gpmc-onenand.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
  1. /*
  2. * linux/arch/arm/mach-omap2/gpmc-onenand.c
  3. *
  4. * Copyright (C) 2006 - 2009 Nokia Corporation
  5. * Contacts: Juha Yrjola
  6. * Tony Lindgren
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/string.h>
  13. #include <linux/kernel.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/mtd/onenand_regs.h>
  16. #include <linux/io.h>
  17. #include <linux/platform_data/mtd-onenand-omap2.h>
  18. #include <linux/err.h>
  19. #include <asm/mach/flash.h>
  20. #include "gpmc.h"
  21. #include "soc.h"
  22. #include "gpmc-onenand.h"
  23. #define ONENAND_IO_SIZE SZ_128K
  24. #define ONENAND_FLAG_SYNCREAD (1 << 0)
  25. #define ONENAND_FLAG_SYNCWRITE (1 << 1)
  26. #define ONENAND_FLAG_HF (1 << 2)
  27. #define ONENAND_FLAG_VHF (1 << 3)
  28. static unsigned onenand_flags;
  29. static unsigned latency;
  30. static int fclk_offset;
  31. static struct omap_onenand_platform_data *gpmc_onenand_data;
  32. static struct resource gpmc_onenand_resource = {
  33. .flags = IORESOURCE_MEM,
  34. };
  35. static struct platform_device gpmc_onenand_device = {
  36. .name = "omap2-onenand",
  37. .id = -1,
  38. .num_resources = 1,
  39. .resource = &gpmc_onenand_resource,
  40. };
  41. static struct gpmc_timings omap2_onenand_calc_async_timings(void)
  42. {
  43. struct gpmc_timings t;
  44. const int t_cer = 15;
  45. const int t_avdp = 12;
  46. const int t_aavdh = 7;
  47. const int t_ce = 76;
  48. const int t_aa = 76;
  49. const int t_oe = 20;
  50. const int t_cez = 20; /* max of t_cez, t_oez */
  51. const int t_ds = 30;
  52. const int t_wpl = 40;
  53. const int t_wph = 30;
  54. memset(&t, 0, sizeof(t));
  55. t.sync_clk = 0;
  56. t.cs_on = 0;
  57. t.adv_on = 0;
  58. /* Read */
  59. t.adv_rd_off = gpmc_round_ns_to_ticks(max_t(int, t_avdp, t_cer));
  60. t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(t_aavdh);
  61. t.access = t.adv_on + gpmc_round_ns_to_ticks(t_aa);
  62. t.access = max_t(int, t.access, t.cs_on + gpmc_round_ns_to_ticks(t_ce));
  63. t.access = max_t(int, t.access, t.oe_on + gpmc_round_ns_to_ticks(t_oe));
  64. t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
  65. t.cs_rd_off = t.oe_off;
  66. t.rd_cycle = t.cs_rd_off + gpmc_round_ns_to_ticks(t_cez);
  67. /* Write */
  68. t.adv_wr_off = t.adv_rd_off;
  69. t.we_on = t.oe_on;
  70. if (cpu_is_omap34xx()) {
  71. t.wr_data_mux_bus = t.we_on;
  72. t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
  73. }
  74. t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
  75. t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
  76. t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
  77. return t;
  78. }
  79. static int gpmc_set_async_mode(int cs, struct gpmc_timings *t)
  80. {
  81. /* Configure GPMC for asynchronous read */
  82. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
  83. GPMC_CONFIG1_DEVICESIZE_16 |
  84. GPMC_CONFIG1_MUXADDDATA);
  85. return gpmc_cs_set_timings(cs, t);
  86. }
  87. static void omap2_onenand_set_async_mode(void __iomem *onenand_base)
  88. {
  89. u32 reg;
  90. /* Ensure sync read and sync write are disabled */
  91. reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
  92. reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
  93. writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
  94. }
  95. static void set_onenand_cfg(void __iomem *onenand_base)
  96. {
