af9013.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558
  1. /*
  2. * Afatech AF9013 demodulator driver
  3. *
  4. * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
  6. *
  7. * Thanks to Afatech who kindly provided information.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22. *
  23. */
  24. #include "af9013_priv.h"
  25. /* Max transfer size done by I2C transfer functions */
  26. #define MAX_XFER_SIZE 64
  27. struct af9013_state {
  28. struct i2c_adapter *i2c;
  29. struct dvb_frontend fe;
  30. struct af9013_config config;
  31. /* tuner/demod RF and IF AGC limits used for signal strength calc */
  32. u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
  33. u16 signal_strength;
  34. u32 ber;
  35. u32 ucblocks;
  36. u16 snr;
  37. u32 bandwidth_hz;
  38. fe_status_t fe_status;
  39. unsigned long set_frontend_jiffies;
  40. unsigned long read_status_jiffies;
  41. bool first_tune;
  42. bool i2c_gate_state;
  43. unsigned int statistics_step:3;
  44. struct delayed_work statistics_work;
  45. };
  46. /* write multiple registers */
  47. static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
  48. const u8 *val, int len)
  49. {
  50. int ret;
  51. u8 buf[MAX_XFER_SIZE];
  52. struct i2c_msg msg[1] = {
  53. {
  54. .addr = priv->config.i2c_addr,
  55. .flags = 0,
  56. .len = 3 + len,
  57. .buf = buf,
  58. }
  59. };
  60. if (3 + len > sizeof(buf)) {
  61. dev_warn(&priv->i2c->dev,
  62. "%s: i2c wr reg=%04x: len=%d is too big!\n",
  63. KBUILD_MODNAME, reg, len);
  64. return -EINVAL;
  65. }
  66. buf[0] = (reg >> 8) & 0xff;
  67. buf[1] = (reg >> 0) & 0xff;
  68. buf[2] = mbox;
  69. memcpy(&buf[3], val, len);
  70. ret = i2c_transfer(priv->i2c, msg, 1);
  71. if (ret == 1) {
  72. ret = 0;
  73. } else {
  74. dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%04x " \
  75. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  76. ret = -EREMOTEIO;
  77. }
  78. return ret;
  79. }
  80. /* read multiple registers */
  81. static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
  82. u8 *val, int len)
  83. {
  84. int ret;
  85. u8 buf[3];
  86. struct i2c_msg msg[2] = {
  87. {
  88. .addr = priv->config.i2c_addr,
  89. .flags = 0,
  90. .len = 3,
  91. .buf = buf,
  92. }, {
  93. .addr = priv->config.i2c_addr,
  94. .flags = I2C_M_RD,
  95. .len = len,
  96. .buf = val,
  97. }
  98. };
  99. buf[0] = (reg >> 8) & 0xff;
  100. buf[1] = (reg >> 0) & 0xff;
  101. buf[2] = mbox;
  102. ret = i2c_transfer(priv->i2c, msg, 2);
  103. if (ret == 2) {
  104. ret = 0;
  105. } else {
  106. dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%04x " \
  107. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  108. ret = -EREMOTEIO;
  109. }
  110. return ret;
  111. }
  112. /* write multiple registers */
  113. static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val,
  114. int len)
  115. {
  116. int ret, i;
  117. u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0);
  118. if ((priv->config.ts_mode == AF9013_TS_USB) &&
  119. ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
  120. mbox |= ((len - 1) << 2);
  121. ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len);
  122. } else {
  123. for (i = 0; i < len; i++) {
  124. ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1);
  125. if (ret)
  126. goto err;
  127. }
  128. }
  129. err:
  130. return 0;
  131. }
  132. /* read multiple registers */
  133. static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len)
  134. {
  135. int ret, i;
  136. u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0);
  137. if ((priv->config.ts_mode == AF9013_TS_USB) &&
  138. ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
  139. mbox |= ((len - 1) << 2);
  140. ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len);
  141. } else {
  142. for (i = 0; i < len; i++) {
  143. ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1);
  144. if (ret)
  145. goto err;
  146. }
  147. }
  148. err:
  149. return 0;
  150. }
  151. /* write single register */
  152. static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val)
  153. {
  154. return af9013_wr_regs(priv, reg, &val, 1);
  155. }
  156. /* read single register */
  157. static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val)
  158. {
  159. return af9013_rd_regs(priv, reg, val, 1);
  160. }
  161. static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
  162. u8 len)
  163. {
  164. u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0);
  165. return af9013_wr_regs_i2c(state, mbox, reg, val, len);
  166. }
  167. static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos,
  168. int len, u8 val)
  169. {
  170. int ret;
  171. u8 tmp, mask;
