af9033.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123
  1. /*
  2. * Afatech AF9033 demodulator driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9033_priv.h"
  22. /* Max transfer size done by I2C transfer functions */
  23. #define MAX_XFER_SIZE 64
  24. struct af9033_state {
  25. struct i2c_adapter *i2c;
  26. struct dvb_frontend fe;
  27. struct af9033_config cfg;
  28. u32 bandwidth_hz;
  29. bool ts_mode_parallel;
  30. bool ts_mode_serial;
  31. u32 ber;
  32. u32 ucb;
  33. unsigned long last_stat_check;
  34. };
  35. /* write multiple registers */
  36. static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
  37. int len)
  38. {
  39. int ret;
  40. u8 buf[MAX_XFER_SIZE];
  41. struct i2c_msg msg[1] = {
  42. {
  43. .addr = state->cfg.i2c_addr,
  44. .flags = 0,
  45. .len = 3 + len,
  46. .buf = buf,
  47. }
  48. };
  49. if (3 + len > sizeof(buf)) {
  50. dev_warn(&state->i2c->dev,
  51. "%s: i2c wr reg=%04x: len=%d is too big!\n",
  52. KBUILD_MODNAME, reg, len);
  53. return -EINVAL;
  54. }
  55. buf[0] = (reg >> 16) & 0xff;
  56. buf[1] = (reg >> 8) & 0xff;
  57. buf[2] = (reg >> 0) & 0xff;
  58. memcpy(&buf[3], val, len);
  59. ret = i2c_transfer(state->i2c, msg, 1);
  60. if (ret == 1) {
  61. ret = 0;
  62. } else {
  63. dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
  64. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  65. ret = -EREMOTEIO;
  66. }
  67. return ret;
  68. }
  69. /* read multiple registers */
  70. static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
  71. {
  72. int ret;
  73. u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
  74. (reg >> 0) & 0xff };
  75. struct i2c_msg msg[2] = {
  76. {
  77. .addr = state->cfg.i2c_addr,
  78. .flags = 0,
  79. .len = sizeof(buf),
  80. .buf = buf
  81. }, {
  82. .addr = state->cfg.i2c_addr,
  83. .flags = I2C_M_RD,
  84. .len = len,
  85. .buf = val
  86. }
  87. };
  88. ret = i2c_transfer(state->i2c, msg, 2);
  89. if (ret == 2) {
  90. ret = 0;
  91. } else {
  92. dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
  93. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  94. ret = -EREMOTEIO;
  95. }
  96. return ret;
  97. }
  98. /* write single register */
  99. static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
  100. {
  101. return af9033_wr_regs(state, reg, &val, 1);
  102. }
  103. /* read single register */
  104. static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
  105. {
  106. return af9033_rd_regs(state, reg, val, 1);
  107. }
  108. /* write single register with mask */
  109. static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
  110. u8 mask)
  111. {
  112. int ret;
  113. u8 tmp;
  114. /* no need for read if whole reg is written */
  115. if (mask != 0xff) {
  116. ret = af9033_rd_regs(state, reg, &tmp, 1);
  117. if (ret)
  118. return ret;
  119. val &= mask;
  120. tmp &= ~mask;
  121. val |= tmp;
  122. }
  123. return af9033_wr_regs(state, reg, &val, 1);
  124. }
  125. /* read single register with mask */
  126. static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
  127. u8 mask)
  128. {
  129. int ret, i;
  130. u8 tmp;
  131. ret = af9033_rd_regs(state, reg, &tmp, 1);
  132. if (ret)
  133. return ret;
  134. tmp &= mask;
  135. /* find position of the first bit */
  136. for (i = 0; i < 8; i++) {
  137. if ((mask >> i) & 0x01)
  138. break;
  139. }
  140. *val = tmp >> i;
  141. return 0;
  142. }
