sched_fair.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 5000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 1000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. If set to 0 (default) then
  47. * parent will (try to) run first.
  48. */
  49. unsigned int sysctl_sched_child_runs_first __read_mostly;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. static const struct sched_class fair_sched_class;
  68. /**************************************************************
  69. * CFS operations on generic schedulable entities:
  70. */
  71. #ifdef CONFIG_FAIR_GROUP_SCHED
  72. /* cpu runqueue to which this cfs_rq is attached */
  73. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  74. {
  75. return cfs_rq->rq;
  76. }
  77. /* An entity is a task if it doesn't "own" a runqueue */
  78. #define entity_is_task(se) (!se->my_q)
  79. static inline struct task_struct *task_of(struct sched_entity *se)
  80. {
  81. #ifdef CONFIG_SCHED_DEBUG
  82. WARN_ON_ONCE(!entity_is_task(se));
  83. #endif
  84. return container_of(se, struct task_struct, se);
  85. }
  86. /* Walk up scheduling entities hierarchy */
  87. #define for_each_sched_entity(se) \
  88. for (; se; se = se->parent)
  89. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  90. {
  91. return p->se.cfs_rq;
  92. }
  93. /* runqueue on which this entity is (to be) queued */
  94. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  95. {
  96. return se->cfs_rq;
  97. }
  98. /* runqueue "owned" by this group */
  99. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  100. {
  101. return grp->my_q;
  102. }
  103. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  104. * another cpu ('this_cpu')
  105. */
  106. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  107. {
  108. return cfs_rq->tg->cfs_rq[this_cpu];
  109. }
  110. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  111. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  112. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  113. /* Do the two (enqueued) entities belong to the same group ? */
  114. static inline int
  115. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  116. {
  117. if (se->cfs_rq == pse->cfs_rq)
  118. return 1;
  119. return 0;
  120. }
  121. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  122. {
  123. return se->parent;
  124. }
  125. /* return depth at which a sched entity is present in the hierarchy */
  126. static inline int depth_se(struct sched_entity *se)
  127. {
  128. int depth = 0;
  129. for_each_sched_entity(se)
  130. depth++;
  131. return depth;
  132. }
  133. static void
  134. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  135. {
  136. int se_depth, pse_depth;
  137. /*
  138. * preemption test can be made between sibling entities who are in the
  139. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  140. * both tasks until we find their ancestors who are siblings of common
  141. * parent.
  142. */
  143. /* First walk up until both entities are at same depth */
  144. se_depth = depth_se(*se);
  145. pse_depth = depth_se(*pse);
  146. while (se_depth > pse_depth) {
  147. se_depth--;
  148. *se = parent_entity(*se);
  149. }
  150. while (pse_depth > se_depth) {
  151. pse_depth--;
  152. *pse = parent_entity(*pse);
  153. }
  154. while (!is_same_group(*se, *pse)) {
  155. *se = parent_entity(*se);
  156. *pse = parent_entity(*pse);
  157. }
  158. }
  159. #else /* !CONFIG_FAIR_GROUP_SCHED */
  160. static inline struct task_struct *task_of(struct sched_entity *se)
  161. {
  162. return container_of(se, struct task_struct, se);
  163. }
  164. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  165. {
  166. return container_of(cfs_rq, struct rq, cfs);
  167. }
  168. #define entity_is_task(se) 1
  169. #define for_each_sched_entity(se) \
  170. for (; se; se = NULL)
  171. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  172. {
  173. return &task_rq(p)->cfs;
  174. }
  175. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  176. {
  177. struct task_struct *p = task_of(se);
  178. struct rq *rq = task_rq(p);
  179. return &rq->cfs;
  180. }
  181. /* runqueue "owned" by this group */
  182. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  183. {
  184. return NULL;
  185. }
  186. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  187. {
  188. return &cpu_rq(this_cpu)->cfs;
  189. }
  190. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  191. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  192. static inline int
  193. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  194. {
  195. return 1;
  196. }
  197. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  198. {
  199. return NULL;
  200. }
  201. static inline void
  202. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  203. {
  204. }
  205. #endif /* CONFIG_FAIR_GROUP_SCHED */
  206. /**************************************************************
  207. * Scheduling class tree data structure manipulation methods:
  208. */
  209. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  210. {
  211. s64 delta = (s64)(vruntime - min_vruntime);
  212. if (delta > 0)
  213. min_vruntime = vruntime;
  214. return min_vruntime;
  215. }
  216. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  217. {
  218. s64 delta = (s64)(vruntime - min_vruntime);
  219. if (delta < 0)
  220. min_vruntime = vruntime;
  221. return min_vruntime;
  222. }
  223. static inline int entity_before(struct sched_entity *a,
  224. struct sched_entity *b)
  225. {
  226. return (s64)(a->vruntime - b->vruntime) < 0;
  227. }
  228. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  229. {
  230. return se->vruntime - cfs_rq->min_vruntime;
  231. }
  232. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  233. {
  234. u64 vruntime = cfs_rq->min_vruntime;
  235. if (cfs_rq->curr)
  236. vruntime = cfs_rq->curr->vruntime;
  237. if (cfs_rq->rb_leftmost) {
  238. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  239. struct sched_entity,
  240. run_node);
  241. if (!cfs_rq->curr)
  242. vruntime = se->vruntime;
  243. else
  244. vruntime = min_vruntime(vruntime, se->vruntime);
  245. }
  246. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  247. }
  248. /*
  249. * Enqueue an entity into the rb-tree:
  250. */
  251. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  252. {
  253. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  254. struct rb_node *parent = NULL;
  255. struct sched_entity *entry;
  256. s64 key = entity_key(cfs_rq, se);
  257. int leftmost = 1;
  258. /*
  259. * Find the right place in the rbtree:
  260. */
  261. while (*link) {
  262. parent = *link;
  263. entry = rb_entry(parent, struct sched_entity, run_node);
  264. /*
  265. * We dont care about collisions. Nodes with
  266. * the same key stay together.
