huge_memory.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/shrinker.h>
  15. #include <linux/mm_inline.h>
  16. #include <linux/kthread.h>
  17. #include <linux/khugepaged.h>
  18. #include <linux/freezer.h>
  19. #include <linux/mman.h>
  20. #include <linux/pagemap.h>
  21. #include <asm/tlb.h>
  22. #include <asm/pgalloc.h>
  23. #include "internal.h"
  24. /*
  25. * By default transparent hugepage support is enabled for all mappings
  26. * and khugepaged scans all mappings. Defrag is only invoked by
  27. * khugepaged hugepage allocations and by page faults inside
  28. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29. * allocations.
  30. */
  31. unsigned long transparent_hugepage_flags __read_mostly =
  32. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34. #endif
  35. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37. #endif
  38. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  40. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  41. /* default scan 8*512 pte (or vmas) every 30 second */
  42. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  43. static unsigned int khugepaged_pages_collapsed;
  44. static unsigned int khugepaged_full_scans;
  45. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  46. /* during fragmentation poll the hugepage allocator once every minute */
  47. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  48. static struct task_struct *khugepaged_thread __read_mostly;
  49. static DEFINE_MUTEX(khugepaged_mutex);
  50. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  51. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  52. /*
  53. * default collapse hugepages if there is at least one pte mapped like
  54. * it would have happened if the vma was large enough during page
  55. * fault.
  56. */
  57. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  58. static int khugepaged(void *none);
  59. static int mm_slots_hash_init(void);
  60. static int khugepaged_slab_init(void);
  61. static void khugepaged_slab_free(void);
  62. #define MM_SLOTS_HASH_HEADS 1024
  63. static struct hlist_head *mm_slots_hash __read_mostly;
  64. static struct kmem_cache *mm_slot_cache __read_mostly;
  65. /**
  66. * struct mm_slot - hash lookup from mm to mm_slot
  67. * @hash: hash collision list
  68. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  69. * @mm: the mm that this information is valid for
  70. */
  71. struct mm_slot {
  72. struct hlist_node hash;
  73. struct list_head mm_node;
  74. struct mm_struct *mm;
  75. };
  76. /**
  77. * struct khugepaged_scan - cursor for scanning
  78. * @mm_head: the head of the mm list to scan
  79. * @mm_slot: the current mm_slot we are scanning
  80. * @address: the next address inside that to be scanned
  81. *
  82. * There is only the one khugepaged_scan instance of this cursor structure.
  83. */
  84. struct khugepaged_scan {
  85. struct list_head mm_head;
  86. struct mm_slot *mm_slot;
  87. unsigned long address;
  88. };
  89. static struct khugepaged_scan khugepaged_scan = {
  90. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  91. };
  92. static int set_recommended_min_free_kbytes(void)
  93. {
  94. struct zone *zone;
  95. int nr_zones = 0;
  96. unsigned long recommended_min;
  97. extern int min_free_kbytes;
  98. if (!khugepaged_enabled())
  99. return 0;
  100. for_each_populated_zone(zone)
  101. nr_zones++;
  102. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  103. recommended_min = pageblock_nr_pages * nr_zones * 2;
  104. /*
  105. * Make sure that on average at least two pageblocks are almost free
  106. * of another type, one for a migratetype to fall back to and a
  107. * second to avoid subsequent fallbacks of other types There are 3
  108. * MIGRATE_TYPES we care about.
  109. */
  110. recommended_min += pageblock_nr_pages * nr_zones *
  111. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  112. /* don't ever allow to reserve more than 5% of the lowmem */
  113. recommended_min = min(recommended_min,
  114. (unsigned long) nr_free_buffer_pages() / 20);
  115. recommended_min <<= (PAGE_SHIFT-10);
  116. if (recommended_min > min_free_kbytes)
  117. min_free_kbytes = recommended_min;
  118. setup_per_zone_wmarks();
  119. return 0;
  120. }
  121. late_initcall(set_recommended_min_free_kbytes);
  122. static int start_khugepaged(void)
  123. {
  124. int err = 0;
  125. if (khugepaged_enabled()) {
  126. if (!khugepaged_thread)
  127. khugepaged_thread = kthread_run(khugepaged, NULL,
  128. "khugepaged");
  129. if (unlikely(IS_ERR(khugepaged_thread))) {
  130. printk(KERN_ERR
  131. "khugepaged: kthread_run(khugepaged) failed\n");
  132. err = PTR_ERR(khugepaged_thread);
  133. khugepaged_thread = NULL;
  134. }
  135. if (!list_empty(&khugepaged_scan.mm_head))
  136. wake_up_interruptible(&khugepaged_wait);
  137. set_recommended_min_free_kbytes();
  138. } else if (khugepaged_thread) {
  139. kthread_stop(khugepaged_thread);
  140. khugepaged_thread = NULL;
  141. }
  142. return err;
  143. }
  144. static atomic_t huge_zero_refcount;
  145. static unsigned long huge_zero_pfn __read_mostly;
  146. static inline bool is_huge_zero_pfn(unsigned long pfn)
  147. {
  148. unsigned long zero_pfn = ACCESS_ONCE(huge_zero_pfn);
  149. return zero_pfn && pfn == zero_pfn;
  150. }
  151. static inline bool is_huge_zero_pmd(pmd_t pmd)
  152. {
  153. return is_huge_zero_pfn(pmd_pfn(pmd));
  154. }
  155. static unsigned long get_huge_zero_page(void)
  156. {
  157. struct page *zero_page;
  158. retry:
  159. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  160. return ACCESS_ONCE(huge_zero_pfn);
  161. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  162. HPAGE_PMD_ORDER);
  163. if (!zero_page) {
  164. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  165. return 0;
  166. }
  167. count_vm_event(THP_ZERO_PAGE_ALLOC);
  168. preempt_disable();
  169. if (cmpxchg(&huge_zero_pfn, 0, page_to_pfn(zero_page))) {
  170. preempt_enable();
  171. __free_page(zero_page);
  172. goto retry;
  173. }
  174. /* We take additional reference here. It will be put back by shrinker */
  175. atomic_set(&huge_zero_refcount, 2);
  176. preempt_enable();
  177. return ACCESS_ONCE(huge_zero_pfn);
  178. }
  179. static void put_huge_zero_page(void)
  180. {
  181. /*
  182. * Counter should never go to zero here. Only shrinker can put
  183. * last reference.
  184. */
  185. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  186. }
  187. static int shrink_huge_zero_page(struct shrinker *shrink,
  188. struct shrink_control *sc)
  189. {
  190. if (!sc->nr_to_scan)
  191. /* we can free zero page only if last reference remains */
  192. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  193. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  194. unsigned long zero_pfn = xchg(&huge_zero_pfn, 0);
  195. BUG_ON(zero_pfn == 0);
  196. __free_page(__pfn_to_page(zero_pfn));
  197. }
  198. return 0;
  199. }
  200. static struct shrinker huge_zero_page_shrinker = {
  201. .shrink = shrink_huge_zero_page,
  202. .seeks = DEFAULT_SEEKS,
  203. };
  204. #ifdef CONFIG_SYSFS
  205. static ssize_t double_flag_show(struct kobject *kobj,
  206. struct kobj_attribute *attr, char *buf,
  207. enum transparent_hugepage_flag enabled,
  208. enum transparent_hugepage_flag req_madv)
  209. {
  210. if (test_bit(enabled, &transparent_hugepage_flags)) {
  211. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  212. return sprintf(buf, "[always] madvise never\n");
  213. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  214. return sprintf(buf, "always [madvise] never\n");
  215. else
  216. return sprintf(buf, "always madvise [never]\n");
  217. }
  218. static ssize_t double_flag_store(struct kobject *kobj,
  219. struct kobj_attribute *attr,
  220. const char *buf, size_t count,
  221. enum transparent_hugepage_flag enabled,
  222. enum transparent_hugepage_flag req_madv)
  223. {
  224. if (!memcmp("always", buf,
  225. min(sizeof("always")-1, count))) {
  226. set_bit(enabled, &transparent_hugepage_flags);
  227. clear_bit(req_madv, &transparent_hugepage_flags);
  228. } else if (!memcmp("madvise", buf,
  229. min(sizeof("madvise")-1, count))) {
  230. clear_bit(enabled, &transparent_hugepage_flags);
  231. set_bit(req_madv, &transparent_hugepage_flags);
  232. } else if (!memcmp("never", buf,
  233. min(sizeof("never")-1, count))) {
  234. clear_bit(enabled, &transparent_hugepage_flags);
  235. clear_bit(req_madv, &transparent_hugepage_flags);
  236. } else
  237. return -EINVAL;
  238. return count;
  239. }
  240. static ssize_t enabled_show(struct kobject *kobj,
  241. struct kobj_attribute *attr, char *buf)
  242. {
  243. return double_flag_show(kobj, attr, buf,
  244. TRANSPARENT_HUGEPAGE_FLAG,
  245. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  246. }
  247. static ssize_t enabled_store(struct kobject *kobj,
  248. struct kobj_attribute *attr,
  249. const char *buf, size_t count)
  250. {
  251. ssize_t ret;
  252. ret = double_flag_store(kobj, attr, buf, count,
  253. TRANSPARENT_HUGEPAGE_FLAG,
  254. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  255. if (ret > 0) {
  256. int err;
  257. mutex_lock(&khugepaged_mutex);
  258. err = start_khugepaged();
  259. mutex_unlock(&khugepaged_mutex);
  260. if (err)
  261. ret = err;
  262. }
  263. return ret;
  264. }
  265. static struct kobj_attribute enabled_attr =
  266. __ATTR(enabled, 0644, enabled_show, enabled_store);
  267. static ssize_t single_flag_show(struct kobject *kobj,
  268. struct kobj_attribute *attr, char *buf,
  269. enum transparent_hugepage_flag flag)
  270. {
  271. return sprintf(buf, "%d\n",
  272. !!test_bit(flag, &transparent_hugepage_flags));
  273. }
  274. static ssize_t single_flag_store(struct kobject *kobj,
  275. struct kobj_attribute *attr,
  276. const char *buf, size_t count,
  277. enum transparent_hugepage_flag flag)
  278. {
  279. unsigned long value;
  280. int ret;
  281. ret = kstrtoul(buf, 10, &value);
  282. if (ret < 0)
  283. return ret;
  284. if (value > 1)
  285. return -EINVAL;
  286. if (value)
  287. set_bit(flag, &transparent_hugepage_flags);
  288. else
  289. clear_bit(flag, &transparent_hugepage_flags);
  290. return count;
  291. }
  292. /*
  293. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  294. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  295. * memory just to allocate one more hugepage.