  97. u32 reg;
  98. reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
  99. reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9));
  100. reg |= (latency << ONENAND_SYS_CFG1_BRL_SHIFT) |
  101. ONENAND_SYS_CFG1_BL_16;
  102. if (onenand_flags & ONENAND_FLAG_SYNCREAD)
  103. reg |= ONENAND_SYS_CFG1_SYNC_READ;
  104. else
  105. reg &= ~ONENAND_SYS_CFG1_SYNC_READ;
  106. if (onenand_flags & ONENAND_FLAG_SYNCWRITE)
  107. reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
  108. else
  109. reg &= ~ONENAND_SYS_CFG1_SYNC_WRITE;
  110. if (onenand_flags & ONENAND_FLAG_HF)
  111. reg |= ONENAND_SYS_CFG1_HF;
  112. else
  113. reg &= ~ONENAND_SYS_CFG1_HF;
  114. if (onenand_flags & ONENAND_FLAG_VHF)
  115. reg |= ONENAND_SYS_CFG1_VHF;
  116. else
  117. reg &= ~ONENAND_SYS_CFG1_VHF;
  118. writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
  119. }
  120. static int omap2_onenand_get_freq(struct omap_onenand_platform_data *cfg,
  121. void __iomem *onenand_base)
  122. {
  123. u16 ver = readw(onenand_base + ONENAND_REG_VERSION_ID);
  124. int freq;
  125. switch ((ver >> 4) & 0xf) {
  126. case 0:
  127. freq = 40;
  128. break;
  129. case 1:
  130. freq = 54;
  131. break;
  132. case 2:
  133. freq = 66;
  134. break;
  135. case 3:
  136. freq = 83;
  137. break;
  138. case 4:
  139. freq = 104;
  140. break;
  141. default:
  142. freq = 54;
  143. break;
  144. }
  145. return freq;
  146. }
  147. static struct gpmc_timings
  148. omap2_onenand_calc_sync_timings(struct omap_onenand_platform_data *cfg,
  149. int freq)
  150. {
  151. struct gpmc_timings t;
  152. const int t_cer = 15;
  153. const int t_avdp = 12;
  154. const int t_cez = 20; /* max of t_cez, t_oez */
  155. const int t_ds = 30;
  156. const int t_wpl = 40;
  157. const int t_wph = 30;
  158. int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
  159. u32 reg;
  160. int div, fclk_offset_ns, gpmc_clk_ns;
  161. int ticks_cez;
  162. int cs = cfg->cs;
  163. if (cfg->flags & ONENAND_SYNC_READ)
  164. onenand_flags = ONENAND_FLAG_SYNCREAD;
  165. else if (cfg->flags & ONENAND_SYNC_READWRITE)
  166. onenand_flags = ONENAND_FLAG_SYNCREAD | ONENAND_FLAG_SYNCWRITE;
  167. switch (freq) {
  168. case 104:
  169. min_gpmc_clk_period = 9600; /* 104 MHz */
  170. t_ces = 3;
  171. t_avds = 4;
  172. t_avdh = 2;
  173. t_ach = 3;
  174. t_aavdh = 6;
  175. t_rdyo = 6;
  176. break;
  177. case 83:
  178. min_gpmc_clk_period = 12000; /* 83 MHz */
  179. t_ces = 5;
  180. t_avds = 4;
  181. t_avdh = 2;
  182. t_ach = 6;
  183. t_aavdh = 6;
  184. t_rdyo = 9;
  185. break;
  186. case 66:
  187. min_gpmc_clk_period = 15000; /* 66 MHz */
  188. t_ces = 6;
  189. t_avds = 5;
  190. t_avdh = 2;
  191. t_ach = 6;
  192. t_aavdh = 6;
  193. t_rdyo = 11;
  194. break;
  195. default:
  196. min_gpmc_clk_period = 18500; /* 54 MHz */
  197. t_ces = 7;
  198. t_avds = 7;
  199. t_avdh = 7;
  200. t_ach = 9;
  201. t_aavdh = 7;
  202. t_rdyo = 15;
  203. onenand_flags &= ~ONENAND_FLAG_SYNCWRITE;
  204. break;
  205. }
  206. div = gpmc_calc_divider(min_gpmc_clk_period);
  207. gpmc_clk_ns = gpmc_ticks_to_ns(div);
  208. if (gpmc_clk_ns < 15) /* >66Mhz */
  209. onenand_flags |= ONENAND_FLAG_HF;
  210. else
  211. onenand_flags &= ~ONENAND_FLAG_HF;
  212. if (gpmc_clk_ns < 12) /* >83Mhz */
  213. onenand_flags |= ONENAND_FLAG_VHF;
  214. else
  215. onenand_flags &= ~ONENAND_FLAG_VHF;
  216. if (onenand_flags & ONENAND_FLAG_VHF)
