ring_buffer.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/ring_buffer.h>
  7. #include <linux/spinlock.h>
  8. #include <linux/debugfs.h>
  9. #include <linux/uaccess.h>
  10. #include <linux/module.h>
  11. #include <linux/percpu.h>
  12. #include <linux/mutex.h>
  13. #include <linux/sched.h> /* used for sched_clock() (for now) */
  14. #include <linux/init.h>
  15. #include <linux/hash.h>
  16. #include <linux/list.h>
  17. #include <linux/fs.h>
  18. #include "trace.h"
  19. /* Up this if you want to test the TIME_EXTENTS and normalization */
  20. #define DEBUG_SHIFT 0
  21. /* FIXME!!! */
  22. u64 ring_buffer_time_stamp(int cpu)
  23. {
  24. /* shift to debug/test normalization and TIME_EXTENTS */
  25. return sched_clock() << DEBUG_SHIFT;
  26. }
  27. void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
  28. {
  29. /* Just stupid testing the normalize function and deltas */
  30. *ts >>= DEBUG_SHIFT;
  31. }
  32. #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
  33. #define RB_ALIGNMENT_SHIFT 2
  34. #define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
  35. #define RB_MAX_SMALL_DATA 28
  36. enum {
  37. RB_LEN_TIME_EXTEND = 8,
  38. RB_LEN_TIME_STAMP = 16,
  39. };
  40. /* inline for ring buffer fast paths */
  41. static inline unsigned
  42. rb_event_length(struct ring_buffer_event *event)
  43. {
  44. unsigned length;
  45. switch (event->type) {
  46. case RINGBUF_TYPE_PADDING:
  47. /* undefined */
  48. return -1;
  49. case RINGBUF_TYPE_TIME_EXTEND:
  50. return RB_LEN_TIME_EXTEND;
  51. case RINGBUF_TYPE_TIME_STAMP:
  52. return RB_LEN_TIME_STAMP;
  53. case RINGBUF_TYPE_DATA:
  54. if (event->len)
  55. length = event->len << RB_ALIGNMENT_SHIFT;
  56. else
  57. length = event->array[0];
  58. return length + RB_EVNT_HDR_SIZE;
  59. default:
  60. BUG();
  61. }
  62. /* not hit */
  63. return 0;
  64. }
  65. /**
  66. * ring_buffer_event_length - return the length of the event
  67. * @event: the event to get the length of
  68. */
  69. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  70. {
  71. return rb_event_length(event);
  72. }
  73. /* inline for ring buffer fast paths */
  74. static inline void *
  75. rb_event_data(struct ring_buffer_event *event)
  76. {
  77. BUG_ON(event->type != RINGBUF_TYPE_DATA);
  78. /* If length is in len field, then array[0] has the data */
  79. if (event->len)
  80. return (void *)&event->array[0];
  81. /* Otherwise length is in array[0] and array[1] has the data */
  82. return (void *)&event->array[1];
  83. }
  84. /**
  85. * ring_buffer_event_data - return the data of the event
  86. * @event: the event to get the data from
  87. */
  88. void *ring_buffer_event_data(struct ring_buffer_event *event)
  89. {
  90. return rb_event_data(event);
  91. }
  92. #define for_each_buffer_cpu(buffer, cpu) \
  93. for_each_cpu_mask(cpu, buffer->cpumask)
  94. #define TS_SHIFT 27
  95. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  96. #define TS_DELTA_TEST (~TS_MASK)
  97. /*
  98. * This hack stolen from mm/slob.c.
  99. * We can store per page timing information in the page frame of the page.
  100. * Thanks to Peter Zijlstra for suggesting this idea.
  101. */
  102. struct buffer_page {
  103. u64 time_stamp; /* page time stamp */
  104. local_t write; /* index for next write */
  105. local_t commit; /* write commited index */
  106. unsigned read; /* index for next read */
  107. struct list_head list; /* list of free pages */
  108. void *page; /* Actual data page */
  109. };
  110. /*
  111. * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
  112. * this issue out.
  113. */
  114. static inline void free_buffer_page(struct buffer_page *bpage)
  115. {
  116. if (bpage->page)
  117. free_page((unsigned long)bpage->page);
  118. kfree(bpage);
  119. }
  120. /*
  121. * We need to fit the time_stamp delta into 27 bits.
  122. */
  123. static inline int test_time_stamp(u64 delta)
  124. {
  125. if (delta & TS_DELTA_TEST)
  126. return 1;
  127. return 0;
  128. }
  129. #define BUF_PAGE_SIZE PAGE_SIZE
  130. /*
  131. * head_page == tail_page && head == tail then buffer is empty.
  132. */
  133. struct ring_buffer_per_cpu {
  134. int cpu;
  135. struct ring_buffer *buffer;
  136. spinlock_t reader_lock; /* serialize readers */
  137. raw_spinlock_t lock;
  138. struct lock_class_key lock_key;
  139. struct list_head pages;
  140. struct buffer_page *head_page; /* read from head */
  141. struct buffer_page *tail_page; /* write to tail */
  142. struct buffer_page *commit_page; /* commited pages */
  143. struct buffer_page *reader_page;
  144. unsigned long overrun;
  145. unsigned long entries;
  146. u64 write_stamp;
  147. u64 read_stamp;
  148. atomic_t record_disabled;
  149. };
  150. struct ring_buffer {
  151. unsigned long size;
  152. unsigned pages;
  153. unsigned flags;
  154. int cpus;
  155. cpumask_t cpumask;
  156. atomic_t record_disabled;
  157. struct mutex mutex;
  158. struct ring_buffer_per_cpu **buffers;
  159. };
  160. struct ring_buffer_iter {
  161. struct ring_buffer_per_cpu *cpu_buffer;
  162. unsigned long head;
  163. struct buffer_page *head_page;
  164. u64 read_stamp;
  165. };
  166. /* buffer may be either ring_buffer or ring_buffer_per_cpu */
  167. #define RB_WARN_ON(buffer, cond) \
  168. ({ \
  169. int _____ret = unlikely(cond); \
  170. if (_____ret) { \
  171. atomic_inc(&buffer->record_disabled); \
  172. WARN_ON(1); \
  173. } \
  174. _____ret; \
  175. })
  176. /**
  177. * check_pages - integrity check of buffer pages
  178. * @cpu_buffer: CPU buffer with pages to test
  179. *
  180. * As a safty measure we check to make sure the data pages have not
  181. * been corrupted.