  267. */
  268. if (key < entity_key(cfs_rq, entry)) {
  269. link = &parent->rb_left;
  270. } else {
  271. link = &parent->rb_right;
  272. leftmost = 0;
  273. }
  274. }
  275. /*
  276. * Maintain a cache of leftmost tree entries (it is frequently
  277. * used):
  278. */
  279. if (leftmost)
  280. cfs_rq->rb_leftmost = &se->run_node;
  281. rb_link_node(&se->run_node, parent, link);
  282. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  283. }
  284. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  285. {
  286. if (cfs_rq->rb_leftmost == &se->run_node) {
  287. struct rb_node *next_node;
  288. next_node = rb_next(&se->run_node);
  289. cfs_rq->rb_leftmost = next_node;
  290. }
  291. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  292. }
  293. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  294. {
  295. struct rb_node *left = cfs_rq->rb_leftmost;
  296. if (!left)
  297. return NULL;
  298. return rb_entry(left, struct sched_entity, run_node);
  299. }
  300. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  301. {
  302. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  303. if (!last)
  304. return NULL;
  305. return rb_entry(last, struct sched_entity, run_node);
  306. }
  307. /**************************************************************
  308. * Scheduling class statistics methods:
  309. */
  310. #ifdef CONFIG_SCHED_DEBUG
  311. int sched_nr_latency_handler(struct ctl_table *table, int write,
  312. struct file *filp, void __user *buffer, size_t *lenp,
  313. loff_t *ppos)
  314. {
  315. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  316. if (ret || !write)
  317. return ret;
  318. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  319. sysctl_sched_min_granularity);
  320. return 0;
  321. }
  322. #endif
  323. /*
  324. * delta /= w
  325. */
  326. static inline unsigned long
  327. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  328. {
  329. if (unlikely(se->load.weight != NICE_0_LOAD))
  330. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  331. return delta;
  332. }
  333. /*
  334. * The idea is to set a period in which each task runs once.
  335. *
  336. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  337. * this period because otherwise the slices get too small.
  338. *
  339. * p = (nr <= nl) ? l : l*nr/nl
  340. */
  341. static u64 __sched_period(unsigned long nr_running)
  342. {
  343. u64 period = sysctl_sched_latency;
  344. unsigned long nr_latency = sched_nr_latency;
  345. if (unlikely(nr_running > nr_latency)) {
  346. period = sysctl_sched_min_granularity;
  347. period *= nr_running;
  348. }
  349. return period;
  350. }
  351. /*
  352. * We calculate the wall-time slice from the period by taking a part
  353. * proportional to the weight.
  354. *
  355. * s = p*P[w/rw]
  356. */
  357. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  358. {
  359. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  360. for_each_sched_entity(se) {
  361. struct load_weight *load;
  362. struct load_weight lw;
  363. cfs_rq = cfs_rq_of(se);
  364. load = &cfs_rq->load;
  365. if (unlikely(!se->on_rq)) {
  366. lw = cfs_rq->load;
  367. update_load_add(&lw, se->load.weight);
  368. load = &lw;
  369. }
  370. slice = calc_delta_mine(slice, se->load.weight, load);
  371. }
  372. return slice;
  373. }
  374. /*
  375. * We calculate the vruntime slice of a to be inserted task
  376. *
  377. * vs = s/w
  378. */
  379. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  380. {
  381. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  382. }
  383. /*
  384. * Update the current task's runtime statistics. Skip current tasks that
  385. * are not in our scheduling class.
  386. */
  387. static inline void
  388. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  389. unsigned long delta_exec)
  390. {
  391. unsigned long delta_exec_weighted;
  392. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  393. curr->sum_exec_runtime += delta_exec;
  394. schedstat_add(cfs_rq, exec_clock, delta_exec);
  395. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  396. curr->vruntime += delta_exec_weighted;
  397. update_min_vruntime(cfs_rq);
  398. }
  399. static void update_curr(struct cfs_rq *cfs_rq)
  400. {
  401. struct sched_entity *curr = cfs_rq->curr;
  402. u64 now = rq_of(cfs_rq)->clock;
  403. unsigned long delta_exec;
  404. if (unlikely(!curr))
  405. return;
  406. /*
  407. * Get the amount of time the current task was running
  408. * since the last time we changed load (this cannot
  409. * overflow on 32 bits):
  410. */
  411. delta_exec = (unsigned long)(now - curr->exec_start);
  412. if (!delta_exec)
  413. return;
  414. __update_curr(cfs_rq, curr, delta_exec);
  415. curr->exec_start = now;
  416. if (entity_is_task(curr)) {
  417. struct task_struct *curtask = task_of(curr);
  418. cpuacct_charge(curtask, delta_exec);
  419. account_group_exec_runtime(curtask, delta_exec);
  420. }
  421. }
  422. static inline void
  423. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  424. {
  425. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  426. }
  427. /*
  428. * Task is being enqueued - update stats:
  429. */
  430. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  431. {
  432. /*
  433. * Are we enqueueing a waiting task? (for current tasks
  434. * a dequeue/enqueue event is a NOP)
  435. */
  436. if (se != cfs_rq->curr)
  437. update_stats_wait_start(cfs_rq, se);
  438. }
  439. static void
  440. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  441. {
  442. schedstat_set(se->wait_max, max(se->wait_max,
  443. rq_of(cfs_rq)->clock - se->wait_start));
  444. schedstat_set(se->wait_count, se->wait_count + 1);
  445. schedstat_set(se->wait_sum, se->wait_sum +
  446. rq_of(cfs_rq)->clock - se->wait_start);
  447. #ifdef CONFIG_SCHEDSTATS
  448. if (entity_is_task(se)) {
  449. trace_sched_stat_wait(task_of(se),
  450. rq_of(cfs_rq)->clock - se->wait_start);
  451. }
  452. #endif
  453. schedstat_set(se->wait_start, 0);
  454. }
  455. static inline void
  456. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  457. {
  458. /*
  459. * Mark the end of the wait period if dequeueing a
  460. * waiting task:
  461. */
  462. if (se != cfs_rq->curr)
  463. update_stats_wait_end(cfs_rq, se);
  464. }
  465. /*
  466. * We are picking a new current task - update its stats:
  467. */
  468. static inline void
  469. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  470. {
  471. /*
  472. * We are starting a new run period:
  473. */
  474. se->exec_start = rq_of(cfs_rq)->clock;
  475. }
  476. /**************************************************
  477. * Scheduling class queueing methods:
  478. */
  479. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  480. static void
