags &
  1226. RCU_GP_FLAG_INIT);
  1227. if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
  1228. rcu_gp_init(rsp))
  1229. break;
  1230. cond_resched();
  1231. flush_signals(current);
  1232. }
  1233. /* Handle quiescent-state forcing. */
  1234. fqs_state = RCU_SAVE_DYNTICK;
  1235. j = jiffies_till_first_fqs;
  1236. if (j > HZ) {
  1237. j = HZ;
  1238. jiffies_till_first_fqs = HZ;
  1239. }
  1240. for (;;) {
  1241. rsp->jiffies_force_qs = jiffies + j;
  1242. ret = wait_event_interruptible_timeout(rsp->gp_wq,
  1243. (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
  1244. (!ACCESS_ONCE(rnp->qsmask) &&
  1245. !rcu_preempt_blocked_readers_cgp(rnp)),
  1246. j);
  1247. /* If grace period done, leave loop. */
  1248. if (!ACCESS_ONCE(rnp->qsmask) &&
  1249. !rcu_preempt_blocked_readers_cgp(rnp))
  1250. break;
  1251. /* If time for quiescent-state forcing, do it. */
  1252. if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
  1253. fqs_state = rcu_gp_fqs(rsp, fqs_state);
  1254. cond_resched();
  1255. } else {
  1256. /* Deal with stray signal. */
  1257. cond_resched();
  1258. flush_signals(current);
  1259. }
  1260. j = jiffies_till_next_fqs;
  1261. if (j > HZ) {
  1262. j = HZ;
  1263. jiffies_till_next_fqs = HZ;
  1264. } else if (j < 1) {
  1265. j = 1;
  1266. jiffies_till_next_fqs = 1;
  1267. }
  1268. }
  1269. /* Handle grace-period end. */
  1270. rcu_gp_cleanup(rsp);
  1271. }
  1272. }
  1273. /*
  1274. * Start a new RCU grace period if warranted, re-initializing the hierarchy
  1275. * in preparation for detecting the next grace period. The caller must hold
  1276. * the root node's ->lock, which is released before return. Hard irqs must
  1277. * be disabled.
  1278. *
  1279. * Note that it is legal for a dying CPU (which is marked as offline) to
  1280. * invoke this function. This can happen when the dying CPU reports its
  1281. * quiescent state.
  1282. */
  1283. static void
  1284. rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
  1285. __releases(rcu_get_root(rsp)->lock)
  1286. {
  1287. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1288. struct rcu_node *rnp = rcu_get_root(rsp);
  1289. if (!rsp->gp_kthread ||
  1290. !cpu_needs_another_gp(rsp, rdp)) {
  1291. /*
  1292. * Either we have not yet spawned the grace-period
  1293. * task, this CPU does not need another grace period,
  1294. * or a grace period is already in progress.
  1295. * Either way, don't start a new grace period.
  1296. */
  1297. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1298. return;
  1299. }
  1300. /*
  1301. * Because there is no grace period in progress right now,
  1302. * any callbacks we have up to this point will be satisfied
  1303. * by the next grace period. So promote all callbacks to be
  1304. * handled after the end of the next grace period. If the
  1305. * CPU is not yet aware of the end of the previous grace period,
  1306. * we need to allow for the callback advancement that will
  1307. * occur when it does become aware. Deadlock prevents us from
  1308. * making it aware at this point: We cannot acquire a leaf
  1309. * rcu_node ->lock while holding the root rcu_node ->lock.
  1310. */
  1311. rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
  1312. if (rdp->completed == rsp->completed)
  1313. rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
  1314. rsp->gp_flags = RCU_GP_FLAG_INIT;
  1315. raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
  1316. /* Ensure that CPU is aware of completion of last grace period. */
  1317. rcu_process_gp_end(rsp, rdp);
  1318. local_irq_restore(flags);
  1319. /* Wake up rcu_gp_kthread() to start the grace period. */
  1320. wake_up(&rsp->gp_wq);
  1321. }
  1322. /*
  1323. * Report a full set of quiescent states to the specified rcu_state
  1324. * data structure. This involves cleaning up after the prior grace
  1325. * period and letting rcu_start_gp() start up the next grace period
  1326. * if one is needed. Note that the caller must hold rnp->lock, as
  1327. * required by rcu_start_gp(), which will release it.
  1328. */
  1329. static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
  1330. __releases(rcu_get_root(rsp)->lock)
  1331. {
  1332. WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
  1333. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  1334. wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
  1335. }
  1336. /*
  1337. * Similar to rcu_report_qs_rdp(), for which it is a helper function.
  1338. * Allows quiescent states for a group of CPUs to be reported at one go
  1339. * to the specified rcu_node structure, though all the CPUs in the group
  1340. * must be represented by the same rcu_node structure (which need not be
  1341. * a leaf rcu_node structure, though it often will be). That structure's
  1342. * lock must be held upon entry, and it is released before return.
  1343. */
  1344. static void
  1345. rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
  1346. struct rcu_node *rnp, unsigned long flags)
  1347. __releases(rnp->lock)
  1348. {
  1349. struct rcu_node *rnp_c;
  1350. /* Walk up the rcu_node hierarchy. */
  1351. for (;;) {
  1352. if (!(rnp->qsmask & mask)) {
  1353. /* Our bit has already been cleared, so done. */
  1354. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1355. return;
  1356. }
  1357. rnp->qsmask &= ~mask;
  1358. trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
  1359. mask, rnp->qsmask, rnp->level,
  1360. rnp->grplo, rnp->grphi,
  1361. !!rnp->gp_tasks);
  1362. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  1363. /* Other bits still set at this level, so done. */
  1364. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1365. return;
  1366. }
  1367. mask = rnp->grpmask;
  1368. if (rnp->parent == NULL) {
  1369. /* No more levels. Exit loop holding root lock. */
  1370. break;
  1371. }
  1372. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1373. rnp_c = rnp;
  1374. rnp = rnp->parent;
  1375. raw_spin_lock_irqsave(&rnp->lock, flags);
  1376. WARN_ON_ONCE(rnp_c->qsmask);
  1377. }
  1378. /*
  1379. * Get here if we are the last CPU to pass through a quiescent
  1380. * state for this grace period. Invoke rcu_report_qs_rsp()
  1381. * to clean up and start the next grace period if one is needed.
  1382. */
  1383. rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
  1384. }
  1385. /*
  1386. * Record a quiescent state for the specified CPU to that CPU's rcu_data
  1387. * structure. This must be either called from the specified CPU, or
  1388. * called when the specified CPU is known to be offline (and when it is
  1389. * also known that no other CPU is concurrently trying to help the offline
  1390. * CPU). The lastcomp argument is used to make sure we are still in the
  1391. * grace period of interest. We don't want to end the current grace period
  1392. * based on quiescent states detected in an earlier grace period!
  1393. */
  1394. static void
  1395. rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
  1396. {
  1397. unsigned long flags;
  1398. unsigned long mask;
  1399. struct rcu_node *rnp;
  1400. rnp = rdp->mynode;
  1401. raw_spin_lock_irqsave(&rnp->lock, flags);
  1402. if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
  1403. rnp->completed == rnp->gpnum) {
  1404. /*
  1405. * The grace period in which this quiescent state was
  1406. * recorded has ended, so don't report it upwards.
  1407. * We will instead need a new quiescent state that lies
  1408. * within the current grace period.
  1409. */
  1410. rdp->passed_quiesce = 0; /* need qs for new gp. */
  1411. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1412. return;
  1413. }
  1414. mask = rdp->grpmask;
  1415. if ((rnp->qsmask & mask) == 0) {
  1416. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1417. } else {
  1418. rdp->qs_pending = 0;
  1419. /*
  1420. * This GP can't end until cpu checks in, so all of our
  1421. * callbacks can be processed during the next GP.
  1422. */
  1423. rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
  1424. rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
  1425. }
  1426. }
  1427. /*
  1428. * Check to see if there is a new grace period of which this CPU
  1429. * is not yet aware, and if so, set up local rcu_data state for it.
  1430. * Otherwise, see if this CPU has just passed through its first
  1431. * quiescent state for this grace period, and record that fact if so.
