disk-io.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/version.h>
  19. #include <linux/fs.h>
  20. #include <linux/blkdev.h>
  21. #include <linux/scatterlist.h>
  22. #include <linux/swap.h>
  23. #include <linux/radix-tree.h>
  24. #include <linux/writeback.h>
  25. #include <linux/buffer_head.h> // for block_sync_page
  26. #include <linux/workqueue.h>
  27. #include <linux/kthread.h>
  28. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
  29. # include <linux/freezer.h>
  30. #else
  31. # include <linux/sched.h>
  32. #endif
  33. #include "crc32c.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #if 0
  43. static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
  44. {
  45. if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
  46. printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
  47. (unsigned long long)extent_buffer_blocknr(buf),
  48. (unsigned long long)btrfs_header_blocknr(buf));
  49. return 1;
  50. }
  51. return 0;
  52. }
  53. #endif
  54. static struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. struct end_io_wq {
  57. struct bio *bio;
  58. bio_end_io_t *end_io;
  59. void *private;
  60. struct btrfs_fs_info *info;
  61. int error;
  62. int metadata;
  63. struct list_head list;
  64. struct btrfs_work work;
  65. };
  66. struct async_submit_bio {
  67. struct inode *inode;
  68. struct bio *bio;
  69. struct list_head list;
  70. extent_submit_bio_hook_t *submit_bio_hook;
  71. int rw;
  72. int mirror_num;
  73. struct btrfs_work work;
  74. };
  75. struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
  76. size_t page_offset, u64 start, u64 len,
  77. int create)
  78. {
  79. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  80. struct extent_map *em;
  81. int ret;
  82. spin_lock(&em_tree->lock);
  83. em = lookup_extent_mapping(em_tree, start, len);
  84. if (em) {
  85. em->bdev =
  86. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  87. spin_unlock(&em_tree->lock);
  88. goto out;
  89. }
  90. spin_unlock(&em_tree->lock);
  91. em = alloc_extent_map(GFP_NOFS);
  92. if (!em) {
  93. em = ERR_PTR(-ENOMEM);
  94. goto out;
  95. }
  96. em->start = 0;
  97. em->len = (u64)-1;
  98. em->block_start = 0;
  99. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  100. spin_lock(&em_tree->lock);
  101. ret = add_extent_mapping(em_tree, em);
  102. if (ret == -EEXIST) {
  103. u64 failed_start = em->start;
  104. u64 failed_len = em->len;
  105. printk("failed to insert %Lu %Lu -> %Lu into tree\n",
  106. em->start, em->len, em->block_start);
  107. free_extent_map(em);
  108. em = lookup_extent_mapping(em_tree, start, len);
  109. if (em) {
  110. printk("after failing, found %Lu %Lu %Lu\n",
  111. em->start, em->len, em->block_start);
  112. ret = 0;
  113. } else {
  114. em = lookup_extent_mapping(em_tree, failed_start,
  115. failed_len);
  116. if (em) {
  117. printk("double failure lookup gives us "
  118. "%Lu %Lu -> %Lu\n", em->start,
  119. em->len, em->block_start);
  120. free_extent_map(em);
  121. }
  122. ret = -EIO;
  123. }
  124. } else if (ret) {
  125. free_extent_map(em);
  126. em = NULL;
  127. }
  128. spin_unlock(&em_tree->lock);
  129. if (ret)
  130. em = ERR_PTR(ret);
  131. out:
  132. return em;
  133. }
  134. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  135. {
  136. return btrfs_crc32c(seed, data, len);
  137. }
  138. void btrfs_csum_final(u32 crc, char *result)
  139. {
  140. *(__le32 *)result = ~cpu_to_le32(crc);
  141. }
  142. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  143. int verify)
  144. {
  145. char result[BTRFS_CRC32_SIZE];
  146. unsigned long len;
  147. unsigned long cur_len;
  148. unsigned long offset = BTRFS_CSUM_SIZE;
  149. char *map_token = NULL;
  150. char *kaddr;
  151. unsigned long map_start;
  152. unsigned long map_len;
  153. int err;
  154. u32 crc = ~(u32)0;
  155. len = buf->len - offset;
  156. while(len > 0) {
  157. err = map_private_extent_buffer(buf, offset, 32,
  158. &map_token, &kaddr,
  159. &map_start, &map_len, KM_USER0);
  160. if (err) {
  161. printk("failed to map extent buffer! %lu\n",
  162. offset);
  163. return 1;
  164. }
  165. cur_len = min(len, map_len - (offset - map_start));
  166. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  167. crc, cur_len);
  168. len -= cur_len;
  169. offset += cur_len;
  170. unmap_extent_buffer(buf, map_token, KM_USER0);
  171. }
  172. btrfs_csum_final(crc, result);
  173. if (verify) {
  174. int from_this_trans = 0;
  175. if (root->fs_info->running_transaction &&
  176. btrfs_header_generation(buf) ==
  177. root->fs_info->running_transaction->transid)
  178. from_this_trans = 1;
  179. /* FIXME, this is not good */
  180. if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
  181. u32 val;
  182. u32 found = 0;
  183. memcpy(&found, result, BTRFS_CRC32_SIZE);
  184. read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
  185. printk("btrfs: %s checksum verify failed on %llu "
  186. "wanted %X found %X from_this_trans %d "
  187. "level %d\n",
  188. root->fs_info->sb->s_id,
  189. buf->start, val, found, from_this_trans,
  190. btrfs_header_level(buf));
  191. return 1;
  192. }
  193. } else {
  194. write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
  195. }
  196. return 0;
  197. }
  198. static int verify_parent_transid(struct extent_io_tree *io_tree,
  199. struct extent_buffer *eb, u64 parent_transid)
  200. {
  201. int ret;
  202. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  203. return 0;
  204. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  205. if (extent_buffer_uptodate(io_tree, eb) &&
  206. btrfs_header_generation(eb) == parent_transid) {
  207. ret = 0;
  208. goto out;
  209. }
  210. printk("parent transid verify failed on %llu wanted %llu found %llu\n",
  211. (unsigned long long)eb->start,
  212. (unsigned long long)parent_transid,
  213. (unsigned long long)btrfs_header_generation(eb));
  214. ret = 1;
  215. out:
  216. clear_extent_buffer_uptodate(io_tree, eb);
  217. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  218. GFP_NOFS);
  219. return ret;
  220. }
  221. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  222. struct extent_buffer *eb,
  223. u64 start, u64 parent_transid)
  224. {
  225. struct extent_io_tree *io_tree;
  226. int ret;
  227. int num_copies = 0;
  228. int mirror_num = 0;
  229. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  230. while (1) {
  231. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  232. btree_get_extent, mirror_num);
  233. if (!ret &&
  234. !verify_parent_transid(io_tree, eb, parent_transid))
  235. return ret;
  236. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  237. eb->start, eb->len);
  238. if (num_copies == 1)