  481. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  482. {
  483. cfs_rq->task_weight += weight;
  484. }
  485. #else
  486. static inline void
  487. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  488. {
  489. }
  490. #endif
  491. static void
  492. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  493. {
  494. update_load_add(&cfs_rq->load, se->load.weight);
  495. if (!parent_entity(se))
  496. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  497. if (entity_is_task(se)) {
  498. add_cfs_task_weight(cfs_rq, se->load.weight);
  499. list_add(&se->group_node, &cfs_rq->tasks);
  500. }
  501. cfs_rq->nr_running++;
  502. se->on_rq = 1;
  503. }
  504. static void
  505. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  506. {
  507. update_load_sub(&cfs_rq->load, se->load.weight);
  508. if (!parent_entity(se))
  509. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  510. if (entity_is_task(se)) {
  511. add_cfs_task_weight(cfs_rq, -se->load.weight);
  512. list_del_init(&se->group_node);
  513. }
  514. cfs_rq->nr_running--;
  515. se->on_rq = 0;
  516. }
  517. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  518. {
  519. #ifdef CONFIG_SCHEDSTATS
  520. struct task_struct *tsk = NULL;
  521. if (entity_is_task(se))
  522. tsk = task_of(se);
  523. if (se->sleep_start) {
  524. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  525. if ((s64)delta < 0)
  526. delta = 0;
  527. if (unlikely(delta > se->sleep_max))
  528. se->sleep_max = delta;
  529. se->sleep_start = 0;
  530. se->sum_sleep_runtime += delta;
  531. if (tsk) {
  532. account_scheduler_latency(tsk, delta >> 10, 1);
  533. trace_sched_stat_sleep(tsk, delta);
  534. }
  535. }
  536. if (se->block_start) {
  537. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  538. if ((s64)delta < 0)
  539. delta = 0;
  540. if (unlikely(delta > se->block_max))
  541. se->block_max = delta;
  542. se->block_start = 0;
  543. se->sum_sleep_runtime += delta;
  544. if (tsk) {
  545. if (tsk->in_iowait) {
  546. se->iowait_sum += delta;
  547. se->iowait_count++;
  548. trace_sched_stat_iowait(tsk, delta);
  549. }
  550. /*
  551. * Blocking time is in units of nanosecs, so shift by
  552. * 20 to get a milliseconds-range estimation of the
  553. * amount of time that the task spent sleeping:
  554. */
  555. if (unlikely(prof_on == SLEEP_PROFILING)) {
  556. profile_hits(SLEEP_PROFILING,
  557. (void *)get_wchan(tsk),
  558. delta >> 20);
  559. }
  560. account_scheduler_latency(tsk, delta >> 10, 0);
  561. }
  562. }
  563. #endif
  564. }
  565. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  566. {
  567. #ifdef CONFIG_SCHED_DEBUG
  568. s64 d = se->vruntime - cfs_rq->min_vruntime;
  569. if (d < 0)
  570. d = -d;
  571. if (d > 3*sysctl_sched_latency)
  572. schedstat_inc(cfs_rq, nr_spread_over);
  573. #endif
  574. }
  575. static void
  576. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  577. {
  578. u64 vruntime = cfs_rq->min_vruntime;
  579. /*
  580. * The 'current' period is already promised to the current tasks,
  581. * however the extra weight of the new task will slow them down a
  582. * little, place the new task so that it fits in the slot that
  583. * stays open at the end.
  584. */
  585. if (initial && sched_feat(START_DEBIT))
  586. vruntime += sched_vslice(cfs_rq, se);
  587. /* sleeps up to a single latency don't count. */
  588. if (!initial && sched_feat(FAIR_SLEEPERS)) {
  589. unsigned long thresh = sysctl_sched_latency;
  590. /*
  591. * Convert the sleeper threshold into virtual time.
  592. * SCHED_IDLE is a special sub-class. We care about
  593. * fairness only relative to other SCHED_IDLE tasks,
  594. * all of which have the same weight.
  595. */
  596. if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
  597. task_of(se)->policy != SCHED_IDLE))
  598. thresh = calc_delta_fair(thresh, se);
  599. /*
  600. * Halve their sleep time's effect, to allow
  601. * for a gentler effect of sleepers:
  602. */
  603. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  604. thresh >>= 1;
  605. vruntime -= thresh;
  606. }
  607. /* ensure we never gain time by being placed backwards. */
  608. vruntime = max_vruntime(se->vruntime, vruntime);
  609. se->vruntime = vruntime;
  610. }
  611. static void
  612. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  613. {
  614. /*
  615. * Update run-time statistics of the 'current'.
  616. */
  617. update_curr(cfs_rq);
  618. account_entity_enqueue(cfs_rq, se);
  619. if (wakeup) {
  620. place_entity(cfs_rq, se, 0);
  621. enqueue_sleeper(cfs_rq, se);
  622. }
  623. update_stats_enqueue(cfs_rq, se);
  624. check_spread(cfs_rq, se);
  625. if (se != cfs_rq->curr)
  626. __enqueue_entity(cfs_rq, se);
  627. }
  628. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  629. {
  630. if (!se || cfs_rq->last == se)
  631. cfs_rq->last = NULL;
  632. if (!se || cfs_rq->next == se)
  633. cfs_rq->next = NULL;
  634. }
  635. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  636. {
  637. for_each_sched_entity(se)
  638. __clear_buddies(cfs_rq_of(se), se);
  639. }
  640. static void
  641. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  642. {
  643. /*
  644. * Update run-time statistics of the 'current'.
  645. */
  646. update_curr(cfs_rq);
  647. update_stats_dequeue(cfs_rq, se);
  648. if (sleep) {
  649. #ifdef CONFIG_SCHEDSTATS
  650. if (entity_is_task(se)) {
  651. struct task_struct *tsk = task_of(se);
  652. if (tsk->state & TASK_INTERRUPTIBLE)
  653. se->sleep_start = rq_of(cfs_rq)->clock;
  654. if (tsk->state & TASK_UNINTERRUPTIBLE)
  655. se->block_start = rq_of(cfs_rq)->clock;
  656. }
  657. #endif
  658. }
  659. clear_buddies(cfs_rq, se);
  660. if (se != cfs_rq->curr)
  661. __dequeue_entity(cfs_rq, se);
  662. account_entity_dequeue(cfs_rq, se);
  663. update_min_vruntime(cfs_rq);
  664. }
  665. /*
  666. * Preempt the current task with a newly woken task if needed:
  667. */
  668. static void
  669. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  670. {
  671. unsigned long ideal_runtime, delta_exec;
  672. ideal_runtime = sched_slice(cfs_rq, curr);
  673. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  674. if (delta_exec > ideal_runtime) {
  675. resched_task(rq_of(cfs_rq)->curr);
  676. /*
  677. * The current task ran long enough, ensure it doesn't get
  678. * re-elected due to buddy favours.
  679. */
  680. clear_buddies(cfs_rq, curr);
  681. }
  682. }
  683. static void
  684. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  685. {
  686. /* 'current' is not kept within the tree. */
  687. if (se->on_rq) {
  688. /*
  689. * Any task has to be enqueued before it get to execute on
  690. * a CPU. So account for the time it spent waiting on the
  691. * runqueue.
