xfs_inode.c 136 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir.h"
  30. #include "xfs_dir2.h"
  31. #include "xfs_dmapi.h"
  32. #include "xfs_mount.h"
  33. #include "xfs_bmap_btree.h"
  34. #include "xfs_alloc_btree.h"
  35. #include "xfs_ialloc_btree.h"
  36. #include "xfs_dir_sf.h"
  37. #include "xfs_dir2_sf.h"
  38. #include "xfs_attr_sf.h"
  39. #include "xfs_dinode.h"
  40. #include "xfs_inode.h"
  41. #include "xfs_buf_item.h"
  42. #include "xfs_inode_item.h"
  43. #include "xfs_btree.h"
  44. #include "xfs_alloc.h"
  45. #include "xfs_ialloc.h"
  46. #include "xfs_bmap.h"
  47. #include "xfs_rw.h"
  48. #include "xfs_error.h"
  49. #include "xfs_utils.h"
  50. #include "xfs_dir2_trace.h"
  51. #include "xfs_quota.h"
  52. #include "xfs_mac.h"
  53. #include "xfs_acl.h"
  54. kmem_zone_t *xfs_ifork_zone;
  55. kmem_zone_t *xfs_inode_zone;
  56. kmem_zone_t *xfs_chashlist_zone;
  57. /*
  58. * Used in xfs_itruncate(). This is the maximum number of extents
  59. * freed from a file in a single transaction.
  60. */
  61. #define XFS_ITRUNC_MAX_EXTENTS 2
  62. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  63. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  64. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  65. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  66. #ifdef DEBUG
  67. /*
  68. * Make sure that the extents in the given memory buffer
  69. * are valid.
  70. */
  71. STATIC void
  72. xfs_validate_extents(
  73. xfs_ifork_t *ifp,
  74. int nrecs,
  75. int disk,
  76. xfs_exntfmt_t fmt)
  77. {
  78. xfs_bmbt_rec_t *ep;
  79. xfs_bmbt_irec_t irec;
  80. xfs_bmbt_rec_t rec;
  81. int i;
  82. for (i = 0; i < nrecs; i++) {
  83. ep = xfs_iext_get_ext(ifp, i);
  84. rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
  85. rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
  86. if (disk)
  87. xfs_bmbt_disk_get_all(&rec, &irec);
  88. else
  89. xfs_bmbt_get_all(&rec, &irec);
  90. if (fmt == XFS_EXTFMT_NOSTATE)
  91. ASSERT(irec.br_state == XFS_EXT_NORM);
  92. }
  93. }
  94. #else /* DEBUG */
  95. #define xfs_validate_extents(ifp, nrecs, disk, fmt)
  96. #endif /* DEBUG */
  97. /*
  98. * Check that none of the inode's in the buffer have a next
  99. * unlinked field of 0.
  100. */
  101. #if defined(DEBUG)
  102. void
  103. xfs_inobp_check(
  104. xfs_mount_t *mp,
  105. xfs_buf_t *bp)
  106. {
  107. int i;
  108. int j;
  109. xfs_dinode_t *dip;
  110. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  111. for (i = 0; i < j; i++) {
  112. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  113. i * mp->m_sb.sb_inodesize);
  114. if (!dip->di_next_unlinked) {
  115. xfs_fs_cmn_err(CE_ALERT, mp,
  116. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  117. bp);
  118. ASSERT(dip->di_next_unlinked);
  119. }
  120. }
  121. }
  122. #endif
  123. /*
  124. * This routine is called to map an inode number within a file
  125. * system to the buffer containing the on-disk version of the
  126. * inode. It returns a pointer to the buffer containing the
  127. * on-disk inode in the bpp parameter, and in the dip parameter
  128. * it returns a pointer to the on-disk inode within that buffer.
  129. *
  130. * If a non-zero error is returned, then the contents of bpp and
  131. * dipp are undefined.
  132. *
  133. * Use xfs_imap() to determine the size and location of the
  134. * buffer to read from disk.
  135. */
  136. STATIC int
  137. xfs_inotobp(
  138. xfs_mount_t *mp,
  139. xfs_trans_t *tp,
  140. xfs_ino_t ino,
  141. xfs_dinode_t **dipp,
  142. xfs_buf_t **bpp,
  143. int *offset)
  144. {
  145. int di_ok;
  146. xfs_imap_t imap;
  147. xfs_buf_t *bp;
  148. int error;
  149. xfs_dinode_t *dip;
  150. /*
  151. * Call the space management code to find the location of the
  152. * inode on disk.
  153. */
  154. imap.im_blkno = 0;
  155. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  156. if (error != 0) {
  157. cmn_err(CE_WARN,
  158. "xfs_inotobp: xfs_imap() returned an "
  159. "error %d on %s. Returning error.", error, mp->m_fsname);
  160. return error;
  161. }
  162. /*
  163. * If the inode number maps to a block outside the bounds of the
  164. * file system then return NULL rather than calling read_buf
  165. * and panicing when we get an error from the driver.
  166. */
  167. if ((imap.im_blkno + imap.im_len) >
  168. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  169. cmn_err(CE_WARN,
  170. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  171. "of the file system %s. Returning EINVAL.",
  172. (unsigned long long)imap.im_blkno,
  173. imap.im_len, mp->m_fsname);
  174. return XFS_ERROR(EINVAL);
  175. }
  176. /*
  177. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  178. * default to just a read_buf() call.
  179. */
  180. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  181. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  182. if (error) {
  183. cmn_err(CE_WARN,
  184. "xfs_inotobp: xfs_trans_read_buf() returned an "
  185. "error %d on %s. Returning error.", error, mp->m_fsname);
  186. return error;
  187. }
  188. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  189. di_ok =
  190. INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  191. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  192. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  193. XFS_RANDOM_ITOBP_INOTOBP))) {
  194. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  195. xfs_trans_brelse(tp, bp);
  196. cmn_err(CE_WARN,
  197. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  198. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  199. return XFS_ERROR(EFSCORRUPTED);
  200. }
  201. xfs_inobp_check(mp, bp);
  202. /*
  203. * Set *dipp to point to the on-disk inode in the buffer.
  204. */
  205. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  206. *bpp = bp;
  207. *offset = imap.im_boffset;
  208. return 0;
  209. }
  210. /*
  211. * This routine is called to map an inode to the buffer containing
  212. * the on-disk version of the inode. It returns a pointer to the
  213. * buffer containing the on-disk inode in the bpp parameter, and in
  214. * the dip parameter it returns a pointer to the on-disk inode within
  215. * that buffer.
  216. *
  217. * If a non-zero error is returned, then the contents of bpp and
  218. * dipp are undefined.
  219. *
  220. * If the inode is new and has not yet been initialized, use xfs_imap()
  221. * to determine the size and location of the buffer to read from disk.
  222. * If the inode has already been mapped to its buffer and read in once,
  223. * then use the mapping information stored in the inode rather than
  224. * calling xfs_imap(). This allows us to avoid the overhead of looking
  225. * at the inode btree for small block file systems (see xfs_dilocate()).
  226. * We can tell whether the inode has been mapped in before by comparing
  227. * its disk block address to 0. Only uninitialized inodes will have
  228. * 0 for the disk block address.
  229. */
  230. int
  231. xfs_itobp(
  232. xfs_mount_t *mp,
  233. xfs_trans_t *tp,
  234. xfs_inode_t *ip,
  235. xfs_dinode_t **dipp,
  236. xfs_buf_t **bpp,
  237. xfs_daddr_t bno,
  238. uint imap_flags)
  239. {
  240. xfs_buf_t *bp;
  241. int error;
  242. xfs_imap_t imap;
  243. #ifdef __KERNEL__
  244. int i;
  245. int ni;
  246. #endif
  247. if (ip->i_blkno == (xfs_daddr_t)0) {
  248. /*
  249. * Call the space management code to find the location of the
  250. * inode on disk.
  251. */
  252. imap.im_blkno = bno;
  253. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  254. XFS_IMAP_LOOKUP | imap_flags)))
  255. return error;
  256. /*
  257. * If the inode number maps to a block outside the bounds
  258. * of the file system then return NULL rather than calling
  259. * read_buf and panicing when we get an error from the
  260. * driver.
  261. */
  262. if ((imap.im_blkno + imap.im_len) >
  263. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  264. #ifdef DEBUG
  265. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  266. "(imap.im_blkno (0x%llx) "
  267. "+ imap.im_len (0x%llx)) > "
  268. " XFS_FSB_TO_BB(mp, "
  269. "mp->m_sb.sb_dblocks) (0x%llx)",
  270. (unsigned long long) imap.im_blkno,
  271. (unsigned long long) imap.im_len,
  272. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  273. #endif /* DEBUG */
  274. return XFS_ERROR(EINVAL);
  275. }
  276. /*
  277. * Fill in the fields in the inode that will be used to
  278. * map the inode to its buffer from now on.
  279. */
  280. ip->i_blkno = imap.im_blkno;
  281. ip->i_len = imap.im_len;
  282. ip->i_boffset = imap.im_boffset;
  283. } else {
  284. /*
  285. * We've already mapped the inode once, so just use the
  286. * mapping that we saved the first time.
  287. */
  288. imap.im_blkno = ip->i_blkno;
  289. imap.im_len = ip->i_len;
  290. imap.im_boffset = ip->i_boffset;
  291. }
  292. ASSERT(bno == 0 || bno == imap.im_blkno);
  293. /*
  294. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  295. * default to just a read_buf() call.
  296. */
  297. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  298. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  299. if (error) {
  300. #ifdef DEBUG
  301. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  302. "xfs_trans_read_buf() returned error %d, "
  303. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  304. error, (unsigned long long) imap.im_blkno,
  305. (unsigned long long) imap.im_len);
  306. #endif /* DEBUG */
  307. return error;
  308. }
  309. #ifdef __KERNEL__
  310. /*
  311. * Validate the magic number and version of every inode in the buffer
  312. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  313. */
  314. #ifdef DEBUG
  315. ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 :
  316. (BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog);
  317. #else
  318. ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 : 1;
  319. #endif
  320. for (i = 0; i < ni; i++) {
  321. int di_ok;
  322. xfs_dinode_t *dip;
  323. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  324. (i << mp->m_sb.sb_inodelog));
  325. di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  326. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  327. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  328. XFS_RANDOM_ITOBP_INOTOBP))) {
  329. #ifdef DEBUG
  330. prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
  331. mp->m_ddev_targp,
  332. (unsigned long long)imap.im_blkno, i,
  333. INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
  334. #endif
  335. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  336. mp, dip);
  337. xfs_trans_brelse(tp, bp);
  338. return XFS_ERROR(EFSCORRUPTED);
  339. }
  340. }
  341. #endif /* __KERNEL__ */
  342. xfs_inobp_check(mp, bp);
  343. /*
  344. * Mark the buffer as an inode buffer now that it looks good
  345. */
  346. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  347. /*
  348. * Set *dipp to point to the on-disk inode in the buffer.