  239. return ret;
  240. mirror_num++;
  241. if (mirror_num > num_copies)
  242. return ret;
  243. }
  244. return -EIO;
  245. }
  246. int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  247. {
  248. struct extent_io_tree *tree;
  249. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  250. u64 found_start;
  251. int found_level;
  252. unsigned long len;
  253. struct extent_buffer *eb;
  254. int ret;
  255. tree = &BTRFS_I(page->mapping->host)->io_tree;
  256. if (page->private == EXTENT_PAGE_PRIVATE)
  257. goto out;
  258. if (!page->private)
  259. goto out;
  260. len = page->private >> 2;
  261. if (len == 0) {
  262. WARN_ON(1);
  263. }
  264. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  265. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  266. btrfs_header_generation(eb));
  267. BUG_ON(ret);
  268. found_start = btrfs_header_bytenr(eb);
  269. if (found_start != start) {
  270. printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
  271. start, found_start, len);
  272. WARN_ON(1);
  273. goto err;
  274. }
  275. if (eb->first_page != page) {
  276. printk("bad first page %lu %lu\n", eb->first_page->index,
  277. page->index);
  278. WARN_ON(1);
  279. goto err;
  280. }
  281. if (!PageUptodate(page)) {
  282. printk("csum not up to date page %lu\n", page->index);
  283. WARN_ON(1);
  284. goto err;
  285. }
  286. found_level = btrfs_header_level(eb);
  287. spin_lock(&root->fs_info->hash_lock);
  288. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  289. spin_unlock(&root->fs_info->hash_lock);
  290. csum_tree_block(root, eb, 0);
  291. err:
  292. free_extent_buffer(eb);
  293. out:
  294. return 0;
  295. }
  296. static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
  297. {
  298. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  299. csum_dirty_buffer(root, page);
  300. return 0;
  301. }
  302. int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  303. struct extent_state *state)
  304. {
  305. struct extent_io_tree *tree;
  306. u64 found_start;
  307. int found_level;
  308. unsigned long len;
  309. struct extent_buffer *eb;
  310. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  311. int ret = 0;
  312. tree = &BTRFS_I(page->mapping->host)->io_tree;
  313. if (page->private == EXTENT_PAGE_PRIVATE)
  314. goto out;
  315. if (!page->private)
  316. goto out;
  317. len = page->private >> 2;
  318. if (len == 0) {
  319. WARN_ON(1);
  320. }
  321. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  322. found_start = btrfs_header_bytenr(eb);
  323. if (found_start != start) {
  324. ret = -EIO;
  325. goto err;
  326. }
  327. if (eb->first_page != page) {
  328. printk("bad first page %lu %lu\n", eb->first_page->index,
  329. page->index);
  330. WARN_ON(1);
  331. ret = -EIO;
  332. goto err;
  333. }
  334. if (memcmp_extent_buffer(eb, root->fs_info->fsid,
  335. (unsigned long)btrfs_header_fsid(eb),
  336. BTRFS_FSID_SIZE)) {
  337. printk("bad fsid on block %Lu\n", eb->start);
  338. ret = -EIO;
  339. goto err;
  340. }
  341. found_level = btrfs_header_level(eb);
  342. ret = csum_tree_block(root, eb, 1);
  343. if (ret)
  344. ret = -EIO;
  345. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  346. end = eb->start + end - 1;
  347. err:
  348. free_extent_buffer(eb);
  349. out:
  350. return ret;
  351. }
  352. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  353. static void end_workqueue_bio(struct bio *bio, int err)
  354. #else
  355. static int end_workqueue_bio(struct bio *bio,
  356. unsigned int bytes_done, int err)
  357. #endif
  358. {
  359. struct end_io_wq *end_io_wq = bio->bi_private;
  360. struct btrfs_fs_info *fs_info;
  361. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
  362. if (bio->bi_size)
  363. return 1;
  364. #endif
  365. fs_info = end_io_wq->info;
  366. end_io_wq->error = err;
  367. end_io_wq->work.func = end_workqueue_fn;
  368. end_io_wq->work.flags = 0;
  369. if (bio->bi_rw & (1 << BIO_RW))
  370. btrfs_queue_worker(&fs_info->endio_write_workers,
  371. &end_io_wq->work);
  372. else
  373. btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
  374. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
  375. return 0;
  376. #endif
  377. }
  378. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  379. int metadata)
  380. {
  381. struct end_io_wq *end_io_wq;
  382. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  383. if (!end_io_wq)
  384. return -ENOMEM;
  385. end_io_wq->private = bio->bi_private;
  386. end_io_wq->end_io = bio->bi_end_io;
  387. end_io_wq->info = info;
  388. end_io_wq->error = 0;
  389. end_io_wq->bio = bio;
  390. end_io_wq->metadata = metadata;
  391. bio->bi_private = end_io_wq;
  392. bio->bi_end_io = end_workqueue_bio;
  393. return 0;
  394. }
  395. static void run_one_async_submit(struct btrfs_work *work)
  396. {
  397. struct btrfs_fs_info *fs_info;
  398. struct async_submit_bio *async;
  399. async = container_of(work, struct async_submit_bio, work);
  400. fs_info = BTRFS_I(async->inode)->root->fs_info;
  401. atomic_dec(&fs_info->nr_async_submits);
  402. async->submit_bio_hook(async->inode, async->rw, async->bio,
  403. async->mirror_num);
  404. kfree(async);
  405. }
  406. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  407. int rw, struct bio *bio, int mirror_num,
  408. extent_submit_bio_hook_t *submit_bio_hook)
  409. {
  410. struct async_submit_bio *async;
  411. async = kmalloc(sizeof(*async), GFP_NOFS);
  412. if (!async)
  413. return -ENOMEM;
  414. async->inode = inode;
  415. async->rw = rw;
  416. async->bio = bio;
  417. async->mirror_num = mirror_num;
  418. async->submit_bio_hook = submit_bio_hook;
  419. async->work.func = run_one_async_submit;
  420. async->work.flags = 0;
  421. atomic_inc(&fs_info->nr_async_submits);
  422. btrfs_queue_worker(&fs_info->workers, &async->work);
  423. return 0;
  424. }
  425. static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  426. int mirror_num)
  427. {
  428. struct btrfs_root *root = BTRFS_I(inode)->root;
  429. u64 offset;
  430. int ret;
  431. offset = bio->bi_sector << 9;
  432. /*
  433. * when we're called for a write, we're already in the async
  434. * submission context. Just jump ingo btrfs_map_bio
  435. */
  436. if (rw & (1 << BIO_RW)) {
  437. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  438. mirror_num, 0);
  439. }
  440. /*
  441. * called for a read, do the setup so that checksum validation
  442. * can happen in the async kernel threads
  443. */
  444. ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
  445. BUG_ON(ret);
  446. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  447. }
  448. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  449. int mirror_num)
  450. {
  451. /*