  296. */
  297. static ssize_t defrag_show(struct kobject *kobj,
  298. struct kobj_attribute *attr, char *buf)
  299. {
  300. return double_flag_show(kobj, attr, buf,
  301. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  302. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  303. }
  304. static ssize_t defrag_store(struct kobject *kobj,
  305. struct kobj_attribute *attr,
  306. const char *buf, size_t count)
  307. {
  308. return double_flag_store(kobj, attr, buf, count,
  309. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  310. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  311. }
  312. static struct kobj_attribute defrag_attr =
  313. __ATTR(defrag, 0644, defrag_show, defrag_store);
  314. static ssize_t use_zero_page_show(struct kobject *kobj,
  315. struct kobj_attribute *attr, char *buf)
  316. {
  317. return single_flag_show(kobj, attr, buf,
  318. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  319. }
  320. static ssize_t use_zero_page_store(struct kobject *kobj,
  321. struct kobj_attribute *attr, const char *buf, size_t count)
  322. {
  323. return single_flag_store(kobj, attr, buf, count,
  324. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  325. }
  326. static struct kobj_attribute use_zero_page_attr =
  327. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  328. #ifdef CONFIG_DEBUG_VM
  329. static ssize_t debug_cow_show(struct kobject *kobj,
  330. struct kobj_attribute *attr, char *buf)
  331. {
  332. return single_flag_show(kobj, attr, buf,
  333. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  334. }
  335. static ssize_t debug_cow_store(struct kobject *kobj,
  336. struct kobj_attribute *attr,
  337. const char *buf, size_t count)
  338. {
  339. return single_flag_store(kobj, attr, buf, count,
  340. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  341. }
  342. static struct kobj_attribute debug_cow_attr =
  343. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  344. #endif /* CONFIG_DEBUG_VM */
  345. static struct attribute *hugepage_attr[] = {
  346. &enabled_attr.attr,
  347. &defrag_attr.attr,
  348. &use_zero_page_attr.attr,
  349. #ifdef CONFIG_DEBUG_VM
  350. &debug_cow_attr.attr,
  351. #endif
  352. NULL,
  353. };
  354. static struct attribute_group hugepage_attr_group = {
  355. .attrs = hugepage_attr,
  356. };
  357. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  358. struct kobj_attribute *attr,
  359. char *buf)
  360. {
  361. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  362. }
  363. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  364. struct kobj_attribute *attr,
  365. const char *buf, size_t count)
  366. {
  367. unsigned long msecs;
  368. int err;
  369. err = strict_strtoul(buf, 10, &msecs);
  370. if (err || msecs > UINT_MAX)
  371. return -EINVAL;
  372. khugepaged_scan_sleep_millisecs = msecs;
  373. wake_up_interruptible(&khugepaged_wait);
  374. return count;
  375. }
  376. static struct kobj_attribute scan_sleep_millisecs_attr =
  377. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  378. scan_sleep_millisecs_store);
  379. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  380. struct kobj_attribute *attr,
  381. char *buf)
  382. {
  383. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  384. }
  385. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  386. struct kobj_attribute *attr,
  387. const char *buf, size_t count)
  388. {
  389. unsigned long msecs;
  390. int err;
  391. err = strict_strtoul(buf, 10, &msecs);
  392. if (err || msecs > UINT_MAX)
  393. return -EINVAL;
  394. khugepaged_alloc_sleep_millisecs = msecs;
  395. wake_up_interruptible(&khugepaged_wait);
  396. return count;
  397. }
  398. static struct kobj_attribute alloc_sleep_millisecs_attr =
  399. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  400. alloc_sleep_millisecs_store);
  401. static ssize_t pages_to_scan_show(struct kobject *kobj,
  402. struct kobj_attribute *attr,
  403. char *buf)
  404. {
  405. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  406. }
  407. static ssize_t pages_to_scan_store(struct kobject *kobj,
  408. struct kobj_attribute *attr,
  409. const char *buf, size_t count)
  410. {
  411. int err;
  412. unsigned long pages;
  413. err = strict_strtoul(buf, 10, &pages);
  414. if (err || !pages || pages > UINT_MAX)
  415. return -EINVAL;
  416. khugepaged_pages_to_scan = pages;
  417. return count;
  418. }
  419. static struct kobj_attribute pages_to_scan_attr =
  420. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  421. pages_to_scan_store);
  422. static ssize_t pages_collapsed_show(struct kobject *kobj,
  423. struct kobj_attribute *attr,
  424. char *buf)
  425. {
  426. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  427. }
  428. static struct kobj_attribute pages_collapsed_attr =
  429. __ATTR_RO(pages_collapsed);
  430. static ssize_t full_scans_show(struct kobject *kobj,
  431. struct kobj_attribute *attr,
  432. char *buf)
  433. {
  434. return sprintf(buf, "%u\n", khugepaged_full_scans);
  435. }
  436. static struct kobj_attribute full_scans_attr =
  437. __ATTR_RO(full_scans);
  438. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  439. struct kobj_attribute *attr, char *buf)
  440. {
  441. return single_flag_show(kobj, attr, buf,
  442. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  443. }
  444. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  445. struct kobj_attribute *attr,
  446. const char *buf, size_t count)
  447. {
  448. return single_flag_store(kobj, attr, buf, count,
  449. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  450. }
  451. static struct kobj_attribute khugepaged_defrag_attr =
  452. __ATTR(defrag, 0644, khugepaged_defrag_show,
  453. khugepaged_defrag_store);
  454. /*
  455. * max_ptes_none controls if khugepaged should collapse hugepages over
  456. * any unmapped ptes in turn potentially increasing the memory
  457. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  458. * reduce the available free memory in the system as it
  459. * runs. Increasing max_ptes_none will instead potentially reduce the
  460. * free memory in the system during the khugepaged scan.
  461. */
  462. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  463. struct kobj_attribute *attr,
  464. char *buf)
  465. {
  466. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  467. }
  468. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  469. struct kobj_attribute *attr,
  470. const char *buf, size_t count)
  471. {
  472. int err;
  473. unsigned long max_ptes_none;
  474. err = strict_strtoul(buf, 10, &max_ptes_none);
  475. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  476. return -EINVAL;
  477. khugepaged_max_ptes_none = max_ptes_none;
  478. return count;
  479. }
  480. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  481. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  482. khugepaged_max_ptes_none_store);
  483. static struct attribute *khugepaged_attr[] = {
  484. &khugepaged_defrag_attr.attr,
  485. &khugepaged_max_ptes_none_attr.attr,
  486. &pages_to_scan_attr.attr,
  487. &pages_collapsed_attr.attr,
  488. &full_scans_attr.attr,
  489. &scan_sleep_millisecs_attr.attr,
  490. &alloc_sleep_millisecs_attr.attr,
  491. NULL,
  492. };
  493. static struct attribute_group khugepaged_attr_group = {
  494. .attrs = khugepaged_attr,
  495. .name = "khugepaged",
  496. };
  497. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  498. {
  499. int err;
  500. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  501. if (unlikely(!*hugepage_kobj)) {
  502. printk(KERN_ERR "hugepage: failed kobject create\n");
  503. return -ENOMEM;
  504. }
  505. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  506. if (err) {
  507. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  508. goto delete_obj;
  509. }
  510. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  511. if (err) {
  512. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  513. goto remove_hp_group;
  514. }
  515. return 0;
  516. remove_hp_group:
  517. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  518. delete_obj:
  519. kobject_put(*hugepage_kobj);
  520. return err;
  521. }
  522. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  523. {
  524. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  525. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  526. kobject_put(hugepage_kobj);
  527. }
  528. #else
  529. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  530. {
  531. return 0;
  532. }
  533. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  534. {
  535. }
  536. #endif /* CONFIG_SYSFS */
  537. static int __init hugepage_init(void)
  538. {
  539. int err;
  540. struct kobject *hugepage_kobj;
  541. if (!has_transparent_hugepage()) {
  542. transparent_hugepage_flags = 0;
  543. return -EINVAL;
  544. }
  545. err = hugepage_init_sysfs(&hugepage_kobj);
  546. if (err)
  547. return err;
  548. err = khugepaged_slab_init();
  549. if (err)
  550. goto out;
  551. err = mm_slots_hash_init();
  552. if (err) {
  553. khugepaged_slab_free();
  554. goto out;
  555. }
  556. register_shrinker(&huge_zero_page_shrinker);
  557. /*
  558. * By default disable transparent hugepages on smaller systems,
  559. * where the extra memory used could hurt more than TLB overhead
  560. * is likely to save. The admin can still enable it through /sys.
  561. */
  562. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  563. transparent_hugepage_flags = 0;
  564. start_khugepaged();
  565. return 0;
  566. out:
  567. hugepage_exit_sysfs(hugepage_kobj);
  568. return err;
  569. }
  570. module_init(hugepage_init)
  571. static int __init setup_transparent_hugepage(char *str)
  572. {
  573. int ret = 0;
  574. if (!str)
  575. goto out;
  576. if (!strcmp(str, "always")) {
  577. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  578. &transparent_hugepage_flags);
  579. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  580. &transparent_hugepage_flags);
  581. ret = 1;
  582. } else if (!strcmp(str, "madvise")) {
  583. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  584. &transparent_hugepage_flags);
  585. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  586. &transparent_hugepage_flags);
  587. ret = 1;
  588. } else if (!strcmp(str, "never")) {
  589. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  590. &transparent_hugepage_flags);
  591. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  592. &transparent_hugepage_flags);
  593. ret = 1;
  594. }
  595. out:
  596. if (!ret)
  597. printk(KERN_WARNING
  598. "transparent_hugepage= cannot parse, ignored\n");
  599. return ret;
  600. }
  601. __setup("transparent_hugepage=", setup_transparent_hugepage);
  602. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  603. {
  604. if (likely(vma->vm_flags & VM_WRITE))
  605. pmd = pmd_mkwrite(pmd);
  606. return pmd;
  607. }
  608. static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
  609. {
  610. pmd_t entry;
  611. entry = mk_pmd(page, vma->vm_page_prot);
  612. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  613. entry = pmd_mkhuge(entry);
  614. return entry;
  615. }
  616. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  617. struct vm_area_struct *vma,
  618. unsigned long haddr, pmd_t *pmd,
  619. struct page *page)
  620. {
  621. pgtable_t pgtable;
  622. VM_BUG_ON(!PageCompound(page));
  623. pgtable = pte_alloc_one(mm, haddr);
  624. if (unlikely(!pgtable))
  625. return VM_FAULT_OOM;
  626. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  627. __SetPageUptodate(page);
  628. spin_lock(&mm->page_table_lock);
  629. if (unlikely(!pmd_none(*pmd))) {
  630. spin_unlock(&mm->page_table_lock);
  631. mem_cgroup_uncharge_page(page);
  632. put_page(page);
  633. pte_free(mm, pgtable);
  634. } else {
  635. pmd_t entry;
  636. entry = mk_huge_pmd(page, vma);
  637. /*
  638. * The spinlocking to take the lru_lock inside
  639. * page_add_new_anon_rmap() acts as a full memory
  640. * barrier to be sure clear_huge_page writes become
  641. * visible after the set_pmd_at() write.