  349. */
  350. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  351. *bpp = bp;
  352. return 0;
  353. }
  354. /*
  355. * Move inode type and inode format specific information from the
  356. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  357. * this means set if_rdev to the proper value. For files, directories,
  358. * and symlinks this means to bring in the in-line data or extent
  359. * pointers. For a file in B-tree format, only the root is immediately
  360. * brought in-core. The rest will be in-lined in if_extents when it
  361. * is first referenced (see xfs_iread_extents()).
  362. */
  363. STATIC int
  364. xfs_iformat(
  365. xfs_inode_t *ip,
  366. xfs_dinode_t *dip)
  367. {
  368. xfs_attr_shortform_t *atp;
  369. int size;
  370. int error;
  371. xfs_fsize_t di_size;
  372. ip->i_df.if_ext_max =
  373. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  374. error = 0;
  375. if (unlikely(
  376. INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
  377. INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
  378. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
  379. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  380. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  381. (unsigned long long)ip->i_ino,
  382. (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
  383. + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
  384. (unsigned long long)
  385. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
  386. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  387. ip->i_mount, dip);
  388. return XFS_ERROR(EFSCORRUPTED);
  389. }
  390. if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
  391. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  392. "corrupt dinode %Lu, forkoff = 0x%x.",
  393. (unsigned long long)ip->i_ino,
  394. (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
  395. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  396. ip->i_mount, dip);
  397. return XFS_ERROR(EFSCORRUPTED);
  398. }
  399. switch (ip->i_d.di_mode & S_IFMT) {
  400. case S_IFIFO:
  401. case S_IFCHR:
  402. case S_IFBLK:
  403. case S_IFSOCK:
  404. if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
  405. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  406. ip->i_mount, dip);
  407. return XFS_ERROR(EFSCORRUPTED);
  408. }
  409. ip->i_d.di_size = 0;
  410. ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
  411. break;
  412. case S_IFREG:
  413. case S_IFLNK:
  414. case S_IFDIR:
  415. switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
  416. case XFS_DINODE_FMT_LOCAL:
  417. /*
  418. * no local regular files yet
  419. */
  420. if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
  421. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  422. "corrupt inode %Lu "
  423. "(local format for regular file).",
  424. (unsigned long long) ip->i_ino);
  425. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  426. XFS_ERRLEVEL_LOW,
  427. ip->i_mount, dip);
  428. return XFS_ERROR(EFSCORRUPTED);
  429. }
  430. di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
  431. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  432. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  433. "corrupt inode %Lu "
  434. "(bad size %Ld for local inode).",
  435. (unsigned long long) ip->i_ino,
  436. (long long) di_size);
  437. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  438. XFS_ERRLEVEL_LOW,
  439. ip->i_mount, dip);
  440. return XFS_ERROR(EFSCORRUPTED);
  441. }
  442. size = (int)di_size;
  443. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  444. break;
  445. case XFS_DINODE_FMT_EXTENTS:
  446. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  447. break;
  448. case XFS_DINODE_FMT_BTREE:
  449. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  450. break;
  451. default:
  452. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  453. ip->i_mount);
  454. return XFS_ERROR(EFSCORRUPTED);
  455. }
  456. break;
  457. default:
  458. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  459. return XFS_ERROR(EFSCORRUPTED);
  460. }
  461. if (error) {
  462. return error;
  463. }
  464. if (!XFS_DFORK_Q(dip))
  465. return 0;
  466. ASSERT(ip->i_afp == NULL);
  467. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  468. ip->i_afp->if_ext_max =
  469. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  470. switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
  471. case XFS_DINODE_FMT_LOCAL:
  472. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  473. size = be16_to_cpu(atp->hdr.totsize);
  474. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  475. break;
  476. case XFS_DINODE_FMT_EXTENTS:
  477. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  478. break;
  479. case XFS_DINODE_FMT_BTREE:
  480. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  481. break;
  482. default:
  483. error = XFS_ERROR(EFSCORRUPTED);
  484. break;
  485. }
  486. if (error) {
  487. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  488. ip->i_afp = NULL;
  489. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  490. }
  491. return error;
  492. }
  493. /*
  494. * The file is in-lined in the on-disk inode.
  495. * If it fits into if_inline_data, then copy
  496. * it there, otherwise allocate a buffer for it
  497. * and copy the data there. Either way, set
  498. * if_data to point at the data.
  499. * If we allocate a buffer for the data, make
  500. * sure that its size is a multiple of 4 and
  501. * record the real size in i_real_bytes.
  502. */
  503. STATIC int
  504. xfs_iformat_local(
  505. xfs_inode_t *ip,
  506. xfs_dinode_t *dip,
  507. int whichfork,
  508. int size)
  509. {
  510. xfs_ifork_t *ifp;
  511. int real_size;
  512. /*
  513. * If the size is unreasonable, then something
  514. * is wrong and we just bail out rather than crash in
  515. * kmem_alloc() or memcpy() below.
  516. */
  517. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  518. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  519. "corrupt inode %Lu "
  520. "(bad size %d for local fork, size = %d).",
  521. (unsigned long long) ip->i_ino, size,
  522. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  523. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  524. ip->i_mount, dip);
  525. return XFS_ERROR(EFSCORRUPTED);
  526. }
  527. ifp = XFS_IFORK_PTR(ip, whichfork);
  528. real_size = 0;
  529. if (size == 0)
  530. ifp->if_u1.if_data = NULL;
  531. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  532. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  533. else {
  534. real_size = roundup(size, 4);
  535. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  536. }
  537. ifp->if_bytes = size;
  538. ifp->if_real_bytes = real_size;
  539. if (size)
  540. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  541. ifp->if_flags &= ~XFS_IFEXTENTS;
  542. ifp->if_flags |= XFS_IFINLINE;
  543. return 0;
  544. }
  545. /*
  546. * The file consists of a set of extents all
  547. * of which fit into the on-disk inode.
  548. * If there are few enough extents to fit into
  549. * the if_inline_ext, then copy them there.
  550. * Otherwise allocate a buffer for them and copy
  551. * them into it. Either way, set if_extents
  552. * to point at the extents.
  553. */
  554. STATIC int
  555. xfs_iformat_extents(
  556. xfs_inode_t *ip,
  557. xfs_dinode_t *dip,
  558. int whichfork)
  559. {
  560. xfs_bmbt_rec_t *ep, *dp;
  561. xfs_ifork_t *ifp;
  562. int nex;
  563. int size;
  564. int i;
  565. ifp = XFS_IFORK_PTR(ip, whichfork);
  566. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  567. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  568. /*
  569. * If the number of extents is unreasonable, then something
  570. * is wrong and we just bail out rather than crash in
  571. * kmem_alloc() or memcpy() below.
  572. */
  573. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  574. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  575. "corrupt inode %Lu ((a)extents = %d).",
  576. (unsigned long long) ip->i_ino, nex);
  577. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  578. ip->i_mount, dip);
  579. return XFS_ERROR(EFSCORRUPTED);
  580. }
  581. ifp->if_real_bytes = 0;
  582. if (nex == 0)
  583. ifp->if_u1.if_extents = NULL;
  584. else if (nex <= XFS_INLINE_EXTS)
  585. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  586. else
  587. xfs_iext_add(ifp, 0, nex);
  588. ifp->if_bytes = size;
  589. if (size) {
  590. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  591. xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
  592. for (i = 0; i < nex; i++, dp++) {
  593. ep = xfs_iext_get_ext(ifp, i);
  594. ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
  595. ARCH_CONVERT);
  596. ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
  597. ARCH_CONVERT);
  598. }
  599. xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
  600. whichfork);
  601. if (whichfork != XFS_DATA_FORK ||
  602. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  603. if (unlikely(xfs_check_nostate_extents(
  604. ifp, 0, nex))) {
  605. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  606. XFS_ERRLEVEL_LOW,
  607. ip->i_mount);
  608. return XFS_ERROR(EFSCORRUPTED);
  609. }
  610. }
  611. ifp->if_flags |= XFS_IFEXTENTS;
  612. return 0;
  613. }
  614. /*
  615. * The file has too many extents to fit into
  616. * the inode, so they are in B-tree format.
  617. * Allocate a buffer for the root of the B-tree
  618. * and copy the root into it. The i_extents
  619. * field will remain NULL until all of the
  620. * extents are read in (when they are needed).
  621. */
  622. STATIC int
  623. xfs_iformat_btree(
  624. xfs_inode_t *ip,
  625. xfs_dinode_t *dip,
  626. int whichfork)
  627. {
  628. xfs_bmdr_block_t *dfp;
  629. xfs_ifork_t *ifp;
  630. /* REFERENCED */
  631. int nrecs;
  632. int size;
  633. ifp = XFS_IFORK_PTR(ip, whichfork);
  634. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  635. size = XFS_BMAP_BROOT_SPACE(dfp);
  636. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  637. /*
  638. * blow out if -- fork has less extents than can fit in
  639. * fork (fork shouldn't be a btree format), root btree
  640. * block has more records than can fit into the fork,
  641. * or the number of extents is greater than the number of
  642. * blocks.
  643. */
  644. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  645. || XFS_BMDR_SPACE_CALC(nrecs) >
  646. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  647. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  648. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  649. "corrupt inode %Lu (btree).",
  650. (unsigned long long) ip->i_ino);
  651. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  652. ip->i_mount);
  653. return XFS_ERROR(EFSCORRUPTED);
  654. }
  655. ifp->if_broot_bytes = size;
  656. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  657. ASSERT(ifp->if_broot != NULL);
  658. /*
  659. * Copy and convert from the on-disk structure
  660. * to the in-memory structure.