  452. * kthread helpers are used to submit writes so that checksumming
  453. * can happen in parallel across all CPUs
  454. */
  455. if (!(rw & (1 << BIO_RW))) {
  456. return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
  457. }
  458. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  459. inode, rw, bio, mirror_num,
  460. __btree_submit_bio_hook);
  461. }
  462. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  463. {
  464. struct extent_io_tree *tree;
  465. tree = &BTRFS_I(page->mapping->host)->io_tree;
  466. return extent_write_full_page(tree, page, btree_get_extent, wbc);
  467. }
  468. static int btree_writepages(struct address_space *mapping,
  469. struct writeback_control *wbc)
  470. {
  471. struct extent_io_tree *tree;
  472. tree = &BTRFS_I(mapping->host)->io_tree;
  473. if (wbc->sync_mode == WB_SYNC_NONE) {
  474. u64 num_dirty;
  475. u64 start = 0;
  476. unsigned long thresh = 96 * 1024 * 1024;
  477. if (wbc->for_kupdate)
  478. return 0;
  479. if (current_is_pdflush()) {
  480. thresh = 96 * 1024 * 1024;
  481. } else {
  482. thresh = 8 * 1024 * 1024;
  483. }
  484. num_dirty = count_range_bits(tree, &start, (u64)-1,
  485. thresh, EXTENT_DIRTY);
  486. if (num_dirty < thresh) {
  487. return 0;
  488. }
  489. }
  490. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  491. }
  492. int btree_readpage(struct file *file, struct page *page)
  493. {
  494. struct extent_io_tree *tree;
  495. tree = &BTRFS_I(page->mapping->host)->io_tree;
  496. return extent_read_full_page(tree, page, btree_get_extent);
  497. }
  498. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  499. {
  500. struct extent_io_tree *tree;
  501. struct extent_map_tree *map;
  502. int ret;
  503. tree = &BTRFS_I(page->mapping->host)->io_tree;
  504. map = &BTRFS_I(page->mapping->host)->extent_tree;
  505. ret = try_release_extent_state(map, tree, page, gfp_flags);
  506. if (!ret) {
  507. return 0;
  508. }
  509. ret = try_release_extent_buffer(tree, page);
  510. if (ret == 1) {
  511. ClearPagePrivate(page);
  512. set_page_private(page, 0);
  513. page_cache_release(page);
  514. }
  515. return ret;
  516. }
  517. static void btree_invalidatepage(struct page *page, unsigned long offset)
  518. {
  519. struct extent_io_tree *tree;
  520. tree = &BTRFS_I(page->mapping->host)->io_tree;
  521. extent_invalidatepage(tree, page, offset);
  522. btree_releasepage(page, GFP_NOFS);
  523. if (PagePrivate(page)) {
  524. printk("warning page private not zero on page %Lu\n",
  525. page_offset(page));
  526. ClearPagePrivate(page);
  527. set_page_private(page, 0);
  528. page_cache_release(page);
  529. }
  530. }
  531. #if 0
  532. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  533. {
  534. struct buffer_head *bh;
  535. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  536. struct buffer_head *head;
  537. if (!page_has_buffers(page)) {
  538. create_empty_buffers(page, root->fs_info->sb->s_blocksize,
  539. (1 << BH_Dirty)|(1 << BH_Uptodate));
  540. }
  541. head = page_buffers(page);
  542. bh = head;
  543. do {
  544. if (buffer_dirty(bh))
  545. csum_tree_block(root, bh, 0);
  546. bh = bh->b_this_page;
  547. } while (bh != head);
  548. return block_write_full_page(page, btree_get_block, wbc);
  549. }
  550. #endif
  551. static struct address_space_operations btree_aops = {
  552. .readpage = btree_readpage,
  553. .writepage = btree_writepage,
  554. .writepages = btree_writepages,
  555. .releasepage = btree_releasepage,
  556. .invalidatepage = btree_invalidatepage,
  557. .sync_page = block_sync_page,
  558. };
  559. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  560. u64 parent_transid)
  561. {
  562. struct extent_buffer *buf = NULL;
  563. struct inode *btree_inode = root->fs_info->btree_inode;
  564. int ret = 0;
  565. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  566. if (!buf)
  567. return 0;
  568. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  569. buf, 0, 0, btree_get_extent, 0);
  570. free_extent_buffer(buf);
  571. return ret;
  572. }
  573. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  574. u64 bytenr, u32 blocksize)
  575. {
  576. struct inode *btree_inode = root->fs_info->btree_inode;
  577. struct extent_buffer *eb;
  578. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  579. bytenr, blocksize, GFP_NOFS);
  580. return eb;
  581. }
  582. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  583. u64 bytenr, u32 blocksize)
  584. {
  585. struct inode *btree_inode = root->fs_info->btree_inode;
  586. struct extent_buffer *eb;
  587. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  588. bytenr, blocksize, NULL, GFP_NOFS);
  589. return eb;
  590. }
  591. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  592. u32 blocksize, u64 parent_transid)
  593. {
  594. struct extent_buffer *buf = NULL;
  595. struct inode *btree_inode = root->fs_info->btree_inode;
  596. struct extent_io_tree *io_tree;
  597. int ret;
  598. io_tree = &BTRFS_I(btree_inode)->io_tree;
  599. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  600. if (!buf)
  601. return NULL;
  602. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  603. if (ret == 0) {
  604. buf->flags |= EXTENT_UPTODATE;
  605. }
  606. return buf;
  607. }
  608. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  609. struct extent_buffer *buf)
  610. {
  611. struct inode *btree_inode = root->fs_info->btree_inode;
  612. if (btrfs_header_generation(buf) ==
  613. root->fs_info->running_transaction->transid) {
  614. WARN_ON(!btrfs_tree_locked(buf));
  615. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  616. buf);
  617. }
  618. return 0;
  619. }
  620. int wait_on_tree_block_writeback(struct btrfs_root *root,
  621. struct extent_buffer *buf)
  622. {
  623. struct inode *btree_inode = root->fs_info->btree_inode;
  624. wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
  625. buf);
  626. return 0;
  627. }
  628. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  629. u32 stripesize, struct btrfs_root *root,
  630. struct btrfs_fs_info *fs_info,
  631. u64 objectid)
  632. {
  633. root->node = NULL;
  634. root->inode = NULL;
  635. root->commit_root = NULL;
  636. root->sectorsize = sectorsize;
  637. root->nodesize = nodesize;
  638. root->leafsize = leafsize;
  639. root->stripesize = stripesize;
  640. root->ref_cows = 0;
  641. root->track_dirty = 0;
  642. root->fs_info = fs_info;
  643. root->objectid = objectid;
  644. root->last_trans = 0;
  645. root->highest_inode = 0;
  646. root->last_inode_alloc = 0;
  647. root->name = NULL;
  648. root->in_sysfs = 0;
  649. INIT_LIST_HEAD(&root->dirty_list);
  650. spin_lock_init(&root->node_lock);
  651. mutex_init(&root->objectid_mutex);
