cgroup.c 144 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488
  1. /*
  2. * Generic process-grouping system.
  3. *
  4. * Based originally on the cpuset system, extracted by Paul Menage
  5. * Copyright (C) 2006 Google, Inc
  6. *
  7. * Notifications support
  8. * Copyright (C) 2009 Nokia Corporation
  9. * Author: Kirill A. Shutemov
  10. *
  11. * Copyright notices from the original cpuset code:
  12. * --------------------------------------------------
  13. * Copyright (C) 2003 BULL SA.
  14. * Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15. *
  16. * Portions derived from Patrick Mochel's sysfs code.
  17. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  18. *
  19. * 2003-10-10 Written by Simon Derr.
  20. * 2003-10-22 Updates by Stephen Hemminger.
  21. * 2004 May-July Rework by Paul Jackson.
  22. * ---------------------------------------------------
  23. *
  24. * This file is subject to the terms and conditions of the GNU General Public
  25. * License. See the file COPYING in the main directory of the Linux
  26. * distribution for more details.
  27. */
  28. #include <linux/cgroup.h>
  29. #include <linux/cred.h>
  30. #include <linux/ctype.h>
  31. #include <linux/errno.h>
  32. #include <linux/init_task.h>
  33. #include <linux/kernel.h>
  34. #include <linux/list.h>
  35. #include <linux/mm.h>
  36. #include <linux/mutex.h>
  37. #include <linux/mount.h>
  38. #include <linux/pagemap.h>
  39. #include <linux/proc_fs.h>
  40. #include <linux/rcupdate.h>
  41. #include <linux/sched.h>
  42. #include <linux/backing-dev.h>
  43. #include <linux/seq_file.h>
  44. #include <linux/slab.h>
  45. #include <linux/magic.h>
  46. #include <linux/spinlock.h>
  47. #include <linux/string.h>
  48. #include <linux/sort.h>
  49. #include <linux/kmod.h>
  50. #include <linux/module.h>
  51. #include <linux/delayacct.h>
  52. #include <linux/cgroupstats.h>
  53. #include <linux/hashtable.h>
  54. #include <linux/namei.h>
  55. #include <linux/pid_namespace.h>
  56. #include <linux/idr.h>
  57. #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
  58. #include <linux/eventfd.h>
  59. #include <linux/poll.h>
  60. #include <linux/flex_array.h> /* used in cgroup_attach_task */
  61. #include <linux/kthread.h>
  62. #include <linux/atomic.h>
  63. /* css deactivation bias, makes css->refcnt negative to deny new trygets */
  64. #define CSS_DEACT_BIAS INT_MIN
  65. /*
  66. * cgroup_mutex is the master lock. Any modification to cgroup or its
  67. * hierarchy must be performed while holding it.
  68. *
  69. * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
  70. * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
  71. * release_agent_path and so on. Modifying requires both cgroup_mutex and
  72. * cgroup_root_mutex. Readers can acquire either of the two. This is to
  73. * break the following locking order cycle.
  74. *
  75. * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
  76. * B. namespace_sem -> cgroup_mutex
  77. *
  78. * B happens only through cgroup_show_options() and using cgroup_root_mutex
  79. * breaks it.
  80. */
  81. #ifdef CONFIG_PROVE_RCU
  82. DEFINE_MUTEX(cgroup_mutex);
  83. EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
  84. #else
  85. static DEFINE_MUTEX(cgroup_mutex);
  86. #endif
  87. static DEFINE_MUTEX(cgroup_root_mutex);
  88. /*
  89. * Generate an array of cgroup subsystem pointers. At boot time, this is
  90. * populated with the built in subsystems, and modular subsystems are
  91. * registered after that. The mutable section of this array is protected by
  92. * cgroup_mutex.
  93. */
  94. #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
  95. #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
  96. static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
  97. #include <linux/cgroup_subsys.h>
  98. };
  99. /*
  100. * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
  101. * subsystems that are otherwise unattached - it never has more than a
  102. * single cgroup, and all tasks are part of that cgroup.
  103. */
  104. static struct cgroupfs_root rootnode;
  105. /*
  106. * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
  107. */
  108. struct cfent {
  109. struct list_head node;
  110. struct dentry *dentry;
  111. struct cftype *type;
  112. /* file xattrs */
  113. struct simple_xattrs xattrs;
  114. };
  115. /*
  116. * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
  117. * cgroup_subsys->use_id != 0.
  118. */
  119. #define CSS_ID_MAX (65535)
  120. struct css_id {
  121. /*
  122. * The css to which this ID points. This pointer is set to valid value
  123. * after cgroup is populated. If cgroup is removed, this will be NULL.
  124. * This pointer is expected to be RCU-safe because destroy()
  125. * is called after synchronize_rcu(). But for safe use, css_tryget()
  126. * should be used for avoiding race.
  127. */
  128. struct cgroup_subsys_state __rcu *css;
  129. /*
  130. * ID of this css.
  131. */
  132. unsigned short id;
  133. /*
  134. * Depth in hierarchy which this ID belongs to.
  135. */
  136. unsigned short depth;
  137. /*
  138. * ID is freed by RCU. (and lookup routine is RCU safe.)
  139. */
  140. struct rcu_head rcu_head;
  141. /*
  142. * Hierarchy of CSS ID belongs to.
  143. */
  144. unsigned short stack[0]; /* Array of Length (depth+1) */
  145. };
  146. /*
  147. * cgroup_event represents events which userspace want to receive.
  148. */
  149. struct cgroup_event {
  150. /*
  151. * Cgroup which the event belongs to.
  152. */
  153. struct cgroup *cgrp;
  154. /*
  155. * Control file which the event associated.
  156. */
  157. struct cftype *cft;
  158. /*
  159. * eventfd to signal userspace about the event.
  160. */
  161. struct eventfd_ctx *eventfd;
  162. /*
  163. * Each of these stored in a list by the cgroup.
  164. */
  165. struct list_head list;
  166. /*
  167. * All fields below needed to unregister event when
  168. * userspace closes eventfd.
  169. */
  170. poll_table pt;
  171. wait_queue_head_t *wqh;
  172. wait_queue_t wait;
  173. struct work_struct remove;
  174. };
  175. /* The list of hierarchy roots */
  176. static LIST_HEAD(roots);
  177. static int root_count;
  178. /*
  179. * Hierarchy ID allocation and mapping. It follows the same exclusion
  180. * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
  181. * writes, either for reads.
  182. */
  183. static DEFINE_IDR(cgroup_hierarchy_idr);
  184. /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
  185. #define dummytop (&rootnode.top_cgroup)
  186. static struct cgroup_name root_cgroup_name = { .name = "/" };
  187. /* This flag indicates whether tasks in the fork and exit paths should
  188. * check for fork/exit handlers to call. This avoids us having to do
  189. * extra work in the fork/exit path if none of the subsystems need to
  190. * be called.
  191. */
  192. static int need_forkexit_callback __read_mostly;
  193. static int cgroup_destroy_locked(struct cgroup *cgrp);
  194. static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
  195. struct cftype cfts[], bool is_add);
  196. static int css_unbias_refcnt(int refcnt)
  197. {
  198. return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
  199. }
  200. /* the current nr of refs, always >= 0 whether @css is deactivated or not */
  201. static int css_refcnt(struct cgroup_subsys_state *css)
  202. {
  203. int v = atomic_read(&css->refcnt);
  204. return css_unbias_refcnt(v);
  205. }
  206. /* convenient tests for these bits */
  207. inline int cgroup_is_removed(const struct cgroup *cgrp)
  208. {
  209. return test_bit(CGRP_REMOVED, &cgrp->flags);
  210. }
  211. /**
  212. * cgroup_is_descendant - test ancestry
  213. * @cgrp: the cgroup to be tested
  214. * @ancestor: possible ancestor of @cgrp
  215. *
  216. * Test whether @cgrp is a descendant of @ancestor. It also returns %true
  217. * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
  218. * and @ancestor are accessible.
  219. */
  220. bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
  221. {
  222. while (cgrp) {
  223. if (cgrp == ancestor)
  224. return true;
  225. cgrp = cgrp->parent;
  226. }
  227. return false;
  228. }
  229. EXPORT_SYMBOL_GPL(cgroup_is_descendant);
  230. static int cgroup_is_releasable(const struct cgroup *cgrp)
  231. {
  232. const int bits =
  233. (1 << CGRP_RELEASABLE) |
  234. (1 << CGRP_NOTIFY_ON_RELEASE);
  235. return (cgrp->flags & bits) == bits;
  236. }
  237. static int notify_on_release(const struct cgroup *cgrp)
  238. {
  239. return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  240. }
  241. /*
  242. * for_each_subsys() allows you to iterate on each subsystem attached to
  243. * an active hierarchy
  244. */
  245. #define for_each_subsys(_root, _ss) \
  246. list_for_each_entry(_ss, &_root->subsys_list, sibling)
  247. /* for_each_active_root() allows you to iterate across the active hierarchies */
  248. #define for_each_active_root(_root) \
  249. list_for_each_entry(_root, &roots, root_list)
  250. static inline struct cgroup *__d_cgrp(struct dentry *dentry)
  251. {
  252. return dentry->d_fsdata;
  253. }
  254. static inline struct cfent *__d_cfe(struct dentry *dentry)
  255. {
  256. return dentry->d_fsdata;
  257. }
  258. static inline struct cftype *__d_cft(struct dentry *dentry)
  259. {
  260. return __d_cfe(dentry)->type;
  261. }
  262. /**
  263. * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
  264. * @cgrp: the cgroup to be checked for liveness
  265. *
  266. * On success, returns true; the mutex should be later unlocked. On
  267. * failure returns false with no lock held.
  268. */
  269. static bool cgroup_lock_live_group(struct cgroup *cgrp)
  270. {
  271. mutex_lock(&cgroup_mutex);
  272. if (cgroup_is_removed(cgrp)) {
  273. mutex_unlock(&cgroup_mutex);
  274. return false;
  275. }
  276. return true;
  277. }
  278. /* the list of cgroups eligible for automatic release. Protected by
  279. * release_list_lock */
  280. static LIST_HEAD(release_list);
  281. static DEFINE_RAW_SPINLOCK(release_list_lock);
  282. static void cgroup_release_agent(struct work_struct *work);
  283. static DECLARE_WORK(release_agent_work, cgroup_release_agent);
  284. static void check_for_release(struct cgroup *cgrp);
  285. /* Link structure for associating css_set objects with cgroups */
  286. struct cg_cgroup_link {
  287. /*
  288. * List running through cg_cgroup_links associated with a
  289. * cgroup, anchored on cgroup->css_sets
  290. */
  291. struct list_head cgrp_link_list;
  292. struct cgroup *cgrp;
  293. /*
  294. * List running through cg_cgroup_links pointing at a
  295. * single css_set object, anchored on css_set->cg_links
  296. */
  297. struct list_head cg_link_list;
  298. struct css_set *cg;
  299. };
  300. /* The default css_set - used by init and its children prior to any
  301. * hierarchies being mounted. It contains a pointer to the root state
  302. * for each subsystem. Also used to anchor the list of css_sets. Not
  303. * reference-counted, to improve performance when child cgroups
  304. * haven't been created.
  305. */
  306. static struct css_set init_css_set;
  307. static struct cg_cgroup_link init_css_set_link;
  308. static int cgroup_init_idr(struct cgroup_subsys *ss,
  309. struct cgroup_subsys_state *css);
  310. /* css_set_lock protects the list of css_set objects, and the
  311. * chain of tasks off each css_set. Nests outside task->alloc_lock
  312. * due to cgroup_iter_start() */
  313. static DEFINE_RWLOCK(css_set_lock);
  314. static int css_set_count;
  315. /*
  316. * hash table for cgroup groups. This improves the performance to find
  317. * an existing css_set. This hash doesn't (currently) take into
  318. * account cgroups in empty hierarchies.
  319. */
  320. #define CSS_SET_HASH_BITS 7
  321. static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
  322. static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
  323. {
  324. int i;
  325. unsigned long key = 0UL;
  326. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
  327. key += (unsigned long)css[i];
  328. key = (key >> 16) ^ key;
  329. return key;
  330. }
  331. /* We don't maintain the lists running through each css_set to its
  332. * task until after the first call to cgroup_iter_start(). This
  333. * reduces the fork()/exit() overhead for people who have cgroups
  334. * compiled into their kernel but not actually in use */
  335. static int use_task_css_set_links __read_mostly;
  336. static void __put_css_set(struct css_set *cg, int taskexit)
  337. {
  338. struct cg_cgroup_link *link;
  339. struct cg_cgroup_link *saved_link;
  340. /*
  341. * Ensure that the refcount doesn't hit zero while any readers
  342. * can see it. Similar to atomic_dec_and_lock(), but for an
  343. * rwlock
  344. */
  345. if (atomic_add_unless(&cg->refcount, -1, 1))
  346. return;
  347. write_lock(&css_set_lock);
  348. if (!atomic_dec_and_test(&cg->refcount)) {
  349. write_unlock(&css_set_lock);
  350. return;
  351. }
  352. /* This css_set is dead. unlink it and release cgroup refcounts */
  353. hash_del(&cg->hlist);
  354. css_set_count--;
  355. list_for_each_entry_safe(link, saved_link, &cg->cg_links,
  356. cg_link_list) {
  357. struct cgroup *cgrp = link->cgrp;
  358. list_del(&link->cg_link_list);
  359. list_del(&link->cgrp_link_list);
  360. /*
  361. * We may not be holding cgroup_mutex, and if cgrp->count is
  362. * dropped to 0 the cgroup can be destroyed at any time, hence
  363. * rcu_read_lock is used to keep it alive.
  364. */
  365. rcu_read_lock();
  366. if (atomic_dec_and_test(&cgrp->count) &&
  367. notify_on_release(cgrp)) {
  368. if (taskexit)
  369. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  370. check_for_release(cgrp);
  371. }
  372. rcu_read_unlock();
  373. kfree(link);
  374. }
  375. write_unlock(&css_set_lock);
  376. kfree_rcu(cg, rcu_head);
  377. }
  378. /*
  379. * refcounted get/put for css_set objects
  380. */
  381. static inline void get_css_set(struct css_set *cg)
  382. {
  383. atomic_inc(&cg->refcount);
  384. }
  385. static inline void put_css_set(struct css_set *cg)
  386. {
  387. __put_css_set(cg, 0);
  388. }
  389. static inline void put_css_set_taskexit(struct css_set *cg)
  390. {
  391. __put_css_set(cg, 1);
  392. }
  393. /*
  394. * compare_css_sets - helper function for find_existing_css_set().
  395. * @cg: candidate css_set being tested
  396. * @old_cg: existing css_set for a task
  397. * @new_cgrp: cgroup that's being entered by the task
  398. * @template: desired set of css pointers in css_set (pre-calculated)
  399. *
  400. * Returns true if "cg" matches "old_cg" except for the hierarchy
  401. * which "new_cgrp" belongs to, for which it should match "new_cgrp".
  402. */
  403. static bool compare_css_sets(struct css_set *cg,
  404. struct css_set *old_cg,
  405. struct cgroup *new_cgrp,
  406. struct cgroup_subsys_state *template[])
  407. {
  408. struct list_head *l1, *l2;
  409. if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
  410. /* Not all subsystems matched */
  411. return false;
  412. }
  413. /*
  414. * Compare cgroup pointers in order to distinguish between
  415. * different cgroups in heirarchies with no subsystems. We
  416. * could get by with just this check alone (and skip the
  417. * memcmp above) but on most setups the memcmp check will
  418. * avoid the need for this more expensive check on almost all
  419. * candidates.
  420. */
  421. l1 = &cg->cg_links;
  422. l2 = &old_cg->cg_links;
  423. while (1) {
  424. struct cg_cgroup_link *cgl1, *cgl2;
  425. struct cgroup *cg1, *cg2;
  426. l1 = l1->next;
  427. l2 = l2->next;
  428. /* See if we reached the end - both lists are equal length. */
  429. if (l1 == &cg->cg_links) {
  430. BUG_ON(l2 != &old_cg->cg_links);
  431. break;
  432. } else {
  433. BUG_ON(l2 == &old_cg->cg_links);
  434. }
  435. /* Locate the cgroups associated with these links. */
  436. cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
  437. cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
  438. cg1 = cgl1->cgrp;
  439. cg2 = cgl2->cgrp;
  440. /* Hierarchies should be linked in the same order. */
  441. BUG_ON(cg1->root != cg2->root);
  442. /*
  443. * If this hierarchy is the hierarchy of the cgroup
  444. * that's changing, then we need to check that this
  445. * css_set points to the new cgroup; if it's any other
  446. * hierarchy, then this css_set should point to the
  447. * same cgroup as the old css_set.
  448. */
  449. if (cg1->root == new_cgrp->root) {
  450. if (cg1 != new_cgrp)
  451. return false;
  452. } else {
  453. if (cg1 != cg2)
  454. return false;
  455. }
  456. }
  457. return true;
  458. }
  459. /*
  460. * find_existing_css_set() is a helper for
  461. * find_css_set(), and checks to see whether an existing
  462. * css_set is suitable.
  463. *
  464. * oldcg: the cgroup group that we're using before the cgroup
  465. * transition
  466. *
  467. * cgrp: the cgroup that we're moving into
  468. *
  469. * template: location in which to build the desired set of subsystem
  470. * state objects for the new cgroup group
  471. */
  472. static struct css_set *find_existing_css_set(
  473. struct css_set *oldcg,
  474. struct cgroup *cgrp,
  475. struct cgroup_subsys_state *template[])
  476. {
  477. int i;
  478. struct cgroupfs_root *root = cgrp->root;
  479. struct css_set *cg;
  480. unsigned long key;
  481. /*
  482. * Build the set of subsystem state objects that we want to see in the
  483. * new css_set. while subsystems can change globally, the entries here
  484. * won't change, so no need for locking.
  485. */
  486. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  487. if (root->subsys_mask & (1UL << i)) {
  488. /* Subsystem is in this hierarchy. So we want
  489. * the subsystem state from the new
  490. * cgroup */
  491. template[i] = cgrp->subsys[i];
  492. } else {
  493. /* Subsystem is not in this hierarchy, so we
  494. * don't want to change the subsystem state */
  495. template[i] = oldcg->subsys[i];
  496. }
  497. }
  498. key = css_set_hash(template);
  499. hash_for_each_possible(css_set_table, cg, hlist, key) {
  500. if (!compare_css_sets(cg, oldcg, cgrp, template))
  501. continue;
  502. /* This css_set matches what we need */
  503. return cg;
  504. }
  505. /* No existing cgroup group matched */
  506. return NULL;
  507. }
  508. static void free_cg_links(struct list_head *tmp)
  509. {
  510. struct cg_cgroup_link *link;
  511. struct cg_cgroup_link *saved_link;
  512. list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
  513. list_del(&link->cgrp_link_list);
  514. kfree(link);
  515. }
  516. }
  517. /*
  518. * allocate_cg_links() allocates "count" cg_cgroup_link structures
  519. * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
  520. * success or a negative error
  521. */
  522. static int allocate_cg_links(int count, struct list_head *tmp)
  523. {
  524. struct cg_cgroup_link *link;
  525. int i;
  526. INIT_LIST_HEAD(tmp);
  527. for (i = 0; i < count; i++) {
  528. link = kmalloc(sizeof(*link), GFP_KERNEL);
  529. if (!link) {
  530. free_cg_links(tmp);
  531. return -ENOMEM;
  532. }
  533. list_add(&link->cgrp_link_list, tmp);
  534. }
  535. return 0;
  536. }
  537. /**
  538. * link_css_set - a helper function to link a css_set to a cgroup
  539. * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
  540. * @cg: the css_set to be linked
  541. * @cgrp: the destination cgroup
  542. */
  543. static void link_css_set(struct list_head *tmp_cg_links,
  544. struct css_set *cg, struct cgroup *cgrp)
  545. {
  546. struct cg_cgroup_link *link;
  547. BUG_ON(list_empty(tmp_cg_links));
  548. link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
  549. cgrp_link_list);
  550. link->cg = cg;
  551. link->cgrp = cgrp;
  552. atomic_inc(&cgrp->count);
  553. list_move(&link->cgrp_link_list, &cgrp->css_sets);
  554. /*
  555. * Always add links to the tail of the list so that the list
  556. * is sorted by order of hierarchy creation
  557. */
  558. list_add_tail(&link->cg_link_list, &cg->cg_links);
  559. }
  560. /*
  561. * find_css_set() takes an existing cgroup group and a
  562. * cgroup object, and returns a css_set object that's
  563. * equivalent to the old group, but with the given cgroup
  564. * substituted into the appropriate hierarchy. Must be called with
  565. * cgroup_mutex held
  566. */
  567. static struct css_set *find_css_set(
  568. struct css_set *oldcg, struct cgroup *cgrp)
  569. {
  570. struct css_set *res;
  571. struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
  572. struct list_head tmp_cg_links;
  573. struct cg_cgroup_link *link;
  574. unsigned long key;
  575. /* First see if we already have a cgroup group that matches
  576. * the desired set */
  577. read_lock(&css_set_lock);
  578. res = find_existing_css_set(oldcg, cgrp, template);
  579. if (res)
  580. get_css_set(res);
  581. read_unlock(&css_set_lock);
  582. if (res)
  583. return res;
  584. res = kmalloc(sizeof(*res), GFP_KERNEL);
  585. if (!res)
  586. return NULL;
  587. /* Allocate all the cg_cgroup_link objects that we'll need */
  588. if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
  589. kfree(res);
  590. return NULL;
  591. }
  592. atomic_set(&res->refcount, 1);
  593. INIT_LIST_HEAD(&res->cg_links);
  594. INIT_LIST_HEAD(&res->tasks);
  595. INIT_HLIST_NODE(&res->hlist);
  596. /* Copy the set of subsystem state objects generated in
  597. * find_existing_css_set() */
  598. memcpy(res->subsys, template, sizeof(res->subsys));
  599. write_lock(&css_set_lock);
  600. /* Add reference counts and links from the new css_set. */
  601. list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
  602. struct cgroup *c = link->cgrp;
  603. if (c->root == cgrp->root)
  604. c = cgrp;
  605. link_css_set(&tmp_cg_links, res, c);
  606. }
  607. BUG_ON(!list_empty(&tmp_cg_links));
  608. css_set_count++;
  609. /* Add this cgroup group to the hash table */
  610. key = css_set_hash(res->subsys);
  611. hash_add(css_set_table, &res->hlist, key);
  612. write_unlock(&css_set_lock);
  613. return res;
  614. }
  615. /*
  616. * Return the cgroup for "task" from the given hierarchy. Must be
  617. * called with cgroup_mutex held.
  618. */
  619. static struct cgroup *task_cgroup_from_root(struct task_struct *task,
  620. struct cgroupfs_root *root)
  621. {
  622. struct css_set *css;
  623. struct cgroup *res = NULL;
  624. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  625. read_lock(&css_set_lock);
  626. /*
  627. * No need to lock the task - since we hold cgroup_mutex the
  628. * task can't change groups, so the only thing that can happen
  629. * is that it exits and its css is set back to init_css_set.