  692. */
  693. update_stats_wait_end(cfs_rq, se);
  694. __dequeue_entity(cfs_rq, se);
  695. }
  696. update_stats_curr_start(cfs_rq, se);
  697. cfs_rq->curr = se;
  698. #ifdef CONFIG_SCHEDSTATS
  699. /*
  700. * Track our maximum slice length, if the CPU's load is at
  701. * least twice that of our own weight (i.e. dont track it
  702. * when there are only lesser-weight tasks around):
  703. */
  704. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  705. se->slice_max = max(se->slice_max,
  706. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  707. }
  708. #endif
  709. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  710. }
  711. static int
  712. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  713. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  714. {
  715. struct sched_entity *se = __pick_next_entity(cfs_rq);
  716. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
  717. return cfs_rq->next;
  718. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
  719. return cfs_rq->last;
  720. return se;
  721. }
  722. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  723. {
  724. /*
  725. * If still on the runqueue then deactivate_task()
  726. * was not called and update_curr() has to be done:
  727. */
  728. if (prev->on_rq)
  729. update_curr(cfs_rq);
  730. check_spread(cfs_rq, prev);
  731. if (prev->on_rq) {
  732. update_stats_wait_start(cfs_rq, prev);
  733. /* Put 'current' back into the tree. */
  734. __enqueue_entity(cfs_rq, prev);
  735. }
  736. cfs_rq->curr = NULL;
  737. }
  738. static void
  739. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  740. {
  741. /*
  742. * Update run-time statistics of the 'current'.
  743. */
  744. update_curr(cfs_rq);
  745. #ifdef CONFIG_SCHED_HRTICK
  746. /*
  747. * queued ticks are scheduled to match the slice, so don't bother
  748. * validating it and just reschedule.
  749. */
  750. if (queued) {
  751. resched_task(rq_of(cfs_rq)->curr);
  752. return;
  753. }
  754. /*
  755. * don't let the period tick interfere with the hrtick preemption
  756. */
  757. if (!sched_feat(DOUBLE_TICK) &&
  758. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  759. return;
  760. #endif
  761. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  762. check_preempt_tick(cfs_rq, curr);
  763. }
  764. /**************************************************
  765. * CFS operations on tasks:
  766. */
  767. #ifdef CONFIG_SCHED_HRTICK
  768. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  769. {
  770. struct sched_entity *se = &p->se;
  771. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  772. WARN_ON(task_rq(p) != rq);
  773. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  774. u64 slice = sched_slice(cfs_rq, se);
  775. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  776. s64 delta = slice - ran;
  777. if (delta < 0) {
  778. if (rq->curr == p)
  779. resched_task(p);
  780. return;
  781. }
  782. /*
  783. * Don't schedule slices shorter than 10000ns, that just
  784. * doesn't make sense. Rely on vruntime for fairness.
  785. */
  786. if (rq->curr != p)
  787. delta = max_t(s64, 10000LL, delta);
  788. hrtick_start(rq, delta);
  789. }
  790. }
  791. /*
  792. * called from enqueue/dequeue and updates the hrtick when the
  793. * current task is from our class and nr_running is low enough
  794. * to matter.
  795. */
  796. static void hrtick_update(struct rq *rq)
  797. {
  798. struct task_struct *curr = rq->curr;
  799. if (curr->sched_class != &fair_sched_class)
  800. return;
  801. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  802. hrtick_start_fair(rq, curr);
  803. }
  804. #else /* !CONFIG_SCHED_HRTICK */
  805. static inline void
  806. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  807. {
  808. }
  809. static inline void hrtick_update(struct rq *rq)
  810. {
  811. }
  812. #endif
  813. /*
  814. * The enqueue_task method is called before nr_running is
  815. * increased. Here we update the fair scheduling stats and
  816. * then put the task into the rbtree:
  817. */
  818. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  819. {
  820. struct cfs_rq *cfs_rq;
  821. struct sched_entity *se = &p->se;
  822. for_each_sched_entity(se) {
  823. if (se->on_rq)
  824. break;
  825. cfs_rq = cfs_rq_of(se);
  826. enqueue_entity(cfs_rq, se, wakeup);
  827. wakeup = 1;
  828. }
  829. hrtick_update(rq);
  830. }
  831. /*
  832. * The dequeue_task method is called before nr_running is
  833. * decreased. We remove the task from the rbtree and
  834. * update the fair scheduling stats:
  835. */
  836. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  837. {
  838. struct cfs_rq *cfs_rq;
  839. struct sched_entity *se = &p->se;
  840. for_each_sched_entity(se) {
  841. cfs_rq = cfs_rq_of(se);
  842. dequeue_entity(cfs_rq, se, sleep);
  843. /* Don't dequeue parent if it has other entities besides us */
  844. if (cfs_rq->load.weight)
  845. break;
  846. sleep = 1;
  847. }
  848. hrtick_update(rq);
  849. }
  850. /*
  851. * sched_yield() support is very simple - we dequeue and enqueue.
  852. *
  853. * If compat_yield is turned on then we requeue to the end of the tree.
  854. */
  855. static void yield_task_fair(struct rq *rq)
  856. {
  857. struct task_struct *curr = rq->curr;
  858. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  859. struct sched_entity *rightmost, *se = &curr->se;
  860. /*
  861. * Are we the only task in the tree?
  862. */
  863. if (unlikely(cfs_rq->nr_running == 1))
  864. return;
  865. clear_buddies(cfs_rq, se);
  866. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  867. update_rq_clock(rq);
  868. /*
  869. * Update run-time statistics of the 'current'.
  870. */
  871. update_curr(cfs_rq);
  872. return;
  873. }
  874. /*
  875. * Find the rightmost entry in the rbtree:
  876. */
  877. rightmost = __pick_last_entity(cfs_rq);
  878. /*
  879. * Already in the rightmost position?
  880. */
  881. if (unlikely(!rightmost || entity_before(rightmost, se)))
  882. return;
  883. /*
  884. * Minimally necessary key value to be last in the tree:
  885. * Upon rescheduling, sched_class::put_prev_task() will place
  886. * 'current' within the tree based on its new key value.
  887. */
  888. se->vruntime = rightmost->vruntime + 1;
  889. }
  890. #ifdef CONFIG_SMP
  891. #ifdef CONFIG_FAIR_GROUP_SCHED
  892. /*
  893. * effective_load() calculates the load change as seen from the root_task_group
  894. *
  895. * Adding load to a group doesn't make a group heavier, but can cause movement
  896. * of group shares between cpus. Assuming the shares were perfectly aligned one
  897. * can calculate the shift in shares.
  898. *
  899. * The problem is that perfectly aligning the shares is rather expensive, hence
  900. * we try to avoid doing that too often - see update_shares(), which ratelimits
  901. * this change.
  902. *
  903. * We compensate this by not only taking the current delta into account, but
  904. * also considering the delta between when the shares were last adjusted and
  905. * now.
  906. *
  907. * We still saw a performance dip, some tracing learned us that between
  908. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  909. * significantly. Therefore try to bias the error in direction of failing
  910. * the affine wakeup.