  182. */
  183. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  184. {
  185. struct list_head *head = &cpu_buffer->pages;
  186. struct buffer_page *page, *tmp;
  187. if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
  188. return -1;
  189. if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
  190. return -1;
  191. list_for_each_entry_safe(page, tmp, head, list) {
  192. if (RB_WARN_ON(cpu_buffer,
  193. page->list.next->prev != &page->list))
  194. return -1;
  195. if (RB_WARN_ON(cpu_buffer,
  196. page->list.prev->next != &page->list))
  197. return -1;
  198. }
  199. return 0;
  200. }
  201. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  202. unsigned nr_pages)
  203. {
  204. struct list_head *head = &cpu_buffer->pages;
  205. struct buffer_page *page, *tmp;
  206. unsigned long addr;
  207. LIST_HEAD(pages);
  208. unsigned i;
  209. for (i = 0; i < nr_pages; i++) {
  210. page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
  211. GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
  212. if (!page)
  213. goto free_pages;
  214. list_add(&page->list, &pages);
  215. addr = __get_free_page(GFP_KERNEL);
  216. if (!addr)
  217. goto free_pages;
  218. page->page = (void *)addr;
  219. }
  220. list_splice(&pages, head);
  221. rb_check_pages(cpu_buffer);
  222. return 0;
  223. free_pages:
  224. list_for_each_entry_safe(page, tmp, &pages, list) {
  225. list_del_init(&page->list);
  226. free_buffer_page(page);
  227. }
  228. return -ENOMEM;
  229. }
  230. static struct ring_buffer_per_cpu *
  231. rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
  232. {
  233. struct ring_buffer_per_cpu *cpu_buffer;
  234. struct buffer_page *page;
  235. unsigned long addr;
  236. int ret;
  237. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  238. GFP_KERNEL, cpu_to_node(cpu));
  239. if (!cpu_buffer)
  240. return NULL;
  241. cpu_buffer->cpu = cpu;
  242. cpu_buffer->buffer = buffer;
  243. spin_lock_init(&cpu_buffer->reader_lock);
  244. cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
  245. INIT_LIST_HEAD(&cpu_buffer->pages);
  246. page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
  247. GFP_KERNEL, cpu_to_node(cpu));
  248. if (!page)
  249. goto fail_free_buffer;
  250. cpu_buffer->reader_page = page;
  251. addr = __get_free_page(GFP_KERNEL);
  252. if (!addr)
  253. goto fail_free_reader;
  254. page->page = (void *)addr;
  255. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  256. ret = rb_allocate_pages(cpu_buffer, buffer->pages);
  257. if (ret < 0)
  258. goto fail_free_reader;
  259. cpu_buffer->head_page
  260. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  261. cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
  262. return cpu_buffer;
  263. fail_free_reader:
  264. free_buffer_page(cpu_buffer->reader_page);
  265. fail_free_buffer:
  266. kfree(cpu_buffer);
  267. return NULL;
  268. }
  269. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  270. {
  271. struct list_head *head = &cpu_buffer->pages;
  272. struct buffer_page *page, *tmp;
  273. list_del_init(&cpu_buffer->reader_page->list);
  274. free_buffer_page(cpu_buffer->reader_page);
  275. list_for_each_entry_safe(page, tmp, head, list) {
  276. list_del_init(&page->list);
  277. free_buffer_page(page);
  278. }
  279. kfree(cpu_buffer);
  280. }
  281. /*
  282. * Causes compile errors if the struct buffer_page gets bigger
  283. * than the struct page.
  284. */
  285. extern int ring_buffer_page_too_big(void);
  286. /**
  287. * ring_buffer_alloc - allocate a new ring_buffer
  288. * @size: the size in bytes that is needed.
  289. * @flags: attributes to set for the ring buffer.
  290. *
  291. * Currently the only flag that is available is the RB_FL_OVERWRITE
  292. * flag. This flag means that the buffer will overwrite old data
  293. * when the buffer wraps. If this flag is not set, the buffer will
  294. * drop data when the tail hits the head.
  295. */
  296. struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
  297. {
  298. struct ring_buffer *buffer;
  299. int bsize;
  300. int cpu;
  301. /* Paranoid! Optimizes out when all is well */
  302. if (sizeof(struct buffer_page) > sizeof(struct page))
  303. ring_buffer_page_too_big();
  304. /* keep it in its own cache line */
  305. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  306. GFP_KERNEL);
  307. if (!buffer)
  308. return NULL;
  309. buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  310. buffer->flags = flags;
  311. /* need at least two pages */
  312. if (buffer->pages == 1)
  313. buffer->pages++;
  314. buffer->cpumask = cpu_possible_map;
  315. buffer->cpus = nr_cpu_ids;
  316. bsize = sizeof(void *) * nr_cpu_ids;
  317. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  318. GFP_KERNEL);
  319. if (!buffer->buffers)
  320. goto fail_free_buffer;
  321. for_each_buffer_cpu(buffer, cpu) {
  322. buffer->buffers[cpu] =
  323. rb_allocate_cpu_buffer(buffer, cpu);
  324. if (!buffer->buffers[cpu])
  325. goto fail_free_buffers;
  326. }
  327. mutex_init(&buffer->mutex);
  328. return buffer;
  329. fail_free_buffers:
  330. for_each_buffer_cpu(buffer, cpu) {
  331. if (buffer->buffers[cpu])
  332. rb_free_cpu_buffer(buffer->buffers[cpu]);
  333. }
  334. kfree(buffer->buffers);
  335. fail_free_buffer:
  336. kfree(buffer);
  337. return NULL;
  338. }
  339. /**
  340. * ring_buffer_free - free a ring buffer.
  341. * @buffer: the buffer to free.
  342. */
  343. void
  344. ring_buffer_free(struct ring_buffer *buffer)
  345. {
  346. int cpu;
  347. for_each_buffer_cpu(buffer, cpu)
  348. rb_free_cpu_buffer(buffer->buffers[cpu]);
  349. kfree(buffer);
  350. }
  351. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  352. static void
  353. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
  354. {
  355. struct buffer_page *page;
  356. struct list_head *p;
  357. unsigned i;
  358. atomic_inc(&cpu_buffer->record_disabled);
  359. synchronize_sched();
  360. for (i = 0; i < nr_pages; i++) {
  361. if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
  362. return;
  363. p = cpu_buffer->pages.next;
  364. page = list_entry(p, struct buffer_page, list);
  365. list_del_init(&page->list);
  366. free_buffer_page(page);
  367. }
  368. if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
  369. return;
  370. rb_reset_cpu(cpu_buffer);
  371. rb_check_pages(cpu_buffer);
  372. atomic_dec(&cpu_buffer->record_disabled);
  373. }
  374. static void
  375. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
  376. struct list_head *pages, unsigned nr_pages)
  377. {
  378. struct buffer_page *page;
  379. struct list_head *p;
  380. unsigned i;
  381. atomic_inc(&cpu_buffer->record_disabled);
  382. synchronize_sched();
  383. for (i = 0; i < nr_pages; i++) {
  384. if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
  385. return;
  386. p = pages->next;
  387. page = list_entry(p, struct buffer_page, list);
  388. list_del_init(&page->list);
  389. list_add_tail(&page->list, &cpu_buffer->pages);
  390. }
  391. rb_reset_cpu(cpu_buffer);
  392. rb_check_pages(cpu_buffer);
  393. atomic_dec(&cpu_buffer->record_disabled);
  394. }
  395. /**
  396. * ring_buffer_resize - resize the ring buffer
  397. * @buffer: the buffer to resize.
  398. * @size: the new size.
  399. *
  400. * The tracer is responsible for making sure that the buffer is
  401. * not being used while changing the size.
  402. * Note: We may be able to change the above requirement by using
  403. * RCU synchronizations.
  404. *
  405. * Minimum size is 2 * BUF_PAGE_SIZE.
  406. *
  407. * Returns -1 on failure.