  630. */
  631. css = task->cgroups;
  632. if (css == &init_css_set) {
  633. res = &root->top_cgroup;
  634. } else {
  635. struct cg_cgroup_link *link;
  636. list_for_each_entry(link, &css->cg_links, cg_link_list) {
  637. struct cgroup *c = link->cgrp;
  638. if (c->root == root) {
  639. res = c;
  640. break;
  641. }
  642. }
  643. }
  644. read_unlock(&css_set_lock);
  645. BUG_ON(!res);
  646. return res;
  647. }
  648. /*
  649. * There is one global cgroup mutex. We also require taking
  650. * task_lock() when dereferencing a task's cgroup subsys pointers.
  651. * See "The task_lock() exception", at the end of this comment.
  652. *
  653. * A task must hold cgroup_mutex to modify cgroups.
  654. *
  655. * Any task can increment and decrement the count field without lock.
  656. * So in general, code holding cgroup_mutex can't rely on the count
  657. * field not changing. However, if the count goes to zero, then only
  658. * cgroup_attach_task() can increment it again. Because a count of zero
  659. * means that no tasks are currently attached, therefore there is no
  660. * way a task attached to that cgroup can fork (the other way to
  661. * increment the count). So code holding cgroup_mutex can safely
  662. * assume that if the count is zero, it will stay zero. Similarly, if
  663. * a task holds cgroup_mutex on a cgroup with zero count, it
  664. * knows that the cgroup won't be removed, as cgroup_rmdir()
  665. * needs that mutex.
  666. *
  667. * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
  668. * (usually) take cgroup_mutex. These are the two most performance
  669. * critical pieces of code here. The exception occurs on cgroup_exit(),
  670. * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
  671. * is taken, and if the cgroup count is zero, a usermode call made
  672. * to the release agent with the name of the cgroup (path relative to
  673. * the root of cgroup file system) as the argument.
  674. *
  675. * A cgroup can only be deleted if both its 'count' of using tasks
  676. * is zero, and its list of 'children' cgroups is empty. Since all
  677. * tasks in the system use _some_ cgroup, and since there is always at
  678. * least one task in the system (init, pid == 1), therefore, top_cgroup
  679. * always has either children cgroups and/or using tasks. So we don't
  680. * need a special hack to ensure that top_cgroup cannot be deleted.
  681. *
  682. * The task_lock() exception
  683. *
  684. * The need for this exception arises from the action of
  685. * cgroup_attach_task(), which overwrites one task's cgroup pointer with
  686. * another. It does so using cgroup_mutex, however there are
  687. * several performance critical places that need to reference
  688. * task->cgroup without the expense of grabbing a system global
  689. * mutex. Therefore except as noted below, when dereferencing or, as
  690. * in cgroup_attach_task(), modifying a task's cgroup pointer we use
  691. * task_lock(), which acts on a spinlock (task->alloc_lock) already in
  692. * the task_struct routinely used for such matters.
  693. *
  694. * P.S. One more locking exception. RCU is used to guard the
  695. * update of a tasks cgroup pointer by cgroup_attach_task()
  696. */
  697. /*
  698. * A couple of forward declarations required, due to cyclic reference loop:
  699. * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
  700. * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
  701. * -> cgroup_mkdir.
  702. */
  703. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
  704. static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
  705. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
  706. static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
  707. unsigned long subsys_mask);
  708. static const struct inode_operations cgroup_dir_inode_operations;
  709. static const struct file_operations proc_cgroupstats_operations;
  710. static struct backing_dev_info cgroup_backing_dev_info = {
  711. .name = "cgroup",
  712. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
  713. };
  714. static int alloc_css_id(struct cgroup_subsys *ss,
  715. struct cgroup *parent, struct cgroup *child);
  716. static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
  717. {
  718. struct inode *inode = new_inode(sb);
  719. if (inode) {
  720. inode->i_ino = get_next_ino();
  721. inode->i_mode = mode;
  722. inode->i_uid = current_fsuid();
  723. inode->i_gid = current_fsgid();
  724. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  725. inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
  726. }
  727. return inode;
  728. }
  729. static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
  730. {
  731. struct cgroup_name *name;
  732. name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
  733. if (!name)
  734. return NULL;
  735. strcpy(name->name, dentry->d_name.name);
  736. return name;
  737. }
  738. static void cgroup_free_fn(struct work_struct *work)
  739. {
  740. struct cgroup *cgrp = container_of(work, struct cgroup, free_work);
  741. struct cgroup_subsys *ss;
  742. mutex_lock(&cgroup_mutex);
  743. /*
  744. * Release the subsystem state objects.
  745. */
  746. for_each_subsys(cgrp->root, ss)
  747. ss->css_free(cgrp);
  748. cgrp->root->number_of_cgroups--;
  749. mutex_unlock(&cgroup_mutex);
  750. /*
  751. * We get a ref to the parent's dentry, and put the ref when
  752. * this cgroup is being freed, so it's guaranteed that the
  753. * parent won't be destroyed before its children.
  754. */
  755. dput(cgrp->parent->dentry);
  756. ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
  757. /*
  758. * Drop the active superblock reference that we took when we
  759. * created the cgroup. This will free cgrp->root, if we are
  760. * holding the last reference to @sb.
  761. */
  762. deactivate_super(cgrp->root->sb);
  763. /*
  764. * if we're getting rid of the cgroup, refcount should ensure
  765. * that there are no pidlists left.
  766. */
  767. BUG_ON(!list_empty(&cgrp->pidlists));
  768. simple_xattrs_free(&cgrp->xattrs);
  769. kfree(rcu_dereference_raw(cgrp->name));
  770. kfree(cgrp);
  771. }
  772. static void cgroup_free_rcu(struct rcu_head *head)
  773. {
  774. struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
  775. schedule_work(&cgrp->free_work);
  776. }
  777. static void cgroup_diput(struct dentry *dentry, struct inode *inode)
  778. {
  779. /* is dentry a directory ? if so, kfree() associated cgroup */
  780. if (S_ISDIR(inode->i_mode)) {
  781. struct cgroup *cgrp = dentry->d_fsdata;
  782. BUG_ON(!(cgroup_is_removed(cgrp)));
  783. call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
  784. } else {
  785. struct cfent *cfe = __d_cfe(dentry);
  786. struct cgroup *cgrp = dentry->d_parent->d_fsdata;
  787. WARN_ONCE(!list_empty(&cfe->node) &&
  788. cgrp != &cgrp->root->top_cgroup,
  789. "cfe still linked for %s\n", cfe->type->name);
  790. simple_xattrs_free(&cfe->xattrs);
  791. kfree(cfe);
  792. }
  793. iput(inode);
  794. }
  795. static int cgroup_delete(const struct dentry *d)
  796. {
  797. return 1;
  798. }
  799. static void remove_dir(struct dentry *d)
  800. {
  801. struct dentry *parent = dget(d->d_parent);
  802. d_delete(d);
  803. simple_rmdir(parent->d_inode, d);
  804. dput(parent);
  805. }
  806. static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
  807. {
  808. struct cfent *cfe;
  809. lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
  810. lockdep_assert_held(&cgroup_mutex);
  811. /*
  812. * If we're doing cleanup due to failure of cgroup_create(),
  813. * the corresponding @cfe may not exist.
  814. */
  815. list_for_each_entry(cfe, &cgrp->files, node) {
  816. struct dentry *d = cfe->dentry;
  817. if (cft && cfe->type != cft)
  818. continue;
  819. dget(d);
  820. d_delete(d);
  821. simple_unlink(cgrp->dentry->d_inode, d);
  822. list_del_init(&cfe->node);
  823. dput(d);
  824. break;
  825. }
  826. }
  827. /**
  828. * cgroup_clear_directory - selective removal of base and subsystem files
  829. * @dir: directory containing the files
  830. * @base_files: true if the base files should be removed
  831. * @subsys_mask: mask of the subsystem ids whose files should be removed
  832. */
  833. static void cgroup_clear_directory(struct dentry *dir, bool base_files,
  834. unsigned long subsys_mask)
  835. {
  836. struct cgroup *cgrp = __d_cgrp(dir);
  837. struct cgroup_subsys *ss;
  838. for_each_subsys(cgrp->root, ss) {
  839. struct cftype_set *set;
  840. if (!test_bit(ss->subsys_id, &subsys_mask))
  841. continue;
  842. list_for_each_entry(set, &ss->cftsets, node)
  843. cgroup_addrm_files(cgrp, NULL, set->cfts, false);
  844. }
  845. if (base_files) {
  846. while (!list_empty(&cgrp->files))
  847. cgroup_rm_file(cgrp, NULL);
  848. }
  849. }
  850. /*
  851. * NOTE : the dentry must have been dget()'ed
  852. */
  853. static void cgroup_d_remove_dir(struct dentry *dentry)
  854. {
  855. struct dentry *parent;
  856. struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
  857. cgroup_clear_directory(dentry, true, root->subsys_mask);
  858. parent = dentry->d_parent;
  859. spin_lock(&parent->d_lock);
  860. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  861. list_del_init(&dentry->d_u.d_child);
  862. spin_unlock(&dentry->d_lock);
  863. spin_unlock(&parent->d_lock);
  864. remove_dir(dentry);
  865. }
  866. /*
  867. * Call with cgroup_mutex held. Drops reference counts on modules, including
  868. * any duplicate ones that parse_cgroupfs_options took. If this function
  869. * returns an error, no reference counts are touched.
  870. */
  871. static int rebind_subsystems(struct cgroupfs_root *root,
  872. unsigned long final_subsys_mask)
  873. {
  874. unsigned long added_mask, removed_mask;
  875. struct cgroup *cgrp = &root->top_cgroup;
  876. int i;
  877. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  878. BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
  879. removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
  880. added_mask = final_subsys_mask & ~root->actual_subsys_mask;
  881. /* Check that any added subsystems are currently free */
  882. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  883. unsigned long bit = 1UL << i;
  884. struct cgroup_subsys *ss = subsys[i];
  885. if (!(bit & added_mask))
  886. continue;
  887. /*
  888. * Nobody should tell us to do a subsys that doesn't exist:
  889. * parse_cgroupfs_options should catch that case and refcounts
  890. * ensure that subsystems won't disappear once selected.
  891. */
  892. BUG_ON(ss == NULL);
  893. if (ss->root != &rootnode) {
  894. /* Subsystem isn't free */
  895. return -EBUSY;
  896. }
  897. }
  898. /* Currently we don't handle adding/removing subsystems when
  899. * any child cgroups exist. This is theoretically supportable
  900. * but involves complex error handling, so it's being left until
  901. * later */
  902. if (root->number_of_cgroups > 1)
  903. return -EBUSY;
  904. /* Process each subsystem */
  905. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  906. struct cgroup_subsys *ss = subsys[i];
  907. unsigned long bit = 1UL << i;
  908. if (bit & added_mask) {
  909. /* We're binding this subsystem to this hierarchy */
  910. BUG_ON(ss == NULL);
  911. BUG_ON(cgrp->subsys[i]);
  912. BUG_ON(!dummytop->subsys[i]);
  913. BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
  914. cgrp->subsys[i] = dummytop->subsys[i];
  915. cgrp->subsys[i]->cgroup = cgrp;
  916. list_move(&ss->sibling, &root->subsys_list);
  917. ss->root = root;
  918. if (ss->bind)
  919. ss->bind(cgrp);
  920. /* refcount was already taken, and we're keeping it */
  921. } else if (bit & removed_mask) {
  922. /* We're removing this subsystem */
  923. BUG_ON(ss == NULL);
  924. BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
  925. BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
  926. if (ss->bind)
  927. ss->bind(dummytop);
  928. dummytop->subsys[i]->cgroup = dummytop;
  929. cgrp->subsys[i] = NULL;
  930. subsys[i]->root = &rootnode;
  931. list_move(&ss->sibling, &rootnode.subsys_list);
  932. /* subsystem is now free - drop reference on module */
  933. module_put(ss->module);
  934. } else if (bit & final_subsys_mask) {
  935. /* Subsystem state should already exist */
  936. BUG_ON(ss == NULL);
  937. BUG_ON(!cgrp->subsys[i]);
  938. /*
  939. * a refcount was taken, but we already had one, so
  940. * drop the extra reference.
  941. */
  942. module_put(ss->module);
  943. #ifdef CONFIG_MODULE_UNLOAD
  944. BUG_ON(ss->module && !module_refcount(ss->module));
  945. #endif
  946. } else {
  947. /* Subsystem state shouldn't exist */
  948. BUG_ON(cgrp->subsys[i]);
  949. }
  950. }
  951. root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
  952. return 0;
  953. }
  954. static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
  955. {
  956. struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
  957. struct cgroup_subsys *ss;
  958. mutex_lock(&cgroup_root_mutex);
  959. for_each_subsys(root, ss)
  960. seq_printf(seq, ",%s", ss->name);
  961. if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
  962. seq_puts(seq, ",sane_behavior");
  963. if (root->flags & CGRP_ROOT_NOPREFIX)
  964. seq_puts(seq, ",noprefix");
  965. if (root->flags & CGRP_ROOT_XATTR)
  966. seq_puts(seq, ",xattr");
  967. if (strlen(root->release_agent_path))
  968. seq_printf(seq, ",release_agent=%s", root->release_agent_path);
  969. if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
  970. seq_puts(seq, ",clone_children");
  971. if (strlen(root->name))
  972. seq_printf(seq, ",name=%s", root->name);
  973. mutex_unlock(&cgroup_root_mutex);
  974. return 0;
  975. }
  976. struct cgroup_sb_opts {
  977. unsigned long subsys_mask;
  978. unsigned long flags;
  979. char *release_agent;
  980. bool cpuset_clone_children;
  981. char *name;
  982. /* User explicitly requested empty subsystem */
  983. bool none;
  984. struct cgroupfs_root *new_root;
  985. };
  986. /*
  987. * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
  988. * with cgroup_mutex held to protect the subsys[] array. This function takes
  989. * refcounts on subsystems to be used, unless it returns error, in which case
  990. * no refcounts are taken.
  991. */
  992. static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
  993. {
  994. char *token, *o = data;
  995. bool all_ss = false, one_ss = false;
  996. unsigned long mask = (unsigned long)-1;
  997. int i;
  998. bool module_pin_failed = false;
  999. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  1000. #ifdef CONFIG_CPUSETS
  1001. mask = ~(1UL << cpuset_subsys_id);
  1002. #endif
  1003. memset(opts, 0, sizeof(*opts));
  1004. while ((token = strsep(&o, ",")) != NULL) {
  1005. if (!*token)
  1006. return -EINVAL;
  1007. if (!strcmp(token, "none")) {
  1008. /* Explicitly have no subsystems */
  1009. opts->none = true;
  1010. continue;
  1011. }
  1012. if (!strcmp(token, "all")) {
  1013. /* Mutually exclusive option 'all' + subsystem name */
  1014. if (one_ss)
  1015. return -EINVAL;
  1016. all_ss = true;
  1017. continue;
  1018. }
  1019. if (!strcmp(token, "__DEVEL__sane_behavior")) {
  1020. opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
  1021. continue;
  1022. }
  1023. if (!strcmp(token, "noprefix")) {
  1024. opts->flags |= CGRP_ROOT_NOPREFIX;
  1025. continue;
  1026. }
  1027. if (!strcmp(token, "clone_children")) {
  1028. opts->cpuset_clone_children = true;
  1029. continue;
  1030. }
  1031. if (!strcmp(token, "xattr")) {
  1032. opts->flags |= CGRP_ROOT_XATTR;
  1033. continue;
  1034. }
  1035. if (!strncmp(token, "release_agent=", 14)) {
  1036. /* Specifying two release agents is forbidden */
  1037. if (opts->release_agent)
  1038. return -EINVAL;
  1039. opts->release_agent =
  1040. kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
  1041. if (!opts->release_agent)
  1042. return -ENOMEM;
  1043. continue;
  1044. }
  1045. if (!strncmp(token, "name=", 5)) {
  1046. const char *name = token + 5;
  1047. /* Can't specify an empty name */
  1048. if (!strlen(name))
  1049. return -EINVAL;
  1050. /* Must match [\w.-]+ */
  1051. for (i = 0; i < strlen(name); i++) {
  1052. char c = name[i];
  1053. if (isalnum(c))
  1054. continue;
  1055. if ((c == '.') || (c == '-') || (c == '_'))
  1056. continue;
  1057. return -EINVAL;
  1058. }
  1059. /* Specifying two names is forbidden */
  1060. if (opts->name)
  1061. return -EINVAL;
  1062. opts->name = kstrndup(name,
  1063. MAX_CGROUP_ROOT_NAMELEN - 1,
  1064. GFP_KERNEL);
  1065. if (!opts->name)
  1066. return -ENOMEM;
  1067. continue;
  1068. }
  1069. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  1070. struct cgroup_subsys *ss = subsys[i];
  1071. if (ss == NULL)
  1072. continue;
  1073. if (strcmp(token, ss->name))
  1074. continue;
  1075. if (ss->disabled)
  1076. continue;
  1077. /* Mutually exclusive option 'all' + subsystem name */
  1078. if (all_ss)
  1079. return -EINVAL;
  1080. set_bit(i, &opts->subsys_mask);
  1081. one_ss = true;
  1082. break;
  1083. }
  1084. if (i == CGROUP_SUBSYS_COUNT)
  1085. return -ENOENT;
  1086. }
  1087. /*
  1088. * If the 'all' option was specified select all the subsystems,
  1089. * otherwise if 'none', 'name=' and a subsystem name options
  1090. * were not specified, let's default to 'all'
  1091. */
  1092. if (all_ss || (!one_ss && !opts->none && !opts->name)) {
  1093. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  1094. struct cgroup_subsys *ss = subsys[i];
  1095. if (ss == NULL)
  1096. continue;
  1097. if (ss->disabled)
  1098. continue;
  1099. set_bit(i, &opts->subsys_mask);
  1100. }
  1101. }
  1102. /* Consistency checks */
  1103. if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
  1104. pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
  1105. if (opts->flags & CGRP_ROOT_NOPREFIX) {
  1106. pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
  1107. return -EINVAL;
  1108. }
  1109. if (opts->cpuset_clone_children) {
  1110. pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
  1111. return -EINVAL;
  1112. }
  1113. }
  1114. /*
  1115. * Option noprefix was introduced just for backward compatibility
  1116. * with the old cpuset, so we allow noprefix only if mounting just
  1117. * the cpuset subsystem.
  1118. */
  1119. if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
  1120. return -EINVAL;
  1121. /* Can't specify "none" and some subsystems */
  1122. if (opts->subsys_mask && opts->none)
  1123. return -EINVAL;
  1124. /*
  1125. * We either have to specify by name or by subsystems. (So all
  1126. * empty hierarchies must have a name).
  1127. */
  1128. if (!opts->subsys_mask && !opts->name)
  1129. return -EINVAL;
  1130. /*
  1131. * Grab references on all the modules we'll need, so the subsystems
  1132. * don't dance around before rebind_subsystems attaches them. This may
  1133. * take duplicate reference counts on a subsystem that's already used,
  1134. * but rebind_subsystems handles this case.
  1135. */
  1136. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  1137. unsigned long bit = 1UL << i;
  1138. if (!(bit & opts->subsys_mask))
  1139. continue;
  1140. if (!try_module_get(subsys[i]->module)) {
  1141. module_pin_failed = true;
  1142. break;
  1143. }
  1144. }
  1145. if (module_pin_failed) {
  1146. /*
  1147. * oops, one of the modules was going away. this means that we
  1148. * raced with a module_delete call, and to the user this is
  1149. * essentially a "subsystem doesn't exist" case.
  1150. */
  1151. for (i--; i >= 0; i--) {
  1152. /* drop refcounts only on the ones we took */
  1153. unsigned long bit = 1UL << i;
  1154. if (!(bit & opts->subsys_mask))
  1155. continue;
  1156. module_put(subsys[i]->module);
  1157. }
  1158. return -ENOENT;
  1159. }
  1160. return 0;
  1161. }
  1162. static void drop_parsed_module_refcounts(unsigned long subsys_mask)
  1163. {
  1164. int i;
  1165. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  1166. unsigned long bit = 1UL << i;
  1167. if (!(bit & subsys_mask))
  1168. continue;
  1169. module_put(subsys[i]->module);
  1170. }
  1171. }
  1172. static int cgroup_remount(struct super_block *sb, int *flags, char *data)
  1173. {
  1174. int ret = 0;
  1175. struct cgroupfs_root *root = sb->s_fs_info;
  1176. struct cgroup *cgrp = &root->top_cgroup;
  1177. struct cgroup_sb_opts opts;
  1178. unsigned long added_mask, removed_mask;
  1179. if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
  1180. pr_err("cgroup: sane_behavior: remount is not allowed\n");
  1181. return -EINVAL;
  1182. }
  1183. mutex_lock(&cgrp->dentry->d_inode->i_mutex);
  1184. mutex_lock(&cgroup_mutex);
  1185. mutex_lock(&cgroup_root_mutex);
  1186. /* See what subsystems are wanted */
  1187. ret = parse_cgroupfs_options(data, &opts);
  1188. if (ret)
  1189. goto out_unlock;
  1190. if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
  1191. pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
  1192. task_tgid_nr(current), current->comm);
  1193. added_mask = opts.subsys_mask & ~root->subsys_mask;
  1194. removed_mask = root->subsys_mask & ~opts.subsys_mask;
  1195. /* Don't allow flags or name to change at remount */
  1196. if (opts.flags != root->flags ||
  1197. (opts.name && strcmp(opts.name, root->name))) {
  1198. ret = -EINVAL;
  1199. drop_parsed_module_refcounts(opts.subsys_mask);
  1200. goto out_unlock;
  1201. }
  1202. /*
  1203. * Clear out the files of subsystems that should be removed, do
  1204. * this before rebind_subsystems, since rebind_subsystems may
  1205. * change this hierarchy's subsys_list.