  652. memset(&root->root_key, 0, sizeof(root->root_key));
  653. memset(&root->root_item, 0, sizeof(root->root_item));
  654. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  655. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  656. root->defrag_trans_start = fs_info->generation;
  657. init_completion(&root->kobj_unregister);
  658. root->defrag_running = 0;
  659. root->defrag_level = 0;
  660. root->root_key.objectid = objectid;
  661. return 0;
  662. }
  663. static int find_and_setup_root(struct btrfs_root *tree_root,
  664. struct btrfs_fs_info *fs_info,
  665. u64 objectid,
  666. struct btrfs_root *root)
  667. {
  668. int ret;
  669. u32 blocksize;
  670. __setup_root(tree_root->nodesize, tree_root->leafsize,
  671. tree_root->sectorsize, tree_root->stripesize,
  672. root, fs_info, objectid);
  673. ret = btrfs_find_last_root(tree_root, objectid,
  674. &root->root_item, &root->root_key);
  675. BUG_ON(ret);
  676. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  677. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  678. blocksize, 0);
  679. BUG_ON(!root->node);
  680. return 0;
  681. }
  682. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
  683. struct btrfs_key *location)
  684. {
  685. struct btrfs_root *root;
  686. struct btrfs_root *tree_root = fs_info->tree_root;
  687. struct btrfs_path *path;
  688. struct extent_buffer *l;
  689. u64 highest_inode;
  690. u32 blocksize;
  691. int ret = 0;
  692. root = kzalloc(sizeof(*root), GFP_NOFS);
  693. if (!root)
  694. return ERR_PTR(-ENOMEM);
  695. if (location->offset == (u64)-1) {
  696. ret = find_and_setup_root(tree_root, fs_info,
  697. location->objectid, root);
  698. if (ret) {
  699. kfree(root);
  700. return ERR_PTR(ret);
  701. }
  702. goto insert;
  703. }
  704. __setup_root(tree_root->nodesize, tree_root->leafsize,
  705. tree_root->sectorsize, tree_root->stripesize,
  706. root, fs_info, location->objectid);
  707. path = btrfs_alloc_path();
  708. BUG_ON(!path);
  709. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  710. if (ret != 0) {
  711. if (ret > 0)
  712. ret = -ENOENT;
  713. goto out;
  714. }
  715. l = path->nodes[0];
  716. read_extent_buffer(l, &root->root_item,
  717. btrfs_item_ptr_offset(l, path->slots[0]),
  718. sizeof(root->root_item));
  719. memcpy(&root->root_key, location, sizeof(*location));
  720. ret = 0;
  721. out:
  722. btrfs_release_path(root, path);
  723. btrfs_free_path(path);
  724. if (ret) {
  725. kfree(root);
  726. return ERR_PTR(ret);
  727. }
  728. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  729. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  730. blocksize, 0);
  731. BUG_ON(!root->node);
  732. insert:
  733. root->ref_cows = 1;
  734. ret = btrfs_find_highest_inode(root, &highest_inode);
  735. if (ret == 0) {
  736. root->highest_inode = highest_inode;
  737. root->last_inode_alloc = highest_inode;
  738. }
  739. return root;
  740. }
  741. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  742. u64 root_objectid)
  743. {
  744. struct btrfs_root *root;
  745. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  746. return fs_info->tree_root;
  747. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  748. return fs_info->extent_root;
  749. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  750. (unsigned long)root_objectid);
  751. return root;
  752. }
  753. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  754. struct btrfs_key *location)
  755. {
  756. struct btrfs_root *root;
  757. int ret;
  758. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  759. return fs_info->tree_root;
  760. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  761. return fs_info->extent_root;
  762. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  763. return fs_info->chunk_root;
  764. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  765. return fs_info->dev_root;
  766. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  767. (unsigned long)location->objectid);
  768. if (root)
  769. return root;
  770. root = btrfs_read_fs_root_no_radix(fs_info, location);
  771. if (IS_ERR(root))
  772. return root;
  773. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  774. (unsigned long)root->root_key.objectid,
  775. root);
  776. if (ret) {
  777. free_extent_buffer(root->node);
  778. kfree(root);
  779. return ERR_PTR(ret);
  780. }
  781. ret = btrfs_find_dead_roots(fs_info->tree_root,
  782. root->root_key.objectid, root);
  783. BUG_ON(ret);
  784. return root;
  785. }
  786. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  787. struct btrfs_key *location,
  788. const char *name, int namelen)
  789. {
  790. struct btrfs_root *root;
  791. int ret;
  792. root = btrfs_read_fs_root_no_name(fs_info, location);
  793. if (!root)
  794. return NULL;
  795. if (root->in_sysfs)
  796. return root;
  797. ret = btrfs_set_root_name(root, name, namelen);
  798. if (ret) {
  799. free_extent_buffer(root->node);
  800. kfree(root);
  801. return ERR_PTR(ret);
  802. }
  803. ret = btrfs_sysfs_add_root(root);
  804. if (ret) {
  805. free_extent_buffer(root->node);
  806. kfree(root->name);
  807. kfree(root);
  808. return ERR_PTR(ret);
  809. }
  810. root->in_sysfs = 1;
  811. return root;
  812. }
  813. #if 0
  814. static int add_hasher(struct btrfs_fs_info *info, char *type) {
  815. struct btrfs_hasher *hasher;
  816. hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
  817. if (!hasher)
  818. return -ENOMEM;
  819. hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
  820. if (!hasher->hash_tfm) {
  821. kfree(hasher);
  822. return -EINVAL;
  823. }
  824. spin_lock(&info->hash_lock);
  825. list_add(&hasher->list, &info->hashers);
  826. spin_unlock(&info->hash_lock);
  827. return 0;
  828. }
  829. #endif
  830. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  831. {
  832. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  833. int ret = 0;
  834. int limit = 256 * info->fs_devices->open_devices;
  835. struct list_head *cur;
  836. struct btrfs_device *device;
  837. struct backing_dev_info *bdi;
  838. if ((bdi_bits & (1 << BDI_write_congested)) &&
  839. atomic_read(&info->nr_async_submits) > limit) {
  840. return 1;
  841. }
  842. list_for_each(cur, &info->fs_devices->devices) {
  843. device = list_entry(cur, struct btrfs_device, dev_list);
  844. if (!device->bdev)
  845. continue;
  846. bdi = blk_get_backing_dev_info(device->bdev);
  847. if (bdi && bdi_congested(bdi, bdi_bits)) {
  848. ret = 1;
  849. break;
  850. }
  851. }
  852. return ret;
  853. }
  854. /*
  855. * this unplugs every device on the box, and it is only used when page
  856. * is null
  857. */
  858. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  859. {
  860. struct list_head *cur;