  661. */
  662. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  663. ifp->if_broot, size);
  664. ifp->if_flags &= ~XFS_IFEXTENTS;
  665. ifp->if_flags |= XFS_IFBROOT;
  666. return 0;
  667. }
  668. /*
  669. * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
  670. * and native format
  671. *
  672. * buf = on-disk representation
  673. * dip = native representation
  674. * dir = direction - +ve -> disk to native
  675. * -ve -> native to disk
  676. */
  677. void
  678. xfs_xlate_dinode_core(
  679. xfs_caddr_t buf,
  680. xfs_dinode_core_t *dip,
  681. int dir)
  682. {
  683. xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
  684. xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
  685. xfs_arch_t arch = ARCH_CONVERT;
  686. ASSERT(dir);
  687. INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
  688. INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
  689. INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
  690. INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
  691. INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
  692. INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
  693. INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
  694. INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
  695. INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
  696. if (dir > 0) {
  697. memcpy(mem_core->di_pad, buf_core->di_pad,
  698. sizeof(buf_core->di_pad));
  699. } else {
  700. memcpy(buf_core->di_pad, mem_core->di_pad,
  701. sizeof(buf_core->di_pad));
  702. }
  703. INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
  704. INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
  705. dir, arch);
  706. INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
  707. dir, arch);
  708. INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
  709. dir, arch);
  710. INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
  711. dir, arch);
  712. INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
  713. dir, arch);
  714. INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
  715. dir, arch);
  716. INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
  717. INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
  718. INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
  719. INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
  720. INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
  721. INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
  722. INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
  723. INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
  724. INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
  725. INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
  726. INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
  727. }
  728. STATIC uint
  729. _xfs_dic2xflags(
  730. xfs_dinode_core_t *dic,
  731. __uint16_t di_flags)
  732. {
  733. uint flags = 0;
  734. if (di_flags & XFS_DIFLAG_ANY) {
  735. if (di_flags & XFS_DIFLAG_REALTIME)
  736. flags |= XFS_XFLAG_REALTIME;
  737. if (di_flags & XFS_DIFLAG_PREALLOC)
  738. flags |= XFS_XFLAG_PREALLOC;
  739. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  740. flags |= XFS_XFLAG_IMMUTABLE;
  741. if (di_flags & XFS_DIFLAG_APPEND)
  742. flags |= XFS_XFLAG_APPEND;
  743. if (di_flags & XFS_DIFLAG_SYNC)
  744. flags |= XFS_XFLAG_SYNC;
  745. if (di_flags & XFS_DIFLAG_NOATIME)
  746. flags |= XFS_XFLAG_NOATIME;
  747. if (di_flags & XFS_DIFLAG_NODUMP)
  748. flags |= XFS_XFLAG_NODUMP;
  749. if (di_flags & XFS_DIFLAG_RTINHERIT)
  750. flags |= XFS_XFLAG_RTINHERIT;
  751. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  752. flags |= XFS_XFLAG_PROJINHERIT;
  753. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  754. flags |= XFS_XFLAG_NOSYMLINKS;
  755. if (di_flags & XFS_DIFLAG_EXTSIZE)
  756. flags |= XFS_XFLAG_EXTSIZE;
  757. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  758. flags |= XFS_XFLAG_EXTSZINHERIT;
  759. }
  760. return flags;
  761. }
  762. uint
  763. xfs_ip2xflags(
  764. xfs_inode_t *ip)
  765. {
  766. xfs_dinode_core_t *dic = &ip->i_d;
  767. return _xfs_dic2xflags(dic, dic->di_flags) |
  768. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  769. }
  770. uint
  771. xfs_dic2xflags(
  772. xfs_dinode_core_t *dic)
  773. {
  774. return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
  775. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  776. }
  777. /*
  778. * Given a mount structure and an inode number, return a pointer
  779. * to a newly allocated in-core inode corresponding to the given
  780. * inode number.
  781. *
  782. * Initialize the inode's attributes and extent pointers if it
  783. * already has them (it will not if the inode has no links).
  784. */
  785. int
  786. xfs_iread(
  787. xfs_mount_t *mp,
  788. xfs_trans_t *tp,
  789. xfs_ino_t ino,
  790. xfs_inode_t **ipp,
  791. xfs_daddr_t bno)
  792. {
  793. xfs_buf_t *bp;
  794. xfs_dinode_t *dip;
  795. xfs_inode_t *ip;
  796. int error;
  797. ASSERT(xfs_inode_zone != NULL);
  798. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  799. ip->i_ino = ino;
  800. ip->i_mount = mp;
  801. /*
  802. * Get pointer's to the on-disk inode and the buffer containing it.
  803. * If the inode number refers to a block outside the file system
  804. * then xfs_itobp() will return NULL. In this case we should
  805. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  806. * know that this is a new incore inode.
  807. */
  808. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, 0);
  809. if (error) {
  810. kmem_zone_free(xfs_inode_zone, ip);
  811. return error;
  812. }
  813. /*
  814. * Initialize inode's trace buffers.
  815. * Do this before xfs_iformat in case it adds entries.
  816. */
  817. #ifdef XFS_BMAP_TRACE
  818. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  819. #endif
  820. #ifdef XFS_BMBT_TRACE
  821. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  822. #endif
  823. #ifdef XFS_RW_TRACE
  824. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  825. #endif
  826. #ifdef XFS_ILOCK_TRACE
  827. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  828. #endif
  829. #ifdef XFS_DIR2_TRACE
  830. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  831. #endif
  832. /*
  833. * If we got something that isn't an inode it means someone
  834. * (nfs or dmi) has a stale handle.
  835. */
  836. if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
  837. kmem_zone_free(xfs_inode_zone, ip);
  838. xfs_trans_brelse(tp, bp);
  839. #ifdef DEBUG
  840. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  841. "dip->di_core.di_magic (0x%x) != "
  842. "XFS_DINODE_MAGIC (0x%x)",
  843. INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
  844. XFS_DINODE_MAGIC);
  845. #endif /* DEBUG */
  846. return XFS_ERROR(EINVAL);
  847. }
  848. /*
  849. * If the on-disk inode is already linked to a directory
  850. * entry, copy all of the inode into the in-core inode.
  851. * xfs_iformat() handles copying in the inode format
  852. * specific information.
  853. * Otherwise, just get the truly permanent information.
  854. */
  855. if (dip->di_core.di_mode) {
  856. xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
  857. &(ip->i_d), 1);
  858. error = xfs_iformat(ip, dip);
  859. if (error) {
  860. kmem_zone_free(xfs_inode_zone, ip);
  861. xfs_trans_brelse(tp, bp);
  862. #ifdef DEBUG
  863. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  864. "xfs_iformat() returned error %d",
  865. error);
  866. #endif /* DEBUG */
  867. return error;
  868. }
  869. } else {
  870. ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
  871. ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
  872. ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
  873. ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
  874. /*
  875. * Make sure to pull in the mode here as well in
  876. * case the inode is released without being used.
  877. * This ensures that xfs_inactive() will see that
  878. * the inode is already free and not try to mess
  879. * with the uninitialized part of it.
  880. */
  881. ip->i_d.di_mode = 0;
  882. /*
  883. * Initialize the per-fork minima and maxima for a new
  884. * inode here. xfs_iformat will do it for old inodes.
  885. */
  886. ip->i_df.if_ext_max =
  887. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  888. }
  889. INIT_LIST_HEAD(&ip->i_reclaim);
  890. /*
  891. * The inode format changed when we moved the link count and
  892. * made it 32 bits long. If this is an old format inode,
  893. * convert it in memory to look like a new one. If it gets
  894. * flushed to disk we will convert back before flushing or
  895. * logging it. We zero out the new projid field and the old link
  896. * count field. We'll handle clearing the pad field (the remains
  897. * of the old uuid field) when we actually convert the inode to
  898. * the new format. We don't change the version number so that we
  899. * can distinguish this from a real new format inode.
  900. */
  901. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  902. ip->i_d.di_nlink = ip->i_d.di_onlink;
  903. ip->i_d.di_onlink = 0;
  904. ip->i_d.di_projid = 0;
  905. }
  906. ip->i_delayed_blks = 0;
  907. /*
  908. * Mark the buffer containing the inode as something to keep
  909. * around for a while. This helps to keep recently accessed
  910. * meta-data in-core longer.
  911. */
  912. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  913. /*
  914. * Use xfs_trans_brelse() to release the buffer containing the
  915. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  916. * in xfs_itobp() above. If tp is NULL, this is just a normal
  917. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  918. * will only release the buffer if it is not dirty within the
  919. * transaction. It will be OK to release the buffer in this case,
  920. * because inodes on disk are never destroyed and we will be
  921. * locking the new in-core inode before putting it in the hash
  922. * table where other processes can find it. Thus we don't have
  923. * to worry about the inode being changed just because we released
  924. * the buffer.
  925. */
  926. xfs_trans_brelse(tp, bp);
  927. *ipp = ip;
  928. return 0;
  929. }
  930. /*
  931. * Read in extents from a btree-format inode.
  932. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  933. */
  934. int
  935. xfs_iread_extents(
  936. xfs_trans_t *tp,
  937. xfs_inode_t *ip,
  938. int whichfork)
  939. {
  940. int error;
  941. xfs_ifork_t *ifp;
  942. xfs_extnum_t nextents;
  943. size_t size;
  944. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  945. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  946. ip->i_mount);
  947. return XFS_ERROR(EFSCORRUPTED);
  948. }
  949. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  950. size = nextents * sizeof(xfs_bmbt_rec_t);
  951. ifp = XFS_IFORK_PTR(ip, whichfork);
  952. /*
  953. * We know that the size is valid (it's checked in iformat_btree)
  954. */
  955. ifp->if_lastex = NULLEXTNUM;
  956. ifp->if_bytes = ifp->if_real_bytes = 0;
  957. ifp->if_flags |= XFS_IFEXTENTS;
  958. xfs_iext_add(ifp, 0, nextents);
  959. error = xfs_bmap_read_extents(tp, ip, whichfork);
  960. if (error) {
  961. xfs_iext_destroy(ifp);
  962. ifp->if_flags &= ~XFS_IFEXTENTS;
  963. return error;
  964. }
  965. xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
  966. return 0;
  967. }
  968. /*
  969. * Allocate an inode on disk and return a copy of its in-core version.
  970. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  971. * appropriately within the inode. The uid and gid for the inode are
  972. * set according to the contents of the given cred structure.
  973. *
  974. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  975. * has a free inode available, call xfs_iget()
  976. * to obtain the in-core version of the allocated inode. Finally,
  977. * fill in the inode and log its initial contents. In this case,
  978. * ialloc_context would be set to NULL and call_again set to false.
  979. *
  980. * If xfs_dialloc() does not have an available inode,
  981. * it will replenish its supply by doing an allocation. Since we can
  982. * only do one allocation within a transaction without deadlocks, we
  983. * must commit the current transaction before returning the inode itself.
  984. * In this case, therefore, we will set call_again to true and return.
  985. * The caller should then commit the current transaction, start a new
  986. * transaction, and call xfs_ialloc() again to actually get the inode.
  987. *
  988. * To ensure that some other process does not grab the inode that
  989. * was allocated during the first call to xfs_ialloc(), this routine
  990. * also returns the [locked] bp pointing to the head of the freelist
  991. * as ialloc_context. The caller should hold this buffer across
  992. * the commit and pass it back into this routine on the second call.
  993. */
  994. int
  995. xfs_ialloc(
  996. xfs_trans_t *tp,
  997. xfs_inode_t *pip,
  998. mode_t mode,
  999. xfs_nlink_t nlink,
  1000. xfs_dev_t rdev,
  1001. cred_t *cr,
  1002. xfs_prid_t prid,
  1003. int okalloc,
  1004. xfs_buf_t **ialloc_context,
  1005. boolean_t *call_again,
  1006. xfs_inode_t **ipp)
  1007. {
  1008. xfs_ino_t ino;
  1009. xfs_inode_t *ip;
  1010. vnode_t *vp;
  1011. uint flags;
  1012. int error;
  1013. /*
  1014. * Call the space management code to pick
  1015. * the on-disk inode to be allocated.