  911. *
  912. */
  913. static long effective_load(struct task_group *tg, int cpu,
  914. long wl, long wg)
  915. {
  916. struct sched_entity *se = tg->se[cpu];
  917. if (!tg->parent)
  918. return wl;
  919. /*
  920. * By not taking the decrease of shares on the other cpu into
  921. * account our error leans towards reducing the affine wakeups.
  922. */
  923. if (!wl && sched_feat(ASYM_EFF_LOAD))
  924. return wl;
  925. for_each_sched_entity(se) {
  926. long S, rw, s, a, b;
  927. long more_w;
  928. /*
  929. * Instead of using this increment, also add the difference
  930. * between when the shares were last updated and now.
  931. */
  932. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  933. wl += more_w;
  934. wg += more_w;
  935. S = se->my_q->tg->shares;
  936. s = se->my_q->shares;
  937. rw = se->my_q->rq_weight;
  938. a = S*(rw + wl);
  939. b = S*rw + s*wg;
  940. wl = s*(a-b);
  941. if (likely(b))
  942. wl /= b;
  943. /*
  944. * Assume the group is already running and will
  945. * thus already be accounted for in the weight.
  946. *
  947. * That is, moving shares between CPUs, does not
  948. * alter the group weight.
  949. */
  950. wg = 0;
  951. }
  952. return wl;
  953. }
  954. #else
  955. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  956. unsigned long wl, unsigned long wg)
  957. {
  958. return wl;
  959. }
  960. #endif
  961. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  962. {
  963. struct task_struct *curr = current;
  964. unsigned long this_load, load;
  965. int idx, this_cpu, prev_cpu;
  966. unsigned long tl_per_task;
  967. unsigned int imbalance;
  968. struct task_group *tg;
  969. unsigned long weight;
  970. int balanced;
  971. idx = sd->wake_idx;
  972. this_cpu = smp_processor_id();
  973. prev_cpu = task_cpu(p);
  974. load = source_load(prev_cpu, idx);
  975. this_load = target_load(this_cpu, idx);
  976. if (sync) {
  977. if (sched_feat(SYNC_LESS) &&
  978. (curr->se.avg_overlap > sysctl_sched_migration_cost ||
  979. p->se.avg_overlap > sysctl_sched_migration_cost))
  980. sync = 0;
  981. } else {
  982. if (sched_feat(SYNC_MORE) &&
  983. (curr->se.avg_overlap < sysctl_sched_migration_cost &&
  984. p->se.avg_overlap < sysctl_sched_migration_cost))
  985. sync = 1;
  986. }
  987. /*
  988. * If sync wakeup then subtract the (maximum possible)
  989. * effect of the currently running task from the load
  990. * of the current CPU:
  991. */
  992. if (sync) {
  993. tg = task_group(current);
  994. weight = current->se.load.weight;
  995. this_load += effective_load(tg, this_cpu, -weight, -weight);
  996. load += effective_load(tg, prev_cpu, 0, -weight);
  997. }
  998. tg = task_group(p);
  999. weight = p->se.load.weight;
  1000. imbalance = 100 + (sd->imbalance_pct - 100) / 2;
  1001. /*
  1002. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1003. * due to the sync cause above having dropped this_load to 0, we'll
  1004. * always have an imbalance, but there's really nothing you can do
  1005. * about that, so that's good too.
  1006. *
  1007. * Otherwise check if either cpus are near enough in load to allow this
  1008. * task to be woken on this_cpu.
  1009. */
  1010. balanced = !this_load ||
  1011. 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
  1012. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  1013. /*
  1014. * If the currently running task will sleep within
  1015. * a reasonable amount of time then attract this newly
  1016. * woken task:
  1017. */
  1018. if (sync && balanced)
  1019. return 1;
  1020. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1021. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1022. if (balanced ||
  1023. (this_load <= load &&
  1024. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1025. /*
  1026. * This domain has SD_WAKE_AFFINE and
  1027. * p is cache cold in this domain, and
  1028. * there is no bad imbalance.
  1029. */
  1030. schedstat_inc(sd, ttwu_move_affine);
  1031. schedstat_inc(p, se.nr_wakeups_affine);
  1032. return 1;
  1033. }
  1034. return 0;
  1035. }
  1036. /*
  1037. * find_idlest_group finds and returns the least busy CPU group within the
  1038. * domain.
  1039. */
  1040. static struct sched_group *
  1041. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1042. int this_cpu, int load_idx)
  1043. {
  1044. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1045. unsigned long min_load = ULONG_MAX, this_load = 0;
  1046. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1047. do {
  1048. unsigned long load, avg_load;
  1049. int local_group;
  1050. int i;
  1051. /* Skip over this group if it has no CPUs allowed */
  1052. if (!cpumask_intersects(sched_group_cpus(group),
  1053. &p->cpus_allowed))
  1054. continue;
  1055. local_group = cpumask_test_cpu(this_cpu,
  1056. sched_group_cpus(group));
  1057. /* Tally up the load of all CPUs in the group */
  1058. avg_load = 0;
  1059. for_each_cpu(i, sched_group_cpus(group)) {
  1060. /* Bias balancing toward cpus of our domain */
  1061. if (local_group)
  1062. load = source_load(i, load_idx);
  1063. else
  1064. load = target_load(i, load_idx);
  1065. avg_load += load;
  1066. }
  1067. /* Adjust by relative CPU power of the group */
  1068. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1069. if (local_group) {
  1070. this_load = avg_load;
  1071. this = group;
  1072. } else if (avg_load < min_load) {
  1073. min_load = avg_load;
  1074. idlest = group;
  1075. }
  1076. } while (group = group->next, group != sd->groups);
  1077. if (!idlest || 100*this_load < imbalance*min_load)
  1078. return NULL;
  1079. return idlest;
  1080. }
  1081. /*
  1082. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1083. */
  1084. static int
  1085. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1086. {
  1087. unsigned long load, min_load = ULONG_MAX;
  1088. int idlest = -1;
  1089. int i;
  1090. /* Traverse only the allowed CPUs */
  1091. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1092. load = weighted_cpuload(i);
  1093. if (load < min_load || (load == min_load && i == this_cpu)) {
  1094. min_load = load;
  1095. idlest = i;
  1096. }
  1097. }
  1098. return idlest;
  1099. }
  1100. /*
  1101. * sched_balance_self: balance the current task (running on cpu) in domains
  1102. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1103. * SD_BALANCE_EXEC.
  1104. *
  1105. * Balance, ie. select the least loaded group.
  1106. *
  1107. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1108. *
  1109. * preempt must be disabled.
