integrator_ap.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. /*
  2. * linux/arch/arm/mach-integrator/integrator_ap.c
  3. *
  4. * Copyright (C) 2000-2003 Deep Blue Solutions Ltd
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. #include <linux/types.h>
  21. #include <linux/kernel.h>
  22. #include <linux/init.h>
  23. #include <linux/list.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/slab.h>
  26. #include <linux/string.h>
  27. #include <linux/syscore_ops.h>
  28. #include <linux/amba/bus.h>
  29. #include <linux/amba/kmi.h>
  30. #include <linux/clocksource.h>
  31. #include <linux/clockchips.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/io.h>
  34. #include <linux/mtd/physmap.h>
  35. #include <linux/clk.h>
  36. #include <linux/platform_data/clk-integrator.h>
  37. #include <video/vga.h>
  38. #include <mach/hardware.h>
  39. #include <mach/platform.h>
  40. #include <asm/hardware/arm_timer.h>
  41. #include <asm/setup.h>
  42. #include <asm/param.h> /* HZ */
  43. #include <asm/mach-types.h>
  44. #include <asm/sched_clock.h>
  45. #include <mach/lm.h>
  46. #include <mach/irqs.h>
  47. #include <asm/mach/arch.h>
  48. #include <asm/mach/irq.h>
  49. #include <asm/mach/map.h>
  50. #include <asm/mach/pci.h>
  51. #include <asm/mach/time.h>
  52. #include <plat/fpga-irq.h>
  53. #include "common.h"
  54. /*
  55. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  56. * is the (PA >> 12).
  57. *
  58. * Setup a VA for the Integrator interrupt controller (for header #0,
  59. * just for now).
  60. */
  61. #define VA_IC_BASE __io_address(INTEGRATOR_IC_BASE)
  62. #define VA_SC_BASE __io_address(INTEGRATOR_SC_BASE)
  63. #define VA_EBI_BASE __io_address(INTEGRATOR_EBI_BASE)
  64. #define VA_CMIC_BASE __io_address(INTEGRATOR_HDR_IC)
  65. /*
  66. * Logical Physical
  67. * e8000000 40000000 PCI memory PHYS_PCI_MEM_BASE (max 512M)
  68. * ec000000 61000000 PCI config space PHYS_PCI_CONFIG_BASE (max 16M)
  69. * ed000000 62000000 PCI V3 regs PHYS_PCI_V3_BASE (max 64k)
  70. * fee00000 60000000 PCI IO PHYS_PCI_IO_BASE (max 16M)
  71. * ef000000 Cache flush
  72. * f1000000 10000000 Core module registers
  73. * f1100000 11000000 System controller registers
  74. * f1200000 12000000 EBI registers
  75. * f1300000 13000000 Counter/Timer
  76. * f1400000 14000000 Interrupt controller
  77. * f1600000 16000000 UART 0
  78. * f1700000 17000000 UART 1
  79. * f1a00000 1a000000 Debug LEDs
  80. * f1b00000 1b000000 GPIO
  81. */
  82. static struct map_desc ap_io_desc[] __initdata = {
  83. {
  84. .virtual = IO_ADDRESS(INTEGRATOR_HDR_BASE),
  85. .pfn = __phys_to_pfn(INTEGRATOR_HDR_BASE),
  86. .length = SZ_4K,
  87. .type = MT_DEVICE
  88. }, {
  89. .virtual = IO_ADDRESS(INTEGRATOR_SC_BASE),
  90. .pfn = __phys_to_pfn(INTEGRATOR_SC_BASE),
  91. .length = SZ_4K,
  92. .type = MT_DEVICE
  93. }, {
  94. .virtual = IO_ADDRESS(INTEGRATOR_EBI_BASE),
  95. .pfn = __phys_to_pfn(INTEGRATOR_EBI_BASE),
  96. .length = SZ_4K,
  97. .type = MT_DEVICE
  98. }, {
  99. .virtual = IO_ADDRESS(INTEGRATOR_CT_BASE),
