qla3xxx.c 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/init.h>
  9. #include <linux/types.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/mempool.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kthread.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/ip.h>
  24. #include <linux/in.h>
  25. #include <linux/if_arp.h>
  26. #include <linux/if_ether.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/rtnetlink.h>
  32. #include <linux/if_vlan.h>
  33. #include <linux/init.h>
  34. #include <linux/delay.h>
  35. #include <linux/mm.h>
  36. #include "qla3xxx.h"
  37. #define DRV_NAME "qla3xxx"
  38. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  39. #define DRV_VERSION "v2.02.00-k36"
  40. #define PFX DRV_NAME " "
  41. static const char ql3xxx_driver_name[] = DRV_NAME;
  42. static const char ql3xxx_driver_version[] = DRV_VERSION;
  43. MODULE_AUTHOR("QLogic Corporation");
  44. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  45. MODULE_LICENSE("GPL");
  46. MODULE_VERSION(DRV_VERSION);
  47. static const u32 default_msg
  48. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  49. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  50. static int debug = -1; /* defaults above */
  51. module_param(debug, int, 0);
  52. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  53. static int msi;
  54. module_param(msi, int, 0);
  55. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  56. static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
  57. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  58. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  59. /* required last entry */
  60. {0,}
  61. };
  62. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  63. /*
  64. * Caller must take hw_lock.
  65. */
  66. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  67. u32 sem_mask, u32 sem_bits)
  68. {
  69. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  70. u32 value;
  71. unsigned int seconds = 3;
  72. do {
  73. writel((sem_mask | sem_bits),
  74. &port_regs->CommonRegs.semaphoreReg);
  75. value = readl(&port_regs->CommonRegs.semaphoreReg);
  76. if ((value & (sem_mask >> 16)) == sem_bits)
  77. return 0;
  78. ssleep(1);
  79. } while(--seconds);
  80. return -1;
  81. }
  82. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  83. {
  84. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  85. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  86. readl(&port_regs->CommonRegs.semaphoreReg);
  87. }
  88. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  89. {
  90. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  91. u32 value;
  92. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  93. value = readl(&port_regs->CommonRegs.semaphoreReg);
  94. return ((value & (sem_mask >> 16)) == sem_bits);
  95. }
  96. /*
  97. * Caller holds hw_lock.
  98. */
  99. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  100. {
  101. int i = 0;
  102. while (1) {
  103. if (!ql_sem_lock(qdev,
  104. QL_DRVR_SEM_MASK,
  105. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  106. * 2) << 1)) {
  107. if (i < 10) {
  108. ssleep(1);
  109. i++;
  110. } else {
  111. printk(KERN_ERR PFX "%s: Timed out waiting for "
  112. "driver lock...\n",
  113. qdev->ndev->name);
  114. return 0;
  115. }
  116. } else {
  117. printk(KERN_DEBUG PFX
  118. "%s: driver lock acquired.\n",
  119. qdev->ndev->name);
  120. return 1;
  121. }
  122. }
  123. }
  124. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  125. {
  126. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  127. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  128. &port_regs->CommonRegs.ispControlStatus);
  129. readl(&port_regs->CommonRegs.ispControlStatus);
  130. qdev->current_page = page;
  131. }
  132. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
  133. u32 __iomem * reg)
  134. {
  135. u32 value;
  136. unsigned long hw_flags;
  137. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  138. value = readl(reg);
  139. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  140. return value;
  141. }
  142. static u32 ql_read_common_reg(struct ql3_adapter *qdev,
  143. u32 __iomem * reg)
  144. {
  145. return readl(reg);
  146. }
  147. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  148. {
  149. u32 value;
  150. unsigned long hw_flags;
  151. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  152. if (qdev->current_page != 0)
  153. ql_set_register_page(qdev,0);
  154. value = readl(reg);
  155. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  156. return value;
  157. }
  158. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  159. {
  160. if (qdev->current_page != 0)
  161. ql_set_register_page(qdev,0);
  162. return readl(reg);
  163. }
  164. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  165. u32 __iomem *reg, u32 value)
  166. {
  167. unsigned long hw_flags;
  168. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  169. writel(value, reg);
  170. readl(reg);
  171. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  172. return;
  173. }
  174. static void ql_write_common_reg(struct ql3_adapter *qdev,
  175. u32 __iomem *reg, u32 value)
  176. {
  177. writel(value, reg);
  178. readl(reg);
  179. return;
  180. }
  181. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  182. u32 __iomem *reg, u32 value)
  183. {
  184. writel(value, reg);
  185. readl(reg);
  186. udelay(1);
  187. return;
  188. }
  189. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  190. u32 __iomem *reg, u32 value)
  191. {
  192. if (qdev->current_page != 0)
  193. ql_set_register_page(qdev,0);
  194. writel(value, reg);
  195. readl(reg);
  196. return;
  197. }
  198. /*
  199. * Caller holds hw_lock. Only called during init.
  200. */
  201. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  202. u32 __iomem *reg, u32 value)
  203. {
  204. if (qdev->current_page != 1)
  205. ql_set_register_page(qdev,1);
  206. writel(value, reg);
  207. readl(reg);
  208. return;
  209. }
  210. /*
  211. * Caller holds hw_lock. Only called during init.
  212. */
  213. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  214. u32 __iomem *reg, u32 value)
  215. {
  216. if (qdev->current_page != 2)
  217. ql_set_register_page(qdev,2);
  218. writel(value, reg);
  219. readl(reg);
  220. return;
  221. }
  222. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  223. {
  224. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  225. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  226. (ISP_IMR_ENABLE_INT << 16));
  227. }
  228. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  229. {
  230. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  231. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  232. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  233. }
  234. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  235. struct ql_rcv_buf_cb *lrg_buf_cb)
  236. {
  237. u64 map;
  238. lrg_buf_cb->next = NULL;
  239. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  240. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  241. } else {
  242. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  243. qdev->lrg_buf_free_tail = lrg_buf_cb;
  244. }
  245. if (!lrg_buf_cb->skb) {
  246. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  247. qdev->lrg_buffer_len);
  248. if (unlikely(!lrg_buf_cb->skb)) {
  249. printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
  250. qdev->ndev->name);
  251. qdev->lrg_buf_skb_check++;
  252. } else {
  253. /*
  254. * We save some space to copy the ethhdr from first
  255. * buffer
  256. */
  257. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  258. map = pci_map_single(qdev->pdev,
  259. lrg_buf_cb->skb->data,
  260. qdev->lrg_buffer_len -
  261. QL_HEADER_SPACE,
  262. PCI_DMA_FROMDEVICE);
  263. lrg_buf_cb->buf_phy_addr_low =
  264. cpu_to_le32(LS_64BITS(map));
  265. lrg_buf_cb->buf_phy_addr_high =
  266. cpu_to_le32(MS_64BITS(map));
  267. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  268. pci_unmap_len_set(lrg_buf_cb, maplen,
  269. qdev->lrg_buffer_len -
  270. QL_HEADER_SPACE);
  271. }
  272. }
  273. qdev->lrg_buf_free_count++;
  274. }
  275. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  276. *qdev)
  277. {
  278. struct ql_rcv_buf_cb *lrg_buf_cb;
  279. if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
  280. if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
  281. qdev->lrg_buf_free_tail = NULL;
  282. qdev->lrg_buf_free_count--;
  283. }
  284. return lrg_buf_cb;
  285. }
  286. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  287. static u32 dataBits = EEPROM_NO_DATA_BITS;
  288. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  289. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  290. unsigned short *value);
  291. /*
  292. * Caller holds hw_lock.
  293. */
  294. static void fm93c56a_select(struct ql3_adapter *qdev)
  295. {
  296. struct ql3xxx_port_registers __iomem *port_regs =
  297. qdev->mem_map_registers;
  298. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  299. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  300. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  301. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  302. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  303. }
  304. /*
  305. * Caller holds hw_lock.
  306. */
  307. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  308. {
  309. int i;
  310. u32 mask;
  311. u32 dataBit;
  312. u32 previousBit;
  313. struct ql3xxx_port_registers __iomem *port_regs =
  314. qdev->mem_map_registers;
  315. /* Clock in a zero, then do the start bit */
  316. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  317. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  318. AUBURN_EEPROM_DO_1);
  319. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  320. ISP_NVRAM_MASK | qdev->
  321. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  322. AUBURN_EEPROM_CLK_RISE);
  323. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  324. ISP_NVRAM_MASK | qdev->
  325. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  326. AUBURN_EEPROM_CLK_FALL);
  327. mask = 1 << (FM93C56A_CMD_BITS - 1);
  328. /* Force the previous data bit to be different */
  329. previousBit = 0xffff;
  330. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  331. dataBit =
  332. (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
  333. if (previousBit != dataBit) {
  334. /*
  335. * If the bit changed, then change the DO state to
  336. * match
  337. */
  338. ql_write_nvram_reg(qdev,
  339. &port_regs->CommonRegs.
  340. serialPortInterfaceReg,
  341. ISP_NVRAM_MASK | qdev->
  342. eeprom_cmd_data | dataBit);
  343. previousBit = dataBit;
  344. }
  345. ql_write_nvram_reg(qdev,
  346. &port_regs->CommonRegs.
  347. serialPortInterfaceReg,
  348. ISP_NVRAM_MASK | qdev->
  349. eeprom_cmd_data | dataBit |
  350. AUBURN_EEPROM_CLK_RISE);
  351. ql_write_nvram_reg(qdev,
  352. &port_regs->CommonRegs.
  353. serialPortInterfaceReg,
  354. ISP_NVRAM_MASK | qdev->
  355. eeprom_cmd_data | dataBit |
  356. AUBURN_EEPROM_CLK_FALL);
  357. cmd = cmd << 1;
  358. }
  359. mask = 1 << (addrBits - 1);
  360. /* Force the previous data bit to be different */
  361. previousBit = 0xffff;
  362. for (i = 0; i < addrBits; i++) {
  363. dataBit =
  364. (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
  365. AUBURN_EEPROM_DO_0;
  366. if (previousBit != dataBit) {
  367. /*
  368. * If the bit changed, then change the DO state to
  369. * match
  370. */
  371. ql_write_nvram_reg(qdev,
  372. &port_regs->CommonRegs.
  373. serialPortInterfaceReg,
  374. ISP_NVRAM_MASK | qdev->
  375. eeprom_cmd_data | dataBit);
  376. previousBit = dataBit;
  377. }
  378. ql_write_nvram_reg(qdev,
  379. &port_regs->CommonRegs.
  380. serialPortInterfaceReg,
  381. ISP_NVRAM_MASK | qdev->
  382. eeprom_cmd_data | dataBit |
  383. AUBURN_EEPROM_CLK_RISE);
  384. ql_write_nvram_reg(qdev,
  385. &port_regs->CommonRegs.
  386. serialPortInterfaceReg,
  387. ISP_NVRAM_MASK | qdev->
  388. eeprom_cmd_data | dataBit |
  389. AUBURN_EEPROM_CLK_FALL);
  390. eepromAddr = eepromAddr << 1;
  391. }
  392. }
  393. /*
  394. * Caller holds hw_lock.
  395. */
  396. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  397. {
  398. struct ql3xxx_port_registers __iomem *port_regs =
  399. qdev->mem_map_registers;
  400. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  401. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  402. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  403. }
  404. /*
  405. * Caller holds hw_lock.
  406. */
  407. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  408. {
  409. int i;
  410. u32 data = 0;
  411. u32 dataBit;
  412. struct ql3xxx_port_registers __iomem *port_regs =
  413. qdev->mem_map_registers;
  414. /* Read the data bits */
  415. /* The first bit is a dummy. Clock right over it. */
  416. for (i = 0; i < dataBits; i++) {
  417. ql_write_nvram_reg(qdev,
  418. &port_regs->CommonRegs.
  419. serialPortInterfaceReg,
  420. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  421. AUBURN_EEPROM_CLK_RISE);
  422. ql_write_nvram_reg(qdev,
  423. &port_regs->CommonRegs.
  424. serialPortInterfaceReg,
  425. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  426. AUBURN_EEPROM_CLK_FALL);
  427. dataBit =
  428. (ql_read_common_reg
  429. (qdev,
  430. &port_regs->CommonRegs.
  431. serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
  432. data = (data << 1) | dataBit;
  433. }
  434. *value = (u16) data;
  435. }
  436. /*
  437. * Caller holds hw_lock.
  438. */
  439. static void eeprom_readword(struct ql3_adapter *qdev,
  440. u32 eepromAddr, unsigned short *value)
  441. {
  442. fm93c56a_select(qdev);
  443. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  444. fm93c56a_datain(qdev, value);
  445. fm93c56a_deselect(qdev);
  446. }
  447. static void ql_swap_mac_addr(u8 * macAddress)
  448. {
  449. #ifdef __BIG_ENDIAN
  450. u8 temp;
  451. temp = macAddress[0];
  452. macAddress[0] = macAddress[1];
  453. macAddress[1] = temp;
  454. temp = macAddress[2];
  455. macAddress[2] = macAddress[3];
  456. macAddress[3] = temp;
  457. temp = macAddress[4];
  458. macAddress[4] = macAddress[5];
  459. macAddress[5] = temp;
  460. #endif
  461. }
  462. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  463. {
  464. u16 *pEEPROMData;
  465. u16 checksum = 0;
  466. u32 index;
  467. unsigned long hw_flags;
  468. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  469. pEEPROMData = (u16 *) & qdev->nvram_data;
  470. qdev->eeprom_cmd_data = 0;
  471. if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  472. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  473. 2) << 10)) {
  474. printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
  475. __func__);
  476. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  477. return -1;
  478. }
  479. for (index = 0; index < EEPROM_SIZE; index++) {
  480. eeprom_readword(qdev, index, pEEPROMData);
  481. checksum += *pEEPROMData;
  482. pEEPROMData++;
  483. }
  484. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  485. if (checksum != 0) {
  486. printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
  487. qdev->ndev->name, checksum);
  488. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  489. return -1;
  490. }
  491. /*
  492. * We have a problem with endianness for the MAC addresses
  493. * and the two 8-bit values version, and numPorts. We
  494. * have to swap them on big endian systems.