  408. */
  409. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
  410. {
  411. struct ring_buffer_per_cpu *cpu_buffer;
  412. unsigned nr_pages, rm_pages, new_pages;
  413. struct buffer_page *page, *tmp;
  414. unsigned long buffer_size;
  415. unsigned long addr;
  416. LIST_HEAD(pages);
  417. int i, cpu;
  418. size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  419. size *= BUF_PAGE_SIZE;
  420. buffer_size = buffer->pages * BUF_PAGE_SIZE;
  421. /* we need a minimum of two pages */
  422. if (size < BUF_PAGE_SIZE * 2)
  423. size = BUF_PAGE_SIZE * 2;
  424. if (size == buffer_size)
  425. return size;
  426. mutex_lock(&buffer->mutex);
  427. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  428. if (size < buffer_size) {
  429. /* easy case, just free pages */
  430. if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
  431. mutex_unlock(&buffer->mutex);
  432. return -1;
  433. }
  434. rm_pages = buffer->pages - nr_pages;
  435. for_each_buffer_cpu(buffer, cpu) {
  436. cpu_buffer = buffer->buffers[cpu];
  437. rb_remove_pages(cpu_buffer, rm_pages);
  438. }
  439. goto out;
  440. }
  441. /*
  442. * This is a bit more difficult. We only want to add pages
  443. * when we can allocate enough for all CPUs. We do this
  444. * by allocating all the pages and storing them on a local
  445. * link list. If we succeed in our allocation, then we
  446. * add these pages to the cpu_buffers. Otherwise we just free
  447. * them all and return -ENOMEM;
  448. */
  449. if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
  450. mutex_unlock(&buffer->mutex);
  451. return -1;
  452. }
  453. new_pages = nr_pages - buffer->pages;
  454. for_each_buffer_cpu(buffer, cpu) {
  455. for (i = 0; i < new_pages; i++) {
  456. page = kzalloc_node(ALIGN(sizeof(*page),
  457. cache_line_size()),
  458. GFP_KERNEL, cpu_to_node(cpu));
  459. if (!page)
  460. goto free_pages;
  461. list_add(&page->list, &pages);
  462. addr = __get_free_page(GFP_KERNEL);
  463. if (!addr)
  464. goto free_pages;
  465. page->page = (void *)addr;
  466. }
  467. }
  468. for_each_buffer_cpu(buffer, cpu) {
  469. cpu_buffer = buffer->buffers[cpu];
  470. rb_insert_pages(cpu_buffer, &pages, new_pages);
  471. }
  472. if (RB_WARN_ON(buffer, !list_empty(&pages))) {
  473. mutex_unlock(&buffer->mutex);
  474. return -1;
  475. }
  476. out:
  477. buffer->pages = nr_pages;
  478. mutex_unlock(&buffer->mutex);
  479. return size;
  480. free_pages:
  481. list_for_each_entry_safe(page, tmp, &pages, list) {
  482. list_del_init(&page->list);
  483. free_buffer_page(page);
  484. }
  485. return -ENOMEM;
  486. }
  487. static inline int rb_null_event(struct ring_buffer_event *event)
  488. {
  489. return event->type == RINGBUF_TYPE_PADDING;
  490. }
  491. static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
  492. {
  493. return page->page + index;
  494. }
  495. static inline struct ring_buffer_event *
  496. rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
  497. {
  498. return __rb_page_index(cpu_buffer->reader_page,
  499. cpu_buffer->reader_page->read);
  500. }
  501. static inline struct ring_buffer_event *
  502. rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
  503. {
  504. return __rb_page_index(cpu_buffer->head_page,
  505. cpu_buffer->head_page->read);
  506. }
  507. static inline struct ring_buffer_event *
  508. rb_iter_head_event(struct ring_buffer_iter *iter)
  509. {
  510. return __rb_page_index(iter->head_page, iter->head);
  511. }
  512. static inline unsigned rb_page_write(struct buffer_page *bpage)
  513. {
  514. return local_read(&bpage->write);
  515. }
  516. static inline unsigned rb_page_commit(struct buffer_page *bpage)
  517. {
  518. return local_read(&bpage->commit);
  519. }
  520. /* Size is determined by what has been commited */
  521. static inline unsigned rb_page_size(struct buffer_page *bpage)
  522. {
  523. return rb_page_commit(bpage);
  524. }
  525. static inline unsigned
  526. rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
  527. {
  528. return rb_page_commit(cpu_buffer->commit_page);
  529. }
  530. static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
  531. {
  532. return rb_page_commit(cpu_buffer->head_page);
  533. }
  534. /*
  535. * When the tail hits the head and the buffer is in overwrite mode,
  536. * the head jumps to the next page and all content on the previous
  537. * page is discarded. But before doing so, we update the overrun
  538. * variable of the buffer.
  539. */
  540. static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
  541. {
  542. struct ring_buffer_event *event;
  543. unsigned long head;
  544. for (head = 0; head < rb_head_size(cpu_buffer);
  545. head += rb_event_length(event)) {
  546. event = __rb_page_index(cpu_buffer->head_page, head);
  547. if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
  548. return;
  549. /* Only count data entries */
  550. if (event->type != RINGBUF_TYPE_DATA)
  551. continue;
  552. cpu_buffer->overrun++;
  553. cpu_buffer->entries--;
  554. }
  555. }
  556. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  557. struct buffer_page **page)
  558. {
  559. struct list_head *p = (*page)->list.next;
  560. if (p == &cpu_buffer->pages)
  561. p = p->next;
  562. *page = list_entry(p, struct buffer_page, list);
  563. }
  564. static inline unsigned
  565. rb_event_index(struct ring_buffer_event *event)
  566. {
  567. unsigned long addr = (unsigned long)event;
  568. return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
  569. }
  570. static inline int
  571. rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  572. struct ring_buffer_event *event)
  573. {
  574. unsigned long addr = (unsigned long)event;
  575. unsigned long index;
  576. index = rb_event_index(event);
  577. addr &= PAGE_MASK;
  578. return cpu_buffer->commit_page->page == (void *)addr &&
  579. rb_commit_index(cpu_buffer) == index;
  580. }
  581. static inline void
  582. rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
  583. struct ring_buffer_event *event)
  584. {
  585. unsigned long addr = (unsigned long)event;
  586. unsigned long index;
  587. index = rb_event_index(event);
  588. addr &= PAGE_MASK;
  589. while (cpu_buffer->commit_page->page != (void *)addr) {
  590. if (RB_WARN_ON(cpu_buffer,
  591. cpu_buffer->commit_page == cpu_buffer->tail_page))
  592. return;
  593. cpu_buffer->commit_page->commit =
  594. cpu_buffer->commit_page->write;
  595. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  596. cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
  597. }
  598. /* Now set the commit to the event's index */
  599. local_set(&cpu_buffer->commit_page->commit, index);
  600. }
  601. static inline void
  602. rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
  603. {
  604. /*
  605. * We only race with interrupts and NMIs on this CPU.
  606. * If we own the commit event, then we can commit
  607. * all others that interrupted us, since the interruptions
  608. * are in stack format (they finish before they come
  609. * back to us). This allows us to do a simple loop to
  610. * assign the commit to the tail.
  611. */
  612. while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
  613. cpu_buffer->commit_page->commit =
  614. cpu_buffer->commit_page->write;
  615. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  616. cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
  617. /* add barrier to keep gcc from optimizing too much */
  618. barrier();
  619. }
  620. while (rb_commit_index(cpu_buffer) !=
  621. rb_page_write(cpu_buffer->commit_page)) {
  622. cpu_buffer->commit_page->commit =
  623. cpu_buffer->commit_page->write;
  624. barrier();
  625. }
  626. }
  627. static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  628. {
  629. cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
  630. cpu_buffer->reader_page->read = 0;
  631. }
  632. static inline void rb_inc_iter(struct ring_buffer_iter *iter)
  633. {
  634. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  635. /*
  636. * The iterator could be on the reader page (it starts there).
  637. * But the head could have moved, since the reader was
  638. * found. Check for this case and assign the iterator
  639. * to the head page instead of next.
  640. */
  641. if (iter->head_page == cpu_buffer->reader_page)
  642. iter->head_page = cpu_buffer->head_page;
  643. else
  644. rb_inc_page(cpu_buffer, &iter->head_page);
  645. iter->read_stamp = iter->head_page->time_stamp;
  646. iter->head = 0;
  647. }
  648. /**
  649. * ring_buffer_update_event - update event type and data
  650. * @event: the even to update
  651. * @type: the type of event
  652. * @length: the size of the event field in the ring buffer
  653. *
  654. * Update the type and data fields of the event. The length
  655. * is the actual size that is written to the ring buffer,
  656. * and with this, we can determine what to place into the
  657. * data field.