  100. .pfn = __phys_to_pfn(INTEGRATOR_CT_BASE),
  101. .length = SZ_4K,
  102. .type = MT_DEVICE
  103. }, {
  104. .virtual = IO_ADDRESS(INTEGRATOR_IC_BASE),
  105. .pfn = __phys_to_pfn(INTEGRATOR_IC_BASE),
  106. .length = SZ_4K,
  107. .type = MT_DEVICE
  108. }, {
  109. .virtual = IO_ADDRESS(INTEGRATOR_UART0_BASE),
  110. .pfn = __phys_to_pfn(INTEGRATOR_UART0_BASE),
  111. .length = SZ_4K,
  112. .type = MT_DEVICE
  113. }, {
  114. .virtual = IO_ADDRESS(INTEGRATOR_UART1_BASE),
  115. .pfn = __phys_to_pfn(INTEGRATOR_UART1_BASE),
  116. .length = SZ_4K,
  117. .type = MT_DEVICE
  118. }, {
  119. .virtual = IO_ADDRESS(INTEGRATOR_DBG_BASE),
  120. .pfn = __phys_to_pfn(INTEGRATOR_DBG_BASE),
  121. .length = SZ_4K,
  122. .type = MT_DEVICE
  123. }, {
  124. .virtual = IO_ADDRESS(INTEGRATOR_AP_GPIO_BASE),
  125. .pfn = __phys_to_pfn(INTEGRATOR_AP_GPIO_BASE),
  126. .length = SZ_4K,
  127. .type = MT_DEVICE
  128. }, {
  129. .virtual = PCI_MEMORY_VADDR,
  130. .pfn = __phys_to_pfn(PHYS_PCI_MEM_BASE),
  131. .length = SZ_16M,
  132. .type = MT_DEVICE
  133. }, {
  134. .virtual = PCI_CONFIG_VADDR,
  135. .pfn = __phys_to_pfn(PHYS_PCI_CONFIG_BASE),
  136. .length = SZ_16M,
  137. .type = MT_DEVICE
  138. }, {
  139. .virtual = PCI_V3_VADDR,
  140. .pfn = __phys_to_pfn(PHYS_PCI_V3_BASE),
  141. .length = SZ_64K,
  142. .type = MT_DEVICE
  143. }
  144. };
  145. static void __init ap_map_io(void)
  146. {
  147. iotable_init(ap_io_desc, ARRAY_SIZE(ap_io_desc));
  148. vga_base = PCI_MEMORY_VADDR;
  149. pci_map_io_early(__phys_to_pfn(PHYS_PCI_IO_BASE));
  150. }
  151. #define INTEGRATOR_SC_VALID_INT 0x003fffff
  152. static void __init ap_init_irq(void)
  153. {
  154. /* Disable all interrupts initially. */
  155. /* Do the core module ones */
  156. writel(-1, VA_CMIC_BASE + IRQ_ENABLE_CLEAR);
  157. /* do the header card stuff next */
  158. writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR);
  159. writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR);
  160. fpga_irq_init(VA_IC_BASE, "SC", IRQ_PIC_START,
  161. -1, INTEGRATOR_SC_VALID_INT, NULL);
  162. integrator_clk_init(false);
  163. }
  164. #ifdef CONFIG_PM
  165. static unsigned long ic_irq_enable;
  166. static int irq_suspend(void)
  167. {
  168. ic_irq_enable = readl(VA_IC_BASE + IRQ_ENABLE);
  169. return 0;
  170. }
  171. static void irq_resume(void)
  172. {
  173. /* disable all irq sources */
  174. writel(-1, VA_CMIC_BASE + IRQ_ENABLE_CLEAR);
  175. writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR);
  176. writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR);
  177. writel(ic_irq_enable, VA_IC_BASE + IRQ_ENABLE_SET);
  178. }
  179. #else
  180. #define irq_suspend NULL
  181. #define irq_resume NULL
  182. #endif
  183. static struct syscore_ops irq_syscore_ops = {
  184. .suspend = irq_suspend,
  185. .resume = irq_resume,
  186. };
  187. static int __init irq_syscore_init(void)
  188. {
  189. register_syscore_ops(&irq_syscore_ops);
  190. return 0;
  191. }
  192. device_initcall(irq_syscore_init);
  193. /*
  194. * Flash handling.