  1016. */
  1017. error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
  1018. ialloc_context, call_again, &ino);
  1019. if (error != 0) {
  1020. return error;
  1021. }
  1022. if (*call_again || ino == NULLFSINO) {
  1023. *ipp = NULL;
  1024. return 0;
  1025. }
  1026. ASSERT(*ialloc_context == NULL);
  1027. /*
  1028. * Get the in-core inode with the lock held exclusively.
  1029. * This is because we're setting fields here we need
  1030. * to prevent others from looking at until we're done.
  1031. */
  1032. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1033. IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1034. if (error != 0) {
  1035. return error;
  1036. }
  1037. ASSERT(ip != NULL);
  1038. vp = XFS_ITOV(ip);
  1039. ip->i_d.di_mode = (__uint16_t)mode;
  1040. ip->i_d.di_onlink = 0;
  1041. ip->i_d.di_nlink = nlink;
  1042. ASSERT(ip->i_d.di_nlink == nlink);
  1043. ip->i_d.di_uid = current_fsuid(cr);
  1044. ip->i_d.di_gid = current_fsgid(cr);
  1045. ip->i_d.di_projid = prid;
  1046. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1047. /*
  1048. * If the superblock version is up to where we support new format
  1049. * inodes and this is currently an old format inode, then change
  1050. * the inode version number now. This way we only do the conversion
  1051. * here rather than here and in the flush/logging code.
  1052. */
  1053. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1054. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1055. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1056. /*
  1057. * We've already zeroed the old link count, the projid field,
  1058. * and the pad field.
  1059. */
  1060. }
  1061. /*
  1062. * Project ids won't be stored on disk if we are using a version 1 inode.
  1063. */
  1064. if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1065. xfs_bump_ino_vers2(tp, ip);
  1066. if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
  1067. ip->i_d.di_gid = pip->i_d.di_gid;
  1068. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1069. ip->i_d.di_mode |= S_ISGID;
  1070. }
  1071. }
  1072. /*
  1073. * If the group ID of the new file does not match the effective group
  1074. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1075. * (and only if the irix_sgid_inherit compatibility variable is set).
  1076. */
  1077. if ((irix_sgid_inherit) &&
  1078. (ip->i_d.di_mode & S_ISGID) &&
  1079. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1080. ip->i_d.di_mode &= ~S_ISGID;
  1081. }
  1082. ip->i_d.di_size = 0;
  1083. ip->i_d.di_nextents = 0;
  1084. ASSERT(ip->i_d.di_nblocks == 0);
  1085. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1086. /*
  1087. * di_gen will have been taken care of in xfs_iread.
  1088. */
  1089. ip->i_d.di_extsize = 0;
  1090. ip->i_d.di_dmevmask = 0;
  1091. ip->i_d.di_dmstate = 0;
  1092. ip->i_d.di_flags = 0;
  1093. flags = XFS_ILOG_CORE;
  1094. switch (mode & S_IFMT) {
  1095. case S_IFIFO:
  1096. case S_IFCHR:
  1097. case S_IFBLK:
  1098. case S_IFSOCK:
  1099. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1100. ip->i_df.if_u2.if_rdev = rdev;
  1101. ip->i_df.if_flags = 0;
  1102. flags |= XFS_ILOG_DEV;
  1103. break;
  1104. case S_IFREG:
  1105. case S_IFDIR:
  1106. if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1107. uint di_flags = 0;
  1108. if ((mode & S_IFMT) == S_IFDIR) {
  1109. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1110. di_flags |= XFS_DIFLAG_RTINHERIT;
  1111. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1112. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1113. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1114. }
  1115. } else if ((mode & S_IFMT) == S_IFREG) {
  1116. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
  1117. di_flags |= XFS_DIFLAG_REALTIME;
  1118. ip->i_iocore.io_flags |= XFS_IOCORE_RT;
  1119. }
  1120. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1121. di_flags |= XFS_DIFLAG_EXTSIZE;
  1122. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1123. }
  1124. }
  1125. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1126. xfs_inherit_noatime)
  1127. di_flags |= XFS_DIFLAG_NOATIME;
  1128. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1129. xfs_inherit_nodump)
  1130. di_flags |= XFS_DIFLAG_NODUMP;
  1131. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1132. xfs_inherit_sync)
  1133. di_flags |= XFS_DIFLAG_SYNC;
  1134. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1135. xfs_inherit_nosymlinks)
  1136. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1137. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1138. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1139. ip->i_d.di_flags |= di_flags;
  1140. }
  1141. /* FALLTHROUGH */
  1142. case S_IFLNK:
  1143. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1144. ip->i_df.if_flags = XFS_IFEXTENTS;
  1145. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1146. ip->i_df.if_u1.if_extents = NULL;
  1147. break;
  1148. default:
  1149. ASSERT(0);
  1150. }
  1151. /*
  1152. * Attribute fork settings for new inode.
  1153. */
  1154. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1155. ip->i_d.di_anextents = 0;
  1156. /*
  1157. * Log the new values stuffed into the inode.
  1158. */
  1159. xfs_trans_log_inode(tp, ip, flags);
  1160. /* now that we have an i_mode we can set Linux inode ops (& unlock) */
  1161. VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
  1162. *ipp = ip;
  1163. return 0;
  1164. }
  1165. /*
  1166. * Check to make sure that there are no blocks allocated to the
  1167. * file beyond the size of the file. We don't check this for
  1168. * files with fixed size extents or real time extents, but we
  1169. * at least do it for regular files.
  1170. */
  1171. #ifdef DEBUG
  1172. void
  1173. xfs_isize_check(
  1174. xfs_mount_t *mp,
  1175. xfs_inode_t *ip,
  1176. xfs_fsize_t isize)
  1177. {
  1178. xfs_fileoff_t map_first;
  1179. int nimaps;
  1180. xfs_bmbt_irec_t imaps[2];
  1181. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1182. return;
  1183. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1184. return;
  1185. nimaps = 2;
  1186. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1187. /*
  1188. * The filesystem could be shutting down, so bmapi may return
  1189. * an error.
  1190. */
  1191. if (xfs_bmapi(NULL, ip, map_first,
  1192. (XFS_B_TO_FSB(mp,
  1193. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1194. map_first),
  1195. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1196. NULL, NULL))
  1197. return;
  1198. ASSERT(nimaps == 1);
  1199. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1200. }
  1201. #endif /* DEBUG */
  1202. /*
  1203. * Calculate the last possible buffered byte in a file. This must
  1204. * include data that was buffered beyond the EOF by the write code.
  1205. * This also needs to deal with overflowing the xfs_fsize_t type
  1206. * which can happen for sizes near the limit.
  1207. *
  1208. * We also need to take into account any blocks beyond the EOF. It
  1209. * may be the case that they were buffered by a write which failed.
  1210. * In that case the pages will still be in memory, but the inode size
  1211. * will never have been updated.
  1212. */
  1213. xfs_fsize_t
  1214. xfs_file_last_byte(
  1215. xfs_inode_t *ip)
  1216. {
  1217. xfs_mount_t *mp;
  1218. xfs_fsize_t last_byte;
  1219. xfs_fileoff_t last_block;
  1220. xfs_fileoff_t size_last_block;
  1221. int error;
  1222. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1223. mp = ip->i_mount;
  1224. /*
  1225. * Only check for blocks beyond the EOF if the extents have
  1226. * been read in. This eliminates the need for the inode lock,
  1227. * and it also saves us from looking when it really isn't
  1228. * necessary.
  1229. */
  1230. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1231. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1232. XFS_DATA_FORK);
  1233. if (error) {
  1234. last_block = 0;
  1235. }
  1236. } else {
  1237. last_block = 0;
  1238. }
  1239. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
  1240. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1241. last_byte = XFS_FSB_TO_B(mp, last_block);
  1242. if (last_byte < 0) {
  1243. return XFS_MAXIOFFSET(mp);
  1244. }
  1245. last_byte += (1 << mp->m_writeio_log);
  1246. if (last_byte < 0) {
  1247. return XFS_MAXIOFFSET(mp);
  1248. }
  1249. return last_byte;
  1250. }
  1251. #if defined(XFS_RW_TRACE)
  1252. STATIC void
  1253. xfs_itrunc_trace(
  1254. int tag,
  1255. xfs_inode_t *ip,
  1256. int flag,
  1257. xfs_fsize_t new_size,
  1258. xfs_off_t toss_start,
  1259. xfs_off_t toss_finish)
  1260. {
  1261. if (ip->i_rwtrace == NULL) {
  1262. return;
  1263. }
  1264. ktrace_enter(ip->i_rwtrace,
  1265. (void*)((long)tag),
  1266. (void*)ip,
  1267. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1268. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1269. (void*)((long)flag),
  1270. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1271. (void*)(unsigned long)(new_size & 0xffffffff),
  1272. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1273. (void*)(unsigned long)(toss_start & 0xffffffff),
  1274. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1275. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1276. (void*)(unsigned long)current_cpu(),
  1277. (void*)(unsigned long)current_pid(),
  1278. (void*)NULL,
  1279. (void*)NULL,
  1280. (void*)NULL);
  1281. }
  1282. #else
  1283. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1284. #endif
  1285. /*
  1286. * Start the truncation of the file to new_size. The new size
  1287. * must be smaller than the current size. This routine will
  1288. * clear the buffer and page caches of file data in the removed
  1289. * range, and xfs_itruncate_finish() will remove the underlying
  1290. * disk blocks.
  1291. *
  1292. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1293. * must NOT have the inode lock held at all. This is because we're
  1294. * calling into the buffer/page cache code and we can't hold the
  1295. * inode lock when we do so.
  1296. *
  1297. * We need to wait for any direct I/Os in flight to complete before we
  1298. * proceed with the truncate. This is needed to prevent the extents
  1299. * being read or written by the direct I/Os from being removed while the
  1300. * I/O is in flight as there is no other method of synchronising
  1301. * direct I/O with the truncate operation. Also, because we hold
  1302. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1303. * started until the truncate completes and drops the lock. Essentially,
  1304. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1305. * between direct I/Os and the truncate operation.
  1306. *
  1307. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1308. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1309. * in the case that the caller is locking things out of order and
  1310. * may not be able to call xfs_itruncate_finish() with the inode lock
  1311. * held without dropping the I/O lock. If the caller must drop the
  1312. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1313. * must be called again with all the same restrictions as the initial
  1314. * call.