  143. /* write reg val table using reg addr auto increment */
  144. static int af9033_wr_reg_val_tab(struct af9033_state *state,
  145. const struct reg_val *tab, int tab_len)
  146. {
  147. int ret, i, j;
  148. u8 buf[MAX_XFER_SIZE];
  149. if (tab_len > sizeof(buf)) {
  150. dev_warn(&state->i2c->dev,
  151. "%s: i2c wr len=%d is too big!\n",
  152. KBUILD_MODNAME, tab_len);
  153. return -EINVAL;
  154. }
  155. dev_dbg(&state->i2c->dev, "%s: tab_len=%d\n", __func__, tab_len);
  156. for (i = 0, j = 0; i < tab_len; i++) {
  157. buf[j] = tab[i].val;
  158. if (i == tab_len - 1 || tab[i].reg != tab[i + 1].reg - 1) {
  159. ret = af9033_wr_regs(state, tab[i].reg - j, buf, j + 1);
  160. if (ret < 0)
  161. goto err;
  162. j = 0;
  163. } else {
  164. j++;
  165. }
  166. }
  167. return 0;
  168. err:
  169. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  170. return ret;
  171. }
  172. static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
  173. {
  174. u32 r = 0, c = 0, i;
  175. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
  176. if (a > b) {
  177. c = a / b;
  178. a = a - c * b;
  179. }
  180. for (i = 0; i < x; i++) {
  181. if (a >= b) {
  182. r += 1;
  183. a -= b;
  184. }
  185. a <<= 1;
  186. r <<= 1;
  187. }
  188. r = (c << (u32)x) + r;
  189. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
  190. __func__, a, b, x, r, r);
  191. return r;
  192. }
  193. static void af9033_release(struct dvb_frontend *fe)
  194. {
  195. struct af9033_state *state = fe->demodulator_priv;
  196. kfree(state);
  197. }
  198. static int af9033_init(struct dvb_frontend *fe)
  199. {
  200. struct af9033_state *state = fe->demodulator_priv;
  201. int ret, i, len;
  202. const struct reg_val *init;
  203. u8 buf[4];
  204. u32 adc_cw, clock_cw;
  205. struct reg_val_mask tab[] = {
  206. { 0x80fb24, 0x00, 0x08 },
  207. { 0x80004c, 0x00, 0xff },
  208. { 0x00f641, state->cfg.tuner, 0xff },
  209. { 0x80f5ca, 0x01, 0x01 },
  210. { 0x80f715, 0x01, 0x01 },
  211. { 0x00f41f, 0x04, 0x04 },
  212. { 0x00f41a, 0x01, 0x01 },
  213. { 0x80f731, 0x00, 0x01 },
  214. { 0x00d91e, 0x00, 0x01 },
  215. { 0x00d919, 0x00, 0x01 },
  216. { 0x80f732, 0x00, 0x01 },
  217. { 0x00d91f, 0x00, 0x01 },
  218. { 0x00d91a, 0x00, 0x01 },
  219. { 0x80f730, 0x00, 0x01 },
  220. { 0x80f778, 0x00, 0xff },
  221. { 0x80f73c, 0x01, 0x01 },
  222. { 0x80f776, 0x00, 0x01 },
  223. { 0x00d8fd, 0x01, 0xff },
  224. { 0x00d830, 0x01, 0xff },
  225. { 0x00d831, 0x00, 0xff },
  226. { 0x00d832, 0x00, 0xff },
  227. { 0x80f985, state->ts_mode_serial, 0x01 },
  228. { 0x80f986, state->ts_mode_parallel, 0x01 },
  229. { 0x00d827, 0x00, 0xff },
  230. { 0x00d829, 0x00, 0xff },
  231. { 0x800045, state->cfg.adc_multiplier, 0xff },
  232. };
  233. /* program clock control */
  234. clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
  235. buf[0] = (clock_cw >> 0) & 0xff;
  236. buf[1] = (clock_cw >> 8) & 0xff;
  237. buf[2] = (clock_cw >> 16) & 0xff;
  238. buf[3] = (clock_cw >> 24) & 0xff;
  239. dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
  240. __func__, state->cfg.clock, clock_cw);
  241. ret = af9033_wr_regs(state, 0x800025, buf, 4);
  242. if (ret < 0)
  243. goto err;
  244. /* program ADC control */
  245. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  246. if (clock_adc_lut[i].clock == state->cfg.clock)
  247. break;
  248. }
  249. adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
  250. buf[0] = (adc_cw >> 0) & 0xff;