  1206. */
  1207. cgroup_clear_directory(cgrp->dentry, false, removed_mask);
  1208. ret = rebind_subsystems(root, opts.subsys_mask);
  1209. if (ret) {
  1210. /* rebind_subsystems failed, re-populate the removed files */
  1211. cgroup_populate_dir(cgrp, false, removed_mask);
  1212. drop_parsed_module_refcounts(opts.subsys_mask);
  1213. goto out_unlock;
  1214. }
  1215. /* re-populate subsystem files */
  1216. cgroup_populate_dir(cgrp, false, added_mask);
  1217. if (opts.release_agent)
  1218. strcpy(root->release_agent_path, opts.release_agent);
  1219. out_unlock:
  1220. kfree(opts.release_agent);
  1221. kfree(opts.name);
  1222. mutex_unlock(&cgroup_root_mutex);
  1223. mutex_unlock(&cgroup_mutex);
  1224. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  1225. return ret;
  1226. }
  1227. static const struct super_operations cgroup_ops = {
  1228. .statfs = simple_statfs,
  1229. .drop_inode = generic_delete_inode,
  1230. .show_options = cgroup_show_options,
  1231. .remount_fs = cgroup_remount,
  1232. };
  1233. static void init_cgroup_housekeeping(struct cgroup *cgrp)
  1234. {
  1235. INIT_LIST_HEAD(&cgrp->sibling);
  1236. INIT_LIST_HEAD(&cgrp->children);
  1237. INIT_LIST_HEAD(&cgrp->files);
  1238. INIT_LIST_HEAD(&cgrp->css_sets);
  1239. INIT_LIST_HEAD(&cgrp->allcg_node);
  1240. INIT_LIST_HEAD(&cgrp->release_list);
  1241. INIT_LIST_HEAD(&cgrp->pidlists);
  1242. INIT_WORK(&cgrp->free_work, cgroup_free_fn);
  1243. mutex_init(&cgrp->pidlist_mutex);
  1244. INIT_LIST_HEAD(&cgrp->event_list);
  1245. spin_lock_init(&cgrp->event_list_lock);
  1246. simple_xattrs_init(&cgrp->xattrs);
  1247. }
  1248. static void init_cgroup_root(struct cgroupfs_root *root)
  1249. {
  1250. struct cgroup *cgrp = &root->top_cgroup;
  1251. INIT_LIST_HEAD(&root->subsys_list);
  1252. INIT_LIST_HEAD(&root->root_list);
  1253. INIT_LIST_HEAD(&root->allcg_list);
  1254. root->number_of_cgroups = 1;
  1255. cgrp->root = root;
  1256. cgrp->name = &root_cgroup_name;
  1257. init_cgroup_housekeeping(cgrp);
  1258. list_add_tail(&cgrp->allcg_node, &root->allcg_list);
  1259. }
  1260. static int cgroup_init_root_id(struct cgroupfs_root *root)
  1261. {
  1262. int id;
  1263. lockdep_assert_held(&cgroup_mutex);
  1264. lockdep_assert_held(&cgroup_root_mutex);
  1265. id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 2, 0, GFP_KERNEL);
  1266. if (id < 0)
  1267. return id;
  1268. root->hierarchy_id = id;
  1269. return 0;
  1270. }
  1271. static void cgroup_exit_root_id(struct cgroupfs_root *root)
  1272. {
  1273. lockdep_assert_held(&cgroup_mutex);
  1274. lockdep_assert_held(&cgroup_root_mutex);
  1275. if (root->hierarchy_id) {
  1276. idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
  1277. root->hierarchy_id = 0;
  1278. }
  1279. }
  1280. static int cgroup_test_super(struct super_block *sb, void *data)
  1281. {
  1282. struct cgroup_sb_opts *opts = data;
  1283. struct cgroupfs_root *root = sb->s_fs_info;
  1284. /* If we asked for a name then it must match */
  1285. if (opts->name && strcmp(opts->name, root->name))
  1286. return 0;
  1287. /*
  1288. * If we asked for subsystems (or explicitly for no
  1289. * subsystems) then they must match
  1290. */
  1291. if ((opts->subsys_mask || opts->none)
  1292. && (opts->subsys_mask != root->subsys_mask))
  1293. return 0;
  1294. return 1;
  1295. }
  1296. static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
  1297. {
  1298. struct cgroupfs_root *root;
  1299. if (!opts->subsys_mask && !opts->none)
  1300. return NULL;
  1301. root = kzalloc(sizeof(*root), GFP_KERNEL);
  1302. if (!root)
  1303. return ERR_PTR(-ENOMEM);
  1304. init_cgroup_root(root);
  1305. root->subsys_mask = opts->subsys_mask;
  1306. root->flags = opts->flags;
  1307. ida_init(&root->cgroup_ida);
  1308. if (opts->release_agent)
  1309. strcpy(root->release_agent_path, opts->release_agent);
  1310. if (opts->name)
  1311. strcpy(root->name, opts->name);
  1312. if (opts->cpuset_clone_children)
  1313. set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
  1314. return root;
  1315. }
  1316. static void cgroup_free_root(struct cgroupfs_root *root)
  1317. {
  1318. if (root) {
  1319. /* hierarhcy ID shoulid already have been released */
  1320. WARN_ON_ONCE(root->hierarchy_id);
  1321. ida_destroy(&root->cgroup_ida);
  1322. kfree(root);
  1323. }
  1324. }
  1325. static int cgroup_set_super(struct super_block *sb, void *data)
  1326. {
  1327. int ret;
  1328. struct cgroup_sb_opts *opts = data;
  1329. /* If we don't have a new root, we can't set up a new sb */
  1330. if (!opts->new_root)
  1331. return -EINVAL;
  1332. BUG_ON(!opts->subsys_mask && !opts->none);
  1333. ret = set_anon_super(sb, NULL);
  1334. if (ret)
  1335. return ret;
  1336. sb->s_fs_info = opts->new_root;
  1337. opts->new_root->sb = sb;
  1338. sb->s_blocksize = PAGE_CACHE_SIZE;
  1339. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  1340. sb->s_magic = CGROUP_SUPER_MAGIC;
  1341. sb->s_op = &cgroup_ops;
  1342. return 0;
  1343. }
  1344. static int cgroup_get_rootdir(struct super_block *sb)
  1345. {
  1346. static const struct dentry_operations cgroup_dops = {
  1347. .d_iput = cgroup_diput,
  1348. .d_delete = cgroup_delete,
  1349. };
  1350. struct inode *inode =
  1351. cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
  1352. if (!inode)
  1353. return -ENOMEM;
  1354. inode->i_fop = &simple_dir_operations;
  1355. inode->i_op = &cgroup_dir_inode_operations;
  1356. /* directories start off with i_nlink == 2 (for "." entry) */
  1357. inc_nlink(inode);
  1358. sb->s_root = d_make_root(inode);
  1359. if (!sb->s_root)
  1360. return -ENOMEM;
  1361. /* for everything else we want ->d_op set */
  1362. sb->s_d_op = &cgroup_dops;
  1363. return 0;
  1364. }
  1365. static struct dentry *cgroup_mount(struct file_system_type *fs_type,
  1366. int flags, const char *unused_dev_name,
  1367. void *data)
  1368. {
  1369. struct cgroup_sb_opts opts;
  1370. struct cgroupfs_root *root;
  1371. int ret = 0;
  1372. struct super_block *sb;
  1373. struct cgroupfs_root *new_root;
  1374. struct inode *inode;
  1375. /* First find the desired set of subsystems */
  1376. mutex_lock(&cgroup_mutex);
  1377. ret = parse_cgroupfs_options(data, &opts);
  1378. mutex_unlock(&cgroup_mutex);
  1379. if (ret)
  1380. goto out_err;
  1381. /*
  1382. * Allocate a new cgroup root. We may not need it if we're
  1383. * reusing an existing hierarchy.
  1384. */
  1385. new_root = cgroup_root_from_opts(&opts);
  1386. if (IS_ERR(new_root)) {
  1387. ret = PTR_ERR(new_root);
  1388. goto drop_modules;
  1389. }
  1390. opts.new_root = new_root;
  1391. /* Locate an existing or new sb for this hierarchy */
  1392. sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
  1393. if (IS_ERR(sb)) {
  1394. ret = PTR_ERR(sb);
  1395. cgroup_free_root(opts.new_root);
  1396. goto drop_modules;
  1397. }
  1398. root = sb->s_fs_info;
  1399. BUG_ON(!root);
  1400. if (root == opts.new_root) {
  1401. /* We used the new root structure, so this is a new hierarchy */
  1402. struct list_head tmp_cg_links;
  1403. struct cgroup *root_cgrp = &root->top_cgroup;
  1404. struct cgroupfs_root *existing_root;
  1405. const struct cred *cred;
  1406. int i;
  1407. struct css_set *cg;
  1408. BUG_ON(sb->s_root != NULL);
  1409. ret = cgroup_get_rootdir(sb);
  1410. if (ret)
  1411. goto drop_new_super;
  1412. inode = sb->s_root->d_inode;
  1413. mutex_lock(&inode->i_mutex);
  1414. mutex_lock(&cgroup_mutex);
  1415. mutex_lock(&cgroup_root_mutex);
  1416. /* Check for name clashes with existing mounts */
  1417. ret = -EBUSY;
  1418. if (strlen(root->name))
  1419. for_each_active_root(existing_root)
  1420. if (!strcmp(existing_root->name, root->name))
  1421. goto unlock_drop;
  1422. /*
  1423. * We're accessing css_set_count without locking
  1424. * css_set_lock here, but that's OK - it can only be
  1425. * increased by someone holding cgroup_lock, and
  1426. * that's us. The worst that can happen is that we
  1427. * have some link structures left over
  1428. */
  1429. ret = allocate_cg_links(css_set_count, &tmp_cg_links);
  1430. if (ret)
  1431. goto unlock_drop;
  1432. ret = cgroup_init_root_id(root);
  1433. if (ret)
  1434. goto unlock_drop;
  1435. ret = rebind_subsystems(root, root->subsys_mask);
  1436. if (ret == -EBUSY) {
  1437. free_cg_links(&tmp_cg_links);
  1438. goto unlock_drop;
  1439. }
  1440. /*
  1441. * There must be no failure case after here, since rebinding
  1442. * takes care of subsystems' refcounts, which are explicitly
  1443. * dropped in the failure exit path.
  1444. */
  1445. /* EBUSY should be the only error here */
  1446. BUG_ON(ret);
  1447. list_add(&root->root_list, &roots);
  1448. root_count++;
  1449. sb->s_root->d_fsdata = root_cgrp;
  1450. root->top_cgroup.dentry = sb->s_root;
  1451. /* Link the top cgroup in this hierarchy into all
  1452. * the css_set objects */
  1453. write_lock(&css_set_lock);
  1454. hash_for_each(css_set_table, i, cg, hlist)
  1455. link_css_set(&tmp_cg_links, cg, root_cgrp);
  1456. write_unlock(&css_set_lock);
  1457. free_cg_links(&tmp_cg_links);
  1458. BUG_ON(!list_empty(&root_cgrp->children));
  1459. BUG_ON(root->number_of_cgroups != 1);
  1460. cred = override_creds(&init_cred);
  1461. cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
  1462. revert_creds(cred);
  1463. mutex_unlock(&cgroup_root_mutex);
  1464. mutex_unlock(&cgroup_mutex);
  1465. mutex_unlock(&inode->i_mutex);
  1466. } else {
  1467. /*
  1468. * We re-used an existing hierarchy - the new root (if
  1469. * any) is not needed
  1470. */
  1471. cgroup_free_root(opts.new_root);
  1472. if (((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) &&
  1473. root->flags != opts.flags) {
  1474. pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
  1475. ret = -EINVAL;
  1476. goto drop_new_super;
  1477. }
  1478. /* no subsys rebinding, so refcounts don't change */
  1479. drop_parsed_module_refcounts(opts.subsys_mask);
  1480. }
  1481. kfree(opts.release_agent);
  1482. kfree(opts.name);
  1483. return dget(sb->s_root);
  1484. unlock_drop:
  1485. cgroup_exit_root_id(root);
  1486. mutex_unlock(&cgroup_root_mutex);
  1487. mutex_unlock(&cgroup_mutex);
  1488. mutex_unlock(&inode->i_mutex);
  1489. drop_new_super:
  1490. deactivate_locked_super(sb);
  1491. drop_modules:
  1492. drop_parsed_module_refcounts(opts.subsys_mask);
  1493. out_err:
  1494. kfree(opts.release_agent);
  1495. kfree(opts.name);
  1496. return ERR_PTR(ret);
  1497. }
  1498. static void cgroup_kill_sb(struct super_block *sb) {
  1499. struct cgroupfs_root *root = sb->s_fs_info;
  1500. struct cgroup *cgrp = &root->top_cgroup;
  1501. int ret;
  1502. struct cg_cgroup_link *link;
  1503. struct cg_cgroup_link *saved_link;
  1504. BUG_ON(!root);
  1505. BUG_ON(root->number_of_cgroups != 1);
  1506. BUG_ON(!list_empty(&cgrp->children));
  1507. mutex_lock(&cgroup_mutex);
  1508. mutex_lock(&cgroup_root_mutex);
  1509. /* Rebind all subsystems back to the default hierarchy */
  1510. ret = rebind_subsystems(root, 0);
  1511. /* Shouldn't be able to fail ... */
  1512. BUG_ON(ret);
  1513. /*
  1514. * Release all the links from css_sets to this hierarchy's
  1515. * root cgroup
  1516. */
  1517. write_lock(&css_set_lock);
  1518. list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
  1519. cgrp_link_list) {
  1520. list_del(&link->cg_link_list);
  1521. list_del(&link->cgrp_link_list);
  1522. kfree(link);
  1523. }
  1524. write_unlock(&css_set_lock);
  1525. if (!list_empty(&root->root_list)) {
  1526. list_del(&root->root_list);
  1527. root_count--;
  1528. }
  1529. cgroup_exit_root_id(root);
  1530. mutex_unlock(&cgroup_root_mutex);
  1531. mutex_unlock(&cgroup_mutex);
  1532. simple_xattrs_free(&cgrp->xattrs);
  1533. kill_litter_super(sb);
  1534. cgroup_free_root(root);
  1535. }
  1536. static struct file_system_type cgroup_fs_type = {
  1537. .name = "cgroup",
  1538. .mount = cgroup_mount,
  1539. .kill_sb = cgroup_kill_sb,
  1540. };
  1541. static struct kobject *cgroup_kobj;
  1542. /**
  1543. * cgroup_path - generate the path of a cgroup
  1544. * @cgrp: the cgroup in question
  1545. * @buf: the buffer to write the path into
  1546. * @buflen: the length of the buffer
  1547. *
  1548. * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
  1549. *
  1550. * We can't generate cgroup path using dentry->d_name, as accessing
  1551. * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
  1552. * inode's i_mutex, while on the other hand cgroup_path() can be called
  1553. * with some irq-safe spinlocks held.
  1554. */
  1555. int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
  1556. {
  1557. int ret = -ENAMETOOLONG;
  1558. char *start;
  1559. if (!cgrp->parent) {
  1560. if (strlcpy(buf, "/", buflen) >= buflen)
  1561. return -ENAMETOOLONG;
  1562. return 0;
  1563. }
  1564. start = buf + buflen - 1;
  1565. *start = '\0';
  1566. rcu_read_lock();
  1567. do {
  1568. const char *name = cgroup_name(cgrp);
  1569. int len;
  1570. len = strlen(name);
  1571. if ((start -= len) < buf)
  1572. goto out;
  1573. memcpy(start, name, len);
  1574. if (--start < buf)
  1575. goto out;
  1576. *start = '/';
  1577. cgrp = cgrp->parent;
  1578. } while (cgrp->parent);
  1579. ret = 0;
  1580. memmove(buf, start, buf + buflen - start);
  1581. out:
  1582. rcu_read_unlock();
  1583. return ret;
  1584. }
  1585. EXPORT_SYMBOL_GPL(cgroup_path);
  1586. /**
  1587. * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
  1588. * @task: target task
  1589. * @hierarchy_id: the hierarchy to look up @task's cgroup from
  1590. * @buf: the buffer to write the path into
  1591. * @buflen: the length of the buffer
  1592. *
  1593. * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
  1594. * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
  1595. * be used inside locks used by cgroup controller callbacks.
  1596. */
  1597. int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
  1598. char *buf, size_t buflen)
  1599. {
  1600. struct cgroupfs_root *root;
  1601. struct cgroup *cgrp = NULL;
  1602. int ret = -ENOENT;
  1603. mutex_lock(&cgroup_mutex);
  1604. root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
  1605. if (root) {
  1606. cgrp = task_cgroup_from_root(task, root);
  1607. ret = cgroup_path(cgrp, buf, buflen);
  1608. }
  1609. mutex_unlock(&cgroup_mutex);
  1610. return ret;
  1611. }
  1612. EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
  1613. /*
  1614. * Control Group taskset
  1615. */
  1616. struct task_and_cgroup {
  1617. struct task_struct *task;
  1618. struct cgroup *cgrp;
  1619. struct css_set *cg;
  1620. };
  1621. struct cgroup_taskset {
  1622. struct task_and_cgroup single;
  1623. struct flex_array *tc_array;
  1624. int tc_array_len;
  1625. int idx;
  1626. struct cgroup *cur_cgrp;
  1627. };
  1628. /**
  1629. * cgroup_taskset_first - reset taskset and return the first task
  1630. * @tset: taskset of interest
  1631. *
  1632. * @tset iteration is initialized and the first task is returned.
  1633. */
  1634. struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
  1635. {
  1636. if (tset->tc_array) {
  1637. tset->idx = 0;
  1638. return cgroup_taskset_next(tset);
  1639. } else {
  1640. tset->cur_cgrp = tset->single.cgrp;
  1641. return tset->single.task;
  1642. }
  1643. }
  1644. EXPORT_SYMBOL_GPL(cgroup_taskset_first);
  1645. /**
  1646. * cgroup_taskset_next - iterate to the next task in taskset
  1647. * @tset: taskset of interest
  1648. *
  1649. * Return the next task in @tset. Iteration must have been initialized
  1650. * with cgroup_taskset_first().
  1651. */
  1652. struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
  1653. {
  1654. struct task_and_cgroup *tc;
  1655. if (!tset->tc_array || tset->idx >= tset->tc_array_len)
  1656. return NULL;
  1657. tc = flex_array_get(tset->tc_array, tset->idx++);
  1658. tset->cur_cgrp = tc->cgrp;
  1659. return tc->task;
  1660. }
  1661. EXPORT_SYMBOL_GPL(cgroup_taskset_next);
  1662. /**
  1663. * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
  1664. * @tset: taskset of interest
  1665. *
  1666. * Return the cgroup for the current (last returned) task of @tset. This
  1667. * function must be preceded by either cgroup_taskset_first() or
  1668. * cgroup_taskset_next().
  1669. */
  1670. struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
  1671. {
  1672. return tset->cur_cgrp;
  1673. }
  1674. EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
  1675. /**
  1676. * cgroup_taskset_size - return the number of tasks in taskset
  1677. * @tset: taskset of interest
  1678. */
  1679. int cgroup_taskset_size(struct cgroup_taskset *tset)
  1680. {
  1681. return tset->tc_array ? tset->tc_array_len : 1;
  1682. }
  1683. EXPORT_SYMBOL_GPL(cgroup_taskset_size);
  1684. /*
  1685. * cgroup_task_migrate - move a task from one cgroup to another.
  1686. *
  1687. * Must be called with cgroup_mutex and threadgroup locked.
  1688. */
  1689. static void cgroup_task_migrate(struct cgroup *oldcgrp,
  1690. struct task_struct *tsk, struct css_set *newcg)
  1691. {
  1692. struct css_set *oldcg;
  1693. /*
  1694. * We are synchronized through threadgroup_lock() against PF_EXITING
  1695. * setting such that we can't race against cgroup_exit() changing the
  1696. * css_set to init_css_set and dropping the old one.
  1697. */
  1698. WARN_ON_ONCE(tsk->flags & PF_EXITING);
  1699. oldcg = tsk->cgroups;
  1700. task_lock(tsk);
  1701. rcu_assign_pointer(tsk->cgroups, newcg);
  1702. task_unlock(tsk);
  1703. /* Update the css_set linked lists if we're using them */
  1704. write_lock(&css_set_lock);
  1705. if (!list_empty(&tsk->cg_list))
  1706. list_move(&tsk->cg_list, &newcg->tasks);
  1707. write_unlock(&css_set_lock);
  1708. /*
  1709. * We just gained a reference on oldcg by taking it from the task. As
  1710. * trading it for newcg is protected by cgroup_mutex, we're safe to drop
  1711. * it here; it will be freed under RCU.
  1712. */
  1713. set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
  1714. put_css_set(oldcg);
  1715. }
  1716. /**
  1717. * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
  1718. * @cgrp: the cgroup to attach to
  1719. * @tsk: the task or the leader of the threadgroup to be attached
  1720. * @threadgroup: attach the whole threadgroup?
  1721. *
  1722. * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
  1723. * task_lock of @tsk or each thread in the threadgroup individually in turn.
  1724. */
  1725. static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
  1726. bool threadgroup)
  1727. {
  1728. int retval, i, group_size;
  1729. struct cgroup_subsys *ss, *failed_ss = NULL;
  1730. struct cgroupfs_root *root = cgrp->root;
  1731. /* threadgroup list cursor and array */
  1732. struct task_struct *leader = tsk;
  1733. struct task_and_cgroup *tc;
  1734. struct flex_array *group;
  1735. struct cgroup_taskset tset = { };
  1736. /*
  1737. * step 0: in order to do expensive, possibly blocking operations for
  1738. * every thread, we cannot iterate the thread group list, since it needs
  1739. * rcu or tasklist locked. instead, build an array of all threads in the
  1740. * group - group_rwsem prevents new threads from appearing, and if
  1741. * threads exit, this will just be an over-estimate.
  1742. */
  1743. if (threadgroup)
  1744. group_size = get_nr_threads(tsk);
  1745. else
  1746. group_size = 1;
  1747. /* flex_array supports very large thread-groups better than kmalloc. */
  1748. group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
  1749. if (!group)
  1750. return -ENOMEM;
  1751. /* pre-allocate to guarantee space while iterating in rcu read-side. */
  1752. retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
  1753. if (retval)
  1754. goto out_free_group_list;
  1755. i = 0;
  1756. /*
  1757. * Prevent freeing of tasks while we take a snapshot. Tasks that are
  1758. * already PF_EXITING could be freed from underneath us unless we
  1759. * take an rcu_read_lock.
  1760. */
  1761. rcu_read_lock();
  1762. do {
  1763. struct task_and_cgroup ent;
  1764. /* @tsk either already exited or can't exit until the end */
  1765. if (tsk->flags & PF_EXITING)
  1766. continue;
  1767. /* as per above, nr_threads may decrease, but not increase. */
  1768. BUG_ON(i >= group_size);
  1769. ent.task = tsk;
  1770. ent.cgrp = task_cgroup_from_root(tsk, root);
  1771. /* nothing to do if this task is already in the cgroup */
  1772. if (ent.cgrp == cgrp)
  1773. continue;
  1774. /*
  1775. * saying GFP_ATOMIC has no effect here because we did prealloc
  1776. * earlier, but it's good form to communicate our expectations.
  1777. */
  1778. retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
  1779. BUG_ON(retval != 0);
  1780. i++;
  1781. if (!threadgroup)
  1782. break;
  1783. } while_each_thread(leader, tsk);
  1784. rcu_read_unlock();
  1785. /* remember the number of threads in the array for later. */
  1786. group_size = i;
  1787. tset.tc_array = group;
  1788. tset.tc_array_len = group_size;
  1789. /* methods shouldn't be called if no task is actually migrating */
  1790. retval = 0;
  1791. if (!group_size)
  1792. goto out_free_group_list;
  1793. /*
  1794. * step 1: check that we can legitimately attach to the cgroup.