  1315. */
  1316. void
  1317. xfs_itruncate_start(
  1318. xfs_inode_t *ip,
  1319. uint flags,
  1320. xfs_fsize_t new_size)
  1321. {
  1322. xfs_fsize_t last_byte;
  1323. xfs_off_t toss_start;
  1324. xfs_mount_t *mp;
  1325. vnode_t *vp;
  1326. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1327. ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
  1328. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1329. (flags == XFS_ITRUNC_MAYBE));
  1330. mp = ip->i_mount;
  1331. vp = XFS_ITOV(ip);
  1332. vn_iowait(vp); /* wait for the completion of any pending DIOs */
  1333. /*
  1334. * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
  1335. * overlapping the region being removed. We have to use
  1336. * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
  1337. * caller may not be able to finish the truncate without
  1338. * dropping the inode's I/O lock. Make sure
  1339. * to catch any pages brought in by buffers overlapping
  1340. * the EOF by searching out beyond the isize by our
  1341. * block size. We round new_size up to a block boundary
  1342. * so that we don't toss things on the same block as
  1343. * new_size but before it.
  1344. *
  1345. * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
  1346. * call remapf() over the same region if the file is mapped.
  1347. * This frees up mapped file references to the pages in the
  1348. * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
  1349. * that we get the latest mapped changes flushed out.
  1350. */
  1351. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1352. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1353. if (toss_start < 0) {
  1354. /*
  1355. * The place to start tossing is beyond our maximum
  1356. * file size, so there is no way that the data extended
  1357. * out there.
  1358. */
  1359. return;
  1360. }
  1361. last_byte = xfs_file_last_byte(ip);
  1362. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1363. last_byte);
  1364. if (last_byte > toss_start) {
  1365. if (flags & XFS_ITRUNC_DEFINITE) {
  1366. VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1367. } else {
  1368. VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1369. }
  1370. }
  1371. #ifdef DEBUG
  1372. if (new_size == 0) {
  1373. ASSERT(VN_CACHED(vp) == 0);
  1374. }
  1375. #endif
  1376. }
  1377. /*
  1378. * Shrink the file to the given new_size. The new
  1379. * size must be smaller than the current size.
  1380. * This will free up the underlying blocks
  1381. * in the removed range after a call to xfs_itruncate_start()
  1382. * or xfs_atruncate_start().
  1383. *
  1384. * The transaction passed to this routine must have made
  1385. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1386. * This routine may commit the given transaction and
  1387. * start new ones, so make sure everything involved in
  1388. * the transaction is tidy before calling here.
  1389. * Some transaction will be returned to the caller to be
  1390. * committed. The incoming transaction must already include
  1391. * the inode, and both inode locks must be held exclusively.
  1392. * The inode must also be "held" within the transaction. On
  1393. * return the inode will be "held" within the returned transaction.
  1394. * This routine does NOT require any disk space to be reserved
  1395. * for it within the transaction.
  1396. *
  1397. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1398. * and it indicates the fork which is to be truncated. For the
  1399. * attribute fork we only support truncation to size 0.
  1400. *
  1401. * We use the sync parameter to indicate whether or not the first
  1402. * transaction we perform might have to be synchronous. For the attr fork,
  1403. * it needs to be so if the unlink of the inode is not yet known to be
  1404. * permanent in the log. This keeps us from freeing and reusing the
  1405. * blocks of the attribute fork before the unlink of the inode becomes
  1406. * permanent.
  1407. *
  1408. * For the data fork, we normally have to run synchronously if we're
  1409. * being called out of the inactive path or we're being called
  1410. * out of the create path where we're truncating an existing file.
  1411. * Either way, the truncate needs to be sync so blocks don't reappear
  1412. * in the file with altered data in case of a crash. wsync filesystems
  1413. * can run the first case async because anything that shrinks the inode
  1414. * has to run sync so by the time we're called here from inactive, the
  1415. * inode size is permanently set to 0.
  1416. *
  1417. * Calls from the truncate path always need to be sync unless we're
  1418. * in a wsync filesystem and the file has already been unlinked.
  1419. *
  1420. * The caller is responsible for correctly setting the sync parameter.
  1421. * It gets too hard for us to guess here which path we're being called
  1422. * out of just based on inode state.
  1423. */
  1424. int
  1425. xfs_itruncate_finish(
  1426. xfs_trans_t **tp,
  1427. xfs_inode_t *ip,
  1428. xfs_fsize_t new_size,
  1429. int fork,
  1430. int sync)
  1431. {
  1432. xfs_fsblock_t first_block;
  1433. xfs_fileoff_t first_unmap_block;
  1434. xfs_fileoff_t last_block;
  1435. xfs_filblks_t unmap_len=0;
  1436. xfs_mount_t *mp;
  1437. xfs_trans_t *ntp;
  1438. int done;
  1439. int committed;
  1440. xfs_bmap_free_t free_list;
  1441. int error;
  1442. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1443. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1444. ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
  1445. ASSERT(*tp != NULL);
  1446. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1447. ASSERT(ip->i_transp == *tp);
  1448. ASSERT(ip->i_itemp != NULL);
  1449. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1450. ntp = *tp;
  1451. mp = (ntp)->t_mountp;
  1452. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1453. /*
  1454. * We only support truncating the entire attribute fork.
  1455. */
  1456. if (fork == XFS_ATTR_FORK) {
  1457. new_size = 0LL;
  1458. }
  1459. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1460. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1461. /*
  1462. * The first thing we do is set the size to new_size permanently
  1463. * on disk. This way we don't have to worry about anyone ever
  1464. * being able to look at the data being freed even in the face
  1465. * of a crash. What we're getting around here is the case where
  1466. * we free a block, it is allocated to another file, it is written
  1467. * to, and then we crash. If the new data gets written to the
  1468. * file but the log buffers containing the free and reallocation
  1469. * don't, then we'd end up with garbage in the blocks being freed.
  1470. * As long as we make the new_size permanent before actually
  1471. * freeing any blocks it doesn't matter if they get writtten to.
  1472. *
  1473. * The callers must signal into us whether or not the size
  1474. * setting here must be synchronous. There are a few cases
  1475. * where it doesn't have to be synchronous. Those cases
  1476. * occur if the file is unlinked and we know the unlink is
  1477. * permanent or if the blocks being truncated are guaranteed
  1478. * to be beyond the inode eof (regardless of the link count)
  1479. * and the eof value is permanent. Both of these cases occur
  1480. * only on wsync-mounted filesystems. In those cases, we're
  1481. * guaranteed that no user will ever see the data in the blocks
  1482. * that are being truncated so the truncate can run async.
  1483. * In the free beyond eof case, the file may wind up with
  1484. * more blocks allocated to it than it needs if we crash
  1485. * and that won't get fixed until the next time the file
  1486. * is re-opened and closed but that's ok as that shouldn't
  1487. * be too many blocks.
  1488. *
  1489. * However, we can't just make all wsync xactions run async
  1490. * because there's one call out of the create path that needs
  1491. * to run sync where it's truncating an existing file to size
  1492. * 0 whose size is > 0.
  1493. *
  1494. * It's probably possible to come up with a test in this
  1495. * routine that would correctly distinguish all the above
  1496. * cases from the values of the function parameters and the
  1497. * inode state but for sanity's sake, I've decided to let the
  1498. * layers above just tell us. It's simpler to correctly figure
  1499. * out in the layer above exactly under what conditions we
  1500. * can run async and I think it's easier for others read and
  1501. * follow the logic in case something has to be changed.
  1502. * cscope is your friend -- rcc.
  1503. *
  1504. * The attribute fork is much simpler.
  1505. *
  1506. * For the attribute fork we allow the caller to tell us whether
  1507. * the unlink of the inode that led to this call is yet permanent
  1508. * in the on disk log. If it is not and we will be freeing extents
  1509. * in this inode then we make the first transaction synchronous
  1510. * to make sure that the unlink is permanent by the time we free
  1511. * the blocks.
  1512. */
  1513. if (fork == XFS_DATA_FORK) {
  1514. if (ip->i_d.di_nextents > 0) {
  1515. ip->i_d.di_size = new_size;
  1516. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1517. }
  1518. } else if (sync) {
  1519. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1520. if (ip->i_d.di_anextents > 0)
  1521. xfs_trans_set_sync(ntp);
  1522. }
  1523. ASSERT(fork == XFS_DATA_FORK ||
  1524. (fork == XFS_ATTR_FORK &&
  1525. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1526. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1527. /*
  1528. * Since it is possible for space to become allocated beyond
  1529. * the end of the file (in a crash where the space is allocated
  1530. * but the inode size is not yet updated), simply remove any
  1531. * blocks which show up between the new EOF and the maximum
  1532. * possible file size. If the first block to be removed is
  1533. * beyond the maximum file size (ie it is the same as last_block),
  1534. * then there is nothing to do.
  1535. */
  1536. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1537. ASSERT(first_unmap_block <= last_block);
  1538. done = 0;
  1539. if (last_block == first_unmap_block) {
  1540. done = 1;
  1541. } else {
  1542. unmap_len = last_block - first_unmap_block + 1;
  1543. }
  1544. while (!done) {
  1545. /*
  1546. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1547. * will tell us whether it freed the entire range or
  1548. * not. If this is a synchronous mount (wsync),
  1549. * then we can tell bunmapi to keep all the
  1550. * transactions asynchronous since the unlink
  1551. * transaction that made this inode inactive has
  1552. * already hit the disk. There's no danger of
  1553. * the freed blocks being reused, there being a
  1554. * crash, and the reused blocks suddenly reappearing
  1555. * in this file with garbage in them once recovery
  1556. * runs.
  1557. */
  1558. XFS_BMAP_INIT(&free_list, &first_block);
  1559. error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
  1560. first_unmap_block, unmap_len,
  1561. XFS_BMAPI_AFLAG(fork) |
  1562. (sync ? 0 : XFS_BMAPI_ASYNC),
  1563. XFS_ITRUNC_MAX_EXTENTS,
  1564. &first_block, &free_list,
  1565. NULL, &done);
  1566. if (error) {
  1567. /*
  1568. * If the bunmapi call encounters an error,
  1569. * return to the caller where the transaction
  1570. * can be properly aborted. We just need to
  1571. * make sure we're not holding any resources
  1572. * that we were not when we came in.
  1573. */
  1574. xfs_bmap_cancel(&free_list);
  1575. return error;
  1576. }
  1577. /*
  1578. * Duplicate the transaction that has the permanent
  1579. * reservation and commit the old transaction.
  1580. */
  1581. error = xfs_bmap_finish(tp, &free_list, first_block,
  1582. &committed);
  1583. ntp = *tp;
  1584. if (error) {
  1585. /*
  1586. * If the bmap finish call encounters an error,
  1587. * return to the caller where the transaction
  1588. * can be properly aborted. We just need to
  1589. * make sure we're not holding any resources
  1590. * that we were not when we came in.
  1591. *
  1592. * Aborting from this point might lose some
  1593. * blocks in the file system, but oh well.
  1594. */
  1595. xfs_bmap_cancel(&free_list);
  1596. if (committed) {
  1597. /*
  1598. * If the passed in transaction committed
  1599. * in xfs_bmap_finish(), then we want to
  1600. * add the inode to this one before returning.