  172. /* no need for read if whole reg is written */
  173. if (len != 8) {
  174. ret = af9013_rd_reg(state, reg, &tmp);
  175. if (ret)
  176. return ret;
  177. mask = (0xff >> (8 - len)) << pos;
  178. val <<= pos;
  179. tmp &= ~mask;
  180. val |= tmp;
  181. }
  182. return af9013_wr_reg(state, reg, val);
  183. }
  184. static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos,
  185. int len, u8 *val)
  186. {
  187. int ret;
  188. u8 tmp;
  189. ret = af9013_rd_reg(state, reg, &tmp);
  190. if (ret)
  191. return ret;
  192. *val = (tmp >> pos);
  193. *val &= (0xff >> (8 - len));
  194. return 0;
  195. }
  196. static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
  197. {
  198. int ret;
  199. u8 pos;
  200. u16 addr;
  201. dev_dbg(&state->i2c->dev, "%s: gpio=%d gpioval=%02x\n",
  202. __func__, gpio, gpioval);
  203. /*
  204. * GPIO0 & GPIO1 0xd735
  205. * GPIO2 & GPIO3 0xd736
  206. */
  207. switch (gpio) {
  208. case 0:
  209. case 1:
  210. addr = 0xd735;
  211. break;
  212. case 2:
  213. case 3:
  214. addr = 0xd736;
  215. break;
  216. default:
  217. dev_err(&state->i2c->dev, "%s: invalid gpio=%d\n",
  218. KBUILD_MODNAME, gpio);
  219. ret = -EINVAL;
  220. goto err;
  221. }
  222. switch (gpio) {
  223. case 0:
  224. case 2:
  225. pos = 0;
  226. break;
  227. case 1:
  228. case 3:
  229. default:
  230. pos = 4;
  231. break;
  232. }
  233. ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval);
  234. if (ret)
  235. goto err;
  236. return ret;
  237. err:
  238. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  239. return ret;
  240. }
  241. static u32 af9013_div(struct af9013_state *state, u32 a, u32 b, u32 x)
  242. {
  243. u32 r = 0, c = 0, i;
  244. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
  245. if (a > b) {
  246. c = a / b;
  247. a = a - c * b;
  248. }
  249. for (i = 0; i < x; i++) {
  250. if (a >= b) {
  251. r += 1;
  252. a -= b;
  253. }
  254. a <<= 1;
  255. r <<= 1;
  256. }
  257. r = (c << (u32)x) + r;
  258. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
  259. __func__, a, b, x, r, r);
  260. return r;
  261. }
  262. static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
  263. {
  264. int ret, i;
  265. u8 tmp;
  266. dev_dbg(&state->i2c->dev, "%s: onoff=%d\n", __func__, onoff);
  267. /* enable reset */
  268. ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1);
  269. if (ret)
  270. goto err;
  271. /* start reset mechanism */
  272. ret = af9013_wr_reg(state, 0xaeff, 1);
  273. if (ret)
  274. goto err;
  275. /* wait reset performs */
  276. for (i = 0; i < 150; i++) {
  277. ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp);
  278. if (ret)
  279. goto err;
  280. if (tmp)
  281. break; /* reset done */
  282. usleep_range(5000, 25000);
  283. }
  284. if (!tmp)
  285. return -ETIMEDOUT;
  286. if (onoff) {
  287. /* clear reset */
  288. ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0);
  289. if (ret)
  290. goto err;
  291. /* disable reset */
  292. ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0);
  293. /* power on */
  294. ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0);
  295. } else {
  296. /* power off */
  297. ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1);
  298. }
  299. return ret;
  300. err:
  301. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  302. return ret;
  303. }
  304. static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
  305. {
  306. struct af9013_state *state = fe->demodulator_priv;
  307. int ret;
  308. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  309. /* reset and start BER counter */
  310. ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1);
  311. if (ret)
  312. goto err;
  313. return ret;
  314. err:
  315. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  316. return ret;
  317. }
  318. static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
  319. {
  320. struct af9013_state *state = fe->demodulator_priv;
  321. int ret;
  322. u8 buf[5];
  323. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  324. /* check if error bit count is ready */
  325. ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]);
  326. if (ret)
  327. goto err;
  328. if (!buf[0]) {
  329. dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
  330. return 0;
  331. }
  332. ret = af9013_rd_regs(state, 0xd387, buf, 5);
  333. if (ret)
  334. goto err;
  335. state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  336. state->ucblocks += (buf[4] << 8) | buf[3];
  337. return ret;
  338. err:
  339. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  340. return ret;
  341. }
  342. static int af9013_statistics_snr_start(struct dvb_frontend *fe)