  1432. */
  1433. static void
  1434. rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
  1435. {
  1436. /* If there is now a new grace period, record and return. */
  1437. if (check_for_new_grace_period(rsp, rdp))
  1438. return;
  1439. /*
  1440. * Does this CPU still need to do its part for current grace period?
  1441. * If no, return and let the other CPUs do their part as well.
  1442. */
  1443. if (!rdp->qs_pending)
  1444. return;
  1445. /*
  1446. * Was there a quiescent state since the beginning of the grace
  1447. * period? If no, then exit and wait for the next call.
  1448. */
  1449. if (!rdp->passed_quiesce)
  1450. return;
  1451. /*
  1452. * Tell RCU we are done (but rcu_report_qs_rdp() will be the
  1453. * judge of that).
  1454. */
  1455. rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
  1456. }
  1457. #ifdef CONFIG_HOTPLUG_CPU
  1458. /*
  1459. * Send the specified CPU's RCU callbacks to the orphanage. The
  1460. * specified CPU must be offline, and the caller must hold the
  1461. * ->orphan_lock.
  1462. */
  1463. static void
  1464. rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
  1465. struct rcu_node *rnp, struct rcu_data *rdp)
  1466. {
  1467. /* No-CBs CPUs do not have orphanable callbacks. */
  1468. if (is_nocb_cpu(rdp->cpu))
  1469. return;
  1470. /*
  1471. * Orphan the callbacks. First adjust the counts. This is safe
  1472. * because _rcu_barrier() excludes CPU-hotplug operations, so it
  1473. * cannot be running now. Thus no memory barrier is required.
  1474. */
  1475. if (rdp->nxtlist != NULL) {
  1476. rsp->qlen_lazy += rdp->qlen_lazy;
  1477. rsp->qlen += rdp->qlen;
  1478. rdp->n_cbs_orphaned += rdp->qlen;
  1479. rdp->qlen_lazy = 0;
  1480. ACCESS_ONCE(rdp->qlen) = 0;
  1481. }
  1482. /*
  1483. * Next, move those callbacks still needing a grace period to
  1484. * the orphanage, where some other CPU will pick them up.
  1485. * Some of the callbacks might have gone partway through a grace
  1486. * period, but that is too bad. They get to start over because we
  1487. * cannot assume that grace periods are synchronized across CPUs.
  1488. * We don't bother updating the ->nxttail[] array yet, instead
  1489. * we just reset the whole thing later on.
  1490. */
  1491. if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
  1492. *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
  1493. rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
  1494. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  1495. }
  1496. /*
  1497. * Then move the ready-to-invoke callbacks to the orphanage,
  1498. * where some other CPU will pick them up. These will not be
  1499. * required to pass though another grace period: They are done.
  1500. */
  1501. if (rdp->nxtlist != NULL) {
  1502. *rsp->orphan_donetail = rdp->nxtlist;
  1503. rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
  1504. }
  1505. /* Finally, initialize the rcu_data structure's list to empty. */
  1506. init_callback_list(rdp);
  1507. }
  1508. /*
  1509. * Adopt the RCU callbacks from the specified rcu_state structure's
  1510. * orphanage. The caller must hold the ->orphan_lock.
  1511. */
  1512. static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
  1513. {
  1514. int i;
  1515. struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
  1516. /* No-CBs CPUs are handled specially. */
  1517. if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
  1518. return;
  1519. /* Do the accounting first. */
  1520. rdp->qlen_lazy += rsp->qlen_lazy;
  1521. rdp->qlen += rsp->qlen;
  1522. rdp->n_cbs_adopted += rsp->qlen;
  1523. if (rsp->qlen_lazy != rsp->qlen)
  1524. rcu_idle_count_callbacks_posted();
  1525. rsp->qlen_lazy = 0;
  1526. rsp->qlen = 0;
  1527. /*
  1528. * We do not need a memory barrier here because the only way we
  1529. * can get here if there is an rcu_barrier() in flight is if
  1530. * we are the task doing the rcu_barrier().
  1531. */
  1532. /* First adopt the ready-to-invoke callbacks. */
  1533. if (rsp->orphan_donelist != NULL) {
  1534. *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
  1535. *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
  1536. for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
  1537. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  1538. rdp->nxttail[i] = rsp->orphan_donetail;
  1539. rsp->orphan_donelist = NULL;
  1540. rsp->orphan_donetail = &rsp->orphan_donelist;
  1541. }
  1542. /* And then adopt the callbacks that still need a grace period. */
  1543. if (rsp->orphan_nxtlist != NULL) {
  1544. *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
  1545. rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
  1546. rsp->orphan_nxtlist = NULL;
  1547. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  1548. }
  1549. }
  1550. /*
  1551. * Trace the fact that this CPU is going offline.
  1552. */
  1553. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  1554. {
  1555. RCU_TRACE(unsigned long mask);
  1556. RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
  1557. RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
  1558. RCU_TRACE(mask = rdp->grpmask);
  1559. trace_rcu_grace_period(rsp->name,
  1560. rnp->gpnum + 1 - !!(rnp->qsmask & mask),
  1561. "cpuofl");
  1562. }
  1563. /*
  1564. * The CPU has been completely removed, and some other CPU is reporting
  1565. * this fact from process context. Do the remainder of the cleanup,
  1566. * including orphaning the outgoing CPU's RCU callbacks, and also
  1567. * adopting them. There can only be one CPU hotplug operation at a time,
  1568. * so no other CPU can be attempting to update rcu_cpu_kthread_task.
  1569. */
  1570. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  1571. {
  1572. unsigned long flags;
  1573. unsigned long mask;
  1574. int need_report = 0;
  1575. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1576. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  1577. /* Adjust any no-longer-needed kthreads. */
  1578. rcu_boost_kthread_setaffinity(rnp, -1);
  1579. /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
  1580. /* Exclude any attempts to start a new grace period. */
  1581. mutex_lock(&rsp->onoff_mutex);
  1582. raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
  1583. /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
  1584. rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
  1585. rcu_adopt_orphan_cbs(rsp);
  1586. /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
  1587. mask = rdp->grpmask; /* rnp->grplo is constant. */
  1588. do {
  1589. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  1590. rnp->qsmaskinit &= ~mask;
  1591. if (rnp->qsmaskinit != 0) {
  1592. if (rnp != rdp->mynode)
  1593. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1594. break;
  1595. }
  1596. if (rnp == rdp->mynode)
  1597. need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
  1598. else
  1599. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1600. mask = rnp->grpmask;
  1601. rnp = rnp->parent;
  1602. } while (rnp != NULL);
  1603. /*
  1604. * We still hold the leaf rcu_node structure lock here, and
  1605. * irqs are still disabled. The reason for this subterfuge is
  1606. * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
  1607. * held leads to deadlock.
  1608. */
  1609. raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
  1610. rnp = rdp->mynode;
  1611. if (need_report & RCU_OFL_TASKS_NORM_GP)
  1612. rcu_report_unblock_qs_rnp(rnp, flags);
  1613. else
  1614. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1615. if (need_report & RCU_OFL_TASKS_EXP_GP)
  1616. rcu_report_exp_rnp(rsp, rnp, true);
  1617. WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
  1618. "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
  1619. cpu, rdp->qlen, rdp->nxtlist);
  1620. init_callback_list(rdp);
  1621. /* Disallow further callbacks on this CPU. */
  1622. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  1623. mutex_unlock(&rsp->onoff_mutex);
  1624. }
  1625. #else /* #ifdef CONFIG_HOTPLUG_CPU */
  1626. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  1627. {
  1628. }
  1629. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  1630. {
  1631. }
  1632. #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
  1633. /*
  1634. * Invoke any RCU callbacks that have made it to the end of their grace
  1635. * period. Thottle as specified by rdp->blimit.
  1636. */
  1637. static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
  1638. {
  1639. unsigned long flags;
  1640. struct rcu_head *next, *list, **tail;
  1641. long bl, count, count_lazy;
  1642. int i;
  1643. /* If no callbacks are ready, just return.*/
  1644. if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
  1645. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
  1646. trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
  1647. need_resched(), is_idle_task(current),
  1648. rcu_is_callbacks_kthread());
  1649. return;
  1650. }
  1651. /*
  1652. * Extract the list of ready callbacks, disabling to prevent
  1653. * races with call_rcu() from interrupt handlers.