  1110. */
  1111. static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  1112. {
  1113. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1114. int cpu = smp_processor_id();
  1115. int prev_cpu = task_cpu(p);
  1116. int new_cpu = cpu;
  1117. int want_affine = 0;
  1118. int want_sd = 1;
  1119. int sync = wake_flags & WF_SYNC;
  1120. if (sd_flag & SD_BALANCE_WAKE) {
  1121. if (sched_feat(AFFINE_WAKEUPS) &&
  1122. cpumask_test_cpu(cpu, &p->cpus_allowed))
  1123. want_affine = 1;
  1124. new_cpu = prev_cpu;
  1125. }
  1126. rcu_read_lock();
  1127. for_each_domain(cpu, tmp) {
  1128. /*
  1129. * If power savings logic is enabled for a domain, see if we
  1130. * are not overloaded, if so, don't balance wider.
  1131. */
  1132. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1133. unsigned long power = 0;
  1134. unsigned long nr_running = 0;
  1135. unsigned long capacity;
  1136. int i;
  1137. for_each_cpu(i, sched_domain_span(tmp)) {
  1138. power += power_of(i);
  1139. nr_running += cpu_rq(i)->cfs.nr_running;
  1140. }
  1141. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1142. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1143. nr_running /= 2;
  1144. if (nr_running < capacity)
  1145. want_sd = 0;
  1146. }
  1147. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1148. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1149. affine_sd = tmp;
  1150. want_affine = 0;
  1151. }
  1152. if (!want_sd && !want_affine)
  1153. break;
  1154. if (!(tmp->flags & sd_flag))
  1155. continue;
  1156. if (want_sd)
  1157. sd = tmp;
  1158. }
  1159. if (sched_feat(LB_SHARES_UPDATE)) {
  1160. /*
  1161. * Pick the largest domain to update shares over
  1162. */
  1163. tmp = sd;
  1164. if (affine_sd && (!tmp ||
  1165. cpumask_weight(sched_domain_span(affine_sd)) >
  1166. cpumask_weight(sched_domain_span(sd))))
  1167. tmp = affine_sd;
  1168. if (tmp)
  1169. update_shares(tmp);
  1170. }
  1171. if (affine_sd && wake_affine(affine_sd, p, sync)) {
  1172. new_cpu = cpu;
  1173. goto out;
  1174. }
  1175. while (sd) {
  1176. int load_idx = sd->forkexec_idx;
  1177. struct sched_group *group;
  1178. int weight;
  1179. if (!(sd->flags & sd_flag)) {
  1180. sd = sd->child;
  1181. continue;
  1182. }
  1183. if (sd_flag & SD_BALANCE_WAKE)
  1184. load_idx = sd->wake_idx;
  1185. group = find_idlest_group(sd, p, cpu, load_idx);
  1186. if (!group) {
  1187. sd = sd->child;
  1188. continue;
  1189. }
  1190. new_cpu = find_idlest_cpu(group, p, cpu);
  1191. if (new_cpu == -1 || new_cpu == cpu) {
  1192. /* Now try balancing at a lower domain level of cpu */
  1193. sd = sd->child;
  1194. continue;
  1195. }
  1196. /* Now try balancing at a lower domain level of new_cpu */
  1197. cpu = new_cpu;
  1198. weight = cpumask_weight(sched_domain_span(sd));
  1199. sd = NULL;
  1200. for_each_domain(cpu, tmp) {
  1201. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1202. break;
  1203. if (tmp->flags & sd_flag)
  1204. sd = tmp;
  1205. }
  1206. /* while loop will break here if sd == NULL */
  1207. }
  1208. out:
  1209. rcu_read_unlock();
  1210. return new_cpu;
  1211. }
  1212. #endif /* CONFIG_SMP */
  1213. /*
  1214. * Adaptive granularity
  1215. *
  1216. * se->avg_wakeup gives the average time a task runs until it does a wakeup,
  1217. * with the limit of wakeup_gran -- when it never does a wakeup.
  1218. *
  1219. * So the smaller avg_wakeup is the faster we want this task to preempt,
  1220. * but we don't want to treat the preemptee unfairly and therefore allow it
  1221. * to run for at least the amount of time we'd like to run.
  1222. *
  1223. * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
  1224. *
  1225. * NOTE: we use *nr_running to scale with load, this nicely matches the
  1226. * degrading latency on load.
  1227. */
  1228. static unsigned long
  1229. adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
  1230. {
  1231. u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1232. u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
  1233. u64 gran = 0;
  1234. if (this_run < expected_wakeup)
  1235. gran = expected_wakeup - this_run;
  1236. return min_t(s64, gran, sysctl_sched_wakeup_granularity);
  1237. }
  1238. static unsigned long
  1239. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1240. {
  1241. unsigned long gran = sysctl_sched_wakeup_granularity;
  1242. if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
  1243. gran = adaptive_gran(curr, se);
  1244. /*
  1245. * Since its curr running now, convert the gran from real-time
  1246. * to virtual-time in his units.
  1247. */
  1248. if (sched_feat(ASYM_GRAN)) {
  1249. /*
  1250. * By using 'se' instead of 'curr' we penalize light tasks, so
  1251. * they get preempted easier. That is, if 'se' < 'curr' then
  1252. * the resulting gran will be larger, therefore penalizing the
  1253. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1254. * be smaller, again penalizing the lighter task.
  1255. *
  1256. * This is especially important for buddies when the leftmost
  1257. * task is higher priority than the buddy.
  1258. */
  1259. if (unlikely(se->load.weight != NICE_0_LOAD))
  1260. gran = calc_delta_fair(gran, se);
  1261. } else {
  1262. if (unlikely(curr->load.weight != NICE_0_LOAD))
  1263. gran = calc_delta_fair(gran, curr);
  1264. }
  1265. return gran;
  1266. }
  1267. /*
  1268. * Should 'se' preempt 'curr'.
  1269. *
  1270. * |s1
  1271. * |s2
  1272. * |s3
  1273. * g
  1274. * |<--->|c
  1275. *
  1276. * w(c, s1) = -1
  1277. * w(c, s2) = 0
  1278. * w(c, s3) = 1
  1279. *
  1280. */
  1281. static int
  1282. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1283. {
  1284. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1285. if (vdiff <= 0)
  1286. return -1;
  1287. gran = wakeup_gran(curr, se);
  1288. if (vdiff > gran)
  1289. return 1;
  1290. return 0;
  1291. }
  1292. static void set_last_buddy(struct sched_entity *se)
  1293. {
  1294. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1295. for_each_sched_entity(se)
  1296. cfs_rq_of(se)->last = se;
  1297. }
  1298. }
  1299. static void set_next_buddy(struct sched_entity *se)
  1300. {
  1301. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1302. for_each_sched_entity(se)
  1303. cfs_rq_of(se)->next = se;
  1304. }
  1305. }
  1306. /*
  1307. * Preempt the current task with a newly woken task if needed:
  1308. */
  1309. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1310. {
  1311. struct task_struct *curr = rq->curr;
  1312. struct sched_entity *se = &curr->se, *pse = &p->se;
  1313. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1314. int sync = wake_flags & WF_SYNC;
  1315. update_curr(cfs_rq);
  1316. if (unlikely(rt_prio(p->prio))) {
  1317. resched_task(curr);
  1318. return;
  1319. }
  1320. if (unlikely(p->sched_class != &fair_sched_class))
  1321. return;
  1322. if (unlikely(se == pse))
  1323. return;
  1324. /*
  1325. * Only set the backward buddy when the current task is still on the
  1326. * rq. This can happen when a wakeup gets interleaved with schedule on
  1327. * the ->pre_schedule() or idle_balance() point, either of which can
  1328. * drop the rq lock.