  195. */
  196. #define SC_CTRLC (VA_SC_BASE + INTEGRATOR_SC_CTRLC_OFFSET)
  197. #define SC_CTRLS (VA_SC_BASE + INTEGRATOR_SC_CTRLS_OFFSET)
  198. #define EBI_CSR1 (VA_EBI_BASE + INTEGRATOR_EBI_CSR1_OFFSET)
  199. #define EBI_LOCK (VA_EBI_BASE + INTEGRATOR_EBI_LOCK_OFFSET)
  200. static int ap_flash_init(struct platform_device *dev)
  201. {
  202. u32 tmp;
  203. writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP, SC_CTRLC);
  204. tmp = readl(EBI_CSR1) | INTEGRATOR_EBI_WRITE_ENABLE;
  205. writel(tmp, EBI_CSR1);
  206. if (!(readl(EBI_CSR1) & INTEGRATOR_EBI_WRITE_ENABLE)) {
  207. writel(0xa05f, EBI_LOCK);
  208. writel(tmp, EBI_CSR1);
  209. writel(0, EBI_LOCK);
  210. }
  211. return 0;
  212. }
  213. static void ap_flash_exit(struct platform_device *dev)
  214. {
  215. u32 tmp;
  216. writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP, SC_CTRLC);
  217. tmp = readl(EBI_CSR1) & ~INTEGRATOR_EBI_WRITE_ENABLE;
  218. writel(tmp, EBI_CSR1);
  219. if (readl(EBI_CSR1) & INTEGRATOR_EBI_WRITE_ENABLE) {
  220. writel(0xa05f, EBI_LOCK);
  221. writel(tmp, EBI_CSR1);
  222. writel(0, EBI_LOCK);
  223. }
  224. }
  225. static void ap_flash_set_vpp(struct platform_device *pdev, int on)
  226. {
  227. void __iomem *reg = on ? SC_CTRLS : SC_CTRLC;
  228. writel(INTEGRATOR_SC_CTRL_nFLVPPEN, reg);
  229. }
  230. static struct physmap_flash_data ap_flash_data = {
  231. .width = 4,
  232. .init = ap_flash_init,
  233. .exit = ap_flash_exit,
  234. .set_vpp = ap_flash_set_vpp,
  235. };
  236. static struct resource cfi_flash_resource = {
  237. .start = INTEGRATOR_FLASH_BASE,
  238. .end = INTEGRATOR_FLASH_BASE + INTEGRATOR_FLASH_SIZE - 1,
  239. .flags = IORESOURCE_MEM,
  240. };
  241. static struct platform_device cfi_flash_device = {
  242. .name = "physmap-flash",
  243. .id = 0,
  244. .dev = {
  245. .platform_data = &ap_flash_data,
  246. },
  247. .num_resources = 1,
  248. .resource = &cfi_flash_resource,
  249. };
  250. static void __init ap_init(void)
  251. {
  252. unsigned long sc_dec;
  253. int i;
  254. platform_device_register(&cfi_flash_device);
  255. sc_dec = readl(VA_SC_BASE + INTEGRATOR_SC_DEC_OFFSET);
  256. for (i = 0; i < 4; i++) {
  257. struct lm_device *lmdev;
  258. if ((sc_dec & (16 << i)) == 0)
  259. continue;
  260. lmdev = kzalloc(sizeof(struct lm_device), GFP_KERNEL);
  261. if (!lmdev)
  262. continue;
  263. lmdev->resource.start = 0xc0000000 + 0x10000000 * i;
  264. lmdev->resource.end = lmdev->resource.start + 0x0fffffff;
  265. lmdev->resource.flags = IORESOURCE_MEM;
  266. lmdev->irq = IRQ_AP_EXPINT0 + i;
  267. lmdev->id = i;
  268. lm_device_register(lmdev);
  269. }
  270. }
  271. /*
  272. * Where is the timer (VA)?