  1654. */
  1655. local_irq_save(flags);
  1656. WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
  1657. bl = rdp->blimit;
  1658. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
  1659. list = rdp->nxtlist;
  1660. rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
  1661. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  1662. tail = rdp->nxttail[RCU_DONE_TAIL];
  1663. for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
  1664. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  1665. rdp->nxttail[i] = &rdp->nxtlist;
  1666. local_irq_restore(flags);
  1667. /* Invoke callbacks. */
  1668. count = count_lazy = 0;
  1669. while (list) {
  1670. next = list->next;
  1671. prefetch(next);
  1672. debug_rcu_head_unqueue(list);
  1673. if (__rcu_reclaim(rsp->name, list))
  1674. count_lazy++;
  1675. list = next;
  1676. /* Stop only if limit reached and CPU has something to do. */
  1677. if (++count >= bl &&
  1678. (need_resched() ||
  1679. (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
  1680. break;
  1681. }
  1682. local_irq_save(flags);
  1683. trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
  1684. is_idle_task(current),
  1685. rcu_is_callbacks_kthread());
  1686. /* Update count, and requeue any remaining callbacks. */
  1687. if (list != NULL) {
  1688. *tail = rdp->nxtlist;
  1689. rdp->nxtlist = list;
  1690. for (i = 0; i < RCU_NEXT_SIZE; i++)
  1691. if (&rdp->nxtlist == rdp->nxttail[i])
  1692. rdp->nxttail[i] = tail;
  1693. else
  1694. break;
  1695. }
  1696. smp_mb(); /* List handling before counting for rcu_barrier(). */
  1697. rdp->qlen_lazy -= count_lazy;
  1698. ACCESS_ONCE(rdp->qlen) -= count;
  1699. rdp->n_cbs_invoked += count;
  1700. /* Reinstate batch limit if we have worked down the excess. */
  1701. if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
  1702. rdp->blimit = blimit;
  1703. /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
  1704. if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
  1705. rdp->qlen_last_fqs_check = 0;
  1706. rdp->n_force_qs_snap = rsp->n_force_qs;
  1707. } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
  1708. rdp->qlen_last_fqs_check = rdp->qlen;
  1709. WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
  1710. local_irq_restore(flags);
  1711. /* Re-invoke RCU core processing if there are callbacks remaining. */
  1712. if (cpu_has_callbacks_ready_to_invoke(rdp))
  1713. invoke_rcu_core();
  1714. }
  1715. /*
  1716. * Check to see if this CPU is in a non-context-switch quiescent state
  1717. * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
  1718. * Also schedule RCU core processing.
  1719. *
  1720. * This function must be called from hardirq context. It is normally
  1721. * invoked from the scheduling-clock interrupt. If rcu_pending returns
  1722. * false, there is no point in invoking rcu_check_callbacks().
  1723. */
  1724. void rcu_check_callbacks(int cpu, int user)
  1725. {
  1726. trace_rcu_utilization("Start scheduler-tick");
  1727. increment_cpu_stall_ticks();
  1728. if (user || rcu_is_cpu_rrupt_from_idle()) {
  1729. /*
  1730. * Get here if this CPU took its interrupt from user
  1731. * mode or from the idle loop, and if this is not a
  1732. * nested interrupt. In this case, the CPU is in
  1733. * a quiescent state, so note it.
  1734. *
  1735. * No memory barrier is required here because both
  1736. * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
  1737. * variables that other CPUs neither access nor modify,
  1738. * at least not while the corresponding CPU is online.
  1739. */
  1740. rcu_sched_qs(cpu);
  1741. rcu_bh_qs(cpu);
  1742. } else if (!in_softirq()) {
  1743. /*
  1744. * Get here if this CPU did not take its interrupt from
  1745. * softirq, in other words, if it is not interrupting
  1746. * a rcu_bh read-side critical section. This is an _bh
  1747. * critical section, so note it.
  1748. */
  1749. rcu_bh_qs(cpu);
  1750. }
  1751. rcu_preempt_check_callbacks(cpu);
  1752. if (rcu_pending(cpu))
  1753. invoke_rcu_core();
  1754. trace_rcu_utilization("End scheduler-tick");
  1755. }
  1756. /*
  1757. * Scan the leaf rcu_node structures, processing dyntick state for any that
  1758. * have not yet encountered a quiescent state, using the function specified.
  1759. * Also initiate boosting for any threads blocked on the root rcu_node.
  1760. *
  1761. * The caller must have suppressed start of new grace periods.
  1762. */
  1763. static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
  1764. {
  1765. unsigned long bit;
  1766. int cpu;
  1767. unsigned long flags;
  1768. unsigned long mask;
  1769. struct rcu_node *rnp;
  1770. rcu_for_each_leaf_node(rsp, rnp) {
  1771. cond_resched();
  1772. mask = 0;
  1773. raw_spin_lock_irqsave(&rnp->lock, flags);
  1774. if (!rcu_gp_in_progress(rsp)) {
  1775. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1776. return;
  1777. }
  1778. if (rnp->qsmask == 0) {
  1779. rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
  1780. continue;
  1781. }
  1782. cpu = rnp->grplo;
  1783. bit = 1;
  1784. for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
  1785. if ((rnp->qsmask & bit) != 0 &&
  1786. f(per_cpu_ptr(rsp->rda, cpu)))
  1787. mask |= bit;
  1788. }
  1789. if (mask != 0) {
  1790. /* rcu_report_qs_rnp() releases rnp->lock. */
  1791. rcu_report_qs_rnp(mask, rsp, rnp, flags);
  1792. continue;
  1793. }
  1794. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1795. }
  1796. rnp = rcu_get_root(rsp);
  1797. if (rnp->qsmask == 0) {
  1798. raw_spin_lock_irqsave(&rnp->lock, flags);
  1799. rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
  1800. }
  1801. }
  1802. /*
  1803. * Force quiescent states on reluctant CPUs, and also detect which
  1804. * CPUs are in dyntick-idle mode.
  1805. */
  1806. static void force_quiescent_state(struct rcu_state *rsp)
  1807. {
  1808. unsigned long flags;
  1809. bool ret;
  1810. struct rcu_node *rnp;
  1811. struct rcu_node *rnp_old = NULL;
  1812. /* Funnel through hierarchy to reduce memory contention. */
  1813. rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
  1814. for (; rnp != NULL; rnp = rnp->parent) {
  1815. ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
  1816. !raw_spin_trylock(&rnp->fqslock);
  1817. if (rnp_old != NULL)
  1818. raw_spin_unlock(&rnp_old->fqslock);
  1819. if (ret) {
  1820. rsp->n_force_qs_lh++;
  1821. return;
  1822. }
  1823. rnp_old = rnp;
  1824. }
  1825. /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
  1826. /* Reached the root of the rcu_node tree, acquire lock. */
  1827. raw_spin_lock_irqsave(&rnp_old->lock, flags);
  1828. raw_spin_unlock(&rnp_old->fqslock);
  1829. if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1830. rsp->n_force_qs_lh++;
  1831. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  1832. return; /* Someone beat us to it. */
  1833. }
  1834. rsp->gp_flags |= RCU_GP_FLAG_FQS;
  1835. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  1836. wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
  1837. }
  1838. /*
  1839. * This does the RCU core processing work for the specified rcu_state
  1840. * and rcu_data structures. This may be called only from the CPU to
  1841. * whom the rdp belongs.
  1842. */
  1843. static void
  1844. __rcu_process_callbacks(struct rcu_state *rsp)
  1845. {
  1846. unsigned long flags;
  1847. struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
  1848. WARN_ON_ONCE(rdp->beenonline == 0);
  1849. /*
  1850. * Advance callbacks in response to end of earlier grace
  1851. * period that some other CPU ended.