  343. {
  344. struct af9013_state *state = fe->demodulator_priv;
  345. int ret;
  346. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  347. /* start SNR meas */
  348. ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1);
  349. if (ret)
  350. goto err;
  351. return ret;
  352. err:
  353. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  354. return ret;
  355. }
  356. static int af9013_statistics_snr_result(struct dvb_frontend *fe)
  357. {
  358. struct af9013_state *state = fe->demodulator_priv;
  359. int ret, i, len;
  360. u8 buf[3], tmp;
  361. u32 snr_val;
  362. const struct af9013_snr *uninitialized_var(snr_lut);
  363. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  364. /* check if SNR ready */
  365. ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp);
  366. if (ret)
  367. goto err;
  368. if (!tmp) {
  369. dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
  370. return 0;
  371. }
  372. /* read value */
  373. ret = af9013_rd_regs(state, 0xd2e3, buf, 3);
  374. if (ret)
  375. goto err;
  376. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  377. /* read current modulation */
  378. ret = af9013_rd_reg(state, 0xd3c1, &tmp);
  379. if (ret)
  380. goto err;
  381. switch ((tmp >> 6) & 3) {
  382. case 0:
  383. len = ARRAY_SIZE(qpsk_snr_lut);
  384. snr_lut = qpsk_snr_lut;
  385. break;
  386. case 1:
  387. len = ARRAY_SIZE(qam16_snr_lut);
  388. snr_lut = qam16_snr_lut;
  389. break;
  390. case 2:
  391. len = ARRAY_SIZE(qam64_snr_lut);
  392. snr_lut = qam64_snr_lut;
  393. break;
  394. default:
  395. goto err;
  396. break;
  397. }
  398. for (i = 0; i < len; i++) {
  399. tmp = snr_lut[i].snr;
  400. if (snr_val < snr_lut[i].val)
  401. break;
  402. }
  403. state->snr = tmp * 10; /* dB/10 */
  404. return ret;
  405. err:
  406. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  407. return ret;
  408. }
  409. static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
  410. {
  411. struct af9013_state *state = fe->demodulator_priv;
  412. int ret = 0;
  413. u8 buf[2], rf_gain, if_gain;
  414. int signal_strength;
  415. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  416. if (!state->signal_strength_en)
  417. return 0;
  418. ret = af9013_rd_regs(state, 0xd07c, buf, 2);
  419. if (ret)
  420. goto err;
  421. rf_gain = buf[0];
  422. if_gain = buf[1];
  423. signal_strength = (0xffff / \
  424. (9 * (state->rf_50 + state->if_50) - \
  425. 11 * (state->rf_80 + state->if_80))) * \
  426. (10 * (rf_gain + if_gain) - \
  427. 11 * (state->rf_80 + state->if_80));
  428. if (signal_strength < 0)
  429. signal_strength = 0;
  430. else if (signal_strength > 0xffff)
  431. signal_strength = 0xffff;
  432. state->signal_strength = signal_strength;
  433. return ret;
  434. err:
  435. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  436. return ret;
  437. }
  438. static void af9013_statistics_work(struct work_struct *work)
  439. {
  440. struct af9013_state *state = container_of(work,
  441. struct af9013_state, statistics_work.work);
  442. unsigned int next_msec;
  443. /* update only signal strength when demod is not locked */
  444. if (!(state->fe_status & FE_HAS_LOCK)) {
  445. state->statistics_step = 0;
  446. state->ber = 0;
  447. state->snr = 0;
  448. }
  449. switch (state->statistics_step) {
  450. default:
  451. state->statistics_step = 0;
  452. case 0:
  453. af9013_statistics_signal_strength(&state->fe);
  454. state->statistics_step++;
  455. next_msec = 300;
  456. break;
  457. case 1:
  458. af9013_statistics_snr_start(&state->fe);
  459. state->statistics_step++;
  460. next_msec = 200;
  461. break;
  462. case 2:
  463. af9013_statistics_ber_unc_start(&state->fe);
  464. state->statistics_step++;
  465. next_msec = 1000;
  466. break;
  467. case 3:
  468. af9013_statistics_snr_result(&state->fe);
  469. state->statistics_step++;
  470. next_msec = 400;
  471. break;
  472. case 4:
  473. af9013_statistics_ber_unc_result(&state->fe);
  474. state->statistics_step++;
  475. next_msec = 100;
  476. break;
  477. }
  478. schedule_delayed_work(&state->statistics_work,
  479. msecs_to_jiffies(next_msec));
  480. }
  481. static int af9013_get_tune_settings(struct dvb_frontend *fe,
  482. struct dvb_frontend_tune_settings *fesettings)
  483. {
  484. fesettings->min_delay_ms = 800;
  485. fesettings->step_size = 0;
  486. fesettings->max_drift = 0;
  487. return 0;
  488. }
  489. static int af9013_set_frontend(struct dvb_frontend *fe)
  490. {
  491. struct af9013_state *state = fe->demodulator_priv;
  492. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  493. int ret, i, sampling_freq;
  494. bool auto_mode, spec_inv;