  1795. */
  1796. for_each_subsys(root, ss) {
  1797. if (ss->can_attach) {
  1798. retval = ss->can_attach(cgrp, &tset);
  1799. if (retval) {
  1800. failed_ss = ss;
  1801. goto out_cancel_attach;
  1802. }
  1803. }
  1804. }
  1805. /*
  1806. * step 2: make sure css_sets exist for all threads to be migrated.
  1807. * we use find_css_set, which allocates a new one if necessary.
  1808. */
  1809. for (i = 0; i < group_size; i++) {
  1810. tc = flex_array_get(group, i);
  1811. tc->cg = find_css_set(tc->task->cgroups, cgrp);
  1812. if (!tc->cg) {
  1813. retval = -ENOMEM;
  1814. goto out_put_css_set_refs;
  1815. }
  1816. }
  1817. /*
  1818. * step 3: now that we're guaranteed success wrt the css_sets,
  1819. * proceed to move all tasks to the new cgroup. There are no
  1820. * failure cases after here, so this is the commit point.
  1821. */
  1822. for (i = 0; i < group_size; i++) {
  1823. tc = flex_array_get(group, i);
  1824. cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
  1825. }
  1826. /* nothing is sensitive to fork() after this point. */
  1827. /*
  1828. * step 4: do subsystem attach callbacks.
  1829. */
  1830. for_each_subsys(root, ss) {
  1831. if (ss->attach)
  1832. ss->attach(cgrp, &tset);
  1833. }
  1834. /*
  1835. * step 5: success! and cleanup
  1836. */
  1837. retval = 0;
  1838. out_put_css_set_refs:
  1839. if (retval) {
  1840. for (i = 0; i < group_size; i++) {
  1841. tc = flex_array_get(group, i);
  1842. if (!tc->cg)
  1843. break;
  1844. put_css_set(tc->cg);
  1845. }
  1846. }
  1847. out_cancel_attach:
  1848. if (retval) {
  1849. for_each_subsys(root, ss) {
  1850. if (ss == failed_ss)
  1851. break;
  1852. if (ss->cancel_attach)
  1853. ss->cancel_attach(cgrp, &tset);
  1854. }
  1855. }
  1856. out_free_group_list:
  1857. flex_array_free(group);
  1858. return retval;
  1859. }
  1860. /*
  1861. * Find the task_struct of the task to attach by vpid and pass it along to the
  1862. * function to attach either it or all tasks in its threadgroup. Will lock
  1863. * cgroup_mutex and threadgroup; may take task_lock of task.
  1864. */
  1865. static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
  1866. {
  1867. struct task_struct *tsk;
  1868. const struct cred *cred = current_cred(), *tcred;
  1869. int ret;
  1870. if (!cgroup_lock_live_group(cgrp))
  1871. return -ENODEV;
  1872. retry_find_task:
  1873. rcu_read_lock();
  1874. if (pid) {
  1875. tsk = find_task_by_vpid(pid);
  1876. if (!tsk) {
  1877. rcu_read_unlock();
  1878. ret= -ESRCH;
  1879. goto out_unlock_cgroup;
  1880. }
  1881. /*
  1882. * even if we're attaching all tasks in the thread group, we
  1883. * only need to check permissions on one of them.
  1884. */
  1885. tcred = __task_cred(tsk);
  1886. if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
  1887. !uid_eq(cred->euid, tcred->uid) &&
  1888. !uid_eq(cred->euid, tcred->suid)) {
  1889. rcu_read_unlock();
  1890. ret = -EACCES;
  1891. goto out_unlock_cgroup;
  1892. }
  1893. } else
  1894. tsk = current;
  1895. if (threadgroup)
  1896. tsk = tsk->group_leader;
  1897. /*
  1898. * Workqueue threads may acquire PF_NO_SETAFFINITY and become
  1899. * trapped in a cpuset, or RT worker may be born in a cgroup
  1900. * with no rt_runtime allocated. Just say no.
  1901. */
  1902. if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
  1903. ret = -EINVAL;
  1904. rcu_read_unlock();
  1905. goto out_unlock_cgroup;
  1906. }
  1907. get_task_struct(tsk);
  1908. rcu_read_unlock();
  1909. threadgroup_lock(tsk);
  1910. if (threadgroup) {
  1911. if (!thread_group_leader(tsk)) {
  1912. /*
  1913. * a race with de_thread from another thread's exec()
  1914. * may strip us of our leadership, if this happens,
  1915. * there is no choice but to throw this task away and
  1916. * try again; this is
  1917. * "double-double-toil-and-trouble-check locking".
  1918. */
  1919. threadgroup_unlock(tsk);
  1920. put_task_struct(tsk);
  1921. goto retry_find_task;
  1922. }
  1923. }
  1924. ret = cgroup_attach_task(cgrp, tsk, threadgroup);
  1925. threadgroup_unlock(tsk);
  1926. put_task_struct(tsk);
  1927. out_unlock_cgroup:
  1928. mutex_unlock(&cgroup_mutex);
  1929. return ret;
  1930. }
  1931. /**
  1932. * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  1933. * @from: attach to all cgroups of a given task
  1934. * @tsk: the task to be attached
  1935. */
  1936. int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  1937. {
  1938. struct cgroupfs_root *root;
  1939. int retval = 0;
  1940. mutex_lock(&cgroup_mutex);
  1941. for_each_active_root(root) {
  1942. struct cgroup *from_cg = task_cgroup_from_root(from, root);
  1943. retval = cgroup_attach_task(from_cg, tsk, false);
  1944. if (retval)
  1945. break;
  1946. }
  1947. mutex_unlock(&cgroup_mutex);
  1948. return retval;
  1949. }
  1950. EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  1951. static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
  1952. {
  1953. return attach_task_by_pid(cgrp, pid, false);
  1954. }
  1955. static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
  1956. {
  1957. return attach_task_by_pid(cgrp, tgid, true);
  1958. }
  1959. static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
  1960. const char *buffer)
  1961. {
  1962. BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
  1963. if (strlen(buffer) >= PATH_MAX)
  1964. return -EINVAL;
  1965. if (!cgroup_lock_live_group(cgrp))
  1966. return -ENODEV;
  1967. mutex_lock(&cgroup_root_mutex);
  1968. strcpy(cgrp->root->release_agent_path, buffer);
  1969. mutex_unlock(&cgroup_root_mutex);
  1970. mutex_unlock(&cgroup_mutex);
  1971. return 0;
  1972. }
  1973. static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
  1974. struct seq_file *seq)
  1975. {
  1976. if (!cgroup_lock_live_group(cgrp))
  1977. return -ENODEV;
  1978. seq_puts(seq, cgrp->root->release_agent_path);
  1979. seq_putc(seq, '\n');
  1980. mutex_unlock(&cgroup_mutex);
  1981. return 0;
  1982. }
  1983. static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
  1984. struct seq_file *seq)
  1985. {
  1986. seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
  1987. return 0;
  1988. }
  1989. /* A buffer size big enough for numbers or short strings */
  1990. #define CGROUP_LOCAL_BUFFER_SIZE 64
  1991. static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
  1992. struct file *file,
  1993. const char __user *userbuf,
  1994. size_t nbytes, loff_t *unused_ppos)
  1995. {
  1996. char buffer[CGROUP_LOCAL_BUFFER_SIZE];
  1997. int retval = 0;
  1998. char *end;
  1999. if (!nbytes)
  2000. return -EINVAL;
  2001. if (nbytes >= sizeof(buffer))
  2002. return -E2BIG;
  2003. if (copy_from_user(buffer, userbuf, nbytes))
  2004. return -EFAULT;
  2005. buffer[nbytes] = 0; /* nul-terminate */
  2006. if (cft->write_u64) {
  2007. u64 val = simple_strtoull(strstrip(buffer), &end, 0);
  2008. if (*end)
  2009. return -EINVAL;
  2010. retval = cft->write_u64(cgrp, cft, val);
  2011. } else {
  2012. s64 val = simple_strtoll(strstrip(buffer), &end, 0);
  2013. if (*end)
  2014. return -EINVAL;
  2015. retval = cft->write_s64(cgrp, cft, val);
  2016. }
  2017. if (!retval)
  2018. retval = nbytes;
  2019. return retval;
  2020. }
  2021. static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
  2022. struct file *file,
  2023. const char __user *userbuf,
  2024. size_t nbytes, loff_t *unused_ppos)
  2025. {
  2026. char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
  2027. int retval = 0;
  2028. size_t max_bytes = cft->max_write_len;
  2029. char *buffer = local_buffer;
  2030. if (!max_bytes)
  2031. max_bytes = sizeof(local_buffer) - 1;
  2032. if (nbytes >= max_bytes)
  2033. return -E2BIG;
  2034. /* Allocate a dynamic buffer if we need one */
  2035. if (nbytes >= sizeof(local_buffer)) {
  2036. buffer = kmalloc(nbytes + 1, GFP_KERNEL);
  2037. if (buffer == NULL)
  2038. return -ENOMEM;
  2039. }
  2040. if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
  2041. retval = -EFAULT;
  2042. goto out;
  2043. }
  2044. buffer[nbytes] = 0; /* nul-terminate */
  2045. retval = cft->write_string(cgrp, cft, strstrip(buffer));
  2046. if (!retval)
  2047. retval = nbytes;
  2048. out:
  2049. if (buffer != local_buffer)
  2050. kfree(buffer);
  2051. return retval;
  2052. }
  2053. static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
  2054. size_t nbytes, loff_t *ppos)
  2055. {
  2056. struct cftype *cft = __d_cft(file->f_dentry);
  2057. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  2058. if (cgroup_is_removed(cgrp))
  2059. return -ENODEV;
  2060. if (cft->write)
  2061. return cft->write(cgrp, cft, file, buf, nbytes, ppos);
  2062. if (cft->write_u64 || cft->write_s64)
  2063. return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
  2064. if (cft->write_string)
  2065. return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
  2066. if (cft->trigger) {
  2067. int ret = cft->trigger(cgrp, (unsigned int)cft->private);
  2068. return ret ? ret : nbytes;
  2069. }
  2070. return -EINVAL;
  2071. }
  2072. static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
  2073. struct file *file,
  2074. char __user *buf, size_t nbytes,
  2075. loff_t *ppos)
  2076. {
  2077. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  2078. u64 val = cft->read_u64(cgrp, cft);
  2079. int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
  2080. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  2081. }
  2082. static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
  2083. struct file *file,
  2084. char __user *buf, size_t nbytes,
  2085. loff_t *ppos)
  2086. {
  2087. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  2088. s64 val = cft->read_s64(cgrp, cft);
  2089. int len = sprintf(tmp, "%lld\n", (long long) val);
  2090. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  2091. }
  2092. static ssize_t cgroup_file_read(struct file *file, char __user *buf,
  2093. size_t nbytes, loff_t *ppos)
  2094. {
  2095. struct cftype *cft = __d_cft(file->f_dentry);
  2096. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  2097. if (cgroup_is_removed(cgrp))
  2098. return -ENODEV;
  2099. if (cft->read)
  2100. return cft->read(cgrp, cft, file, buf, nbytes, ppos);
  2101. if (cft->read_u64)
  2102. return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
  2103. if (cft->read_s64)
  2104. return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
  2105. return -EINVAL;
  2106. }
  2107. /*
  2108. * seqfile ops/methods for returning structured data. Currently just
  2109. * supports string->u64 maps, but can be extended in future.
  2110. */
  2111. struct cgroup_seqfile_state {
  2112. struct cftype *cft;
  2113. struct cgroup *cgroup;
  2114. };
  2115. static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
  2116. {
  2117. struct seq_file *sf = cb->state;
  2118. return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
  2119. }
  2120. static int cgroup_seqfile_show(struct seq_file *m, void *arg)
  2121. {
  2122. struct cgroup_seqfile_state *state = m->private;
  2123. struct cftype *cft = state->cft;
  2124. if (cft->read_map) {
  2125. struct cgroup_map_cb cb = {
  2126. .fill = cgroup_map_add,
  2127. .state = m,
  2128. };
  2129. return cft->read_map(state->cgroup, cft, &cb);
  2130. }
  2131. return cft->read_seq_string(state->cgroup, cft, m);
  2132. }
  2133. static int cgroup_seqfile_release(struct inode *inode, struct file *file)
  2134. {
  2135. struct seq_file *seq = file->private_data;
  2136. kfree(seq->private);
  2137. return single_release(inode, file);
  2138. }
  2139. static const struct file_operations cgroup_seqfile_operations = {
  2140. .read = seq_read,
  2141. .write = cgroup_file_write,
  2142. .llseek = seq_lseek,
  2143. .release = cgroup_seqfile_release,
  2144. };
  2145. static int cgroup_file_open(struct inode *inode, struct file *file)
  2146. {
  2147. int err;
  2148. struct cftype *cft;
  2149. err = generic_file_open(inode, file);
  2150. if (err)
  2151. return err;
  2152. cft = __d_cft(file->f_dentry);
  2153. if (cft->read_map || cft->read_seq_string) {
  2154. struct cgroup_seqfile_state *state =
  2155. kzalloc(sizeof(*state), GFP_USER);
  2156. if (!state)
  2157. return -ENOMEM;
  2158. state->cft = cft;
  2159. state->cgroup = __d_cgrp(file->f_dentry->d_parent);
  2160. file->f_op = &cgroup_seqfile_operations;
  2161. err = single_open(file, cgroup_seqfile_show, state);
  2162. if (err < 0)
  2163. kfree(state);
  2164. } else if (cft->open)
  2165. err = cft->open(inode, file);
  2166. else
  2167. err = 0;
  2168. return err;
  2169. }
  2170. static int cgroup_file_release(struct inode *inode, struct file *file)
  2171. {
  2172. struct cftype *cft = __d_cft(file->f_dentry);
  2173. if (cft->release)
  2174. return cft->release(inode, file);
  2175. return 0;
  2176. }
  2177. /*
  2178. * cgroup_rename - Only allow simple rename of directories in place.
  2179. */
  2180. static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
  2181. struct inode *new_dir, struct dentry *new_dentry)
  2182. {
  2183. int ret;
  2184. struct cgroup_name *name, *old_name;
  2185. struct cgroup *cgrp;
  2186. /*
  2187. * It's convinient to use parent dir's i_mutex to protected
  2188. * cgrp->name.
  2189. */
  2190. lockdep_assert_held(&old_dir->i_mutex);
  2191. if (!S_ISDIR(old_dentry->d_inode->i_mode))
  2192. return -ENOTDIR;
  2193. if (new_dentry->d_inode)
  2194. return -EEXIST;
  2195. if (old_dir != new_dir)
  2196. return -EIO;
  2197. cgrp = __d_cgrp(old_dentry);
  2198. name = cgroup_alloc_name(new_dentry);
  2199. if (!name)
  2200. return -ENOMEM;
  2201. ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
  2202. if (ret) {
  2203. kfree(name);
  2204. return ret;
  2205. }
  2206. old_name = cgrp->name;
  2207. rcu_assign_pointer(cgrp->name, name);
  2208. kfree_rcu(old_name, rcu_head);
  2209. return 0;
  2210. }
  2211. static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
  2212. {
  2213. if (S_ISDIR(dentry->d_inode->i_mode))
  2214. return &__d_cgrp(dentry)->xattrs;
  2215. else
  2216. return &__d_cfe(dentry)->xattrs;
  2217. }
  2218. static inline int xattr_enabled(struct dentry *dentry)
  2219. {
  2220. struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
  2221. return root->flags & CGRP_ROOT_XATTR;
  2222. }
  2223. static bool is_valid_xattr(const char *name)
  2224. {
  2225. if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
  2226. !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
  2227. return true;
  2228. return false;
  2229. }
  2230. static int cgroup_setxattr(struct dentry *dentry, const char *name,
  2231. const void *val, size_t size, int flags)
  2232. {
  2233. if (!xattr_enabled(dentry))
  2234. return -EOPNOTSUPP;
  2235. if (!is_valid_xattr(name))
  2236. return -EINVAL;
  2237. return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
  2238. }
  2239. static int cgroup_removexattr(struct dentry *dentry, const char *name)
  2240. {
  2241. if (!xattr_enabled(dentry))
  2242. return -EOPNOTSUPP;
  2243. if (!is_valid_xattr(name))
  2244. return -EINVAL;
  2245. return simple_xattr_remove(__d_xattrs(dentry), name);
  2246. }
  2247. static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
  2248. void *buf, size_t size)
  2249. {
  2250. if (!xattr_enabled(dentry))
  2251. return -EOPNOTSUPP;
  2252. if (!is_valid_xattr(name))
  2253. return -EINVAL;
  2254. return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
  2255. }
  2256. static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
  2257. {
  2258. if (!xattr_enabled(dentry))
  2259. return -EOPNOTSUPP;
  2260. return simple_xattr_list(__d_xattrs(dentry), buf, size);
  2261. }
  2262. static const struct file_operations cgroup_file_operations = {
  2263. .read = cgroup_file_read,
  2264. .write = cgroup_file_write,
  2265. .llseek = generic_file_llseek,
  2266. .open = cgroup_file_open,
  2267. .release = cgroup_file_release,
  2268. };
  2269. static const struct inode_operations cgroup_file_inode_operations = {
  2270. .setxattr = cgroup_setxattr,
  2271. .getxattr = cgroup_getxattr,
  2272. .listxattr = cgroup_listxattr,
  2273. .removexattr = cgroup_removexattr,
  2274. };
  2275. static const struct inode_operations cgroup_dir_inode_operations = {
  2276. .lookup = cgroup_lookup,
  2277. .mkdir = cgroup_mkdir,
  2278. .rmdir = cgroup_rmdir,
  2279. .rename = cgroup_rename,
  2280. .setxattr = cgroup_setxattr,
  2281. .getxattr = cgroup_getxattr,
  2282. .listxattr = cgroup_listxattr,
  2283. .removexattr = cgroup_removexattr,
  2284. };
  2285. static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  2286. {
  2287. if (dentry->d_name.len > NAME_MAX)
  2288. return ERR_PTR(-ENAMETOOLONG);
  2289. d_add(dentry, NULL);
  2290. return NULL;
  2291. }
  2292. /*
  2293. * Check if a file is a control file
  2294. */
  2295. static inline struct cftype *__file_cft(struct file *file)
  2296. {
  2297. if (file_inode(file)->i_fop != &cgroup_file_operations)
  2298. return ERR_PTR(-EINVAL);
  2299. return __d_cft(file->f_dentry);
  2300. }
  2301. static int cgroup_create_file(struct dentry *dentry, umode_t mode,
  2302. struct super_block *sb)
  2303. {
  2304. struct inode *inode;
  2305. if (!dentry)
  2306. return -ENOENT;
  2307. if (dentry->d_inode)
  2308. return -EEXIST;
  2309. inode = cgroup_new_inode(mode, sb);
  2310. if (!inode)
  2311. return -ENOMEM;
  2312. if (S_ISDIR(mode)) {
  2313. inode->i_op = &cgroup_dir_inode_operations;
  2314. inode->i_fop = &simple_dir_operations;
  2315. /* start off with i_nlink == 2 (for "." entry) */
  2316. inc_nlink(inode);
  2317. inc_nlink(dentry->d_parent->d_inode);
  2318. /*
  2319. * Control reaches here with cgroup_mutex held.
  2320. * @inode->i_mutex should nest outside cgroup_mutex but we
  2321. * want to populate it immediately without releasing
  2322. * cgroup_mutex. As @inode isn't visible to anyone else
  2323. * yet, trylock will always succeed without affecting
  2324. * lockdep checks.
  2325. */
  2326. WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
  2327. } else if (S_ISREG(mode)) {
  2328. inode->i_size = 0;
  2329. inode->i_fop = &cgroup_file_operations;
  2330. inode->i_op = &cgroup_file_inode_operations;
  2331. }
  2332. d_instantiate(dentry, inode);
  2333. dget(dentry); /* Extra count - pin the dentry in core */
  2334. return 0;
  2335. }
  2336. /**
  2337. * cgroup_file_mode - deduce file mode of a control file
  2338. * @cft: the control file in question
  2339. *
  2340. * returns cft->mode if ->mode is not 0
  2341. * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
  2342. * returns S_IRUGO if it has only a read handler
  2343. * returns S_IWUSR if it has only a write hander
  2344. */
  2345. static umode_t cgroup_file_mode(const struct cftype *cft)
  2346. {
  2347. umode_t mode = 0;
  2348. if (cft->mode)
  2349. return cft->mode;
  2350. if (cft->read || cft->read_u64 || cft->read_s64 ||
  2351. cft->read_map || cft->read_seq_string)
  2352. mode |= S_IRUGO;
  2353. if (cft->write || cft->write_u64 || cft->write_s64 ||
  2354. cft->write_string || cft->trigger)
  2355. mode |= S_IWUSR;
  2356. return mode;
  2357. }
  2358. static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
  2359. struct cftype *cft)
  2360. {
  2361. struct dentry *dir = cgrp->dentry;
  2362. struct cgroup *parent = __d_cgrp(dir);
  2363. struct dentry *dentry;
  2364. struct cfent *cfe;
  2365. int error;
  2366. umode_t mode;
  2367. char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
  2368. if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
  2369. strcpy(name, subsys->name);
  2370. strcat(name, ".");
  2371. }
  2372. strcat(name, cft->name);
  2373. BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
  2374. cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
  2375. if (!cfe)
  2376. return -ENOMEM;
  2377. dentry = lookup_one_len(name, dir, strlen(name));
  2378. if (IS_ERR(dentry)) {
  2379. error = PTR_ERR(dentry);
  2380. goto out;
  2381. }
  2382. cfe->type = (void *)cft;
  2383. cfe->dentry = dentry;
  2384. dentry->d_fsdata = cfe;
  2385. simple_xattrs_init(&cfe->xattrs);
  2386. mode = cgroup_file_mode(cft);
  2387. error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
  2388. if (!error) {
  2389. list_add_tail(&cfe->node, &parent->files);
  2390. cfe = NULL;
  2391. }
  2392. dput(dentry);
  2393. out:
  2394. kfree(cfe);
  2395. return error;
  2396. }
  2397. static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
  2398. struct cftype cfts[], bool is_add)
  2399. {
  2400. struct cftype *cft;
  2401. int err, ret = 0;
  2402. for (cft = cfts; cft->name[0] != '\0'; cft++) {
  2403. /* does cft->flags tell us to skip this file on @cgrp? */
  2404. if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
  2405. continue;
  2406. if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
  2407. continue;
  2408. if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
  2409. continue;
  2410. if (is_add) {
  2411. err = cgroup_add_file(cgrp, subsys, cft);
  2412. if (err)
  2413. pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
  2414. cft->name, err);
  2415. ret = err;
  2416. } else {
  2417. cgroup_rm_file(cgrp, cft);
  2418. }
  2419. }
  2420. return ret;
  2421. }
  2422. static DEFINE_MUTEX(cgroup_cft_mutex);
  2423. static void cgroup_cfts_prepare(void)
  2424. __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
  2425. {
  2426. /*
  2427. * Thanks to the entanglement with vfs inode locking, we can't walk
  2428. * the existing cgroups under cgroup_mutex and create files.