  642. */
  643. page_add_new_anon_rmap(page, vma, haddr);
  644. set_pmd_at(mm, haddr, pmd, entry);
  645. pgtable_trans_huge_deposit(mm, pgtable);
  646. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  647. mm->nr_ptes++;
  648. spin_unlock(&mm->page_table_lock);
  649. }
  650. return 0;
  651. }
  652. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  653. {
  654. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  655. }
  656. static inline struct page *alloc_hugepage_vma(int defrag,
  657. struct vm_area_struct *vma,
  658. unsigned long haddr, int nd,
  659. gfp_t extra_gfp)
  660. {
  661. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  662. HPAGE_PMD_ORDER, vma, haddr, nd);
  663. }
  664. #ifndef CONFIG_NUMA
  665. static inline struct page *alloc_hugepage(int defrag)
  666. {
  667. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  668. HPAGE_PMD_ORDER);
  669. }
  670. #endif
  671. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  672. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  673. unsigned long zero_pfn)
  674. {
  675. pmd_t entry;
  676. if (!pmd_none(*pmd))
  677. return false;
  678. entry = pfn_pmd(zero_pfn, vma->vm_page_prot);
  679. entry = pmd_wrprotect(entry);
  680. entry = pmd_mkhuge(entry);
  681. set_pmd_at(mm, haddr, pmd, entry);
  682. pgtable_trans_huge_deposit(mm, pgtable);
  683. mm->nr_ptes++;
  684. return true;
  685. }
  686. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  687. unsigned long address, pmd_t *pmd,
  688. unsigned int flags)
  689. {
  690. struct page *page;
  691. unsigned long haddr = address & HPAGE_PMD_MASK;
  692. pte_t *pte;
  693. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  694. if (unlikely(anon_vma_prepare(vma)))
  695. return VM_FAULT_OOM;
  696. if (unlikely(khugepaged_enter(vma)))
  697. return VM_FAULT_OOM;
  698. if (!(flags & FAULT_FLAG_WRITE) &&
  699. transparent_hugepage_use_zero_page()) {
  700. pgtable_t pgtable;
  701. unsigned long zero_pfn;
  702. bool set;
  703. pgtable = pte_alloc_one(mm, haddr);
  704. if (unlikely(!pgtable))
  705. return VM_FAULT_OOM;
  706. zero_pfn = get_huge_zero_page();
  707. if (unlikely(!zero_pfn)) {
  708. pte_free(mm, pgtable);
  709. count_vm_event(THP_FAULT_FALLBACK);
  710. goto out;
  711. }
  712. spin_lock(&mm->page_table_lock);
  713. set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  714. zero_pfn);
  715. spin_unlock(&mm->page_table_lock);
  716. if (!set) {
  717. pte_free(mm, pgtable);
  718. put_huge_zero_page();
  719. }
  720. return 0;
  721. }
  722. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  723. vma, haddr, numa_node_id(), 0);
  724. if (unlikely(!page)) {
  725. count_vm_event(THP_FAULT_FALLBACK);
  726. goto out;
  727. }
  728. count_vm_event(THP_FAULT_ALLOC);
  729. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  730. put_page(page);
  731. goto out;
  732. }
  733. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  734. page))) {
  735. mem_cgroup_uncharge_page(page);
  736. put_page(page);
  737. goto out;
  738. }
  739. return 0;
  740. }
  741. out:
  742. /*
  743. * Use __pte_alloc instead of pte_alloc_map, because we can't
  744. * run pte_offset_map on the pmd, if an huge pmd could
  745. * materialize from under us from a different thread.
  746. */
  747. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  748. return VM_FAULT_OOM;
  749. /* if an huge pmd materialized from under us just retry later */
  750. if (unlikely(pmd_trans_huge(*pmd)))
  751. return 0;
  752. /*
  753. * A regular pmd is established and it can't morph into a huge pmd
  754. * from under us anymore at this point because we hold the mmap_sem
  755. * read mode and khugepaged takes it in write mode. So now it's
  756. * safe to run pte_offset_map().
  757. */
  758. pte = pte_offset_map(pmd, address);
  759. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  760. }
  761. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  762. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  763. struct vm_area_struct *vma)
  764. {
  765. struct page *src_page;
  766. pmd_t pmd;
  767. pgtable_t pgtable;
  768. int ret;
  769. ret = -ENOMEM;
  770. pgtable = pte_alloc_one(dst_mm, addr);
  771. if (unlikely(!pgtable))
  772. goto out;
  773. spin_lock(&dst_mm->page_table_lock);
  774. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  775. ret = -EAGAIN;
  776. pmd = *src_pmd;
  777. if (unlikely(!pmd_trans_huge(pmd))) {
  778. pte_free(dst_mm, pgtable);
  779. goto out_unlock;
  780. }
  781. /*
  782. * mm->page_table_lock is enough to be sure that huge zero pmd is not
  783. * under splitting since we don't split the page itself, only pmd to
  784. * a page table.
  785. */
  786. if (is_huge_zero_pmd(pmd)) {
  787. unsigned long zero_pfn;
  788. bool set;
  789. /*
  790. * get_huge_zero_page() will never allocate a new page here,
  791. * since we already have a zero page to copy. It just takes a
  792. * reference.
  793. */
  794. zero_pfn = get_huge_zero_page();
  795. set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  796. zero_pfn);
  797. BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
  798. ret = 0;
  799. goto out_unlock;
  800. }
  801. if (unlikely(pmd_trans_splitting(pmd))) {
  802. /* split huge page running from under us */
  803. spin_unlock(&src_mm->page_table_lock);
  804. spin_unlock(&dst_mm->page_table_lock);
  805. pte_free(dst_mm, pgtable);
  806. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  807. goto out;
  808. }
  809. src_page = pmd_page(pmd);
  810. VM_BUG_ON(!PageHead(src_page));
  811. get_page(src_page);
  812. page_dup_rmap(src_page);
  813. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  814. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  815. pmd = pmd_mkold(pmd_wrprotect(pmd));
  816. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  817. pgtable_trans_huge_deposit(dst_mm, pgtable);
  818. dst_mm->nr_ptes++;
  819. ret = 0;
  820. out_unlock:
  821. spin_unlock(&src_mm->page_table_lock);
  822. spin_unlock(&dst_mm->page_table_lock);
  823. out:
  824. return ret;
  825. }
  826. void huge_pmd_set_accessed(struct mm_struct *mm,
  827. struct vm_area_struct *vma,
  828. unsigned long address,
  829. pmd_t *pmd, pmd_t orig_pmd,
  830. int dirty)
  831. {
  832. pmd_t entry;
  833. unsigned long haddr;
  834. spin_lock(&mm->page_table_lock);
  835. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  836. goto unlock;
  837. entry = pmd_mkyoung(orig_pmd);
  838. haddr = address & HPAGE_PMD_MASK;
  839. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  840. update_mmu_cache_pmd(vma, address, pmd);
  841. unlock:
  842. spin_unlock(&mm->page_table_lock);
  843. }
  844. static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
  845. struct vm_area_struct *vma, unsigned long address,
  846. pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
  847. {
  848. pgtable_t pgtable;
  849. pmd_t _pmd;
  850. struct page *page;
  851. int i, ret = 0;
  852. unsigned long mmun_start; /* For mmu_notifiers */
  853. unsigned long mmun_end; /* For mmu_notifiers */
  854. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  855. if (!page) {
  856. ret |= VM_FAULT_OOM;
  857. goto out;
  858. }
  859. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  860. put_page(page);
  861. ret |= VM_FAULT_OOM;
  862. goto out;
  863. }
  864. clear_user_highpage(page, address);
  865. __SetPageUptodate(page);
  866. mmun_start = haddr;
  867. mmun_end = haddr + HPAGE_PMD_SIZE;
  868. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  869. spin_lock(&mm->page_table_lock);
  870. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  871. goto out_free_page;
  872. pmdp_clear_flush(vma, haddr, pmd);
  873. /* leave pmd empty until pte is filled */
  874. pgtable = pgtable_trans_huge_withdraw(mm);
  875. pmd_populate(mm, &_pmd, pgtable);
  876. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  877. pte_t *pte, entry;
  878. if (haddr == (address & PAGE_MASK)) {
  879. entry = mk_pte(page, vma->vm_page_prot);
  880. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  881. page_add_new_anon_rmap(page, vma, haddr);
  882. } else {
  883. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  884. entry = pte_mkspecial(entry);
  885. }
  886. pte = pte_offset_map(&_pmd, haddr);
  887. VM_BUG_ON(!pte_none(*pte));
  888. set_pte_at(mm, haddr, pte, entry);
  889. pte_unmap(pte);
  890. }
  891. smp_wmb(); /* make pte visible before pmd */
  892. pmd_populate(mm, pmd, pgtable);
  893. spin_unlock(&mm->page_table_lock);
  894. put_huge_zero_page();
  895. inc_mm_counter(mm, MM_ANONPAGES);
  896. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  897. ret |= VM_FAULT_WRITE;
  898. out:
  899. return ret;
  900. out_free_page:
  901. spin_unlock(&mm->page_table_lock);
  902. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  903. mem_cgroup_uncharge_page(page);
  904. put_page(page);
  905. goto out;
  906. }
  907. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  908. struct vm_area_struct *vma,
  909. unsigned long address,
  910. pmd_t *pmd, pmd_t orig_pmd,
  911. struct page *page,
  912. unsigned long haddr)
  913. {
  914. pgtable_t pgtable;
  915. pmd_t _pmd;
  916. int ret = 0, i;
  917. struct page **pages;
  918. unsigned long mmun_start; /* For mmu_notifiers */
  919. unsigned long mmun_end; /* For mmu_notifiers */
  920. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  921. GFP_KERNEL);
  922. if (unlikely(!pages)) {
  923. ret |= VM_FAULT_OOM;
  924. goto out;
  925. }
  926. for (i = 0; i < HPAGE_PMD_NR; i++) {
  927. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  928. __GFP_OTHER_NODE,
  929. vma, address, page_to_nid(page));
  930. if (unlikely(!pages[i] ||
  931. mem_cgroup_newpage_charge(pages[i], mm,
  932. GFP_KERNEL))) {
  933. if (pages[i])
  934. put_page(pages[i]);
  935. mem_cgroup_uncharge_start();
  936. while (--i >= 0) {
  937. mem_cgroup_uncharge_page(pages[i]);
  938. put_page(pages[i]);
  939. }
  940. mem_cgroup_uncharge_end();
  941. kfree(pages);