  1852. */
  1853. rcu_process_gp_end(rsp, rdp);
  1854. /* Update RCU state based on any recent quiescent states. */
  1855. rcu_check_quiescent_state(rsp, rdp);
  1856. /* Does this CPU require a not-yet-started grace period? */
  1857. if (cpu_needs_another_gp(rsp, rdp)) {
  1858. raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
  1859. rcu_start_gp(rsp, flags); /* releases above lock */
  1860. }
  1861. /* If there are callbacks ready, invoke them. */
  1862. if (cpu_has_callbacks_ready_to_invoke(rdp))
  1863. invoke_rcu_callbacks(rsp, rdp);
  1864. }
  1865. /*
  1866. * Do RCU core processing for the current CPU.
  1867. */
  1868. static void rcu_process_callbacks(struct softirq_action *unused)
  1869. {
  1870. struct rcu_state *rsp;
  1871. if (cpu_is_offline(smp_processor_id()))
  1872. return;
  1873. trace_rcu_utilization("Start RCU core");
  1874. for_each_rcu_flavor(rsp)
  1875. __rcu_process_callbacks(rsp);
  1876. trace_rcu_utilization("End RCU core");
  1877. }
  1878. /*
  1879. * Schedule RCU callback invocation. If the specified type of RCU
  1880. * does not support RCU priority boosting, just do a direct call,
  1881. * otherwise wake up the per-CPU kernel kthread. Note that because we
  1882. * are running on the current CPU with interrupts disabled, the
  1883. * rcu_cpu_kthread_task cannot disappear out from under us.
  1884. */
  1885. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
  1886. {
  1887. if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
  1888. return;
  1889. if (likely(!rsp->boost)) {
  1890. rcu_do_batch(rsp, rdp);
  1891. return;
  1892. }
  1893. invoke_rcu_callbacks_kthread();
  1894. }
  1895. static void invoke_rcu_core(void)
  1896. {
  1897. raise_softirq(RCU_SOFTIRQ);
  1898. }
  1899. /*
  1900. * Handle any core-RCU processing required by a call_rcu() invocation.
  1901. */
  1902. static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
  1903. struct rcu_head *head, unsigned long flags)
  1904. {
  1905. /*
  1906. * If called from an extended quiescent state, invoke the RCU
  1907. * core in order to force a re-evaluation of RCU's idleness.
  1908. */
  1909. if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
  1910. invoke_rcu_core();
  1911. /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
  1912. if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
  1913. return;
  1914. /*
  1915. * Force the grace period if too many callbacks or too long waiting.
  1916. * Enforce hysteresis, and don't invoke force_quiescent_state()
  1917. * if some other CPU has recently done so. Also, don't bother
  1918. * invoking force_quiescent_state() if the newly enqueued callback
  1919. * is the only one waiting for a grace period to complete.
  1920. */
  1921. if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
  1922. /* Are we ignoring a completed grace period? */
  1923. rcu_process_gp_end(rsp, rdp);
  1924. check_for_new_grace_period(rsp, rdp);
  1925. /* Start a new grace period if one not already started. */
  1926. if (!rcu_gp_in_progress(rsp)) {
  1927. unsigned long nestflag;
  1928. struct rcu_node *rnp_root = rcu_get_root(rsp);
  1929. raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
  1930. rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
  1931. } else {
  1932. /* Give the grace period a kick. */
  1933. rdp->blimit = LONG_MAX;
  1934. if (rsp->n_force_qs == rdp->n_force_qs_snap &&
  1935. *rdp->nxttail[RCU_DONE_TAIL] != head)
  1936. force_quiescent_state(rsp);
  1937. rdp->n_force_qs_snap = rsp->n_force_qs;
  1938. rdp->qlen_last_fqs_check = rdp->qlen;
  1939. }
  1940. }
  1941. }
  1942. /*
  1943. * Helper function for call_rcu() and friends. The cpu argument will
  1944. * normally be -1, indicating "currently running CPU". It may specify
  1945. * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
  1946. * is expected to specify a CPU.
  1947. */
  1948. static void
  1949. __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
  1950. struct rcu_state *rsp, int cpu, bool lazy)
  1951. {
  1952. unsigned long flags;
  1953. struct rcu_data *rdp;
  1954. WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
  1955. debug_rcu_head_queue(head);
  1956. head->func = func;
  1957. head->next = NULL;
  1958. /*
  1959. * Opportunistically note grace-period endings and beginnings.
  1960. * Note that we might see a beginning right after we see an
  1961. * end, but never vice versa, since this CPU has to pass through
  1962. * a quiescent state betweentimes.
  1963. */
  1964. local_irq_save(flags);
  1965. rdp = this_cpu_ptr(rsp->rda);
  1966. /* Add the callback to our list. */
  1967. if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
  1968. int offline;
  1969. if (cpu != -1)
  1970. rdp = per_cpu_ptr(rsp->rda, cpu);
  1971. offline = !__call_rcu_nocb(rdp, head, lazy);
  1972. WARN_ON_ONCE(offline);
  1973. /* _call_rcu() is illegal on offline CPU; leak the callback. */
  1974. local_irq_restore(flags);
  1975. return;
  1976. }
  1977. ACCESS_ONCE(rdp->qlen)++;
  1978. if (lazy)
  1979. rdp->qlen_lazy++;
  1980. else
  1981. rcu_idle_count_callbacks_posted();
  1982. smp_mb(); /* Count before adding callback for rcu_barrier(). */
  1983. *rdp->nxttail[RCU_NEXT_TAIL] = head;
  1984. rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
  1985. if (__is_kfree_rcu_offset((unsigned long)func))
  1986. trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
  1987. rdp->qlen_lazy, rdp->qlen);
  1988. else
  1989. trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
  1990. /* Go handle any RCU core processing required. */
  1991. __call_rcu_core(rsp, rdp, head, flags);
  1992. local_irq_restore(flags);
  1993. }
  1994. /*
  1995. * Queue an RCU-sched callback for invocation after a grace period.
  1996. */
  1997. void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  1998. {
  1999. __call_rcu(head, func, &rcu_sched_state, -1, 0);
  2000. }
  2001. EXPORT_SYMBOL_GPL(call_rcu_sched);
  2002. /*
  2003. * Queue an RCU callback for invocation after a quicker grace period.
  2004. */
  2005. void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  2006. {
  2007. __call_rcu(head, func, &rcu_bh_state, -1, 0);
  2008. }
  2009. EXPORT_SYMBOL_GPL(call_rcu_bh);
  2010. /*
  2011. * Because a context switch is a grace period for RCU-sched and RCU-bh,
  2012. * any blocking grace-period wait automatically implies a grace period
  2013. * if there is only one CPU online at any point time during execution
  2014. * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
  2015. * occasionally incorrectly indicate that there are multiple CPUs online
  2016. * when there was in fact only one the whole time, as this just adds
  2017. * some overhead: RCU still operates correctly.
  2018. */
  2019. static inline int rcu_blocking_is_gp(void)
  2020. {
  2021. int ret;
  2022. might_sleep(); /* Check for RCU read-side critical section. */
  2023. preempt_disable();
  2024. ret = num_online_cpus() <= 1;
  2025. preempt_enable();
  2026. return ret;
  2027. }
  2028. /**
  2029. * synchronize_sched - wait until an rcu-sched grace period has elapsed.
  2030. *
  2031. * Control will return to the caller some time after a full rcu-sched
  2032. * grace period has elapsed, in other words after all currently executing
  2033. * rcu-sched read-side critical sections have completed. These read-side
  2034. * critical sections are delimited by rcu_read_lock_sched() and
  2035. * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
  2036. * local_irq_disable(), and so on may be used in place of
  2037. * rcu_read_lock_sched().
  2038. *
  2039. * This means that all preempt_disable code sequences, including NMI and
  2040. * non-threaded hardware-interrupt handlers, in progress on entry will
  2041. * have completed before this primitive returns. However, this does not
  2042. * guarantee that softirq handlers will have completed, since in some
  2043. * kernels, these handlers can run in process context, and can block.
  2044. *
  2045. * Note that this guarantee implies further memory-ordering guarantees.