  495. u8 buf[6];
  496. u32 if_frequency, freq_cw;
  497. dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
  498. __func__, c->frequency, c->bandwidth_hz);
  499. /* program tuner */
  500. if (fe->ops.tuner_ops.set_params)
  501. fe->ops.tuner_ops.set_params(fe);
  502. /* program CFOE coefficients */
  503. if (c->bandwidth_hz != state->bandwidth_hz) {
  504. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  505. if (coeff_lut[i].clock == state->config.clock &&
  506. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  507. break;
  508. }
  509. }
  510. ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val,
  511. sizeof(coeff_lut[i].val));
  512. }
  513. /* program frequency control */
  514. if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
  515. /* get used IF frequency */
  516. if (fe->ops.tuner_ops.get_if_frequency)
  517. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  518. else
  519. if_frequency = state->config.if_frequency;
  520. dev_dbg(&state->i2c->dev, "%s: if_frequency=%d\n",
  521. __func__, if_frequency);
  522. sampling_freq = if_frequency;
  523. while (sampling_freq > (state->config.clock / 2))
  524. sampling_freq -= state->config.clock;
  525. if (sampling_freq < 0) {
  526. sampling_freq *= -1;
  527. spec_inv = state->config.spec_inv;
  528. } else {
  529. spec_inv = !state->config.spec_inv;
  530. }
  531. freq_cw = af9013_div(state, sampling_freq, state->config.clock,
  532. 23);
  533. if (spec_inv)
  534. freq_cw = 0x800000 - freq_cw;
  535. buf[0] = (freq_cw >> 0) & 0xff;
  536. buf[1] = (freq_cw >> 8) & 0xff;
  537. buf[2] = (freq_cw >> 16) & 0x7f;
  538. freq_cw = 0x800000 - freq_cw;
  539. buf[3] = (freq_cw >> 0) & 0xff;
  540. buf[4] = (freq_cw >> 8) & 0xff;
  541. buf[5] = (freq_cw >> 16) & 0x7f;
  542. ret = af9013_wr_regs(state, 0xd140, buf, 3);
  543. if (ret)
  544. goto err;
  545. ret = af9013_wr_regs(state, 0x9be7, buf, 6);
  546. if (ret)
  547. goto err;
  548. }
  549. /* clear TPS lock flag */
  550. ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1);
  551. if (ret)
  552. goto err;
  553. /* clear MPEG2 lock flag */
  554. ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0);
  555. if (ret)
  556. goto err;
  557. /* empty channel function */
  558. ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0);
  559. if (ret)
  560. goto err;
  561. /* empty DVB-T channel function */
  562. ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0);
  563. if (ret)
  564. goto err;
  565. /* transmission parameters */
  566. auto_mode = false;
  567. memset(buf, 0, 3);
  568. switch (c->transmission_mode) {
  569. case TRANSMISSION_MODE_AUTO:
  570. auto_mode = 1;
  571. break;
  572. case TRANSMISSION_MODE_2K:
  573. break;
  574. case TRANSMISSION_MODE_8K:
  575. buf[0] |= (1 << 0);
  576. break;
  577. default:
  578. dev_dbg(&state->i2c->dev, "%s: invalid transmission_mode\n",
  579. __func__);
  580. auto_mode = 1;
  581. }
  582. switch (c->guard_interval) {
  583. case GUARD_INTERVAL_AUTO:
  584. auto_mode = 1;
  585. break;
  586. case GUARD_INTERVAL_1_32:
  587. break;
  588. case GUARD_INTERVAL_1_16:
  589. buf[0] |= (1 << 2);
  590. break;
  591. case GUARD_INTERVAL_1_8:
  592. buf[0] |= (2 << 2);
  593. break;
  594. case GUARD_INTERVAL_1_4:
  595. buf[0] |= (3 << 2);
  596. break;
  597. default:
  598. dev_dbg(&state->i2c->dev, "%s: invalid guard_interval\n",
  599. __func__);
  600. auto_mode = 1;
  601. }
  602. switch (c->hierarchy) {
  603. case HIERARCHY_AUTO:
  604. auto_mode = 1;
  605. break;
  606. case HIERARCHY_NONE:
  607. break;
  608. case HIERARCHY_1:
  609. buf[0] |= (1 << 4);
  610. break;
  611. case HIERARCHY_2:
  612. buf[0] |= (2 << 4);
  613. break;
  614. case HIERARCHY_4:
  615. buf[0] |= (3 << 4);
  616. break;
  617. default:
  618. dev_dbg(&state->i2c->dev, "%s: invalid hierarchy\n", __func__);
  619. auto_mode = 1;
  620. }
  621. switch (c->modulation) {
  622. case QAM_AUTO:
  623. auto_mode = 1;
  624. break;
  625. case QPSK:
  626. break;
  627. case QAM_16:
  628. buf[1] |= (1 << 6);
  629. break;
  630. case QAM_64:
  631. buf[1] |= (2 << 6);
  632. break;
  633. default:
  634. dev_dbg(&state->i2c->dev, "%s: invalid modulation\n", __func__);
  635. auto_mode = 1;
  636. }
  637. /* Use HP. How and which case we can switch to LP? */
  638. buf[1] |= (1 << 4);
  639. switch (c->code_rate_HP) {
  640. case FEC_AUTO:
  641. auto_mode = 1;
  642. break;
  643. case FEC_1_2:
  644. break;
  645. case FEC_2_3:
  646. buf[2] |= (1 << 0);
  647. break;
  648. case FEC_3_4:
  649. buf[2] |= (2 << 0);
  650. break;
  651. case FEC_5_6:
  652. buf[2] |= (3 << 0);
  653. break;
  654. case FEC_7_8:
  655. buf[2] |= (4 << 0);
  656. break;