  861. struct btrfs_device *device;
  862. struct btrfs_fs_info *info;
  863. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  864. list_for_each(cur, &info->fs_devices->devices) {
  865. device = list_entry(cur, struct btrfs_device, dev_list);
  866. bdi = blk_get_backing_dev_info(device->bdev);
  867. if (bdi->unplug_io_fn) {
  868. bdi->unplug_io_fn(bdi, page);
  869. }
  870. }
  871. }
  872. void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  873. {
  874. struct inode *inode;
  875. struct extent_map_tree *em_tree;
  876. struct extent_map *em;
  877. struct address_space *mapping;
  878. u64 offset;
  879. /* the generic O_DIRECT read code does this */
  880. if (!page) {
  881. __unplug_io_fn(bdi, page);
  882. return;
  883. }
  884. /*
  885. * page->mapping may change at any time. Get a consistent copy
  886. * and use that for everything below
  887. */
  888. smp_mb();
  889. mapping = page->mapping;
  890. if (!mapping)
  891. return;
  892. inode = mapping->host;
  893. offset = page_offset(page);
  894. em_tree = &BTRFS_I(inode)->extent_tree;
  895. spin_lock(&em_tree->lock);
  896. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  897. spin_unlock(&em_tree->lock);
  898. if (!em) {
  899. __unplug_io_fn(bdi, page);
  900. return;
  901. }
  902. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  903. free_extent_map(em);
  904. __unplug_io_fn(bdi, page);
  905. return;
  906. }
  907. offset = offset - em->start;
  908. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  909. em->block_start + offset, page);
  910. free_extent_map(em);
  911. }
  912. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  913. {
  914. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  915. bdi_init(bdi);
  916. #endif
  917. bdi->ra_pages = default_backing_dev_info.ra_pages;
  918. bdi->state = 0;
  919. bdi->capabilities = default_backing_dev_info.capabilities;
  920. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  921. bdi->unplug_io_data = info;
  922. bdi->congested_fn = btrfs_congested_fn;
  923. bdi->congested_data = info;
  924. return 0;
  925. }
  926. static int bio_ready_for_csum(struct bio *bio)
  927. {
  928. u64 length = 0;
  929. u64 buf_len = 0;
  930. u64 start = 0;
  931. struct page *page;
  932. struct extent_io_tree *io_tree = NULL;
  933. struct btrfs_fs_info *info = NULL;
  934. struct bio_vec *bvec;
  935. int i;
  936. int ret;
  937. bio_for_each_segment(bvec, bio, i) {
  938. page = bvec->bv_page;
  939. if (page->private == EXTENT_PAGE_PRIVATE) {
  940. length += bvec->bv_len;
  941. continue;
  942. }
  943. if (!page->private) {
  944. length += bvec->bv_len;
  945. continue;
  946. }
  947. length = bvec->bv_len;
  948. buf_len = page->private >> 2;
  949. start = page_offset(page) + bvec->bv_offset;
  950. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  951. info = BTRFS_I(page->mapping->host)->root->fs_info;
  952. }
  953. /* are we fully contained in this bio? */
  954. if (buf_len <= length)
  955. return 1;
  956. ret = extent_range_uptodate(io_tree, start + length,
  957. start + buf_len - 1);
  958. if (ret == 1)
  959. return ret;
  960. return ret;
  961. }
  962. /*
  963. * called by the kthread helper functions to finally call the bio end_io
  964. * functions. This is where read checksum verification actually happens
  965. */
  966. static void end_workqueue_fn(struct btrfs_work *work)
  967. {
  968. struct bio *bio;
  969. struct end_io_wq *end_io_wq;
  970. struct btrfs_fs_info *fs_info;
  971. int error;
  972. end_io_wq = container_of(work, struct end_io_wq, work);
  973. bio = end_io_wq->bio;
  974. fs_info = end_io_wq->info;
  975. /* metadata bios are special because the whole tree block must
  976. * be checksummed at once. This makes sure the entire block is in
  977. * ram and up to date before trying to verify things. For
  978. * blocksize <= pagesize, it is basically a noop
  979. */
  980. if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
  981. btrfs_queue_worker(&fs_info->endio_workers,
  982. &end_io_wq->work);
  983. return;
  984. }
  985. error = end_io_wq->error;
  986. bio->bi_private = end_io_wq->private;
  987. bio->bi_end_io = end_io_wq->end_io;
  988. kfree(end_io_wq);
  989. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
  990. bio_endio(bio, bio->bi_size, error);
  991. #else
  992. bio_endio(bio, error);
  993. #endif
  994. }
  995. static int cleaner_kthread(void *arg)
  996. {
  997. struct btrfs_root *root = arg;
  998. do {
  999. smp_mb();
  1000. if (root->fs_info->closing)
  1001. break;
  1002. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1003. mutex_lock(&root->fs_info->cleaner_mutex);
  1004. btrfs_clean_old_snapshots(root);
  1005. mutex_unlock(&root->fs_info->cleaner_mutex);
  1006. if (freezing(current)) {
  1007. refrigerator();
  1008. } else {
  1009. smp_mb();
  1010. if (root->fs_info->closing)
  1011. break;
  1012. set_current_state(TASK_INTERRUPTIBLE);
  1013. schedule();
  1014. __set_current_state(TASK_RUNNING);
  1015. }
  1016. } while (!kthread_should_stop());
  1017. return 0;
  1018. }
  1019. static int transaction_kthread(void *arg)
  1020. {
  1021. struct btrfs_root *root = arg;
  1022. struct btrfs_trans_handle *trans;
  1023. struct btrfs_transaction *cur;
  1024. unsigned long now;
  1025. unsigned long delay;
  1026. int ret;
  1027. do {
  1028. smp_mb();
  1029. if (root->fs_info->closing)
  1030. break;
  1031. delay = HZ * 30;
  1032. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1033. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1034. mutex_lock(&root->fs_info->trans_mutex);
  1035. cur = root->fs_info->running_transaction;
  1036. if (!cur) {
  1037. mutex_unlock(&root->fs_info->trans_mutex);
  1038. goto sleep;
  1039. }
  1040. now = get_seconds();
  1041. if (now < cur->start_time || now - cur->start_time < 30) {
  1042. mutex_unlock(&root->fs_info->trans_mutex);
  1043. delay = HZ * 5;
  1044. goto sleep;
  1045. }
  1046. mutex_unlock(&root->fs_info->trans_mutex);
  1047. trans = btrfs_start_transaction(root, 1);
  1048. ret = btrfs_commit_transaction(trans, root);
  1049. sleep:
  1050. wake_up_process(root->fs_info->cleaner_kthread);
  1051. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1052. if (freezing(current)) {
  1053. refrigerator();
  1054. } else {
  1055. if (root->fs_info->closing)
  1056. break;
  1057. set_current_state(TASK_INTERRUPTIBLE);
  1058. schedule_timeout(delay);
  1059. __set_current_state(TASK_RUNNING);
  1060. }
  1061. } while (!kthread_should_stop());
  1062. return 0;
  1063. }
  1064. struct btrfs_root *open_ctree(struct super_block *sb,
  1065. struct btrfs_fs_devices *fs_devices,
  1066. char *options)
  1067. {
  1068. u32 sectorsize;
  1069. u32 nodesize;