  2429. * Instead, we increment reference on all cgroups and build list of
  2430. * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
  2431. * exclusive access to the field.
  2432. */
  2433. mutex_lock(&cgroup_cft_mutex);
  2434. mutex_lock(&cgroup_mutex);
  2435. }
  2436. static void cgroup_cfts_commit(struct cgroup_subsys *ss,
  2437. struct cftype *cfts, bool is_add)
  2438. __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
  2439. {
  2440. LIST_HEAD(pending);
  2441. struct cgroup *cgrp, *n;
  2442. /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
  2443. if (cfts && ss->root != &rootnode) {
  2444. list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
  2445. dget(cgrp->dentry);
  2446. list_add_tail(&cgrp->cft_q_node, &pending);
  2447. }
  2448. }
  2449. mutex_unlock(&cgroup_mutex);
  2450. /*
  2451. * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
  2452. * files for all cgroups which were created before.
  2453. */
  2454. list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
  2455. struct inode *inode = cgrp->dentry->d_inode;
  2456. mutex_lock(&inode->i_mutex);
  2457. mutex_lock(&cgroup_mutex);
  2458. if (!cgroup_is_removed(cgrp))
  2459. cgroup_addrm_files(cgrp, ss, cfts, is_add);
  2460. mutex_unlock(&cgroup_mutex);
  2461. mutex_unlock(&inode->i_mutex);
  2462. list_del_init(&cgrp->cft_q_node);
  2463. dput(cgrp->dentry);
  2464. }
  2465. mutex_unlock(&cgroup_cft_mutex);
  2466. }
  2467. /**
  2468. * cgroup_add_cftypes - add an array of cftypes to a subsystem
  2469. * @ss: target cgroup subsystem
  2470. * @cfts: zero-length name terminated array of cftypes
  2471. *
  2472. * Register @cfts to @ss. Files described by @cfts are created for all
  2473. * existing cgroups to which @ss is attached and all future cgroups will
  2474. * have them too. This function can be called anytime whether @ss is
  2475. * attached or not.
  2476. *
  2477. * Returns 0 on successful registration, -errno on failure. Note that this
  2478. * function currently returns 0 as long as @cfts registration is successful
  2479. * even if some file creation attempts on existing cgroups fail.
  2480. */
  2481. int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
  2482. {
  2483. struct cftype_set *set;
  2484. set = kzalloc(sizeof(*set), GFP_KERNEL);
  2485. if (!set)
  2486. return -ENOMEM;
  2487. cgroup_cfts_prepare();
  2488. set->cfts = cfts;
  2489. list_add_tail(&set->node, &ss->cftsets);
  2490. cgroup_cfts_commit(ss, cfts, true);
  2491. return 0;
  2492. }
  2493. EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
  2494. /**
  2495. * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
  2496. * @ss: target cgroup subsystem
  2497. * @cfts: zero-length name terminated array of cftypes
  2498. *
  2499. * Unregister @cfts from @ss. Files described by @cfts are removed from
  2500. * all existing cgroups to which @ss is attached and all future cgroups
  2501. * won't have them either. This function can be called anytime whether @ss
  2502. * is attached or not.
  2503. *
  2504. * Returns 0 on successful unregistration, -ENOENT if @cfts is not
  2505. * registered with @ss.
  2506. */
  2507. int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
  2508. {
  2509. struct cftype_set *set;
  2510. cgroup_cfts_prepare();
  2511. list_for_each_entry(set, &ss->cftsets, node) {
  2512. if (set->cfts == cfts) {
  2513. list_del_init(&set->node);
  2514. cgroup_cfts_commit(ss, cfts, false);
  2515. return 0;
  2516. }
  2517. }
  2518. cgroup_cfts_commit(ss, NULL, false);
  2519. return -ENOENT;
  2520. }
  2521. /**
  2522. * cgroup_task_count - count the number of tasks in a cgroup.
  2523. * @cgrp: the cgroup in question
  2524. *
  2525. * Return the number of tasks in the cgroup.
  2526. */
  2527. int cgroup_task_count(const struct cgroup *cgrp)
  2528. {
  2529. int count = 0;
  2530. struct cg_cgroup_link *link;
  2531. read_lock(&css_set_lock);
  2532. list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
  2533. count += atomic_read(&link->cg->refcount);
  2534. }
  2535. read_unlock(&css_set_lock);
  2536. return count;
  2537. }
  2538. /*
  2539. * Advance a list_head iterator. The iterator should be positioned at
  2540. * the start of a css_set
  2541. */
  2542. static void cgroup_advance_iter(struct cgroup *cgrp,
  2543. struct cgroup_iter *it)
  2544. {
  2545. struct list_head *l = it->cg_link;
  2546. struct cg_cgroup_link *link;
  2547. struct css_set *cg;
  2548. /* Advance to the next non-empty css_set */
  2549. do {
  2550. l = l->next;
  2551. if (l == &cgrp->css_sets) {
  2552. it->cg_link = NULL;
  2553. return;
  2554. }
  2555. link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
  2556. cg = link->cg;
  2557. } while (list_empty(&cg->tasks));
  2558. it->cg_link = l;
  2559. it->task = cg->tasks.next;
  2560. }
  2561. /*
  2562. * To reduce the fork() overhead for systems that are not actually
  2563. * using their cgroups capability, we don't maintain the lists running
  2564. * through each css_set to its tasks until we see the list actually
  2565. * used - in other words after the first call to cgroup_iter_start().
  2566. */
  2567. static void cgroup_enable_task_cg_lists(void)
  2568. {
  2569. struct task_struct *p, *g;
  2570. write_lock(&css_set_lock);
  2571. use_task_css_set_links = 1;
  2572. /*
  2573. * We need tasklist_lock because RCU is not safe against
  2574. * while_each_thread(). Besides, a forking task that has passed
  2575. * cgroup_post_fork() without seeing use_task_css_set_links = 1
  2576. * is not guaranteed to have its child immediately visible in the
  2577. * tasklist if we walk through it with RCU.
  2578. */
  2579. read_lock(&tasklist_lock);
  2580. do_each_thread(g, p) {
  2581. task_lock(p);
  2582. /*
  2583. * We should check if the process is exiting, otherwise
  2584. * it will race with cgroup_exit() in that the list
  2585. * entry won't be deleted though the process has exited.
  2586. */
  2587. if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
  2588. list_add(&p->cg_list, &p->cgroups->tasks);
  2589. task_unlock(p);
  2590. } while_each_thread(g, p);
  2591. read_unlock(&tasklist_lock);
  2592. write_unlock(&css_set_lock);
  2593. }
  2594. /**
  2595. * cgroup_next_descendant_pre - find the next descendant for pre-order walk
  2596. * @pos: the current position (%NULL to initiate traversal)
  2597. * @cgroup: cgroup whose descendants to walk
  2598. *
  2599. * To be used by cgroup_for_each_descendant_pre(). Find the next
  2600. * descendant to visit for pre-order traversal of @cgroup's descendants.
  2601. */
  2602. struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
  2603. struct cgroup *cgroup)
  2604. {
  2605. struct cgroup *next;
  2606. WARN_ON_ONCE(!rcu_read_lock_held());
  2607. /* if first iteration, pretend we just visited @cgroup */
  2608. if (!pos)
  2609. pos = cgroup;
  2610. /* visit the first child if exists */
  2611. next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
  2612. if (next)
  2613. return next;
  2614. /* no child, visit my or the closest ancestor's next sibling */
  2615. while (pos != cgroup) {
  2616. next = list_entry_rcu(pos->sibling.next, struct cgroup,
  2617. sibling);
  2618. if (&next->sibling != &pos->parent->children)
  2619. return next;
  2620. pos = pos->parent;
  2621. }
  2622. return NULL;
  2623. }
  2624. EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
  2625. /**
  2626. * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
  2627. * @pos: cgroup of interest
  2628. *
  2629. * Return the rightmost descendant of @pos. If there's no descendant,
  2630. * @pos is returned. This can be used during pre-order traversal to skip
  2631. * subtree of @pos.
  2632. */
  2633. struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
  2634. {
  2635. struct cgroup *last, *tmp;
  2636. WARN_ON_ONCE(!rcu_read_lock_held());
  2637. do {
  2638. last = pos;
  2639. /* ->prev isn't RCU safe, walk ->next till the end */
  2640. pos = NULL;
  2641. list_for_each_entry_rcu(tmp, &last->children, sibling)
  2642. pos = tmp;
  2643. } while (pos);
  2644. return last;
  2645. }
  2646. EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
  2647. static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
  2648. {
  2649. struct cgroup *last;
  2650. do {
  2651. last = pos;
  2652. pos = list_first_or_null_rcu(&pos->children, struct cgroup,
  2653. sibling);
  2654. } while (pos);
  2655. return last;
  2656. }
  2657. /**
  2658. * cgroup_next_descendant_post - find the next descendant for post-order walk
  2659. * @pos: the current position (%NULL to initiate traversal)
  2660. * @cgroup: cgroup whose descendants to walk
  2661. *
  2662. * To be used by cgroup_for_each_descendant_post(). Find the next
  2663. * descendant to visit for post-order traversal of @cgroup's descendants.
  2664. */
  2665. struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
  2666. struct cgroup *cgroup)
  2667. {
  2668. struct cgroup *next;
  2669. WARN_ON_ONCE(!rcu_read_lock_held());
  2670. /* if first iteration, visit the leftmost descendant */
  2671. if (!pos) {
  2672. next = cgroup_leftmost_descendant(cgroup);
  2673. return next != cgroup ? next : NULL;
  2674. }
  2675. /* if there's an unvisited sibling, visit its leftmost descendant */
  2676. next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
  2677. if (&next->sibling != &pos->parent->children)
  2678. return cgroup_leftmost_descendant(next);
  2679. /* no sibling left, visit parent */
  2680. next = pos->parent;
  2681. return next != cgroup ? next : NULL;
  2682. }
  2683. EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
  2684. void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
  2685. __acquires(css_set_lock)
  2686. {
  2687. /*
  2688. * The first time anyone tries to iterate across a cgroup,
  2689. * we need to enable the list linking each css_set to its
  2690. * tasks, and fix up all existing tasks.
  2691. */
  2692. if (!use_task_css_set_links)
  2693. cgroup_enable_task_cg_lists();
  2694. read_lock(&css_set_lock);
  2695. it->cg_link = &cgrp->css_sets;
  2696. cgroup_advance_iter(cgrp, it);
  2697. }
  2698. struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
  2699. struct cgroup_iter *it)
  2700. {
  2701. struct task_struct *res;
  2702. struct list_head *l = it->task;
  2703. struct cg_cgroup_link *link;
  2704. /* If the iterator cg is NULL, we have no tasks */
  2705. if (!it->cg_link)
  2706. return NULL;
  2707. res = list_entry(l, struct task_struct, cg_list);
  2708. /* Advance iterator to find next entry */
  2709. l = l->next;
  2710. link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
  2711. if (l == &link->cg->tasks) {
  2712. /* We reached the end of this task list - move on to
  2713. * the next cg_cgroup_link */
  2714. cgroup_advance_iter(cgrp, it);
  2715. } else {
  2716. it->task = l;
  2717. }
  2718. return res;
  2719. }
  2720. void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
  2721. __releases(css_set_lock)
  2722. {
  2723. read_unlock(&css_set_lock);
  2724. }
  2725. static inline int started_after_time(struct task_struct *t1,
  2726. struct timespec *time,
  2727. struct task_struct *t2)
  2728. {
  2729. int start_diff = timespec_compare(&t1->start_time, time);
  2730. if (start_diff > 0) {
  2731. return 1;
  2732. } else if (start_diff < 0) {
  2733. return 0;
  2734. } else {
  2735. /*
  2736. * Arbitrarily, if two processes started at the same
  2737. * time, we'll say that the lower pointer value
  2738. * started first. Note that t2 may have exited by now
  2739. * so this may not be a valid pointer any longer, but
  2740. * that's fine - it still serves to distinguish
  2741. * between two tasks started (effectively) simultaneously.
  2742. */
  2743. return t1 > t2;
  2744. }
  2745. }
  2746. /*
  2747. * This function is a callback from heap_insert() and is used to order
  2748. * the heap.
  2749. * In this case we order the heap in descending task start time.
  2750. */
  2751. static inline int started_after(void *p1, void *p2)
  2752. {
  2753. struct task_struct *t1 = p1;
  2754. struct task_struct *t2 = p2;
  2755. return started_after_time(t1, &t2->start_time, t2);
  2756. }
  2757. /**
  2758. * cgroup_scan_tasks - iterate though all the tasks in a cgroup
  2759. * @scan: struct cgroup_scanner containing arguments for the scan
  2760. *
  2761. * Arguments include pointers to callback functions test_task() and
  2762. * process_task().
  2763. * Iterate through all the tasks in a cgroup, calling test_task() for each,
  2764. * and if it returns true, call process_task() for it also.
  2765. * The test_task pointer may be NULL, meaning always true (select all tasks).
  2766. * Effectively duplicates cgroup_iter_{start,next,end}()
  2767. * but does not lock css_set_lock for the call to process_task().
  2768. * The struct cgroup_scanner may be embedded in any structure of the caller's
  2769. * creation.
  2770. * It is guaranteed that process_task() will act on every task that
  2771. * is a member of the cgroup for the duration of this call. This
  2772. * function may or may not call process_task() for tasks that exit
  2773. * or move to a different cgroup during the call, or are forked or
  2774. * move into the cgroup during the call.
  2775. *
  2776. * Note that test_task() may be called with locks held, and may in some
  2777. * situations be called multiple times for the same task, so it should
  2778. * be cheap.
  2779. * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
  2780. * pre-allocated and will be used for heap operations (and its "gt" member will
  2781. * be overwritten), else a temporary heap will be used (allocation of which
  2782. * may cause this function to fail).
  2783. */
  2784. int cgroup_scan_tasks(struct cgroup_scanner *scan)
  2785. {
  2786. int retval, i;
  2787. struct cgroup_iter it;
  2788. struct task_struct *p, *dropped;
  2789. /* Never dereference latest_task, since it's not refcounted */
  2790. struct task_struct *latest_task = NULL;
  2791. struct ptr_heap tmp_heap;
  2792. struct ptr_heap *heap;
  2793. struct timespec latest_time = { 0, 0 };
  2794. if (scan->heap) {
  2795. /* The caller supplied our heap and pre-allocated its memory */
  2796. heap = scan->heap;
  2797. heap->gt = &started_after;
  2798. } else {
  2799. /* We need to allocate our own heap memory */
  2800. heap = &tmp_heap;
  2801. retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
  2802. if (retval)
  2803. /* cannot allocate the heap */
  2804. return retval;
  2805. }
  2806. again:
  2807. /*
  2808. * Scan tasks in the cgroup, using the scanner's "test_task" callback
  2809. * to determine which are of interest, and using the scanner's
  2810. * "process_task" callback to process any of them that need an update.
  2811. * Since we don't want to hold any locks during the task updates,
  2812. * gather tasks to be processed in a heap structure.
  2813. * The heap is sorted by descending task start time.
  2814. * If the statically-sized heap fills up, we overflow tasks that
  2815. * started later, and in future iterations only consider tasks that
  2816. * started after the latest task in the previous pass. This
  2817. * guarantees forward progress and that we don't miss any tasks.
  2818. */
  2819. heap->size = 0;
  2820. cgroup_iter_start(scan->cg, &it);
  2821. while ((p = cgroup_iter_next(scan->cg, &it))) {
  2822. /*
  2823. * Only affect tasks that qualify per the caller's callback,
  2824. * if he provided one
  2825. */
  2826. if (scan->test_task && !scan->test_task(p, scan))
  2827. continue;
  2828. /*
  2829. * Only process tasks that started after the last task
  2830. * we processed
  2831. */
  2832. if (!started_after_time(p, &latest_time, latest_task))
  2833. continue;
  2834. dropped = heap_insert(heap, p);
  2835. if (dropped == NULL) {
  2836. /*
  2837. * The new task was inserted; the heap wasn't
  2838. * previously full
  2839. */
  2840. get_task_struct(p);
  2841. } else if (dropped != p) {
  2842. /*
  2843. * The new task was inserted, and pushed out a
  2844. * different task
  2845. */
  2846. get_task_struct(p);
  2847. put_task_struct(dropped);
  2848. }
  2849. /*
  2850. * Else the new task was newer than anything already in
  2851. * the heap and wasn't inserted
  2852. */
  2853. }
  2854. cgroup_iter_end(scan->cg, &it);
  2855. if (heap->size) {
  2856. for (i = 0; i < heap->size; i++) {
  2857. struct task_struct *q = heap->ptrs[i];
  2858. if (i == 0) {
  2859. latest_time = q->start_time;
  2860. latest_task = q;
  2861. }
  2862. /* Process the task per the caller's callback */
  2863. scan->process_task(q, scan);
  2864. put_task_struct(q);
  2865. }
  2866. /*
  2867. * If we had to process any tasks at all, scan again
  2868. * in case some of them were in the middle of forking
  2869. * children that didn't get processed.
  2870. * Not the most efficient way to do it, but it avoids
  2871. * having to take callback_mutex in the fork path
  2872. */
  2873. goto again;
  2874. }
  2875. if (heap == &tmp_heap)
  2876. heap_free(&tmp_heap);
  2877. return 0;
  2878. }
  2879. static void cgroup_transfer_one_task(struct task_struct *task,
  2880. struct cgroup_scanner *scan)
  2881. {
  2882. struct cgroup *new_cgroup = scan->data;
  2883. mutex_lock(&cgroup_mutex);
  2884. cgroup_attach_task(new_cgroup, task, false);
  2885. mutex_unlock(&cgroup_mutex);
  2886. }
  2887. /**
  2888. * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
  2889. * @to: cgroup to which the tasks will be moved
  2890. * @from: cgroup in which the tasks currently reside
  2891. */
  2892. int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
  2893. {
  2894. struct cgroup_scanner scan;
  2895. scan.cg = from;
  2896. scan.test_task = NULL; /* select all tasks in cgroup */
  2897. scan.process_task = cgroup_transfer_one_task;
  2898. scan.heap = NULL;
  2899. scan.data = to;
  2900. return cgroup_scan_tasks(&scan);
  2901. }
  2902. /*
  2903. * Stuff for reading the 'tasks'/'procs' files.
  2904. *
  2905. * Reading this file can return large amounts of data if a cgroup has
  2906. * *lots* of attached tasks. So it may need several calls to read(),
  2907. * but we cannot guarantee that the information we produce is correct
  2908. * unless we produce it entirely atomically.
  2909. *
  2910. */
  2911. /* which pidlist file are we talking about? */
  2912. enum cgroup_filetype {
  2913. CGROUP_FILE_PROCS,
  2914. CGROUP_FILE_TASKS,
  2915. };
  2916. /*
  2917. * A pidlist is a list of pids that virtually represents the contents of one
  2918. * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
  2919. * a pair (one each for procs, tasks) for each pid namespace that's relevant
  2920. * to the cgroup.
  2921. */
  2922. struct cgroup_pidlist {
  2923. /*
  2924. * used to find which pidlist is wanted. doesn't change as long as
  2925. * this particular list stays in the list.
  2926. */
  2927. struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
  2928. /* array of xids */
  2929. pid_t *list;
  2930. /* how many elements the above list has */
  2931. int length;
  2932. /* how many files are using the current array */
  2933. int use_count;
  2934. /* each of these stored in a list by its cgroup */
  2935. struct list_head links;
  2936. /* pointer to the cgroup we belong to, for list removal purposes */
  2937. struct cgroup *owner;
  2938. /* protects the other fields */
  2939. struct rw_semaphore mutex;
  2940. };
  2941. /*
  2942. * The following two functions "fix" the issue where there are more pids
  2943. * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
  2944. * TODO: replace with a kernel-wide solution to this problem
  2945. */
  2946. #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
  2947. static void *pidlist_allocate(int count)
  2948. {
  2949. if (PIDLIST_TOO_LARGE(count))
  2950. return vmalloc(count * sizeof(pid_t));
  2951. else
  2952. return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
  2953. }
  2954. static void pidlist_free(void *p)
  2955. {
  2956. if (is_vmalloc_addr(p))
  2957. vfree(p);
  2958. else
  2959. kfree(p);
  2960. }
  2961. /*
  2962. * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
  2963. * Returns the number of unique elements.
  2964. */
  2965. static int pidlist_uniq(pid_t *list, int length)
  2966. {
  2967. int src, dest = 1;
  2968. /*
  2969. * we presume the 0th element is unique, so i starts at 1. trivial
  2970. * edge cases first; no work needs to be done for either
  2971. */
  2972. if (length == 0 || length == 1)
  2973. return length;
  2974. /* src and dest walk down the list; dest counts unique elements */
  2975. for (src = 1; src < length; src++) {
  2976. /* find next unique element */
  2977. while (list[src] == list[src-1]) {
  2978. src++;
  2979. if (src == length)
  2980. goto after;
  2981. }
  2982. /* dest always points to where the next unique element goes */
  2983. list[dest] = list[src];
  2984. dest++;
  2985. }
  2986. after:
  2987. return dest;
  2988. }
  2989. static int cmppid(const void *a, const void *b)
  2990. {
  2991. return *(pid_t *)a - *(pid_t *)b;
  2992. }
  2993. /*
  2994. * find the appropriate pidlist for our purpose (given procs vs tasks)
  2995. * returns with the lock on that pidlist already held, and takes care
  2996. * of the use count, or returns NULL with no locks held if we're out of
  2997. * memory.
  2998. */
  2999. static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
  3000. enum cgroup_filetype type)
  3001. {
  3002. struct cgroup_pidlist *l;
  3003. /* don't need task_nsproxy() if we're looking at ourself */
  3004. struct pid_namespace *ns = task_active_pid_ns(current);
  3005. /*
  3006. * We can't drop the pidlist_mutex before taking the l->mutex in case
  3007. * the last ref-holder is trying to remove l from the list at the same
  3008. * time. Holding the pidlist_mutex precludes somebody taking whichever
  3009. * list we find out from under us - compare release_pid_array().