  2046. * On systems with more than one CPU, when synchronize_sched() returns,
  2047. * each CPU is guaranteed to have executed a full memory barrier since the
  2048. * end of its last RCU-sched read-side critical section whose beginning
  2049. * preceded the call to synchronize_sched(). In addition, each CPU having
  2050. * an RCU read-side critical section that extends beyond the return from
  2051. * synchronize_sched() is guaranteed to have executed a full memory barrier
  2052. * after the beginning of synchronize_sched() and before the beginning of
  2053. * that RCU read-side critical section. Note that these guarantees include
  2054. * CPUs that are offline, idle, or executing in user mode, as well as CPUs
  2055. * that are executing in the kernel.
  2056. *
  2057. * Furthermore, if CPU A invoked synchronize_sched(), which returned
  2058. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  2059. * to have executed a full memory barrier during the execution of
  2060. * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
  2061. * again only if the system has more than one CPU).
  2062. *
  2063. * This primitive provides the guarantees made by the (now removed)
  2064. * synchronize_kernel() API. In contrast, synchronize_rcu() only
  2065. * guarantees that rcu_read_lock() sections will have completed.
  2066. * In "classic RCU", these two guarantees happen to be one and
  2067. * the same, but can differ in realtime RCU implementations.
  2068. */
  2069. void synchronize_sched(void)
  2070. {
  2071. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  2072. !lock_is_held(&rcu_lock_map) &&
  2073. !lock_is_held(&rcu_sched_lock_map),
  2074. "Illegal synchronize_sched() in RCU-sched read-side critical section");
  2075. if (rcu_blocking_is_gp())
  2076. return;
  2077. if (rcu_expedited)
  2078. synchronize_sched_expedited();
  2079. else
  2080. wait_rcu_gp(call_rcu_sched);
  2081. }
  2082. EXPORT_SYMBOL_GPL(synchronize_sched);
  2083. /**
  2084. * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
  2085. *
  2086. * Control will return to the caller some time after a full rcu_bh grace
  2087. * period has elapsed, in other words after all currently executing rcu_bh
  2088. * read-side critical sections have completed. RCU read-side critical
  2089. * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
  2090. * and may be nested.
  2091. *
  2092. * See the description of synchronize_sched() for more detailed information
  2093. * on memory ordering guarantees.
  2094. */
  2095. void synchronize_rcu_bh(void)
  2096. {
  2097. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  2098. !lock_is_held(&rcu_lock_map) &&
  2099. !lock_is_held(&rcu_sched_lock_map),
  2100. "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
  2101. if (rcu_blocking_is_gp())
  2102. return;
  2103. if (rcu_expedited)
  2104. synchronize_rcu_bh_expedited();
  2105. else
  2106. wait_rcu_gp(call_rcu_bh);
  2107. }
  2108. EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
  2109. static int synchronize_sched_expedited_cpu_stop(void *data)
  2110. {
  2111. /*
  2112. * There must be a full memory barrier on each affected CPU
  2113. * between the time that try_stop_cpus() is called and the
  2114. * time that it returns.
  2115. *
  2116. * In the current initial implementation of cpu_stop, the
  2117. * above condition is already met when the control reaches
  2118. * this point and the following smp_mb() is not strictly
  2119. * necessary. Do smp_mb() anyway for documentation and
  2120. * robustness against future implementation changes.
  2121. */
  2122. smp_mb(); /* See above comment block. */
  2123. return 0;
  2124. }
  2125. /**
  2126. * synchronize_sched_expedited - Brute-force RCU-sched grace period
  2127. *
  2128. * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
  2129. * approach to force the grace period to end quickly. This consumes
  2130. * significant time on all CPUs and is unfriendly to real-time workloads,
  2131. * so is thus not recommended for any sort of common-case code. In fact,
  2132. * if you are using synchronize_sched_expedited() in a loop, please
  2133. * restructure your code to batch your updates, and then use a single
  2134. * synchronize_sched() instead.
  2135. *
  2136. * Note that it is illegal to call this function while holding any lock
  2137. * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
  2138. * to call this function from a CPU-hotplug notifier. Failing to observe
  2139. * these restriction will result in deadlock.
  2140. *
  2141. * This implementation can be thought of as an application of ticket
  2142. * locking to RCU, with sync_sched_expedited_started and
  2143. * sync_sched_expedited_done taking on the roles of the halves
  2144. * of the ticket-lock word. Each task atomically increments
  2145. * sync_sched_expedited_started upon entry, snapshotting the old value,
  2146. * then attempts to stop all the CPUs. If this succeeds, then each
  2147. * CPU will have executed a context switch, resulting in an RCU-sched
  2148. * grace period. We are then done, so we use atomic_cmpxchg() to
  2149. * update sync_sched_expedited_done to match our snapshot -- but
  2150. * only if someone else has not already advanced past our snapshot.
  2151. *
  2152. * On the other hand, if try_stop_cpus() fails, we check the value
  2153. * of sync_sched_expedited_done. If it has advanced past our
  2154. * initial snapshot, then someone else must have forced a grace period
  2155. * some time after we took our snapshot. In this case, our work is
  2156. * done for us, and we can simply return. Otherwise, we try again,
  2157. * but keep our initial snapshot for purposes of checking for someone
  2158. * doing our work for us.
  2159. *
  2160. * If we fail too many times in a row, we fall back to synchronize_sched().
  2161. */
  2162. void synchronize_sched_expedited(void)
  2163. {
  2164. long firstsnap, s, snap;
  2165. int trycount = 0;
  2166. struct rcu_state *rsp = &rcu_sched_state;
  2167. /*
  2168. * If we are in danger of counter wrap, just do synchronize_sched().
  2169. * By allowing sync_sched_expedited_started to advance no more than
  2170. * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
  2171. * that more than 3.5 billion CPUs would be required to force a
  2172. * counter wrap on a 32-bit system. Quite a few more CPUs would of
  2173. * course be required on a 64-bit system.
  2174. */
  2175. if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
  2176. (ulong)atomic_long_read(&rsp->expedited_done) +
  2177. ULONG_MAX / 8)) {
  2178. synchronize_sched();
  2179. atomic_long_inc(&rsp->expedited_wrap);
  2180. return;
  2181. }
  2182. /*
  2183. * Take a ticket. Note that atomic_inc_return() implies a
  2184. * full memory barrier.
  2185. */
  2186. snap = atomic_long_inc_return(&rsp->expedited_start);
  2187. firstsnap = snap;
  2188. get_online_cpus();
  2189. WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
  2190. /*
  2191. * Each pass through the following loop attempts to force a
  2192. * context switch on each CPU.
  2193. */
  2194. while (try_stop_cpus(cpu_online_mask,
  2195. synchronize_sched_expedited_cpu_stop,
  2196. NULL) == -EAGAIN) {
  2197. put_online_cpus();
  2198. atomic_long_inc(&rsp->expedited_tryfail);
  2199. /* Check to see if someone else did our work for us. */
  2200. s = atomic_long_read(&rsp->expedited_done);
  2201. if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
  2202. /* ensure test happens before caller kfree */
  2203. smp_mb__before_atomic_inc(); /* ^^^ */
  2204. atomic_long_inc(&rsp->expedited_workdone1);
  2205. return;
  2206. }
  2207. /* No joy, try again later. Or just synchronize_sched(). */
  2208. if (trycount++ < 10) {
  2209. udelay(trycount * num_online_cpus());
  2210. } else {
  2211. wait_rcu_gp(call_rcu_sched);
  2212. atomic_long_inc(&rsp->expedited_normal);
  2213. return;
  2214. }
  2215. /* Recheck to see if someone else did our work for us. */
  2216. s = atomic_long_read(&rsp->expedited_done);
  2217. if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
  2218. /* ensure test happens before caller kfree */
  2219. smp_mb__before_atomic_inc(); /* ^^^ */
  2220. atomic_long_inc(&rsp->expedited_workdone2);
  2221. return;
  2222. }
  2223. /*
  2224. * Refetching sync_sched_expedited_started allows later
  2225. * callers to piggyback on our grace period. We retry
  2226. * after they started, so our grace period works for them,
  2227. * and they started after our first try, so their grace
  2228. * period works for us.