  495. */
  496. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn0.macAddress);
  497. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn1.macAddress);
  498. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn2.macAddress);
  499. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn3.macAddress);
  500. pEEPROMData = (u16 *) & qdev->nvram_data.version;
  501. *pEEPROMData = le16_to_cpu(*pEEPROMData);
  502. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  503. return checksum;
  504. }
  505. static const u32 PHYAddr[2] = {
  506. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  507. };
  508. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  509. {
  510. struct ql3xxx_port_registers __iomem *port_regs =
  511. qdev->mem_map_registers;
  512. u32 temp;
  513. int count = 1000;
  514. while (count) {
  515. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  516. if (!(temp & MAC_MII_STATUS_BSY))
  517. return 0;
  518. udelay(10);
  519. count--;
  520. }
  521. return -1;
  522. }
  523. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  524. {
  525. struct ql3xxx_port_registers __iomem *port_regs =
  526. qdev->mem_map_registers;
  527. u32 scanControl;
  528. if (qdev->numPorts > 1) {
  529. /* Auto scan will cycle through multiple ports */
  530. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  531. } else {
  532. scanControl = MAC_MII_CONTROL_SC;
  533. }
  534. /*
  535. * Scan register 1 of PHY/PETBI,
  536. * Set up to scan both devices
  537. * The autoscan starts from the first register, completes
  538. * the last one before rolling over to the first
  539. */
  540. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  541. PHYAddr[0] | MII_SCAN_REGISTER);
  542. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  543. (scanControl) |
  544. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  545. }
  546. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  547. {
  548. u8 ret;
  549. struct ql3xxx_port_registers __iomem *port_regs =
  550. qdev->mem_map_registers;
  551. /* See if scan mode is enabled before we turn it off */
  552. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  553. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  554. /* Scan is enabled */
  555. ret = 1;
  556. } else {
  557. /* Scan is disabled */
  558. ret = 0;
  559. }
  560. /*
  561. * When disabling scan mode you must first change the MII register
  562. * address
  563. */
  564. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  565. PHYAddr[0] | MII_SCAN_REGISTER);
  566. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  567. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  568. MAC_MII_CONTROL_RC) << 16));
  569. return ret;
  570. }
  571. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  572. u16 regAddr, u16 value, u32 mac_index)
  573. {
  574. struct ql3xxx_port_registers __iomem *port_regs =
  575. qdev->mem_map_registers;
  576. u8 scanWasEnabled;
  577. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  578. if (ql_wait_for_mii_ready(qdev)) {
  579. if (netif_msg_link(qdev))
  580. printk(KERN_WARNING PFX
  581. "%s Timed out waiting for management port to "
  582. "get free before issuing command.\n",
  583. qdev->ndev->name);
  584. return -1;
  585. }
  586. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  587. PHYAddr[mac_index] | regAddr);
  588. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  589. /* Wait for write to complete 9/10/04 SJP */
  590. if (ql_wait_for_mii_ready(qdev)) {
  591. if (netif_msg_link(qdev))
  592. printk(KERN_WARNING PFX
  593. "%s: Timed out waiting for management port to"
  594. "get free before issuing command.\n",
  595. qdev->ndev->name);
  596. return -1;
  597. }
  598. if (scanWasEnabled)
  599. ql_mii_enable_scan_mode(qdev);
  600. return 0;
  601. }
  602. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  603. u16 * value, u32 mac_index)
  604. {
  605. struct ql3xxx_port_registers __iomem *port_regs =
  606. qdev->mem_map_registers;
  607. u8 scanWasEnabled;
  608. u32 temp;
  609. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  610. if (ql_wait_for_mii_ready(qdev)) {
  611. if (netif_msg_link(qdev))
  612. printk(KERN_WARNING PFX
  613. "%s: Timed out waiting for management port to "
  614. "get free before issuing command.\n",
  615. qdev->ndev->name);
  616. return -1;
  617. }
  618. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  619. PHYAddr[mac_index] | regAddr);
  620. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  621. (MAC_MII_CONTROL_RC << 16));
  622. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  623. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  624. /* Wait for the read to complete */
  625. if (ql_wait_for_mii_ready(qdev)) {
  626. if (netif_msg_link(qdev))
  627. printk(KERN_WARNING PFX
  628. "%s: Timed out waiting for management port to "
  629. "get free after issuing command.\n",
  630. qdev->ndev->name);
  631. return -1;
  632. }
  633. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  634. *value = (u16) temp;
  635. if (scanWasEnabled)
  636. ql_mii_enable_scan_mode(qdev);
  637. return 0;
  638. }
  639. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  640. {
  641. struct ql3xxx_port_registers __iomem *port_regs =
  642. qdev->mem_map_registers;
  643. ql_mii_disable_scan_mode(qdev);
  644. if (ql_wait_for_mii_ready(qdev)) {
  645. if (netif_msg_link(qdev))
  646. printk(KERN_WARNING PFX
  647. "%s: Timed out waiting for management port to "
  648. "get free before issuing command.\n",
  649. qdev->ndev->name);
  650. return -1;
  651. }
  652. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  653. qdev->PHYAddr | regAddr);
  654. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  655. /* Wait for write to complete. */
  656. if (ql_wait_for_mii_ready(qdev)) {
  657. if (netif_msg_link(qdev))
  658. printk(KERN_WARNING PFX
  659. "%s: Timed out waiting for management port to "
  660. "get free before issuing command.\n",
  661. qdev->ndev->name);
  662. return -1;
  663. }
  664. ql_mii_enable_scan_mode(qdev);
  665. return 0;
  666. }
  667. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  668. {
  669. u32 temp;
  670. struct ql3xxx_port_registers __iomem *port_regs =
  671. qdev->mem_map_registers;
  672. ql_mii_disable_scan_mode(qdev);
  673. if (ql_wait_for_mii_ready(qdev)) {
  674. if (netif_msg_link(qdev))
  675. printk(KERN_WARNING PFX
  676. "%s: Timed out waiting for management port to "
  677. "get free before issuing command.\n",
  678. qdev->ndev->name);
  679. return -1;
  680. }
  681. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  682. qdev->PHYAddr | regAddr);
  683. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  684. (MAC_MII_CONTROL_RC << 16));
  685. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  686. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  687. /* Wait for the read to complete */
  688. if (ql_wait_for_mii_ready(qdev)) {
  689. if (netif_msg_link(qdev))
  690. printk(KERN_WARNING PFX
  691. "%s: Timed out waiting for management port to "
  692. "get free before issuing command.\n",
  693. qdev->ndev->name);
  694. return -1;
  695. }
  696. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  697. *value = (u16) temp;
  698. ql_mii_enable_scan_mode(qdev);
  699. return 0;
  700. }
  701. static void ql_petbi_reset(struct ql3_adapter *qdev)
  702. {
  703. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  704. }
  705. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  706. {
  707. u16 reg;
  708. /* Enable Auto-negotiation sense */
  709. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  710. reg |= PETBI_TBI_AUTO_SENSE;
  711. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  712. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  713. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  714. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  715. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  716. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  717. }
  718. static void ql_petbi_reset_ex(struct ql3_adapter *qdev, u32 mac_index)
  719. {
  720. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  721. mac_index);
  722. }
  723. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev, u32 mac_index)
  724. {
  725. u16 reg;
  726. /* Enable Auto-negotiation sense */
  727. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg, mac_index);
  728. reg |= PETBI_TBI_AUTO_SENSE;
  729. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg, mac_index);
  730. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  731. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX, mac_index);
  732. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  733. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  734. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  735. mac_index);
  736. }
  737. static void ql_petbi_init(struct ql3_adapter *qdev)
  738. {
  739. ql_petbi_reset(qdev);
  740. ql_petbi_start_neg(qdev);
  741. }
  742. static void ql_petbi_init_ex(struct ql3_adapter *qdev, u32 mac_index)
  743. {
  744. ql_petbi_reset_ex(qdev, mac_index);
  745. ql_petbi_start_neg_ex(qdev, mac_index);
  746. }
  747. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  748. {
  749. u16 reg;
  750. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  751. return 0;
  752. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  753. }
  754. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  755. {
  756. u16 reg;
  757. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  758. return 0;
  759. reg = (((reg & 0x18) >> 3) & 3);
  760. if (reg == 2)
  761. return SPEED_1000;
  762. else if (reg == 1)
  763. return SPEED_100;
  764. else if (reg == 0)
  765. return SPEED_10;
  766. else
  767. return -1;
  768. }
  769. static int ql_is_full_dup(struct ql3_adapter *qdev)
  770. {
  771. u16 reg;
  772. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  773. return 0;
  774. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  775. }
  776. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  777. {
  778. u16 reg;
  779. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  780. return 0;
  781. return (reg & PHY_NEG_PAUSE) != 0;
  782. }
  783. /*
  784. * Caller holds hw_lock.
  785. */
  786. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  787. {
  788. struct ql3xxx_port_registers __iomem *port_regs =
  789. qdev->mem_map_registers;
  790. u32 value;
  791. if (enable)
  792. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  793. else
  794. value = (MAC_CONFIG_REG_PE << 16);
  795. if (qdev->mac_index)
  796. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  797. else
  798. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  799. }
  800. /*
  801. * Caller holds hw_lock.
  802. */
  803. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  804. {
  805. struct ql3xxx_port_registers __iomem *port_regs =
  806. qdev->mem_map_registers;
  807. u32 value;
  808. if (enable)
  809. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  810. else
  811. value = (MAC_CONFIG_REG_SR << 16);
  812. if (qdev->mac_index)
  813. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  814. else
  815. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  816. }
  817. /*
  818. * Caller holds hw_lock.
  819. */
  820. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  821. {
  822. struct ql3xxx_port_registers __iomem *port_regs =
  823. qdev->mem_map_registers;
  824. u32 value;
  825. if (enable)
  826. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  827. else
  828. value = (MAC_CONFIG_REG_GM << 16);
  829. if (qdev->mac_index)
  830. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  831. else
  832. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  833. }
  834. /*
  835. * Caller holds hw_lock.
  836. */
  837. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  838. {
  839. struct ql3xxx_port_registers __iomem *port_regs =
  840. qdev->mem_map_registers;
  841. u32 value;
  842. if (enable)
  843. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  844. else
  845. value = (MAC_CONFIG_REG_FD << 16);
  846. if (qdev->mac_index)
  847. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  848. else
  849. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  850. }
  851. /*
  852. * Caller holds hw_lock.
  853. */
  854. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  855. {
  856. struct ql3xxx_port_registers __iomem *port_regs =
  857. qdev->mem_map_registers;
  858. u32 value;
  859. if (enable)
  860. value =
  861. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  862. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  863. else
  864. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  865. if (qdev->mac_index)
  866. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  867. else
  868. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  869. }
  870. /*
  871. * Caller holds hw_lock.
  872. */
  873. static int ql_is_fiber(struct ql3_adapter *qdev)
  874. {
  875. struct ql3xxx_port_registers __iomem *port_regs =
  876. qdev->mem_map_registers;
  877. u32 bitToCheck = 0;
  878. u32 temp;
  879. switch (qdev->mac_index) {
  880. case 0:
  881. bitToCheck = PORT_STATUS_SM0;
  882. break;
  883. case 1:
  884. bitToCheck = PORT_STATUS_SM1;
  885. break;
  886. }
  887. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  888. return (temp & bitToCheck) != 0;
  889. }
  890. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  891. {
  892. u16 reg;
  893. ql_mii_read_reg(qdev, 0x00, &reg);
  894. return (reg & 0x1000) != 0;
  895. }
  896. /*
  897. * Caller holds hw_lock.
  898. */
  899. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  900. {
  901. struct ql3xxx_port_registers __iomem *port_regs =
  902. qdev->mem_map_registers;
  903. u32 bitToCheck = 0;
  904. u32 temp;
  905. switch (qdev->mac_index) {
  906. case 0:
  907. bitToCheck = PORT_STATUS_AC0;
  908. break;
  909. case 1:
  910. bitToCheck = PORT_STATUS_AC1;
  911. break;
  912. }
  913. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  914. if (temp & bitToCheck) {
  915. if (netif_msg_link(qdev))
  916. printk(KERN_INFO PFX
  917. "%s: Auto-Negotiate complete.\n",
  918. qdev->ndev->name);
  919. return 1;
  920. } else {
  921. if (netif_msg_link(qdev))
  922. printk(KERN_WARNING PFX
  923. "%s: Auto-Negotiate incomplete.\n",
  924. qdev->ndev->name);
  925. return 0;
  926. }
  927. }
  928. /*
  929. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  930. */
  931. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  932. {
  933. if (ql_is_fiber(qdev))
  934. return ql_is_petbi_neg_pause(qdev);
  935. else
  936. return ql_is_phy_neg_pause(qdev);
  937. }
  938. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  939. {
  940. struct ql3xxx_port_registers __iomem *port_regs =
  941. qdev->mem_map_registers;
  942. u32 bitToCheck = 0;
  943. u32 temp;
  944. switch (qdev->mac_index) {
  945. case 0:
  946. bitToCheck = PORT_STATUS_AE0;
  947. break;
  948. case 1:
  949. bitToCheck = PORT_STATUS_AE1;
  950. break;
  951. }
  952. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  953. return (temp & bitToCheck) != 0;
  954. }
  955. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  956. {
  957. if (ql_is_fiber(qdev))
  958. return SPEED_1000;
  959. else
  960. return ql_phy_get_speed(qdev);
  961. }
  962. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  963. {
  964. if (ql_is_fiber(qdev))
  965. return 1;
  966. else
  967. return ql_is_full_dup(qdev);
  968. }
  969. /*
  970. * Caller holds hw_lock.