  251. buf[1] = (adc_cw >> 8) & 0xff;
  252. buf[2] = (adc_cw >> 16) & 0xff;
  253. dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
  254. __func__, clock_adc_lut[i].adc, adc_cw);
  255. ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
  256. if (ret < 0)
  257. goto err;
  258. /* program register table */
  259. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  260. ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
  261. tab[i].mask);
  262. if (ret < 0)
  263. goto err;
  264. }
  265. /* settings for TS interface */
  266. if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
  267. ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
  268. if (ret < 0)
  269. goto err;
  270. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
  271. if (ret < 0)
  272. goto err;
  273. } else {
  274. ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
  275. if (ret < 0)
  276. goto err;
  277. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
  278. if (ret < 0)
  279. goto err;
  280. }
  281. /* load OFSM settings */
  282. dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
  283. switch (state->cfg.tuner) {
  284. case AF9033_TUNER_IT9135_38:
  285. case AF9033_TUNER_IT9135_51:
  286. case AF9033_TUNER_IT9135_52:
  287. len = ARRAY_SIZE(ofsm_init_it9135_v1);
  288. init = ofsm_init_it9135_v1;
  289. break;
  290. case AF9033_TUNER_IT9135_60:
  291. case AF9033_TUNER_IT9135_61:
  292. case AF9033_TUNER_IT9135_62:
  293. len = ARRAY_SIZE(ofsm_init_it9135_v2);
  294. init = ofsm_init_it9135_v2;
  295. break;
  296. default:
  297. len = ARRAY_SIZE(ofsm_init);
  298. init = ofsm_init;
  299. break;
  300. }
  301. ret = af9033_wr_reg_val_tab(state, init, len);
  302. if (ret < 0)
  303. goto err;
  304. /* load tuner specific settings */
  305. dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
  306. __func__);
  307. switch (state->cfg.tuner) {
  308. case AF9033_TUNER_TUA9001:
  309. len = ARRAY_SIZE(tuner_init_tua9001);
  310. init = tuner_init_tua9001;
  311. break;
  312. case AF9033_TUNER_FC0011:
  313. len = ARRAY_SIZE(tuner_init_fc0011);
  314. init = tuner_init_fc0011;
  315. break;
  316. case AF9033_TUNER_MXL5007T:
  317. len = ARRAY_SIZE(tuner_init_mxl5007t);
  318. init = tuner_init_mxl5007t;
  319. break;
  320. case AF9033_TUNER_TDA18218:
  321. len = ARRAY_SIZE(tuner_init_tda18218);
  322. init = tuner_init_tda18218;
  323. break;
  324. case AF9033_TUNER_FC2580:
  325. len = ARRAY_SIZE(tuner_init_fc2580);
  326. init = tuner_init_fc2580;
  327. break;
  328. case AF9033_TUNER_FC0012:
  329. len = ARRAY_SIZE(tuner_init_fc0012);
  330. init = tuner_init_fc0012;
  331. break;
  332. case AF9033_TUNER_IT9135_38:
  333. len = ARRAY_SIZE(tuner_init_it9135_38);
  334. init = tuner_init_it9135_38;
  335. break;
  336. case AF9033_TUNER_IT9135_51:
  337. len = ARRAY_SIZE(tuner_init_it9135_51);
  338. init = tuner_init_it9135_51;
  339. break;
  340. case AF9033_TUNER_IT9135_52:
  341. len = ARRAY_SIZE(tuner_init_it9135_52);
  342. init = tuner_init_it9135_52;
  343. break;
  344. case AF9033_TUNER_IT9135_60:
  345. len = ARRAY_SIZE(tuner_init_it9135_60);
  346. init = tuner_init_it9135_60;
  347. break;
  348. case AF9033_TUNER_IT9135_61:
  349. len = ARRAY_SIZE(tuner_init_it9135_61);
  350. init = tuner_init_it9135_61;
  351. break;
  352. case AF9033_TUNER_IT9135_62:
  353. len = ARRAY_SIZE(tuner_init_it9135_62);
  354. init = tuner_init_it9135_62;
  355. break;
  356. default:
  357. dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
  358. __func__, state->cfg.tuner);
  359. ret = -ENODEV;
  360. goto err;
  361. }
  362. ret = af9033_wr_reg_val_tab(state, init, len);
  363. if (ret < 0)
  364. goto err;
  365. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  366. ret = af9033_wr_reg_mask(state, 0x00d91c, 0x01, 0x01);
  367. if (ret < 0)
  368. goto err;
  369. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  370. if (ret < 0)
  371. goto err;
  372. ret = af9033_wr_reg_mask(state, 0x00d916, 0x00, 0x01);
  373. if (ret < 0)
  374. goto err;
  375. }
  376. switch (state->cfg.tuner) {
  377. case AF9033_TUNER_IT9135_60:
  378. case AF9033_TUNER_IT9135_61:
  379. case AF9033_TUNER_IT9135_62:
  380. ret = af9033_wr_reg(state, 0x800000, 0x01);
  381. if (ret < 0)
  382. goto err;
  383. }
  384. state->bandwidth_hz = 0; /* force to program all parameters */
  385. return 0;
  386. err:
  387. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  388. return ret;
  389. }
  390. static int af9033_sleep(struct dvb_frontend *fe)
  391. {
  392. struct af9033_state *state = fe->demodulator_priv;
  393. int ret, i;
  394. u8 tmp;
  395. ret = af9033_wr_reg(state, 0x80004c, 1);
  396. if (ret < 0)
  397. goto err;
  398. ret = af9033_wr_reg(state, 0x800000, 0);
  399. if (ret < 0)
  400. goto err;
  401. for (i = 100, tmp = 1; i && tmp; i--) {
  402. ret = af9033_rd_reg(state, 0x80004c, &tmp);
  403. if (ret < 0)
  404. goto err;
  405. usleep_range(200, 10000);
  406. }
  407. dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
  408. if (i == 0) {
  409. ret = -ETIMEDOUT;
  410. goto err;
  411. }
  412. ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
  413. if (ret < 0)
  414. goto err;
  415. /* prevent current leak (?) */
  416. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  417. /* enable parallel TS */
  418. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  419. if (ret < 0)
  420. goto err;
  421. ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
  422. if (ret < 0)
  423. goto err;
  424. }
  425. return 0;
  426. err:
  427. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  428. return ret;
  429. }
  430. static int af9033_get_tune_settings(struct dvb_frontend *fe,
  431. struct dvb_frontend_tune_settings *fesettings)
  432. {
  433. /* 800 => 2000 because IT9135 v2 is slow to gain lock */
  434. fesettings->min_delay_ms = 2000;
  435. fesettings->step_size = 0;
  436. fesettings->max_drift = 0;
  437. return 0;
  438. }
  439. static int af9033_set_frontend(struct dvb_frontend *fe)
  440. {
  441. struct af9033_state *state = fe->demodulator_priv;
  442. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  443. int ret, i, spec_inv, sampling_freq;
  444. u8 tmp, buf[3], bandwidth_reg_val;
  445. u32 if_frequency, freq_cw, adc_freq;
  446. dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
  447. __func__, c->frequency, c->bandwidth_hz);
  448. /* check bandwidth */
  449. switch (c->bandwidth_hz) {
  450. case 6000000:
  451. bandwidth_reg_val = 0x00;
  452. break;
  453. case 7000000:
  454. bandwidth_reg_val = 0x01;
  455. break;
  456. case 8000000:
  457. bandwidth_reg_val = 0x02;
  458. break;
  459. default:
  460. dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
  461. __func__);
  462. ret = -EINVAL;
  463. goto err;
  464. }
  465. /* program tuner */
  466. if (fe->ops.tuner_ops.set_params)
  467. fe->ops.tuner_ops.set_params(fe);