  1329. *
  1330. * Also, during early boot the idle thread is in the fair class, for
  1331. * obvious reasons its a bad idea to schedule back to the idle thread.
  1332. */
  1333. if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
  1334. set_last_buddy(se);
  1335. if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK))
  1336. set_next_buddy(pse);
  1337. /*
  1338. * We can come here with TIF_NEED_RESCHED already set from new task
  1339. * wake up path.
  1340. */
  1341. if (test_tsk_need_resched(curr))
  1342. return;
  1343. /*
  1344. * Batch and idle tasks do not preempt (their preemption is driven by
  1345. * the tick):
  1346. */
  1347. if (unlikely(p->policy != SCHED_NORMAL))
  1348. return;
  1349. /* Idle tasks are by definition preempted by everybody. */
  1350. if (unlikely(curr->policy == SCHED_IDLE)) {
  1351. resched_task(curr);
  1352. return;
  1353. }
  1354. if ((sched_feat(WAKEUP_SYNC) && sync) ||
  1355. (sched_feat(WAKEUP_OVERLAP) &&
  1356. (se->avg_overlap < sysctl_sched_migration_cost &&
  1357. pse->avg_overlap < sysctl_sched_migration_cost))) {
  1358. resched_task(curr);
  1359. return;
  1360. }
  1361. if (sched_feat(WAKEUP_RUNNING)) {
  1362. if (pse->avg_running < se->avg_running) {
  1363. set_next_buddy(pse);
  1364. resched_task(curr);
  1365. return;
  1366. }
  1367. }
  1368. if (!sched_feat(WAKEUP_PREEMPT))
  1369. return;
  1370. find_matching_se(&se, &pse);
  1371. BUG_ON(!pse);
  1372. if (wakeup_preempt_entity(se, pse) == 1)
  1373. resched_task(curr);
  1374. }
  1375. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1376. {
  1377. struct task_struct *p;
  1378. struct cfs_rq *cfs_rq = &rq->cfs;
  1379. struct sched_entity *se;
  1380. if (unlikely(!cfs_rq->nr_running))
  1381. return NULL;
  1382. do {
  1383. se = pick_next_entity(cfs_rq);
  1384. /*
  1385. * If se was a buddy, clear it so that it will have to earn
  1386. * the favour again.
  1387. *
  1388. * If se was not a buddy, clear the buddies because neither
  1389. * was elegible to run, let them earn it again.
  1390. *
  1391. * IOW. unconditionally clear buddies.
  1392. */
  1393. __clear_buddies(cfs_rq, NULL);
  1394. set_next_entity(cfs_rq, se);
  1395. cfs_rq = group_cfs_rq(se);
  1396. } while (cfs_rq);
  1397. p = task_of(se);
  1398. hrtick_start_fair(rq, p);
  1399. return p;
  1400. }
  1401. /*
  1402. * Account for a descheduled task:
  1403. */
  1404. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1405. {
  1406. struct sched_entity *se = &prev->se;
  1407. struct cfs_rq *cfs_rq;
  1408. for_each_sched_entity(se) {
  1409. cfs_rq = cfs_rq_of(se);
  1410. put_prev_entity(cfs_rq, se);
  1411. }
  1412. }
  1413. #ifdef CONFIG_SMP
  1414. /**************************************************
  1415. * Fair scheduling class load-balancing methods:
  1416. */
  1417. /*
  1418. * Load-balancing iterator. Note: while the runqueue stays locked
  1419. * during the whole iteration, the current task might be
  1420. * dequeued so the iterator has to be dequeue-safe. Here we
  1421. * achieve that by always pre-iterating before returning
  1422. * the current task:
  1423. */
  1424. static struct task_struct *
  1425. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1426. {
  1427. struct task_struct *p = NULL;
  1428. struct sched_entity *se;
  1429. if (next == &cfs_rq->tasks)
  1430. return NULL;
  1431. se = list_entry(next, struct sched_entity, group_node);
  1432. p = task_of(se);
  1433. cfs_rq->balance_iterator = next->next;
  1434. return p;
  1435. }
  1436. static struct task_struct *load_balance_start_fair(void *arg)
  1437. {
  1438. struct cfs_rq *cfs_rq = arg;
  1439. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1440. }
  1441. static struct task_struct *load_balance_next_fair(void *arg)
  1442. {
  1443. struct cfs_rq *cfs_rq = arg;
  1444. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1445. }
  1446. static unsigned long
  1447. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1448. unsigned long max_load_move, struct sched_domain *sd,
  1449. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1450. struct cfs_rq *cfs_rq)
  1451. {
  1452. struct rq_iterator cfs_rq_iterator;
  1453. cfs_rq_iterator.start = load_balance_start_fair;
  1454. cfs_rq_iterator.next = load_balance_next_fair;
  1455. cfs_rq_iterator.arg = cfs_rq;
  1456. return balance_tasks(this_rq, this_cpu, busiest,
  1457. max_load_move, sd, idle, all_pinned,
  1458. this_best_prio, &cfs_rq_iterator);
  1459. }
  1460. #ifdef CONFIG_FAIR_GROUP_SCHED
  1461. static unsigned long
  1462. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1463. unsigned long max_load_move,
  1464. struct sched_domain *sd, enum cpu_idle_type idle,
  1465. int *all_pinned, int *this_best_prio)
  1466. {
  1467. long rem_load_move = max_load_move;
  1468. int busiest_cpu = cpu_of(busiest);
  1469. struct task_group *tg;
  1470. rcu_read_lock();
  1471. update_h_load(busiest_cpu);
  1472. list_for_each_entry_rcu(tg, &task_groups, list) {
  1473. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1474. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1475. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1476. u64 rem_load, moved_load;
  1477. /*
  1478. * empty group
  1479. */
  1480. if (!busiest_cfs_rq->task_weight)
  1481. continue;
  1482. rem_load = (u64)rem_load_move * busiest_weight;
  1483. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1484. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1485. rem_load, sd, idle, all_pinned, this_best_prio,
  1486. tg->cfs_rq[busiest_cpu]);
  1487. if (!moved_load)
  1488. continue;
  1489. moved_load *= busiest_h_load;
  1490. moved_load = div_u64(moved_load, busiest_weight + 1);
  1491. rem_load_move -= moved_load;