  971. */
  972. static int ql_link_down_detect(struct ql3_adapter *qdev)
  973. {
  974. struct ql3xxx_port_registers __iomem *port_regs =
  975. qdev->mem_map_registers;
  976. u32 bitToCheck = 0;
  977. u32 temp;
  978. switch (qdev->mac_index) {
  979. case 0:
  980. bitToCheck = ISP_CONTROL_LINK_DN_0;
  981. break;
  982. case 1:
  983. bitToCheck = ISP_CONTROL_LINK_DN_1;
  984. break;
  985. }
  986. temp =
  987. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  988. return (temp & bitToCheck) != 0;
  989. }
  990. /*
  991. * Caller holds hw_lock.
  992. */
  993. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  994. {
  995. struct ql3xxx_port_registers __iomem *port_regs =
  996. qdev->mem_map_registers;
  997. switch (qdev->mac_index) {
  998. case 0:
  999. ql_write_common_reg(qdev,
  1000. &port_regs->CommonRegs.ispControlStatus,
  1001. (ISP_CONTROL_LINK_DN_0) |
  1002. (ISP_CONTROL_LINK_DN_0 << 16));
  1003. break;
  1004. case 1:
  1005. ql_write_common_reg(qdev,
  1006. &port_regs->CommonRegs.ispControlStatus,
  1007. (ISP_CONTROL_LINK_DN_1) |
  1008. (ISP_CONTROL_LINK_DN_1 << 16));
  1009. break;
  1010. default:
  1011. return 1;
  1012. }
  1013. return 0;
  1014. }
  1015. /*
  1016. * Caller holds hw_lock.
  1017. */
  1018. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev,
  1019. u32 mac_index)
  1020. {
  1021. struct ql3xxx_port_registers __iomem *port_regs =
  1022. qdev->mem_map_registers;
  1023. u32 bitToCheck = 0;
  1024. u32 temp;
  1025. switch (mac_index) {
  1026. case 0:
  1027. bitToCheck = PORT_STATUS_F1_ENABLED;
  1028. break;
  1029. case 1:
  1030. bitToCheck = PORT_STATUS_F3_ENABLED;
  1031. break;
  1032. default:
  1033. break;
  1034. }
  1035. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1036. if (temp & bitToCheck) {
  1037. if (netif_msg_link(qdev))
  1038. printk(KERN_DEBUG PFX
  1039. "%s: is not link master.\n", qdev->ndev->name);
  1040. return 0;
  1041. } else {
  1042. if (netif_msg_link(qdev))
  1043. printk(KERN_DEBUG PFX
  1044. "%s: is link master.\n", qdev->ndev->name);
  1045. return 1;
  1046. }
  1047. }
  1048. static void ql_phy_reset_ex(struct ql3_adapter *qdev, u32 mac_index)
  1049. {
  1050. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET, mac_index);
  1051. }
  1052. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev, u32 mac_index)
  1053. {
  1054. u16 reg;
  1055. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER,
  1056. PHY_NEG_PAUSE | PHY_NEG_ADV_SPEED | 1, mac_index);
  1057. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, mac_index);
  1058. ql_mii_write_reg_ex(qdev, CONTROL_REG, reg | PHY_CTRL_RESTART_NEG,
  1059. mac_index);
  1060. }
  1061. static void ql_phy_init_ex(struct ql3_adapter *qdev, u32 mac_index)
  1062. {
  1063. ql_phy_reset_ex(qdev, mac_index);
  1064. ql_phy_start_neg_ex(qdev, mac_index);
  1065. }
  1066. /*
  1067. * Caller holds hw_lock.
  1068. */
  1069. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1070. {
  1071. struct ql3xxx_port_registers __iomem *port_regs =
  1072. qdev->mem_map_registers;
  1073. u32 bitToCheck = 0;
  1074. u32 temp, linkState;
  1075. switch (qdev->mac_index) {
  1076. case 0:
  1077. bitToCheck = PORT_STATUS_UP0;
  1078. break;
  1079. case 1:
  1080. bitToCheck = PORT_STATUS_UP1;
  1081. break;
  1082. }
  1083. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1084. if (temp & bitToCheck) {
  1085. linkState = LS_UP;
  1086. } else {
  1087. linkState = LS_DOWN;
  1088. if (netif_msg_link(qdev))
  1089. printk(KERN_WARNING PFX
  1090. "%s: Link is down.\n", qdev->ndev->name);
  1091. }
  1092. return linkState;
  1093. }
  1094. static int ql_port_start(struct ql3_adapter *qdev)
  1095. {
  1096. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1097. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1098. 2) << 7))
  1099. return -1;
  1100. if (ql_is_fiber(qdev)) {
  1101. ql_petbi_init(qdev);
  1102. } else {
  1103. /* Copper port */
  1104. ql_phy_init_ex(qdev, qdev->mac_index);
  1105. }
  1106. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1107. return 0;
  1108. }
  1109. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1110. {
  1111. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1112. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1113. 2) << 7))
  1114. return -1;
  1115. if (!ql_auto_neg_error(qdev)) {
  1116. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1117. /* configure the MAC */
  1118. if (netif_msg_link(qdev))
  1119. printk(KERN_DEBUG PFX
  1120. "%s: Configuring link.\n",
  1121. qdev->ndev->
  1122. name);
  1123. ql_mac_cfg_soft_reset(qdev, 1);
  1124. ql_mac_cfg_gig(qdev,
  1125. (ql_get_link_speed
  1126. (qdev) ==
  1127. SPEED_1000));
  1128. ql_mac_cfg_full_dup(qdev,
  1129. ql_is_link_full_dup
  1130. (qdev));
  1131. ql_mac_cfg_pause(qdev,
  1132. ql_is_neg_pause
  1133. (qdev));
  1134. ql_mac_cfg_soft_reset(qdev, 0);
  1135. /* enable the MAC */
  1136. if (netif_msg_link(qdev))
  1137. printk(KERN_DEBUG PFX
  1138. "%s: Enabling mac.\n",
  1139. qdev->ndev->
  1140. name);
  1141. ql_mac_enable(qdev, 1);
  1142. }
  1143. if (netif_msg_link(qdev))
  1144. printk(KERN_DEBUG PFX
  1145. "%s: Change port_link_state LS_DOWN to LS_UP.\n",
  1146. qdev->ndev->name);
  1147. qdev->port_link_state = LS_UP;
  1148. netif_start_queue(qdev->ndev);
  1149. netif_carrier_on(qdev->ndev);
  1150. if (netif_msg_link(qdev))
  1151. printk(KERN_INFO PFX
  1152. "%s: Link is up at %d Mbps, %s duplex.\n",
  1153. qdev->ndev->name,
  1154. ql_get_link_speed(qdev),
  1155. ql_is_link_full_dup(qdev)
  1156. ? "full" : "half");
  1157. } else { /* Remote error detected */
  1158. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1159. if (netif_msg_link(qdev))
  1160. printk(KERN_DEBUG PFX
  1161. "%s: Remote error detected. "
  1162. "Calling ql_port_start().\n",
  1163. qdev->ndev->
  1164. name);
  1165. /*
  1166. * ql_port_start() is shared code and needs
  1167. * to lock the PHY on it's own.
  1168. */
  1169. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1170. if(ql_port_start(qdev)) {/* Restart port */
  1171. return -1;
  1172. } else
  1173. return 0;
  1174. }
  1175. }
  1176. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1177. return 0;
  1178. }
  1179. static void ql_link_state_machine(struct ql3_adapter *qdev)
  1180. {
  1181. u32 curr_link_state;
  1182. unsigned long hw_flags;
  1183. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1184. curr_link_state = ql_get_link_state(qdev);
  1185. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  1186. if (netif_msg_link(qdev))
  1187. printk(KERN_INFO PFX
  1188. "%s: Reset in progress, skip processing link "
  1189. "state.\n", qdev->ndev->name);
  1190. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1191. return;
  1192. }
  1193. switch (qdev->port_link_state) {
  1194. default:
  1195. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1196. ql_port_start(qdev);
  1197. }
  1198. qdev->port_link_state = LS_DOWN;
  1199. /* Fall Through */
  1200. case LS_DOWN:
  1201. if (netif_msg_link(qdev))
  1202. printk(KERN_DEBUG PFX
  1203. "%s: port_link_state = LS_DOWN.\n",
  1204. qdev->ndev->name);
  1205. if (curr_link_state == LS_UP) {
  1206. if (netif_msg_link(qdev))
  1207. printk(KERN_DEBUG PFX
  1208. "%s: curr_link_state = LS_UP.\n",
  1209. qdev->ndev->name);
  1210. if (ql_is_auto_neg_complete(qdev))
  1211. ql_finish_auto_neg(qdev);
  1212. if (qdev->port_link_state == LS_UP)
  1213. ql_link_down_detect_clear(qdev);
  1214. }
  1215. break;
  1216. case LS_UP:
  1217. /*
  1218. * See if the link is currently down or went down and came
  1219. * back up
  1220. */
  1221. if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
  1222. if (netif_msg_link(qdev))
  1223. printk(KERN_INFO PFX "%s: Link is down.\n",
  1224. qdev->ndev->name);
  1225. qdev->port_link_state = LS_DOWN;
  1226. }
  1227. break;
  1228. }
  1229. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1230. }
  1231. /*
  1232. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1233. */
  1234. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1235. {
  1236. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1237. set_bit(QL_LINK_MASTER,&qdev->flags);
  1238. else
  1239. clear_bit(QL_LINK_MASTER,&qdev->flags);
  1240. }
  1241. /*
  1242. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1243. */
  1244. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1245. {
  1246. ql_mii_enable_scan_mode(qdev);
  1247. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1248. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1249. ql_petbi_init_ex(qdev, qdev->mac_index);
  1250. } else {
  1251. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1252. ql_phy_init_ex(qdev, qdev->mac_index);
  1253. }
  1254. }
  1255. /*
  1256. * MII_Setup needs to be called before taking the PHY out of reset so that the
  1257. * management interface clock speed can be set properly. It would be better if
  1258. * we had a way to disable MDC until after the PHY is out of reset, but we
  1259. * don't have that capability.
  1260. */
  1261. static int ql_mii_setup(struct ql3_adapter *qdev)
  1262. {
  1263. u32 reg;
  1264. struct ql3xxx_port_registers __iomem *port_regs =
  1265. qdev->mem_map_registers;
  1266. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1267. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1268. 2) << 7))
  1269. return -1;
  1270. if (qdev->device_id == QL3032_DEVICE_ID)
  1271. ql_write_page0_reg(qdev,
  1272. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1273. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1274. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1275. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1276. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1277. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1278. return 0;
  1279. }
  1280. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1281. {
  1282. u32 supported;
  1283. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1284. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1285. | SUPPORTED_Autoneg;
  1286. } else {
  1287. supported = SUPPORTED_10baseT_Half
  1288. | SUPPORTED_10baseT_Full
  1289. | SUPPORTED_100baseT_Half
  1290. | SUPPORTED_100baseT_Full
  1291. | SUPPORTED_1000baseT_Half
  1292. | SUPPORTED_1000baseT_Full
  1293. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1294. }
  1295. return supported;
  1296. }
  1297. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1298. {
  1299. int status;
  1300. unsigned long hw_flags;
  1301. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1302. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1303. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1304. 2) << 7)) {
  1305. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1306. return 0;
  1307. }
  1308. status = ql_is_auto_cfg(qdev);
  1309. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1310. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1311. return status;
  1312. }
  1313. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1314. {
  1315. u32 status;
  1316. unsigned long hw_flags;
  1317. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1318. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1319. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1320. 2) << 7)) {
  1321. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1322. return 0;
  1323. }
  1324. status = ql_get_link_speed(qdev);
  1325. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1326. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1327. return status;
  1328. }
  1329. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1330. {
  1331. int status;
  1332. unsigned long hw_flags;
  1333. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1334. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1335. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1336. 2) << 7)) {
  1337. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1338. return 0;
  1339. }
  1340. status = ql_is_link_full_dup(qdev);
  1341. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1342. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1343. return status;
  1344. }
  1345. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1346. {
  1347. struct ql3_adapter *qdev = netdev_priv(ndev);
  1348. ecmd->transceiver = XCVR_INTERNAL;
  1349. ecmd->supported = ql_supported_modes(qdev);
  1350. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1351. ecmd->port = PORT_FIBRE;
  1352. } else {
  1353. ecmd->port = PORT_TP;
  1354. ecmd->phy_address = qdev->PHYAddr;
  1355. }
  1356. ecmd->advertising = ql_supported_modes(qdev);
  1357. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1358. ecmd->speed = ql_get_speed(qdev);
  1359. ecmd->duplex = ql_get_full_dup(qdev);
  1360. return 0;
  1361. }
  1362. static void ql_get_drvinfo(struct net_device *ndev,
  1363. struct ethtool_drvinfo *drvinfo)
  1364. {
  1365. struct ql3_adapter *qdev = netdev_priv(ndev);
  1366. strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
  1367. strncpy(drvinfo->version, ql3xxx_driver_version, 32);
  1368. strncpy(drvinfo->fw_version, "N/A", 32);
  1369. strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
  1370. drvinfo->n_stats = 0;
  1371. drvinfo->testinfo_len = 0;
  1372. drvinfo->regdump_len = 0;
  1373. drvinfo->eedump_len = 0;
  1374. }
  1375. static u32 ql_get_msglevel(struct net_device *ndev)
  1376. {
  1377. struct ql3_adapter *qdev = netdev_priv(ndev);
  1378. return qdev->msg_enable;
  1379. }
  1380. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1381. {
  1382. struct ql3_adapter *qdev = netdev_priv(ndev);
  1383. qdev->msg_enable = value;
  1384. }
  1385. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1386. .get_settings = ql_get_settings,
  1387. .get_drvinfo = ql_get_drvinfo,
  1388. .get_perm_addr = ethtool_op_get_perm_addr,
  1389. .get_link = ethtool_op_get_link,
  1390. .get_msglevel = ql_get_msglevel,
  1391. .set_msglevel = ql_set_msglevel,
  1392. };
  1393. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1394. {
  1395. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1396. u64 map;
  1397. while (lrg_buf_cb) {
  1398. if (!lrg_buf_cb->skb) {
  1399. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  1400. qdev->lrg_buffer_len);
  1401. if (unlikely(!lrg_buf_cb->skb)) {
  1402. printk(KERN_DEBUG PFX
  1403. "%s: Failed netdev_alloc_skb().\n",
  1404. qdev->ndev->name);
  1405. break;
  1406. } else {
  1407. /*
  1408. * We save some space to copy the ethhdr from
  1409. * first buffer
  1410. */
  1411. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1412. map = pci_map_single(qdev->pdev,
  1413. lrg_buf_cb->skb->data,
  1414. qdev->lrg_buffer_len -
  1415. QL_HEADER_SPACE,
  1416. PCI_DMA_FROMDEVICE);
  1417. lrg_buf_cb->buf_phy_addr_low =
  1418. cpu_to_le32(LS_64BITS(map));
  1419. lrg_buf_cb->buf_phy_addr_high =
  1420. cpu_to_le32(MS_64BITS(map));
  1421. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1422. pci_unmap_len_set(lrg_buf_cb, maplen,
  1423. qdev->lrg_buffer_len -
  1424. QL_HEADER_SPACE);
  1425. --qdev->lrg_buf_skb_check;
  1426. if (!qdev->lrg_buf_skb_check)
  1427. return 1;
  1428. }
  1429. }
  1430. lrg_buf_cb = lrg_buf_cb->next;
  1431. }
  1432. return 0;
  1433. }
  1434. /*
  1435. * Caller holds hw_lock.