  658. */
  659. static inline void
  660. rb_update_event(struct ring_buffer_event *event,
  661. unsigned type, unsigned length)
  662. {
  663. event->type = type;
  664. switch (type) {
  665. case RINGBUF_TYPE_PADDING:
  666. break;
  667. case RINGBUF_TYPE_TIME_EXTEND:
  668. event->len =
  669. (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
  670. >> RB_ALIGNMENT_SHIFT;
  671. break;
  672. case RINGBUF_TYPE_TIME_STAMP:
  673. event->len =
  674. (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
  675. >> RB_ALIGNMENT_SHIFT;
  676. break;
  677. case RINGBUF_TYPE_DATA:
  678. length -= RB_EVNT_HDR_SIZE;
  679. if (length > RB_MAX_SMALL_DATA) {
  680. event->len = 0;
  681. event->array[0] = length;
  682. } else
  683. event->len =
  684. (length + (RB_ALIGNMENT-1))
  685. >> RB_ALIGNMENT_SHIFT;
  686. break;
  687. default:
  688. BUG();
  689. }
  690. }
  691. static inline unsigned rb_calculate_event_length(unsigned length)
  692. {
  693. struct ring_buffer_event event; /* Used only for sizeof array */
  694. /* zero length can cause confusions */
  695. if (!length)
  696. length = 1;
  697. if (length > RB_MAX_SMALL_DATA)
  698. length += sizeof(event.array[0]);
  699. length += RB_EVNT_HDR_SIZE;
  700. length = ALIGN(length, RB_ALIGNMENT);
  701. return length;
  702. }
  703. static struct ring_buffer_event *
  704. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  705. unsigned type, unsigned long length, u64 *ts)
  706. {
  707. struct buffer_page *tail_page, *head_page, *reader_page;
  708. unsigned long tail, write;
  709. struct ring_buffer *buffer = cpu_buffer->buffer;
  710. struct ring_buffer_event *event;
  711. unsigned long flags;
  712. tail_page = cpu_buffer->tail_page;
  713. write = local_add_return(length, &tail_page->write);
  714. tail = write - length;
  715. /* See if we shot pass the end of this buffer page */
  716. if (write > BUF_PAGE_SIZE) {
  717. struct buffer_page *next_page = tail_page;
  718. local_irq_save(flags);
  719. __raw_spin_lock(&cpu_buffer->lock);
  720. rb_inc_page(cpu_buffer, &next_page);
  721. head_page = cpu_buffer->head_page;
  722. reader_page = cpu_buffer->reader_page;
  723. /* we grabbed the lock before incrementing */
  724. if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
  725. goto out_unlock;
  726. /*
  727. * If for some reason, we had an interrupt storm that made
  728. * it all the way around the buffer, bail, and warn
  729. * about it.
  730. */
  731. if (unlikely(next_page == cpu_buffer->commit_page)) {
  732. WARN_ON_ONCE(1);
  733. goto out_unlock;
  734. }
  735. if (next_page == head_page) {
  736. if (!(buffer->flags & RB_FL_OVERWRITE)) {
  737. /* reset write */
  738. if (tail <= BUF_PAGE_SIZE)
  739. local_set(&tail_page->write, tail);
  740. goto out_unlock;
  741. }
  742. /* tail_page has not moved yet? */
  743. if (tail_page == cpu_buffer->tail_page) {
  744. /* count overflows */
  745. rb_update_overflow(cpu_buffer);
  746. rb_inc_page(cpu_buffer, &head_page);
  747. cpu_buffer->head_page = head_page;
  748. cpu_buffer->head_page->read = 0;
  749. }
  750. }
  751. /*
  752. * If the tail page is still the same as what we think
  753. * it is, then it is up to us to update the tail
  754. * pointer.
  755. */
  756. if (tail_page == cpu_buffer->tail_page) {
  757. local_set(&next_page->write, 0);
  758. local_set(&next_page->commit, 0);
  759. cpu_buffer->tail_page = next_page;
  760. /* reread the time stamp */
  761. *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  762. cpu_buffer->tail_page->time_stamp = *ts;
  763. }
  764. /*
  765. * The actual tail page has moved forward.
  766. */
  767. if (tail < BUF_PAGE_SIZE) {
  768. /* Mark the rest of the page with padding */
  769. event = __rb_page_index(tail_page, tail);
  770. event->type = RINGBUF_TYPE_PADDING;
  771. }
  772. if (tail <= BUF_PAGE_SIZE)
  773. /* Set the write back to the previous setting */
  774. local_set(&tail_page->write, tail);
  775. /*
  776. * If this was a commit entry that failed,
  777. * increment that too
  778. */
  779. if (tail_page == cpu_buffer->commit_page &&
  780. tail == rb_commit_index(cpu_buffer)) {
  781. rb_set_commit_to_write(cpu_buffer);
  782. }
  783. __raw_spin_unlock(&cpu_buffer->lock);
  784. local_irq_restore(flags);
  785. /* fail and let the caller try again */
  786. return ERR_PTR(-EAGAIN);
  787. }
  788. /* We reserved something on the buffer */
  789. if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
  790. return NULL;
  791. event = __rb_page_index(tail_page, tail);
  792. rb_update_event(event, type, length);
  793. /*
  794. * If this is a commit and the tail is zero, then update
  795. * this page's time stamp.
  796. */
  797. if (!tail && rb_is_commit(cpu_buffer, event))
  798. cpu_buffer->commit_page->time_stamp = *ts;
  799. return event;
  800. out_unlock:
  801. __raw_spin_unlock(&cpu_buffer->lock);
  802. local_irq_restore(flags);
  803. return NULL;
  804. }
  805. static int
  806. rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  807. u64 *ts, u64 *delta)
  808. {
  809. struct ring_buffer_event *event;
  810. static int once;
  811. int ret;
  812. if (unlikely(*delta > (1ULL << 59) && !once++)) {
  813. printk(KERN_WARNING "Delta way too big! %llu"
  814. " ts=%llu write stamp = %llu\n",
  815. (unsigned long long)*delta,
  816. (unsigned long long)*ts,
  817. (unsigned long long)cpu_buffer->write_stamp);
  818. WARN_ON(1);
  819. }
  820. /*
  821. * The delta is too big, we to add a
  822. * new timestamp.
  823. */
  824. event = __rb_reserve_next(cpu_buffer,
  825. RINGBUF_TYPE_TIME_EXTEND,
  826. RB_LEN_TIME_EXTEND,
  827. ts);
  828. if (!event)
  829. return -EBUSY;
  830. if (PTR_ERR(event) == -EAGAIN)
  831. return -EAGAIN;
  832. /* Only a commited time event can update the write stamp */
  833. if (rb_is_commit(cpu_buffer, event)) {
  834. /*
  835. * If this is the first on the page, then we need to
  836. * update the page itself, and just put in a zero.
  837. */
  838. if (rb_event_index(event)) {
  839. event->time_delta = *delta & TS_MASK;
  840. event->array[0] = *delta >> TS_SHIFT;
  841. } else {
  842. cpu_buffer->commit_page->time_stamp = *ts;
  843. event->time_delta = 0;
  844. event->array[0] = 0;
  845. }
  846. cpu_buffer->write_stamp = *ts;
  847. /* let the caller know this was the commit */
  848. ret = 1;
  849. } else {
  850. /* Darn, this is just wasted space */
  851. event->time_delta = 0;
  852. event->array[0] = 0;
  853. ret = 0;
  854. }
  855. *delta = 0;
  856. return ret;
  857. }
  858. static struct ring_buffer_event *
  859. rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
  860. unsigned type, unsigned long length)
  861. {
  862. struct ring_buffer_event *event;
  863. u64 ts, delta;
  864. int commit = 0;
  865. int nr_loops = 0;
  866. again:
  867. /*
  868. * We allow for interrupts to reenter here and do a trace.
  869. * If one does, it will cause this original code to loop
  870. * back here. Even with heavy interrupts happening, this
  871. * should only happen a few times in a row. If this happens
  872. * 1000 times in a row, there must be either an interrupt
  873. * storm or we have something buggy.
  874. * Bail!
  875. */
  876. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
  877. return NULL;
  878. ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  879. /*
  880. * Only the first commit can update the timestamp.
  881. * Yes there is a race here. If an interrupt comes in
  882. * just after the conditional and it traces too, then it
  883. * will also check the deltas. More than one timestamp may
  884. * also be made. But only the entry that did the actual
  885. * commit will be something other than zero.
  886. */
  887. if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
  888. rb_page_write(cpu_buffer->tail_page) ==
  889. rb_commit_index(cpu_buffer)) {
  890. delta = ts - cpu_buffer->write_stamp;
  891. /* make sure this delta is calculated here */
  892. barrier();
  893. /* Did the write stamp get updated already? */
  894. if (unlikely(ts < cpu_buffer->write_stamp))
  895. delta = 0;
  896. if (test_time_stamp(delta)) {
  897. commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
  898. if (commit == -EBUSY)
  899. return NULL;
  900. if (commit == -EAGAIN)
  901. goto again;
  902. RB_WARN_ON(cpu_buffer, commit < 0);
  903. }
  904. } else
  905. /* Non commits have zero deltas */
  906. delta = 0;
  907. event = __rb_reserve_next(cpu_buffer, type, length, &ts);
  908. if (PTR_ERR(event) == -EAGAIN)
  909. goto again;
  910. if (!event) {
  911. if (unlikely(commit))
  912. /*
  913. * Ouch! We needed a timestamp and it was commited. But
  914. * we didn't get our event reserved.