  942. ret |= VM_FAULT_OOM;
  943. goto out;
  944. }
  945. }
  946. for (i = 0; i < HPAGE_PMD_NR; i++) {
  947. copy_user_highpage(pages[i], page + i,
  948. haddr + PAGE_SIZE * i, vma);
  949. __SetPageUptodate(pages[i]);
  950. cond_resched();
  951. }
  952. mmun_start = haddr;
  953. mmun_end = haddr + HPAGE_PMD_SIZE;
  954. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  955. spin_lock(&mm->page_table_lock);
  956. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  957. goto out_free_pages;
  958. VM_BUG_ON(!PageHead(page));
  959. pmdp_clear_flush(vma, haddr, pmd);
  960. /* leave pmd empty until pte is filled */
  961. pgtable = pgtable_trans_huge_withdraw(mm);
  962. pmd_populate(mm, &_pmd, pgtable);
  963. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  964. pte_t *pte, entry;
  965. entry = mk_pte(pages[i], vma->vm_page_prot);
  966. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  967. page_add_new_anon_rmap(pages[i], vma, haddr);
  968. pte = pte_offset_map(&_pmd, haddr);
  969. VM_BUG_ON(!pte_none(*pte));
  970. set_pte_at(mm, haddr, pte, entry);
  971. pte_unmap(pte);
  972. }
  973. kfree(pages);
  974. smp_wmb(); /* make pte visible before pmd */
  975. pmd_populate(mm, pmd, pgtable);
  976. page_remove_rmap(page);
  977. spin_unlock(&mm->page_table_lock);
  978. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  979. ret |= VM_FAULT_WRITE;
  980. put_page(page);
  981. out:
  982. return ret;
  983. out_free_pages:
  984. spin_unlock(&mm->page_table_lock);
  985. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  986. mem_cgroup_uncharge_start();
  987. for (i = 0; i < HPAGE_PMD_NR; i++) {
  988. mem_cgroup_uncharge_page(pages[i]);
  989. put_page(pages[i]);
  990. }
  991. mem_cgroup_uncharge_end();
  992. kfree(pages);
  993. goto out;
  994. }
  995. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  996. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  997. {
  998. int ret = 0;
  999. struct page *page = NULL, *new_page;
  1000. unsigned long haddr;
  1001. unsigned long mmun_start; /* For mmu_notifiers */
  1002. unsigned long mmun_end; /* For mmu_notifiers */
  1003. VM_BUG_ON(!vma->anon_vma);
  1004. haddr = address & HPAGE_PMD_MASK;
  1005. if (is_huge_zero_pmd(orig_pmd))
  1006. goto alloc;
  1007. spin_lock(&mm->page_table_lock);
  1008. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1009. goto out_unlock;
  1010. page = pmd_page(orig_pmd);
  1011. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  1012. if (page_mapcount(page) == 1) {
  1013. pmd_t entry;
  1014. entry = pmd_mkyoung(orig_pmd);
  1015. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1016. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  1017. update_mmu_cache_pmd(vma, address, pmd);
  1018. ret |= VM_FAULT_WRITE;
  1019. goto out_unlock;
  1020. }
  1021. get_page(page);
  1022. spin_unlock(&mm->page_table_lock);
  1023. alloc:
  1024. if (transparent_hugepage_enabled(vma) &&
  1025. !transparent_hugepage_debug_cow())
  1026. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  1027. vma, haddr, numa_node_id(), 0);
  1028. else
  1029. new_page = NULL;
  1030. if (unlikely(!new_page)) {
  1031. count_vm_event(THP_FAULT_FALLBACK);
  1032. if (is_huge_zero_pmd(orig_pmd)) {
  1033. ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
  1034. address, pmd, orig_pmd, haddr);
  1035. } else {
  1036. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1037. pmd, orig_pmd, page, haddr);
  1038. if (ret & VM_FAULT_OOM)
  1039. split_huge_page(page);
  1040. put_page(page);
  1041. }
  1042. goto out;
  1043. }
  1044. count_vm_event(THP_FAULT_ALLOC);
  1045. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1046. put_page(new_page);
  1047. if (page) {
  1048. split_huge_page(page);
  1049. put_page(page);
  1050. }
  1051. ret |= VM_FAULT_OOM;
  1052. goto out;
  1053. }
  1054. if (is_huge_zero_pmd(orig_pmd))
  1055. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1056. else
  1057. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1058. __SetPageUptodate(new_page);
  1059. mmun_start = haddr;
  1060. mmun_end = haddr + HPAGE_PMD_SIZE;
  1061. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1062. spin_lock(&mm->page_table_lock);
  1063. if (page)
  1064. put_page(page);
  1065. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1066. spin_unlock(&mm->page_table_lock);
  1067. mem_cgroup_uncharge_page(new_page);
  1068. put_page(new_page);
  1069. goto out_mn;
  1070. } else {
  1071. pmd_t entry;
  1072. entry = mk_huge_pmd(new_page, vma);
  1073. pmdp_clear_flush(vma, haddr, pmd);
  1074. page_add_new_anon_rmap(new_page, vma, haddr);
  1075. set_pmd_at(mm, haddr, pmd, entry);
  1076. update_mmu_cache_pmd(vma, address, pmd);
  1077. if (is_huge_zero_pmd(orig_pmd)) {
  1078. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1079. put_huge_zero_page();
  1080. } else {
  1081. VM_BUG_ON(!PageHead(page));
  1082. page_remove_rmap(page);
  1083. put_page(page);
  1084. }
  1085. ret |= VM_FAULT_WRITE;
  1086. }
  1087. spin_unlock(&mm->page_table_lock);
  1088. out_mn:
  1089. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1090. out:
  1091. return ret;
  1092. out_unlock:
  1093. spin_unlock(&mm->page_table_lock);
  1094. return ret;
  1095. }
  1096. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1097. unsigned long addr,
  1098. pmd_t *pmd,
  1099. unsigned int flags)
  1100. {
  1101. struct mm_struct *mm = vma->vm_mm;
  1102. struct page *page = NULL;
  1103. assert_spin_locked(&mm->page_table_lock);
  1104. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1105. goto out;
  1106. page = pmd_page(*pmd);
  1107. VM_BUG_ON(!PageHead(page));
  1108. if (flags & FOLL_TOUCH) {
  1109. pmd_t _pmd;
  1110. /*
  1111. * We should set the dirty bit only for FOLL_WRITE but
  1112. * for now the dirty bit in the pmd is meaningless.
  1113. * And if the dirty bit will become meaningful and
  1114. * we'll only set it with FOLL_WRITE, an atomic
  1115. * set_bit will be required on the pmd to set the
  1116. * young bit, instead of the current set_pmd_at.
  1117. */
  1118. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1119. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  1120. }
  1121. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1122. if (page->mapping && trylock_page(page)) {
  1123. lru_add_drain();
  1124. if (page->mapping)
  1125. mlock_vma_page(page);
  1126. unlock_page(page);
  1127. }
  1128. }
  1129. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1130. VM_BUG_ON(!PageCompound(page));
  1131. if (flags & FOLL_GET)
  1132. get_page_foll(page);
  1133. out:
  1134. return page;
  1135. }
  1136. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1137. pmd_t *pmd, unsigned long addr)
  1138. {
  1139. int ret = 0;
  1140. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1141. struct page *page;
  1142. pgtable_t pgtable;
  1143. pmd_t orig_pmd;
  1144. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  1145. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1146. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1147. if (is_huge_zero_pmd(orig_pmd)) {
  1148. tlb->mm->nr_ptes--;
  1149. spin_unlock(&tlb->mm->page_table_lock);
  1150. put_huge_zero_page();
  1151. } else {
  1152. page = pmd_page(orig_pmd);
  1153. page_remove_rmap(page);
  1154. VM_BUG_ON(page_mapcount(page) < 0);
  1155. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1156. VM_BUG_ON(!PageHead(page));
  1157. tlb->mm->nr_ptes--;
  1158. spin_unlock(&tlb->mm->page_table_lock);
  1159. tlb_remove_page(tlb, page);
  1160. }
  1161. pte_free(tlb->mm, pgtable);
  1162. ret = 1;
  1163. }
  1164. return ret;
  1165. }
  1166. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1167. unsigned long addr, unsigned long end,
  1168. unsigned char *vec)
  1169. {
  1170. int ret = 0;
  1171. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1172. /*
  1173. * All logical pages in the range are present
  1174. * if backed by a huge page.
  1175. */
  1176. spin_unlock(&vma->vm_mm->page_table_lock);
  1177. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1178. ret = 1;
  1179. }
  1180. return ret;
  1181. }
  1182. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1183. unsigned long old_addr,
  1184. unsigned long new_addr, unsigned long old_end,
  1185. pmd_t *old_pmd, pmd_t *new_pmd)
  1186. {
  1187. int ret = 0;
  1188. pmd_t pmd;
  1189. struct mm_struct *mm = vma->vm_mm;
  1190. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1191. (new_addr & ~HPAGE_PMD_MASK) ||
  1192. old_end - old_addr < HPAGE_PMD_SIZE ||
  1193. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1194. goto out;
  1195. /*
  1196. * The destination pmd shouldn't be established, free_pgtables()
  1197. * should have release it.
  1198. */
  1199. if (WARN_ON(!pmd_none(*new_pmd))) {
  1200. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1201. goto out;
  1202. }
  1203. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1204. if (ret == 1) {
  1205. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1206. VM_BUG_ON(!pmd_none(*new_pmd));
  1207. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1208. spin_unlock(&mm->page_table_lock);
  1209. }
  1210. out:
  1211. return ret;
  1212. }
  1213. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1214. unsigned long addr, pgprot_t newprot)
  1215. {
  1216. struct mm_struct *mm = vma->vm_mm;
  1217. int ret = 0;
  1218. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1219. pmd_t entry;
  1220. entry = pmdp_get_and_clear(mm, addr, pmd);
  1221. entry = pmd_modify(entry, newprot);
  1222. BUG_ON(pmd_write(entry));
  1223. set_pmd_at(mm, addr, pmd, entry);
  1224. spin_unlock(&vma->vm_mm->page_table_lock);
  1225. ret = 1;
  1226. }
  1227. return ret;
  1228. }
  1229. /*
  1230. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1231. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1232. *
  1233. * Note that if it returns 1, this routine returns without unlocking page
  1234. * table locks. So callers must unlock them.