  1601. * This keeps things simple for the higher
  1602. * level code, because it always knows that
  1603. * the inode is locked and held in the
  1604. * transaction that returns to it whether
  1605. * errors occur or not. We don't mark the
  1606. * inode dirty so that this transaction can
  1607. * be easily aborted if possible.
  1608. */
  1609. xfs_trans_ijoin(ntp, ip,
  1610. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1611. xfs_trans_ihold(ntp, ip);
  1612. }
  1613. return error;
  1614. }
  1615. if (committed) {
  1616. /*
  1617. * The first xact was committed,
  1618. * so add the inode to the new one.
  1619. * Mark it dirty so it will be logged
  1620. * and moved forward in the log as
  1621. * part of every commit.
  1622. */
  1623. xfs_trans_ijoin(ntp, ip,
  1624. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1625. xfs_trans_ihold(ntp, ip);
  1626. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1627. }
  1628. ntp = xfs_trans_dup(ntp);
  1629. (void) xfs_trans_commit(*tp, 0, NULL);
  1630. *tp = ntp;
  1631. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1632. XFS_TRANS_PERM_LOG_RES,
  1633. XFS_ITRUNCATE_LOG_COUNT);
  1634. /*
  1635. * Add the inode being truncated to the next chained
  1636. * transaction.
  1637. */
  1638. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1639. xfs_trans_ihold(ntp, ip);
  1640. if (error)
  1641. return (error);
  1642. }
  1643. /*
  1644. * Only update the size in the case of the data fork, but
  1645. * always re-log the inode so that our permanent transaction
  1646. * can keep on rolling it forward in the log.
  1647. */
  1648. if (fork == XFS_DATA_FORK) {
  1649. xfs_isize_check(mp, ip, new_size);
  1650. ip->i_d.di_size = new_size;
  1651. }
  1652. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1653. ASSERT((new_size != 0) ||
  1654. (fork == XFS_ATTR_FORK) ||
  1655. (ip->i_delayed_blks == 0));
  1656. ASSERT((new_size != 0) ||
  1657. (fork == XFS_ATTR_FORK) ||
  1658. (ip->i_d.di_nextents == 0));
  1659. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1660. return 0;
  1661. }
  1662. /*
  1663. * xfs_igrow_start
  1664. *
  1665. * Do the first part of growing a file: zero any data in the last
  1666. * block that is beyond the old EOF. We need to do this before
  1667. * the inode is joined to the transaction to modify the i_size.
  1668. * That way we can drop the inode lock and call into the buffer
  1669. * cache to get the buffer mapping the EOF.
  1670. */
  1671. int
  1672. xfs_igrow_start(
  1673. xfs_inode_t *ip,
  1674. xfs_fsize_t new_size,
  1675. cred_t *credp)
  1676. {
  1677. int error;
  1678. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1679. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1680. ASSERT(new_size > ip->i_d.di_size);
  1681. /*
  1682. * Zero any pages that may have been created by
  1683. * xfs_write_file() beyond the end of the file
  1684. * and any blocks between the old and new file sizes.
  1685. */
  1686. error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
  1687. ip->i_d.di_size, new_size);
  1688. return error;
  1689. }
  1690. /*
  1691. * xfs_igrow_finish
  1692. *
  1693. * This routine is called to extend the size of a file.
  1694. * The inode must have both the iolock and the ilock locked
  1695. * for update and it must be a part of the current transaction.
  1696. * The xfs_igrow_start() function must have been called previously.
  1697. * If the change_flag is not zero, the inode change timestamp will
  1698. * be updated.
  1699. */
  1700. void
  1701. xfs_igrow_finish(
  1702. xfs_trans_t *tp,
  1703. xfs_inode_t *ip,
  1704. xfs_fsize_t new_size,
  1705. int change_flag)
  1706. {
  1707. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1708. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1709. ASSERT(ip->i_transp == tp);
  1710. ASSERT(new_size > ip->i_d.di_size);
  1711. /*
  1712. * Update the file size. Update the inode change timestamp
  1713. * if change_flag set.
  1714. */
  1715. ip->i_d.di_size = new_size;
  1716. if (change_flag)
  1717. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1718. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1719. }
  1720. /*
  1721. * This is called when the inode's link count goes to 0.
  1722. * We place the on-disk inode on a list in the AGI. It
  1723. * will be pulled from this list when the inode is freed.
  1724. */
  1725. int
  1726. xfs_iunlink(
  1727. xfs_trans_t *tp,
  1728. xfs_inode_t *ip)
  1729. {
  1730. xfs_mount_t *mp;
  1731. xfs_agi_t *agi;
  1732. xfs_dinode_t *dip;
  1733. xfs_buf_t *agibp;
  1734. xfs_buf_t *ibp;
  1735. xfs_agnumber_t agno;
  1736. xfs_daddr_t agdaddr;
  1737. xfs_agino_t agino;
  1738. short bucket_index;
  1739. int offset;
  1740. int error;
  1741. int agi_ok;
  1742. ASSERT(ip->i_d.di_nlink == 0);
  1743. ASSERT(ip->i_d.di_mode != 0);
  1744. ASSERT(ip->i_transp == tp);
  1745. mp = tp->t_mountp;
  1746. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1747. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1748. /*
  1749. * Get the agi buffer first. It ensures lock ordering
  1750. * on the list.
  1751. */
  1752. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1753. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1754. if (error) {
  1755. return error;
  1756. }
  1757. /*
  1758. * Validate the magic number of the agi block.
  1759. */
  1760. agi = XFS_BUF_TO_AGI(agibp);
  1761. agi_ok =
  1762. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1763. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1764. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1765. XFS_RANDOM_IUNLINK))) {
  1766. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1767. xfs_trans_brelse(tp, agibp);
  1768. return XFS_ERROR(EFSCORRUPTED);
  1769. }
  1770. /*
  1771. * Get the index into the agi hash table for the
  1772. * list this inode will go on.
  1773. */
  1774. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1775. ASSERT(agino != 0);
  1776. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1777. ASSERT(agi->agi_unlinked[bucket_index]);
  1778. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1779. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1780. /*
  1781. * There is already another inode in the bucket we need
  1782. * to add ourselves to. Add us at the front of the list.
  1783. * Here we put the head pointer into our next pointer,
  1784. * and then we fall through to point the head at us.
  1785. */
  1786. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1787. if (error) {
  1788. return error;
  1789. }
  1790. ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
  1791. ASSERT(dip->di_next_unlinked);
  1792. /* both on-disk, don't endian flip twice */
  1793. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1794. offset = ip->i_boffset +
  1795. offsetof(xfs_dinode_t, di_next_unlinked);
  1796. xfs_trans_inode_buf(tp, ibp);
  1797. xfs_trans_log_buf(tp, ibp, offset,
  1798. (offset + sizeof(xfs_agino_t) - 1));
  1799. xfs_inobp_check(mp, ibp);
  1800. }
  1801. /*
  1802. * Point the bucket head pointer at the inode being inserted.
  1803. */
  1804. ASSERT(agino != 0);
  1805. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1806. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1807. (sizeof(xfs_agino_t) * bucket_index);
  1808. xfs_trans_log_buf(tp, agibp, offset,
  1809. (offset + sizeof(xfs_agino_t) - 1));
  1810. return 0;
  1811. }
  1812. /*
  1813. * Pull the on-disk inode from the AGI unlinked list.
  1814. */
  1815. STATIC int
  1816. xfs_iunlink_remove(
  1817. xfs_trans_t *tp,
  1818. xfs_inode_t *ip)
  1819. {
  1820. xfs_ino_t next_ino;
  1821. xfs_mount_t *mp;
  1822. xfs_agi_t *agi;
  1823. xfs_dinode_t *dip;
  1824. xfs_buf_t *agibp;
  1825. xfs_buf_t *ibp;
  1826. xfs_agnumber_t agno;
  1827. xfs_daddr_t agdaddr;
  1828. xfs_agino_t agino;
  1829. xfs_agino_t next_agino;
  1830. xfs_buf_t *last_ibp;
  1831. xfs_dinode_t *last_dip;
  1832. short bucket_index;
  1833. int offset, last_offset;
  1834. int error;
  1835. int agi_ok;
  1836. /*
  1837. * First pull the on-disk inode from the AGI unlinked list.
  1838. */
  1839. mp = tp->t_mountp;
  1840. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1841. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1842. /*
  1843. * Get the agi buffer first. It ensures lock ordering
  1844. * on the list.
  1845. */
  1846. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1847. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1848. if (error) {
  1849. cmn_err(CE_WARN,
  1850. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1851. error, mp->m_fsname);
  1852. return error;
  1853. }
  1854. /*
  1855. * Validate the magic number of the agi block.
  1856. */
  1857. agi = XFS_BUF_TO_AGI(agibp);
  1858. agi_ok =
  1859. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1860. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1861. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1862. XFS_RANDOM_IUNLINK_REMOVE))) {
  1863. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1864. mp, agi);
  1865. xfs_trans_brelse(tp, agibp);
  1866. cmn_err(CE_WARN,
  1867. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1868. mp->m_fsname);
  1869. return XFS_ERROR(EFSCORRUPTED);
  1870. }
  1871. /*
  1872. * Get the index into the agi hash table for the
  1873. * list this inode will go on.
  1874. */
  1875. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1876. ASSERT(agino != 0);
  1877. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1878. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1879. ASSERT(agi->agi_unlinked[bucket_index]);
  1880. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1881. /*
  1882. * We're at the head of the list. Get the inode's
  1883. * on-disk buffer to see if there is anyone after us
  1884. * on the list. Only modify our next pointer if it
  1885. * is not already NULLAGINO. This saves us the overhead
  1886. * of dealing with the buffer when there is no need to
  1887. * change it.
  1888. */
  1889. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1890. if (error) {
  1891. cmn_err(CE_WARN,
  1892. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1893. error, mp->m_fsname);
  1894. return error;
  1895. }
  1896. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1897. ASSERT(next_agino != 0);
  1898. if (next_agino != NULLAGINO) {
  1899. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1900. offset = ip->i_boffset +
  1901. offsetof(xfs_dinode_t, di_next_unlinked);
  1902. xfs_trans_inode_buf(tp, ibp);
  1903. xfs_trans_log_buf(tp, ibp, offset,
  1904. (offset + sizeof(xfs_agino_t) - 1));
  1905. xfs_inobp_check(mp, ibp);
  1906. } else {
  1907. xfs_trans_brelse(tp, ibp);
  1908. }
  1909. /*
  1910. * Point the bucket head pointer at the next inode.
  1911. */
  1912. ASSERT(next_agino != 0);
  1913. ASSERT(next_agino != agino);
  1914. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1915. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1916. (sizeof(xfs_agino_t) * bucket_index);
  1917. xfs_trans_log_buf(tp, agibp, offset,
  1918. (offset + sizeof(xfs_agino_t) - 1));
  1919. } else {
  1920. /*
  1921. * We need to search the list for the inode being freed.