  3010. */
  3011. mutex_lock(&cgrp->pidlist_mutex);
  3012. list_for_each_entry(l, &cgrp->pidlists, links) {
  3013. if (l->key.type == type && l->key.ns == ns) {
  3014. /* make sure l doesn't vanish out from under us */
  3015. down_write(&l->mutex);
  3016. mutex_unlock(&cgrp->pidlist_mutex);
  3017. return l;
  3018. }
  3019. }
  3020. /* entry not found; create a new one */
  3021. l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
  3022. if (!l) {
  3023. mutex_unlock(&cgrp->pidlist_mutex);
  3024. return l;
  3025. }
  3026. init_rwsem(&l->mutex);
  3027. down_write(&l->mutex);
  3028. l->key.type = type;
  3029. l->key.ns = get_pid_ns(ns);
  3030. l->use_count = 0; /* don't increment here */
  3031. l->list = NULL;
  3032. l->owner = cgrp;
  3033. list_add(&l->links, &cgrp->pidlists);
  3034. mutex_unlock(&cgrp->pidlist_mutex);
  3035. return l;
  3036. }
  3037. /*
  3038. * Load a cgroup's pidarray with either procs' tgids or tasks' pids
  3039. */
  3040. static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
  3041. struct cgroup_pidlist **lp)
  3042. {
  3043. pid_t *array;
  3044. int length;
  3045. int pid, n = 0; /* used for populating the array */
  3046. struct cgroup_iter it;
  3047. struct task_struct *tsk;
  3048. struct cgroup_pidlist *l;
  3049. /*
  3050. * If cgroup gets more users after we read count, we won't have
  3051. * enough space - tough. This race is indistinguishable to the
  3052. * caller from the case that the additional cgroup users didn't
  3053. * show up until sometime later on.
  3054. */
  3055. length = cgroup_task_count(cgrp);
  3056. array = pidlist_allocate(length);
  3057. if (!array)
  3058. return -ENOMEM;
  3059. /* now, populate the array */
  3060. cgroup_iter_start(cgrp, &it);
  3061. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  3062. if (unlikely(n == length))
  3063. break;
  3064. /* get tgid or pid for procs or tasks file respectively */
  3065. if (type == CGROUP_FILE_PROCS)
  3066. pid = task_tgid_vnr(tsk);
  3067. else
  3068. pid = task_pid_vnr(tsk);
  3069. if (pid > 0) /* make sure to only use valid results */
  3070. array[n++] = pid;
  3071. }
  3072. cgroup_iter_end(cgrp, &it);
  3073. length = n;
  3074. /* now sort & (if procs) strip out duplicates */
  3075. sort(array, length, sizeof(pid_t), cmppid, NULL);
  3076. if (type == CGROUP_FILE_PROCS)
  3077. length = pidlist_uniq(array, length);
  3078. l = cgroup_pidlist_find(cgrp, type);
  3079. if (!l) {
  3080. pidlist_free(array);
  3081. return -ENOMEM;
  3082. }
  3083. /* store array, freeing old if necessary - lock already held */
  3084. pidlist_free(l->list);
  3085. l->list = array;
  3086. l->length = length;
  3087. l->use_count++;
  3088. up_write(&l->mutex);
  3089. *lp = l;
  3090. return 0;
  3091. }
  3092. /**
  3093. * cgroupstats_build - build and fill cgroupstats
  3094. * @stats: cgroupstats to fill information into
  3095. * @dentry: A dentry entry belonging to the cgroup for which stats have
  3096. * been requested.
  3097. *
  3098. * Build and fill cgroupstats so that taskstats can export it to user
  3099. * space.
  3100. */
  3101. int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
  3102. {
  3103. int ret = -EINVAL;
  3104. struct cgroup *cgrp;
  3105. struct cgroup_iter it;
  3106. struct task_struct *tsk;
  3107. /*
  3108. * Validate dentry by checking the superblock operations,
  3109. * and make sure it's a directory.
  3110. */
  3111. if (dentry->d_sb->s_op != &cgroup_ops ||
  3112. !S_ISDIR(dentry->d_inode->i_mode))
  3113. goto err;
  3114. ret = 0;
  3115. cgrp = dentry->d_fsdata;
  3116. cgroup_iter_start(cgrp, &it);
  3117. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  3118. switch (tsk->state) {
  3119. case TASK_RUNNING:
  3120. stats->nr_running++;
  3121. break;
  3122. case TASK_INTERRUPTIBLE:
  3123. stats->nr_sleeping++;
  3124. break;
  3125. case TASK_UNINTERRUPTIBLE:
  3126. stats->nr_uninterruptible++;
  3127. break;
  3128. case TASK_STOPPED:
  3129. stats->nr_stopped++;
  3130. break;
  3131. default:
  3132. if (delayacct_is_task_waiting_on_io(tsk))
  3133. stats->nr_io_wait++;
  3134. break;
  3135. }
  3136. }
  3137. cgroup_iter_end(cgrp, &it);
  3138. err:
  3139. return ret;
  3140. }
  3141. /*
  3142. * seq_file methods for the tasks/procs files. The seq_file position is the
  3143. * next pid to display; the seq_file iterator is a pointer to the pid
  3144. * in the cgroup->l->list array.
  3145. */
  3146. static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
  3147. {
  3148. /*
  3149. * Initially we receive a position value that corresponds to
  3150. * one more than the last pid shown (or 0 on the first call or
  3151. * after a seek to the start). Use a binary-search to find the
  3152. * next pid to display, if any
  3153. */
  3154. struct cgroup_pidlist *l = s->private;
  3155. int index = 0, pid = *pos;
  3156. int *iter;
  3157. down_read(&l->mutex);
  3158. if (pid) {
  3159. int end = l->length;
  3160. while (index < end) {
  3161. int mid = (index + end) / 2;
  3162. if (l->list[mid] == pid) {
  3163. index = mid;
  3164. break;
  3165. } else if (l->list[mid] <= pid)
  3166. index = mid + 1;
  3167. else
  3168. end = mid;
  3169. }
  3170. }
  3171. /* If we're off the end of the array, we're done */
  3172. if (index >= l->length)
  3173. return NULL;
  3174. /* Update the abstract position to be the actual pid that we found */
  3175. iter = l->list + index;
  3176. *pos = *iter;
  3177. return iter;
  3178. }
  3179. static void cgroup_pidlist_stop(struct seq_file *s, void *v)
  3180. {
  3181. struct cgroup_pidlist *l = s->private;
  3182. up_read(&l->mutex);
  3183. }
  3184. static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
  3185. {
  3186. struct cgroup_pidlist *l = s->private;
  3187. pid_t *p = v;
  3188. pid_t *end = l->list + l->length;
  3189. /*
  3190. * Advance to the next pid in the array. If this goes off the
  3191. * end, we're done
  3192. */
  3193. p++;
  3194. if (p >= end) {
  3195. return NULL;
  3196. } else {
  3197. *pos = *p;
  3198. return p;
  3199. }
  3200. }
  3201. static int cgroup_pidlist_show(struct seq_file *s, void *v)
  3202. {
  3203. return seq_printf(s, "%d\n", *(int *)v);
  3204. }
  3205. /*
  3206. * seq_operations functions for iterating on pidlists through seq_file -
  3207. * independent of whether it's tasks or procs
  3208. */
  3209. static const struct seq_operations cgroup_pidlist_seq_operations = {
  3210. .start = cgroup_pidlist_start,
  3211. .stop = cgroup_pidlist_stop,
  3212. .next = cgroup_pidlist_next,
  3213. .show = cgroup_pidlist_show,
  3214. };
  3215. static void cgroup_release_pid_array(struct cgroup_pidlist *l)
  3216. {
  3217. /*
  3218. * the case where we're the last user of this particular pidlist will
  3219. * have us remove it from the cgroup's list, which entails taking the
  3220. * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
  3221. * pidlist_mutex, we have to take pidlist_mutex first.
  3222. */
  3223. mutex_lock(&l->owner->pidlist_mutex);
  3224. down_write(&l->mutex);
  3225. BUG_ON(!l->use_count);
  3226. if (!--l->use_count) {
  3227. /* we're the last user if refcount is 0; remove and free */
  3228. list_del(&l->links);
  3229. mutex_unlock(&l->owner->pidlist_mutex);
  3230. pidlist_free(l->list);
  3231. put_pid_ns(l->key.ns);
  3232. up_write(&l->mutex);
  3233. kfree(l);
  3234. return;
  3235. }
  3236. mutex_unlock(&l->owner->pidlist_mutex);
  3237. up_write(&l->mutex);
  3238. }
  3239. static int cgroup_pidlist_release(struct inode *inode, struct file *file)
  3240. {
  3241. struct cgroup_pidlist *l;
  3242. if (!(file->f_mode & FMODE_READ))
  3243. return 0;
  3244. /*
  3245. * the seq_file will only be initialized if the file was opened for
  3246. * reading; hence we check if it's not null only in that case.
  3247. */
  3248. l = ((struct seq_file *)file->private_data)->private;
  3249. cgroup_release_pid_array(l);
  3250. return seq_release(inode, file);
  3251. }
  3252. static const struct file_operations cgroup_pidlist_operations = {
  3253. .read = seq_read,
  3254. .llseek = seq_lseek,
  3255. .write = cgroup_file_write,
  3256. .release = cgroup_pidlist_release,
  3257. };
  3258. /*
  3259. * The following functions handle opens on a file that displays a pidlist
  3260. * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
  3261. * in the cgroup.
  3262. */
  3263. /* helper function for the two below it */
  3264. static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
  3265. {
  3266. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  3267. struct cgroup_pidlist *l;
  3268. int retval;
  3269. /* Nothing to do for write-only files */
  3270. if (!(file->f_mode & FMODE_READ))
  3271. return 0;
  3272. /* have the array populated */
  3273. retval = pidlist_array_load(cgrp, type, &l);
  3274. if (retval)
  3275. return retval;
  3276. /* configure file information */
  3277. file->f_op = &cgroup_pidlist_operations;
  3278. retval = seq_open(file, &cgroup_pidlist_seq_operations);
  3279. if (retval) {
  3280. cgroup_release_pid_array(l);
  3281. return retval;
  3282. }
  3283. ((struct seq_file *)file->private_data)->private = l;
  3284. return 0;
  3285. }
  3286. static int cgroup_tasks_open(struct inode *unused, struct file *file)
  3287. {
  3288. return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
  3289. }
  3290. static int cgroup_procs_open(struct inode *unused, struct file *file)
  3291. {
  3292. return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
  3293. }
  3294. static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
  3295. struct cftype *cft)
  3296. {
  3297. return notify_on_release(cgrp);
  3298. }
  3299. static int cgroup_write_notify_on_release(struct cgroup *cgrp,
  3300. struct cftype *cft,
  3301. u64 val)
  3302. {
  3303. clear_bit(CGRP_RELEASABLE, &cgrp->flags);
  3304. if (val)
  3305. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  3306. else
  3307. clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  3308. return 0;
  3309. }
  3310. /*
  3311. * Unregister event and free resources.
  3312. *
  3313. * Gets called from workqueue.
  3314. */
  3315. static void cgroup_event_remove(struct work_struct *work)
  3316. {
  3317. struct cgroup_event *event = container_of(work, struct cgroup_event,
  3318. remove);
  3319. struct cgroup *cgrp = event->cgrp;
  3320. remove_wait_queue(event->wqh, &event->wait);
  3321. event->cft->unregister_event(cgrp, event->cft, event->eventfd);
  3322. /* Notify userspace the event is going away. */
  3323. eventfd_signal(event->eventfd, 1);
  3324. eventfd_ctx_put(event->eventfd);
  3325. kfree(event);
  3326. dput(cgrp->dentry);
  3327. }
  3328. /*
  3329. * Gets called on POLLHUP on eventfd when user closes it.
  3330. *
  3331. * Called with wqh->lock held and interrupts disabled.
  3332. */
  3333. static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
  3334. int sync, void *key)
  3335. {
  3336. struct cgroup_event *event = container_of(wait,
  3337. struct cgroup_event, wait);
  3338. struct cgroup *cgrp = event->cgrp;
  3339. unsigned long flags = (unsigned long)key;
  3340. if (flags & POLLHUP) {
  3341. /*
  3342. * If the event has been detached at cgroup removal, we
  3343. * can simply return knowing the other side will cleanup
  3344. * for us.
  3345. *
  3346. * We can't race against event freeing since the other
  3347. * side will require wqh->lock via remove_wait_queue(),
  3348. * which we hold.
  3349. */
  3350. spin_lock(&cgrp->event_list_lock);
  3351. if (!list_empty(&event->list)) {
  3352. list_del_init(&event->list);
  3353. /*
  3354. * We are in atomic context, but cgroup_event_remove()
  3355. * may sleep, so we have to call it in workqueue.
  3356. */
  3357. schedule_work(&event->remove);
  3358. }
  3359. spin_unlock(&cgrp->event_list_lock);
  3360. }
  3361. return 0;
  3362. }
  3363. static void cgroup_event_ptable_queue_proc(struct file *file,
  3364. wait_queue_head_t *wqh, poll_table *pt)
  3365. {
  3366. struct cgroup_event *event = container_of(pt,
  3367. struct cgroup_event, pt);
  3368. event->wqh = wqh;
  3369. add_wait_queue(wqh, &event->wait);
  3370. }
  3371. /*
  3372. * Parse input and register new cgroup event handler.
  3373. *
  3374. * Input must be in format '<event_fd> <control_fd> <args>'.
  3375. * Interpretation of args is defined by control file implementation.
  3376. */
  3377. static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
  3378. const char *buffer)
  3379. {
  3380. struct cgroup_event *event = NULL;
  3381. struct cgroup *cgrp_cfile;
  3382. unsigned int efd, cfd;
  3383. struct file *efile = NULL;
  3384. struct file *cfile = NULL;
  3385. char *endp;
  3386. int ret;
  3387. efd = simple_strtoul(buffer, &endp, 10);
  3388. if (*endp != ' ')
  3389. return -EINVAL;
  3390. buffer = endp + 1;
  3391. cfd = simple_strtoul(buffer, &endp, 10);
  3392. if ((*endp != ' ') && (*endp != '\0'))
  3393. return -EINVAL;
  3394. buffer = endp + 1;
  3395. event = kzalloc(sizeof(*event), GFP_KERNEL);
  3396. if (!event)
  3397. return -ENOMEM;
  3398. event->cgrp = cgrp;
  3399. INIT_LIST_HEAD(&event->list);
  3400. init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
  3401. init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
  3402. INIT_WORK(&event->remove, cgroup_event_remove);
  3403. efile = eventfd_fget(efd);
  3404. if (IS_ERR(efile)) {
  3405. ret = PTR_ERR(efile);
  3406. goto fail;
  3407. }
  3408. event->eventfd = eventfd_ctx_fileget(efile);
  3409. if (IS_ERR(event->eventfd)) {
  3410. ret = PTR_ERR(event->eventfd);
  3411. goto fail;
  3412. }
  3413. cfile = fget(cfd);
  3414. if (!cfile) {
  3415. ret = -EBADF;
  3416. goto fail;
  3417. }
  3418. /* the process need read permission on control file */
  3419. /* AV: shouldn't we check that it's been opened for read instead? */
  3420. ret = inode_permission(file_inode(cfile), MAY_READ);
  3421. if (ret < 0)
  3422. goto fail;
  3423. event->cft = __file_cft(cfile);
  3424. if (IS_ERR(event->cft)) {
  3425. ret = PTR_ERR(event->cft);
  3426. goto fail;
  3427. }
  3428. /*
  3429. * The file to be monitored must be in the same cgroup as
  3430. * cgroup.event_control is.
  3431. */
  3432. cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
  3433. if (cgrp_cfile != cgrp) {
  3434. ret = -EINVAL;
  3435. goto fail;
  3436. }
  3437. if (!event->cft->register_event || !event->cft->unregister_event) {
  3438. ret = -EINVAL;
  3439. goto fail;
  3440. }
  3441. ret = event->cft->register_event(cgrp, event->cft,
  3442. event->eventfd, buffer);
  3443. if (ret)
  3444. goto fail;
  3445. efile->f_op->poll(efile, &event->pt);
  3446. /*
  3447. * Events should be removed after rmdir of cgroup directory, but before
  3448. * destroying subsystem state objects. Let's take reference to cgroup
  3449. * directory dentry to do that.
  3450. */
  3451. dget(cgrp->dentry);
  3452. spin_lock(&cgrp->event_list_lock);
  3453. list_add(&event->list, &cgrp->event_list);
  3454. spin_unlock(&cgrp->event_list_lock);
  3455. fput(cfile);
  3456. fput(efile);
  3457. return 0;
  3458. fail:
  3459. if (cfile)
  3460. fput(cfile);
  3461. if (event && event->eventfd && !IS_ERR(event->eventfd))
  3462. eventfd_ctx_put(event->eventfd);
  3463. if (!IS_ERR_OR_NULL(efile))
  3464. fput(efile);
  3465. kfree(event);
  3466. return ret;
  3467. }
  3468. static u64 cgroup_clone_children_read(struct cgroup *cgrp,
  3469. struct cftype *cft)
  3470. {
  3471. return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
  3472. }
  3473. static int cgroup_clone_children_write(struct cgroup *cgrp,
  3474. struct cftype *cft,
  3475. u64 val)
  3476. {
  3477. if (val)
  3478. set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
  3479. else
  3480. clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
  3481. return 0;
  3482. }
  3483. /*
  3484. * for the common functions, 'private' gives the type of file
  3485. */
  3486. /* for hysterical raisins, we can't put this on the older files */
  3487. #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
  3488. static struct cftype files[] = {
  3489. {
  3490. .name = "tasks",
  3491. .open = cgroup_tasks_open,
  3492. .write_u64 = cgroup_tasks_write,
  3493. .release = cgroup_pidlist_release,
  3494. .mode = S_IRUGO | S_IWUSR,
  3495. },
  3496. {
  3497. .name = CGROUP_FILE_GENERIC_PREFIX "procs",
  3498. .open = cgroup_procs_open,
  3499. .write_u64 = cgroup_procs_write,
  3500. .release = cgroup_pidlist_release,
  3501. .mode = S_IRUGO | S_IWUSR,
  3502. },
  3503. {
  3504. .name = "notify_on_release",
  3505. .read_u64 = cgroup_read_notify_on_release,
  3506. .write_u64 = cgroup_write_notify_on_release,
  3507. },
  3508. {
  3509. .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
  3510. .write_string = cgroup_write_event_control,
  3511. .mode = S_IWUGO,
  3512. },
  3513. {
  3514. .name = "cgroup.clone_children",
  3515. .flags = CFTYPE_INSANE,
  3516. .read_u64 = cgroup_clone_children_read,
  3517. .write_u64 = cgroup_clone_children_write,
  3518. },
  3519. {
  3520. .name = "cgroup.sane_behavior",
  3521. .flags = CFTYPE_ONLY_ON_ROOT,
  3522. .read_seq_string = cgroup_sane_behavior_show,
  3523. },
  3524. {
  3525. .name = "release_agent",
  3526. .flags = CFTYPE_ONLY_ON_ROOT,
  3527. .read_seq_string = cgroup_release_agent_show,
  3528. .write_string = cgroup_release_agent_write,
  3529. .max_write_len = PATH_MAX,
  3530. },
  3531. { } /* terminate */
  3532. };
  3533. /**
  3534. * cgroup_populate_dir - selectively creation of files in a directory
  3535. * @cgrp: target cgroup
  3536. * @base_files: true if the base files should be added
  3537. * @subsys_mask: mask of the subsystem ids whose files should be added
  3538. */
  3539. static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
  3540. unsigned long subsys_mask)
  3541. {
  3542. int err;
  3543. struct cgroup_subsys *ss;
  3544. if (base_files) {
  3545. err = cgroup_addrm_files(cgrp, NULL, files, true);
  3546. if (err < 0)
  3547. return err;
  3548. }
  3549. /* process cftsets of each subsystem */
  3550. for_each_subsys(cgrp->root, ss) {
  3551. struct cftype_set *set;
  3552. if (!test_bit(ss->subsys_id, &subsys_mask))
  3553. continue;
  3554. list_for_each_entry(set, &ss->cftsets, node)
  3555. cgroup_addrm_files(cgrp, ss, set->cfts, true);
  3556. }
  3557. /* This cgroup is ready now */
  3558. for_each_subsys(cgrp->root, ss) {
  3559. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3560. /*
  3561. * Update id->css pointer and make this css visible from
  3562. * CSS ID functions. This pointer will be dereferened
  3563. * from RCU-read-side without locks.
  3564. */
  3565. if (css->id)
  3566. rcu_assign_pointer(css->id->css, css);
  3567. }
  3568. return 0;
  3569. }
  3570. static void css_dput_fn(struct work_struct *work)
  3571. {
  3572. struct cgroup_subsys_state *css =
  3573. container_of(work, struct cgroup_subsys_state, dput_work);
  3574. struct dentry *dentry = css->cgroup->dentry;
  3575. struct super_block *sb = dentry->d_sb;
  3576. atomic_inc(&sb->s_active);
  3577. dput(dentry);
  3578. deactivate_super(sb);
  3579. }
  3580. static void init_cgroup_css(struct cgroup_subsys_state *css,
  3581. struct cgroup_subsys *ss,
  3582. struct cgroup *cgrp)
  3583. {
  3584. css->cgroup = cgrp;
  3585. atomic_set(&css->refcnt, 1);
  3586. css->flags = 0;
  3587. css->id = NULL;
  3588. if (cgrp == dummytop)
  3589. css->flags |= CSS_ROOT;
  3590. BUG_ON(cgrp->subsys[ss->subsys_id]);
  3591. cgrp->subsys[ss->subsys_id] = css;
  3592. /*
  3593. * css holds an extra ref to @cgrp->dentry which is put on the last
  3594. * css_put(). dput() requires process context, which css_put() may
  3595. * be called without. @css->dput_work will be used to invoke
  3596. * dput() asynchronously from css_put().
  3597. */
  3598. INIT_WORK(&css->dput_work, css_dput_fn);
  3599. }
  3600. /* invoke ->post_create() on a new CSS and mark it online if successful */
  3601. static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
  3602. {
  3603. int ret = 0;
  3604. lockdep_assert_held(&cgroup_mutex);
  3605. if (ss->css_online)
  3606. ret = ss->css_online(cgrp);
  3607. if (!ret)
  3608. cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
  3609. return ret;
  3610. }
  3611. /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
  3612. static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
  3613. __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
  3614. {
  3615. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3616. lockdep_assert_held(&cgroup_mutex);
  3617. if (!(css->flags & CSS_ONLINE))
  3618. return;
  3619. if (ss->css_offline)
  3620. ss->css_offline(cgrp);
  3621. cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
  3622. }
  3623. /*
  3624. * cgroup_create - create a cgroup
  3625. * @parent: cgroup that will be parent of the new cgroup
  3626. * @dentry: dentry of the new cgroup
  3627. * @mode: mode to set on new inode
  3628. *
  3629. * Must be called with the mutex on the parent inode held
  3630. */
  3631. static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
  3632. umode_t mode)
  3633. {
  3634. struct cgroup *cgrp;
  3635. struct cgroup_name *name;
  3636. struct cgroupfs_root *root = parent->root;
  3637. int err = 0;
  3638. struct cgroup_subsys *ss;
  3639. struct super_block *sb = root->sb;
  3640. /* allocate the cgroup and its ID, 0 is reserved for the root */
  3641. cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
  3642. if (!cgrp)
  3643. return -ENOMEM;
  3644. name = cgroup_alloc_name(dentry);
  3645. if (!name)
  3646. goto err_free_cgrp;
  3647. rcu_assign_pointer(cgrp->name, name);
  3648. cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
  3649. if (cgrp->id < 0)
  3650. goto err_free_name;
  3651. /*
  3652. * Only live parents can have children. Note that the liveliness
  3653. * check isn't strictly necessary because cgroup_mkdir() and
  3654. * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
  3655. * anyway so that locking is contained inside cgroup proper and we
  3656. * don't get nasty surprises if we ever grow another caller.