  1235. */
  1236. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1237. {
  1238. spin_lock(&vma->vm_mm->page_table_lock);
  1239. if (likely(pmd_trans_huge(*pmd))) {
  1240. if (unlikely(pmd_trans_splitting(*pmd))) {
  1241. spin_unlock(&vma->vm_mm->page_table_lock);
  1242. wait_split_huge_page(vma->anon_vma, pmd);
  1243. return -1;
  1244. } else {
  1245. /* Thp mapped by 'pmd' is stable, so we can
  1246. * handle it as it is. */
  1247. return 1;
  1248. }
  1249. }
  1250. spin_unlock(&vma->vm_mm->page_table_lock);
  1251. return 0;
  1252. }
  1253. pmd_t *page_check_address_pmd(struct page *page,
  1254. struct mm_struct *mm,
  1255. unsigned long address,
  1256. enum page_check_address_pmd_flag flag)
  1257. {
  1258. pmd_t *pmd, *ret = NULL;
  1259. if (address & ~HPAGE_PMD_MASK)
  1260. goto out;
  1261. pmd = mm_find_pmd(mm, address);
  1262. if (!pmd)
  1263. goto out;
  1264. if (pmd_none(*pmd))
  1265. goto out;
  1266. if (pmd_page(*pmd) != page)
  1267. goto out;
  1268. /*
  1269. * split_vma() may create temporary aliased mappings. There is
  1270. * no risk as long as all huge pmd are found and have their
  1271. * splitting bit set before __split_huge_page_refcount
  1272. * runs. Finding the same huge pmd more than once during the
  1273. * same rmap walk is not a problem.
  1274. */
  1275. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1276. pmd_trans_splitting(*pmd))
  1277. goto out;
  1278. if (pmd_trans_huge(*pmd)) {
  1279. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1280. !pmd_trans_splitting(*pmd));
  1281. ret = pmd;
  1282. }
  1283. out:
  1284. return ret;
  1285. }
  1286. static int __split_huge_page_splitting(struct page *page,
  1287. struct vm_area_struct *vma,
  1288. unsigned long address)
  1289. {
  1290. struct mm_struct *mm = vma->vm_mm;
  1291. pmd_t *pmd;
  1292. int ret = 0;
  1293. /* For mmu_notifiers */
  1294. const unsigned long mmun_start = address;
  1295. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1296. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1297. spin_lock(&mm->page_table_lock);
  1298. pmd = page_check_address_pmd(page, mm, address,
  1299. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1300. if (pmd) {
  1301. /*
  1302. * We can't temporarily set the pmd to null in order
  1303. * to split it, the pmd must remain marked huge at all
  1304. * times or the VM won't take the pmd_trans_huge paths
  1305. * and it won't wait on the anon_vma->root->mutex to
  1306. * serialize against split_huge_page*.
  1307. */
  1308. pmdp_splitting_flush(vma, address, pmd);
  1309. ret = 1;
  1310. }
  1311. spin_unlock(&mm->page_table_lock);
  1312. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1313. return ret;
  1314. }
  1315. static void __split_huge_page_refcount(struct page *page)
  1316. {
  1317. int i;
  1318. struct zone *zone = page_zone(page);
  1319. struct lruvec *lruvec;
  1320. int tail_count = 0;
  1321. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1322. spin_lock_irq(&zone->lru_lock);
  1323. lruvec = mem_cgroup_page_lruvec(page, zone);
  1324. compound_lock(page);
  1325. /* complete memcg works before add pages to LRU */
  1326. mem_cgroup_split_huge_fixup(page);
  1327. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1328. struct page *page_tail = page + i;
  1329. /* tail_page->_mapcount cannot change */
  1330. BUG_ON(page_mapcount(page_tail) < 0);
  1331. tail_count += page_mapcount(page_tail);
  1332. /* check for overflow */
  1333. BUG_ON(tail_count < 0);
  1334. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1335. /*
  1336. * tail_page->_count is zero and not changing from
  1337. * under us. But get_page_unless_zero() may be running
  1338. * from under us on the tail_page. If we used
  1339. * atomic_set() below instead of atomic_add(), we
  1340. * would then run atomic_set() concurrently with
  1341. * get_page_unless_zero(), and atomic_set() is
  1342. * implemented in C not using locked ops. spin_unlock
  1343. * on x86 sometime uses locked ops because of PPro
  1344. * errata 66, 92, so unless somebody can guarantee
  1345. * atomic_set() here would be safe on all archs (and
  1346. * not only on x86), it's safer to use atomic_add().
  1347. */
  1348. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1349. &page_tail->_count);
  1350. /* after clearing PageTail the gup refcount can be released */
  1351. smp_mb();
  1352. /*
  1353. * retain hwpoison flag of the poisoned tail page:
  1354. * fix for the unsuitable process killed on Guest Machine(KVM)
  1355. * by the memory-failure.
  1356. */
  1357. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1358. page_tail->flags |= (page->flags &
  1359. ((1L << PG_referenced) |
  1360. (1L << PG_swapbacked) |
  1361. (1L << PG_mlocked) |
  1362. (1L << PG_uptodate)));
  1363. page_tail->flags |= (1L << PG_dirty);
  1364. /* clear PageTail before overwriting first_page */
  1365. smp_wmb();
  1366. /*
  1367. * __split_huge_page_splitting() already set the
  1368. * splitting bit in all pmd that could map this
  1369. * hugepage, that will ensure no CPU can alter the
  1370. * mapcount on the head page. The mapcount is only
  1371. * accounted in the head page and it has to be
  1372. * transferred to all tail pages in the below code. So
  1373. * for this code to be safe, the split the mapcount
  1374. * can't change. But that doesn't mean userland can't
  1375. * keep changing and reading the page contents while
  1376. * we transfer the mapcount, so the pmd splitting
  1377. * status is achieved setting a reserved bit in the
  1378. * pmd, not by clearing the present bit.
  1379. */
  1380. page_tail->_mapcount = page->_mapcount;
  1381. BUG_ON(page_tail->mapping);
  1382. page_tail->mapping = page->mapping;
  1383. page_tail->index = page->index + i;
  1384. BUG_ON(!PageAnon(page_tail));
  1385. BUG_ON(!PageUptodate(page_tail));
  1386. BUG_ON(!PageDirty(page_tail));
  1387. BUG_ON(!PageSwapBacked(page_tail));
  1388. lru_add_page_tail(page, page_tail, lruvec);
  1389. }
  1390. atomic_sub(tail_count, &page->_count);
  1391. BUG_ON(atomic_read(&page->_count) <= 0);
  1392. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1393. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1394. ClearPageCompound(page);
  1395. compound_unlock(page);
  1396. spin_unlock_irq(&zone->lru_lock);
  1397. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1398. struct page *page_tail = page + i;
  1399. BUG_ON(page_count(page_tail) <= 0);
  1400. /*
  1401. * Tail pages may be freed if there wasn't any mapping
  1402. * like if add_to_swap() is running on a lru page that
  1403. * had its mapping zapped. And freeing these pages
  1404. * requires taking the lru_lock so we do the put_page
  1405. * of the tail pages after the split is complete.
  1406. */
  1407. put_page(page_tail);
  1408. }
  1409. /*
  1410. * Only the head page (now become a regular page) is required
  1411. * to be pinned by the caller.
  1412. */
  1413. BUG_ON(page_count(page) <= 0);
  1414. }
  1415. static int __split_huge_page_map(struct page *page,
  1416. struct vm_area_struct *vma,
  1417. unsigned long address)
  1418. {
  1419. struct mm_struct *mm = vma->vm_mm;
  1420. pmd_t *pmd, _pmd;
  1421. int ret = 0, i;
  1422. pgtable_t pgtable;
  1423. unsigned long haddr;
  1424. spin_lock(&mm->page_table_lock);
  1425. pmd = page_check_address_pmd(page, mm, address,
  1426. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1427. if (pmd) {
  1428. pgtable = pgtable_trans_huge_withdraw(mm);
  1429. pmd_populate(mm, &_pmd, pgtable);
  1430. haddr = address;
  1431. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1432. pte_t *pte, entry;
  1433. BUG_ON(PageCompound(page+i));
  1434. entry = mk_pte(page + i, vma->vm_page_prot);
  1435. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1436. if (!pmd_write(*pmd))
  1437. entry = pte_wrprotect(entry);
  1438. else
  1439. BUG_ON(page_mapcount(page) != 1);
  1440. if (!pmd_young(*pmd))
  1441. entry = pte_mkold(entry);
  1442. pte = pte_offset_map(&_pmd, haddr);
  1443. BUG_ON(!pte_none(*pte));
  1444. set_pte_at(mm, haddr, pte, entry);
  1445. pte_unmap(pte);
  1446. }
  1447. smp_wmb(); /* make pte visible before pmd */
  1448. /*
  1449. * Up to this point the pmd is present and huge and
  1450. * userland has the whole access to the hugepage
  1451. * during the split (which happens in place). If we
  1452. * overwrite the pmd with the not-huge version
  1453. * pointing to the pte here (which of course we could
  1454. * if all CPUs were bug free), userland could trigger
  1455. * a small page size TLB miss on the small sized TLB
  1456. * while the hugepage TLB entry is still established
  1457. * in the huge TLB. Some CPU doesn't like that. See
  1458. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1459. * Erratum 383 on page 93. Intel should be safe but is
  1460. * also warns that it's only safe if the permission
  1461. * and cache attributes of the two entries loaded in
  1462. * the two TLB is identical (which should be the case
  1463. * here). But it is generally safer to never allow
  1464. * small and huge TLB entries for the same virtual
  1465. * address to be loaded simultaneously. So instead of
  1466. * doing "pmd_populate(); flush_tlb_range();" we first
  1467. * mark the current pmd notpresent (atomically because
  1468. * here the pmd_trans_huge and pmd_trans_splitting
  1469. * must remain set at all times on the pmd until the
  1470. * split is complete for this pmd), then we flush the
  1471. * SMP TLB and finally we write the non-huge version
  1472. * of the pmd entry with pmd_populate.
  1473. */
  1474. pmdp_invalidate(vma, address, pmd);
  1475. pmd_populate(mm, pmd, pgtable);
  1476. ret = 1;
  1477. }
  1478. spin_unlock(&mm->page_table_lock);
  1479. return ret;
  1480. }
  1481. /* must be called with anon_vma->root->mutex hold */
  1482. static void __split_huge_page(struct page *page,
  1483. struct anon_vma *anon_vma)
  1484. {
  1485. int mapcount, mapcount2;
  1486. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1487. struct anon_vma_chain *avc;
  1488. BUG_ON(!PageHead(page));
  1489. BUG_ON(PageTail(page));
  1490. mapcount = 0;
  1491. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1492. struct vm_area_struct *vma = avc->vma;
  1493. unsigned long addr = vma_address(page, vma);
  1494. BUG_ON(is_vma_temporary_stack(vma));
  1495. mapcount += __split_huge_page_splitting(page, vma, addr);
  1496. }
  1497. /*
  1498. * It is critical that new vmas are added to the tail of the
  1499. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1500. * and establishes a child pmd before
  1501. * __split_huge_page_splitting() freezes the parent pmd (so if
  1502. * we fail to prevent copy_huge_pmd() from running until the
  1503. * whole __split_huge_page() is complete), we will still see
  1504. * the newly established pmd of the child later during the
  1505. * walk, to be able to set it as pmd_trans_splitting too.
