mmu.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/mman.h>
  15. #include <linux/nodemask.h>
  16. #include <linux/memblock.h>
  17. #include <linux/fs.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/sizes.h>
  20. #include <asm/cp15.h>
  21. #include <asm/cputype.h>
  22. #include <asm/sections.h>
  23. #include <asm/cachetype.h>
  24. #include <asm/setup.h>
  25. #include <asm/smp_plat.h>
  26. #include <asm/tlb.h>
  27. #include <asm/highmem.h>
  28. #include <asm/system_info.h>
  29. #include <asm/traps.h>
  30. #include <asm/mach/arch.h>
  31. #include <asm/mach/map.h>
  32. #include <asm/mach/pci.h>
  33. #include "mm.h"
  34. /*
  35. * empty_zero_page is a special page that is used for
  36. * zero-initialized data and COW.
  37. */
  38. struct page *empty_zero_page;
  39. EXPORT_SYMBOL(empty_zero_page);
  40. /*
  41. * The pmd table for the upper-most set of pages.
  42. */
  43. pmd_t *top_pmd;
  44. #define CPOLICY_UNCACHED 0
  45. #define CPOLICY_BUFFERED 1
  46. #define CPOLICY_WRITETHROUGH 2
  47. #define CPOLICY_WRITEBACK 3
  48. #define CPOLICY_WRITEALLOC 4
  49. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  50. static unsigned int ecc_mask __initdata = 0;
  51. pgprot_t pgprot_user;
  52. pgprot_t pgprot_kernel;
  53. EXPORT_SYMBOL(pgprot_user);
  54. EXPORT_SYMBOL(pgprot_kernel);
  55. struct cachepolicy {
  56. const char policy[16];
  57. unsigned int cr_mask;
  58. pmdval_t pmd;
  59. pteval_t pte;
  60. };
  61. static struct cachepolicy cache_policies[] __initdata = {
  62. {
  63. .policy = "uncached",
  64. .cr_mask = CR_W|CR_C,
  65. .pmd = PMD_SECT_UNCACHED,
  66. .pte = L_PTE_MT_UNCACHED,
  67. }, {
  68. .policy = "buffered",
  69. .cr_mask = CR_C,
  70. .pmd = PMD_SECT_BUFFERED,
  71. .pte = L_PTE_MT_BUFFERABLE,
  72. }, {
  73. .policy = "writethrough",
  74. .cr_mask = 0,
  75. .pmd = PMD_SECT_WT,
  76. .pte = L_PTE_MT_WRITETHROUGH,
  77. }, {
  78. .policy = "writeback",
  79. .cr_mask = 0,
  80. .pmd = PMD_SECT_WB,
  81. .pte = L_PTE_MT_WRITEBACK,
  82. }, {
  83. .policy = "writealloc",
  84. .cr_mask = 0,
  85. .pmd = PMD_SECT_WBWA,
  86. .pte = L_PTE_MT_WRITEALLOC,
  87. }
  88. };
  89. /*
  90. * These are useful for identifying cache coherency
  91. * problems by allowing the cache or the cache and
  92. * writebuffer to be turned off. (Note: the write
  93. * buffer should not be on and the cache off).
  94. */
  95. static int __init early_cachepolicy(char *p)
  96. {
  97. int i;
  98. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  99. int len = strlen(cache_policies[i].policy);
  100. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  101. cachepolicy = i;
  102. cr_alignment &= ~cache_policies[i].cr_mask;
  103. cr_no_alignment &= ~cache_policies[i].cr_mask;
  104. break;
  105. }
  106. }
  107. if (i == ARRAY_SIZE(cache_policies))
  108. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  109. /*
  110. * This restriction is partly to do with the way we boot; it is
  111. * unpredictable to have memory mapped using two different sets of
  112. * memory attributes (shared, type, and cache attribs). We can not
  113. * change these attributes once the initial assembly has setup the
  114. * page tables.