  915. */
  916. rb_set_commit_to_write(cpu_buffer);
  917. return NULL;
  918. }
  919. /*
  920. * If the timestamp was commited, make the commit our entry
  921. * now so that we will update it when needed.
  922. */
  923. if (commit)
  924. rb_set_commit_event(cpu_buffer, event);
  925. else if (!rb_is_commit(cpu_buffer, event))
  926. delta = 0;
  927. event->time_delta = delta;
  928. return event;
  929. }
  930. static DEFINE_PER_CPU(int, rb_need_resched);
  931. /**
  932. * ring_buffer_lock_reserve - reserve a part of the buffer
  933. * @buffer: the ring buffer to reserve from
  934. * @length: the length of the data to reserve (excluding event header)
  935. * @flags: a pointer to save the interrupt flags
  936. *
  937. * Returns a reseverd event on the ring buffer to copy directly to.
  938. * The user of this interface will need to get the body to write into
  939. * and can use the ring_buffer_event_data() interface.
  940. *
  941. * The length is the length of the data needed, not the event length
  942. * which also includes the event header.
  943. *
  944. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  945. * If NULL is returned, then nothing has been allocated or locked.
  946. */
  947. struct ring_buffer_event *
  948. ring_buffer_lock_reserve(struct ring_buffer *buffer,
  949. unsigned long length,
  950. unsigned long *flags)
  951. {
  952. struct ring_buffer_per_cpu *cpu_buffer;
  953. struct ring_buffer_event *event;
  954. int cpu, resched;
  955. if (atomic_read(&buffer->record_disabled))
  956. return NULL;
  957. /* If we are tracing schedule, we don't want to recurse */
  958. resched = ftrace_preempt_disable();
  959. cpu = raw_smp_processor_id();
  960. if (!cpu_isset(cpu, buffer->cpumask))
  961. goto out;
  962. cpu_buffer = buffer->buffers[cpu];
  963. if (atomic_read(&cpu_buffer->record_disabled))
  964. goto out;
  965. length = rb_calculate_event_length(length);
  966. if (length > BUF_PAGE_SIZE)
  967. goto out;
  968. event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
  969. if (!event)
  970. goto out;
  971. /*
  972. * Need to store resched state on this cpu.
  973. * Only the first needs to.
  974. */
  975. if (preempt_count() == 1)
  976. per_cpu(rb_need_resched, cpu) = resched;
  977. return event;
  978. out:
  979. ftrace_preempt_enable(resched);
  980. return NULL;
  981. }
  982. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  983. struct ring_buffer_event *event)
  984. {
  985. cpu_buffer->entries++;
  986. /* Only process further if we own the commit */
  987. if (!rb_is_commit(cpu_buffer, event))
  988. return;
  989. cpu_buffer->write_stamp += event->time_delta;
  990. rb_set_commit_to_write(cpu_buffer);
  991. }
  992. /**
  993. * ring_buffer_unlock_commit - commit a reserved
  994. * @buffer: The buffer to commit to
  995. * @event: The event pointer to commit.
  996. * @flags: the interrupt flags received from ring_buffer_lock_reserve.
  997. *
  998. * This commits the data to the ring buffer, and releases any locks held.
  999. *
  1000. * Must be paired with ring_buffer_lock_reserve.
  1001. */
  1002. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  1003. struct ring_buffer_event *event,
  1004. unsigned long flags)
  1005. {
  1006. struct ring_buffer_per_cpu *cpu_buffer;
  1007. int cpu = raw_smp_processor_id();
  1008. cpu_buffer = buffer->buffers[cpu];
  1009. rb_commit(cpu_buffer, event);
  1010. /*
  1011. * Only the last preempt count needs to restore preemption.
  1012. */
  1013. if (preempt_count() == 1)
  1014. ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
  1015. else
  1016. preempt_enable_no_resched_notrace();
  1017. return 0;
  1018. }
  1019. /**
  1020. * ring_buffer_write - write data to the buffer without reserving
  1021. * @buffer: The ring buffer to write to.
  1022. * @length: The length of the data being written (excluding the event header)
  1023. * @data: The data to write to the buffer.
  1024. *
  1025. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  1026. * one function. If you already have the data to write to the buffer, it
  1027. * may be easier to simply call this function.
  1028. *
  1029. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  1030. * and not the length of the event which would hold the header.
  1031. */
  1032. int ring_buffer_write(struct ring_buffer *buffer,
  1033. unsigned long length,
  1034. void *data)
  1035. {
  1036. struct ring_buffer_per_cpu *cpu_buffer;
  1037. struct ring_buffer_event *event;
  1038. unsigned long event_length;
  1039. void *body;
  1040. int ret = -EBUSY;
  1041. int cpu, resched;
  1042. if (atomic_read(&buffer->record_disabled))
  1043. return -EBUSY;
  1044. resched = ftrace_preempt_disable();
  1045. cpu = raw_smp_processor_id();
  1046. if (!cpu_isset(cpu, buffer->cpumask))
  1047. goto out;
  1048. cpu_buffer = buffer->buffers[cpu];
  1049. if (atomic_read(&cpu_buffer->record_disabled))
  1050. goto out;
  1051. event_length = rb_calculate_event_length(length);
  1052. event = rb_reserve_next_event(cpu_buffer,
  1053. RINGBUF_TYPE_DATA, event_length);
  1054. if (!event)
  1055. goto out;
  1056. body = rb_event_data(event);
  1057. memcpy(body, data, length);
  1058. rb_commit(cpu_buffer, event);
  1059. ret = 0;
  1060. out:
  1061. ftrace_preempt_enable(resched);
  1062. return ret;
  1063. }
  1064. static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  1065. {
  1066. struct buffer_page *reader = cpu_buffer->reader_page;
  1067. struct buffer_page *head = cpu_buffer->head_page;
  1068. struct buffer_page *commit = cpu_buffer->commit_page;
  1069. return reader->read == rb_page_commit(reader) &&
  1070. (commit == reader ||
  1071. (commit == head &&
  1072. head->read == rb_page_commit(commit)));
  1073. }
  1074. /**
  1075. * ring_buffer_record_disable - stop all writes into the buffer
  1076. * @buffer: The ring buffer to stop writes to.
  1077. *
  1078. * This prevents all writes to the buffer. Any attempt to write
  1079. * to the buffer after this will fail and return NULL.
  1080. *
  1081. * The caller should call synchronize_sched() after this.
  1082. */
  1083. void ring_buffer_record_disable(struct ring_buffer *buffer)
  1084. {
  1085. atomic_inc(&buffer->record_disabled);
  1086. }
  1087. /**
  1088. * ring_buffer_record_enable - enable writes to the buffer
  1089. * @buffer: The ring buffer to enable writes
  1090. *
  1091. * Note, multiple disables will need the same number of enables
  1092. * to truely enable the writing (much like preempt_disable).
  1093. */
  1094. void ring_buffer_record_enable(struct ring_buffer *buffer)
  1095. {
  1096. atomic_dec(&buffer->record_disabled);
  1097. }
  1098. /**
  1099. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  1100. * @buffer: The ring buffer to stop writes to.
  1101. * @cpu: The CPU buffer to stop
  1102. *
  1103. * This prevents all writes to the buffer. Any attempt to write
  1104. * to the buffer after this will fail and return NULL.
  1105. *
  1106. * The caller should call synchronize_sched() after this.
  1107. */
  1108. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  1109. {
  1110. struct ring_buffer_per_cpu *cpu_buffer;
  1111. if (!cpu_isset(cpu, buffer->cpumask))
  1112. return;
  1113. cpu_buffer = buffer->buffers[cpu];
  1114. atomic_inc(&cpu_buffer->record_disabled);
  1115. }
  1116. /**
  1117. * ring_buffer_record_enable_cpu - enable writes to the buffer
  1118. * @buffer: The ring buffer to enable writes
  1119. * @cpu: The CPU to enable.