  217. latency = 8;
  218. else if (onenand_flags & ONENAND_FLAG_HF)
  219. latency = 6;
  220. else if (gpmc_clk_ns >= 25) /* 40 MHz*/
  221. latency = 3;
  222. else
  223. latency = 4;
  224. /* Set synchronous read timings */
  225. memset(&t, 0, sizeof(t));
  226. if (div == 1) {
  227. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
  228. reg |= (1 << 7);
  229. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
  230. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
  231. reg |= (1 << 7);
  232. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
  233. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
  234. reg |= (1 << 7);
  235. reg |= (1 << 23);
  236. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
  237. } else {
  238. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
  239. reg &= ~(1 << 7);
  240. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
  241. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
  242. reg &= ~(1 << 7);
  243. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
  244. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
  245. reg &= ~(1 << 7);
  246. reg &= ~(1 << 23);
  247. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
  248. }
  249. t.sync_clk = min_gpmc_clk_period;
  250. t.cs_on = 0;
  251. t.adv_on = 0;
  252. fclk_offset_ns = gpmc_round_ns_to_ticks(max_t(int, t_ces, t_avds));
  253. fclk_offset = gpmc_ns_to_ticks(fclk_offset_ns);
  254. t.page_burst_access = gpmc_clk_ns;
  255. /* Read */
  256. t.adv_rd_off = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_avdh));
  257. t.oe_on = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_ach));
  258. /* Force at least 1 clk between AVD High to OE Low */
  259. if (t.oe_on <= t.adv_rd_off)
  260. t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(1);
  261. t.access = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div);
  262. t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
  263. t.cs_rd_off = t.oe_off;
  264. ticks_cez = ((gpmc_ns_to_ticks(t_cez) + div - 1) / div) * div;
  265. t.rd_cycle = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div +
  266. ticks_cez);
  267. /* Write */
  268. if (onenand_flags & ONENAND_FLAG_SYNCWRITE) {
  269. t.adv_wr_off = t.adv_rd_off;
  270. t.we_on = 0;
  271. t.we_off = t.cs_rd_off;
  272. t.cs_wr_off = t.cs_rd_off;
  273. t.wr_cycle = t.rd_cycle;
  274. if (cpu_is_omap34xx()) {
  275. t.wr_data_mux_bus = gpmc_ticks_to_ns(fclk_offset +
  276. gpmc_ps_to_ticks(min_gpmc_clk_period +
  277. t_rdyo * 1000));
  278. t.wr_access = t.access;
  279. }
  280. } else {
  281. t.adv_wr_off = gpmc_round_ns_to_ticks(max_t(int,
  282. t_avdp, t_cer));
  283. t.we_on = t.adv_wr_off + gpmc_round_ns_to_ticks(t_aavdh);
  284. t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
  285. t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
  286. t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
  287. if (cpu_is_omap34xx()) {
  288. t.wr_data_mux_bus = t.we_on;
  289. t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
  290. }
  291. }
  292. return t;
  293. }
  294. static int gpmc_set_sync_mode(int cs, struct gpmc_timings *t)
  295. {
  296. unsigned sync_read = onenand_flags & ONENAND_FLAG_SYNCREAD;
  297. unsigned sync_write = onenand_flags & ONENAND_FLAG_SYNCWRITE;
  298. /* Configure GPMC for synchronous read */
  299. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