  115. */
  116. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  117. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  118. cachepolicy = CPOLICY_WRITEBACK;
  119. }
  120. flush_cache_all();
  121. set_cr(cr_alignment);
  122. return 0;
  123. }
  124. early_param("cachepolicy", early_cachepolicy);
  125. static int __init early_nocache(char *__unused)
  126. {
  127. char *p = "buffered";
  128. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  129. early_cachepolicy(p);
  130. return 0;
  131. }
  132. early_param("nocache", early_nocache);
  133. static int __init early_nowrite(char *__unused)
  134. {
  135. char *p = "uncached";
  136. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  137. early_cachepolicy(p);
  138. return 0;
  139. }
  140. early_param("nowb", early_nowrite);
  141. #ifndef CONFIG_ARM_LPAE
  142. static int __init early_ecc(char *p)
  143. {
  144. if (memcmp(p, "on", 2) == 0)
  145. ecc_mask = PMD_PROTECTION;
  146. else if (memcmp(p, "off", 3) == 0)
  147. ecc_mask = 0;
  148. return 0;
  149. }
  150. early_param("ecc", early_ecc);
  151. #endif
  152. static int __init noalign_setup(char *__unused)
  153. {
  154. cr_alignment &= ~CR_A;
  155. cr_no_alignment &= ~CR_A;
  156. set_cr(cr_alignment);
  157. return 1;
  158. }
  159. __setup("noalign", noalign_setup);
  160. #ifndef CONFIG_SMP
  161. void adjust_cr(unsigned long mask, unsigned long set)
  162. {
  163. unsigned long flags;
  164. mask &= ~CR_A;
  165. set &= mask;
  166. local_irq_save(flags);
  167. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  168. cr_alignment = (cr_alignment & ~mask) | set;
  169. set_cr((get_cr() & ~mask) | set);
  170. local_irq_restore(flags);
  171. }
  172. #endif
  173. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
  174. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  175. static struct mem_type mem_types[] = {
  176. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  177. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  178. L_PTE_SHARED,
  179. .prot_l1 = PMD_TYPE_TABLE,
  180. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  181. .domain = DOMAIN_IO,
  182. },
  183. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  184. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  185. .prot_l1 = PMD_TYPE_TABLE,
  186. .prot_sect = PROT_SECT_DEVICE,
  187. .domain = DOMAIN_IO,
  188. },
  189. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  190. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  191. .prot_l1 = PMD_TYPE_TABLE,
  192. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  193. .domain = DOMAIN_IO,
  194. },
  195. [MT_DEVICE_WC] = { /* ioremap_wc */
  196. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  197. .prot_l1 = PMD_TYPE_TABLE,
  198. .prot_sect = PROT_SECT_DEVICE,
  199. .domain = DOMAIN_IO,
  200. },
  201. [MT_UNCACHED] = {
  202. .prot_pte = PROT_PTE_DEVICE,
  203. .prot_l1 = PMD_TYPE_TABLE,
  204. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  205. .domain = DOMAIN_IO,
  206. },
  207. [MT_CACHECLEAN] = {
  208. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  209. .domain = DOMAIN_KERNEL,
  210. },
  211. #ifndef CONFIG_ARM_LPAE
  212. [MT_MINICLEAN] = {
  213. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  214. .domain = DOMAIN_KERNEL,
  215. },
  216. #endif
  217. [MT_LOW_VECTORS] = {
  218. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  219. L_PTE_RDONLY,
  220. .prot_l1 = PMD_TYPE_TABLE,
  221. .domain = DOMAIN_USER,
  222. },
  223. [MT_HIGH_VECTORS] = {
  224. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  225. L_PTE_USER | L_PTE_RDONLY,
  226. .prot_l1 = PMD_TYPE_TABLE,
  227. .domain = DOMAIN_USER,
  228. },
  229. [MT_MEMORY] = {
  230. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  231. .prot_l1 = PMD_TYPE_TABLE,
  232. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  233. .domain = DOMAIN_KERNEL,
  234. },
  235. [MT_ROM] = {
  236. .prot_sect = PMD_TYPE_SECT,
  237. .domain = DOMAIN_KERNEL,
  238. },
  239. [MT_MEMORY_NONCACHED] = {
  240. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  241. L_PTE_MT_BUFFERABLE,
  242. .prot_l1 = PMD_TYPE_TABLE,
  243. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  244. .domain = DOMAIN_KERNEL,
  245. },
  246. [MT_MEMORY_DTCM] = {
  247. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  248. L_PTE_XN,
  249. .prot_l1 = PMD_TYPE_TABLE,
  250. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  251. .domain = DOMAIN_KERNEL,
  252. },
  253. [MT_MEMORY_ITCM] = {
  254. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  255. .prot_l1 = PMD_TYPE_TABLE,
  256. .domain = DOMAIN_KERNEL,
  257. },
  258. [MT_MEMORY_SO] = {
  259. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  260. L_PTE_MT_UNCACHED,
  261. .prot_l1 = PMD_TYPE_TABLE,
  262. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
  263. PMD_SECT_UNCACHED | PMD_SECT_XN,
  264. .domain = DOMAIN_KERNEL,
  265. },
  266. [MT_MEMORY_DMA_READY] = {
  267. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  268. .prot_l1 = PMD_TYPE_TABLE,
  269. .domain = DOMAIN_KERNEL,
  270. },
  271. };
  272. const struct mem_type *get_mem_type(unsigned int type)
  273. {
  274. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  275. }
  276. EXPORT_SYMBOL(get_mem_type);
  277. /*
  278. * Adjust the PMD section entries according to the CPU in use.