  3657. */
  3658. if (!cgroup_lock_live_group(parent)) {
  3659. err = -ENODEV;
  3660. goto err_free_id;
  3661. }
  3662. /* Grab a reference on the superblock so the hierarchy doesn't
  3663. * get deleted on unmount if there are child cgroups. This
  3664. * can be done outside cgroup_mutex, since the sb can't
  3665. * disappear while someone has an open control file on the
  3666. * fs */
  3667. atomic_inc(&sb->s_active);
  3668. init_cgroup_housekeeping(cgrp);
  3669. dentry->d_fsdata = cgrp;
  3670. cgrp->dentry = dentry;
  3671. cgrp->parent = parent;
  3672. cgrp->root = parent->root;
  3673. if (notify_on_release(parent))
  3674. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  3675. if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
  3676. set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
  3677. for_each_subsys(root, ss) {
  3678. struct cgroup_subsys_state *css;
  3679. css = ss->css_alloc(cgrp);
  3680. if (IS_ERR(css)) {
  3681. err = PTR_ERR(css);
  3682. goto err_free_all;
  3683. }
  3684. init_cgroup_css(css, ss, cgrp);
  3685. if (ss->use_id) {
  3686. err = alloc_css_id(ss, parent, cgrp);
  3687. if (err)
  3688. goto err_free_all;
  3689. }
  3690. }
  3691. /*
  3692. * Create directory. cgroup_create_file() returns with the new
  3693. * directory locked on success so that it can be populated without
  3694. * dropping cgroup_mutex.
  3695. */
  3696. err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
  3697. if (err < 0)
  3698. goto err_free_all;
  3699. lockdep_assert_held(&dentry->d_inode->i_mutex);
  3700. /* allocation complete, commit to creation */
  3701. list_add_tail(&cgrp->allcg_node, &root->allcg_list);
  3702. list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
  3703. root->number_of_cgroups++;
  3704. /* each css holds a ref to the cgroup's dentry */
  3705. for_each_subsys(root, ss)
  3706. dget(dentry);
  3707. /* hold a ref to the parent's dentry */
  3708. dget(parent->dentry);
  3709. /* creation succeeded, notify subsystems */
  3710. for_each_subsys(root, ss) {
  3711. err = online_css(ss, cgrp);
  3712. if (err)
  3713. goto err_destroy;
  3714. if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
  3715. parent->parent) {
  3716. pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
  3717. current->comm, current->pid, ss->name);
  3718. if (!strcmp(ss->name, "memory"))
  3719. pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
  3720. ss->warned_broken_hierarchy = true;
  3721. }
  3722. }
  3723. err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
  3724. if (err)
  3725. goto err_destroy;
  3726. mutex_unlock(&cgroup_mutex);
  3727. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  3728. return 0;
  3729. err_free_all:
  3730. for_each_subsys(root, ss) {
  3731. if (cgrp->subsys[ss->subsys_id])
  3732. ss->css_free(cgrp);
  3733. }
  3734. mutex_unlock(&cgroup_mutex);
  3735. /* Release the reference count that we took on the superblock */
  3736. deactivate_super(sb);
  3737. err_free_id:
  3738. ida_simple_remove(&root->cgroup_ida, cgrp->id);
  3739. err_free_name:
  3740. kfree(rcu_dereference_raw(cgrp->name));
  3741. err_free_cgrp:
  3742. kfree(cgrp);
  3743. return err;
  3744. err_destroy:
  3745. cgroup_destroy_locked(cgrp);
  3746. mutex_unlock(&cgroup_mutex);
  3747. mutex_unlock(&dentry->d_inode->i_mutex);
  3748. return err;
  3749. }
  3750. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  3751. {
  3752. struct cgroup *c_parent = dentry->d_parent->d_fsdata;
  3753. /* the vfs holds inode->i_mutex already */
  3754. return cgroup_create(c_parent, dentry, mode | S_IFDIR);
  3755. }
  3756. static int cgroup_destroy_locked(struct cgroup *cgrp)
  3757. __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
  3758. {
  3759. struct dentry *d = cgrp->dentry;
  3760. struct cgroup *parent = cgrp->parent;
  3761. struct cgroup_event *event, *tmp;
  3762. struct cgroup_subsys *ss;
  3763. lockdep_assert_held(&d->d_inode->i_mutex);
  3764. lockdep_assert_held(&cgroup_mutex);
  3765. if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children))
  3766. return -EBUSY;
  3767. /*
  3768. * Block new css_tryget() by deactivating refcnt and mark @cgrp
  3769. * removed. This makes future css_tryget() and child creation
  3770. * attempts fail thus maintaining the removal conditions verified
  3771. * above.
  3772. */
  3773. for_each_subsys(cgrp->root, ss) {
  3774. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3775. WARN_ON(atomic_read(&css->refcnt) < 0);
  3776. atomic_add(CSS_DEACT_BIAS, &css->refcnt);
  3777. }
  3778. set_bit(CGRP_REMOVED, &cgrp->flags);
  3779. /* tell subsystems to initate destruction */
  3780. for_each_subsys(cgrp->root, ss)
  3781. offline_css(ss, cgrp);
  3782. /*
  3783. * Put all the base refs. Each css holds an extra reference to the
  3784. * cgroup's dentry and cgroup removal proceeds regardless of css
  3785. * refs. On the last put of each css, whenever that may be, the
  3786. * extra dentry ref is put so that dentry destruction happens only
  3787. * after all css's are released.
  3788. */
  3789. for_each_subsys(cgrp->root, ss)
  3790. css_put(cgrp->subsys[ss->subsys_id]);
  3791. raw_spin_lock(&release_list_lock);
  3792. if (!list_empty(&cgrp->release_list))
  3793. list_del_init(&cgrp->release_list);
  3794. raw_spin_unlock(&release_list_lock);
  3795. /* delete this cgroup from parent->children */
  3796. list_del_rcu(&cgrp->sibling);
  3797. list_del_init(&cgrp->allcg_node);
  3798. dget(d);
  3799. cgroup_d_remove_dir(d);
  3800. dput(d);
  3801. set_bit(CGRP_RELEASABLE, &parent->flags);
  3802. check_for_release(parent);
  3803. /*
  3804. * Unregister events and notify userspace.
  3805. * Notify userspace about cgroup removing only after rmdir of cgroup
  3806. * directory to avoid race between userspace and kernelspace.
  3807. */
  3808. spin_lock(&cgrp->event_list_lock);
  3809. list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
  3810. list_del_init(&event->list);
  3811. schedule_work(&event->remove);
  3812. }
  3813. spin_unlock(&cgrp->event_list_lock);
  3814. return 0;
  3815. }
  3816. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
  3817. {
  3818. int ret;
  3819. mutex_lock(&cgroup_mutex);
  3820. ret = cgroup_destroy_locked(dentry->d_fsdata);
  3821. mutex_unlock(&cgroup_mutex);
  3822. return ret;
  3823. }
  3824. static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
  3825. {
  3826. INIT_LIST_HEAD(&ss->cftsets);
  3827. /*
  3828. * base_cftset is embedded in subsys itself, no need to worry about
  3829. * deregistration.
  3830. */
  3831. if (ss->base_cftypes) {
  3832. ss->base_cftset.cfts = ss->base_cftypes;
  3833. list_add_tail(&ss->base_cftset.node, &ss->cftsets);
  3834. }
  3835. }
  3836. static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
  3837. {
  3838. struct cgroup_subsys_state *css;
  3839. printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
  3840. mutex_lock(&cgroup_mutex);
  3841. /* init base cftset */
  3842. cgroup_init_cftsets(ss);
  3843. /* Create the top cgroup state for this subsystem */
  3844. list_add(&ss->sibling, &rootnode.subsys_list);
  3845. ss->root = &rootnode;
  3846. css = ss->css_alloc(dummytop);
  3847. /* We don't handle early failures gracefully */
  3848. BUG_ON(IS_ERR(css));
  3849. init_cgroup_css(css, ss, dummytop);
  3850. /* Update the init_css_set to contain a subsys
  3851. * pointer to this state - since the subsystem is
  3852. * newly registered, all tasks and hence the
  3853. * init_css_set is in the subsystem's top cgroup. */
  3854. init_css_set.subsys[ss->subsys_id] = css;
  3855. need_forkexit_callback |= ss->fork || ss->exit;
  3856. /* At system boot, before all subsystems have been
  3857. * registered, no tasks have been forked, so we don't
  3858. * need to invoke fork callbacks here. */
  3859. BUG_ON(!list_empty(&init_task.tasks));
  3860. BUG_ON(online_css(ss, dummytop));
  3861. mutex_unlock(&cgroup_mutex);
  3862. /* this function shouldn't be used with modular subsystems, since they
  3863. * need to register a subsys_id, among other things */
  3864. BUG_ON(ss->module);
  3865. }
  3866. /**
  3867. * cgroup_load_subsys: load and register a modular subsystem at runtime
  3868. * @ss: the subsystem to load
  3869. *
  3870. * This function should be called in a modular subsystem's initcall. If the
  3871. * subsystem is built as a module, it will be assigned a new subsys_id and set
  3872. * up for use. If the subsystem is built-in anyway, work is delegated to the
  3873. * simpler cgroup_init_subsys.
  3874. */
  3875. int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
  3876. {
  3877. struct cgroup_subsys_state *css;
  3878. int i, ret;
  3879. struct hlist_node *tmp;
  3880. struct css_set *cg;
  3881. unsigned long key;
  3882. /* check name and function validity */
  3883. if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
  3884. ss->css_alloc == NULL || ss->css_free == NULL)
  3885. return -EINVAL;
  3886. /*
  3887. * we don't support callbacks in modular subsystems. this check is
  3888. * before the ss->module check for consistency; a subsystem that could
  3889. * be a module should still have no callbacks even if the user isn't
  3890. * compiling it as one.
  3891. */
  3892. if (ss->fork || ss->exit)
  3893. return -EINVAL;
  3894. /*
  3895. * an optionally modular subsystem is built-in: we want to do nothing,
  3896. * since cgroup_init_subsys will have already taken care of it.
  3897. */
  3898. if (ss->module == NULL) {
  3899. /* a sanity check */
  3900. BUG_ON(subsys[ss->subsys_id] != ss);
  3901. return 0;
  3902. }
  3903. /* init base cftset */
  3904. cgroup_init_cftsets(ss);
  3905. mutex_lock(&cgroup_mutex);
  3906. subsys[ss->subsys_id] = ss;
  3907. /*
  3908. * no ss->css_alloc seems to need anything important in the ss
  3909. * struct, so this can happen first (i.e. before the rootnode
  3910. * attachment).
  3911. */
  3912. css = ss->css_alloc(dummytop);
  3913. if (IS_ERR(css)) {
  3914. /* failure case - need to deassign the subsys[] slot. */
  3915. subsys[ss->subsys_id] = NULL;
  3916. mutex_unlock(&cgroup_mutex);
  3917. return PTR_ERR(css);
  3918. }
  3919. list_add(&ss->sibling, &rootnode.subsys_list);
  3920. ss->root = &rootnode;
  3921. /* our new subsystem will be attached to the dummy hierarchy. */
  3922. init_cgroup_css(css, ss, dummytop);
  3923. /* init_idr must be after init_cgroup_css because it sets css->id. */
  3924. if (ss->use_id) {
  3925. ret = cgroup_init_idr(ss, css);
  3926. if (ret)
  3927. goto err_unload;
  3928. }
  3929. /*
  3930. * Now we need to entangle the css into the existing css_sets. unlike
  3931. * in cgroup_init_subsys, there are now multiple css_sets, so each one
  3932. * will need a new pointer to it; done by iterating the css_set_table.
  3933. * furthermore, modifying the existing css_sets will corrupt the hash
  3934. * table state, so each changed css_set will need its hash recomputed.
  3935. * this is all done under the css_set_lock.
  3936. */
  3937. write_lock(&css_set_lock);
  3938. hash_for_each_safe(css_set_table, i, tmp, cg, hlist) {
  3939. /* skip entries that we already rehashed */
  3940. if (cg->subsys[ss->subsys_id])
  3941. continue;
  3942. /* remove existing entry */
  3943. hash_del(&cg->hlist);
  3944. /* set new value */
  3945. cg->subsys[ss->subsys_id] = css;
  3946. /* recompute hash and restore entry */
  3947. key = css_set_hash(cg->subsys);
  3948. hash_add(css_set_table, &cg->hlist, key);
  3949. }
  3950. write_unlock(&css_set_lock);
  3951. ret = online_css(ss, dummytop);
  3952. if (ret)
  3953. goto err_unload;
  3954. /* success! */
  3955. mutex_unlock(&cgroup_mutex);
  3956. return 0;
  3957. err_unload:
  3958. mutex_unlock(&cgroup_mutex);
  3959. /* @ss can't be mounted here as try_module_get() would fail */
  3960. cgroup_unload_subsys(ss);
  3961. return ret;
  3962. }
  3963. EXPORT_SYMBOL_GPL(cgroup_load_subsys);
  3964. /**
  3965. * cgroup_unload_subsys: unload a modular subsystem
  3966. * @ss: the subsystem to unload
  3967. *
  3968. * This function should be called in a modular subsystem's exitcall. When this
  3969. * function is invoked, the refcount on the subsystem's module will be 0, so
  3970. * the subsystem will not be attached to any hierarchy.
  3971. */
  3972. void cgroup_unload_subsys(struct cgroup_subsys *ss)
  3973. {
  3974. struct cg_cgroup_link *link;
  3975. BUG_ON(ss->module == NULL);
  3976. /*
  3977. * we shouldn't be called if the subsystem is in use, and the use of
  3978. * try_module_get in parse_cgroupfs_options should ensure that it
  3979. * doesn't start being used while we're killing it off.
  3980. */
  3981. BUG_ON(ss->root != &rootnode);
  3982. mutex_lock(&cgroup_mutex);
  3983. offline_css(ss, dummytop);
  3984. if (ss->use_id)
  3985. idr_destroy(&ss->idr);
  3986. /* deassign the subsys_id */
  3987. subsys[ss->subsys_id] = NULL;
  3988. /* remove subsystem from rootnode's list of subsystems */
  3989. list_del_init(&ss->sibling);
  3990. /*
  3991. * disentangle the css from all css_sets attached to the dummytop. as
  3992. * in loading, we need to pay our respects to the hashtable gods.
  3993. */
  3994. write_lock(&css_set_lock);
  3995. list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
  3996. struct css_set *cg = link->cg;
  3997. unsigned long key;
  3998. hash_del(&cg->hlist);
  3999. cg->subsys[ss->subsys_id] = NULL;
  4000. key = css_set_hash(cg->subsys);
  4001. hash_add(css_set_table, &cg->hlist, key);
  4002. }
  4003. write_unlock(&css_set_lock);
  4004. /*
  4005. * remove subsystem's css from the dummytop and free it - need to
  4006. * free before marking as null because ss->css_free needs the
  4007. * cgrp->subsys pointer to find their state. note that this also
  4008. * takes care of freeing the css_id.
  4009. */
  4010. ss->css_free(dummytop);
  4011. dummytop->subsys[ss->subsys_id] = NULL;
  4012. mutex_unlock(&cgroup_mutex);
  4013. }
  4014. EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
  4015. /**
  4016. * cgroup_init_early - cgroup initialization at system boot
  4017. *
  4018. * Initialize cgroups at system boot, and initialize any
  4019. * subsystems that request early init.
  4020. */
  4021. int __init cgroup_init_early(void)
  4022. {
  4023. int i;
  4024. atomic_set(&init_css_set.refcount, 1);
  4025. INIT_LIST_HEAD(&init_css_set.cg_links);
  4026. INIT_LIST_HEAD(&init_css_set.tasks);
  4027. INIT_HLIST_NODE(&init_css_set.hlist);
  4028. css_set_count = 1;
  4029. init_cgroup_root(&rootnode);
  4030. root_count = 1;
  4031. init_task.cgroups = &init_css_set;
  4032. init_css_set_link.cg = &init_css_set;
  4033. init_css_set_link.cgrp = dummytop;
  4034. list_add(&init_css_set_link.cgrp_link_list,
  4035. &rootnode.top_cgroup.css_sets);
  4036. list_add(&init_css_set_link.cg_link_list,
  4037. &init_css_set.cg_links);
  4038. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  4039. struct cgroup_subsys *ss = subsys[i];
  4040. /* at bootup time, we don't worry about modular subsystems */
  4041. if (!ss || ss->module)
  4042. continue;
  4043. BUG_ON(!ss->name);
  4044. BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
  4045. BUG_ON(!ss->css_alloc);
  4046. BUG_ON(!ss->css_free);
  4047. if (ss->subsys_id != i) {
  4048. printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
  4049. ss->name, ss->subsys_id);
  4050. BUG();
  4051. }
  4052. if (ss->early_init)
  4053. cgroup_init_subsys(ss);
  4054. }
  4055. return 0;
  4056. }
  4057. /**
  4058. * cgroup_init - cgroup initialization
  4059. *
  4060. * Register cgroup filesystem and /proc file, and initialize
  4061. * any subsystems that didn't request early init.
  4062. */
  4063. int __init cgroup_init(void)
  4064. {
  4065. int err;
  4066. int i;
  4067. unsigned long key;
  4068. err = bdi_init(&cgroup_backing_dev_info);
  4069. if (err)
  4070. return err;
  4071. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  4072. struct cgroup_subsys *ss = subsys[i];
  4073. /* at bootup time, we don't worry about modular subsystems */
  4074. if (!ss || ss->module)
  4075. continue;
  4076. if (!ss->early_init)
  4077. cgroup_init_subsys(ss);
  4078. if (ss->use_id)
  4079. cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
  4080. }
  4081. /* Add init_css_set to the hash table */
  4082. key = css_set_hash(init_css_set.subsys);
  4083. hash_add(css_set_table, &init_css_set.hlist, key);
  4084. /* allocate id for the dummy hierarchy */
  4085. mutex_lock(&cgroup_mutex);
  4086. mutex_lock(&cgroup_root_mutex);
  4087. BUG_ON(cgroup_init_root_id(&rootnode));
  4088. mutex_unlock(&cgroup_root_mutex);
  4089. mutex_unlock(&cgroup_mutex);
  4090. cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
  4091. if (!cgroup_kobj) {
  4092. err = -ENOMEM;
  4093. goto out;
  4094. }
  4095. err = register_filesystem(&cgroup_fs_type);
  4096. if (err < 0) {
  4097. kobject_put(cgroup_kobj);
  4098. goto out;
  4099. }
  4100. proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
  4101. out:
  4102. if (err)
  4103. bdi_destroy(&cgroup_backing_dev_info);
  4104. return err;
  4105. }
  4106. /*
  4107. * proc_cgroup_show()
  4108. * - Print task's cgroup paths into seq_file, one line for each hierarchy
  4109. * - Used for /proc/<pid>/cgroup.
  4110. * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
  4111. * doesn't really matter if tsk->cgroup changes after we read it,
  4112. * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
  4113. * anyway. No need to check that tsk->cgroup != NULL, thanks to
  4114. * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
  4115. * cgroup to top_cgroup.
  4116. */
  4117. /* TODO: Use a proper seq_file iterator */
  4118. int proc_cgroup_show(struct seq_file *m, void *v)
  4119. {
  4120. struct pid *pid;
  4121. struct task_struct *tsk;
  4122. char *buf;
  4123. int retval;
  4124. struct cgroupfs_root *root;
  4125. retval = -ENOMEM;
  4126. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  4127. if (!buf)
  4128. goto out;
  4129. retval = -ESRCH;
  4130. pid = m->private;
  4131. tsk = get_pid_task(pid, PIDTYPE_PID);
  4132. if (!tsk)
  4133. goto out_free;
  4134. retval = 0;
  4135. mutex_lock(&cgroup_mutex);
  4136. for_each_active_root(root) {
  4137. struct cgroup_subsys *ss;
  4138. struct cgroup *cgrp;
  4139. int count = 0;
  4140. seq_printf(m, "%d:", root->hierarchy_id);
  4141. for_each_subsys(root, ss)
  4142. seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
  4143. if (strlen(root->name))
  4144. seq_printf(m, "%sname=%s", count ? "," : "",
  4145. root->name);
  4146. seq_putc(m, ':');
  4147. cgrp = task_cgroup_from_root(tsk, root);
  4148. retval = cgroup_path(cgrp, buf, PAGE_SIZE);
  4149. if (retval < 0)
  4150. goto out_unlock;
  4151. seq_puts(m, buf);
  4152. seq_putc(m, '\n');
  4153. }
  4154. out_unlock:
  4155. mutex_unlock(&cgroup_mutex);
  4156. put_task_struct(tsk);
  4157. out_free:
  4158. kfree(buf);
  4159. out:
  4160. return retval;
  4161. }
  4162. /* Display information about each subsystem and each hierarchy */
  4163. static int proc_cgroupstats_show(struct seq_file *m, void *v)
  4164. {
  4165. int i;
  4166. seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
  4167. /*
  4168. * ideally we don't want subsystems moving around while we do this.
  4169. * cgroup_mutex is also necessary to guarantee an atomic snapshot of
  4170. * subsys/hierarchy state.
  4171. */
  4172. mutex_lock(&cgroup_mutex);
  4173. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  4174. struct cgroup_subsys *ss = subsys[i];
  4175. if (ss == NULL)
  4176. continue;
  4177. seq_printf(m, "%s\t%d\t%d\t%d\n",
  4178. ss->name, ss->root->hierarchy_id,
  4179. ss->root->number_of_cgroups, !ss->disabled);
  4180. }
  4181. mutex_unlock(&cgroup_mutex);
  4182. return 0;
  4183. }
  4184. static int cgroupstats_open(struct inode *inode, struct file *file)
  4185. {
  4186. return single_open(file, proc_cgroupstats_show, NULL);
  4187. }
  4188. static const struct file_operations proc_cgroupstats_operations = {
  4189. .open = cgroupstats_open,
  4190. .read = seq_read,
  4191. .llseek = seq_lseek,
  4192. .release = single_release,
  4193. };
  4194. /**
  4195. * cgroup_fork - attach newly forked task to its parents cgroup.