  1492. if (rem_load_move < 0)
  1493. break;
  1494. }
  1495. rcu_read_unlock();
  1496. return max_load_move - rem_load_move;
  1497. }
  1498. #else
  1499. static unsigned long
  1500. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1501. unsigned long max_load_move,
  1502. struct sched_domain *sd, enum cpu_idle_type idle,
  1503. int *all_pinned, int *this_best_prio)
  1504. {
  1505. return __load_balance_fair(this_rq, this_cpu, busiest,
  1506. max_load_move, sd, idle, all_pinned,
  1507. this_best_prio, &busiest->cfs);
  1508. }
  1509. #endif
  1510. static int
  1511. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1512. struct sched_domain *sd, enum cpu_idle_type idle)
  1513. {
  1514. struct cfs_rq *busy_cfs_rq;
  1515. struct rq_iterator cfs_rq_iterator;
  1516. cfs_rq_iterator.start = load_balance_start_fair;
  1517. cfs_rq_iterator.next = load_balance_next_fair;
  1518. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1519. /*
  1520. * pass busy_cfs_rq argument into
  1521. * load_balance_[start|next]_fair iterators
  1522. */
  1523. cfs_rq_iterator.arg = busy_cfs_rq;
  1524. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1525. &cfs_rq_iterator))
  1526. return 1;
  1527. }
  1528. return 0;
  1529. }
  1530. #endif /* CONFIG_SMP */
  1531. /*
  1532. * scheduler tick hitting a task of our scheduling class:
  1533. */
  1534. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1535. {
  1536. struct cfs_rq *cfs_rq;
  1537. struct sched_entity *se = &curr->se;
  1538. for_each_sched_entity(se) {
  1539. cfs_rq = cfs_rq_of(se);
  1540. entity_tick(cfs_rq, se, queued);
  1541. }
  1542. }
  1543. /*
  1544. * Share the fairness runtime between parent and child, thus the
  1545. * total amount of pressure for CPU stays equal - new tasks
  1546. * get a chance to run but frequent forkers are not allowed to
  1547. * monopolize the CPU. Note: the parent runqueue is locked,
  1548. * the child is not running yet.
  1549. */
  1550. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1551. {
  1552. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1553. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1554. int this_cpu = smp_processor_id();
  1555. sched_info_queued(p);
  1556. update_curr(cfs_rq);
  1557. if (curr)
  1558. se->vruntime = curr->vruntime;
  1559. place_entity(cfs_rq, se, 1);
  1560. /* 'curr' will be NULL if the child belongs to a different group */
  1561. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1562. curr && entity_before(curr, se)) {
  1563. /*
  1564. * Upon rescheduling, sched_class::put_prev_task() will place
  1565. * 'current' within the tree based on its new key value.
  1566. */
  1567. swap(curr->vruntime, se->vruntime);
  1568. resched_task(rq->curr);
  1569. }
  1570. enqueue_task_fair(rq, p, 0);
  1571. }
  1572. /*
  1573. * Priority of the task has changed. Check to see if we preempt
  1574. * the current task.
  1575. */
  1576. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1577. int oldprio, int running)
  1578. {
  1579. /*
  1580. * Reschedule if we are currently running on this runqueue and
  1581. * our priority decreased, or if we are not currently running on
  1582. * this runqueue and our priority is higher than the current's
  1583. */
  1584. if (running) {
  1585. if (p->prio > oldprio)
  1586. resched_task(rq->curr);
  1587. } else
  1588. check_preempt_curr(rq, p, 0);
  1589. }
  1590. /*
  1591. * We switched to the sched_fair class.
  1592. */
  1593. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1594. int running)
  1595. {
  1596. /*
  1597. * We were most likely switched from sched_rt, so
  1598. * kick off the schedule if running, otherwise just see
  1599. * if we can still preempt the current task.
  1600. */
  1601. if (running)
  1602. resched_task(rq->curr);
  1603. else
  1604. check_preempt_curr(rq, p, 0);
  1605. }
  1606. /* Account for a task changing its policy or group.
  1607. *
  1608. * This routine is mostly called to set cfs_rq->curr field when a task
  1609. * migrates between groups/classes.
  1610. */
  1611. static void set_curr_task_fair(struct rq *rq)
  1612. {
  1613. struct sched_entity *se = &rq->curr->se;
  1614. for_each_sched_entity(se)
  1615. set_next_entity(cfs_rq_of(se), se);
  1616. }
  1617. #ifdef CONFIG_FAIR_GROUP_SCHED
  1618. static void moved_group_fair(struct task_struct *p)
  1619. {
  1620. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1621. update_curr(cfs_rq);
  1622. place_entity(cfs_rq, &p->se, 1);
  1623. }
  1624. #endif
  1625. /*
  1626. * All the scheduling class methods:
  1627. */
  1628. static const struct sched_class fair_sched_class = {
  1629. .next = &idle_sched_class,
  1630. .enqueue_task = enqueue_task_fair,
  1631. .dequeue_task = dequeue_task_fair,
  1632. .yield_task = yield_task_fair,
  1633. .check_preempt_curr = check_preempt_wakeup,
  1634. .pick_next_task = pick_next_task_fair,
  1635. .put_prev_task = put_prev_task_fair,
  1636. #ifdef CONFIG_SMP
  1637. .select_task_rq = select_task_rq_fair,
  1638. .load_balance = load_balance_fair,
  1639. .move_one_task = move_one_task_fair,
  1640. #endif
  1641. .set_curr_task = set_curr_task_fair,
  1642. .task_tick = task_tick_fair,
  1643. .task_new = task_new_fair,
  1644. .prio_changed = prio_changed_fair,
  1645. .switched_to = switched_to_fair,
  1646. #ifdef CONFIG_FAIR_GROUP_SCHED
  1647. .moved_group = moved_group_fair,
  1648. #endif
  1649. };
  1650. #ifdef CONFIG_SCHED_DEBUG
  1651. static void print_cfs_stats(struct seq_file *m, int cpu)
  1652. {
  1653. struct cfs_rq *cfs_rq;
  1654. rcu_read_lock();
  1655. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1656. print_cfs_rq(m, cpu, cfs_rq);
  1657. rcu_read_unlock();
  1658. }
  1659. #endif