  657. default:
  658. dev_dbg(&state->i2c->dev, "%s: invalid code_rate_HP\n",
  659. __func__);
  660. auto_mode = 1;
  661. }
  662. switch (c->code_rate_LP) {
  663. case FEC_AUTO:
  664. auto_mode = 1;
  665. break;
  666. case FEC_1_2:
  667. break;
  668. case FEC_2_3:
  669. buf[2] |= (1 << 3);
  670. break;
  671. case FEC_3_4:
  672. buf[2] |= (2 << 3);
  673. break;
  674. case FEC_5_6:
  675. buf[2] |= (3 << 3);
  676. break;
  677. case FEC_7_8:
  678. buf[2] |= (4 << 3);
  679. break;
  680. case FEC_NONE:
  681. break;
  682. default:
  683. dev_dbg(&state->i2c->dev, "%s: invalid code_rate_LP\n",
  684. __func__);
  685. auto_mode = 1;
  686. }
  687. switch (c->bandwidth_hz) {
  688. case 6000000:
  689. break;
  690. case 7000000:
  691. buf[1] |= (1 << 2);
  692. break;
  693. case 8000000:
  694. buf[1] |= (2 << 2);
  695. break;
  696. default:
  697. dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
  698. __func__);
  699. ret = -EINVAL;
  700. goto err;
  701. }
  702. ret = af9013_wr_regs(state, 0xd3c0, buf, 3);
  703. if (ret)
  704. goto err;
  705. if (auto_mode) {
  706. /* clear easy mode flag */
  707. ret = af9013_wr_reg(state, 0xaefd, 0);
  708. if (ret)
  709. goto err;
  710. dev_dbg(&state->i2c->dev, "%s: auto params\n", __func__);
  711. } else {
  712. /* set easy mode flag */
  713. ret = af9013_wr_reg(state, 0xaefd, 1);
  714. if (ret)
  715. goto err;
  716. ret = af9013_wr_reg(state, 0xaefe, 0);
  717. if (ret)
  718. goto err;
  719. dev_dbg(&state->i2c->dev, "%s: manual params\n", __func__);
  720. }
  721. /* tune */
  722. ret = af9013_wr_reg(state, 0xffff, 0);
  723. if (ret)
  724. goto err;
  725. state->bandwidth_hz = c->bandwidth_hz;
  726. state->set_frontend_jiffies = jiffies;
  727. state->first_tune = false;
  728. return ret;
  729. err:
  730. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  731. return ret;
  732. }
  733. static int af9013_get_frontend(struct dvb_frontend *fe)
  734. {
  735. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  736. struct af9013_state *state = fe->demodulator_priv;
  737. int ret;
  738. u8 buf[3];
  739. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  740. ret = af9013_rd_regs(state, 0xd3c0, buf, 3);
  741. if (ret)
  742. goto err;
  743. switch ((buf[1] >> 6) & 3) {
  744. case 0:
  745. c->modulation = QPSK;
  746. break;
  747. case 1:
  748. c->modulation = QAM_16;
  749. break;
  750. case 2:
  751. c->modulation = QAM_64;
  752. break;
  753. }
  754. switch ((buf[0] >> 0) & 3) {
  755. case 0:
  756. c->transmission_mode = TRANSMISSION_MODE_2K;
  757. break;
  758. case 1:
  759. c->transmission_mode = TRANSMISSION_MODE_8K;
  760. }
  761. switch ((buf[0] >> 2) & 3) {
  762. case 0:
  763. c->guard_interval = GUARD_INTERVAL_1_32;
  764. break;
  765. case 1:
  766. c->guard_interval = GUARD_INTERVAL_1_16;
  767. break;
  768. case 2:
  769. c->guard_interval = GUARD_INTERVAL_1_8;
  770. break;
  771. case 3:
  772. c->guard_interval = GUARD_INTERVAL_1_4;
  773. break;
  774. }
  775. switch ((buf[0] >> 4) & 7) {
  776. case 0:
  777. c->hierarchy = HIERARCHY_NONE;
  778. break;
  779. case 1:
  780. c->hierarchy = HIERARCHY_1;
  781. break;
  782. case 2:
  783. c->hierarchy = HIERARCHY_2;
  784. break;
  785. case 3:
  786. c->hierarchy = HIERARCHY_4;
  787. break;
  788. }
  789. switch ((buf[2] >> 0) & 7) {
  790. case 0:
  791. c->code_rate_HP = FEC_1_2;
  792. break;
  793. case 1:
  794. c->code_rate_HP = FEC_2_3;
  795. break;
  796. case 2:
  797. c->code_rate_HP = FEC_3_4;
  798. break;
  799. case 3:
  800. c->code_rate_HP = FEC_5_6;
  801. break;
  802. case 4:
  803. c->code_rate_HP = FEC_7_8;
  804. break;
  805. }
  806. switch ((buf[2] >> 3) & 7) {
  807. case 0:
  808. c->code_rate_LP = FEC_1_2;
  809. break;
  810. case 1:
  811. c->code_rate_LP = FEC_2_3;
  812. break;
  813. case 2:
  814. c->code_rate_LP = FEC_3_4;
  815. break;
  816. case 3:
  817. c->code_rate_LP = FEC_5_6;
  818. break;
  819. case 4:
  820. c->code_rate_LP = FEC_7_8;
  821. break;
  822. }
  823. switch ((buf[1] >> 2) & 3) {
  824. case 0:
  825. c->bandwidth_hz = 6000000;
  826. break;
  827. case 1:
  828. c->bandwidth_hz = 7000000;
  829. break;
  830. case 2:
  831. c->bandwidth_hz = 8000000;
  832. break;
  833. }
  834. return ret;
  835. err:
  836. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  837. return ret;
  838. }
  839. static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
  840. {
  841. struct af9013_state *state = fe->demodulator_priv;
  842. int ret;
  843. u8 tmp;
  844. /*
  845. * Return status from the cache if it is younger than 2000ms with the
  846. * exception of last tune is done during 4000ms.