  300. GPMC_CONFIG1_WRAPBURST_SUPP |
  301. GPMC_CONFIG1_READMULTIPLE_SUPP |
  302. (sync_read ? GPMC_CONFIG1_READTYPE_SYNC : 0) |
  303. (sync_write ? GPMC_CONFIG1_WRITEMULTIPLE_SUPP : 0) |
  304. (sync_write ? GPMC_CONFIG1_WRITETYPE_SYNC : 0) |
  305. GPMC_CONFIG1_CLKACTIVATIONTIME(fclk_offset) |
  306. GPMC_CONFIG1_PAGE_LEN(2) |
  307. (cpu_is_omap34xx() ? 0 :
  308. (GPMC_CONFIG1_WAIT_READ_MON |
  309. GPMC_CONFIG1_WAIT_PIN_SEL(0))) |
  310. GPMC_CONFIG1_DEVICESIZE_16 |
  311. GPMC_CONFIG1_DEVICETYPE_NOR |
  312. GPMC_CONFIG1_MUXADDDATA);
  313. return gpmc_cs_set_timings(cs, t);
  314. }
  315. static int omap2_onenand_setup_async(void __iomem *onenand_base)
  316. {
  317. struct gpmc_timings t;
  318. int ret;
  319. omap2_onenand_set_async_mode(onenand_base);
  320. t = omap2_onenand_calc_async_timings();
  321. ret = gpmc_set_async_mode(gpmc_onenand_data->cs, &t);
  322. if (IS_ERR_VALUE(ret))
  323. return ret;
  324. omap2_onenand_set_async_mode(onenand_base);
  325. return 0;
  326. }
  327. static int omap2_onenand_setup_sync(void __iomem *onenand_base, int *freq_ptr)
  328. {
  329. int ret, freq = *freq_ptr;
  330. struct gpmc_timings t;
  331. if (!freq) {
  332. /* Very first call freq is not known */
  333. freq = omap2_onenand_get_freq(gpmc_onenand_data, onenand_base);
  334. set_onenand_cfg(onenand_base);
  335. }
  336. t = omap2_onenand_calc_sync_timings(gpmc_onenand_data, freq);
  337. ret = gpmc_set_sync_mode(gpmc_onenand_data->cs, &t);
  338. if (IS_ERR_VALUE(ret))
  339. return ret;
  340. set_onenand_cfg(onenand_base);
  341. *freq_ptr = freq;
  342. return 0;
  343. }
  344. static int gpmc_onenand_setup(void __iomem *onenand_base, int *freq_ptr)
  345. {
  346. struct device *dev = &gpmc_onenand_device.dev;
  347. unsigned l = ONENAND_SYNC_READ | ONENAND_SYNC_READWRITE;
  348. int ret;
  349. ret = omap2_onenand_setup_async(onenand_base);
  350. if (ret) {
  351. dev_err(dev, "unable to set to async mode\n");
  352. return ret;
  353. }
  354. if (!(gpmc_onenand_data->flags & l))
  355. return 0;
  356. ret = omap2_onenand_setup_sync(onenand_base, freq_ptr);
  357. if (ret)
  358. dev_err(dev, "unable to set to sync mode\n");
  359. return ret;
  360. }
  361. void __init gpmc_onenand_init(struct omap_onenand_platform_data *_onenand_data)
  362. {
  363. int err;
  364. gpmc_onenand_data = _onenand_data;
  365. gpmc_onenand_data->onenand_setup = gpmc_onenand_setup;
  366. gpmc_onenand_device.dev.platform_data = gpmc_onenand_data;
  367. if (cpu_is_omap24xx() &&
  368. (gpmc_onenand_data->flags & ONENAND_SYNC_READWRITE)) {
  369. printk(KERN_ERR "Onenand using only SYNC_READ on 24xx\n");
  370. gpmc_onenand_data->flags &= ~ONENAND_SYNC_READWRITE;
  371. gpmc_onenand_data->flags |= ONENAND_SYNC_READ;
  372. }
  373. if (cpu_is_omap34xx())
  374. gpmc_onenand_data->flags |= ONENAND_IN_OMAP34XX;
  375. else
  376. gpmc_onenand_data->flags &= ~ONENAND_IN_OMAP34XX;
  377. err = gpmc_cs_request(gpmc_onenand_data->cs, ONENAND_IO_SIZE,
  378. (unsigned long *)&gpmc_onenand_resource.start);
  379. if (err < 0) {
  380. pr_err("%s: Cannot request GPMC CS\n", __func__);
  381. return;
  382. }
  383. gpmc_onenand_resource.end = gpmc_onenand_resource.start +
  384. ONENAND_IO_SIZE - 1;
  385. if (platform_device_register(&gpmc_onenand_device) < 0) {
  386. pr_err("%s: Unable to register OneNAND device\n", __func__);
  387. gpmc_cs_free(gpmc_onenand_data->cs);
  388. return;
  389. }
  390. }