  273. */
  274. #define TIMER0_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER0_BASE)
  275. #define TIMER1_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER1_BASE)
  276. #define TIMER2_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER2_BASE)
  277. static unsigned long timer_reload;
  278. static u32 notrace integrator_read_sched_clock(void)
  279. {
  280. return -readl((void __iomem *) TIMER2_VA_BASE + TIMER_VALUE);
  281. }
  282. static void integrator_clocksource_init(unsigned long inrate)
  283. {
  284. void __iomem *base = (void __iomem *)TIMER2_VA_BASE;
  285. u32 ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC;
  286. unsigned long rate = inrate;
  287. if (rate >= 1500000) {
  288. rate /= 16;
  289. ctrl |= TIMER_CTRL_DIV16;
  290. }
  291. writel(0xffff, base + TIMER_LOAD);
  292. writel(ctrl, base + TIMER_CTRL);
  293. clocksource_mmio_init(base + TIMER_VALUE, "timer2",
  294. rate, 200, 16, clocksource_mmio_readl_down);
  295. setup_sched_clock(integrator_read_sched_clock, 16, rate);
  296. }
  297. static void __iomem * const clkevt_base = (void __iomem *)TIMER1_VA_BASE;
  298. /*
  299. * IRQ handler for the timer
  300. */
  301. static irqreturn_t integrator_timer_interrupt(int irq, void *dev_id)
  302. {
  303. struct clock_event_device *evt = dev_id;
  304. /* clear the interrupt */
  305. writel(1, clkevt_base + TIMER_INTCLR);
  306. evt->event_handler(evt);
  307. return IRQ_HANDLED;
  308. }
  309. static void clkevt_set_mode(enum clock_event_mode mode, struct clock_event_device *evt)
  310. {
  311. u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE;
  312. /* Disable timer */
  313. writel(ctrl, clkevt_base + TIMER_CTRL);
  314. switch (mode) {
  315. case CLOCK_EVT_MODE_PERIODIC:
  316. /* Enable the timer and start the periodic tick */
  317. writel(timer_reload, clkevt_base + TIMER_LOAD);
  318. ctrl |= TIMER_CTRL_PERIODIC | TIMER_CTRL_ENABLE;
  319. writel(ctrl, clkevt_base + TIMER_CTRL);
  320. break;
  321. case CLOCK_EVT_MODE_ONESHOT:
  322. /* Leave the timer disabled, .set_next_event will enable it */
  323. ctrl &= ~TIMER_CTRL_PERIODIC;
  324. writel(ctrl, clkevt_base + TIMER_CTRL);
  325. break;
  326. case CLOCK_EVT_MODE_UNUSED:
  327. case CLOCK_EVT_MODE_SHUTDOWN:
  328. case CLOCK_EVT_MODE_RESUME:
  329. default:
  330. /* Just leave in disabled state */
  331. break;
  332. }
  333. }
  334. static int clkevt_set_next_event(unsigned long next, struct clock_event_device *evt)
  335. {
  336. unsigned long ctrl = readl(clkevt_base + TIMER_CTRL);
  337. writel(ctrl & ~TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
  338. writel(next, clkevt_base + TIMER_LOAD);
  339. writel(ctrl | TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
  340. return 0;
  341. }
  342. static struct clock_event_device integrator_clockevent = {
  343. .name = "timer1",
  344. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  345. .set_mode = clkevt_set_mode,
  346. .set_next_event = clkevt_set_next_event,
  347. .rating = 300,
  348. };
  349. static struct irqaction integrator_timer_irq = {
  350. .name = "timer",
  351. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  352. .handler = integrator_timer_interrupt,
  353. .dev_id = &integrator_clockevent,
  354. };
  355. static void integrator_clockevent_init(unsigned long inrate)
  356. {
  357. unsigned long rate = inrate;
  358. unsigned int ctrl = 0;
  359. /* Calculate and program a divisor */
  360. if (rate > 0x100000 * HZ) {
  361. rate /= 256;
  362. ctrl |= TIMER_CTRL_DIV256;
  363. } else if (rate > 0x10000 * HZ) {
  364. rate /= 16;
  365. ctrl |= TIMER_CTRL_DIV16;
  366. }
  367. timer_reload = rate / HZ;
  368. writel(ctrl, clkevt_base + TIMER_CTRL);
  369. setup_irq(IRQ_TIMERINT1, &integrator_timer_irq);
  370. clockevents_config_and_register(&integrator_clockevent,
  371. rate,
  372. 1,
  373. 0xffffU);
  374. }
  375. void __init ap_init_early(void)
  376. {
  377. }
  378. /*
  379. * Set up timer(s).
  380. */
  381. static void __init ap_init_timer(void)
  382. {
  383. struct clk *clk;
  384. unsigned long rate;
  385. clk = clk_get_sys("ap_timer", NULL);
  386. BUG_ON(IS_ERR(clk));
  387. clk_prepare_enable(clk);
  388. rate = clk_get_rate(clk);
  389. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  390. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  391. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  392. integrator_clocksource_init(rate);
  393. integrator_clockevent_init(rate);
  394. }
  395. static struct sys_timer ap_timer = {
  396. .init = ap_init_timer,
  397. };
  398. MACHINE_START(INTEGRATOR, "ARM-Integrator")
  399. /* Maintainer: ARM Ltd/Deep Blue Solutions Ltd */
  400. .atag_offset = 0x100,
  401. .reserve = integrator_reserve,
  402. .map_io = ap_map_io,
  403. .nr_irqs = NR_IRQS_INTEGRATOR_AP,
  404. .init_early = ap_init_early,
  405. .init_irq = ap_init_irq,
  406. .handle_irq = fpga_handle_irq,
  407. .timer = &ap_timer,
  408. .init_machine = ap_init,
  409. .restart = integrator_restart,
  410. MACHINE_END