  1922. */
  1923. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1924. last_ibp = NULL;
  1925. while (next_agino != agino) {
  1926. /*
  1927. * If the last inode wasn't the one pointing to
  1928. * us, then release its buffer since we're not
  1929. * going to do anything with it.
  1930. */
  1931. if (last_ibp != NULL) {
  1932. xfs_trans_brelse(tp, last_ibp);
  1933. }
  1934. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1935. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1936. &last_ibp, &last_offset);
  1937. if (error) {
  1938. cmn_err(CE_WARN,
  1939. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1940. error, mp->m_fsname);
  1941. return error;
  1942. }
  1943. next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
  1944. ASSERT(next_agino != NULLAGINO);
  1945. ASSERT(next_agino != 0);
  1946. }
  1947. /*
  1948. * Now last_ibp points to the buffer previous to us on
  1949. * the unlinked list. Pull us from the list.
  1950. */
  1951. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1952. if (error) {
  1953. cmn_err(CE_WARN,
  1954. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1955. error, mp->m_fsname);
  1956. return error;
  1957. }
  1958. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1959. ASSERT(next_agino != 0);
  1960. ASSERT(next_agino != agino);
  1961. if (next_agino != NULLAGINO) {
  1962. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1963. offset = ip->i_boffset +
  1964. offsetof(xfs_dinode_t, di_next_unlinked);
  1965. xfs_trans_inode_buf(tp, ibp);
  1966. xfs_trans_log_buf(tp, ibp, offset,
  1967. (offset + sizeof(xfs_agino_t) - 1));
  1968. xfs_inobp_check(mp, ibp);
  1969. } else {
  1970. xfs_trans_brelse(tp, ibp);
  1971. }
  1972. /*
  1973. * Point the previous inode on the list to the next inode.
  1974. */
  1975. INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
  1976. ASSERT(next_agino != 0);
  1977. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1978. xfs_trans_inode_buf(tp, last_ibp);
  1979. xfs_trans_log_buf(tp, last_ibp, offset,
  1980. (offset + sizeof(xfs_agino_t) - 1));
  1981. xfs_inobp_check(mp, last_ibp);
  1982. }
  1983. return 0;
  1984. }
  1985. static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
  1986. {
  1987. return (((ip->i_itemp == NULL) ||
  1988. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  1989. (ip->i_update_core == 0));
  1990. }
  1991. STATIC void
  1992. xfs_ifree_cluster(
  1993. xfs_inode_t *free_ip,
  1994. xfs_trans_t *tp,
  1995. xfs_ino_t inum)
  1996. {
  1997. xfs_mount_t *mp = free_ip->i_mount;
  1998. int blks_per_cluster;
  1999. int nbufs;
  2000. int ninodes;
  2001. int i, j, found, pre_flushed;
  2002. xfs_daddr_t blkno;
  2003. xfs_buf_t *bp;
  2004. xfs_ihash_t *ih;
  2005. xfs_inode_t *ip, **ip_found;
  2006. xfs_inode_log_item_t *iip;
  2007. xfs_log_item_t *lip;
  2008. SPLDECL(s);
  2009. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2010. blks_per_cluster = 1;
  2011. ninodes = mp->m_sb.sb_inopblock;
  2012. nbufs = XFS_IALLOC_BLOCKS(mp);
  2013. } else {
  2014. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2015. mp->m_sb.sb_blocksize;
  2016. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2017. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2018. }
  2019. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2020. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2021. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2022. XFS_INO_TO_AGBNO(mp, inum));
  2023. /*
  2024. * Look for each inode in memory and attempt to lock it,
  2025. * we can be racing with flush and tail pushing here.
  2026. * any inode we get the locks on, add to an array of
  2027. * inode items to process later.
  2028. *
  2029. * The get the buffer lock, we could beat a flush
  2030. * or tail pushing thread to the lock here, in which
  2031. * case they will go looking for the inode buffer
  2032. * and fail, we need some other form of interlock
  2033. * here.
  2034. */
  2035. found = 0;
  2036. for (i = 0; i < ninodes; i++) {
  2037. ih = XFS_IHASH(mp, inum + i);
  2038. read_lock(&ih->ih_lock);
  2039. for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
  2040. if (ip->i_ino == inum + i)
  2041. break;
  2042. }
  2043. /* Inode not in memory or we found it already,
  2044. * nothing to do
  2045. */
  2046. if (!ip || (ip->i_flags & XFS_ISTALE)) {
  2047. read_unlock(&ih->ih_lock);
  2048. continue;
  2049. }
  2050. if (xfs_inode_clean(ip)) {
  2051. read_unlock(&ih->ih_lock);
  2052. continue;
  2053. }
  2054. /* If we can get the locks then add it to the
  2055. * list, otherwise by the time we get the bp lock
  2056. * below it will already be attached to the
  2057. * inode buffer.
  2058. */
  2059. /* This inode will already be locked - by us, lets
  2060. * keep it that way.
  2061. */
  2062. if (ip == free_ip) {
  2063. if (xfs_iflock_nowait(ip)) {
  2064. ip->i_flags |= XFS_ISTALE;
  2065. if (xfs_inode_clean(ip)) {
  2066. xfs_ifunlock(ip);
  2067. } else {
  2068. ip_found[found++] = ip;
  2069. }
  2070. }
  2071. read_unlock(&ih->ih_lock);
  2072. continue;
  2073. }
  2074. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2075. if (xfs_iflock_nowait(ip)) {
  2076. ip->i_flags |= XFS_ISTALE;
  2077. if (xfs_inode_clean(ip)) {
  2078. xfs_ifunlock(ip);
  2079. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2080. } else {
  2081. ip_found[found++] = ip;
  2082. }
  2083. } else {
  2084. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2085. }
  2086. }
  2087. read_unlock(&ih->ih_lock);
  2088. }
  2089. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2090. mp->m_bsize * blks_per_cluster,
  2091. XFS_BUF_LOCK);
  2092. pre_flushed = 0;
  2093. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2094. while (lip) {
  2095. if (lip->li_type == XFS_LI_INODE) {
  2096. iip = (xfs_inode_log_item_t *)lip;
  2097. ASSERT(iip->ili_logged == 1);
  2098. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2099. AIL_LOCK(mp,s);
  2100. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2101. AIL_UNLOCK(mp, s);
  2102. iip->ili_inode->i_flags |= XFS_ISTALE;
  2103. pre_flushed++;
  2104. }
  2105. lip = lip->li_bio_list;
  2106. }
  2107. for (i = 0; i < found; i++) {
  2108. ip = ip_found[i];
  2109. iip = ip->i_itemp;
  2110. if (!iip) {
  2111. ip->i_update_core = 0;
  2112. xfs_ifunlock(ip);
  2113. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2114. continue;
  2115. }
  2116. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2117. iip->ili_format.ilf_fields = 0;
  2118. iip->ili_logged = 1;
  2119. AIL_LOCK(mp,s);
  2120. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2121. AIL_UNLOCK(mp, s);
  2122. xfs_buf_attach_iodone(bp,
  2123. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2124. xfs_istale_done, (xfs_log_item_t *)iip);
  2125. if (ip != free_ip) {
  2126. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2127. }
  2128. }
  2129. if (found || pre_flushed)
  2130. xfs_trans_stale_inode_buf(tp, bp);
  2131. xfs_trans_binval(tp, bp);
  2132. }
  2133. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2134. }
  2135. /*
  2136. * This is called to return an inode to the inode free list.
  2137. * The inode should already be truncated to 0 length and have
  2138. * no pages associated with it. This routine also assumes that
  2139. * the inode is already a part of the transaction.
  2140. *
  2141. * The on-disk copy of the inode will have been added to the list
  2142. * of unlinked inodes in the AGI. We need to remove the inode from
  2143. * that list atomically with respect to freeing it here.
  2144. */
  2145. int
  2146. xfs_ifree(
  2147. xfs_trans_t *tp,
  2148. xfs_inode_t *ip,
  2149. xfs_bmap_free_t *flist)
  2150. {
  2151. int error;
  2152. int delete;
  2153. xfs_ino_t first_ino;
  2154. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2155. ASSERT(ip->i_transp == tp);
  2156. ASSERT(ip->i_d.di_nlink == 0);
  2157. ASSERT(ip->i_d.di_nextents == 0);
  2158. ASSERT(ip->i_d.di_anextents == 0);
  2159. ASSERT((ip->i_d.di_size == 0) ||
  2160. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2161. ASSERT(ip->i_d.di_nblocks == 0);
  2162. /*
  2163. * Pull the on-disk inode from the AGI unlinked list.
  2164. */
  2165. error = xfs_iunlink_remove(tp, ip);
  2166. if (error != 0) {
  2167. return error;
  2168. }
  2169. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2170. if (error != 0) {
  2171. return error;
  2172. }
  2173. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2174. ip->i_d.di_flags = 0;
  2175. ip->i_d.di_dmevmask = 0;
  2176. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2177. ip->i_df.if_ext_max =
  2178. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2179. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2180. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2181. /*
  2182. * Bump the generation count so no one will be confused
  2183. * by reincarnations of this inode.
  2184. */
  2185. ip->i_d.di_gen++;
  2186. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2187. if (delete) {
  2188. xfs_ifree_cluster(ip, tp, first_ino);
  2189. }
  2190. return 0;
  2191. }
  2192. /*
  2193. * Reallocate the space for if_broot based on the number of records
  2194. * being added or deleted as indicated in rec_diff. Move the records
  2195. * and pointers in if_broot to fit the new size. When shrinking this
  2196. * will eliminate holes between the records and pointers created by
  2197. * the caller. When growing this will create holes to be filled in
  2198. * by the caller.
  2199. *
  2200. * The caller must not request to add more records than would fit in
  2201. * the on-disk inode root. If the if_broot is currently NULL, then
  2202. * if we adding records one will be allocated. The caller must also
  2203. * not request that the number of records go below zero, although
  2204. * it can go to zero.
  2205. *
  2206. * ip -- the inode whose if_broot area is changing
  2207. * ext_diff -- the change in the number of records, positive or negative,
  2208. * requested for the if_broot array.
  2209. */
  2210. void
  2211. xfs_iroot_realloc(
  2212. xfs_inode_t *ip,
  2213. int rec_diff,
  2214. int whichfork)
  2215. {
  2216. int cur_max;
  2217. xfs_ifork_t *ifp;
  2218. xfs_bmbt_block_t *new_broot;
  2219. int new_max;
  2220. size_t new_size;
  2221. char *np;
  2222. char *op;
  2223. /*
  2224. * Handle the degenerate case quietly.
  2225. */
  2226. if (rec_diff == 0) {
  2227. return;
  2228. }
  2229. ifp = XFS_IFORK_PTR(ip, whichfork);
  2230. if (rec_diff > 0) {
  2231. /*
  2232. * If there wasn't any memory allocated before, just
  2233. * allocate it now and get out.