  1436. */
  1437. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1438. {
  1439. struct bufq_addr_element *lrg_buf_q_ele;
  1440. int i;
  1441. struct ql_rcv_buf_cb *lrg_buf_cb;
  1442. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1443. if ((qdev->lrg_buf_free_count >= 8)
  1444. && (qdev->lrg_buf_release_cnt >= 16)) {
  1445. if (qdev->lrg_buf_skb_check)
  1446. if (!ql_populate_free_queue(qdev))
  1447. return;
  1448. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1449. while ((qdev->lrg_buf_release_cnt >= 16)
  1450. && (qdev->lrg_buf_free_count >= 8)) {
  1451. for (i = 0; i < 8; i++) {
  1452. lrg_buf_cb =
  1453. ql_get_from_lrg_buf_free_list(qdev);
  1454. lrg_buf_q_ele->addr_high =
  1455. lrg_buf_cb->buf_phy_addr_high;
  1456. lrg_buf_q_ele->addr_low =
  1457. lrg_buf_cb->buf_phy_addr_low;
  1458. lrg_buf_q_ele++;
  1459. qdev->lrg_buf_release_cnt--;
  1460. }
  1461. qdev->lrg_buf_q_producer_index++;
  1462. if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
  1463. qdev->lrg_buf_q_producer_index = 0;
  1464. if (qdev->lrg_buf_q_producer_index ==
  1465. (qdev->num_lbufq_entries - 1)) {
  1466. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1467. }
  1468. }
  1469. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1470. ql_write_common_reg(qdev,
  1471. &port_regs->CommonRegs.
  1472. rxLargeQProducerIndex,
  1473. qdev->lrg_buf_q_producer_index);
  1474. }
  1475. }
  1476. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1477. struct ob_mac_iocb_rsp *mac_rsp)
  1478. {
  1479. struct ql_tx_buf_cb *tx_cb;
  1480. int i;
  1481. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1482. pci_unmap_single(qdev->pdev,
  1483. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  1484. pci_unmap_len(&tx_cb->map[0], maplen),
  1485. PCI_DMA_TODEVICE);
  1486. tx_cb->seg_count--;
  1487. if (tx_cb->seg_count) {
  1488. for (i = 1; i < tx_cb->seg_count; i++) {
  1489. pci_unmap_page(qdev->pdev,
  1490. pci_unmap_addr(&tx_cb->map[i],
  1491. mapaddr),
  1492. pci_unmap_len(&tx_cb->map[i], maplen),
  1493. PCI_DMA_TODEVICE);
  1494. }
  1495. }
  1496. qdev->stats.tx_packets++;
  1497. qdev->stats.tx_bytes += tx_cb->skb->len;
  1498. dev_kfree_skb_irq(tx_cb->skb);
  1499. tx_cb->skb = NULL;
  1500. atomic_inc(&qdev->tx_count);
  1501. }
  1502. void ql_get_sbuf(struct ql3_adapter *qdev)
  1503. {
  1504. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1505. qdev->small_buf_index = 0;
  1506. qdev->small_buf_release_cnt++;
  1507. }
  1508. struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1509. {
  1510. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1511. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1512. qdev->lrg_buf_release_cnt++;
  1513. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1514. qdev->lrg_buf_index = 0;
  1515. return(lrg_buf_cb);
  1516. }
  1517. /*
  1518. * The difference between 3022 and 3032 for inbound completions:
  1519. * 3022 uses two buffers per completion. The first buffer contains
  1520. * (some) header info, the second the remainder of the headers plus
  1521. * the data. For this chip we reserve some space at the top of the
  1522. * receive buffer so that the header info in buffer one can be
  1523. * prepended to the buffer two. Buffer two is the sent up while
  1524. * buffer one is returned to the hardware to be reused.
  1525. * 3032 receives all of it's data and headers in one buffer for a
  1526. * simpler process. 3032 also supports checksum verification as
  1527. * can be seen in ql_process_macip_rx_intr().
  1528. */
  1529. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1530. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1531. {
  1532. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1533. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1534. struct sk_buff *skb;
  1535. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1536. /*
  1537. * Get the inbound address list (small buffer).
  1538. */
  1539. ql_get_sbuf(qdev);
  1540. if (qdev->device_id == QL3022_DEVICE_ID)
  1541. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1542. /* start of second buffer */
  1543. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1544. skb = lrg_buf_cb2->skb;
  1545. qdev->stats.rx_packets++;
  1546. qdev->stats.rx_bytes += length;
  1547. skb_put(skb, length);
  1548. pci_unmap_single(qdev->pdev,
  1549. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1550. pci_unmap_len(lrg_buf_cb2, maplen),
  1551. PCI_DMA_FROMDEVICE);
  1552. prefetch(skb->data);
  1553. skb->dev = qdev->ndev;
  1554. skb->ip_summed = CHECKSUM_NONE;
  1555. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1556. netif_receive_skb(skb);
  1557. qdev->ndev->last_rx = jiffies;
  1558. lrg_buf_cb2->skb = NULL;
  1559. if (qdev->device_id == QL3022_DEVICE_ID)
  1560. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1561. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1562. }
  1563. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1564. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1565. {
  1566. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1567. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1568. struct sk_buff *skb1 = NULL, *skb2;
  1569. struct net_device *ndev = qdev->ndev;
  1570. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1571. u16 size = 0;
  1572. /*
  1573. * Get the inbound address list (small buffer).
  1574. */
  1575. ql_get_sbuf(qdev);
  1576. if (qdev->device_id == QL3022_DEVICE_ID) {
  1577. /* start of first buffer on 3022 */
  1578. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1579. skb1 = lrg_buf_cb1->skb;
  1580. size = ETH_HLEN;
  1581. if (*((u16 *) skb1->data) != 0xFFFF)
  1582. size += VLAN_ETH_HLEN - ETH_HLEN;
  1583. }
  1584. /* start of second buffer */
  1585. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1586. skb2 = lrg_buf_cb2->skb;
  1587. skb_put(skb2, length); /* Just the second buffer length here. */
  1588. pci_unmap_single(qdev->pdev,
  1589. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1590. pci_unmap_len(lrg_buf_cb2, maplen),
  1591. PCI_DMA_FROMDEVICE);
  1592. prefetch(skb2->data);
  1593. skb2->ip_summed = CHECKSUM_NONE;
  1594. if (qdev->device_id == QL3022_DEVICE_ID) {
  1595. /*
  1596. * Copy the ethhdr from first buffer to second. This
  1597. * is necessary for 3022 IP completions.
  1598. */
  1599. memcpy(skb_push(skb2, size), skb1->data + VLAN_ID_LEN, size);
  1600. } else {
  1601. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1602. if (checksum &
  1603. (IB_IP_IOCB_RSP_3032_ICE |
  1604. IB_IP_IOCB_RSP_3032_CE |
  1605. IB_IP_IOCB_RSP_3032_NUC)) {
  1606. printk(KERN_ERR
  1607. "%s: Bad checksum for this %s packet, checksum = %x.\n",
  1608. __func__,
  1609. ((checksum &
  1610. IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
  1611. "UDP"),checksum);
  1612. } else if (checksum & IB_IP_IOCB_RSP_3032_TCP) {
  1613. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1614. }
  1615. }
  1616. skb2->dev = qdev->ndev;
  1617. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1618. netif_receive_skb(skb2);
  1619. qdev->stats.rx_packets++;
  1620. qdev->stats.rx_bytes += length;
  1621. ndev->last_rx = jiffies;
  1622. lrg_buf_cb2->skb = NULL;
  1623. if (qdev->device_id == QL3022_DEVICE_ID)
  1624. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1625. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1626. }
  1627. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1628. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1629. {
  1630. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1631. struct net_rsp_iocb *net_rsp;
  1632. struct net_device *ndev = qdev->ndev;
  1633. unsigned long hw_flags;
  1634. /* While there are entries in the completion queue. */
  1635. while ((cpu_to_le32(*(qdev->prsp_producer_index)) !=
  1636. qdev->rsp_consumer_index) && (*rx_cleaned < work_to_do)) {
  1637. net_rsp = qdev->rsp_current;
  1638. switch (net_rsp->opcode) {
  1639. case OPCODE_OB_MAC_IOCB_FN0:
  1640. case OPCODE_OB_MAC_IOCB_FN2:
  1641. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1642. net_rsp);
  1643. (*tx_cleaned)++;
  1644. break;
  1645. case OPCODE_IB_MAC_IOCB:
  1646. case OPCODE_IB_3032_MAC_IOCB:
  1647. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1648. net_rsp);
  1649. (*rx_cleaned)++;
  1650. break;
  1651. case OPCODE_IB_IP_IOCB:
  1652. case OPCODE_IB_3032_IP_IOCB:
  1653. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1654. net_rsp);
  1655. (*rx_cleaned)++;
  1656. break;
  1657. default:
  1658. {
  1659. u32 *tmp = (u32 *) net_rsp;
  1660. printk(KERN_ERR PFX
  1661. "%s: Hit default case, not "
  1662. "handled!\n"
  1663. " dropping the packet, opcode = "
  1664. "%x.\n",
  1665. ndev->name, net_rsp->opcode);
  1666. printk(KERN_ERR PFX
  1667. "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
  1668. (unsigned long int)tmp[0],
  1669. (unsigned long int)tmp[1],
  1670. (unsigned long int)tmp[2],
  1671. (unsigned long int)tmp[3]);
  1672. }
  1673. }
  1674. qdev->rsp_consumer_index++;
  1675. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1676. qdev->rsp_consumer_index = 0;
  1677. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1678. } else {
  1679. qdev->rsp_current++;
  1680. }
  1681. }
  1682. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1683. ql_update_lrg_bufq_prod_index(qdev);
  1684. if (qdev->small_buf_release_cnt >= 16) {
  1685. while (qdev->small_buf_release_cnt >= 16) {
  1686. qdev->small_buf_q_producer_index++;
  1687. if (qdev->small_buf_q_producer_index ==
  1688. NUM_SBUFQ_ENTRIES)
  1689. qdev->small_buf_q_producer_index = 0;
  1690. qdev->small_buf_release_cnt -= 8;
  1691. }
  1692. ql_write_common_reg(qdev,
  1693. &port_regs->CommonRegs.
  1694. rxSmallQProducerIndex,
  1695. qdev->small_buf_q_producer_index);
  1696. }
  1697. ql_write_common_reg(qdev,
  1698. &port_regs->CommonRegs.rspQConsumerIndex,
  1699. qdev->rsp_consumer_index);
  1700. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1701. if (unlikely(netif_queue_stopped(qdev->ndev))) {
  1702. if (netif_queue_stopped(qdev->ndev) &&
  1703. (atomic_read(&qdev->tx_count) > (NUM_REQ_Q_ENTRIES / 4)))
  1704. netif_wake_queue(qdev->ndev);
  1705. }
  1706. return *tx_cleaned + *rx_cleaned;
  1707. }
  1708. static int ql_poll(struct net_device *ndev, int *budget)
  1709. {
  1710. struct ql3_adapter *qdev = netdev_priv(ndev);
  1711. int work_to_do = min(*budget, ndev->quota);
  1712. int rx_cleaned = 0, tx_cleaned = 0;
  1713. if (!netif_carrier_ok(ndev))
  1714. goto quit_polling;
  1715. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, work_to_do);
  1716. *budget -= rx_cleaned;
  1717. ndev->quota -= rx_cleaned;
  1718. if ((!tx_cleaned && !rx_cleaned) || !netif_running(ndev)) {
  1719. quit_polling:
  1720. netif_rx_complete(ndev);
  1721. ql_enable_interrupts(qdev);
  1722. return 0;
  1723. }
  1724. return 1;
  1725. }
  1726. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  1727. {
  1728. struct net_device *ndev = dev_id;
  1729. struct ql3_adapter *qdev = netdev_priv(ndev);
  1730. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1731. u32 value;
  1732. int handled = 1;
  1733. u32 var;
  1734. port_regs = qdev->mem_map_registers;
  1735. value =
  1736. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  1737. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  1738. spin_lock(&qdev->adapter_lock);
  1739. netif_stop_queue(qdev->ndev);
  1740. netif_carrier_off(qdev->ndev);
  1741. ql_disable_interrupts(qdev);
  1742. qdev->port_link_state = LS_DOWN;
  1743. set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
  1744. if (value & ISP_CONTROL_FE) {
  1745. /*
  1746. * Chip Fatal Error.