  2229. */
  2230. get_online_cpus();
  2231. snap = atomic_long_read(&rsp->expedited_start);
  2232. smp_mb(); /* ensure read is before try_stop_cpus(). */
  2233. }
  2234. atomic_long_inc(&rsp->expedited_stoppedcpus);
  2235. /*
  2236. * Everyone up to our most recent fetch is covered by our grace
  2237. * period. Update the counter, but only if our work is still
  2238. * relevant -- which it won't be if someone who started later
  2239. * than we did already did their update.
  2240. */
  2241. do {
  2242. atomic_long_inc(&rsp->expedited_done_tries);
  2243. s = atomic_long_read(&rsp->expedited_done);
  2244. if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
  2245. /* ensure test happens before caller kfree */
  2246. smp_mb__before_atomic_inc(); /* ^^^ */
  2247. atomic_long_inc(&rsp->expedited_done_lost);
  2248. break;
  2249. }
  2250. } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
  2251. atomic_long_inc(&rsp->expedited_done_exit);
  2252. put_online_cpus();
  2253. }
  2254. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  2255. /*
  2256. * Check to see if there is any immediate RCU-related work to be done
  2257. * by the current CPU, for the specified type of RCU, returning 1 if so.
  2258. * The checks are in order of increasing expense: checks that can be
  2259. * carried out against CPU-local state are performed first. However,
  2260. * we must check for CPU stalls first, else we might not get a chance.
  2261. */
  2262. static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
  2263. {
  2264. struct rcu_node *rnp = rdp->mynode;
  2265. rdp->n_rcu_pending++;
  2266. /* Check for CPU stalls, if enabled. */
  2267. check_cpu_stall(rsp, rdp);
  2268. /* Is the RCU core waiting for a quiescent state from this CPU? */
  2269. if (rcu_scheduler_fully_active &&
  2270. rdp->qs_pending && !rdp->passed_quiesce) {
  2271. rdp->n_rp_qs_pending++;
  2272. } else if (rdp->qs_pending && rdp->passed_quiesce) {
  2273. rdp->n_rp_report_qs++;
  2274. return 1;
  2275. }
  2276. /* Does this CPU have callbacks ready to invoke? */
  2277. if (cpu_has_callbacks_ready_to_invoke(rdp)) {
  2278. rdp->n_rp_cb_ready++;
  2279. return 1;
  2280. }
  2281. /* Has RCU gone idle with this CPU needing another grace period? */
  2282. if (cpu_needs_another_gp(rsp, rdp)) {
  2283. rdp->n_rp_cpu_needs_gp++;
  2284. return 1;
  2285. }
  2286. /* Has another RCU grace period completed? */
  2287. if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
  2288. rdp->n_rp_gp_completed++;
  2289. return 1;
  2290. }
  2291. /* Has a new RCU grace period started? */
  2292. if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
  2293. rdp->n_rp_gp_started++;
  2294. return 1;
  2295. }
  2296. /* nothing to do */
  2297. rdp->n_rp_need_nothing++;
  2298. return 0;
  2299. }
  2300. /*
  2301. * Check to see if there is any immediate RCU-related work to be done
  2302. * by the current CPU, returning 1 if so. This function is part of the
  2303. * RCU implementation; it is -not- an exported member of the RCU API.
  2304. */
  2305. static int rcu_pending(int cpu)
  2306. {
  2307. struct rcu_state *rsp;
  2308. for_each_rcu_flavor(rsp)
  2309. if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
  2310. return 1;
  2311. return 0;
  2312. }
  2313. /*
  2314. * Check to see if any future RCU-related work will need to be done
  2315. * by the current CPU, even if none need be done immediately, returning
  2316. * 1 if so.
  2317. */
  2318. static int rcu_cpu_has_callbacks(int cpu)
  2319. {
  2320. struct rcu_state *rsp;
  2321. /* RCU callbacks either ready or pending? */
  2322. for_each_rcu_flavor(rsp)
  2323. if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
  2324. return 1;
  2325. return 0;
  2326. }
  2327. /*
  2328. * Helper function for _rcu_barrier() tracing. If tracing is disabled,
  2329. * the compiler is expected to optimize this away.
  2330. */
  2331. static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
  2332. int cpu, unsigned long done)
  2333. {
  2334. trace_rcu_barrier(rsp->name, s, cpu,
  2335. atomic_read(&rsp->barrier_cpu_count), done);
  2336. }
  2337. /*
  2338. * RCU callback function for _rcu_barrier(). If we are last, wake
  2339. * up the task executing _rcu_barrier().
  2340. */
  2341. static void rcu_barrier_callback(struct rcu_head *rhp)
  2342. {
  2343. struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
  2344. struct rcu_state *rsp = rdp->rsp;
  2345. if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
  2346. _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
  2347. complete(&rsp->barrier_completion);
  2348. } else {
  2349. _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
  2350. }
  2351. }
  2352. /*
  2353. * Called with preemption disabled, and from cross-cpu IRQ context.
  2354. */
  2355. static void rcu_barrier_func(void *type)
  2356. {
  2357. struct rcu_state *rsp = type;
  2358. struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
  2359. _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
  2360. atomic_inc(&rsp->barrier_cpu_count);
  2361. rsp->call(&rdp->barrier_head, rcu_barrier_callback);
  2362. }
  2363. /*
  2364. * Orchestrate the specified type of RCU barrier, waiting for all
  2365. * RCU callbacks of the specified type to complete.
  2366. */
  2367. static void _rcu_barrier(struct rcu_state *rsp)
  2368. {
  2369. int cpu;
  2370. struct rcu_data *rdp;
  2371. unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
  2372. unsigned long snap_done;
  2373. _rcu_barrier_trace(rsp, "Begin", -1, snap);
  2374. /* Take mutex to serialize concurrent rcu_barrier() requests. */
  2375. mutex_lock(&rsp->barrier_mutex);
  2376. /*
  2377. * Ensure that all prior references, including to ->n_barrier_done,
  2378. * are ordered before the _rcu_barrier() machinery.
  2379. */
  2380. smp_mb(); /* See above block comment. */
  2381. /*
  2382. * Recheck ->n_barrier_done to see if others did our work for us.
  2383. * This means checking ->n_barrier_done for an even-to-odd-to-even
  2384. * transition. The "if" expression below therefore rounds the old
  2385. * value up to the next even number and adds two before comparing.
  2386. */
  2387. snap_done = ACCESS_ONCE(rsp->n_barrier_done);
  2388. _rcu_barrier_trace(rsp, "Check", -1, snap_done);
  2389. if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
  2390. _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
  2391. smp_mb(); /* caller's subsequent code after above check. */
  2392. mutex_unlock(&rsp->barrier_mutex);
  2393. return;
  2394. }
  2395. /*
  2396. * Increment ->n_barrier_done to avoid duplicate work. Use
  2397. * ACCESS_ONCE() to prevent the compiler from speculating
  2398. * the increment to precede the early-exit check.
  2399. */
  2400. ACCESS_ONCE(rsp->n_barrier_done)++;
  2401. WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
  2402. _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
  2403. smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
  2404. /*
  2405. * Initialize the count to one rather than to zero in order to
  2406. * avoid a too-soon return to zero in case of a short grace period
  2407. * (or preemption of this task). Exclude CPU-hotplug operations
  2408. * to ensure that no offline CPU has callbacks queued.
  2409. */
  2410. init_completion(&rsp->barrier_completion);
  2411. atomic_set(&rsp->barrier_cpu_count, 1);
  2412. get_online_cpus();
  2413. /*
  2414. * Force each CPU with callbacks to register a new callback.
  2415. * When that callback is invoked, we will know that all of the
  2416. * corresponding CPU's preceding callbacks have been invoked.
  2417. */
  2418. for_each_possible_cpu(cpu) {
  2419. if (!cpu_online(cpu) && !is_nocb_cpu(cpu))
  2420. continue;
  2421. rdp = per_cpu_ptr(rsp->rda, cpu);
  2422. if (is_nocb_cpu(cpu)) {
  2423. _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
  2424. rsp->n_barrier_done);
  2425. atomic_inc(&rsp->barrier_cpu_count);
  2426. __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
  2427. rsp, cpu, 0);
  2428. } else if (ACCESS_ONCE(rdp->qlen)) {
  2429. _rcu_barrier_trace(rsp, "OnlineQ", cpu,
  2430. rsp->n_barrier_done);
  2431. smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
  2432. } else {
  2433. _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
  2434. rsp->n_barrier_done);
  2435. }
  2436. }
  2437. put_online_cpus();
  2438. /*
  2439. * Now that we have an rcu_barrier_callback() callback on each
  2440. * CPU, and thus each counted, remove the initial count.