  847. */
  848. if (time_is_after_jiffies(
  849. state->read_status_jiffies + msecs_to_jiffies(2000)) &&
  850. time_is_before_jiffies(
  851. state->set_frontend_jiffies + msecs_to_jiffies(4000))
  852. ) {
  853. *status = state->fe_status;
  854. return 0;
  855. } else {
  856. *status = 0;
  857. }
  858. /* MPEG2 lock */
  859. ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp);
  860. if (ret)
  861. goto err;
  862. if (tmp)
  863. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
  864. FE_HAS_SYNC | FE_HAS_LOCK;
  865. if (!*status) {
  866. /* TPS lock */
  867. ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp);
  868. if (ret)
  869. goto err;
  870. if (tmp)
  871. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  872. FE_HAS_VITERBI;
  873. }
  874. state->fe_status = *status;
  875. state->read_status_jiffies = jiffies;
  876. return ret;
  877. err:
  878. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  879. return ret;
  880. }
  881. static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
  882. {
  883. struct af9013_state *state = fe->demodulator_priv;
  884. *snr = state->snr;
  885. return 0;
  886. }
  887. static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  888. {
  889. struct af9013_state *state = fe->demodulator_priv;
  890. *strength = state->signal_strength;
  891. return 0;
  892. }
  893. static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
  894. {
  895. struct af9013_state *state = fe->demodulator_priv;
  896. *ber = state->ber;
  897. return 0;
  898. }
  899. static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  900. {
  901. struct af9013_state *state = fe->demodulator_priv;
  902. *ucblocks = state->ucblocks;
  903. return 0;
  904. }
  905. static int af9013_init(struct dvb_frontend *fe)
  906. {
  907. struct af9013_state *state = fe->demodulator_priv;
  908. int ret, i, len;
  909. u8 buf[3], tmp;
  910. u32 adc_cw;
  911. const struct af9013_reg_bit *init;
  912. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  913. /* power on */
  914. ret = af9013_power_ctrl(state, 1);
  915. if (ret)
  916. goto err;
  917. /* enable ADC */
  918. ret = af9013_wr_reg(state, 0xd73a, 0xa4);
  919. if (ret)
  920. goto err;
  921. /* write API version to firmware */
  922. ret = af9013_wr_regs(state, 0x9bf2, state->config.api_version, 4);
  923. if (ret)
  924. goto err;
  925. /* program ADC control */
  926. switch (state->config.clock) {
  927. case 28800000: /* 28.800 MHz */
  928. tmp = 0;
  929. break;
  930. case 20480000: /* 20.480 MHz */
  931. tmp = 1;
  932. break;
  933. case 28000000: /* 28.000 MHz */
  934. tmp = 2;
  935. break;
  936. case 25000000: /* 25.000 MHz */
  937. tmp = 3;
  938. break;
  939. default:
  940. dev_err(&state->i2c->dev, "%s: invalid clock\n",
  941. KBUILD_MODNAME);
  942. return -EINVAL;
  943. }
  944. adc_cw = af9013_div(state, state->config.clock, 1000000ul, 19);
  945. buf[0] = (adc_cw >> 0) & 0xff;
  946. buf[1] = (adc_cw >> 8) & 0xff;
  947. buf[2] = (adc_cw >> 16) & 0xff;
  948. ret = af9013_wr_regs(state, 0xd180, buf, 3);
  949. if (ret)
  950. goto err;
  951. ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp);
  952. if (ret)
  953. goto err;
  954. /* set I2C master clock */
  955. ret = af9013_wr_reg(state, 0xd416, 0x14);
  956. if (ret)
  957. goto err;
  958. /* set 16 embx */
  959. ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1);
  960. if (ret)
  961. goto err;
  962. /* set no trigger */
  963. ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0);
  964. if (ret)
  965. goto err;
  966. /* set read-update bit for constellation */
  967. ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1);
  968. if (ret)
  969. goto err;
  970. /* settings for mp2if */
  971. if (state->config.ts_mode == AF9013_TS_USB) {
  972. /* AF9015 split PSB to 1.5k + 0.5k */
  973. ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1);
  974. if (ret)
  975. goto err;
  976. } else {
  977. /* AF9013 change the output bit to data7 */
  978. ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1);
  979. if (ret)
  980. goto err;
  981. /* AF9013 set mpeg to full speed */
  982. ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1);
  983. if (ret)
  984. goto err;
  985. }
  986. ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1);
  987. if (ret)
  988. goto err;
  989. /* load OFSM settings */
  990. dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
  991. len = ARRAY_SIZE(ofsm_init);
  992. init = ofsm_init;
  993. for (i = 0; i < len; i++) {
  994. ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
  995. init[i].len, init[i].val);
  996. if (ret)
  997. goto err;
  998. }
  999. /* load tuner specific settings */
  1000. dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
  1001. __func__);
  1002. switch (state->config.tuner) {
  1003. case AF9013_TUNER_MXL5003D:
  1004. len = ARRAY_SIZE(tuner_init_mxl5003d);
  1005. init = tuner_init_mxl5003d;
  1006. break;
  1007. case AF9013_TUNER_MXL5005D:
  1008. case AF9013_TUNER_MXL5005R:
  1009. case AF9013_TUNER_MXL5007T:
  1010. len = ARRAY_SIZE(tuner_init_mxl5005);
  1011. init = tuner_init_mxl5005;
  1012. break;
  1013. case AF9013_TUNER_ENV77H11D5:
  1014. len = ARRAY_SIZE(tuner_init_env77h11d5);