  468. /* program CFOE coefficients */
  469. if (c->bandwidth_hz != state->bandwidth_hz) {
  470. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  471. if (coeff_lut[i].clock == state->cfg.clock &&
  472. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  473. break;
  474. }
  475. }
  476. ret = af9033_wr_regs(state, 0x800001,
  477. coeff_lut[i].val, sizeof(coeff_lut[i].val));
  478. }
  479. /* program frequency control */
  480. if (c->bandwidth_hz != state->bandwidth_hz) {
  481. spec_inv = state->cfg.spec_inv ? -1 : 1;
  482. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  483. if (clock_adc_lut[i].clock == state->cfg.clock)
  484. break;
  485. }
  486. adc_freq = clock_adc_lut[i].adc;
  487. /* get used IF frequency */
  488. if (fe->ops.tuner_ops.get_if_frequency)
  489. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  490. else
  491. if_frequency = 0;
  492. sampling_freq = if_frequency;
  493. while (sampling_freq > (adc_freq / 2))
  494. sampling_freq -= adc_freq;
  495. if (sampling_freq >= 0)
  496. spec_inv *= -1;
  497. else
  498. sampling_freq *= -1;
  499. freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul);
  500. if (spec_inv == -1)
  501. freq_cw = 0x800000 - freq_cw;
  502. if (state->cfg.adc_multiplier == AF9033_ADC_MULTIPLIER_2X)
  503. freq_cw /= 2;
  504. buf[0] = (freq_cw >> 0) & 0xff;
  505. buf[1] = (freq_cw >> 8) & 0xff;
  506. buf[2] = (freq_cw >> 16) & 0x7f;
  507. /* FIXME: there seems to be calculation error here... */
  508. if (if_frequency == 0)
  509. buf[2] = 0;
  510. ret = af9033_wr_regs(state, 0x800029, buf, 3);
  511. if (ret < 0)
  512. goto err;
  513. state->bandwidth_hz = c->bandwidth_hz;
  514. }
  515. ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
  516. if (ret < 0)
  517. goto err;
  518. ret = af9033_wr_reg(state, 0x800040, 0x00);
  519. if (ret < 0)
  520. goto err;
  521. ret = af9033_wr_reg(state, 0x800047, 0x00);
  522. if (ret < 0)
  523. goto err;
  524. ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
  525. if (ret < 0)
  526. goto err;
  527. if (c->frequency <= 230000000)
  528. tmp = 0x00; /* VHF */
  529. else
  530. tmp = 0x01; /* UHF */
  531. ret = af9033_wr_reg(state, 0x80004b, tmp);
  532. if (ret < 0)
  533. goto err;
  534. ret = af9033_wr_reg(state, 0x800000, 0x00);
  535. if (ret < 0)
  536. goto err;
  537. return 0;
  538. err:
  539. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  540. return ret;
  541. }
  542. static int af9033_get_frontend(struct dvb_frontend *fe)
  543. {
  544. struct af9033_state *state = fe->demodulator_priv;
  545. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  546. int ret;
  547. u8 buf[8];
  548. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  549. /* read all needed registers */
  550. ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
  551. if (ret < 0)
  552. goto err;
  553. switch ((buf[0] >> 0) & 3) {
  554. case 0:
  555. c->transmission_mode = TRANSMISSION_MODE_2K;
  556. break;
  557. case 1:
  558. c->transmission_mode = TRANSMISSION_MODE_8K;
  559. break;
  560. }
  561. switch ((buf[1] >> 0) & 3) {
  562. case 0:
  563. c->guard_interval = GUARD_INTERVAL_1_32;
  564. break;
  565. case 1:
  566. c->guard_interval = GUARD_INTERVAL_1_16;
  567. break;
  568. case 2:
  569. c->guard_interval = GUARD_INTERVAL_1_8;
  570. break;
  571. case 3:
  572. c->guard_interval = GUARD_INTERVAL_1_4;
  573. break;
  574. }
  575. switch ((buf[2] >> 0) & 7) {