  1506. */
  1507. if (mapcount != page_mapcount(page))
  1508. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1509. mapcount, page_mapcount(page));
  1510. BUG_ON(mapcount != page_mapcount(page));
  1511. __split_huge_page_refcount(page);
  1512. mapcount2 = 0;
  1513. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1514. struct vm_area_struct *vma = avc->vma;
  1515. unsigned long addr = vma_address(page, vma);
  1516. BUG_ON(is_vma_temporary_stack(vma));
  1517. mapcount2 += __split_huge_page_map(page, vma, addr);
  1518. }
  1519. if (mapcount != mapcount2)
  1520. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1521. mapcount, mapcount2, page_mapcount(page));
  1522. BUG_ON(mapcount != mapcount2);
  1523. }
  1524. int split_huge_page(struct page *page)
  1525. {
  1526. struct anon_vma *anon_vma;
  1527. int ret = 1;
  1528. BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
  1529. BUG_ON(!PageAnon(page));
  1530. anon_vma = page_lock_anon_vma(page);
  1531. if (!anon_vma)
  1532. goto out;
  1533. ret = 0;
  1534. if (!PageCompound(page))
  1535. goto out_unlock;
  1536. BUG_ON(!PageSwapBacked(page));
  1537. __split_huge_page(page, anon_vma);
  1538. count_vm_event(THP_SPLIT);
  1539. BUG_ON(PageCompound(page));
  1540. out_unlock:
  1541. page_unlock_anon_vma(anon_vma);
  1542. out:
  1543. return ret;
  1544. }
  1545. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1546. int hugepage_madvise(struct vm_area_struct *vma,
  1547. unsigned long *vm_flags, int advice)
  1548. {
  1549. struct mm_struct *mm = vma->vm_mm;
  1550. switch (advice) {
  1551. case MADV_HUGEPAGE:
  1552. /*
  1553. * Be somewhat over-protective like KSM for now!
  1554. */
  1555. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1556. return -EINVAL;
  1557. if (mm->def_flags & VM_NOHUGEPAGE)
  1558. return -EINVAL;
  1559. *vm_flags &= ~VM_NOHUGEPAGE;
  1560. *vm_flags |= VM_HUGEPAGE;
  1561. /*
  1562. * If the vma become good for khugepaged to scan,
  1563. * register it here without waiting a page fault that
  1564. * may not happen any time soon.
  1565. */
  1566. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1567. return -ENOMEM;
  1568. break;
  1569. case MADV_NOHUGEPAGE:
  1570. /*
  1571. * Be somewhat over-protective like KSM for now!
  1572. */
  1573. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1574. return -EINVAL;
  1575. *vm_flags &= ~VM_HUGEPAGE;
  1576. *vm_flags |= VM_NOHUGEPAGE;
  1577. /*
  1578. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1579. * this vma even if we leave the mm registered in khugepaged if
  1580. * it got registered before VM_NOHUGEPAGE was set.
  1581. */
  1582. break;
  1583. }
  1584. return 0;
  1585. }
  1586. static int __init khugepaged_slab_init(void)
  1587. {
  1588. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1589. sizeof(struct mm_slot),
  1590. __alignof__(struct mm_slot), 0, NULL);
  1591. if (!mm_slot_cache)
  1592. return -ENOMEM;
  1593. return 0;
  1594. }
  1595. static void __init khugepaged_slab_free(void)
  1596. {
  1597. kmem_cache_destroy(mm_slot_cache);
  1598. mm_slot_cache = NULL;
  1599. }
  1600. static inline struct mm_slot *alloc_mm_slot(void)
  1601. {
  1602. if (!mm_slot_cache) /* initialization failed */
  1603. return NULL;
  1604. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1605. }
  1606. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1607. {
  1608. kmem_cache_free(mm_slot_cache, mm_slot);
  1609. }
  1610. static int __init mm_slots_hash_init(void)
  1611. {
  1612. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1613. GFP_KERNEL);
  1614. if (!mm_slots_hash)
  1615. return -ENOMEM;
  1616. return 0;
  1617. }
  1618. #if 0
  1619. static void __init mm_slots_hash_free(void)
  1620. {
  1621. kfree(mm_slots_hash);
  1622. mm_slots_hash = NULL;
  1623. }
  1624. #endif
  1625. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1626. {
  1627. struct mm_slot *mm_slot;
  1628. struct hlist_head *bucket;
  1629. struct hlist_node *node;
  1630. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1631. % MM_SLOTS_HASH_HEADS];
  1632. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1633. if (mm == mm_slot->mm)
  1634. return mm_slot;
  1635. }
  1636. return NULL;
  1637. }
  1638. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1639. struct mm_slot *mm_slot)
  1640. {
  1641. struct hlist_head *bucket;
  1642. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1643. % MM_SLOTS_HASH_HEADS];
  1644. mm_slot->mm = mm;
  1645. hlist_add_head(&mm_slot->hash, bucket);
  1646. }
  1647. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1648. {
  1649. return atomic_read(&mm->mm_users) == 0;
  1650. }
  1651. int __khugepaged_enter(struct mm_struct *mm)
  1652. {
  1653. struct mm_slot *mm_slot;
  1654. int wakeup;
  1655. mm_slot = alloc_mm_slot();
  1656. if (!mm_slot)
  1657. return -ENOMEM;
  1658. /* __khugepaged_exit() must not run from under us */
  1659. VM_BUG_ON(khugepaged_test_exit(mm));
  1660. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1661. free_mm_slot(mm_slot);
  1662. return 0;
  1663. }
  1664. spin_lock(&khugepaged_mm_lock);
  1665. insert_to_mm_slots_hash(mm, mm_slot);
  1666. /*
  1667. * Insert just behind the scanning cursor, to let the area settle
  1668. * down a little.
  1669. */
  1670. wakeup = list_empty(&khugepaged_scan.mm_head);
  1671. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1672. spin_unlock(&khugepaged_mm_lock);
  1673. atomic_inc(&mm->mm_count);
  1674. if (wakeup)
  1675. wake_up_interruptible(&khugepaged_wait);
  1676. return 0;
  1677. }
  1678. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1679. {
  1680. unsigned long hstart, hend;
  1681. if (!vma->anon_vma)
  1682. /*
  1683. * Not yet faulted in so we will register later in the
  1684. * page fault if needed.
  1685. */
  1686. return 0;
  1687. if (vma->vm_ops)
  1688. /* khugepaged not yet working on file or special mappings */
  1689. return 0;
  1690. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1691. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1692. hend = vma->vm_end & HPAGE_PMD_MASK;
  1693. if (hstart < hend)
  1694. return khugepaged_enter(vma);
  1695. return 0;
  1696. }
  1697. void __khugepaged_exit(struct mm_struct *mm)
  1698. {
  1699. struct mm_slot *mm_slot;
  1700. int free = 0;
  1701. spin_lock(&khugepaged_mm_lock);
  1702. mm_slot = get_mm_slot(mm);
  1703. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1704. hlist_del(&mm_slot->hash);
  1705. list_del(&mm_slot->mm_node);
  1706. free = 1;
  1707. }
  1708. spin_unlock(&khugepaged_mm_lock);
  1709. if (free) {
  1710. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1711. free_mm_slot(mm_slot);
  1712. mmdrop(mm);
  1713. } else if (mm_slot) {
  1714. /*
  1715. * This is required to serialize against
  1716. * khugepaged_test_exit() (which is guaranteed to run
  1717. * under mmap sem read mode). Stop here (after we
  1718. * return all pagetables will be destroyed) until
  1719. * khugepaged has finished working on the pagetables
  1720. * under the mmap_sem.
  1721. */
  1722. down_write(&mm->mmap_sem);
  1723. up_write(&mm->mmap_sem);
  1724. }
  1725. }
  1726. static void release_pte_page(struct page *page)
  1727. {
  1728. /* 0 stands for page_is_file_cache(page) == false */
  1729. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1730. unlock_page(page);
  1731. putback_lru_page(page);
  1732. }
  1733. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1734. {
  1735. while (--_pte >= pte) {
  1736. pte_t pteval = *_pte;
  1737. if (!pte_none(pteval))
  1738. release_pte_page(pte_page(pteval));
  1739. }
  1740. }
  1741. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1742. unsigned long address,
  1743. pte_t *pte)
  1744. {
  1745. struct page *page;
  1746. pte_t *_pte;
  1747. int referenced = 0, none = 0;
  1748. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1749. _pte++, address += PAGE_SIZE) {
  1750. pte_t pteval = *_pte;
  1751. if (pte_none(pteval)) {
  1752. if (++none <= khugepaged_max_ptes_none)
  1753. continue;
  1754. else
  1755. goto out;
  1756. }
  1757. if (!pte_present(pteval) || !pte_write(pteval))
  1758. goto out;
  1759. page = vm_normal_page(vma, address, pteval);
  1760. if (unlikely(!page))
  1761. goto out;
  1762. VM_BUG_ON(PageCompound(page));
  1763. BUG_ON(!PageAnon(page));
  1764. VM_BUG_ON(!PageSwapBacked(page));
  1765. /* cannot use mapcount: can't collapse if there's a gup pin */
  1766. if (page_count(page) != 1)
  1767. goto out;
  1768. /*
  1769. * We can do it before isolate_lru_page because the
  1770. * page can't be freed from under us. NOTE: PG_lock
  1771. * is needed to serialize against split_huge_page
  1772. * when invoked from the VM.
  1773. */
  1774. if (!trylock_page(page))
  1775. goto out;
  1776. /*
  1777. * Isolate the page to avoid collapsing an hugepage
  1778. * currently in use by the VM.
  1779. */
  1780. if (isolate_lru_page(page)) {
  1781. unlock_page(page);
  1782. goto out;
  1783. }
  1784. /* 0 stands for page_is_file_cache(page) == false */
  1785. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1786. VM_BUG_ON(!PageLocked(page));
  1787. VM_BUG_ON(PageLRU(page));
  1788. /* If there is no mapped pte young don't collapse the page */
  1789. if (pte_young(pteval) || PageReferenced(page) ||
  1790. mmu_notifier_test_young(vma->vm_mm, address))
  1791. referenced = 1;
  1792. }
  1793. if (likely(referenced))
  1794. return 1;
  1795. out:
  1796. release_pte_pages(pte, _pte);
  1797. return 0;
  1798. }
  1799. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1800. struct vm_area_struct *vma,
  1801. unsigned long address,
  1802. spinlock_t *ptl)
  1803. {
  1804. pte_t *_pte;
  1805. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1806. pte_t pteval = *_pte;
  1807. struct page *src_page;
  1808. if (pte_none(pteval)) {
  1809. clear_user_highpage(page, address);
  1810. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1811. } else {
  1812. src_page = pte_page(pteval);
  1813. copy_user_highpage(page, src_page, address, vma);
  1814. VM_BUG_ON(page_mapcount(src_page) != 1);
  1815. release_pte_page(src_page);
  1816. /*
  1817. * ptl mostly unnecessary, but preempt has to
  1818. * be disabled to update the per-cpu stats
  1819. * inside page_remove_rmap().