  279. */
  280. static void __init build_mem_type_table(void)
  281. {
  282. struct cachepolicy *cp;
  283. unsigned int cr = get_cr();
  284. pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
  285. int cpu_arch = cpu_architecture();
  286. int i;
  287. if (cpu_arch < CPU_ARCH_ARMv6) {
  288. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  289. if (cachepolicy > CPOLICY_BUFFERED)
  290. cachepolicy = CPOLICY_BUFFERED;
  291. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  292. if (cachepolicy > CPOLICY_WRITETHROUGH)
  293. cachepolicy = CPOLICY_WRITETHROUGH;
  294. #endif
  295. }
  296. if (cpu_arch < CPU_ARCH_ARMv5) {
  297. if (cachepolicy >= CPOLICY_WRITEALLOC)
  298. cachepolicy = CPOLICY_WRITEBACK;
  299. ecc_mask = 0;
  300. }
  301. if (is_smp())
  302. cachepolicy = CPOLICY_WRITEALLOC;
  303. /*
  304. * Strip out features not present on earlier architectures.
  305. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  306. * without extended page tables don't have the 'Shared' bit.
  307. */
  308. if (cpu_arch < CPU_ARCH_ARMv5)
  309. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  310. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  311. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  312. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  313. mem_types[i].prot_sect &= ~PMD_SECT_S;
  314. /*
  315. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  316. * "update-able on write" bit on ARM610). However, Xscale and
  317. * Xscale3 require this bit to be cleared.
  318. */
  319. if (cpu_is_xscale() || cpu_is_xsc3()) {
  320. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  321. mem_types[i].prot_sect &= ~PMD_BIT4;
  322. mem_types[i].prot_l1 &= ~PMD_BIT4;
  323. }
  324. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  325. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  326. if (mem_types[i].prot_l1)
  327. mem_types[i].prot_l1 |= PMD_BIT4;
  328. if (mem_types[i].prot_sect)
  329. mem_types[i].prot_sect |= PMD_BIT4;
  330. }
  331. }
  332. /*
  333. * Mark the device areas according to the CPU/architecture.
  334. */
  335. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  336. if (!cpu_is_xsc3()) {
  337. /*
  338. * Mark device regions on ARMv6+ as execute-never
  339. * to prevent speculative instruction fetches.
  340. */
  341. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  342. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  343. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  344. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  345. }
  346. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  347. /*
  348. * For ARMv7 with TEX remapping,
  349. * - shared device is SXCB=1100
  350. * - nonshared device is SXCB=0100
  351. * - write combine device mem is SXCB=0001
  352. * (Uncached Normal memory)
  353. */
  354. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  355. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  356. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  357. } else if (cpu_is_xsc3()) {
  358. /*
  359. * For Xscale3,
  360. * - shared device is TEXCB=00101
  361. * - nonshared device is TEXCB=01000
  362. * - write combine device mem is TEXCB=00100
  363. * (Inner/Outer Uncacheable in xsc3 parlance)
  364. */
  365. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  366. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  367. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  368. } else {
  369. /*
  370. * For ARMv6 and ARMv7 without TEX remapping,
  371. * - shared device is TEXCB=00001
  372. * - nonshared device is TEXCB=01000
  373. * - write combine device mem is TEXCB=00100
  374. * (Uncached Normal in ARMv6 parlance).
  375. */
  376. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  377. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  378. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  379. }
  380. } else {
  381. /*
  382. * On others, write combining is "Uncached/Buffered"
  383. */
  384. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  385. }
  386. /*
  387. * Now deal with the memory-type mappings
  388. */
  389. cp = &cache_policies[cachepolicy];
  390. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  391. /*
  392. * Enable CPU-specific coherency if supported.
  393. * (Only available on XSC3 at the moment.)
  394. */
  395. if (arch_is_coherent() && cpu_is_xsc3()) {
  396. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  397. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  398. mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
  399. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  400. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  401. }
  402. /*
  403. * ARMv6 and above have extended page tables.
  404. */
  405. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  406. #ifndef CONFIG_ARM_LPAE
  407. /*
  408. * Mark cache clean areas and XIP ROM read only
  409. * from SVC mode and no access from userspace.
  410. */
  411. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  412. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  413. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  414. #endif
  415. if (is_smp()) {
  416. /*
  417. * Mark memory with the "shared" attribute
  418. * for SMP systems
  419. */
  420. user_pgprot |= L_PTE_SHARED;
  421. kern_pgprot |= L_PTE_SHARED;
  422. vecs_pgprot |= L_PTE_SHARED;
  423. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
  424. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
  425. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
  426. mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
  427. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  428. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  429. mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
  430. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  431. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  432. }
  433. }
  434. /*
  435. * Non-cacheable Normal - intended for memory areas that must
  436. * not cause dirty cache line writebacks when used
  437. */
  438. if (cpu_arch >= CPU_ARCH_ARMv6) {
  439. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  440. /* Non-cacheable Normal is XCB = 001 */
  441. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  442. PMD_SECT_BUFFERED;
  443. } else {
  444. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  445. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  446. PMD_SECT_TEX(1);
  447. }
  448. } else {
  449. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  450. }
  451. #ifdef CONFIG_ARM_LPAE
  452. /*
  453. * Do not generate access flag faults for the kernel mappings.
