pid.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 William Irwin, IBM
  5. * (C) 2004 William Irwin, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. */
  22. #include <linux/mm.h>
  23. #include <linux/module.h>
  24. #include <linux/slab.h>
  25. #include <linux/init.h>
  26. #include <linux/bootmem.h>
  27. #include <linux/hash.h>
  28. #include <linux/pspace.h>
  29. #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift)
  30. static struct hlist_head *pid_hash;
  31. static int pidhash_shift;
  32. static kmem_cache_t *pid_cachep;
  33. int pid_max = PID_MAX_DEFAULT;
  34. #define RESERVED_PIDS 300
  35. int pid_max_min = RESERVED_PIDS + 1;
  36. int pid_max_max = PID_MAX_LIMIT;
  37. #define BITS_PER_PAGE (PAGE_SIZE*8)
  38. #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
  39. static inline int mk_pid(struct pspace *pspace, struct pidmap *map, int off)
  40. {
  41. return (map - pspace->pidmap)*BITS_PER_PAGE + off;
  42. }
  43. #define find_next_offset(map, off) \
  44. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  45. /*
  46. * PID-map pages start out as NULL, they get allocated upon
  47. * first use and are never deallocated. This way a low pid_max
  48. * value does not cause lots of bitmaps to be allocated, but
  49. * the scheme scales to up to 4 million PIDs, runtime.
  50. */
  51. struct pspace init_pspace = {
  52. .pidmap = {
  53. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  54. },
  55. .last_pid = 0
  56. };
  57. /*
  58. * Note: disable interrupts while the pidmap_lock is held as an
  59. * interrupt might come in and do read_lock(&tasklist_lock).
  60. *
  61. * If we don't disable interrupts there is a nasty deadlock between
  62. * detach_pid()->free_pid() and another cpu that does
  63. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  64. * read_lock(&tasklist_lock);
  65. *
  66. * After we clean up the tasklist_lock and know there are no
  67. * irq handlers that take it we can leave the interrupts enabled.
  68. * For now it is easier to be safe than to prove it can't happen.
  69. */
  70. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  71. static fastcall void free_pidmap(struct pspace *pspace, int pid)
  72. {
  73. struct pidmap *map = pspace->pidmap + pid / BITS_PER_PAGE;
  74. int offset = pid & BITS_PER_PAGE_MASK;
  75. clear_bit(offset, map->page);
  76. atomic_inc(&map->nr_free);
  77. }
  78. static int alloc_pidmap(struct pspace *pspace)
  79. {
  80. int i, offset, max_scan, pid, last = pspace->last_pid;
  81. struct pidmap *map;
  82. pid = last + 1;
  83. if (pid >= pid_max)
  84. pid = RESERVED_PIDS;
  85. offset = pid & BITS_PER_PAGE_MASK;
  86. map = &pspace->pidmap[pid/BITS_PER_PAGE];
  87. max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
  88. for (i = 0; i <= max_scan; ++i) {
  89. if (unlikely(!map->page)) {
  90. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  91. /*
  92. * Free the page if someone raced with us
  93. * installing it:
  94. */
  95. spin_lock_irq(&pidmap_lock);
  96. if (map->page)
  97. kfree(page);
  98. else
  99. map->page = page;
  100. spin_unlock_irq(&pidmap_lock);
  101. if (unlikely(!map->page))
  102. break;
  103. }
  104. if (likely(atomic_read(&map->nr_free))) {
  105. do {
  106. if (!test_and_set_bit(offset, map->page)) {
  107. atomic_dec(&map->nr_free);
  108. pspace->last_pid = pid;
  109. return pid;
  110. }
  111. offset = find_next_offset(map, offset);
  112. pid = mk_pid(pspace, map, offset);
  113. /*
  114. * find_next_offset() found a bit, the pid from it
  115. * is in-bounds, and if we fell back to the last
  116. * bitmap block and the final block was the same
  117. * as the starting point, pid is before last_pid.
  118. */
  119. } while (offset < BITS_PER_PAGE && pid < pid_max &&
  120. (i != max_scan || pid < last ||
  121. !((last+1) & BITS_PER_PAGE_MASK)));
  122. }
  123. if (map < &pspace->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  124. ++map;
  125. offset = 0;
  126. } else {
  127. map = &pspace->pidmap[0];
  128. offset = RESERVED_PIDS;
  129. if (unlikely(last == offset))
  130. break;
  131. }
  132. pid = mk_pid(pspace, map, offset);
  133. }
  134. return -1;
  135. }
  136. static int next_pidmap(int last)
  137. {
  138. int offset;
  139. struct pidmap *map;
  140. offset = (last + 1) & BITS_PER_PAGE_MASK;
  141. map = &pidmap_array[(last + 1)/BITS_PER_PAGE];
  142. for (; map < &pidmap_array[PIDMAP_ENTRIES]; map++, offset = 0) {
  143. if (unlikely(!map->page))
  144. continue;
  145. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  146. if (offset < BITS_PER_PAGE)
  147. return mk_pid(map, offset);
  148. }
  149. return -1;
  150. }
  151. fastcall void put_pid(struct pid *pid)
  152. {
  153. if (!pid)
  154. return;
  155. if ((atomic_read(&pid->count) == 1) ||
  156. atomic_dec_and_test(&pid->count))
  157. kmem_cache_free(pid_cachep, pid);
  158. }
  159. EXPORT_SYMBOL_GPL(put_pid);
  160. static void delayed_put_pid(struct rcu_head *rhp)
  161. {
  162. struct pid *pid = container_of(rhp, struct pid, rcu);
  163. put_pid(pid);
  164. }
  165. fastcall void free_pid(struct pid *pid)