  1747. */
  1748. var =
  1749. ql_read_page0_reg_l(qdev,
  1750. &port_regs->PortFatalErrStatus);
  1751. printk(KERN_WARNING PFX
  1752. "%s: Resetting chip. PortFatalErrStatus "
  1753. "register = 0x%x\n", ndev->name, var);
  1754. set_bit(QL_RESET_START,&qdev->flags) ;
  1755. } else {
  1756. /*
  1757. * Soft Reset Requested.
  1758. */
  1759. set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
  1760. printk(KERN_ERR PFX
  1761. "%s: Another function issued a reset to the "
  1762. "chip. ISR value = %x.\n", ndev->name, value);
  1763. }
  1764. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  1765. spin_unlock(&qdev->adapter_lock);
  1766. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  1767. ql_disable_interrupts(qdev);
  1768. if (likely(netif_rx_schedule_prep(ndev)))
  1769. __netif_rx_schedule(ndev);
  1770. else
  1771. ql_enable_interrupts(qdev);
  1772. } else {
  1773. return IRQ_NONE;
  1774. }
  1775. return IRQ_RETVAL(handled);
  1776. }
  1777. /*
  1778. * Get the total number of segments needed for the
  1779. * given number of fragments. This is necessary because
  1780. * outbound address lists (OAL) will be used when more than
  1781. * two frags are given. Each address list has 5 addr/len
  1782. * pairs. The 5th pair in each AOL is used to point to
  1783. * the next AOL if more frags are coming.
  1784. * That is why the frags:segment count ratio is not linear.
  1785. */
  1786. static int ql_get_seg_count(unsigned short frags)
  1787. {
  1788. switch(frags) {
  1789. case 0: return 1; /* just the skb->data seg */
  1790. case 1: return 2; /* skb->data + 1 frag */
  1791. case 2: return 3; /* skb->data + 2 frags */
  1792. case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
  1793. case 4: return 6;
  1794. case 5: return 7;
  1795. case 6: return 8;
  1796. case 7: return 10;
  1797. case 8: return 11;
  1798. case 9: return 12;
  1799. case 10: return 13;
  1800. case 11: return 15;
  1801. case 12: return 16;
  1802. case 13: return 17;
  1803. case 14: return 18;
  1804. case 15: return 20;
  1805. case 16: return 21;
  1806. case 17: return 22;
  1807. case 18: return 23;
  1808. }
  1809. return -1;
  1810. }
  1811. static void ql_hw_csum_setup(struct sk_buff *skb,
  1812. struct ob_mac_iocb_req *mac_iocb_ptr)
  1813. {
  1814. struct ethhdr *eth;
  1815. struct iphdr *ip = NULL;
  1816. u8 offset = ETH_HLEN;
  1817. eth = (struct ethhdr *)(skb->data);
  1818. if (eth->h_proto == __constant_htons(ETH_P_IP)) {
  1819. ip = (struct iphdr *)&skb->data[ETH_HLEN];
  1820. } else if (eth->h_proto == htons(ETH_P_8021Q) &&
  1821. ((struct vlan_ethhdr *)skb->data)->
  1822. h_vlan_encapsulated_proto == __constant_htons(ETH_P_IP)) {
  1823. ip = (struct iphdr *)&skb->data[VLAN_ETH_HLEN];
  1824. offset = VLAN_ETH_HLEN;
  1825. }
  1826. if (ip) {
  1827. if (ip->protocol == IPPROTO_TCP) {
  1828. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  1829. OB_3032MAC_IOCB_REQ_IC;
  1830. mac_iocb_ptr->ip_hdr_off = offset;
  1831. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  1832. } else if (ip->protocol == IPPROTO_UDP) {
  1833. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  1834. OB_3032MAC_IOCB_REQ_IC;
  1835. mac_iocb_ptr->ip_hdr_off = offset;
  1836. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  1837. }
  1838. }
  1839. }
  1840. /*
  1841. * Map the buffers for this transmit. This will return
  1842. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1843. */
  1844. static int ql_send_map(struct ql3_adapter *qdev,
  1845. struct ob_mac_iocb_req *mac_iocb_ptr,
  1846. struct ql_tx_buf_cb *tx_cb,
  1847. struct sk_buff *skb)
  1848. {
  1849. struct oal *oal;
  1850. struct oal_entry *oal_entry;
  1851. int len = skb_headlen(skb);
  1852. u64 map;
  1853. int seg_cnt, seg = 0;
  1854. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  1855. seg_cnt = tx_cb->seg_count = ql_get_seg_count((skb_shinfo(skb)->nr_frags));
  1856. if(seg_cnt == -1) {
  1857. printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
  1858. return NETDEV_TX_BUSY;
  1859. }
  1860. /*
  1861. * Map the skb buffer first.
  1862. */
  1863. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1864. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  1865. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1866. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1867. oal_entry->len = cpu_to_le32(len);
  1868. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  1869. pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
  1870. seg++;
  1871. if (!skb_shinfo(skb)->nr_frags) {
  1872. /* Terminate the last segment. */
  1873. oal_entry->len =
  1874. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  1875. } else {
  1876. int i;
  1877. oal = tx_cb->oal;
  1878. for (i=0; i<frag_cnt; i++,seg++) {
  1879. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1880. oal_entry++;
  1881. if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  1882. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  1883. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  1884. (seg == 17 && seg_cnt > 18)) {
  1885. /* Continuation entry points to outbound address list. */
  1886. map = pci_map_single(qdev->pdev, oal,
  1887. sizeof(struct oal),
  1888. PCI_DMA_TODEVICE);
  1889. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1890. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1891. oal_entry->len =
  1892. cpu_to_le32(sizeof(struct oal) |
  1893. OAL_CONT_ENTRY);
  1894. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
  1895. map);
  1896. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  1897. len);
  1898. oal_entry = (struct oal_entry *)oal;
  1899. oal++;
  1900. seg++;
  1901. }
  1902. map =
  1903. pci_map_page(qdev->pdev, frag->page,
  1904. frag->page_offset, frag->size,
  1905. PCI_DMA_TODEVICE);
  1906. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1907. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1908. oal_entry->len = cpu_to_le32(frag->size);
  1909. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  1910. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  1911. frag->size);
  1912. }
  1913. /* Terminate the last segment. */
  1914. oal_entry->len =
  1915. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  1916. }
  1917. return NETDEV_TX_OK;
  1918. }
  1919. /*
  1920. * The difference between 3022 and 3032 sends:
  1921. * 3022 only supports a simple single segment transmission.
  1922. * 3032 supports checksumming and scatter/gather lists (fragments).
  1923. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  1924. * in the IOCB plus a chain of outbound address lists (OAL) that
  1925. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  1926. * will used to point to an OAL when more ALP entries are required.
  1927. * The IOCB is always the top of the chain followed by one or more
  1928. * OALs (when necessary).
  1929. */
  1930. static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
  1931. {
  1932. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  1933. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1934. struct ql_tx_buf_cb *tx_cb;
  1935. u32 tot_len = skb->len;
  1936. struct ob_mac_iocb_req *mac_iocb_ptr;
  1937. if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
  1938. if (!netif_queue_stopped(ndev))
  1939. netif_stop_queue(ndev);
  1940. return NETDEV_TX_BUSY;
  1941. }
  1942. tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
  1943. if((tx_cb->seg_count = ql_get_seg_count((skb_shinfo(skb)->nr_frags))) == -1) {
  1944. printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
  1945. return NETDEV_TX_OK;
  1946. }
  1947. mac_iocb_ptr = tx_cb->queue_entry;
  1948. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  1949. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  1950. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  1951. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  1952. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  1953. tx_cb->skb = skb;
  1954. if (skb->ip_summed == CHECKSUM_PARTIAL)
  1955. ql_hw_csum_setup(skb, mac_iocb_ptr);
  1956. if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
  1957. printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
  1958. return NETDEV_TX_BUSY;
  1959. }
  1960. wmb();
  1961. qdev->req_producer_index++;
  1962. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  1963. qdev->req_producer_index = 0;
  1964. wmb();
  1965. ql_write_common_reg_l(qdev,
  1966. &port_regs->CommonRegs.reqQProducerIndex,
  1967. qdev->req_producer_index);
  1968. ndev->trans_start = jiffies;
  1969. if (netif_msg_tx_queued(qdev))
  1970. printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
  1971. ndev->name, qdev->req_producer_index, skb->len);
  1972. atomic_dec(&qdev->tx_count);
  1973. return NETDEV_TX_OK;
  1974. }
  1975. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  1976. {
  1977. qdev->req_q_size =
  1978. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  1979. qdev->req_q_virt_addr =
  1980. pci_alloc_consistent(qdev->pdev,
  1981. (size_t) qdev->req_q_size,
  1982. &qdev->req_q_phy_addr);
  1983. if ((qdev->req_q_virt_addr == NULL) ||
  1984. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  1985. printk(KERN_ERR PFX "%s: reqQ failed.\n",
  1986. qdev->ndev->name);
  1987. return -ENOMEM;
  1988. }
  1989. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  1990. qdev->rsp_q_virt_addr =
  1991. pci_alloc_consistent(qdev->pdev,
  1992. (size_t) qdev->rsp_q_size,
  1993. &qdev->rsp_q_phy_addr);
  1994. if ((qdev->rsp_q_virt_addr == NULL) ||
  1995. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  1996. printk(KERN_ERR PFX
  1997. "%s: rspQ allocation failed\n",
  1998. qdev->ndev->name);
  1999. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2000. qdev->req_q_virt_addr,
  2001. qdev->req_q_phy_addr);
  2002. return -ENOMEM;
  2003. }
  2004. set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2005. return 0;
  2006. }
  2007. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2008. {
  2009. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
  2010. printk(KERN_INFO PFX
  2011. "%s: Already done.\n", qdev->ndev->name);
  2012. return;
  2013. }
  2014. pci_free_consistent(qdev->pdev,
  2015. qdev->req_q_size,
  2016. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2017. qdev->req_q_virt_addr = NULL;
  2018. pci_free_consistent(qdev->pdev,
  2019. qdev->rsp_q_size,
  2020. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2021. qdev->rsp_q_virt_addr = NULL;
  2022. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2023. }
  2024. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2025. {
  2026. /* Create Large Buffer Queue */
  2027. qdev->lrg_buf_q_size =
  2028. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2029. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2030. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2031. else
  2032. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2033. qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
  2034. if (qdev->lrg_buf == NULL) {
  2035. printk(KERN_ERR PFX
  2036. "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
  2037. return -ENOMEM;
  2038. }
  2039. qdev->lrg_buf_q_alloc_virt_addr =
  2040. pci_alloc_consistent(qdev->pdev,
  2041. qdev->lrg_buf_q_alloc_size,
  2042. &qdev->lrg_buf_q_alloc_phy_addr);
  2043. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2044. printk(KERN_ERR PFX
  2045. "%s: lBufQ failed\n", qdev->ndev->name);
  2046. return -ENOMEM;
  2047. }
  2048. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2049. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2050. /* Create Small Buffer Queue */
  2051. qdev->small_buf_q_size =
  2052. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2053. if (qdev->small_buf_q_size < PAGE_SIZE)
  2054. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2055. else
  2056. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2057. qdev->small_buf_q_alloc_virt_addr =
  2058. pci_alloc_consistent(qdev->pdev,
  2059. qdev->small_buf_q_alloc_size,
  2060. &qdev->small_buf_q_alloc_phy_addr);
  2061. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2062. printk(KERN_ERR PFX
  2063. "%s: Small Buffer Queue allocation failed.\n",
  2064. qdev->ndev->name);
  2065. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2066. qdev->lrg_buf_q_alloc_virt_addr,
  2067. qdev->lrg_buf_q_alloc_phy_addr);
  2068. return -ENOMEM;
  2069. }
  2070. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2071. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2072. set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2073. return 0;
  2074. }
  2075. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2076. {
  2077. if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
  2078. printk(KERN_INFO PFX
  2079. "%s: Already done.\n", qdev->ndev->name);
  2080. return;
  2081. }
  2082. if(qdev->lrg_buf) kfree(qdev->lrg_buf);
  2083. pci_free_consistent(qdev->pdev,
  2084. qdev->lrg_buf_q_alloc_size,
  2085. qdev->lrg_buf_q_alloc_virt_addr,
  2086. qdev->lrg_buf_q_alloc_phy_addr);
  2087. qdev->lrg_buf_q_virt_addr = NULL;
  2088. pci_free_consistent(qdev->pdev,
  2089. qdev->small_buf_q_alloc_size,
  2090. qdev->small_buf_q_alloc_virt_addr,
  2091. qdev->small_buf_q_alloc_phy_addr);
  2092. qdev->small_buf_q_virt_addr = NULL;
  2093. clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2094. }
  2095. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2096. {
  2097. int i;
  2098. struct bufq_addr_element *small_buf_q_entry;
  2099. /* Currently we allocate on one of memory and use it for smallbuffers */
  2100. qdev->small_buf_total_size =
  2101. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2102. QL_SMALL_BUFFER_SIZE);
  2103. qdev->small_buf_virt_addr =
  2104. pci_alloc_consistent(qdev->pdev,
  2105. qdev->small_buf_total_size,
  2106. &qdev->small_buf_phy_addr);
  2107. if (qdev->small_buf_virt_addr == NULL) {
  2108. printk(KERN_ERR PFX
  2109. "%s: Failed to get small buffer memory.\n",
  2110. qdev->ndev->name);