  2441. */
  2442. if (atomic_dec_and_test(&rsp->barrier_cpu_count))
  2443. complete(&rsp->barrier_completion);
  2444. /* Increment ->n_barrier_done to prevent duplicate work. */
  2445. smp_mb(); /* Keep increment after above mechanism. */
  2446. ACCESS_ONCE(rsp->n_barrier_done)++;
  2447. WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
  2448. _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
  2449. smp_mb(); /* Keep increment before caller's subsequent code. */
  2450. /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
  2451. wait_for_completion(&rsp->barrier_completion);
  2452. /* Other rcu_barrier() invocations can now safely proceed. */
  2453. mutex_unlock(&rsp->barrier_mutex);
  2454. }
  2455. /**
  2456. * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
  2457. */
  2458. void rcu_barrier_bh(void)
  2459. {
  2460. _rcu_barrier(&rcu_bh_state);
  2461. }
  2462. EXPORT_SYMBOL_GPL(rcu_barrier_bh);
  2463. /**
  2464. * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
  2465. */
  2466. void rcu_barrier_sched(void)
  2467. {
  2468. _rcu_barrier(&rcu_sched_state);
  2469. }
  2470. EXPORT_SYMBOL_GPL(rcu_barrier_sched);
  2471. /*
  2472. * Do boot-time initialization of a CPU's per-CPU RCU data.
  2473. */
  2474. static void __init
  2475. rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
  2476. {
  2477. unsigned long flags;
  2478. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2479. struct rcu_node *rnp = rcu_get_root(rsp);
  2480. /* Set up local state, ensuring consistent view of global state. */
  2481. raw_spin_lock_irqsave(&rnp->lock, flags);
  2482. rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
  2483. init_callback_list(rdp);
  2484. rdp->qlen_lazy = 0;
  2485. ACCESS_ONCE(rdp->qlen) = 0;
  2486. rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
  2487. WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
  2488. WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
  2489. #ifdef CONFIG_RCU_USER_QS
  2490. WARN_ON_ONCE(rdp->dynticks->in_user);
  2491. #endif
  2492. rdp->cpu = cpu;
  2493. rdp->rsp = rsp;
  2494. rcu_boot_init_nocb_percpu_data(rdp);
  2495. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2496. }
  2497. /*
  2498. * Initialize a CPU's per-CPU RCU data. Note that only one online or
  2499. * offline event can be happening at a given time. Note also that we
  2500. * can accept some slop in the rsp->completed access due to the fact
  2501. * that this CPU cannot possibly have any RCU callbacks in flight yet.
  2502. */
  2503. static void __cpuinit
  2504. rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
  2505. {
  2506. unsigned long flags;
  2507. unsigned long mask;
  2508. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2509. struct rcu_node *rnp = rcu_get_root(rsp);
  2510. /* Exclude new grace periods. */
  2511. mutex_lock(&rsp->onoff_mutex);
  2512. /* Set up local state, ensuring consistent view of global state. */
  2513. raw_spin_lock_irqsave(&rnp->lock, flags);
  2514. rdp->beenonline = 1; /* We have now been online. */
  2515. rdp->preemptible = preemptible;
  2516. rdp->qlen_last_fqs_check = 0;
  2517. rdp->n_force_qs_snap = rsp->n_force_qs;
  2518. rdp->blimit = blimit;
  2519. init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
  2520. rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  2521. atomic_set(&rdp->dynticks->dynticks,
  2522. (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
  2523. rcu_prepare_for_idle_init(cpu);
  2524. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2525. /* Add CPU to rcu_node bitmasks. */
  2526. rnp = rdp->mynode;
  2527. mask = rdp->grpmask;
  2528. do {
  2529. /* Exclude any attempts to start a new GP on small systems. */
  2530. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  2531. rnp->qsmaskinit |= mask;
  2532. mask = rnp->grpmask;
  2533. if (rnp == rdp->mynode) {
  2534. /*
  2535. * If there is a grace period in progress, we will
  2536. * set up to wait for it next time we run the
  2537. * RCU core code.
  2538. */
  2539. rdp->gpnum = rnp->completed;
  2540. rdp->completed = rnp->completed;
  2541. rdp->passed_quiesce = 0;
  2542. rdp->qs_pending = 0;
  2543. trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
  2544. }
  2545. raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
  2546. rnp = rnp->parent;
  2547. } while (rnp != NULL && !(rnp->qsmaskinit & mask));
  2548. local_irq_restore(flags);
  2549. mutex_unlock(&rsp->onoff_mutex);
  2550. }
  2551. static void __cpuinit rcu_prepare_cpu(int cpu)
  2552. {
  2553. struct rcu_state *rsp;
  2554. for_each_rcu_flavor(rsp)
  2555. rcu_init_percpu_data(cpu, rsp,
  2556. strcmp(rsp->name, "rcu_preempt") == 0);
  2557. }
  2558. /*
  2559. * Handle CPU online/offline notification events.
  2560. */
  2561. static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
  2562. unsigned long action, void *hcpu)
  2563. {
  2564. long cpu = (long)hcpu;
  2565. struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
  2566. struct rcu_node *rnp = rdp->mynode;
  2567. struct rcu_state *rsp;
  2568. int ret = NOTIFY_OK;
  2569. trace_rcu_utilization("Start CPU hotplug");
  2570. switch (action) {
  2571. case CPU_UP_PREPARE:
  2572. case CPU_UP_PREPARE_FROZEN:
  2573. rcu_prepare_cpu(cpu);
  2574. rcu_prepare_kthreads(cpu);
  2575. break;
  2576. case CPU_ONLINE:
  2577. case CPU_DOWN_FAILED:
  2578. rcu_boost_kthread_setaffinity(rnp, -1);
  2579. break;
  2580. case CPU_DOWN_PREPARE:
  2581. if (nocb_cpu_expendable(cpu))
  2582. rcu_boost_kthread_setaffinity(rnp, cpu);
  2583. else
  2584. ret = NOTIFY_BAD;
  2585. break;
  2586. case CPU_DYING:
  2587. case CPU_DYING_FROZEN:
  2588. /*
  2589. * The whole machine is "stopped" except this CPU, so we can
  2590. * touch any data without introducing corruption. We send the
  2591. * dying CPU's callbacks to an arbitrarily chosen online CPU.
  2592. */
  2593. for_each_rcu_flavor(rsp)
  2594. rcu_cleanup_dying_cpu(rsp);
  2595. rcu_cleanup_after_idle(cpu);
  2596. break;
  2597. case CPU_DEAD:
  2598. case CPU_DEAD_FROZEN:
  2599. case CPU_UP_CANCELED:
  2600. case CPU_UP_CANCELED_FROZEN:
  2601. for_each_rcu_flavor(rsp)
  2602. rcu_cleanup_dead_cpu(cpu, rsp);
  2603. break;
  2604. default:
  2605. break;
  2606. }
  2607. trace_rcu_utilization("End CPU hotplug");
  2608. return ret;
  2609. }
  2610. /*
  2611. * Spawn the kthread that handles this RCU flavor's grace periods.
  2612. */
  2613. static int __init rcu_spawn_gp_kthread(void)
  2614. {
  2615. unsigned long flags;
  2616. struct rcu_node *rnp;
  2617. struct rcu_state *rsp;
  2618. struct task_struct *t;
  2619. for_each_rcu_flavor(rsp) {
  2620. t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
  2621. BUG_ON(IS_ERR(t));
  2622. rnp = rcu_get_root(rsp);
  2623. raw_spin_lock_irqsave(&rnp->lock, flags);
  2624. rsp->gp_kthread = t;
  2625. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2626. rcu_spawn_nocb_kthreads(rsp);
  2627. }
  2628. return 0;
  2629. }
  2630. early_initcall(rcu_spawn_gp_kthread);
  2631. /*
  2632. * This function is invoked towards the end of the scheduler's initialization
  2633. * process. Before this is called, the idle task might contain
  2634. * RCU read-side critical sections (during which time, this idle
  2635. * task is booting the system). After this function is called, the
  2636. * idle tasks are prohibited from containing RCU read-side critical
  2637. * sections. This function also enables RCU lockdep checking.