  454. */
  455. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  456. mem_types[i].prot_pte |= PTE_EXT_AF;
  457. if (mem_types[i].prot_sect)
  458. mem_types[i].prot_sect |= PMD_SECT_AF;
  459. }
  460. kern_pgprot |= PTE_EXT_AF;
  461. vecs_pgprot |= PTE_EXT_AF;
  462. #endif
  463. for (i = 0; i < 16; i++) {
  464. unsigned long v = pgprot_val(protection_map[i]);
  465. protection_map[i] = __pgprot(v | user_pgprot);
  466. }
  467. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  468. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  469. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  470. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  471. L_PTE_DIRTY | kern_pgprot);
  472. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  473. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  474. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  475. mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
  476. mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
  477. mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
  478. mem_types[MT_ROM].prot_sect |= cp->pmd;
  479. switch (cp->pmd) {
  480. case PMD_SECT_WT:
  481. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  482. break;
  483. case PMD_SECT_WB:
  484. case PMD_SECT_WBWA:
  485. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  486. break;
  487. }
  488. printk("Memory policy: ECC %sabled, Data cache %s\n",
  489. ecc_mask ? "en" : "dis", cp->policy);
  490. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  491. struct mem_type *t = &mem_types[i];
  492. if (t->prot_l1)
  493. t->prot_l1 |= PMD_DOMAIN(t->domain);
  494. if (t->prot_sect)
  495. t->prot_sect |= PMD_DOMAIN(t->domain);
  496. }
  497. }
  498. #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
  499. pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  500. unsigned long size, pgprot_t vma_prot)
  501. {
  502. if (!pfn_valid(pfn))
  503. return pgprot_noncached(vma_prot);
  504. else if (file->f_flags & O_SYNC)
  505. return pgprot_writecombine(vma_prot);
  506. return vma_prot;
  507. }
  508. EXPORT_SYMBOL(phys_mem_access_prot);
  509. #endif
  510. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  511. static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
  512. {
  513. void *ptr = __va(memblock_alloc(sz, align));
  514. memset(ptr, 0, sz);
  515. return ptr;
  516. }
  517. static void __init *early_alloc(unsigned long sz)
  518. {
  519. return early_alloc_aligned(sz, sz);
  520. }
  521. static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
  522. {
  523. if (pmd_none(*pmd)) {
  524. pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
  525. __pmd_populate(pmd, __pa(pte), prot);
  526. }
  527. BUG_ON(pmd_bad(*pmd));
  528. return pte_offset_kernel(pmd, addr);
  529. }
  530. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  531. unsigned long end, unsigned long pfn,
  532. const struct mem_type *type)
  533. {
  534. pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
  535. do {
  536. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  537. pfn++;
  538. } while (pte++, addr += PAGE_SIZE, addr != end);
  539. }
  540. static void __init alloc_init_section(pud_t *pud, unsigned long addr,
  541. unsigned long end, phys_addr_t phys,
  542. const struct mem_type *type)
  543. {
  544. pmd_t *pmd = pmd_offset(pud, addr);
  545. /*
  546. * Try a section mapping - end, addr and phys must all be aligned
  547. * to a section boundary. Note that PMDs refer to the individual
  548. * L1 entries, whereas PGDs refer to a group of L1 entries making
  549. * up one logical pointer to an L2 table.
  550. */
  551. if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
  552. pmd_t *p = pmd;
  553. #ifndef CONFIG_ARM_LPAE
  554. if (addr & SECTION_SIZE)
  555. pmd++;
  556. #endif
  557. do {
  558. *pmd = __pmd(phys | type->prot_sect);
  559. phys += SECTION_SIZE;
  560. } while (pmd++, addr += SECTION_SIZE, addr != end);
  561. flush_pmd_entry(p);
  562. } else {
  563. /*
  564. * No need to loop; pte's aren't interested in the
  565. * individual L1 entries.