  2111. return -ENOMEM;
  2112. }
  2113. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2114. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2115. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2116. /* Initialize the small buffer queue. */
  2117. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2118. small_buf_q_entry->addr_high =
  2119. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2120. small_buf_q_entry->addr_low =
  2121. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2122. (i * QL_SMALL_BUFFER_SIZE));
  2123. small_buf_q_entry++;
  2124. }
  2125. qdev->small_buf_index = 0;
  2126. set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
  2127. return 0;
  2128. }
  2129. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2130. {
  2131. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
  2132. printk(KERN_INFO PFX
  2133. "%s: Already done.\n", qdev->ndev->name);
  2134. return;
  2135. }
  2136. if (qdev->small_buf_virt_addr != NULL) {
  2137. pci_free_consistent(qdev->pdev,
  2138. qdev->small_buf_total_size,
  2139. qdev->small_buf_virt_addr,
  2140. qdev->small_buf_phy_addr);
  2141. qdev->small_buf_virt_addr = NULL;
  2142. }
  2143. }
  2144. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2145. {
  2146. int i = 0;
  2147. struct ql_rcv_buf_cb *lrg_buf_cb;
  2148. for (i = 0; i < qdev->num_large_buffers; i++) {
  2149. lrg_buf_cb = &qdev->lrg_buf[i];
  2150. if (lrg_buf_cb->skb) {
  2151. dev_kfree_skb(lrg_buf_cb->skb);
  2152. pci_unmap_single(qdev->pdev,
  2153. pci_unmap_addr(lrg_buf_cb, mapaddr),
  2154. pci_unmap_len(lrg_buf_cb, maplen),
  2155. PCI_DMA_FROMDEVICE);
  2156. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2157. } else {
  2158. break;
  2159. }
  2160. }
  2161. }
  2162. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2163. {
  2164. int i;
  2165. struct ql_rcv_buf_cb *lrg_buf_cb;
  2166. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2167. for (i = 0; i < qdev->num_large_buffers; i++) {
  2168. lrg_buf_cb = &qdev->lrg_buf[i];
  2169. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2170. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2171. buf_addr_ele++;
  2172. }
  2173. qdev->lrg_buf_index = 0;
  2174. qdev->lrg_buf_skb_check = 0;
  2175. }
  2176. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2177. {
  2178. int i;
  2179. struct ql_rcv_buf_cb *lrg_buf_cb;
  2180. struct sk_buff *skb;
  2181. u64 map;
  2182. for (i = 0; i < qdev->num_large_buffers; i++) {
  2183. skb = netdev_alloc_skb(qdev->ndev,
  2184. qdev->lrg_buffer_len);
  2185. if (unlikely(!skb)) {
  2186. /* Better luck next round */
  2187. printk(KERN_ERR PFX
  2188. "%s: large buff alloc failed, "
  2189. "for %d bytes at index %d.\n",
  2190. qdev->ndev->name,
  2191. qdev->lrg_buffer_len * 2, i);
  2192. ql_free_large_buffers(qdev);
  2193. return -ENOMEM;
  2194. } else {
  2195. lrg_buf_cb = &qdev->lrg_buf[i];
  2196. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2197. lrg_buf_cb->index = i;
  2198. lrg_buf_cb->skb = skb;
  2199. /*
  2200. * We save some space to copy the ethhdr from first
  2201. * buffer
  2202. */
  2203. skb_reserve(skb, QL_HEADER_SPACE);
  2204. map = pci_map_single(qdev->pdev,
  2205. skb->data,
  2206. qdev->lrg_buffer_len -
  2207. QL_HEADER_SPACE,
  2208. PCI_DMA_FROMDEVICE);
  2209. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2210. pci_unmap_len_set(lrg_buf_cb, maplen,
  2211. qdev->lrg_buffer_len -
  2212. QL_HEADER_SPACE);
  2213. lrg_buf_cb->buf_phy_addr_low =
  2214. cpu_to_le32(LS_64BITS(map));
  2215. lrg_buf_cb->buf_phy_addr_high =
  2216. cpu_to_le32(MS_64BITS(map));
  2217. }
  2218. }
  2219. return 0;
  2220. }
  2221. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2222. {
  2223. struct ql_tx_buf_cb *tx_cb;
  2224. int i;
  2225. tx_cb = &qdev->tx_buf[0];
  2226. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2227. if (tx_cb->oal) {
  2228. kfree(tx_cb->oal);
  2229. tx_cb->oal = NULL;
  2230. }
  2231. tx_cb++;
  2232. }
  2233. }
  2234. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2235. {
  2236. struct ql_tx_buf_cb *tx_cb;
  2237. int i;
  2238. struct ob_mac_iocb_req *req_q_curr =
  2239. qdev->req_q_virt_addr;
  2240. /* Create free list of transmit buffers */
  2241. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2242. tx_cb = &qdev->tx_buf[i];
  2243. tx_cb->skb = NULL;
  2244. tx_cb->queue_entry = req_q_curr;
  2245. req_q_curr++;
  2246. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2247. if (tx_cb->oal == NULL)
  2248. return -1;
  2249. }
  2250. return 0;
  2251. }
  2252. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2253. {
  2254. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2255. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2256. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2257. }
  2258. else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2259. /*
  2260. * Bigger buffers, so less of them.
  2261. */
  2262. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2263. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2264. } else {
  2265. printk(KERN_ERR PFX
  2266. "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
  2267. qdev->ndev->name);
  2268. return -ENOMEM;
  2269. }
  2270. qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2271. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2272. qdev->max_frame_size =
  2273. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2274. /*
  2275. * First allocate a page of shared memory and use it for shadow
  2276. * locations of Network Request Queue Consumer Address Register and
  2277. * Network Completion Queue Producer Index Register
  2278. */
  2279. qdev->shadow_reg_virt_addr =
  2280. pci_alloc_consistent(qdev->pdev,
  2281. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2282. if (qdev->shadow_reg_virt_addr != NULL) {
  2283. qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
  2284. qdev->req_consumer_index_phy_addr_high =
  2285. MS_64BITS(qdev->shadow_reg_phy_addr);
  2286. qdev->req_consumer_index_phy_addr_low =
  2287. LS_64BITS(qdev->shadow_reg_phy_addr);
  2288. qdev->prsp_producer_index =
  2289. (u32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2290. qdev->rsp_producer_index_phy_addr_high =
  2291. qdev->req_consumer_index_phy_addr_high;
  2292. qdev->rsp_producer_index_phy_addr_low =
  2293. qdev->req_consumer_index_phy_addr_low + 8;
  2294. } else {
  2295. printk(KERN_ERR PFX
  2296. "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
  2297. return -ENOMEM;
  2298. }
  2299. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2300. printk(KERN_ERR PFX
  2301. "%s: ql_alloc_net_req_rsp_queues failed.\n",
  2302. qdev->ndev->name);
  2303. goto err_req_rsp;
  2304. }
  2305. if (ql_alloc_buffer_queues(qdev) != 0) {
  2306. printk(KERN_ERR PFX
  2307. "%s: ql_alloc_buffer_queues failed.\n",
  2308. qdev->ndev->name);
  2309. goto err_buffer_queues;
  2310. }
  2311. if (ql_alloc_small_buffers(qdev) != 0) {
  2312. printk(KERN_ERR PFX
  2313. "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
  2314. goto err_small_buffers;
  2315. }
  2316. if (ql_alloc_large_buffers(qdev) != 0) {
  2317. printk(KERN_ERR PFX
  2318. "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
  2319. goto err_small_buffers;
  2320. }
  2321. /* Initialize the large buffer queue. */
  2322. ql_init_large_buffers(qdev);
  2323. if (ql_create_send_free_list(qdev))
  2324. goto err_free_list;
  2325. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2326. return 0;
  2327. err_free_list:
  2328. ql_free_send_free_list(qdev);
  2329. err_small_buffers:
  2330. ql_free_buffer_queues(qdev);
  2331. err_buffer_queues:
  2332. ql_free_net_req_rsp_queues(qdev);
  2333. err_req_rsp:
  2334. pci_free_consistent(qdev->pdev,
  2335. PAGE_SIZE,
  2336. qdev->shadow_reg_virt_addr,
  2337. qdev->shadow_reg_phy_addr);
  2338. return -ENOMEM;
  2339. }
  2340. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2341. {
  2342. ql_free_send_free_list(qdev);
  2343. ql_free_large_buffers(qdev);
  2344. ql_free_small_buffers(qdev);
  2345. ql_free_buffer_queues(qdev);
  2346. ql_free_net_req_rsp_queues(qdev);
  2347. if (qdev->shadow_reg_virt_addr != NULL) {
  2348. pci_free_consistent(qdev->pdev,
  2349. PAGE_SIZE,
  2350. qdev->shadow_reg_virt_addr,
  2351. qdev->shadow_reg_phy_addr);
  2352. qdev->shadow_reg_virt_addr = NULL;
  2353. }
  2354. }
  2355. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2356. {
  2357. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2358. (void __iomem *)qdev->mem_map_registers;
  2359. if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2360. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2361. 2) << 4))
  2362. return -1;
  2363. ql_write_page2_reg(qdev,
  2364. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2365. ql_write_page2_reg(qdev,
  2366. &local_ram->maxBufletCount,
  2367. qdev->nvram_data.bufletCount);
  2368. ql_write_page2_reg(qdev,
  2369. &local_ram->freeBufletThresholdLow,
  2370. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2371. (qdev->nvram_data.tcpWindowThreshold0));
  2372. ql_write_page2_reg(qdev,
  2373. &local_ram->freeBufletThresholdHigh,
  2374. qdev->nvram_data.tcpWindowThreshold50);
  2375. ql_write_page2_reg(qdev,
  2376. &local_ram->ipHashTableBase,
  2377. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2378. qdev->nvram_data.ipHashTableBaseLo);
  2379. ql_write_page2_reg(qdev,
  2380. &local_ram->ipHashTableCount,
  2381. qdev->nvram_data.ipHashTableSize);
  2382. ql_write_page2_reg(qdev,
  2383. &local_ram->tcpHashTableBase,
  2384. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2385. qdev->nvram_data.tcpHashTableBaseLo);
  2386. ql_write_page2_reg(qdev,
  2387. &local_ram->tcpHashTableCount,
  2388. qdev->nvram_data.tcpHashTableSize);
  2389. ql_write_page2_reg(qdev,
  2390. &local_ram->ncbBase,
  2391. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2392. qdev->nvram_data.ncbTableBaseLo);
  2393. ql_write_page2_reg(qdev,
  2394. &local_ram->maxNcbCount,
  2395. qdev->nvram_data.ncbTableSize);
  2396. ql_write_page2_reg(qdev,
  2397. &local_ram->drbBase,
  2398. (qdev->nvram_data.drbTableBaseHi << 16) |
  2399. qdev->nvram_data.drbTableBaseLo);
  2400. ql_write_page2_reg(qdev,
  2401. &local_ram->maxDrbCount,
  2402. qdev->nvram_data.drbTableSize);
  2403. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2404. return 0;
  2405. }
  2406. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2407. {
  2408. u32 value;
  2409. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2410. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2411. (void __iomem *)port_regs;
  2412. u32 delay = 10;
  2413. int status = 0;
  2414. if(ql_mii_setup(qdev))
  2415. return -1;
  2416. /* Bring out PHY out of reset */
  2417. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2418. (ISP_SERIAL_PORT_IF_WE |
  2419. (ISP_SERIAL_PORT_IF_WE << 16)));
  2420. qdev->port_link_state = LS_DOWN;
  2421. netif_carrier_off(qdev->ndev);
  2422. /* V2 chip fix for ARS-39168. */
  2423. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2424. (ISP_SERIAL_PORT_IF_SDE |
  2425. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2426. /* Request Queue Registers */
  2427. *((u32 *) (qdev->preq_consumer_index)) = 0;
  2428. atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
  2429. qdev->req_producer_index = 0;
  2430. ql_write_page1_reg(qdev,
  2431. &hmem_regs->reqConsumerIndexAddrHigh,
  2432. qdev->req_consumer_index_phy_addr_high);
  2433. ql_write_page1_reg(qdev,
  2434. &hmem_regs->reqConsumerIndexAddrLow,
  2435. qdev->req_consumer_index_phy_addr_low);
  2436. ql_write_page1_reg(qdev,
  2437. &hmem_regs->reqBaseAddrHigh,
  2438. MS_64BITS(qdev->req_q_phy_addr));
  2439. ql_write_page1_reg(qdev,
  2440. &hmem_regs->reqBaseAddrLow,
  2441. LS_64BITS(qdev->req_q_phy_addr));
  2442. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2443. /* Response Queue Registers */
  2444. *((u16 *) (qdev->prsp_producer_index)) = 0;
  2445. qdev->rsp_consumer_index = 0;
  2446. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2447. ql_write_page1_reg(qdev,
  2448. &hmem_regs->rspProducerIndexAddrHigh,
  2449. qdev->rsp_producer_index_phy_addr_high);
  2450. ql_write_page1_reg(qdev,
  2451. &hmem_regs->rspProducerIndexAddrLow,
  2452. qdev->rsp_producer_index_phy_addr_low);
  2453. ql_write_page1_reg(qdev,
  2454. &hmem_regs->rspBaseAddrHigh,
  2455. MS_64BITS(qdev->rsp_q_phy_addr));
  2456. ql_write_page1_reg(qdev,
  2457. &hmem_regs->rspBaseAddrLow,
  2458. LS_64BITS(qdev->rsp_q_phy_addr));
  2459. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2460. /* Large Buffer Queue */
  2461. ql_write_page1_reg(qdev,
  2462. &hmem_regs->rxLargeQBaseAddrHigh,
  2463. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2464. ql_write_page1_reg(qdev,
  2465. &hmem_regs->rxLargeQBaseAddrLow,
  2466. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2467. ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
  2468. ql_write_page1_reg(qdev,
  2469. &hmem_regs->rxLargeBufferLength,
  2470. qdev->lrg_buffer_len);
  2471. /* Small Buffer Queue */
  2472. ql_write_page1_reg(qdev,
  2473. &hmem_regs->rxSmallQBaseAddrHigh,
  2474. MS_64BITS(qdev->small_buf_q_phy_addr));
  2475. ql_write_page1_reg(qdev,
  2476. &hmem_regs->rxSmallQBaseAddrLow,
  2477. LS_64BITS(qdev->small_buf_q_phy_addr));
  2478. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2479. ql_write_page1_reg(qdev,
  2480. &hmem_regs->rxSmallBufferLength,
  2481. QL_SMALL_BUFFER_SIZE);
  2482. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2483. qdev->small_buf_release_cnt = 8;
  2484. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2485. qdev->lrg_buf_release_cnt = 8;
  2486. qdev->lrg_buf_next_free =
  2487. (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
  2488. qdev->small_buf_index = 0;
  2489. qdev->lrg_buf_index = 0;
  2490. qdev->lrg_buf_free_count = 0;
  2491. qdev->lrg_buf_free_head = NULL;
  2492. qdev->lrg_buf_free_tail = NULL;
  2493. ql_write_common_reg(qdev,
  2494. &port_regs->CommonRegs.