  2638. */
  2639. void rcu_scheduler_starting(void)
  2640. {
  2641. WARN_ON(num_online_cpus() != 1);
  2642. WARN_ON(nr_context_switches() > 0);
  2643. rcu_scheduler_active = 1;
  2644. }
  2645. /*
  2646. * Compute the per-level fanout, either using the exact fanout specified
  2647. * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
  2648. */
  2649. #ifdef CONFIG_RCU_FANOUT_EXACT
  2650. static void __init rcu_init_levelspread(struct rcu_state *rsp)
  2651. {
  2652. int i;
  2653. for (i = rcu_num_lvls - 1; i > 0; i--)
  2654. rsp->levelspread[i] = CONFIG_RCU_FANOUT;
  2655. rsp->levelspread[0] = rcu_fanout_leaf;
  2656. }
  2657. #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
  2658. static void __init rcu_init_levelspread(struct rcu_state *rsp)
  2659. {
  2660. int ccur;
  2661. int cprv;
  2662. int i;
  2663. cprv = nr_cpu_ids;
  2664. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  2665. ccur = rsp->levelcnt[i];
  2666. rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
  2667. cprv = ccur;
  2668. }
  2669. }
  2670. #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
  2671. /*
  2672. * Helper function for rcu_init() that initializes one rcu_state structure.
  2673. */
  2674. static void __init rcu_init_one(struct rcu_state *rsp,
  2675. struct rcu_data __percpu *rda)
  2676. {
  2677. static char *buf[] = { "rcu_node_0",
  2678. "rcu_node_1",
  2679. "rcu_node_2",
  2680. "rcu_node_3" }; /* Match MAX_RCU_LVLS */
  2681. static char *fqs[] = { "rcu_node_fqs_0",
  2682. "rcu_node_fqs_1",
  2683. "rcu_node_fqs_2",
  2684. "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
  2685. int cpustride = 1;
  2686. int i;
  2687. int j;
  2688. struct rcu_node *rnp;
  2689. BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
  2690. /* Initialize the level-tracking arrays. */
  2691. for (i = 0; i < rcu_num_lvls; i++)
  2692. rsp->levelcnt[i] = num_rcu_lvl[i];
  2693. for (i = 1; i < rcu_num_lvls; i++)
  2694. rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
  2695. rcu_init_levelspread(rsp);
  2696. /* Initialize the elements themselves, starting from the leaves. */
  2697. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  2698. cpustride *= rsp->levelspread[i];
  2699. rnp = rsp->level[i];
  2700. for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
  2701. raw_spin_lock_init(&rnp->lock);
  2702. lockdep_set_class_and_name(&rnp->lock,
  2703. &rcu_node_class[i], buf[i]);
  2704. raw_spin_lock_init(&rnp->fqslock);
  2705. lockdep_set_class_and_name(&rnp->fqslock,
  2706. &rcu_fqs_class[i], fqs[i]);
  2707. rnp->gpnum = rsp->gpnum;
  2708. rnp->completed = rsp->completed;
  2709. rnp->qsmask = 0;
  2710. rnp->qsmaskinit = 0;
  2711. rnp->grplo = j * cpustride;
  2712. rnp->grphi = (j + 1) * cpustride - 1;
  2713. if (rnp->grphi >= NR_CPUS)
  2714. rnp->grphi = NR_CPUS - 1;
  2715. if (i == 0) {
  2716. rnp->grpnum = 0;
  2717. rnp->grpmask = 0;
  2718. rnp->parent = NULL;
  2719. } else {
  2720. rnp->grpnum = j % rsp->levelspread[i - 1];
  2721. rnp->grpmask = 1UL << rnp->grpnum;
  2722. rnp->parent = rsp->level[i - 1] +
  2723. j / rsp->levelspread[i - 1];
  2724. }
  2725. rnp->level = i;
  2726. INIT_LIST_HEAD(&rnp->blkd_tasks);
  2727. }
  2728. }
  2729. rsp->rda = rda;
  2730. init_waitqueue_head(&rsp->gp_wq);
  2731. rnp = rsp->level[rcu_num_lvls - 1];
  2732. for_each_possible_cpu(i) {
  2733. while (i > rnp->grphi)
  2734. rnp++;
  2735. per_cpu_ptr(rsp->rda, i)->mynode = rnp;
  2736. rcu_boot_init_percpu_data(i, rsp);
  2737. }
  2738. list_add(&rsp->flavors, &rcu_struct_flavors);
  2739. }
  2740. /*
  2741. * Compute the rcu_node tree geometry from kernel parameters. This cannot
  2742. * replace the definitions in rcutree.h because those are needed to size
  2743. * the ->node array in the rcu_state structure.
  2744. */
  2745. static void __init rcu_init_geometry(void)
  2746. {
  2747. int i;
  2748. int j;
  2749. int n = nr_cpu_ids;
  2750. int rcu_capacity[MAX_RCU_LVLS + 1];
  2751. /* If the compile-time values are accurate, just leave. */
  2752. if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
  2753. nr_cpu_ids == NR_CPUS)
  2754. return;
  2755. /*
  2756. * Compute number of nodes that can be handled an rcu_node tree
  2757. * with the given number of levels. Setting rcu_capacity[0] makes
  2758. * some of the arithmetic easier.
  2759. */
  2760. rcu_capacity[0] = 1;
  2761. rcu_capacity[1] = rcu_fanout_leaf;
  2762. for (i = 2; i <= MAX_RCU_LVLS; i++)
  2763. rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
  2764. /*
  2765. * The boot-time rcu_fanout_leaf parameter is only permitted
  2766. * to increase the leaf-level fanout, not decrease it. Of course,
  2767. * the leaf-level fanout cannot exceed the number of bits in
  2768. * the rcu_node masks. Finally, the tree must be able to accommodate
  2769. * the configured number of CPUs. Complain and fall back to the
  2770. * compile-time values if these limits are exceeded.
  2771. */
  2772. if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
  2773. rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
  2774. n > rcu_capacity[MAX_RCU_LVLS]) {
  2775. WARN_ON(1);
  2776. return;
  2777. }
  2778. /* Calculate the number of rcu_nodes at each level of the tree. */
  2779. for (i = 1; i <= MAX_RCU_LVLS; i++)
  2780. if (n <= rcu_capacity[i]) {
  2781. for (j = 0; j <= i; j++)
  2782. num_rcu_lvl[j] =
  2783. DIV_ROUND_UP(n, rcu_capacity[i - j]);
  2784. rcu_num_lvls = i;
  2785. for (j = i + 1; j <= MAX_RCU_LVLS; j++)
  2786. num_rcu_lvl[j] = 0;
  2787. break;
  2788. }
  2789. /* Calculate the total number of rcu_node structures. */
  2790. rcu_num_nodes = 0;
  2791. for (i = 0; i <= MAX_RCU_LVLS; i++)
  2792. rcu_num_nodes += num_rcu_lvl[i];
  2793. rcu_num_nodes -= n;
  2794. }
  2795. void __init rcu_init(void)
  2796. {
  2797. int cpu;
  2798. rcu_bootup_announce();
  2799. rcu_init_geometry();
  2800. rcu_init_one(&rcu_sched_state, &rcu_sched_data);
  2801. rcu_init_one(&rcu_bh_state, &rcu_bh_data);
  2802. __rcu_init_preempt();
  2803. rcu_init_nocb();
  2804. open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
  2805. /*
  2806. * We don't need protection against CPU-hotplug here because
  2807. * this is called early in boot, before either interrupts
  2808. * or the scheduler are operational.
  2809. */
  2810. cpu_notifier(rcu_cpu_notify, 0);
  2811. for_each_online_cpu(cpu)
  2812. rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
  2813. check_cpu_stall_init();
  2814. }
  2815. #include "rcutree_plugin.h"