  566. */
  567. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  568. }
  569. }
  570. static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
  571. unsigned long end, unsigned long phys, const struct mem_type *type)
  572. {
  573. pud_t *pud = pud_offset(pgd, addr);
  574. unsigned long next;
  575. do {
  576. next = pud_addr_end(addr, end);
  577. alloc_init_section(pud, addr, next, phys, type);
  578. phys += next - addr;
  579. } while (pud++, addr = next, addr != end);
  580. }
  581. #ifndef CONFIG_ARM_LPAE
  582. static void __init create_36bit_mapping(struct map_desc *md,
  583. const struct mem_type *type)
  584. {
  585. unsigned long addr, length, end;
  586. phys_addr_t phys;
  587. pgd_t *pgd;
  588. addr = md->virtual;
  589. phys = __pfn_to_phys(md->pfn);
  590. length = PAGE_ALIGN(md->length);
  591. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  592. printk(KERN_ERR "MM: CPU does not support supersection "
  593. "mapping for 0x%08llx at 0x%08lx\n",
  594. (long long)__pfn_to_phys((u64)md->pfn), addr);
  595. return;
  596. }
  597. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  598. * Since domain assignments can in fact be arbitrary, the
  599. * 'domain == 0' check below is required to insure that ARMv6
  600. * supersections are only allocated for domain 0 regardless
  601. * of the actual domain assignments in use.
  602. */
  603. if (type->domain) {
  604. printk(KERN_ERR "MM: invalid domain in supersection "
  605. "mapping for 0x%08llx at 0x%08lx\n",
  606. (long long)__pfn_to_phys((u64)md->pfn), addr);
  607. return;
  608. }
  609. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  610. printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
  611. " at 0x%08lx invalid alignment\n",
  612. (long long)__pfn_to_phys((u64)md->pfn), addr);
  613. return;
  614. }
  615. /*
  616. * Shift bits [35:32] of address into bits [23:20] of PMD
  617. * (See ARMv6 spec).
  618. */
  619. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  620. pgd = pgd_offset_k(addr);
  621. end = addr + length;
  622. do {
  623. pud_t *pud = pud_offset(pgd, addr);
  624. pmd_t *pmd = pmd_offset(pud, addr);
  625. int i;
  626. for (i = 0; i < 16; i++)
  627. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  628. addr += SUPERSECTION_SIZE;
  629. phys += SUPERSECTION_SIZE;
  630. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  631. } while (addr != end);
  632. }
  633. #endif /* !CONFIG_ARM_LPAE */
  634. /*
  635. * Create the page directory entries and any necessary
  636. * page tables for the mapping specified by `md'. We
  637. * are able to cope here with varying sizes and address
  638. * offsets, and we take full advantage of sections and
  639. * supersections.
  640. */
  641. static void __init create_mapping(struct map_desc *md)
  642. {
  643. unsigned long addr, length, end;
  644. phys_addr_t phys;
  645. const struct mem_type *type;
  646. pgd_t *pgd;
  647. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  648. printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
  649. " at 0x%08lx in user region\n",
  650. (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
  651. return;
  652. }
  653. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  654. md->virtual >= PAGE_OFFSET &&
  655. (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
  656. printk(KERN_WARNING "BUG: mapping for 0x%08llx"
  657. " at 0x%08lx out of vmalloc space\n",
  658. (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
  659. }
  660. type = &mem_types[md->type];
  661. #ifndef CONFIG_ARM_LPAE
  662. /*
  663. * Catch 36-bit addresses
  664. */
  665. if (md->pfn >= 0x100000) {
  666. create_36bit_mapping(md, type);
  667. return;
  668. }
  669. #endif
  670. addr = md->virtual & PAGE_MASK;
  671. phys = __pfn_to_phys(md->pfn);
  672. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  673. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  674. printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
  675. "be mapped using pages, ignoring.\n",
  676. (long long)__pfn_to_phys(md->pfn), addr);
  677. return;
  678. }
  679. pgd = pgd_offset_k(addr);
  680. end = addr + length;
  681. do {
  682. unsigned long next = pgd_addr_end(addr, end);
  683. alloc_init_pud(pgd, addr, next, phys, type);
  684. phys += next - addr;
  685. addr = next;
  686. } while (pgd++, addr != end);
  687. }
  688. /*
  689. * Create the architecture specific mappings
  690. */
  691. void __init iotable_init(struct map_desc *io_desc, int nr)
  692. {
  693. struct map_desc *md;
  694. struct vm_struct *vm;
  695. if (!nr)
  696. return;
  697. vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
  698. for (md = io_desc; nr; md++, nr--) {
  699. create_mapping(md);
  700. vm->addr = (void *)(md->virtual & PAGE_MASK);
  701. vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  702. vm->phys_addr = __pfn_to_phys(md->pfn);
  703. vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
  704. vm->flags |= VM_ARM_MTYPE(md->type);
  705. vm->caller = iotable_init;
  706. vm_area_add_early(vm++);
  707. }
  708. }
  709. void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
  710. void *caller)
  711. {
  712. struct vm_struct *vm;
  713. vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
  714. vm->addr = (void *)addr;
  715. vm->size = size;
  716. vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
  717. vm->caller = caller;
  718. vm_area_add_early(vm);
  719. }
  720. #ifndef CONFIG_ARM_LPAE
  721. /*
  722. * The Linux PMD is made of two consecutive section entries covering 2MB
  723. * (see definition in include/asm/pgtable-2level.h). However a call to
  724. * create_mapping() may optimize static mappings by using individual
  725. * 1MB section mappings. This leaves the actual PMD potentially half
  726. * initialized if the top or bottom section entry isn't used, leaving it
  727. * open to problems if a subsequent ioremap() or vmalloc() tries to use
  728. * the virtual space left free by that unused section entry.