  576. case 0:
  577. c->hierarchy = HIERARCHY_NONE;
  578. break;
  579. case 1:
  580. c->hierarchy = HIERARCHY_1;
  581. break;
  582. case 2:
  583. c->hierarchy = HIERARCHY_2;
  584. break;
  585. case 3:
  586. c->hierarchy = HIERARCHY_4;
  587. break;
  588. }
  589. switch ((buf[3] >> 0) & 3) {
  590. case 0:
  591. c->modulation = QPSK;
  592. break;
  593. case 1:
  594. c->modulation = QAM_16;
  595. break;
  596. case 2:
  597. c->modulation = QAM_64;
  598. break;
  599. }
  600. switch ((buf[4] >> 0) & 3) {
  601. case 0:
  602. c->bandwidth_hz = 6000000;
  603. break;
  604. case 1:
  605. c->bandwidth_hz = 7000000;
  606. break;
  607. case 2:
  608. c->bandwidth_hz = 8000000;
  609. break;
  610. }
  611. switch ((buf[6] >> 0) & 7) {
  612. case 0:
  613. c->code_rate_HP = FEC_1_2;
  614. break;
  615. case 1:
  616. c->code_rate_HP = FEC_2_3;
  617. break;
  618. case 2:
  619. c->code_rate_HP = FEC_3_4;
  620. break;
  621. case 3:
  622. c->code_rate_HP = FEC_5_6;
  623. break;
  624. case 4:
  625. c->code_rate_HP = FEC_7_8;
  626. break;
  627. case 5:
  628. c->code_rate_HP = FEC_NONE;
  629. break;
  630. }
  631. switch ((buf[7] >> 0) & 7) {
  632. case 0:
  633. c->code_rate_LP = FEC_1_2;
  634. break;
  635. case 1:
  636. c->code_rate_LP = FEC_2_3;
  637. break;
  638. case 2:
  639. c->code_rate_LP = FEC_3_4;
  640. break;
  641. case 3:
  642. c->code_rate_LP = FEC_5_6;
  643. break;
  644. case 4:
  645. c->code_rate_LP = FEC_7_8;
  646. break;
  647. case 5:
  648. c->code_rate_LP = FEC_NONE;
  649. break;
  650. }
  651. return 0;
  652. err:
  653. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  654. return ret;
  655. }
  656. static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
  657. {
  658. struct af9033_state *state = fe->demodulator_priv;
  659. int ret;
  660. u8 tmp;
  661. *status = 0;
  662. /* radio channel status, 0=no result, 1=has signal, 2=no signal */
  663. ret = af9033_rd_reg(state, 0x800047, &tmp);
  664. if (ret < 0)
  665. goto err;
  666. /* has signal */
  667. if (tmp == 0x01)
  668. *status |= FE_HAS_SIGNAL;
  669. if (tmp != 0x02) {
  670. /* TPS lock */
  671. ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
  672. if (ret < 0)
  673. goto err;
  674. if (tmp)
  675. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  676. FE_HAS_VITERBI;
  677. /* full lock */
  678. ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
  679. if (ret < 0)
  680. goto err;
  681. if (tmp)
  682. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  683. FE_HAS_VITERBI | FE_HAS_SYNC |
  684. FE_HAS_LOCK;
  685. }
  686. return 0;
  687. err:
  688. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  689. return ret;
  690. }
  691. static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
  692. {
  693. struct af9033_state *state = fe->demodulator_priv;
  694. int ret, i, len;
  695. u8 buf[3], tmp;
  696. u32 snr_val;
  697. const struct val_snr *uninitialized_var(snr_lut);
  698. /* read value */
  699. ret = af9033_rd_regs(state, 0x80002c, buf, 3);
  700. if (ret < 0)
  701. goto err;
  702. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  703. /* read current modulation */
  704. ret = af9033_rd_reg(state, 0x80f903, &tmp);
  705. if (ret < 0)
  706. goto err;
  707. switch ((tmp >> 0) & 3) {
  708. case 0:
  709. len = ARRAY_SIZE(qpsk_snr_lut);
  710. snr_lut = qpsk_snr_lut;
  711. break;
  712. case 1:
  713. len = ARRAY_SIZE(qam16_snr_lut);