  1120. *
  1121. * Note, multiple disables will need the same number of enables
  1122. * to truely enable the writing (much like preempt_disable).
  1123. */
  1124. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  1125. {
  1126. struct ring_buffer_per_cpu *cpu_buffer;
  1127. if (!cpu_isset(cpu, buffer->cpumask))
  1128. return;
  1129. cpu_buffer = buffer->buffers[cpu];
  1130. atomic_dec(&cpu_buffer->record_disabled);
  1131. }
  1132. /**
  1133. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  1134. * @buffer: The ring buffer
  1135. * @cpu: The per CPU buffer to get the entries from.
  1136. */
  1137. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  1138. {
  1139. struct ring_buffer_per_cpu *cpu_buffer;
  1140. if (!cpu_isset(cpu, buffer->cpumask))
  1141. return 0;
  1142. cpu_buffer = buffer->buffers[cpu];
  1143. return cpu_buffer->entries;
  1144. }
  1145. /**
  1146. * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
  1147. * @buffer: The ring buffer
  1148. * @cpu: The per CPU buffer to get the number of overruns from
  1149. */
  1150. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  1151. {
  1152. struct ring_buffer_per_cpu *cpu_buffer;
  1153. if (!cpu_isset(cpu, buffer->cpumask))
  1154. return 0;
  1155. cpu_buffer = buffer->buffers[cpu];
  1156. return cpu_buffer->overrun;
  1157. }
  1158. /**
  1159. * ring_buffer_entries - get the number of entries in a buffer
  1160. * @buffer: The ring buffer
  1161. *
  1162. * Returns the total number of entries in the ring buffer
  1163. * (all CPU entries)
  1164. */
  1165. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  1166. {
  1167. struct ring_buffer_per_cpu *cpu_buffer;
  1168. unsigned long entries = 0;
  1169. int cpu;
  1170. /* if you care about this being correct, lock the buffer */
  1171. for_each_buffer_cpu(buffer, cpu) {
  1172. cpu_buffer = buffer->buffers[cpu];
  1173. entries += cpu_buffer->entries;
  1174. }
  1175. return entries;
  1176. }
  1177. /**
  1178. * ring_buffer_overrun_cpu - get the number of overruns in buffer
  1179. * @buffer: The ring buffer
  1180. *
  1181. * Returns the total number of overruns in the ring buffer
  1182. * (all CPU entries)
  1183. */
  1184. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  1185. {
  1186. struct ring_buffer_per_cpu *cpu_buffer;
  1187. unsigned long overruns = 0;
  1188. int cpu;
  1189. /* if you care about this being correct, lock the buffer */
  1190. for_each_buffer_cpu(buffer, cpu) {
  1191. cpu_buffer = buffer->buffers[cpu];
  1192. overruns += cpu_buffer->overrun;
  1193. }
  1194. return overruns;
  1195. }
  1196. /**
  1197. * ring_buffer_iter_reset - reset an iterator
  1198. * @iter: The iterator to reset
  1199. *
  1200. * Resets the iterator, so that it will start from the beginning
  1201. * again.
  1202. */
  1203. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  1204. {
  1205. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1206. unsigned long flags;
  1207. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1208. /* Iterator usage is expected to have record disabled */
  1209. if (list_empty(&cpu_buffer->reader_page->list)) {
  1210. iter->head_page = cpu_buffer->head_page;
  1211. iter->head = cpu_buffer->head_page->read;
  1212. } else {
  1213. iter->head_page = cpu_buffer->reader_page;
  1214. iter->head = cpu_buffer->reader_page->read;
  1215. }
  1216. if (iter->head)
  1217. iter->read_stamp = cpu_buffer->read_stamp;
  1218. else
  1219. iter->read_stamp = iter->head_page->time_stamp;
  1220. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1221. }
  1222. /**
  1223. * ring_buffer_iter_empty - check if an iterator has no more to read
  1224. * @iter: The iterator to check
  1225. */
  1226. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  1227. {
  1228. struct ring_buffer_per_cpu *cpu_buffer;
  1229. cpu_buffer = iter->cpu_buffer;
  1230. return iter->head_page == cpu_buffer->commit_page &&
  1231. iter->head == rb_commit_index(cpu_buffer);
  1232. }
  1233. static void
  1234. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  1235. struct ring_buffer_event *event)
  1236. {
  1237. u64 delta;
  1238. switch (event->type) {
  1239. case RINGBUF_TYPE_PADDING:
  1240. return;
  1241. case RINGBUF_TYPE_TIME_EXTEND:
  1242. delta = event->array[0];
  1243. delta <<= TS_SHIFT;
  1244. delta += event->time_delta;
  1245. cpu_buffer->read_stamp += delta;
  1246. return;
  1247. case RINGBUF_TYPE_TIME_STAMP:
  1248. /* FIXME: not implemented */
  1249. return;
  1250. case RINGBUF_TYPE_DATA:
  1251. cpu_buffer->read_stamp += event->time_delta;
  1252. return;
  1253. default:
  1254. BUG();
  1255. }
  1256. return;
  1257. }
  1258. static void
  1259. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  1260. struct ring_buffer_event *event)
  1261. {
  1262. u64 delta;
  1263. switch (event->type) {
  1264. case RINGBUF_TYPE_PADDING:
  1265. return;
  1266. case RINGBUF_TYPE_TIME_EXTEND:
  1267. delta = event->array[0];
  1268. delta <<= TS_SHIFT;
  1269. delta += event->time_delta;
  1270. iter->read_stamp += delta;
  1271. return;
  1272. case RINGBUF_TYPE_TIME_STAMP:
  1273. /* FIXME: not implemented */
  1274. return;
  1275. case RINGBUF_TYPE_DATA:
  1276. iter->read_stamp += event->time_delta;
  1277. return;
  1278. default:
  1279. BUG();
  1280. }
  1281. return;
  1282. }
  1283. static struct buffer_page *
  1284. rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  1285. {
  1286. struct buffer_page *reader = NULL;
  1287. unsigned long flags;
  1288. int nr_loops = 0;
  1289. local_irq_save(flags);
  1290. __raw_spin_lock(&cpu_buffer->lock);
  1291. again:
  1292. /*
  1293. * This should normally only loop twice. But because the
  1294. * start of the reader inserts an empty page, it causes
  1295. * a case where we will loop three times. There should be no
  1296. * reason to loop four times (that I know of).
  1297. */
  1298. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
  1299. reader = NULL;
  1300. goto out;
  1301. }
  1302. reader = cpu_buffer->reader_page;
  1303. /* If there's more to read, return this page */
  1304. if (cpu_buffer->reader_page->read < rb_page_size(reader))
  1305. goto out;
  1306. /* Never should we have an index greater than the size */
  1307. if (RB_WARN_ON(cpu_buffer,
  1308. cpu_buffer->reader_page->read > rb_page_size(reader)))
  1309. goto out;
  1310. /* check if we caught up to the tail */
  1311. reader = NULL;
  1312. if (cpu_buffer->commit_page == cpu_buffer->reader_page)
  1313. goto out;
  1314. /*
  1315. * Splice the empty reader page into the list around the head.
  1316. * Reset the reader page to size zero.
  1317. */
  1318. reader = cpu_buffer->head_page;
  1319. cpu_buffer->reader_page->list.next = reader->list.next;
  1320. cpu_buffer->reader_page->list.prev = reader->list.prev;
  1321. local_set(&cpu_buffer->reader_page->write, 0);
  1322. local_set(&cpu_buffer->reader_page->commit, 0);
  1323. /* Make the reader page now replace the head */
  1324. reader->list.prev->next = &cpu_buffer->reader_page->list;
  1325. reader->list.next->prev = &cpu_buffer->reader_page->list;
  1326. /*
  1327. * If the tail is on the reader, then we must set the head
  1328. * to the inserted page, otherwise we set it one before.