  4196. * @child: pointer to task_struct of forking parent process.
  4197. *
  4198. * Description: A task inherits its parent's cgroup at fork().
  4199. *
  4200. * A pointer to the shared css_set was automatically copied in
  4201. * fork.c by dup_task_struct(). However, we ignore that copy, since
  4202. * it was not made under the protection of RCU or cgroup_mutex, so
  4203. * might no longer be a valid cgroup pointer. cgroup_attach_task() might
  4204. * have already changed current->cgroups, allowing the previously
  4205. * referenced cgroup group to be removed and freed.
  4206. *
  4207. * At the point that cgroup_fork() is called, 'current' is the parent
  4208. * task, and the passed argument 'child' points to the child task.
  4209. */
  4210. void cgroup_fork(struct task_struct *child)
  4211. {
  4212. task_lock(current);
  4213. child->cgroups = current->cgroups;
  4214. get_css_set(child->cgroups);
  4215. task_unlock(current);
  4216. INIT_LIST_HEAD(&child->cg_list);
  4217. }
  4218. /**
  4219. * cgroup_post_fork - called on a new task after adding it to the task list
  4220. * @child: the task in question
  4221. *
  4222. * Adds the task to the list running through its css_set if necessary and
  4223. * call the subsystem fork() callbacks. Has to be after the task is
  4224. * visible on the task list in case we race with the first call to
  4225. * cgroup_iter_start() - to guarantee that the new task ends up on its
  4226. * list.
  4227. */
  4228. void cgroup_post_fork(struct task_struct *child)
  4229. {
  4230. int i;
  4231. /*
  4232. * use_task_css_set_links is set to 1 before we walk the tasklist
  4233. * under the tasklist_lock and we read it here after we added the child
  4234. * to the tasklist under the tasklist_lock as well. If the child wasn't
  4235. * yet in the tasklist when we walked through it from
  4236. * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
  4237. * should be visible now due to the paired locking and barriers implied
  4238. * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
  4239. * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
  4240. * lock on fork.
  4241. */
  4242. if (use_task_css_set_links) {
  4243. write_lock(&css_set_lock);
  4244. task_lock(child);
  4245. if (list_empty(&child->cg_list))
  4246. list_add(&child->cg_list, &child->cgroups->tasks);
  4247. task_unlock(child);
  4248. write_unlock(&css_set_lock);
  4249. }
  4250. /*
  4251. * Call ss->fork(). This must happen after @child is linked on
  4252. * css_set; otherwise, @child might change state between ->fork()
  4253. * and addition to css_set.
  4254. */
  4255. if (need_forkexit_callback) {
  4256. /*
  4257. * fork/exit callbacks are supported only for builtin
  4258. * subsystems, and the builtin section of the subsys
  4259. * array is immutable, so we don't need to lock the
  4260. * subsys array here. On the other hand, modular section
  4261. * of the array can be freed at module unload, so we
  4262. * can't touch that.
  4263. */
  4264. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  4265. struct cgroup_subsys *ss = subsys[i];
  4266. if (ss->fork)
  4267. ss->fork(child);
  4268. }
  4269. }
  4270. }
  4271. /**
  4272. * cgroup_exit - detach cgroup from exiting task
  4273. * @tsk: pointer to task_struct of exiting process
  4274. * @run_callback: run exit callbacks?
  4275. *
  4276. * Description: Detach cgroup from @tsk and release it.
  4277. *
  4278. * Note that cgroups marked notify_on_release force every task in
  4279. * them to take the global cgroup_mutex mutex when exiting.
  4280. * This could impact scaling on very large systems. Be reluctant to
  4281. * use notify_on_release cgroups where very high task exit scaling
  4282. * is required on large systems.
  4283. *
  4284. * the_top_cgroup_hack:
  4285. *
  4286. * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
  4287. *
  4288. * We call cgroup_exit() while the task is still competent to
  4289. * handle notify_on_release(), then leave the task attached to the
  4290. * root cgroup in each hierarchy for the remainder of its exit.
  4291. *
  4292. * To do this properly, we would increment the reference count on
  4293. * top_cgroup, and near the very end of the kernel/exit.c do_exit()
  4294. * code we would add a second cgroup function call, to drop that
  4295. * reference. This would just create an unnecessary hot spot on
  4296. * the top_cgroup reference count, to no avail.
  4297. *
  4298. * Normally, holding a reference to a cgroup without bumping its
  4299. * count is unsafe. The cgroup could go away, or someone could
  4300. * attach us to a different cgroup, decrementing the count on
  4301. * the first cgroup that we never incremented. But in this case,
  4302. * top_cgroup isn't going away, and either task has PF_EXITING set,
  4303. * which wards off any cgroup_attach_task() attempts, or task is a failed
  4304. * fork, never visible to cgroup_attach_task.
  4305. */
  4306. void cgroup_exit(struct task_struct *tsk, int run_callbacks)
  4307. {
  4308. struct css_set *cg;
  4309. int i;
  4310. /*
  4311. * Unlink from the css_set task list if necessary.
  4312. * Optimistically check cg_list before taking
  4313. * css_set_lock
  4314. */
  4315. if (!list_empty(&tsk->cg_list)) {
  4316. write_lock(&css_set_lock);
  4317. if (!list_empty(&tsk->cg_list))
  4318. list_del_init(&tsk->cg_list);
  4319. write_unlock(&css_set_lock);
  4320. }
  4321. /* Reassign the task to the init_css_set. */
  4322. task_lock(tsk);
  4323. cg = tsk->cgroups;
  4324. tsk->cgroups = &init_css_set;
  4325. if (run_callbacks && need_forkexit_callback) {
  4326. /*
  4327. * fork/exit callbacks are supported only for builtin
  4328. * subsystems, see cgroup_post_fork() for details.
  4329. */
  4330. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  4331. struct cgroup_subsys *ss = subsys[i];
  4332. if (ss->exit) {
  4333. struct cgroup *old_cgrp =
  4334. rcu_dereference_raw(cg->subsys[i])->cgroup;
  4335. struct cgroup *cgrp = task_cgroup(tsk, i);
  4336. ss->exit(cgrp, old_cgrp, tsk);
  4337. }
  4338. }
  4339. }
  4340. task_unlock(tsk);
  4341. put_css_set_taskexit(cg);
  4342. }
  4343. static void check_for_release(struct cgroup *cgrp)
  4344. {
  4345. /* All of these checks rely on RCU to keep the cgroup
  4346. * structure alive */
  4347. if (cgroup_is_releasable(cgrp) &&
  4348. !atomic_read(&cgrp->count) && list_empty(&cgrp->children)) {
  4349. /*
  4350. * Control Group is currently removeable. If it's not
  4351. * already queued for a userspace notification, queue
  4352. * it now
  4353. */
  4354. int need_schedule_work = 0;
  4355. raw_spin_lock(&release_list_lock);
  4356. if (!cgroup_is_removed(cgrp) &&
  4357. list_empty(&cgrp->release_list)) {
  4358. list_add(&cgrp->release_list, &release_list);
  4359. need_schedule_work = 1;
  4360. }
  4361. raw_spin_unlock(&release_list_lock);
  4362. if (need_schedule_work)
  4363. schedule_work(&release_agent_work);
  4364. }
  4365. }
  4366. /* Caller must verify that the css is not for root cgroup */
  4367. bool __css_tryget(struct cgroup_subsys_state *css)
  4368. {
  4369. while (true) {
  4370. int t, v;
  4371. v = css_refcnt(css);
  4372. t = atomic_cmpxchg(&css->refcnt, v, v + 1);
  4373. if (likely(t == v))
  4374. return true;
  4375. else if (t < 0)
  4376. return false;
  4377. cpu_relax();
  4378. }
  4379. }
  4380. EXPORT_SYMBOL_GPL(__css_tryget);
  4381. /* Caller must verify that the css is not for root cgroup */
  4382. void __css_put(struct cgroup_subsys_state *css)
  4383. {
  4384. int v;
  4385. v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
  4386. if (v == 0)
  4387. schedule_work(&css->dput_work);
  4388. }
  4389. EXPORT_SYMBOL_GPL(__css_put);
  4390. /*
  4391. * Notify userspace when a cgroup is released, by running the
  4392. * configured release agent with the name of the cgroup (path
  4393. * relative to the root of cgroup file system) as the argument.
  4394. *
  4395. * Most likely, this user command will try to rmdir this cgroup.
  4396. *
  4397. * This races with the possibility that some other task will be
  4398. * attached to this cgroup before it is removed, or that some other
  4399. * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
  4400. * The presumed 'rmdir' will fail quietly if this cgroup is no longer
  4401. * unused, and this cgroup will be reprieved from its death sentence,
  4402. * to continue to serve a useful existence. Next time it's released,
  4403. * we will get notified again, if it still has 'notify_on_release' set.
  4404. *
  4405. * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
  4406. * means only wait until the task is successfully execve()'d. The
  4407. * separate release agent task is forked by call_usermodehelper(),
  4408. * then control in this thread returns here, without waiting for the
  4409. * release agent task. We don't bother to wait because the caller of
  4410. * this routine has no use for the exit status of the release agent
  4411. * task, so no sense holding our caller up for that.
  4412. */
  4413. static void cgroup_release_agent(struct work_struct *work)
  4414. {
  4415. BUG_ON(work != &release_agent_work);
  4416. mutex_lock(&cgroup_mutex);
  4417. raw_spin_lock(&release_list_lock);
  4418. while (!list_empty(&release_list)) {
  4419. char *argv[3], *envp[3];
  4420. int i;
  4421. char *pathbuf = NULL, *agentbuf = NULL;
  4422. struct cgroup *cgrp = list_entry(release_list.next,
  4423. struct cgroup,
  4424. release_list);
  4425. list_del_init(&cgrp->release_list);
  4426. raw_spin_unlock(&release_list_lock);
  4427. pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  4428. if (!pathbuf)
  4429. goto continue_free;
  4430. if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
  4431. goto continue_free;
  4432. agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
  4433. if (!agentbuf)
  4434. goto continue_free;
  4435. i = 0;
  4436. argv[i++] = agentbuf;
  4437. argv[i++] = pathbuf;
  4438. argv[i] = NULL;
  4439. i = 0;
  4440. /* minimal command environment */
  4441. envp[i++] = "HOME=/";
  4442. envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
  4443. envp[i] = NULL;
  4444. /* Drop the lock while we invoke the usermode helper,
  4445. * since the exec could involve hitting disk and hence
  4446. * be a slow process */
  4447. mutex_unlock(&cgroup_mutex);
  4448. call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
  4449. mutex_lock(&cgroup_mutex);
  4450. continue_free:
  4451. kfree(pathbuf);
  4452. kfree(agentbuf);
  4453. raw_spin_lock(&release_list_lock);
  4454. }
  4455. raw_spin_unlock(&release_list_lock);
  4456. mutex_unlock(&cgroup_mutex);
  4457. }
  4458. static int __init cgroup_disable(char *str)
  4459. {
  4460. int i;
  4461. char *token;
  4462. while ((token = strsep(&str, ",")) != NULL) {
  4463. if (!*token)
  4464. continue;
  4465. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  4466. struct cgroup_subsys *ss = subsys[i];
  4467. /*
  4468. * cgroup_disable, being at boot time, can't
  4469. * know about module subsystems, so we don't
  4470. * worry about them.
  4471. */
  4472. if (!ss || ss->module)
  4473. continue;
  4474. if (!strcmp(token, ss->name)) {
  4475. ss->disabled = 1;
  4476. printk(KERN_INFO "Disabling %s control group"
  4477. " subsystem\n", ss->name);
  4478. break;
  4479. }
  4480. }
  4481. }
  4482. return 1;
  4483. }
  4484. __setup("cgroup_disable=", cgroup_disable);
  4485. /*
  4486. * Functons for CSS ID.
  4487. */
  4488. /*
  4489. *To get ID other than 0, this should be called when !cgroup_is_removed().
  4490. */
  4491. unsigned short css_id(struct cgroup_subsys_state *css)
  4492. {
  4493. struct css_id *cssid;
  4494. /*
  4495. * This css_id() can return correct value when somone has refcnt
  4496. * on this or this is under rcu_read_lock(). Once css->id is allocated,
  4497. * it's unchanged until freed.
  4498. */
  4499. cssid = rcu_dereference_check(css->id, css_refcnt(css));
  4500. if (cssid)
  4501. return cssid->id;
  4502. return 0;
  4503. }
  4504. EXPORT_SYMBOL_GPL(css_id);
  4505. unsigned short css_depth(struct cgroup_subsys_state *css)
  4506. {
  4507. struct css_id *cssid;
  4508. cssid = rcu_dereference_check(css->id, css_refcnt(css));
  4509. if (cssid)
  4510. return cssid->depth;
  4511. return 0;
  4512. }
  4513. EXPORT_SYMBOL_GPL(css_depth);
  4514. /**
  4515. * css_is_ancestor - test "root" css is an ancestor of "child"
  4516. * @child: the css to be tested.
  4517. * @root: the css supporsed to be an ancestor of the child.
  4518. *
  4519. * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
  4520. * this function reads css->id, the caller must hold rcu_read_lock().
  4521. * But, considering usual usage, the csses should be valid objects after test.
  4522. * Assuming that the caller will do some action to the child if this returns
  4523. * returns true, the caller must take "child";s reference count.
  4524. * If "child" is valid object and this returns true, "root" is valid, too.
  4525. */
  4526. bool css_is_ancestor(struct cgroup_subsys_state *child,
  4527. const struct cgroup_subsys_state *root)
  4528. {
  4529. struct css_id *child_id;
  4530. struct css_id *root_id;
  4531. child_id = rcu_dereference(child->id);
  4532. if (!child_id)
  4533. return false;
  4534. root_id = rcu_dereference(root->id);
  4535. if (!root_id)
  4536. return false;
  4537. if (child_id->depth < root_id->depth)
  4538. return false;
  4539. if (child_id->stack[root_id->depth] != root_id->id)
  4540. return false;
  4541. return true;
  4542. }
  4543. void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
  4544. {
  4545. struct css_id *id = css->id;
  4546. /* When this is called before css_id initialization, id can be NULL */
  4547. if (!id)
  4548. return;
  4549. BUG_ON(!ss->use_id);
  4550. rcu_assign_pointer(id->css, NULL);
  4551. rcu_assign_pointer(css->id, NULL);
  4552. spin_lock(&ss->id_lock);
  4553. idr_remove(&ss->idr, id->id);
  4554. spin_unlock(&ss->id_lock);
  4555. kfree_rcu(id, rcu_head);
  4556. }
  4557. EXPORT_SYMBOL_GPL(free_css_id);
  4558. /*
  4559. * This is called by init or create(). Then, calls to this function are
  4560. * always serialized (By cgroup_mutex() at create()).
  4561. */
  4562. static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
  4563. {
  4564. struct css_id *newid;
  4565. int ret, size;
  4566. BUG_ON(!ss->use_id);
  4567. size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
  4568. newid = kzalloc(size, GFP_KERNEL);
  4569. if (!newid)
  4570. return ERR_PTR(-ENOMEM);
  4571. idr_preload(GFP_KERNEL);
  4572. spin_lock(&ss->id_lock);
  4573. /* Don't use 0. allocates an ID of 1-65535 */
  4574. ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
  4575. spin_unlock(&ss->id_lock);
  4576. idr_preload_end();
  4577. /* Returns error when there are no free spaces for new ID.*/
  4578. if (ret < 0)
  4579. goto err_out;
  4580. newid->id = ret;
  4581. newid->depth = depth;
  4582. return newid;
  4583. err_out:
  4584. kfree(newid);
  4585. return ERR_PTR(ret);
  4586. }
  4587. static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
  4588. struct cgroup_subsys_state *rootcss)
  4589. {
  4590. struct css_id *newid;
  4591. spin_lock_init(&ss->id_lock);
  4592. idr_init(&ss->idr);
  4593. newid = get_new_cssid(ss, 0);
  4594. if (IS_ERR(newid))
  4595. return PTR_ERR(newid);
  4596. newid->stack[0] = newid->id;
  4597. newid->css = rootcss;
  4598. rootcss->id = newid;
  4599. return 0;
  4600. }
  4601. static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
  4602. struct cgroup *child)
  4603. {
  4604. int subsys_id, i, depth = 0;
  4605. struct cgroup_subsys_state *parent_css, *child_css;
  4606. struct css_id *child_id, *parent_id;
  4607. subsys_id = ss->subsys_id;
  4608. parent_css = parent->subsys[subsys_id];
  4609. child_css = child->subsys[subsys_id];
  4610. parent_id = parent_css->id;
  4611. depth = parent_id->depth + 1;
  4612. child_id = get_new_cssid(ss, depth);
  4613. if (IS_ERR(child_id))
  4614. return PTR_ERR(child_id);
  4615. for (i = 0; i < depth; i++)
  4616. child_id->stack[i] = parent_id->stack[i];
  4617. child_id->stack[depth] = child_id->id;
  4618. /*
  4619. * child_id->css pointer will be set after this cgroup is available
  4620. * see cgroup_populate_dir()
  4621. */
  4622. rcu_assign_pointer(child_css->id, child_id);
  4623. return 0;
  4624. }
  4625. /**
  4626. * css_lookup - lookup css by id
  4627. * @ss: cgroup subsys to be looked into.
  4628. * @id: the id
  4629. *
  4630. * Returns pointer to cgroup_subsys_state if there is valid one with id.
  4631. * NULL if not. Should be called under rcu_read_lock()
  4632. */
  4633. struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
  4634. {
  4635. struct css_id *cssid = NULL;
  4636. BUG_ON(!ss->use_id);
  4637. cssid = idr_find(&ss->idr, id);
  4638. if (unlikely(!cssid))
  4639. return NULL;
  4640. return rcu_dereference(cssid->css);
  4641. }
  4642. EXPORT_SYMBOL_GPL(css_lookup);
  4643. /*
  4644. * get corresponding css from file open on cgroupfs directory
  4645. */
  4646. struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
  4647. {
  4648. struct cgroup *cgrp;
  4649. struct inode *inode;
  4650. struct cgroup_subsys_state *css;
  4651. inode = file_inode(f);
  4652. /* check in cgroup filesystem dir */
  4653. if (inode->i_op != &cgroup_dir_inode_operations)
  4654. return ERR_PTR(-EBADF);
  4655. if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
  4656. return ERR_PTR(-EINVAL);
  4657. /* get cgroup */
  4658. cgrp = __d_cgrp(f->f_dentry);
  4659. css = cgrp->subsys[id];
  4660. return css ? css : ERR_PTR(-ENOENT);
  4661. }
  4662. #ifdef CONFIG_CGROUP_DEBUG
  4663. static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
  4664. {
  4665. struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
  4666. if (!css)
  4667. return ERR_PTR(-ENOMEM);
  4668. return css;
  4669. }
  4670. static void debug_css_free(struct cgroup *cont)
  4671. {
  4672. kfree(cont->subsys[debug_subsys_id]);
  4673. }
  4674. static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
  4675. {
  4676. return atomic_read(&cont->count);
  4677. }
  4678. static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
  4679. {
  4680. return cgroup_task_count(cont);
  4681. }
  4682. static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
  4683. {
  4684. return (u64)(unsigned long)current->cgroups;
  4685. }
  4686. static u64 current_css_set_refcount_read(struct cgroup *cont,
  4687. struct cftype *cft)
  4688. {
  4689. u64 count;
  4690. rcu_read_lock();
  4691. count = atomic_read(&current->cgroups->refcount);
  4692. rcu_read_unlock();
  4693. return count;
  4694. }
  4695. static int current_css_set_cg_links_read(struct cgroup *cont,
  4696. struct cftype *cft,
  4697. struct seq_file *seq)
  4698. {
  4699. struct cg_cgroup_link *link;
  4700. struct css_set *cg;
  4701. read_lock(&css_set_lock);
  4702. rcu_read_lock();
  4703. cg = rcu_dereference(current->cgroups);
  4704. list_for_each_entry(link, &cg->cg_links, cg_link_list) {
  4705. struct cgroup *c = link->cgrp;
  4706. const char *name;
  4707. if (c->dentry)
  4708. name = c->dentry->d_name.name;
  4709. else
  4710. name = "?";
  4711. seq_printf(seq, "Root %d group %s\n",
  4712. c->root->hierarchy_id, name);
  4713. }
  4714. rcu_read_unlock();
  4715. read_unlock(&css_set_lock);
  4716. return 0;
  4717. }
  4718. #define MAX_TASKS_SHOWN_PER_CSS 25
  4719. static int cgroup_css_links_read(struct cgroup *cont,
  4720. struct cftype *cft,
  4721. struct seq_file *seq)
  4722. {
  4723. struct cg_cgroup_link *link;
  4724. read_lock(&css_set_lock);
  4725. list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
  4726. struct css_set *cg = link->cg;
  4727. struct task_struct *task;
  4728. int count = 0;
  4729. seq_printf(seq, "css_set %p\n", cg);
  4730. list_for_each_entry(task, &cg->tasks, cg_list) {
  4731. if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
  4732. seq_puts(seq, " ...\n");
  4733. break;
  4734. } else {
  4735. seq_printf(seq, " task %d\n",
  4736. task_pid_vnr(task));
  4737. }
  4738. }
  4739. }
  4740. read_unlock(&css_set_lock);
  4741. return 0;
  4742. }
  4743. static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
  4744. {
  4745. return test_bit(CGRP_RELEASABLE, &cgrp->flags);
  4746. }
  4747. static struct cftype debug_files[] = {
  4748. {
  4749. .name = "cgroup_refcount",
  4750. .read_u64 = cgroup_refcount_read,
  4751. },
  4752. {
  4753. .name = "taskcount",
  4754. .read_u64 = debug_taskcount_read,
  4755. },
  4756. {
  4757. .name = "current_css_set",
  4758. .read_u64 = current_css_set_read,
  4759. },
  4760. {
  4761. .name = "current_css_set_refcount",
  4762. .read_u64 = current_css_set_refcount_read,
  4763. },
  4764. {
  4765. .name = "current_css_set_cg_links",
  4766. .read_seq_string = current_css_set_cg_links_read,
  4767. },
  4768. {
  4769. .name = "cgroup_css_links",
  4770. .read_seq_string = cgroup_css_links_read,
  4771. },
  4772. {
  4773. .name = "releasable",
  4774. .read_u64 = releasable_read,
  4775. },
  4776. { } /* terminate */
  4777. };
  4778. struct cgroup_subsys debug_subsys = {
  4779. .name = "debug",
  4780. .css_alloc = debug_css_alloc,
  4781. .css_free = debug_css_free,
  4782. .subsys_id = debug_subsys_id,
  4783. .base_cftypes = debug_files,
  4784. };
  4785. #endif /* CONFIG_CGROUP_DEBUG */