  1070. u32 leafsize;
  1071. u32 blocksize;
  1072. u32 stripesize;
  1073. struct buffer_head *bh;
  1074. struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
  1075. GFP_NOFS);
  1076. struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
  1077. GFP_NOFS);
  1078. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1079. GFP_NOFS);
  1080. struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
  1081. GFP_NOFS);
  1082. struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
  1083. GFP_NOFS);
  1084. int ret;
  1085. int err = -EINVAL;
  1086. struct btrfs_super_block *disk_super;
  1087. if (!extent_root || !tree_root || !fs_info) {
  1088. err = -ENOMEM;
  1089. goto fail;
  1090. }
  1091. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1092. INIT_LIST_HEAD(&fs_info->trans_list);
  1093. INIT_LIST_HEAD(&fs_info->dead_roots);
  1094. INIT_LIST_HEAD(&fs_info->hashers);
  1095. spin_lock_init(&fs_info->hash_lock);
  1096. spin_lock_init(&fs_info->delalloc_lock);
  1097. spin_lock_init(&fs_info->new_trans_lock);
  1098. init_completion(&fs_info->kobj_unregister);
  1099. fs_info->tree_root = tree_root;
  1100. fs_info->extent_root = extent_root;
  1101. fs_info->chunk_root = chunk_root;
  1102. fs_info->dev_root = dev_root;
  1103. fs_info->fs_devices = fs_devices;
  1104. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1105. INIT_LIST_HEAD(&fs_info->space_info);
  1106. btrfs_mapping_init(&fs_info->mapping_tree);
  1107. atomic_set(&fs_info->nr_async_submits, 0);
  1108. atomic_set(&fs_info->throttles, 0);
  1109. fs_info->sb = sb;
  1110. fs_info->max_extent = (u64)-1;
  1111. fs_info->max_inline = 8192 * 1024;
  1112. setup_bdi(fs_info, &fs_info->bdi);
  1113. fs_info->btree_inode = new_inode(sb);
  1114. fs_info->btree_inode->i_ino = 1;
  1115. fs_info->btree_inode->i_nlink = 1;
  1116. fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
  1117. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1118. spin_lock_init(&fs_info->ordered_extent_lock);
  1119. sb->s_blocksize = 4096;
  1120. sb->s_blocksize_bits = blksize_bits(4096);
  1121. /*
  1122. * we set the i_size on the btree inode to the max possible int.
  1123. * the real end of the address space is determined by all of
  1124. * the devices in the system
  1125. */
  1126. fs_info->btree_inode->i_size = OFFSET_MAX;
  1127. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1128. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1129. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1130. fs_info->btree_inode->i_mapping,
  1131. GFP_NOFS);
  1132. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1133. GFP_NOFS);
  1134. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1135. extent_io_tree_init(&fs_info->free_space_cache,
  1136. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1137. extent_io_tree_init(&fs_info->block_group_cache,
  1138. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1139. extent_io_tree_init(&fs_info->pinned_extents,
  1140. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1141. extent_io_tree_init(&fs_info->pending_del,
  1142. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1143. extent_io_tree_init(&fs_info->extent_ins,
  1144. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1145. fs_info->do_barriers = 1;
  1146. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1147. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1148. sizeof(struct btrfs_key));
  1149. insert_inode_hash(fs_info->btree_inode);
  1150. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1151. mutex_init(&fs_info->trans_mutex);
  1152. mutex_init(&fs_info->drop_mutex);
  1153. mutex_init(&fs_info->alloc_mutex);
  1154. mutex_init(&fs_info->chunk_mutex);
  1155. mutex_init(&fs_info->transaction_kthread_mutex);
  1156. mutex_init(&fs_info->cleaner_mutex);
  1157. mutex_init(&fs_info->volume_mutex);
  1158. init_waitqueue_head(&fs_info->transaction_throttle);
  1159. init_waitqueue_head(&fs_info->transaction_wait);
  1160. #if 0
  1161. ret = add_hasher(fs_info, "crc32c");
  1162. if (ret) {
  1163. printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
  1164. err = -ENOMEM;
  1165. goto fail_iput;
  1166. }
  1167. #endif
  1168. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1169. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1170. bh = __bread(fs_devices->latest_bdev,
  1171. BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
  1172. if (!bh)
  1173. goto fail_iput;
  1174. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1175. brelse(bh);
  1176. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1177. disk_super = &fs_info->super_copy;
  1178. if (!btrfs_super_root(disk_super))
  1179. goto fail_sb_buffer;
  1180. err = btrfs_parse_options(tree_root, options);
  1181. if (err)
  1182. goto fail_sb_buffer;
  1183. /*
  1184. * we need to start all the end_io workers up front because the
  1185. * queue work function gets called at interrupt time, and so it
  1186. * cannot dynamically grow.
  1187. */
  1188. btrfs_init_workers(&fs_info->workers, fs_info->thread_pool_size);
  1189. btrfs_init_workers(&fs_info->submit_workers, fs_info->thread_pool_size);
  1190. btrfs_init_workers(&fs_info->fixup_workers, 1);
  1191. btrfs_init_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1192. btrfs_init_workers(&fs_info->endio_write_workers,
  1193. fs_info->thread_pool_size);
  1194. btrfs_start_workers(&fs_info->workers, 1);
  1195. btrfs_start_workers(&fs_info->submit_workers, 1);
  1196. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1197. btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1198. btrfs_start_workers(&fs_info->endio_write_workers,
  1199. fs_info->thread_pool_size);
  1200. err = -EINVAL;
  1201. if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
  1202. printk("Btrfs: wanted %llu devices, but found %llu\n",
  1203. (unsigned long long)btrfs_super_num_devices(disk_super),
  1204. (unsigned long long)fs_devices->open_devices);
  1205. if (btrfs_test_opt(tree_root, DEGRADED))
  1206. printk("continuing in degraded mode\n");
  1207. else {
  1208. goto fail_sb_buffer;
  1209. }
  1210. }
  1211. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1212. nodesize = btrfs_super_nodesize(disk_super);
  1213. leafsize = btrfs_super_leafsize(disk_super);
  1214. sectorsize = btrfs_super_sectorsize(disk_super);
  1215. stripesize = btrfs_super_stripesize(disk_super);
  1216. tree_root->nodesize = nodesize;
  1217. tree_root->leafsize = leafsize;
  1218. tree_root->sectorsize = sectorsize;
  1219. tree_root->stripesize = stripesize;
  1220. sb->s_blocksize = sectorsize;
  1221. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1222. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1223. sizeof(disk_super->magic))) {