  1015. init = tuner_init_env77h11d5;
  1016. break;
  1017. case AF9013_TUNER_MT2060:
  1018. len = ARRAY_SIZE(tuner_init_mt2060);
  1019. init = tuner_init_mt2060;
  1020. break;
  1021. case AF9013_TUNER_MC44S803:
  1022. len = ARRAY_SIZE(tuner_init_mc44s803);
  1023. init = tuner_init_mc44s803;
  1024. break;
  1025. case AF9013_TUNER_QT1010:
  1026. case AF9013_TUNER_QT1010A:
  1027. len = ARRAY_SIZE(tuner_init_qt1010);
  1028. init = tuner_init_qt1010;
  1029. break;
  1030. case AF9013_TUNER_MT2060_2:
  1031. len = ARRAY_SIZE(tuner_init_mt2060_2);
  1032. init = tuner_init_mt2060_2;
  1033. break;
  1034. case AF9013_TUNER_TDA18271:
  1035. case AF9013_TUNER_TDA18218:
  1036. len = ARRAY_SIZE(tuner_init_tda18271);
  1037. init = tuner_init_tda18271;
  1038. break;
  1039. case AF9013_TUNER_UNKNOWN:
  1040. default:
  1041. len = ARRAY_SIZE(tuner_init_unknown);
  1042. init = tuner_init_unknown;
  1043. break;
  1044. }
  1045. for (i = 0; i < len; i++) {
  1046. ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
  1047. init[i].len, init[i].val);
  1048. if (ret)
  1049. goto err;
  1050. }
  1051. /* TS mode */
  1052. ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->config.ts_mode);
  1053. if (ret)
  1054. goto err;
  1055. /* enable lock led */
  1056. ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1);
  1057. if (ret)
  1058. goto err;
  1059. /* check if we support signal strength */
  1060. if (!state->signal_strength_en) {
  1061. ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1,
  1062. &state->signal_strength_en);
  1063. if (ret)
  1064. goto err;
  1065. }
  1066. /* read values needed for signal strength calculation */
  1067. if (state->signal_strength_en && !state->rf_50) {
  1068. ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50);
  1069. if (ret)
  1070. goto err;
  1071. ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80);
  1072. if (ret)
  1073. goto err;
  1074. ret = af9013_rd_reg(state, 0x9be2, &state->if_50);
  1075. if (ret)
  1076. goto err;
  1077. ret = af9013_rd_reg(state, 0x9be4, &state->if_80);
  1078. if (ret)
  1079. goto err;
  1080. }
  1081. /* SNR */
  1082. ret = af9013_wr_reg(state, 0xd2e2, 1);
  1083. if (ret)
  1084. goto err;
  1085. /* BER / UCB */
  1086. buf[0] = (10000 >> 0) & 0xff;
  1087. buf[1] = (10000 >> 8) & 0xff;
  1088. ret = af9013_wr_regs(state, 0xd385, buf, 2);
  1089. if (ret)
  1090. goto err;
  1091. /* enable FEC monitor */
  1092. ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1);
  1093. if (ret)
  1094. goto err;
  1095. state->first_tune = true;
  1096. schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
  1097. return ret;
  1098. err:
  1099. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  1100. return ret;
  1101. }
  1102. static int af9013_sleep(struct dvb_frontend *fe)
  1103. {
  1104. struct af9013_state *state = fe->demodulator_priv;
  1105. int ret;
  1106. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  1107. /* stop statistics polling */
  1108. cancel_delayed_work_sync(&state->statistics_work);
  1109. /* disable lock led */
  1110. ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0);
  1111. if (ret)
  1112. goto err;
  1113. /* power off */
  1114. ret = af9013_power_ctrl(state, 0);
  1115. if (ret)
  1116. goto err;
  1117. return ret;
  1118. err:
  1119. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  1120. return ret;
  1121. }
  1122. static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  1123. {
  1124. int ret;
  1125. struct af9013_state *state = fe->demodulator_priv;
  1126. dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
  1127. /* gate already open or close */
  1128. if (state->i2c_gate_state == enable)
  1129. return 0;
  1130. if (state->config.ts_mode == AF9013_TS_USB)
  1131. ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable);
  1132. else
  1133. ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable);
  1134. if (ret)
  1135. goto err;
  1136. state->i2c_gate_state = enable;
  1137. return ret;
  1138. err:
  1139. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  1140. return ret;
  1141. }
  1142. static void af9013_release(struct dvb_frontend *fe)
  1143. {
  1144. struct af9013_state *state = fe->demodulator_priv;
  1145. kfree(state);
  1146. }
  1147. static struct dvb_frontend_ops af9013_ops;
  1148. static int af9013_download_firmware(struct af9013_state *state)
  1149. {
  1150. int i, len, remaining, ret;
  1151. const struct firmware *fw;
  1152. u16 checksum = 0;
  1153. u8 val;
  1154. u8 fw_params[4];
  1155. u8 *fw_file = AF9013_FIRMWARE;
  1156. msleep(100);
  1157. /* check whether firmware is already running */
  1158. ret = af9013_rd_reg(state, 0x98be, &val);
  1159. if (ret)
  1160. goto err;
  1161. else
  1162. dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
  1163. __func__, val);
  1164. if (val == 0x0c) /* fw is running, no need for download */
  1165. goto exit;
  1166. dev_info(&state->i2c->dev, "%s: found a '%s' in cold state, will try " \
  1167. "to load a firmware\n",
  1168. KBUILD_MODNAME, af9013_ops.info.name);
  1169. /* request the firmware, this will block and timeout */
  1170. ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