  166. {
  167. /* We can be called with write_lock_irq(&tasklist_lock) held */
  168. unsigned long flags;
  169. spin_lock_irqsave(&pidmap_lock, flags);
  170. hlist_del_rcu(&pid->pid_chain);
  171. spin_unlock_irqrestore(&pidmap_lock, flags);
  172. free_pidmap(&init_pspace, pid->nr);
  173. call_rcu(&pid->rcu, delayed_put_pid);
  174. }
  175. struct pid *alloc_pid(void)
  176. {
  177. struct pid *pid;
  178. enum pid_type type;
  179. int nr = -1;
  180. pid = kmem_cache_alloc(pid_cachep, GFP_KERNEL);
  181. if (!pid)
  182. goto out;
  183. nr = alloc_pidmap(&init_pspace);
  184. if (nr < 0)
  185. goto out_free;
  186. atomic_set(&pid->count, 1);
  187. pid->nr = nr;
  188. for (type = 0; type < PIDTYPE_MAX; ++type)
  189. INIT_HLIST_HEAD(&pid->tasks[type]);
  190. spin_lock_irq(&pidmap_lock);
  191. hlist_add_head_rcu(&pid->pid_chain, &pid_hash[pid_hashfn(pid->nr)]);
  192. spin_unlock_irq(&pidmap_lock);
  193. out:
  194. return pid;
  195. out_free:
  196. kmem_cache_free(pid_cachep, pid);
  197. pid = NULL;
  198. goto out;
  199. }
  200. struct pid * fastcall find_pid(int nr)
  201. {
  202. struct hlist_node *elem;
  203. struct pid *pid;
  204. hlist_for_each_entry_rcu(pid, elem,
  205. &pid_hash[pid_hashfn(nr)], pid_chain) {
  206. if (pid->nr == nr)
  207. return pid;
  208. }
  209. return NULL;
  210. }
  211. EXPORT_SYMBOL_GPL(find_pid);
  212. int fastcall attach_pid(struct task_struct *task, enum pid_type type, int nr)
  213. {
  214. struct pid_link *link;
  215. struct pid *pid;
  216. link = &task->pids[type];
  217. link->pid = pid = find_pid(nr);
  218. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  219. return 0;
  220. }
  221. void fastcall detach_pid(struct task_struct *task, enum pid_type type)
  222. {
  223. struct pid_link *link;
  224. struct pid *pid;
  225. int tmp;
  226. link = &task->pids[type];
  227. pid = link->pid;
  228. hlist_del_rcu(&link->node);
  229. link->pid = NULL;
  230. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  231. if (!hlist_empty(&pid->tasks[tmp]))
  232. return;
  233. free_pid(pid);
  234. }
  235. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  236. void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
  237. enum pid_type type)
  238. {
  239. new->pids[type].pid = old->pids[type].pid;
  240. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  241. old->pids[type].pid = NULL;
  242. }
  243. struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
  244. {
  245. struct task_struct *result = NULL;
  246. if (pid) {
  247. struct hlist_node *first;
  248. first = rcu_dereference(pid->tasks[type].first);
  249. if (first)
  250. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  251. }
  252. return result;
  253. }
  254. /*
  255. * Must be called under rcu_read_lock() or with tasklist_lock read-held.
  256. */
  257. struct task_struct *find_task_by_pid_type(int type, int nr)
  258. {
  259. return pid_task(find_pid(nr), type);
  260. }
  261. EXPORT_SYMBOL(find_task_by_pid_type);
  262. struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
  263. {
  264. struct task_struct *result;
  265. rcu_read_lock();
  266. result = pid_task(pid, type);
  267. if (result)
  268. get_task_struct(result);
  269. rcu_read_unlock();
  270. return result;
  271. }
  272. struct pid *find_get_pid(pid_t nr)
  273. {
  274. struct pid *pid;
  275. rcu_read_lock();
  276. pid = get_pid(find_pid(nr));
  277. rcu_read_unlock();
  278. return pid;
  279. }
  280. /*
  281. * Used by proc to find the first pid that is greater then or equal to nr.
  282. *
  283. * If there is a pid at nr this function is exactly the same as find_pid.
  284. */
  285. struct pid *find_ge_pid(int nr)
  286. {
  287. struct pid *pid;
  288. do {
  289. pid = find_pid(nr);
  290. if (pid)
  291. break;
  292. nr = next_pidmap(nr);
  293. } while (nr > 0);
  294. return pid;
  295. }
  296. EXPORT_SYMBOL_GPL(find_get_pid);
  297. /*
  298. * The pid hash table is scaled according to the amount of memory in the
  299. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  300. * more.
  301. */
  302. void __init pidhash_init(void)
  303. {
  304. int i, pidhash_size;
  305. unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
  306. pidhash_shift = max(4, fls(megabytes * 4));
  307. pidhash_shift = min(12, pidhash_shift);
  308. pidhash_size = 1 << pidhash_shift;
  309. printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
  310. pidhash_size, pidhash_shift,
  311. pidhash_size * sizeof(struct hlist_head));
  312. pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
  313. if (!pid_hash)
  314. panic("Could not alloc pidhash!\n");
  315. for (i = 0; i < pidhash_size; i++)
  316. INIT_HLIST_HEAD(&pid_hash[i]);
  317. }
  318. void __init pidmap_init(void)
  319. {
  320. init_pspace.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  321. /* Reserve PID 0. We never call free_pidmap(0) */
  322. set_bit(0, init_pspace.pidmap[0].page);
  323. atomic_dec(&init_pspace.pidmap[0].nr_free);
  324. pid_cachep = kmem_cache_create("pid", sizeof(struct pid),
  325. __alignof__(struct pid),
  326. SLAB_PANIC, NULL, NULL);
  327. }