  1224. printk("btrfs: valid FS not found on %s\n", sb->s_id);
  1225. goto fail_sb_buffer;
  1226. }
  1227. mutex_lock(&fs_info->chunk_mutex);
  1228. ret = btrfs_read_sys_array(tree_root);
  1229. mutex_unlock(&fs_info->chunk_mutex);
  1230. if (ret) {
  1231. printk("btrfs: failed to read the system array on %s\n",
  1232. sb->s_id);
  1233. goto fail_sys_array;
  1234. }
  1235. blocksize = btrfs_level_size(tree_root,
  1236. btrfs_super_chunk_root_level(disk_super));
  1237. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1238. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1239. chunk_root->node = read_tree_block(chunk_root,
  1240. btrfs_super_chunk_root(disk_super),
  1241. blocksize, 0);
  1242. BUG_ON(!chunk_root->node);
  1243. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1244. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1245. BTRFS_UUID_SIZE);
  1246. mutex_lock(&fs_info->chunk_mutex);
  1247. ret = btrfs_read_chunk_tree(chunk_root);
  1248. mutex_unlock(&fs_info->chunk_mutex);
  1249. BUG_ON(ret);
  1250. btrfs_close_extra_devices(fs_devices);
  1251. blocksize = btrfs_level_size(tree_root,
  1252. btrfs_super_root_level(disk_super));
  1253. tree_root->node = read_tree_block(tree_root,
  1254. btrfs_super_root(disk_super),
  1255. blocksize, 0);
  1256. if (!tree_root->node)
  1257. goto fail_sb_buffer;
  1258. ret = find_and_setup_root(tree_root, fs_info,
  1259. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1260. if (ret)
  1261. goto fail_tree_root;
  1262. extent_root->track_dirty = 1;
  1263. ret = find_and_setup_root(tree_root, fs_info,
  1264. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1265. dev_root->track_dirty = 1;
  1266. if (ret)
  1267. goto fail_extent_root;
  1268. btrfs_read_block_groups(extent_root);
  1269. fs_info->generation = btrfs_super_generation(disk_super) + 1;
  1270. fs_info->data_alloc_profile = (u64)-1;
  1271. fs_info->metadata_alloc_profile = (u64)-1;
  1272. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1273. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1274. "btrfs-cleaner");
  1275. if (!fs_info->cleaner_kthread)
  1276. goto fail_extent_root;
  1277. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1278. tree_root,
  1279. "btrfs-transaction");
  1280. if (!fs_info->transaction_kthread)
  1281. goto fail_cleaner;
  1282. return tree_root;
  1283. fail_cleaner:
  1284. kthread_stop(fs_info->cleaner_kthread);
  1285. fail_extent_root:
  1286. free_extent_buffer(extent_root->node);
  1287. fail_tree_root:
  1288. free_extent_buffer(tree_root->node);
  1289. fail_sys_array:
  1290. fail_sb_buffer:
  1291. btrfs_stop_workers(&fs_info->fixup_workers);
  1292. btrfs_stop_workers(&fs_info->workers);
  1293. btrfs_stop_workers(&fs_info->endio_workers);
  1294. btrfs_stop_workers(&fs_info->endio_write_workers);
  1295. btrfs_stop_workers(&fs_info->submit_workers);
  1296. fail_iput:
  1297. iput(fs_info->btree_inode);
  1298. fail:
  1299. btrfs_close_devices(fs_info->fs_devices);
  1300. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1301. kfree(extent_root);
  1302. kfree(tree_root);
  1303. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  1304. bdi_destroy(&fs_info->bdi);
  1305. #endif
  1306. kfree(fs_info);
  1307. return ERR_PTR(err);
  1308. }
  1309. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1310. {
  1311. char b[BDEVNAME_SIZE];
  1312. if (uptodate) {
  1313. set_buffer_uptodate(bh);
  1314. } else {
  1315. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1316. printk(KERN_WARNING "lost page write due to "
  1317. "I/O error on %s\n",
  1318. bdevname(bh->b_bdev, b));
  1319. }
  1320. /* note, we dont' set_buffer_write_io_error because we have
  1321. * our own ways of dealing with the IO errors
  1322. */
  1323. clear_buffer_uptodate(bh);
  1324. }
  1325. unlock_buffer(bh);
  1326. put_bh(bh);
  1327. }
  1328. int write_all_supers(struct btrfs_root *root)
  1329. {
  1330. struct list_head *cur;
  1331. struct list_head *head = &root->fs_info->fs_devices->devices;
  1332. struct btrfs_device *dev;
  1333. struct btrfs_super_block *sb;
  1334. struct btrfs_dev_item *dev_item;
  1335. struct buffer_head *bh;
  1336. int ret;
  1337. int do_barriers;
  1338. int max_errors;
  1339. int total_errors = 0;
  1340. u32 crc;
  1341. u64 flags;
  1342. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1343. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1344. sb = &root->fs_info->super_for_commit;
  1345. dev_item = &sb->dev_item;
  1346. list_for_each(cur, head) {
  1347. dev = list_entry(cur, struct btrfs_device, dev_list);
  1348. if (!dev->bdev) {
  1349. total_errors++;
  1350. continue;
  1351. }
  1352. if (!dev->in_fs_metadata)
  1353. continue;
  1354. btrfs_set_stack_device_type(dev_item, dev->type);
  1355. btrfs_set_stack_device_id(dev_item, dev->devid);
  1356. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1357. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1358. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1359. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1360. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1361. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1362. flags = btrfs_super_flags(sb);
  1363. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1364. crc = ~(u32)0;
  1365. crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
  1366. BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  1367. btrfs_csum_final(crc, sb->csum);
  1368. bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
  1369. BTRFS_SUPER_INFO_SIZE);
  1370. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1371. dev->pending_io = bh;
  1372. get_bh(bh);
  1373. set_buffer_uptodate(bh);
  1374. lock_buffer(bh);
  1375. bh->b_end_io = btrfs_end_buffer_write_sync;
  1376. if (do_barriers && dev->barriers) {
  1377. ret = submit_bh(WRITE_BARRIER, bh);
  1378. if (ret == -EOPNOTSUPP) {
  1379. printk("btrfs: disabling barriers on dev %s\n",
  1380. dev->name);
  1381. set_buffer_uptodate(bh);
  1382. dev->barriers = 0;
  1383. get_bh(bh);
  1384. lock_buffer(bh);
  1385. ret = submit_bh(WRITE, bh);
  1386. }
  1387. } else {
  1388. ret = submit_bh(WRITE, bh);
  1389. }
  1390. if (ret)
  1391. total_errors++;
  1392. }
  1393. if (total_errors > max_errors) {
  1394. printk("btrfs: %d errors while writing supers\n", total_errors);
  1395. BUG();
  1396. }
  1397. total_errors = 0;
  1398. list_for_each(cur, head) {
  1399. dev = list_entry(cur, struct btrfs_device, dev_list);
  1400. if (!dev->bdev)
  1401. continue;
  1402. if (!dev->in_fs_metadata)
  1403. continue;
  1404. BUG_ON(!dev->pending_io);
  1405. bh = dev->pending_io;
  1406. wait_on_buffer(bh);
  1407. if (!buffer_uptodate(dev->pending_io)) {
  1408. if (do_barriers && dev->barriers) {