  729. *
  730. * Let's avoid the issue by inserting dummy vm entries covering the unused
  731. * PMD halves once the static mappings are in place.
  732. */
  733. static void __init pmd_empty_section_gap(unsigned long addr)
  734. {
  735. vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
  736. }
  737. static void __init fill_pmd_gaps(void)
  738. {
  739. struct vm_struct *vm;
  740. unsigned long addr, next = 0;
  741. pmd_t *pmd;
  742. /* we're still single threaded hence no lock needed here */
  743. for (vm = vmlist; vm; vm = vm->next) {
  744. if (!(vm->flags & (VM_ARM_STATIC_MAPPING | VM_ARM_EMPTY_MAPPING)))
  745. continue;
  746. addr = (unsigned long)vm->addr;
  747. if (addr < next)
  748. continue;
  749. /*
  750. * Check if this vm starts on an odd section boundary.
  751. * If so and the first section entry for this PMD is free
  752. * then we block the corresponding virtual address.
  753. */
  754. if ((addr & ~PMD_MASK) == SECTION_SIZE) {
  755. pmd = pmd_off_k(addr);
  756. if (pmd_none(*pmd))
  757. pmd_empty_section_gap(addr & PMD_MASK);
  758. }
  759. /*
  760. * Then check if this vm ends on an odd section boundary.
  761. * If so and the second section entry for this PMD is empty
  762. * then we block the corresponding virtual address.
  763. */
  764. addr += vm->size;
  765. if ((addr & ~PMD_MASK) == SECTION_SIZE) {
  766. pmd = pmd_off_k(addr) + 1;
  767. if (pmd_none(*pmd))
  768. pmd_empty_section_gap(addr);
  769. }
  770. /* no need to look at any vm entry until we hit the next PMD */
  771. next = (addr + PMD_SIZE - 1) & PMD_MASK;
  772. }
  773. }
  774. #else
  775. #define fill_pmd_gaps() do { } while (0)
  776. #endif
  777. #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
  778. static void __init pci_reserve_io(void)
  779. {
  780. struct vm_struct *vm;
  781. unsigned long addr;
  782. /* we're still single threaded hence no lock needed here */
  783. for (vm = vmlist; vm; vm = vm->next) {
  784. if (!(vm->flags & VM_ARM_STATIC_MAPPING))
  785. continue;
  786. addr = (unsigned long)vm->addr;
  787. addr &= ~(SZ_2M - 1);
  788. if (addr == PCI_IO_VIRT_BASE)
  789. return;
  790. }
  791. vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
  792. }
  793. #else
  794. #define pci_reserve_io() do { } while (0)
  795. #endif
  796. static void * __initdata vmalloc_min =
  797. (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
  798. /*
  799. * vmalloc=size forces the vmalloc area to be exactly 'size'
  800. * bytes. This can be used to increase (or decrease) the vmalloc
  801. * area - the default is 240m.
  802. */
  803. static int __init early_vmalloc(char *arg)
  804. {
  805. unsigned long vmalloc_reserve = memparse(arg, NULL);
  806. if (vmalloc_reserve < SZ_16M) {
  807. vmalloc_reserve = SZ_16M;
  808. printk(KERN_WARNING
  809. "vmalloc area too small, limiting to %luMB\n",
  810. vmalloc_reserve >> 20);
  811. }
  812. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  813. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  814. printk(KERN_WARNING
  815. "vmalloc area is too big, limiting to %luMB\n",
  816. vmalloc_reserve >> 20);
  817. }
  818. vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
  819. return 0;
  820. }
  821. early_param("vmalloc", early_vmalloc);
  822. phys_addr_t arm_lowmem_limit __initdata = 0;
  823. void __init sanity_check_meminfo(void)
  824. {
  825. int i, j, highmem = 0;
  826. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  827. struct membank *bank = &meminfo.bank[j];
  828. *bank = meminfo.bank[i];
  829. if (bank->start > ULONG_MAX)
  830. highmem = 1;
  831. #ifdef CONFIG_HIGHMEM
  832. if (__va(bank->start) >= vmalloc_min ||
  833. __va(bank->start) < (void *)PAGE_OFFSET)
  834. highmem = 1;
  835. bank->highmem = highmem;
  836. /*
  837. * Split those memory banks which are partially overlapping
  838. * the vmalloc area greatly simplifying things later.