  714. snr_lut = qam16_snr_lut;
  715. break;
  716. case 2:
  717. len = ARRAY_SIZE(qam64_snr_lut);
  718. snr_lut = qam64_snr_lut;
  719. break;
  720. default:
  721. goto err;
  722. }
  723. for (i = 0; i < len; i++) {
  724. tmp = snr_lut[i].snr;
  725. if (snr_val < snr_lut[i].val)
  726. break;
  727. }
  728. *snr = tmp * 10; /* dB/10 */
  729. return 0;
  730. err:
  731. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  732. return ret;
  733. }
  734. static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  735. {
  736. struct af9033_state *state = fe->demodulator_priv;
  737. int ret;
  738. u8 strength2;
  739. /* read signal strength of 0-100 scale */
  740. ret = af9033_rd_reg(state, 0x800048, &strength2);
  741. if (ret < 0)
  742. goto err;
  743. /* scale value to 0x0000-0xffff */
  744. *strength = strength2 * 0xffff / 100;
  745. return 0;
  746. err:
  747. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  748. return ret;
  749. }
  750. static int af9033_update_ch_stat(struct af9033_state *state)
  751. {
  752. int ret = 0;
  753. u32 err_cnt, bit_cnt;
  754. u16 abort_cnt;
  755. u8 buf[7];
  756. /* only update data every half second */
  757. if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
  758. ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
  759. if (ret < 0)
  760. goto err;
  761. /* in 8 byte packets? */
  762. abort_cnt = (buf[1] << 8) + buf[0];
  763. /* in bits */
  764. err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
  765. /* in 8 byte packets? always(?) 0x2710 = 10000 */
  766. bit_cnt = (buf[6] << 8) + buf[5];
  767. if (bit_cnt < abort_cnt) {
  768. abort_cnt = 1000;
  769. state->ber = 0xffffffff;
  770. } else {
  771. /* 8 byte packets, that have not been rejected already */
  772. bit_cnt -= (u32)abort_cnt;
  773. if (bit_cnt == 0) {
  774. state->ber = 0xffffffff;
  775. } else {
  776. err_cnt -= (u32)abort_cnt * 8 * 8;
  777. bit_cnt *= 8 * 8;
  778. state->ber = err_cnt * (0xffffffff / bit_cnt);
  779. }
  780. }
  781. state->ucb += abort_cnt;
  782. state->last_stat_check = jiffies;
  783. }
  784. return 0;
  785. err:
  786. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  787. return ret;
  788. }
  789. static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
  790. {
  791. struct af9033_state *state = fe->demodulator_priv;
  792. int ret;
  793. ret = af9033_update_ch_stat(state);
  794. if (ret < 0)
  795. return ret;
  796. *ber = state->ber;
  797. return 0;
  798. }
  799. static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  800. {
  801. struct af9033_state *state = fe->demodulator_priv;
  802. int ret;
  803. ret = af9033_update_ch_stat(state);
  804. if (ret < 0)
  805. return ret;
  806. *ucblocks = state->ucb;
  807. return 0;
  808. }
  809. static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  810. {
  811. struct af9033_state *state = fe->demodulator_priv;
  812. int ret;
  813. dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
  814. ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
  815. if (ret < 0)
  816. goto err;
  817. return 0;
  818. err:
  819. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  820. return ret;
  821. }
  822. static struct dvb_frontend_ops af9033_ops;
  823. struct dvb_frontend *af9033_attach(const struct af9033_config *config,
  824. struct i2c_adapter *i2c)
  825. {
  826. int ret;
  827. struct af9033_state *state;
  828. u8 buf[8];