  1409. printk("btrfs: disabling barriers on dev %s\n",
  1410. dev->name);
  1411. set_buffer_uptodate(bh);
  1412. get_bh(bh);
  1413. lock_buffer(bh);
  1414. dev->barriers = 0;
  1415. ret = submit_bh(WRITE, bh);
  1416. BUG_ON(ret);
  1417. wait_on_buffer(bh);
  1418. if (!buffer_uptodate(bh))
  1419. total_errors++;
  1420. } else {
  1421. total_errors++;
  1422. }
  1423. }
  1424. dev->pending_io = NULL;
  1425. brelse(bh);
  1426. }
  1427. if (total_errors > max_errors) {
  1428. printk("btrfs: %d errors while writing supers\n", total_errors);
  1429. BUG();
  1430. }
  1431. return 0;
  1432. }
  1433. int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
  1434. *root)
  1435. {
  1436. int ret;
  1437. ret = write_all_supers(root);
  1438. return ret;
  1439. }
  1440. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1441. {
  1442. radix_tree_delete(&fs_info->fs_roots_radix,
  1443. (unsigned long)root->root_key.objectid);
  1444. if (root->in_sysfs)
  1445. btrfs_sysfs_del_root(root);
  1446. if (root->inode)
  1447. iput(root->inode);
  1448. if (root->node)
  1449. free_extent_buffer(root->node);
  1450. if (root->commit_root)
  1451. free_extent_buffer(root->commit_root);
  1452. if (root->name)
  1453. kfree(root->name);
  1454. kfree(root);
  1455. return 0;
  1456. }
  1457. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1458. {
  1459. int ret;
  1460. struct btrfs_root *gang[8];
  1461. int i;
  1462. while(1) {
  1463. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1464. (void **)gang, 0,
  1465. ARRAY_SIZE(gang));
  1466. if (!ret)
  1467. break;
  1468. for (i = 0; i < ret; i++)
  1469. btrfs_free_fs_root(fs_info, gang[i]);
  1470. }
  1471. return 0;
  1472. }
  1473. int close_ctree(struct btrfs_root *root)
  1474. {
  1475. int ret;
  1476. struct btrfs_trans_handle *trans;
  1477. struct btrfs_fs_info *fs_info = root->fs_info;
  1478. fs_info->closing = 1;
  1479. smp_mb();
  1480. kthread_stop(root->fs_info->transaction_kthread);
  1481. kthread_stop(root->fs_info->cleaner_kthread);
  1482. btrfs_clean_old_snapshots(root);
  1483. trans = btrfs_start_transaction(root, 1);
  1484. ret = btrfs_commit_transaction(trans, root);
  1485. /* run commit again to drop the original snapshot */
  1486. trans = btrfs_start_transaction(root, 1);
  1487. btrfs_commit_transaction(trans, root);
  1488. ret = btrfs_write_and_wait_transaction(NULL, root);
  1489. BUG_ON(ret);
  1490. write_ctree_super(NULL, root);
  1491. if (fs_info->delalloc_bytes) {
  1492. printk("btrfs: at unmount delalloc count %Lu\n",
  1493. fs_info->delalloc_bytes);
  1494. }
  1495. if (fs_info->extent_root->node)
  1496. free_extent_buffer(fs_info->extent_root->node);
  1497. if (fs_info->tree_root->node)
  1498. free_extent_buffer(fs_info->tree_root->node);
  1499. if (root->fs_info->chunk_root->node);
  1500. free_extent_buffer(root->fs_info->chunk_root->node);
  1501. if (root->fs_info->dev_root->node);
  1502. free_extent_buffer(root->fs_info->dev_root->node);
  1503. btrfs_free_block_groups(root->fs_info);
  1504. del_fs_roots(fs_info);
  1505. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1506. truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
  1507. btrfs_stop_workers(&fs_info->fixup_workers);
  1508. btrfs_stop_workers(&fs_info->workers);
  1509. btrfs_stop_workers(&fs_info->endio_workers);
  1510. btrfs_stop_workers(&fs_info->endio_write_workers);
  1511. btrfs_stop_workers(&fs_info->submit_workers);
  1512. iput(fs_info->btree_inode);
  1513. #if 0
  1514. while(!list_empty(&fs_info->hashers)) {
  1515. struct btrfs_hasher *hasher;
  1516. hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
  1517. hashers);
  1518. list_del(&hasher->hashers);
  1519. crypto_free_hash(&fs_info->hash_tfm);
  1520. kfree(hasher);
  1521. }
  1522. #endif
  1523. btrfs_close_devices(fs_info->fs_devices);
  1524. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1525. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  1526. bdi_destroy(&fs_info->bdi);
  1527. #endif
  1528. kfree(fs_info->extent_root);
  1529. kfree(fs_info->tree_root);
  1530. kfree(fs_info->chunk_root);
  1531. kfree(fs_info->dev_root);
  1532. return 0;
  1533. }
  1534. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  1535. {
  1536. int ret;
  1537. struct inode *btree_inode = buf->first_page->mapping->host;
  1538. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  1539. if (!ret)
  1540. return ret;
  1541. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  1542. parent_transid);
  1543. return !ret;
  1544. }
  1545. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  1546. {
  1547. struct inode *btree_inode = buf->first_page->mapping->host;
  1548. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  1549. buf);
  1550. }
  1551. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  1552. {
  1553. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1554. u64 transid = btrfs_header_generation(buf);
  1555. struct inode *btree_inode = root->fs_info->btree_inode;
  1556. WARN_ON(!btrfs_tree_locked(buf));
  1557. if (transid != root->fs_info->generation) {
  1558. printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
  1559. (unsigned long long)buf->start,
  1560. transid, root->fs_info->generation);
  1561. WARN_ON(1);
  1562. }
  1563. set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
  1564. }
  1565. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  1566. {
  1567. /*
  1568. * looks as though older kernels can get into trouble with
  1569. * this code, they end up stuck in balance_dirty_pages forever
  1570. */
  1571. struct extent_io_tree *tree;
  1572. u64 num_dirty;
  1573. u64 start = 0;
  1574. unsigned long thresh = 16 * 1024 * 1024;
  1575. tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  1576. if (current_is_pdflush())
  1577. return;
  1578. num_dirty = count_range_bits(tree, &start, (u64)-1,
  1579. thresh, EXTENT_DIRTY);
  1580. if (num_dirty > thresh) {
  1581. balance_dirty_pages_ratelimited_nr(
  1582. root->fs_info->btree_inode->i_mapping, 1);
  1583. }
  1584. return;
  1585. }
  1586. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  1587. {
  1588. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1589. int ret;
  1590. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1591. if (ret == 0) {
  1592. buf->flags |= EXTENT_UPTODATE;
  1593. }
  1594. return ret;
  1595. }
  1596. static struct extent_io_ops btree_extent_io_ops = {
  1597. .writepage_io_hook = btree_writepage_io_hook,
  1598. .readpage_end_io_hook = btree_readpage_end_io_hook,
  1599. .submit_bio_hook = btree_submit_bio_hook,
  1600. /* note we're sharing with inode.c for the merge bio hook */
  1601. .merge_bio_hook = btrfs_merge_bio_hook,
  1602. };