  839. */
  840. if (!highmem && __va(bank->start) < vmalloc_min &&
  841. bank->size > vmalloc_min - __va(bank->start)) {
  842. if (meminfo.nr_banks >= NR_BANKS) {
  843. printk(KERN_CRIT "NR_BANKS too low, "
  844. "ignoring high memory\n");
  845. } else {
  846. memmove(bank + 1, bank,
  847. (meminfo.nr_banks - i) * sizeof(*bank));
  848. meminfo.nr_banks++;
  849. i++;
  850. bank[1].size -= vmalloc_min - __va(bank->start);
  851. bank[1].start = __pa(vmalloc_min - 1) + 1;
  852. bank[1].highmem = highmem = 1;
  853. j++;
  854. }
  855. bank->size = vmalloc_min - __va(bank->start);
  856. }
  857. #else
  858. bank->highmem = highmem;
  859. /*
  860. * Highmem banks not allowed with !CONFIG_HIGHMEM.
  861. */
  862. if (highmem) {
  863. printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
  864. "(!CONFIG_HIGHMEM).\n",
  865. (unsigned long long)bank->start,
  866. (unsigned long long)bank->start + bank->size - 1);
  867. continue;
  868. }
  869. /*
  870. * Check whether this memory bank would entirely overlap
  871. * the vmalloc area.
  872. */
  873. if (__va(bank->start) >= vmalloc_min ||
  874. __va(bank->start) < (void *)PAGE_OFFSET) {
  875. printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
  876. "(vmalloc region overlap).\n",
  877. (unsigned long long)bank->start,
  878. (unsigned long long)bank->start + bank->size - 1);
  879. continue;
  880. }
  881. /*
  882. * Check whether this memory bank would partially overlap
  883. * the vmalloc area.
  884. */
  885. if (__va(bank->start + bank->size) > vmalloc_min ||
  886. __va(bank->start + bank->size) < __va(bank->start)) {
  887. unsigned long newsize = vmalloc_min - __va(bank->start);
  888. printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
  889. "to -%.8llx (vmalloc region overlap).\n",
  890. (unsigned long long)bank->start,
  891. (unsigned long long)bank->start + bank->size - 1,
  892. (unsigned long long)bank->start + newsize - 1);
  893. bank->size = newsize;
  894. }
  895. #endif
  896. if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
  897. arm_lowmem_limit = bank->start + bank->size;
  898. j++;
  899. }
  900. #ifdef CONFIG_HIGHMEM
  901. if (highmem) {
  902. const char *reason = NULL;
  903. if (cache_is_vipt_aliasing()) {
  904. /*
  905. * Interactions between kmap and other mappings
  906. * make highmem support with aliasing VIPT caches
  907. * rather difficult.
  908. */
  909. reason = "with VIPT aliasing cache";
  910. }
  911. if (reason) {
  912. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  913. reason);
  914. while (j > 0 && meminfo.bank[j - 1].highmem)
  915. j--;
  916. }
  917. }
  918. #endif
  919. meminfo.nr_banks = j;
  920. high_memory = __va(arm_lowmem_limit - 1) + 1;
  921. memblock_set_current_limit(arm_lowmem_limit);
  922. }
  923. static inline void prepare_page_table(void)
  924. {
  925. unsigned long addr;
  926. phys_addr_t end;
  927. /*
  928. * Clear out all the mappings below the kernel image.
  929. */
  930. for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
  931. pmd_clear(pmd_off_k(addr));
  932. #ifdef CONFIG_XIP_KERNEL
  933. /* The XIP kernel is mapped in the module area -- skip over it */
  934. addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
  935. #endif
  936. for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
  937. pmd_clear(pmd_off_k(addr));
  938. /*
  939. * Find the end of the first block of lowmem.
  940. */
  941. end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
  942. if (end >= arm_lowmem_limit)
  943. end = arm_lowmem_limit;
  944. /*
  945. * Clear out all the kernel space mappings, except for the first
  946. * memory bank, up to the vmalloc region.
  947. */
  948. for (addr = __phys_to_virt(end);
  949. addr < VMALLOC_START; addr += PMD_SIZE)
  950. pmd_clear(pmd_off_k(addr));
  951. }
  952. #ifdef CONFIG_ARM_LPAE
  953. /* the first page is reserved for pgd */
  954. #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
  955. PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
  956. #else
  957. #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
  958. #endif
  959. /*
  960. * Reserve the special regions of memory
  961. */
  962. void __init arm_mm_memblock_reserve(void)
  963. {
  964. /*
  965. * Reserve the page tables. These are already in use,
  966. * and can only be in node 0.
  967. */
  968. memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
  969. #ifdef CONFIG_SA1111
  970. /*
  971. * Because of the SA1111 DMA bug, we want to preserve our
  972. * precious DMA-able memory...
  973. */
  974. memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
  975. #endif
  976. }
  977. /*
  978. * Set up the device mappings. Since we clear out the page tables for all
  979. * mappings above VMALLOC_START, we will remove any debug device mappings.