  1171. if (ret) {
  1172. dev_info(&state->i2c->dev, "%s: did not find the firmware " \
  1173. "file. (%s) Please see linux/Documentation/dvb/ for " \
  1174. "more details on firmware-problems. (%d)\n",
  1175. KBUILD_MODNAME, fw_file, ret);
  1176. goto err;
  1177. }
  1178. dev_info(&state->i2c->dev, "%s: downloading firmware from file '%s'\n",
  1179. KBUILD_MODNAME, fw_file);
  1180. /* calc checksum */
  1181. for (i = 0; i < fw->size; i++)
  1182. checksum += fw->data[i];
  1183. fw_params[0] = checksum >> 8;
  1184. fw_params[1] = checksum & 0xff;
  1185. fw_params[2] = fw->size >> 8;
  1186. fw_params[3] = fw->size & 0xff;
  1187. /* write fw checksum & size */
  1188. ret = af9013_write_ofsm_regs(state, 0x50fc,
  1189. fw_params, sizeof(fw_params));
  1190. if (ret)
  1191. goto err_release;
  1192. #define FW_ADDR 0x5100 /* firmware start address */
  1193. #define LEN_MAX 16 /* max packet size */
  1194. for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
  1195. len = remaining;
  1196. if (len > LEN_MAX)
  1197. len = LEN_MAX;
  1198. ret = af9013_write_ofsm_regs(state,
  1199. FW_ADDR + fw->size - remaining,
  1200. (u8 *) &fw->data[fw->size - remaining], len);
  1201. if (ret) {
  1202. dev_err(&state->i2c->dev,
  1203. "%s: firmware download failed=%d\n",
  1204. KBUILD_MODNAME, ret);
  1205. goto err_release;
  1206. }
  1207. }
  1208. /* request boot firmware */
  1209. ret = af9013_wr_reg(state, 0xe205, 1);
  1210. if (ret)
  1211. goto err_release;
  1212. for (i = 0; i < 15; i++) {
  1213. msleep(100);
  1214. /* check firmware status */
  1215. ret = af9013_rd_reg(state, 0x98be, &val);
  1216. if (ret)
  1217. goto err_release;
  1218. dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
  1219. __func__, val);
  1220. if (val == 0x0c || val == 0x04) /* success or fail */
  1221. break;
  1222. }
  1223. if (val == 0x04) {
  1224. dev_err(&state->i2c->dev, "%s: firmware did not run\n",
  1225. KBUILD_MODNAME);
  1226. ret = -ENODEV;
  1227. } else if (val != 0x0c) {
  1228. dev_err(&state->i2c->dev, "%s: firmware boot timeout\n",
  1229. KBUILD_MODNAME);
  1230. ret = -ENODEV;
  1231. }
  1232. err_release:
  1233. release_firmware(fw);
  1234. err:
  1235. exit:
  1236. if (!ret)
  1237. dev_info(&state->i2c->dev, "%s: found a '%s' in warm state\n",
  1238. KBUILD_MODNAME, af9013_ops.info.name);
  1239. return ret;
  1240. }
  1241. struct dvb_frontend *af9013_attach(const struct af9013_config *config,
  1242. struct i2c_adapter *i2c)
  1243. {
  1244. int ret;
  1245. struct af9013_state *state = NULL;
  1246. u8 buf[4], i;
  1247. /* allocate memory for the internal state */
  1248. state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
  1249. if (state == NULL)
  1250. goto err;
  1251. /* setup the state */
  1252. state->i2c = i2c;
  1253. memcpy(&state->config, config, sizeof(struct af9013_config));
  1254. /* download firmware */
  1255. if (state->config.ts_mode != AF9013_TS_USB) {
  1256. ret = af9013_download_firmware(state);
  1257. if (ret)
  1258. goto err;
  1259. }
  1260. /* firmware version */
  1261. ret = af9013_rd_regs(state, 0x5103, buf, 4);
  1262. if (ret)
  1263. goto err;
  1264. dev_info(&state->i2c->dev, "%s: firmware version %d.%d.%d.%d\n",
  1265. KBUILD_MODNAME, buf[0], buf[1], buf[2], buf[3]);
  1266. /* set GPIOs */
  1267. for (i = 0; i < sizeof(state->config.gpio); i++) {
  1268. ret = af9013_set_gpio(state, i, state->config.gpio[i]);
  1269. if (ret)
  1270. goto err;
  1271. }
  1272. /* create dvb_frontend */
  1273. memcpy(&state->fe.ops, &af9013_ops,
  1274. sizeof(struct dvb_frontend_ops));
  1275. state->fe.demodulator_priv = state;
  1276. INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
  1277. return &state->fe;
  1278. err:
  1279. kfree(state);
  1280. return NULL;
  1281. }
  1282. EXPORT_SYMBOL(af9013_attach);
  1283. static struct dvb_frontend_ops af9013_ops = {
  1284. .delsys = { SYS_DVBT },
  1285. .info = {
  1286. .name = "Afatech AF9013",
  1287. .frequency_min = 174000000,
  1288. .frequency_max = 862000000,
  1289. .frequency_stepsize = 250000,
  1290. .frequency_tolerance = 0,
  1291. .caps = FE_CAN_FEC_1_2 |
  1292. FE_CAN_FEC_2_3 |
  1293. FE_CAN_FEC_3_4 |
  1294. FE_CAN_FEC_5_6 |
  1295. FE_CAN_FEC_7_8 |
  1296. FE_CAN_FEC_AUTO |
  1297. FE_CAN_QPSK |
  1298. FE_CAN_QAM_16 |
  1299. FE_CAN_QAM_64 |
  1300. FE_CAN_QAM_AUTO |
  1301. FE_CAN_TRANSMISSION_MODE_AUTO |
  1302. FE_CAN_GUARD_INTERVAL_AUTO |
  1303. FE_CAN_HIERARCHY_AUTO |
  1304. FE_CAN_RECOVER |
  1305. FE_CAN_MUTE_TS
  1306. },
  1307. .release = af9013_release,
  1308. .init = af9013_init,
  1309. .sleep = af9013_sleep,
  1310. .get_tune_settings = af9013_get_tune_settings,
  1311. .set_frontend = af9013_set_frontend,
  1312. .get_frontend = af9013_get_frontend,
  1313. .read_status = af9013_read_status,
  1314. .read_snr = af9013_read_snr,
  1315. .read_signal_strength = af9013_read_signal_strength,
  1316. .read_ber = af9013_read_ber,
  1317. .read_ucblocks = af9013_read_ucblocks,
  1318. .i2c_gate_ctrl = af9013_i2c_gate_ctrl,
  1319. };
  1320. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  1321. MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
  1322. MODULE_LICENSE("GPL");
  1323. MODULE_FIRMWARE(AF9013_FIRMWARE);