  2495. rxSmallQProducerIndex,
  2496. qdev->small_buf_q_producer_index);
  2497. ql_write_common_reg(qdev,
  2498. &port_regs->CommonRegs.
  2499. rxLargeQProducerIndex,
  2500. qdev->lrg_buf_q_producer_index);
  2501. /*
  2502. * Find out if the chip has already been initialized. If it has, then
  2503. * we skip some of the initialization.
  2504. */
  2505. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2506. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2507. if ((value & PORT_STATUS_IC) == 0) {
  2508. /* Chip has not been configured yet, so let it rip. */
  2509. if(ql_init_misc_registers(qdev)) {
  2510. status = -1;
  2511. goto out;
  2512. }
  2513. if (qdev->mac_index)
  2514. ql_write_page0_reg(qdev,
  2515. &port_regs->mac1MaxFrameLengthReg,
  2516. qdev->max_frame_size);
  2517. else
  2518. ql_write_page0_reg(qdev,
  2519. &port_regs->mac0MaxFrameLengthReg,
  2520. qdev->max_frame_size);
  2521. value = qdev->nvram_data.tcpMaxWindowSize;
  2522. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2523. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2524. if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2525. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2526. * 2) << 13)) {
  2527. status = -1;
  2528. goto out;
  2529. }
  2530. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2531. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2532. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2533. 16) | (INTERNAL_CHIP_SD |
  2534. INTERNAL_CHIP_WE)));
  2535. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2536. }
  2537. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2538. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2539. 2) << 7)) {
  2540. status = -1;
  2541. goto out;
  2542. }
  2543. ql_init_scan_mode(qdev);
  2544. ql_get_phy_owner(qdev);
  2545. /* Load the MAC Configuration */
  2546. /* Program lower 32 bits of the MAC address */
  2547. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2548. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2549. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2550. ((qdev->ndev->dev_addr[2] << 24)
  2551. | (qdev->ndev->dev_addr[3] << 16)
  2552. | (qdev->ndev->dev_addr[4] << 8)
  2553. | qdev->ndev->dev_addr[5]));
  2554. /* Program top 16 bits of the MAC address */
  2555. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2556. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2557. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2558. ((qdev->ndev->dev_addr[0] << 8)
  2559. | qdev->ndev->dev_addr[1]));
  2560. /* Enable Primary MAC */
  2561. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2562. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2563. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2564. /* Clear Primary and Secondary IP addresses */
  2565. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2566. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2567. (qdev->mac_index << 2)));
  2568. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2569. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2570. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2571. ((qdev->mac_index << 2) + 1)));
  2572. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2573. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2574. /* Indicate Configuration Complete */
  2575. ql_write_page0_reg(qdev,
  2576. &port_regs->portControl,
  2577. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2578. do {
  2579. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2580. if (value & PORT_STATUS_IC)
  2581. break;
  2582. msleep(500);
  2583. } while (--delay);
  2584. if (delay == 0) {
  2585. printk(KERN_ERR PFX
  2586. "%s: Hw Initialization timeout.\n", qdev->ndev->name);
  2587. status = -1;
  2588. goto out;
  2589. }
  2590. /* Enable Ethernet Function */
  2591. if (qdev->device_id == QL3032_DEVICE_ID) {
  2592. value =
  2593. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2594. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4);
  2595. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2596. ((value << 16) | value));
  2597. } else {
  2598. value =
  2599. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2600. PORT_CONTROL_HH);
  2601. ql_write_page0_reg(qdev, &port_regs->portControl,
  2602. ((value << 16) | value));
  2603. }
  2604. out:
  2605. return status;
  2606. }
  2607. /*
  2608. * Caller holds hw_lock.
  2609. */
  2610. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2611. {
  2612. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2613. int status = 0;
  2614. u16 value;
  2615. int max_wait_time;
  2616. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2617. clear_bit(QL_RESET_DONE, &qdev->flags);
  2618. /*
  2619. * Issue soft reset to chip.
  2620. */
  2621. printk(KERN_DEBUG PFX
  2622. "%s: Issue soft reset to chip.\n",
  2623. qdev->ndev->name);
  2624. ql_write_common_reg(qdev,
  2625. &port_regs->CommonRegs.ispControlStatus,
  2626. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2627. /* Wait 3 seconds for reset to complete. */
  2628. printk(KERN_DEBUG PFX
  2629. "%s: Wait 10 milliseconds for reset to complete.\n",
  2630. qdev->ndev->name);
  2631. /* Wait until the firmware tells us the Soft Reset is done */
  2632. max_wait_time = 5;
  2633. do {
  2634. value =
  2635. ql_read_common_reg(qdev,
  2636. &port_regs->CommonRegs.ispControlStatus);
  2637. if ((value & ISP_CONTROL_SR) == 0)
  2638. break;
  2639. ssleep(1);
  2640. } while ((--max_wait_time));
  2641. /*
  2642. * Also, make sure that the Network Reset Interrupt bit has been
  2643. * cleared after the soft reset has taken place.
  2644. */
  2645. value =
  2646. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2647. if (value & ISP_CONTROL_RI) {
  2648. printk(KERN_DEBUG PFX
  2649. "ql_adapter_reset: clearing RI after reset.\n");
  2650. ql_write_common_reg(qdev,
  2651. &port_regs->CommonRegs.
  2652. ispControlStatus,
  2653. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2654. }
  2655. if (max_wait_time == 0) {
  2656. /* Issue Force Soft Reset */
  2657. ql_write_common_reg(qdev,
  2658. &port_regs->CommonRegs.
  2659. ispControlStatus,
  2660. ((ISP_CONTROL_FSR << 16) |
  2661. ISP_CONTROL_FSR));
  2662. /*
  2663. * Wait until the firmware tells us the Force Soft Reset is
  2664. * done
  2665. */
  2666. max_wait_time = 5;
  2667. do {
  2668. value =
  2669. ql_read_common_reg(qdev,
  2670. &port_regs->CommonRegs.
  2671. ispControlStatus);
  2672. if ((value & ISP_CONTROL_FSR) == 0) {
  2673. break;
  2674. }
  2675. ssleep(1);
  2676. } while ((--max_wait_time));
  2677. }
  2678. if (max_wait_time == 0)
  2679. status = 1;
  2680. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  2681. set_bit(QL_RESET_DONE, &qdev->flags);
  2682. return status;
  2683. }
  2684. static void ql_set_mac_info(struct ql3_adapter *qdev)
  2685. {
  2686. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2687. u32 value, port_status;
  2688. u8 func_number;
  2689. /* Get the function number */
  2690. value =
  2691. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2692. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  2693. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2694. switch (value & ISP_CONTROL_FN_MASK) {
  2695. case ISP_CONTROL_FN0_NET:
  2696. qdev->mac_index = 0;
  2697. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2698. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  2699. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  2700. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  2701. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  2702. if (port_status & PORT_STATUS_SM0)
  2703. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  2704. else
  2705. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  2706. break;
  2707. case ISP_CONTROL_FN1_NET:
  2708. qdev->mac_index = 1;
  2709. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2710. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  2711. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  2712. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  2713. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  2714. if (port_status & PORT_STATUS_SM1)
  2715. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  2716. else
  2717. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  2718. break;
  2719. case ISP_CONTROL_FN0_SCSI:
  2720. case ISP_CONTROL_FN1_SCSI:
  2721. default:
  2722. printk(KERN_DEBUG PFX
  2723. "%s: Invalid function number, ispControlStatus = 0x%x\n",
  2724. qdev->ndev->name,value);
  2725. break;
  2726. }
  2727. qdev->numPorts = qdev->nvram_data.numPorts;
  2728. }
  2729. static void ql_display_dev_info(struct net_device *ndev)
  2730. {
  2731. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2732. struct pci_dev *pdev = qdev->pdev;
  2733. printk(KERN_INFO PFX
  2734. "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
  2735. DRV_NAME, qdev->index, qdev->chip_rev_id,
  2736. (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
  2737. qdev->pci_slot);
  2738. printk(KERN_INFO PFX
  2739. "%s Interface.\n",
  2740. test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
  2741. /*
  2742. * Print PCI bus width/type.
  2743. */
  2744. printk(KERN_INFO PFX
  2745. "Bus interface is %s %s.\n",
  2746. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  2747. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  2748. printk(KERN_INFO PFX
  2749. "mem IO base address adjusted = 0x%p\n",
  2750. qdev->mem_map_registers);
  2751. printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
  2752. if (netif_msg_probe(qdev))
  2753. printk(KERN_INFO PFX
  2754. "%s: MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
  2755. ndev->name, ndev->dev_addr[0], ndev->dev_addr[1],
  2756. ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
  2757. ndev->dev_addr[5]);
  2758. }
  2759. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  2760. {
  2761. struct net_device *ndev = qdev->ndev;
  2762. int retval = 0;
  2763. netif_stop_queue(ndev);
  2764. netif_carrier_off(ndev);
  2765. clear_bit(QL_ADAPTER_UP,&qdev->flags);
  2766. clear_bit(QL_LINK_MASTER,&qdev->flags);
  2767. ql_disable_interrupts(qdev);
  2768. free_irq(qdev->pdev->irq, ndev);
  2769. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  2770. printk(KERN_INFO PFX
  2771. "%s: calling pci_disable_msi().\n", qdev->ndev->name);
  2772. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  2773. pci_disable_msi(qdev->pdev);
  2774. }
  2775. del_timer_sync(&qdev->adapter_timer);
  2776. netif_poll_disable(ndev);
  2777. if (do_reset) {
  2778. int soft_reset;
  2779. unsigned long hw_flags;
  2780. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2781. if (ql_wait_for_drvr_lock(qdev)) {
  2782. if ((soft_reset = ql_adapter_reset(qdev))) {
  2783. printk(KERN_ERR PFX
  2784. "%s: ql_adapter_reset(%d) FAILED!\n",
  2785. ndev->name, qdev->index);
  2786. }
  2787. printk(KERN_ERR PFX
  2788. "%s: Releaseing driver lock via chip reset.\n",ndev->name);
  2789. } else {
  2790. printk(KERN_ERR PFX
  2791. "%s: Could not acquire driver lock to do "
  2792. "reset!\n", ndev->name);
  2793. retval = -1;
  2794. }
  2795. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2796. }
  2797. ql_free_mem_resources(qdev);
  2798. return retval;
  2799. }
  2800. static int ql_adapter_up(struct ql3_adapter *qdev)
  2801. {
  2802. struct net_device *ndev = qdev->ndev;
  2803. int err;
  2804. unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
  2805. unsigned long hw_flags;
  2806. if (ql_alloc_mem_resources(qdev)) {
  2807. printk(KERN_ERR PFX
  2808. "%s Unable to allocate buffers.\n", ndev->name);
  2809. return -ENOMEM;
  2810. }
  2811. if (qdev->msi) {
  2812. if (pci_enable_msi(qdev->pdev)) {
  2813. printk(KERN_ERR PFX
  2814. "%s: User requested MSI, but MSI failed to "
  2815. "initialize. Continuing without MSI.\n",
  2816. qdev->ndev->name);
  2817. qdev->msi = 0;
  2818. } else {
  2819. printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
  2820. set_bit(QL_MSI_ENABLED,&qdev->flags);
  2821. irq_flags &= ~IRQF_SHARED;
  2822. }
  2823. }
  2824. if ((err = request_irq(qdev->pdev->irq,
  2825. ql3xxx_isr,
  2826. irq_flags, ndev->name, ndev))) {
  2827. printk(KERN_ERR PFX
  2828. "%s: Failed to reserve interrupt %d already in use.\n",
  2829. ndev->name, qdev->pdev->irq);
  2830. goto err_irq;
  2831. }
  2832. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2833. if ((err = ql_wait_for_drvr_lock(qdev))) {
  2834. if ((err = ql_adapter_initialize(qdev))) {
  2835. printk(KERN_ERR PFX
  2836. "%s: Unable to initialize adapter.\n",
  2837. ndev->name);
  2838. goto err_init;
  2839. }
  2840. printk(KERN_ERR PFX
  2841. "%s: Releaseing driver lock.\n",ndev->name);
  2842. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2843. } else {
  2844. printk(KERN_ERR PFX
  2845. "%s: Could not aquire driver lock.\n",
  2846. ndev->name);
  2847. goto err_lock;
  2848. }
  2849. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2850. set_bit(QL_ADAPTER_UP,&qdev->flags);
  2851. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  2852. netif_poll_enable(ndev);
  2853. ql_enable_interrupts(qdev);
  2854. return 0;
  2855. err_init:
  2856. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2857. err_lock:
  2858. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2859. free_irq(qdev->pdev->irq, ndev);
  2860. err_irq:
  2861. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  2862. printk(KERN_INFO PFX
  2863. "%s: calling pci_disable_msi().\n",
  2864. qdev->ndev->name);
  2865. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  2866. pci_disable_msi(qdev->pdev);
  2867. }
  2868. return err;
  2869. }
  2870. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  2871. {
  2872. if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
  2873. printk(KERN_ERR PFX
  2874. "%s: Driver up/down cycle failed, "
  2875. "closing device\n",qdev->ndev->name);
  2876. dev_close(qdev->ndev);
  2877. return -1;
  2878. }
  2879. return 0;
  2880. }
  2881. static int ql3xxx_close(struct net_device *ndev)
  2882. {
  2883. struct ql3_adapter *qdev = netdev_priv(ndev);
  2884. /*
  2885. * Wait for device to recover from a reset.