  1820. */
  1821. spin_lock(ptl);
  1822. /*
  1823. * paravirt calls inside pte_clear here are
  1824. * superfluous.
  1825. */
  1826. pte_clear(vma->vm_mm, address, _pte);
  1827. page_remove_rmap(src_page);
  1828. spin_unlock(ptl);
  1829. free_page_and_swap_cache(src_page);
  1830. }
  1831. address += PAGE_SIZE;
  1832. page++;
  1833. }
  1834. }
  1835. static void khugepaged_alloc_sleep(void)
  1836. {
  1837. wait_event_freezable_timeout(khugepaged_wait, false,
  1838. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1839. }
  1840. #ifdef CONFIG_NUMA
  1841. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1842. {
  1843. if (IS_ERR(*hpage)) {
  1844. if (!*wait)
  1845. return false;
  1846. *wait = false;
  1847. *hpage = NULL;
  1848. khugepaged_alloc_sleep();
  1849. } else if (*hpage) {
  1850. put_page(*hpage);
  1851. *hpage = NULL;
  1852. }
  1853. return true;
  1854. }
  1855. static struct page
  1856. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1857. struct vm_area_struct *vma, unsigned long address,
  1858. int node)
  1859. {
  1860. VM_BUG_ON(*hpage);
  1861. /*
  1862. * Allocate the page while the vma is still valid and under
  1863. * the mmap_sem read mode so there is no memory allocation
  1864. * later when we take the mmap_sem in write mode. This is more
  1865. * friendly behavior (OTOH it may actually hide bugs) to
  1866. * filesystems in userland with daemons allocating memory in
  1867. * the userland I/O paths. Allocating memory with the
  1868. * mmap_sem in read mode is good idea also to allow greater
  1869. * scalability.
  1870. */
  1871. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1872. node, __GFP_OTHER_NODE);
  1873. /*
  1874. * After allocating the hugepage, release the mmap_sem read lock in
  1875. * preparation for taking it in write mode.
  1876. */
  1877. up_read(&mm->mmap_sem);
  1878. if (unlikely(!*hpage)) {
  1879. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1880. *hpage = ERR_PTR(-ENOMEM);
  1881. return NULL;
  1882. }
  1883. count_vm_event(THP_COLLAPSE_ALLOC);
  1884. return *hpage;
  1885. }
  1886. #else
  1887. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1888. {
  1889. struct page *hpage;
  1890. do {
  1891. hpage = alloc_hugepage(khugepaged_defrag());
  1892. if (!hpage) {
  1893. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1894. if (!*wait)
  1895. return NULL;
  1896. *wait = false;
  1897. khugepaged_alloc_sleep();
  1898. } else
  1899. count_vm_event(THP_COLLAPSE_ALLOC);
  1900. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1901. return hpage;
  1902. }
  1903. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1904. {
  1905. if (!*hpage)
  1906. *hpage = khugepaged_alloc_hugepage(wait);
  1907. if (unlikely(!*hpage))
  1908. return false;
  1909. return true;
  1910. }
  1911. static struct page
  1912. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1913. struct vm_area_struct *vma, unsigned long address,
  1914. int node)
  1915. {
  1916. up_read(&mm->mmap_sem);
  1917. VM_BUG_ON(!*hpage);
  1918. return *hpage;
  1919. }
  1920. #endif
  1921. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1922. {
  1923. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1924. (vma->vm_flags & VM_NOHUGEPAGE))
  1925. return false;
  1926. if (!vma->anon_vma || vma->vm_ops)
  1927. return false;
  1928. if (is_vma_temporary_stack(vma))
  1929. return false;
  1930. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1931. return true;
  1932. }
  1933. static void collapse_huge_page(struct mm_struct *mm,
  1934. unsigned long address,
  1935. struct page **hpage,
  1936. struct vm_area_struct *vma,
  1937. int node)
  1938. {
  1939. pmd_t *pmd, _pmd;
  1940. pte_t *pte;
  1941. pgtable_t pgtable;
  1942. struct page *new_page;
  1943. spinlock_t *ptl;
  1944. int isolated;
  1945. unsigned long hstart, hend;
  1946. unsigned long mmun_start; /* For mmu_notifiers */
  1947. unsigned long mmun_end; /* For mmu_notifiers */
  1948. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1949. /* release the mmap_sem read lock. */
  1950. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1951. if (!new_page)
  1952. return;
  1953. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1954. return;
  1955. /*
  1956. * Prevent all access to pagetables with the exception of
  1957. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1958. * handled by the anon_vma lock + PG_lock.
  1959. */
  1960. down_write(&mm->mmap_sem);
  1961. if (unlikely(khugepaged_test_exit(mm)))
  1962. goto out;
  1963. vma = find_vma(mm, address);
  1964. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1965. hend = vma->vm_end & HPAGE_PMD_MASK;
  1966. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1967. goto out;
  1968. if (!hugepage_vma_check(vma))
  1969. goto out;
  1970. pmd = mm_find_pmd(mm, address);
  1971. if (!pmd)
  1972. goto out;
  1973. if (pmd_trans_huge(*pmd))
  1974. goto out;
  1975. anon_vma_lock(vma->anon_vma);
  1976. pte = pte_offset_map(pmd, address);
  1977. ptl = pte_lockptr(mm, pmd);
  1978. mmun_start = address;
  1979. mmun_end = address + HPAGE_PMD_SIZE;
  1980. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1981. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1982. /*
  1983. * After this gup_fast can't run anymore. This also removes
  1984. * any huge TLB entry from the CPU so we won't allow
  1985. * huge and small TLB entries for the same virtual address
  1986. * to avoid the risk of CPU bugs in that area.
  1987. */
  1988. _pmd = pmdp_clear_flush(vma, address, pmd);
  1989. spin_unlock(&mm->page_table_lock);
  1990. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1991. spin_lock(ptl);
  1992. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1993. spin_unlock(ptl);
  1994. if (unlikely(!isolated)) {
  1995. pte_unmap(pte);
  1996. spin_lock(&mm->page_table_lock);
  1997. BUG_ON(!pmd_none(*pmd));
  1998. set_pmd_at(mm, address, pmd, _pmd);
  1999. spin_unlock(&mm->page_table_lock);
  2000. anon_vma_unlock(vma->anon_vma);
  2001. goto out;
  2002. }
  2003. /*
  2004. * All pages are isolated and locked so anon_vma rmap
  2005. * can't run anymore.
  2006. */
  2007. anon_vma_unlock(vma->anon_vma);
  2008. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  2009. pte_unmap(pte);
  2010. __SetPageUptodate(new_page);
  2011. pgtable = pmd_pgtable(_pmd);
  2012. _pmd = mk_huge_pmd(new_page, vma);
  2013. /*
  2014. * spin_lock() below is not the equivalent of smp_wmb(), so
  2015. * this is needed to avoid the copy_huge_page writes to become
  2016. * visible after the set_pmd_at() write.
  2017. */
  2018. smp_wmb();
  2019. spin_lock(&mm->page_table_lock);
  2020. BUG_ON(!pmd_none(*pmd));
  2021. page_add_new_anon_rmap(new_page, vma, address);
  2022. set_pmd_at(mm, address, pmd, _pmd);
  2023. update_mmu_cache_pmd(vma, address, pmd);
  2024. pgtable_trans_huge_deposit(mm, pgtable);
  2025. spin_unlock(&mm->page_table_lock);
  2026. *hpage = NULL;
  2027. khugepaged_pages_collapsed++;
  2028. out_up_write:
  2029. up_write(&mm->mmap_sem);
  2030. return;
  2031. out:
  2032. mem_cgroup_uncharge_page(new_page);
  2033. goto out_up_write;
  2034. }
  2035. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2036. struct vm_area_struct *vma,
  2037. unsigned long address,
  2038. struct page **hpage)
  2039. {
  2040. pmd_t *pmd;
  2041. pte_t *pte, *_pte;
  2042. int ret = 0, referenced = 0, none = 0;
  2043. struct page *page;
  2044. unsigned long _address;
  2045. spinlock_t *ptl;
  2046. int node = -1;
  2047. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2048. pmd = mm_find_pmd(mm, address);
  2049. if (!pmd)
  2050. goto out;
  2051. if (pmd_trans_huge(*pmd))
  2052. goto out;
  2053. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2054. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2055. _pte++, _address += PAGE_SIZE) {
  2056. pte_t pteval = *_pte;
  2057. if (pte_none(pteval)) {
  2058. if (++none <= khugepaged_max_ptes_none)
  2059. continue;
  2060. else
  2061. goto out_unmap;
  2062. }
  2063. if (!pte_present(pteval) || !pte_write(pteval))
  2064. goto out_unmap;
  2065. page = vm_normal_page(vma, _address, pteval);
  2066. if (unlikely(!page))
  2067. goto out_unmap;
  2068. /*
  2069. * Chose the node of the first page. This could
  2070. * be more sophisticated and look at more pages,
  2071. * but isn't for now.
  2072. */
  2073. if (node == -1)
  2074. node = page_to_nid(page);
  2075. VM_BUG_ON(PageCompound(page));
  2076. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2077. goto out_unmap;
  2078. /* cannot use mapcount: can't collapse if there's a gup pin */
  2079. if (page_count(page) != 1)
  2080. goto out_unmap;
  2081. if (pte_young(pteval) || PageReferenced(page) ||
  2082. mmu_notifier_test_young(vma->vm_mm, address))
  2083. referenced = 1;
  2084. }
  2085. if (referenced)
  2086. ret = 1;
  2087. out_unmap:
  2088. pte_unmap_unlock(pte, ptl);
  2089. if (ret)
  2090. /* collapse_huge_page will return with the mmap_sem released */
  2091. collapse_huge_page(mm, address, hpage, vma, node);
  2092. out:
  2093. return ret;
  2094. }
  2095. static void collect_mm_slot(struct mm_slot *mm_slot)
  2096. {
  2097. struct mm_struct *mm = mm_slot->mm;
  2098. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2099. if (khugepaged_test_exit(mm)) {
  2100. /* free mm_slot */
  2101. hlist_del(&mm_slot->hash);
  2102. list_del(&mm_slot->mm_node);
  2103. /*
  2104. * Not strictly needed because the mm exited already.