  980. * This means you have to be careful how you debug this function, or any
  981. * called function. This means you can't use any function or debugging
  982. * method which may touch any device, otherwise the kernel _will_ crash.
  983. */
  984. static void __init devicemaps_init(struct machine_desc *mdesc)
  985. {
  986. struct map_desc map;
  987. unsigned long addr;
  988. void *vectors;
  989. /*
  990. * Allocate the vector page early.
  991. */
  992. vectors = early_alloc(PAGE_SIZE);
  993. early_trap_init(vectors);
  994. for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
  995. pmd_clear(pmd_off_k(addr));
  996. /*
  997. * Map the kernel if it is XIP.
  998. * It is always first in the modulearea.
  999. */
  1000. #ifdef CONFIG_XIP_KERNEL
  1001. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  1002. map.virtual = MODULES_VADDR;
  1003. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  1004. map.type = MT_ROM;
  1005. create_mapping(&map);
  1006. #endif
  1007. /*
  1008. * Map the cache flushing regions.
  1009. */
  1010. #ifdef FLUSH_BASE
  1011. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  1012. map.virtual = FLUSH_BASE;
  1013. map.length = SZ_1M;
  1014. map.type = MT_CACHECLEAN;
  1015. create_mapping(&map);
  1016. #endif
  1017. #ifdef FLUSH_BASE_MINICACHE
  1018. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  1019. map.virtual = FLUSH_BASE_MINICACHE;
  1020. map.length = SZ_1M;
  1021. map.type = MT_MINICLEAN;
  1022. create_mapping(&map);
  1023. #endif
  1024. /*
  1025. * Create a mapping for the machine vectors at the high-vectors
  1026. * location (0xffff0000). If we aren't using high-vectors, also
  1027. * create a mapping at the low-vectors virtual address.
  1028. */
  1029. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  1030. map.virtual = 0xffff0000;
  1031. map.length = PAGE_SIZE;
  1032. map.type = MT_HIGH_VECTORS;
  1033. create_mapping(&map);
  1034. if (!vectors_high()) {
  1035. map.virtual = 0;
  1036. map.type = MT_LOW_VECTORS;
  1037. create_mapping(&map);
  1038. }
  1039. /*
  1040. * Ask the machine support to map in the statically mapped devices.
  1041. */
  1042. if (mdesc->map_io)
  1043. mdesc->map_io();
  1044. fill_pmd_gaps();
  1045. /* Reserve fixed i/o space in VMALLOC region */
  1046. pci_reserve_io();
  1047. /*
  1048. * Finally flush the caches and tlb to ensure that we're in a
  1049. * consistent state wrt the writebuffer. This also ensures that
  1050. * any write-allocated cache lines in the vector page are written
  1051. * back. After this point, we can start to touch devices again.
  1052. */
  1053. local_flush_tlb_all();
  1054. flush_cache_all();
  1055. }
  1056. static void __init kmap_init(void)
  1057. {
  1058. #ifdef CONFIG_HIGHMEM
  1059. pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
  1060. PKMAP_BASE, _PAGE_KERNEL_TABLE);
  1061. #endif
  1062. }
  1063. static void __init map_lowmem(void)
  1064. {
  1065. struct memblock_region *reg;
  1066. /* Map all the lowmem memory banks. */
  1067. for_each_memblock(memory, reg) {
  1068. phys_addr_t start = reg->base;
  1069. phys_addr_t end = start + reg->size;
  1070. struct map_desc map;
  1071. if (end > arm_lowmem_limit)
  1072. end = arm_lowmem_limit;
  1073. if (start >= end)
  1074. break;
  1075. map.pfn = __phys_to_pfn(start);
  1076. map.virtual = __phys_to_virt(start);
  1077. map.length = end - start;
  1078. map.type = MT_MEMORY;
  1079. create_mapping(&map);
  1080. }
  1081. }
  1082. /*
  1083. * paging_init() sets up the page tables, initialises the zone memory
  1084. * maps, and sets up the zero page, bad page and bad page tables.
  1085. */
  1086. void __init paging_init(struct machine_desc *mdesc)
  1087. {
  1088. void *zero_page;
  1089. memblock_set_current_limit(arm_lowmem_limit);
  1090. build_mem_type_table();
  1091. prepare_page_table();
  1092. map_lowmem();
  1093. dma_contiguous_remap();
  1094. devicemaps_init(mdesc);
  1095. kmap_init();
  1096. top_pmd = pmd_off_k(0xffff0000);
  1097. /* allocate the zero page. */
  1098. zero_page = early_alloc(PAGE_SIZE);
  1099. bootmem_init();
  1100. empty_zero_page = virt_to_page(zero_page);
  1101. __flush_dcache_page(NULL, empty_zero_page);
  1102. }