  1329. */
  1330. cpu_buffer->head_page = cpu_buffer->reader_page;
  1331. if (cpu_buffer->commit_page != reader)
  1332. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  1333. /* Finally update the reader page to the new head */
  1334. cpu_buffer->reader_page = reader;
  1335. rb_reset_reader_page(cpu_buffer);
  1336. goto again;
  1337. out:
  1338. __raw_spin_unlock(&cpu_buffer->lock);
  1339. local_irq_restore(flags);
  1340. return reader;
  1341. }
  1342. static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
  1343. {
  1344. struct ring_buffer_event *event;
  1345. struct buffer_page *reader;
  1346. unsigned length;
  1347. reader = rb_get_reader_page(cpu_buffer);
  1348. /* This function should not be called when buffer is empty */
  1349. if (RB_WARN_ON(cpu_buffer, !reader))
  1350. return;
  1351. event = rb_reader_event(cpu_buffer);
  1352. if (event->type == RINGBUF_TYPE_DATA)
  1353. cpu_buffer->entries--;
  1354. rb_update_read_stamp(cpu_buffer, event);
  1355. length = rb_event_length(event);
  1356. cpu_buffer->reader_page->read += length;
  1357. }
  1358. static void rb_advance_iter(struct ring_buffer_iter *iter)
  1359. {
  1360. struct ring_buffer *buffer;
  1361. struct ring_buffer_per_cpu *cpu_buffer;
  1362. struct ring_buffer_event *event;
  1363. unsigned length;
  1364. cpu_buffer = iter->cpu_buffer;
  1365. buffer = cpu_buffer->buffer;
  1366. /*
  1367. * Check if we are at the end of the buffer.
  1368. */
  1369. if (iter->head >= rb_page_size(iter->head_page)) {
  1370. if (RB_WARN_ON(buffer,
  1371. iter->head_page == cpu_buffer->commit_page))
  1372. return;
  1373. rb_inc_iter(iter);
  1374. return;
  1375. }
  1376. event = rb_iter_head_event(iter);
  1377. length = rb_event_length(event);
  1378. /*
  1379. * This should not be called to advance the header if we are
  1380. * at the tail of the buffer.
  1381. */
  1382. if (RB_WARN_ON(cpu_buffer,
  1383. (iter->head_page == cpu_buffer->commit_page) &&
  1384. (iter->head + length > rb_commit_index(cpu_buffer))))
  1385. return;
  1386. rb_update_iter_read_stamp(iter, event);
  1387. iter->head += length;
  1388. /* check for end of page padding */
  1389. if ((iter->head >= rb_page_size(iter->head_page)) &&
  1390. (iter->head_page != cpu_buffer->commit_page))
  1391. rb_advance_iter(iter);
  1392. }
  1393. static struct ring_buffer_event *
  1394. rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1395. {
  1396. struct ring_buffer_per_cpu *cpu_buffer;
  1397. struct ring_buffer_event *event;
  1398. struct buffer_page *reader;
  1399. int nr_loops = 0;
  1400. if (!cpu_isset(cpu, buffer->cpumask))
  1401. return NULL;
  1402. cpu_buffer = buffer->buffers[cpu];
  1403. again:
  1404. /*
  1405. * We repeat when a timestamp is encountered. It is possible
  1406. * to get multiple timestamps from an interrupt entering just
  1407. * as one timestamp is about to be written. The max times
  1408. * that this can happen is the number of nested interrupts we
  1409. * can have. Nesting 10 deep of interrupts is clearly
  1410. * an anomaly.
  1411. */
  1412. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
  1413. return NULL;
  1414. reader = rb_get_reader_page(cpu_buffer);
  1415. if (!reader)
  1416. return NULL;
  1417. event = rb_reader_event(cpu_buffer);
  1418. switch (event->type) {
  1419. case RINGBUF_TYPE_PADDING:
  1420. RB_WARN_ON(cpu_buffer, 1);
  1421. rb_advance_reader(cpu_buffer);
  1422. return NULL;
  1423. case RINGBUF_TYPE_TIME_EXTEND:
  1424. /* Internal data, OK to advance */
  1425. rb_advance_reader(cpu_buffer);
  1426. goto again;
  1427. case RINGBUF_TYPE_TIME_STAMP:
  1428. /* FIXME: not implemented */
  1429. rb_advance_reader(cpu_buffer);
  1430. goto again;
  1431. case RINGBUF_TYPE_DATA:
  1432. if (ts) {
  1433. *ts = cpu_buffer->read_stamp + event->time_delta;
  1434. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1435. }
  1436. return event;
  1437. default:
  1438. BUG();
  1439. }
  1440. return NULL;
  1441. }
  1442. static struct ring_buffer_event *
  1443. rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1444. {
  1445. struct ring_buffer *buffer;
  1446. struct ring_buffer_per_cpu *cpu_buffer;
  1447. struct ring_buffer_event *event;
  1448. int nr_loops = 0;
  1449. if (ring_buffer_iter_empty(iter))
  1450. return NULL;
  1451. cpu_buffer = iter->cpu_buffer;
  1452. buffer = cpu_buffer->buffer;
  1453. again:
  1454. /*
  1455. * We repeat when a timestamp is encountered. It is possible
  1456. * to get multiple timestamps from an interrupt entering just
  1457. * as one timestamp is about to be written. The max times
  1458. * that this can happen is the number of nested interrupts we
  1459. * can have. Nesting 10 deep of interrupts is clearly
  1460. * an anomaly.
  1461. */
  1462. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
  1463. return NULL;
  1464. if (rb_per_cpu_empty(cpu_buffer))
  1465. return NULL;
  1466. event = rb_iter_head_event(iter);
  1467. switch (event->type) {
  1468. case RINGBUF_TYPE_PADDING:
  1469. rb_inc_iter(iter);
  1470. goto again;
  1471. case RINGBUF_TYPE_TIME_EXTEND:
  1472. /* Internal data, OK to advance */
  1473. rb_advance_iter(iter);
  1474. goto again;
  1475. case RINGBUF_TYPE_TIME_STAMP:
  1476. /* FIXME: not implemented */
  1477. rb_advance_iter(iter);
  1478. goto again;
  1479. case RINGBUF_TYPE_DATA:
  1480. if (ts) {
  1481. *ts = iter->read_stamp + event->time_delta;
  1482. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1483. }
  1484. return event;
  1485. default:
  1486. BUG();
  1487. }
  1488. return NULL;
  1489. }
  1490. /**
  1491. * ring_buffer_peek - peek at the next event to be read
  1492. * @buffer: The ring buffer to read
  1493. * @cpu: The cpu to peak at
  1494. * @ts: The timestamp counter of this event.
  1495. *
  1496. * This will return the event that will be read next, but does
  1497. * not consume the data.
  1498. */
  1499. struct ring_buffer_event *
  1500. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1501. {
  1502. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1503. struct ring_buffer_event *event;
  1504. unsigned long flags;
  1505. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1506. event = rb_buffer_peek(buffer, cpu, ts);
  1507. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1508. return event;
  1509. }
  1510. /**
  1511. * ring_buffer_iter_peek - peek at the next event to be read
  1512. * @iter: The ring buffer iterator
  1513. * @ts: The timestamp counter of this event.
  1514. *
  1515. * This will return the event that will be read next, but does
  1516. * not increment the iterator.
  1517. */
  1518. struct ring_buffer_event *
  1519. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1520. {
  1521. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1522. struct ring_buffer_event *event;
  1523. unsigned long flags;
  1524. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1525. event = rb_iter_peek(iter, ts);
  1526. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1527. return event;
  1528. }
  1529. /**
  1530. * ring_buffer_consume - return an event and consume it
  1531. * @buffer: The ring buffer to get the next event from
  1532. *
  1533. * Returns the next event in the ring buffer, and that event is consumed.
  1534. * Meaning, that sequential reads will keep returning a different event,
  1535. * and eventually empty the ring buffer if the producer is slower.