  2105. *
  2106. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2107. */
  2108. /* khugepaged_mm_lock actually not necessary for the below */
  2109. free_mm_slot(mm_slot);
  2110. mmdrop(mm);
  2111. }
  2112. }
  2113. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2114. struct page **hpage)
  2115. __releases(&khugepaged_mm_lock)
  2116. __acquires(&khugepaged_mm_lock)
  2117. {
  2118. struct mm_slot *mm_slot;
  2119. struct mm_struct *mm;
  2120. struct vm_area_struct *vma;
  2121. int progress = 0;
  2122. VM_BUG_ON(!pages);
  2123. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2124. if (khugepaged_scan.mm_slot)
  2125. mm_slot = khugepaged_scan.mm_slot;
  2126. else {
  2127. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2128. struct mm_slot, mm_node);
  2129. khugepaged_scan.address = 0;
  2130. khugepaged_scan.mm_slot = mm_slot;
  2131. }
  2132. spin_unlock(&khugepaged_mm_lock);
  2133. mm = mm_slot->mm;
  2134. down_read(&mm->mmap_sem);
  2135. if (unlikely(khugepaged_test_exit(mm)))
  2136. vma = NULL;
  2137. else
  2138. vma = find_vma(mm, khugepaged_scan.address);
  2139. progress++;
  2140. for (; vma; vma = vma->vm_next) {
  2141. unsigned long hstart, hend;
  2142. cond_resched();
  2143. if (unlikely(khugepaged_test_exit(mm))) {
  2144. progress++;
  2145. break;
  2146. }
  2147. if (!hugepage_vma_check(vma)) {
  2148. skip:
  2149. progress++;
  2150. continue;
  2151. }
  2152. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2153. hend = vma->vm_end & HPAGE_PMD_MASK;
  2154. if (hstart >= hend)
  2155. goto skip;
  2156. if (khugepaged_scan.address > hend)
  2157. goto skip;
  2158. if (khugepaged_scan.address < hstart)
  2159. khugepaged_scan.address = hstart;
  2160. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2161. while (khugepaged_scan.address < hend) {
  2162. int ret;
  2163. cond_resched();
  2164. if (unlikely(khugepaged_test_exit(mm)))
  2165. goto breakouterloop;
  2166. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2167. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2168. hend);
  2169. ret = khugepaged_scan_pmd(mm, vma,
  2170. khugepaged_scan.address,
  2171. hpage);
  2172. /* move to next address */
  2173. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2174. progress += HPAGE_PMD_NR;
  2175. if (ret)
  2176. /* we released mmap_sem so break loop */
  2177. goto breakouterloop_mmap_sem;
  2178. if (progress >= pages)
  2179. goto breakouterloop;
  2180. }
  2181. }
  2182. breakouterloop:
  2183. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2184. breakouterloop_mmap_sem:
  2185. spin_lock(&khugepaged_mm_lock);
  2186. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2187. /*
  2188. * Release the current mm_slot if this mm is about to die, or
  2189. * if we scanned all vmas of this mm.
  2190. */
  2191. if (khugepaged_test_exit(mm) || !vma) {
  2192. /*
  2193. * Make sure that if mm_users is reaching zero while
  2194. * khugepaged runs here, khugepaged_exit will find
  2195. * mm_slot not pointing to the exiting mm.
  2196. */
  2197. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2198. khugepaged_scan.mm_slot = list_entry(
  2199. mm_slot->mm_node.next,
  2200. struct mm_slot, mm_node);
  2201. khugepaged_scan.address = 0;
  2202. } else {
  2203. khugepaged_scan.mm_slot = NULL;
  2204. khugepaged_full_scans++;
  2205. }
  2206. collect_mm_slot(mm_slot);
  2207. }
  2208. return progress;
  2209. }
  2210. static int khugepaged_has_work(void)
  2211. {
  2212. return !list_empty(&khugepaged_scan.mm_head) &&
  2213. khugepaged_enabled();
  2214. }
  2215. static int khugepaged_wait_event(void)
  2216. {
  2217. return !list_empty(&khugepaged_scan.mm_head) ||
  2218. kthread_should_stop();
  2219. }
  2220. static void khugepaged_do_scan(void)
  2221. {
  2222. struct page *hpage = NULL;
  2223. unsigned int progress = 0, pass_through_head = 0;
  2224. unsigned int pages = khugepaged_pages_to_scan;
  2225. bool wait = true;
  2226. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2227. while (progress < pages) {
  2228. if (!khugepaged_prealloc_page(&hpage, &wait))
  2229. break;
  2230. cond_resched();
  2231. if (unlikely(kthread_should_stop() || freezing(current)))
  2232. break;
  2233. spin_lock(&khugepaged_mm_lock);
  2234. if (!khugepaged_scan.mm_slot)
  2235. pass_through_head++;
  2236. if (khugepaged_has_work() &&
  2237. pass_through_head < 2)
  2238. progress += khugepaged_scan_mm_slot(pages - progress,
  2239. &hpage);
  2240. else
  2241. progress = pages;
  2242. spin_unlock(&khugepaged_mm_lock);
  2243. }
  2244. if (!IS_ERR_OR_NULL(hpage))
  2245. put_page(hpage);
  2246. }
  2247. static void khugepaged_wait_work(void)
  2248. {
  2249. try_to_freeze();
  2250. if (khugepaged_has_work()) {
  2251. if (!khugepaged_scan_sleep_millisecs)
  2252. return;
  2253. wait_event_freezable_timeout(khugepaged_wait,
  2254. kthread_should_stop(),
  2255. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2256. return;
  2257. }
  2258. if (khugepaged_enabled())
  2259. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2260. }
  2261. static int khugepaged(void *none)
  2262. {
  2263. struct mm_slot *mm_slot;
  2264. set_freezable();
  2265. set_user_nice(current, 19);
  2266. while (!kthread_should_stop()) {
  2267. khugepaged_do_scan();
  2268. khugepaged_wait_work();
  2269. }
  2270. spin_lock(&khugepaged_mm_lock);
  2271. mm_slot = khugepaged_scan.mm_slot;
  2272. khugepaged_scan.mm_slot = NULL;
  2273. if (mm_slot)
  2274. collect_mm_slot(mm_slot);
  2275. spin_unlock(&khugepaged_mm_lock);
  2276. return 0;
  2277. }
  2278. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2279. unsigned long haddr, pmd_t *pmd)
  2280. {
  2281. struct mm_struct *mm = vma->vm_mm;
  2282. pgtable_t pgtable;
  2283. pmd_t _pmd;
  2284. int i;
  2285. pmdp_clear_flush(vma, haddr, pmd);
  2286. /* leave pmd empty until pte is filled */
  2287. pgtable = pgtable_trans_huge_withdraw(mm);
  2288. pmd_populate(mm, &_pmd, pgtable);
  2289. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2290. pte_t *pte, entry;
  2291. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2292. entry = pte_mkspecial(entry);
  2293. pte = pte_offset_map(&_pmd, haddr);
  2294. VM_BUG_ON(!pte_none(*pte));
  2295. set_pte_at(mm, haddr, pte, entry);
  2296. pte_unmap(pte);
  2297. }
  2298. smp_wmb(); /* make pte visible before pmd */
  2299. pmd_populate(mm, pmd, pgtable);
  2300. put_huge_zero_page();
  2301. }
  2302. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2303. pmd_t *pmd)
  2304. {
  2305. struct page *page;
  2306. struct mm_struct *mm = vma->vm_mm;
  2307. unsigned long haddr = address & HPAGE_PMD_MASK;
  2308. unsigned long mmun_start; /* For mmu_notifiers */
  2309. unsigned long mmun_end; /* For mmu_notifiers */
  2310. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2311. mmun_start = haddr;
  2312. mmun_end = haddr + HPAGE_PMD_SIZE;
  2313. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2314. spin_lock(&mm->page_table_lock);
  2315. if (unlikely(!pmd_trans_huge(*pmd))) {
  2316. spin_unlock(&mm->page_table_lock);
  2317. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2318. return;
  2319. }
  2320. if (is_huge_zero_pmd(*pmd)) {
  2321. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2322. spin_unlock(&mm->page_table_lock);
  2323. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2324. return;
  2325. }
  2326. page = pmd_page(*pmd);
  2327. VM_BUG_ON(!page_count(page));
  2328. get_page(page);
  2329. spin_unlock(&mm->page_table_lock);
  2330. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2331. split_huge_page(page);
  2332. put_page(page);
  2333. BUG_ON(pmd_trans_huge(*pmd));
  2334. }
  2335. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2336. pmd_t *pmd)
  2337. {
  2338. struct vm_area_struct *vma;
  2339. vma = find_vma(mm, address);
  2340. BUG_ON(vma == NULL);
  2341. split_huge_page_pmd(vma, address, pmd);
  2342. }
  2343. static void split_huge_page_address(struct mm_struct *mm,
  2344. unsigned long address)
  2345. {
  2346. pmd_t *pmd;
  2347. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2348. pmd = mm_find_pmd(mm, address);
  2349. if (!pmd)
  2350. return;
  2351. /*
  2352. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2353. * materialize from under us.
  2354. */
  2355. split_huge_page_pmd_mm(mm, address, pmd);
  2356. }
  2357. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2358. unsigned long start,
  2359. unsigned long end,
  2360. long adjust_next)
  2361. {
  2362. /*
  2363. * If the new start address isn't hpage aligned and it could
  2364. * previously contain an hugepage: check if we need to split
  2365. * an huge pmd.
  2366. */
  2367. if (start & ~HPAGE_PMD_MASK &&
  2368. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2369. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2370. split_huge_page_address(vma->vm_mm, start);
  2371. /*
  2372. * If the new end address isn't hpage aligned and it could
  2373. * previously contain an hugepage: check if we need to split
  2374. * an huge pmd.
  2375. */
  2376. if (end & ~HPAGE_PMD_MASK &&
  2377. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2378. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2379. split_huge_page_address(vma->vm_mm, end);
  2380. /*
  2381. * If we're also updating the vma->vm_next->vm_start, if the new
  2382. * vm_next->vm_start isn't page aligned and it could previously
  2383. * contain an hugepage: check if we need to split an huge pmd.
  2384. */
  2385. if (adjust_next > 0) {
  2386. struct vm_area_struct *next = vma->vm_next;
  2387. unsigned long nstart = next->vm_start;
  2388. nstart += adjust_next << PAGE_SHIFT;
  2389. if (nstart & ~HPAGE_PMD_MASK &&
  2390. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2391. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2392. split_huge_page_address(next->vm_mm, nstart);
  2393. }
  2394. }