  2886. * (Rarely happens, but possible.)
  2887. */
  2888. while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
  2889. msleep(50);
  2890. ql_adapter_down(qdev,QL_DO_RESET);
  2891. return 0;
  2892. }
  2893. static int ql3xxx_open(struct net_device *ndev)
  2894. {
  2895. struct ql3_adapter *qdev = netdev_priv(ndev);
  2896. return (ql_adapter_up(qdev));
  2897. }
  2898. static struct net_device_stats *ql3xxx_get_stats(struct net_device *dev)
  2899. {
  2900. struct ql3_adapter *qdev = (struct ql3_adapter *)dev->priv;
  2901. return &qdev->stats;
  2902. }
  2903. static void ql3xxx_set_multicast_list(struct net_device *ndev)
  2904. {
  2905. /*
  2906. * We are manually parsing the list in the net_device structure.
  2907. */
  2908. return;
  2909. }
  2910. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  2911. {
  2912. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2913. struct ql3xxx_port_registers __iomem *port_regs =
  2914. qdev->mem_map_registers;
  2915. struct sockaddr *addr = p;
  2916. unsigned long hw_flags;
  2917. if (netif_running(ndev))
  2918. return -EBUSY;
  2919. if (!is_valid_ether_addr(addr->sa_data))
  2920. return -EADDRNOTAVAIL;
  2921. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  2922. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2923. /* Program lower 32 bits of the MAC address */
  2924. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2925. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2926. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2927. ((ndev->dev_addr[2] << 24) | (ndev->
  2928. dev_addr[3] << 16) |
  2929. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  2930. /* Program top 16 bits of the MAC address */
  2931. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2932. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2933. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2934. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  2935. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2936. return 0;
  2937. }
  2938. static void ql3xxx_tx_timeout(struct net_device *ndev)
  2939. {
  2940. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2941. printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
  2942. /*
  2943. * Stop the queues, we've got a problem.
  2944. */
  2945. netif_stop_queue(ndev);
  2946. /*
  2947. * Wake up the worker to process this event.
  2948. */
  2949. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  2950. }
  2951. static void ql_reset_work(struct work_struct *work)
  2952. {
  2953. struct ql3_adapter *qdev =
  2954. container_of(work, struct ql3_adapter, reset_work.work);
  2955. struct net_device *ndev = qdev->ndev;
  2956. u32 value;
  2957. struct ql_tx_buf_cb *tx_cb;
  2958. int max_wait_time, i;
  2959. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2960. unsigned long hw_flags;
  2961. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
  2962. clear_bit(QL_LINK_MASTER,&qdev->flags);
  2963. /*
  2964. * Loop through the active list and return the skb.
  2965. */
  2966. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2967. int j;
  2968. tx_cb = &qdev->tx_buf[i];
  2969. if (tx_cb->skb) {
  2970. printk(KERN_DEBUG PFX
  2971. "%s: Freeing lost SKB.\n",
  2972. qdev->ndev->name);
  2973. pci_unmap_single(qdev->pdev,
  2974. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  2975. pci_unmap_len(&tx_cb->map[0], maplen),
  2976. PCI_DMA_TODEVICE);
  2977. for(j=1;j<tx_cb->seg_count;j++) {
  2978. pci_unmap_page(qdev->pdev,
  2979. pci_unmap_addr(&tx_cb->map[j],mapaddr),
  2980. pci_unmap_len(&tx_cb->map[j],maplen),
  2981. PCI_DMA_TODEVICE);
  2982. }
  2983. dev_kfree_skb(tx_cb->skb);
  2984. tx_cb->skb = NULL;
  2985. }
  2986. }
  2987. printk(KERN_ERR PFX
  2988. "%s: Clearing NRI after reset.\n", qdev->ndev->name);
  2989. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2990. ql_write_common_reg(qdev,
  2991. &port_regs->CommonRegs.
  2992. ispControlStatus,
  2993. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2994. /*
  2995. * Wait the for Soft Reset to Complete.
  2996. */
  2997. max_wait_time = 10;
  2998. do {
  2999. value = ql_read_common_reg(qdev,
  3000. &port_regs->CommonRegs.
  3001. ispControlStatus);
  3002. if ((value & ISP_CONTROL_SR) == 0) {
  3003. printk(KERN_DEBUG PFX
  3004. "%s: reset completed.\n",
  3005. qdev->ndev->name);
  3006. break;
  3007. }
  3008. if (value & ISP_CONTROL_RI) {
  3009. printk(KERN_DEBUG PFX
  3010. "%s: clearing NRI after reset.\n",
  3011. qdev->ndev->name);
  3012. ql_write_common_reg(qdev,
  3013. &port_regs->
  3014. CommonRegs.
  3015. ispControlStatus,
  3016. ((ISP_CONTROL_RI <<
  3017. 16) | ISP_CONTROL_RI));
  3018. }
  3019. ssleep(1);
  3020. } while (--max_wait_time);
  3021. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3022. if (value & ISP_CONTROL_SR) {
  3023. /*
  3024. * Set the reset flags and clear the board again.
  3025. * Nothing else to do...
  3026. */
  3027. printk(KERN_ERR PFX
  3028. "%s: Timed out waiting for reset to "
  3029. "complete.\n", ndev->name);
  3030. printk(KERN_ERR PFX
  3031. "%s: Do a reset.\n", ndev->name);
  3032. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3033. clear_bit(QL_RESET_START,&qdev->flags);
  3034. ql_cycle_adapter(qdev,QL_DO_RESET);
  3035. return;
  3036. }
  3037. clear_bit(QL_RESET_ACTIVE,&qdev->flags);
  3038. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3039. clear_bit(QL_RESET_START,&qdev->flags);
  3040. ql_cycle_adapter(qdev,QL_NO_RESET);
  3041. }
  3042. }
  3043. static void ql_tx_timeout_work(struct work_struct *work)
  3044. {
  3045. struct ql3_adapter *qdev =
  3046. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3047. ql_cycle_adapter(qdev, QL_DO_RESET);
  3048. }
  3049. static void ql_get_board_info(struct ql3_adapter *qdev)
  3050. {
  3051. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3052. u32 value;
  3053. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3054. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3055. if (value & PORT_STATUS_64)
  3056. qdev->pci_width = 64;
  3057. else
  3058. qdev->pci_width = 32;
  3059. if (value & PORT_STATUS_X)
  3060. qdev->pci_x = 1;
  3061. else
  3062. qdev->pci_x = 0;
  3063. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3064. }
  3065. static void ql3xxx_timer(unsigned long ptr)
  3066. {
  3067. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3068. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  3069. printk(KERN_DEBUG PFX
  3070. "%s: Reset in progress.\n",
  3071. qdev->ndev->name);
  3072. goto end;
  3073. }
  3074. ql_link_state_machine(qdev);
  3075. /* Restart timer on 2 second interval. */
  3076. end:
  3077. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3078. }
  3079. static int __devinit ql3xxx_probe(struct pci_dev *pdev,
  3080. const struct pci_device_id *pci_entry)
  3081. {
  3082. struct net_device *ndev = NULL;
  3083. struct ql3_adapter *qdev = NULL;
  3084. static int cards_found = 0;
  3085. int pci_using_dac, err;
  3086. err = pci_enable_device(pdev);
  3087. if (err) {
  3088. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  3089. pci_name(pdev));
  3090. goto err_out;
  3091. }
  3092. err = pci_request_regions(pdev, DRV_NAME);
  3093. if (err) {
  3094. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  3095. pci_name(pdev));
  3096. goto err_out_disable_pdev;
  3097. }
  3098. pci_set_master(pdev);
  3099. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3100. pci_using_dac = 1;
  3101. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3102. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  3103. pci_using_dac = 0;
  3104. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3105. }
  3106. if (err) {
  3107. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  3108. pci_name(pdev));
  3109. goto err_out_free_regions;
  3110. }
  3111. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3112. if (!ndev) {
  3113. printk(KERN_ERR PFX "%s could not alloc etherdev\n",
  3114. pci_name(pdev));
  3115. err = -ENOMEM;
  3116. goto err_out_free_regions;
  3117. }
  3118. SET_MODULE_OWNER(ndev);
  3119. SET_NETDEV_DEV(ndev, &pdev->dev);
  3120. pci_set_drvdata(pdev, ndev);
  3121. qdev = netdev_priv(ndev);
  3122. qdev->index = cards_found;
  3123. qdev->ndev = ndev;
  3124. qdev->pdev = pdev;
  3125. qdev->device_id = pci_entry->device;
  3126. qdev->port_link_state = LS_DOWN;
  3127. if (msi)
  3128. qdev->msi = 1;
  3129. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3130. if (pci_using_dac)
  3131. ndev->features |= NETIF_F_HIGHDMA;
  3132. if (qdev->device_id == QL3032_DEVICE_ID)
  3133. ndev->features |= (NETIF_F_HW_CSUM | NETIF_F_SG);
  3134. qdev->mem_map_registers =
  3135. ioremap_nocache(pci_resource_start(pdev, 1),
  3136. pci_resource_len(qdev->pdev, 1));
  3137. if (!qdev->mem_map_registers) {
  3138. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  3139. pci_name(pdev));
  3140. err = -EIO;
  3141. goto err_out_free_ndev;
  3142. }
  3143. spin_lock_init(&qdev->adapter_lock);
  3144. spin_lock_init(&qdev->hw_lock);
  3145. /* Set driver entry points */
  3146. ndev->open = ql3xxx_open;
  3147. ndev->hard_start_xmit = ql3xxx_send;
  3148. ndev->stop = ql3xxx_close;
  3149. ndev->get_stats = ql3xxx_get_stats;
  3150. ndev->set_multicast_list = ql3xxx_set_multicast_list;
  3151. SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
  3152. ndev->set_mac_address = ql3xxx_set_mac_address;
  3153. ndev->tx_timeout = ql3xxx_tx_timeout;
  3154. ndev->watchdog_timeo = 5 * HZ;
  3155. ndev->poll = &ql_poll;
  3156. ndev->weight = 64;
  3157. ndev->irq = pdev->irq;
  3158. /* make sure the EEPROM is good */
  3159. if (ql_get_nvram_params(qdev)) {
  3160. printk(KERN_ALERT PFX
  3161. "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
  3162. qdev->index);
  3163. err = -EIO;
  3164. goto err_out_iounmap;
  3165. }
  3166. ql_set_mac_info(qdev);
  3167. /* Validate and set parameters */
  3168. if (qdev->mac_index) {
  3169. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3170. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn2.macAddress,
  3171. ETH_ALEN);
  3172. } else {
  3173. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3174. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn0.macAddress,
  3175. ETH_ALEN);
  3176. }
  3177. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3178. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3179. /* Turn off support for multicasting */
  3180. ndev->flags &= ~IFF_MULTICAST;
  3181. /* Record PCI bus information. */
  3182. ql_get_board_info(qdev);
  3183. /*
  3184. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3185. * jumbo frames.
  3186. */
  3187. if (qdev->pci_x) {
  3188. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3189. }
  3190. err = register_netdev(ndev);
  3191. if (err) {
  3192. printk(KERN_ERR PFX "%s: cannot register net device\n",
  3193. pci_name(pdev));
  3194. goto err_out_iounmap;
  3195. }
  3196. /* we're going to reset, so assume we have no link for now */
  3197. netif_carrier_off(ndev);
  3198. netif_stop_queue(ndev);
  3199. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3200. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3201. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3202. init_timer(&qdev->adapter_timer);
  3203. qdev->adapter_timer.function = ql3xxx_timer;
  3204. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3205. qdev->adapter_timer.data = (unsigned long)qdev;
  3206. if(!cards_found) {
  3207. printk(KERN_ALERT PFX "%s\n", DRV_STRING);
  3208. printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
  3209. DRV_NAME, DRV_VERSION);
  3210. }
  3211. ql_display_dev_info(ndev);
  3212. cards_found++;
  3213. return 0;
  3214. err_out_iounmap:
  3215. iounmap(qdev->mem_map_registers);
  3216. err_out_free_ndev:
  3217. free_netdev(ndev);
  3218. err_out_free_regions:
  3219. pci_release_regions(pdev);
  3220. err_out_disable_pdev:
  3221. pci_disable_device(pdev);
  3222. pci_set_drvdata(pdev, NULL);
  3223. err_out:
  3224. return err;
  3225. }
  3226. static void __devexit ql3xxx_remove(struct pci_dev *pdev)
  3227. {
  3228. struct net_device *ndev = pci_get_drvdata(pdev);
  3229. struct ql3_adapter *qdev = netdev_priv(ndev);
  3230. unregister_netdev(ndev);
  3231. qdev = netdev_priv(ndev);
  3232. ql_disable_interrupts(qdev);
  3233. if (qdev->workqueue) {
  3234. cancel_delayed_work(&qdev->reset_work);
  3235. cancel_delayed_work(&qdev->tx_timeout_work);
  3236. destroy_workqueue(qdev->workqueue);
  3237. qdev->workqueue = NULL;
  3238. }
  3239. iounmap(qdev->mem_map_registers);
  3240. pci_release_regions(pdev);
  3241. pci_set_drvdata(pdev, NULL);
  3242. free_netdev(ndev);
  3243. }
  3244. static struct pci_driver ql3xxx_driver = {
  3245. .name = DRV_NAME,
  3246. .id_table = ql3xxx_pci_tbl,
  3247. .probe = ql3xxx_probe,
  3248. .remove = __devexit_p(ql3xxx_remove),
  3249. };
  3250. static int __init ql3xxx_init_module(void)
  3251. {
  3252. return pci_register_driver(&ql3xxx_driver);
  3253. }
  3254. static void __exit ql3xxx_exit(void)
  3255. {
  3256. pci_unregister_driver(&ql3xxx_driver);
  3257. }
  3258. module_init(ql3xxx_init_module);
  3259. module_exit(ql3xxx_exit);