  1536. */
  1537. struct ring_buffer_event *
  1538. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
  1539. {
  1540. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1541. struct ring_buffer_event *event;
  1542. unsigned long flags;
  1543. if (!cpu_isset(cpu, buffer->cpumask))
  1544. return NULL;
  1545. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1546. event = rb_buffer_peek(buffer, cpu, ts);
  1547. if (!event)
  1548. goto out;
  1549. rb_advance_reader(cpu_buffer);
  1550. out:
  1551. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1552. return event;
  1553. }
  1554. /**
  1555. * ring_buffer_read_start - start a non consuming read of the buffer
  1556. * @buffer: The ring buffer to read from
  1557. * @cpu: The cpu buffer to iterate over
  1558. *
  1559. * This starts up an iteration through the buffer. It also disables
  1560. * the recording to the buffer until the reading is finished.
  1561. * This prevents the reading from being corrupted. This is not
  1562. * a consuming read, so a producer is not expected.
  1563. *
  1564. * Must be paired with ring_buffer_finish.
  1565. */
  1566. struct ring_buffer_iter *
  1567. ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
  1568. {
  1569. struct ring_buffer_per_cpu *cpu_buffer;
  1570. struct ring_buffer_iter *iter;
  1571. unsigned long flags;
  1572. if (!cpu_isset(cpu, buffer->cpumask))
  1573. return NULL;
  1574. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  1575. if (!iter)
  1576. return NULL;
  1577. cpu_buffer = buffer->buffers[cpu];
  1578. iter->cpu_buffer = cpu_buffer;
  1579. atomic_inc(&cpu_buffer->record_disabled);
  1580. synchronize_sched();
  1581. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1582. __raw_spin_lock(&cpu_buffer->lock);
  1583. ring_buffer_iter_reset(iter);
  1584. __raw_spin_unlock(&cpu_buffer->lock);
  1585. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1586. return iter;
  1587. }
  1588. /**
  1589. * ring_buffer_finish - finish reading the iterator of the buffer
  1590. * @iter: The iterator retrieved by ring_buffer_start
  1591. *
  1592. * This re-enables the recording to the buffer, and frees the
  1593. * iterator.
  1594. */
  1595. void
  1596. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  1597. {
  1598. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1599. atomic_dec(&cpu_buffer->record_disabled);
  1600. kfree(iter);
  1601. }
  1602. /**
  1603. * ring_buffer_read - read the next item in the ring buffer by the iterator
  1604. * @iter: The ring buffer iterator
  1605. * @ts: The time stamp of the event read.
  1606. *
  1607. * This reads the next event in the ring buffer and increments the iterator.
  1608. */
  1609. struct ring_buffer_event *
  1610. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  1611. {
  1612. struct ring_buffer_event *event;
  1613. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1614. unsigned long flags;
  1615. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1616. event = rb_iter_peek(iter, ts);
  1617. if (!event)
  1618. goto out;
  1619. rb_advance_iter(iter);
  1620. out:
  1621. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1622. return event;
  1623. }
  1624. /**
  1625. * ring_buffer_size - return the size of the ring buffer (in bytes)
  1626. * @buffer: The ring buffer.
  1627. */
  1628. unsigned long ring_buffer_size(struct ring_buffer *buffer)
  1629. {
  1630. return BUF_PAGE_SIZE * buffer->pages;
  1631. }
  1632. static void
  1633. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  1634. {
  1635. cpu_buffer->head_page
  1636. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  1637. local_set(&cpu_buffer->head_page->write, 0);
  1638. local_set(&cpu_buffer->head_page->commit, 0);
  1639. cpu_buffer->head_page->read = 0;
  1640. cpu_buffer->tail_page = cpu_buffer->head_page;
  1641. cpu_buffer->commit_page = cpu_buffer->head_page;
  1642. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  1643. local_set(&cpu_buffer->reader_page->write, 0);
  1644. local_set(&cpu_buffer->reader_page->commit, 0);
  1645. cpu_buffer->reader_page->read = 0;
  1646. cpu_buffer->overrun = 0;
  1647. cpu_buffer->entries = 0;
  1648. }
  1649. /**
  1650. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  1651. * @buffer: The ring buffer to reset a per cpu buffer of
  1652. * @cpu: The CPU buffer to be reset
  1653. */
  1654. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  1655. {
  1656. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1657. unsigned long flags;
  1658. if (!cpu_isset(cpu, buffer->cpumask))
  1659. return;
  1660. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1661. __raw_spin_lock(&cpu_buffer->lock);
  1662. rb_reset_cpu(cpu_buffer);
  1663. __raw_spin_unlock(&cpu_buffer->lock);
  1664. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1665. }
  1666. /**
  1667. * ring_buffer_reset - reset a ring buffer
  1668. * @buffer: The ring buffer to reset all cpu buffers
  1669. */
  1670. void ring_buffer_reset(struct ring_buffer *buffer)
  1671. {
  1672. int cpu;
  1673. for_each_buffer_cpu(buffer, cpu)
  1674. ring_buffer_reset_cpu(buffer, cpu);
  1675. }
  1676. /**
  1677. * rind_buffer_empty - is the ring buffer empty?
  1678. * @buffer: The ring buffer to test
  1679. */
  1680. int ring_buffer_empty(struct ring_buffer *buffer)
  1681. {
  1682. struct ring_buffer_per_cpu *cpu_buffer;
  1683. int cpu;
  1684. /* yes this is racy, but if you don't like the race, lock the buffer */
  1685. for_each_buffer_cpu(buffer, cpu) {
  1686. cpu_buffer = buffer->buffers[cpu];
  1687. if (!rb_per_cpu_empty(cpu_buffer))
  1688. return 0;
  1689. }
  1690. return 1;
  1691. }
  1692. /**
  1693. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  1694. * @buffer: The ring buffer
  1695. * @cpu: The CPU buffer to test
  1696. */
  1697. int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  1698. {
  1699. struct ring_buffer_per_cpu *cpu_buffer;
  1700. if (!cpu_isset(cpu, buffer->cpumask))
  1701. return 1;
  1702. cpu_buffer = buffer->buffers[cpu];
  1703. return rb_per_cpu_empty(cpu_buffer);
  1704. }
  1705. /**
  1706. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  1707. * @buffer_a: One buffer to swap with
  1708. * @buffer_b: The other buffer to swap with
  1709. *
  1710. * This function is useful for tracers that want to take a "snapshot"
  1711. * of a CPU buffer and has another back up buffer lying around.
  1712. * it is expected that the tracer handles the cpu buffer not being
  1713. * used at the moment.
  1714. */
  1715. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  1716. struct ring_buffer *buffer_b, int cpu)
  1717. {
  1718. struct ring_buffer_per_cpu *cpu_buffer_a;
  1719. struct ring_buffer_per_cpu *cpu_buffer_b;
  1720. if (!cpu_isset(cpu, buffer_a->cpumask) ||
  1721. !cpu_isset(cpu, buffer_b->cpumask))
  1722. return -EINVAL;
  1723. /* At least make sure the two buffers are somewhat the same */
  1724. if (buffer_a->size != buffer_b->size ||
  1725. buffer_a->pages != buffer_b->pages)
  1726. return -EINVAL;
  1727. cpu_buffer_a = buffer_a->buffers[cpu];
  1728. cpu_buffer_b = buffer_b->buffers[cpu];
  1729. /*
  1730. * We can't do a synchronize_sched here because this
  1731. * function can be called in atomic context.
  1732. * Normally this will be called from the same CPU as cpu.
  1733. * If not it's up to the caller to protect this.
  1734. */
  1735. atomic_inc(&cpu_buffer_a->record_disabled);
  1736. atomic_inc(&cpu_buffer_b->record_disabled);
  1737. buffer_a->buffers[cpu] = cpu_buffer_b;
  1738. buffer_b->buffers[cpu] = cpu_buffer_a;
  1739. cpu_buffer_b->buffer = buffer_a;
  1740. cpu_buffer_a->buffer = buffer_b;
  1741. atomic_dec(&cpu_buffer_a->record_disabled);
  1742. atomic_dec(&cpu_buffer_b->record_disabled);
  1743. return 0;
  1744. }