  829. dev_dbg(&i2c->dev, "%s:\n", __func__);
  830. /* allocate memory for the internal state */
  831. state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
  832. if (state == NULL)
  833. goto err;
  834. /* setup the state */
  835. state->i2c = i2c;
  836. memcpy(&state->cfg, config, sizeof(struct af9033_config));
  837. if (state->cfg.clock != 12000000) {
  838. dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
  839. "only 12000000 Hz is supported currently\n",
  840. KBUILD_MODNAME, state->cfg.clock);
  841. goto err;
  842. }
  843. /* firmware version */
  844. ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
  845. if (ret < 0)
  846. goto err;
  847. ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
  848. if (ret < 0)
  849. goto err;
  850. dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
  851. "OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
  852. buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
  853. /* sleep */
  854. switch (state->cfg.tuner) {
  855. case AF9033_TUNER_IT9135_38:
  856. case AF9033_TUNER_IT9135_51:
  857. case AF9033_TUNER_IT9135_52:
  858. case AF9033_TUNER_IT9135_60:
  859. case AF9033_TUNER_IT9135_61:
  860. case AF9033_TUNER_IT9135_62:
  861. /* IT9135 did not like to sleep at that early */
  862. break;
  863. default:
  864. ret = af9033_wr_reg(state, 0x80004c, 1);
  865. if (ret < 0)
  866. goto err;
  867. ret = af9033_wr_reg(state, 0x800000, 0);
  868. if (ret < 0)
  869. goto err;
  870. }
  871. /* configure internal TS mode */
  872. switch (state->cfg.ts_mode) {
  873. case AF9033_TS_MODE_PARALLEL:
  874. state->ts_mode_parallel = true;
  875. break;
  876. case AF9033_TS_MODE_SERIAL:
  877. state->ts_mode_serial = true;
  878. break;
  879. case AF9033_TS_MODE_USB:
  880. /* usb mode for AF9035 */
  881. default:
  882. break;
  883. }
  884. /* create dvb_frontend */
  885. memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
  886. state->fe.demodulator_priv = state;
  887. return &state->fe;
  888. err:
  889. kfree(state);
  890. return NULL;
  891. }
  892. EXPORT_SYMBOL(af9033_attach);
  893. static struct dvb_frontend_ops af9033_ops = {
  894. .delsys = { SYS_DVBT },
  895. .info = {
  896. .name = "Afatech AF9033 (DVB-T)",
  897. .frequency_min = 174000000,
  898. .frequency_max = 862000000,
  899. .frequency_stepsize = 250000,
  900. .frequency_tolerance = 0,
  901. .caps = FE_CAN_FEC_1_2 |
  902. FE_CAN_FEC_2_3 |
  903. FE_CAN_FEC_3_4 |
  904. FE_CAN_FEC_5_6 |
  905. FE_CAN_FEC_7_8 |
  906. FE_CAN_FEC_AUTO |
  907. FE_CAN_QPSK |
  908. FE_CAN_QAM_16 |
  909. FE_CAN_QAM_64 |
  910. FE_CAN_QAM_AUTO |
  911. FE_CAN_TRANSMISSION_MODE_AUTO |
  912. FE_CAN_GUARD_INTERVAL_AUTO |
  913. FE_CAN_HIERARCHY_AUTO |
  914. FE_CAN_RECOVER |
  915. FE_CAN_MUTE_TS
  916. },
  917. .release = af9033_release,
  918. .init = af9033_init,
  919. .sleep = af9033_sleep,
  920. .get_tune_settings = af9033_get_tune_settings,
  921. .set_frontend = af9033_set_frontend,
  922. .get_frontend = af9033_get_frontend,
  923. .read_status = af9033_read_status,
  924. .read_snr = af9033_read_snr,
  925. .read_signal_strength = af9033_read_signal_strength,
  926. .read_ber = af9033_read_ber,
  927. .read_ucblocks = af9033_read_ucblocks,
  928. .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
  929. };
  930. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  931. MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
  932. MODULE_LICENSE("GPL");