  2234. */
  2235. if (ifp->if_broot_bytes == 0) {
  2236. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2237. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2238. KM_SLEEP);
  2239. ifp->if_broot_bytes = (int)new_size;
  2240. return;
  2241. }
  2242. /*
  2243. * If there is already an existing if_broot, then we need
  2244. * to realloc() it and shift the pointers to their new
  2245. * location. The records don't change location because
  2246. * they are kept butted up against the btree block header.
  2247. */
  2248. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2249. new_max = cur_max + rec_diff;
  2250. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2251. ifp->if_broot = (xfs_bmbt_block_t *)
  2252. kmem_realloc(ifp->if_broot,
  2253. new_size,
  2254. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2255. KM_SLEEP);
  2256. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2257. ifp->if_broot_bytes);
  2258. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2259. (int)new_size);
  2260. ifp->if_broot_bytes = (int)new_size;
  2261. ASSERT(ifp->if_broot_bytes <=
  2262. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2263. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2264. return;
  2265. }
  2266. /*
  2267. * rec_diff is less than 0. In this case, we are shrinking the
  2268. * if_broot buffer. It must already exist. If we go to zero
  2269. * records, just get rid of the root and clear the status bit.
  2270. */
  2271. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2272. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2273. new_max = cur_max + rec_diff;
  2274. ASSERT(new_max >= 0);
  2275. if (new_max > 0)
  2276. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2277. else
  2278. new_size = 0;
  2279. if (new_size > 0) {
  2280. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2281. /*
  2282. * First copy over the btree block header.
  2283. */
  2284. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2285. } else {
  2286. new_broot = NULL;
  2287. ifp->if_flags &= ~XFS_IFBROOT;
  2288. }
  2289. /*
  2290. * Only copy the records and pointers if there are any.
  2291. */
  2292. if (new_max > 0) {
  2293. /*
  2294. * First copy the records.
  2295. */
  2296. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2297. ifp->if_broot_bytes);
  2298. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2299. (int)new_size);
  2300. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2301. /*
  2302. * Then copy the pointers.
  2303. */
  2304. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2305. ifp->if_broot_bytes);
  2306. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2307. (int)new_size);
  2308. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2309. }
  2310. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2311. ifp->if_broot = new_broot;
  2312. ifp->if_broot_bytes = (int)new_size;
  2313. ASSERT(ifp->if_broot_bytes <=
  2314. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2315. return;
  2316. }
  2317. /*
  2318. * This is called when the amount of space needed for if_data
  2319. * is increased or decreased. The change in size is indicated by
  2320. * the number of bytes that need to be added or deleted in the
  2321. * byte_diff parameter.
  2322. *
  2323. * If the amount of space needed has decreased below the size of the
  2324. * inline buffer, then switch to using the inline buffer. Otherwise,
  2325. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2326. * to what is needed.
  2327. *
  2328. * ip -- the inode whose if_data area is changing
  2329. * byte_diff -- the change in the number of bytes, positive or negative,
  2330. * requested for the if_data array.
  2331. */
  2332. void
  2333. xfs_idata_realloc(
  2334. xfs_inode_t *ip,
  2335. int byte_diff,
  2336. int whichfork)
  2337. {
  2338. xfs_ifork_t *ifp;
  2339. int new_size;
  2340. int real_size;
  2341. if (byte_diff == 0) {
  2342. return;
  2343. }
  2344. ifp = XFS_IFORK_PTR(ip, whichfork);
  2345. new_size = (int)ifp->if_bytes + byte_diff;
  2346. ASSERT(new_size >= 0);
  2347. if (new_size == 0) {
  2348. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2349. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2350. }
  2351. ifp->if_u1.if_data = NULL;
  2352. real_size = 0;
  2353. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2354. /*
  2355. * If the valid extents/data can fit in if_inline_ext/data,
  2356. * copy them from the malloc'd vector and free it.
  2357. */
  2358. if (ifp->if_u1.if_data == NULL) {
  2359. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2360. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2361. ASSERT(ifp->if_real_bytes != 0);
  2362. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2363. new_size);
  2364. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2365. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2366. }
  2367. real_size = 0;
  2368. } else {
  2369. /*
  2370. * Stuck with malloc/realloc.
  2371. * For inline data, the underlying buffer must be
  2372. * a multiple of 4 bytes in size so that it can be
  2373. * logged and stay on word boundaries. We enforce
  2374. * that here.
  2375. */
  2376. real_size = roundup(new_size, 4);
  2377. if (ifp->if_u1.if_data == NULL) {
  2378. ASSERT(ifp->if_real_bytes == 0);
  2379. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2380. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2381. /*
  2382. * Only do the realloc if the underlying size
  2383. * is really changing.
  2384. */
  2385. if (ifp->if_real_bytes != real_size) {
  2386. ifp->if_u1.if_data =
  2387. kmem_realloc(ifp->if_u1.if_data,
  2388. real_size,
  2389. ifp->if_real_bytes,
  2390. KM_SLEEP);
  2391. }
  2392. } else {
  2393. ASSERT(ifp->if_real_bytes == 0);
  2394. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2395. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2396. ifp->if_bytes);
  2397. }
  2398. }
  2399. ifp->if_real_bytes = real_size;
  2400. ifp->if_bytes = new_size;
  2401. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2402. }
  2403. /*
  2404. * Map inode to disk block and offset.
  2405. *
  2406. * mp -- the mount point structure for the current file system
  2407. * tp -- the current transaction
  2408. * ino -- the inode number of the inode to be located
  2409. * imap -- this structure is filled in with the information necessary
  2410. * to retrieve the given inode from disk
  2411. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2412. * lookups in the inode btree were OK or not
  2413. */
  2414. int
  2415. xfs_imap(
  2416. xfs_mount_t *mp,
  2417. xfs_trans_t *tp,
  2418. xfs_ino_t ino,
  2419. xfs_imap_t *imap,
  2420. uint flags)
  2421. {
  2422. xfs_fsblock_t fsbno;
  2423. int len;
  2424. int off;
  2425. int error;
  2426. fsbno = imap->im_blkno ?
  2427. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2428. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2429. if (error != 0) {
  2430. return error;
  2431. }
  2432. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2433. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2434. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2435. imap->im_ioffset = (ushort)off;
  2436. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2437. return 0;
  2438. }
  2439. void
  2440. xfs_idestroy_fork(
  2441. xfs_inode_t *ip,
  2442. int whichfork)
  2443. {
  2444. xfs_ifork_t *ifp;
  2445. ifp = XFS_IFORK_PTR(ip, whichfork);
  2446. if (ifp->if_broot != NULL) {
  2447. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2448. ifp->if_broot = NULL;
  2449. }
  2450. /*
  2451. * If the format is local, then we can't have an extents
  2452. * array so just look for an inline data array. If we're
  2453. * not local then we may or may not have an extents list,
  2454. * so check and free it up if we do.
  2455. */
  2456. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2457. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2458. (ifp->if_u1.if_data != NULL)) {
  2459. ASSERT(ifp->if_real_bytes != 0);
  2460. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2461. ifp->if_u1.if_data = NULL;
  2462. ifp->if_real_bytes = 0;
  2463. }
  2464. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2465. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2466. ((ifp->if_u1.if_extents != NULL) &&
  2467. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2468. ASSERT(ifp->if_real_bytes != 0);
  2469. xfs_iext_destroy(ifp);
  2470. }
  2471. ASSERT(ifp->if_u1.if_extents == NULL ||
  2472. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2473. ASSERT(ifp->if_real_bytes == 0);
  2474. if (whichfork == XFS_ATTR_FORK) {
  2475. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2476. ip->i_afp = NULL;
  2477. }
  2478. }
  2479. /*
  2480. * This is called free all the memory associated with an inode.
  2481. * It must free the inode itself and any buffers allocated for
  2482. * if_extents/if_data and if_broot. It must also free the lock
  2483. * associated with the inode.
  2484. */
  2485. void
  2486. xfs_idestroy(
  2487. xfs_inode_t *ip)
  2488. {
  2489. switch (ip->i_d.di_mode & S_IFMT) {
  2490. case S_IFREG:
  2491. case S_IFDIR:
  2492. case S_IFLNK:
  2493. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2494. break;
  2495. }
  2496. if (ip->i_afp)
  2497. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2498. mrfree(&ip->i_lock);
  2499. mrfree(&ip->i_iolock);
  2500. freesema(&ip->i_flock);
  2501. #ifdef XFS_BMAP_TRACE
  2502. ktrace_free(ip->i_xtrace);
  2503. #endif
  2504. #ifdef XFS_BMBT_TRACE
  2505. ktrace_free(ip->i_btrace);
  2506. #endif
  2507. #ifdef XFS_RW_TRACE
  2508. ktrace_free(ip->i_rwtrace);
  2509. #endif
  2510. #ifdef XFS_ILOCK_TRACE
  2511. ktrace_free(ip->i_lock_trace);
  2512. #endif
  2513. #ifdef XFS_DIR2_TRACE
  2514. ktrace_free(ip->i_dir_trace);
  2515. #endif
  2516. if (ip->i_itemp) {
  2517. /* XXXdpd should be able to assert this but shutdown
  2518. * is leaving the AIL behind. */
  2519. ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
  2520. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2521. xfs_inode_item_destroy(ip);
  2522. }
  2523. kmem_zone_free(xfs_inode_zone, ip);
  2524. }
  2525. /*
  2526. * Increment the pin count of the given buffer.
  2527. * This value is protected by ipinlock spinlock in the mount structure.
  2528. */
  2529. void
  2530. xfs_ipin(
  2531. xfs_inode_t *ip)
  2532. {
  2533. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2534. atomic_inc(&ip->i_pincount);
  2535. }
  2536. /*
  2537. * Decrement the pin count of the given inode, and wake up
  2538. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2539. * inode must have been previously pinned with a call to xfs_ipin().
  2540. */
  2541. void
  2542. xfs_iunpin(
  2543. xfs_inode_t *ip)
  2544. {
  2545. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2546. if (atomic_dec_and_test(&ip->i_pincount)) {
  2547. /*
  2548. * If the inode is currently being reclaimed, the
  2549. * linux inode _and_ the xfs vnode may have been
  2550. * freed so we cannot reference either of them safely.
  2551. * Hence we should not try to do anything to them
  2552. * if the xfs inode is currently in the reclaim
  2553. * path.
  2554. *
  2555. * However, we still need to issue the unpin wakeup
  2556. * call as the inode reclaim may be blocked waiting for
  2557. * the inode to become unpinned.
  2558. */
  2559. if (!(ip->i_flags & (XFS_IRECLAIM|XFS_IRECLAIMABLE))) {
  2560. vnode_t *vp = XFS_ITOV_NULL(ip);
  2561. /* make sync come back and flush this inode */
  2562. if (vp) {
  2563. struct inode *inode = vn_to_inode(vp);
  2564. if (!(inode->i_state & I_NEW))
  2565. mark_inode_dirty_sync(inode);
  2566. }
  2567. }
  2568. wake_up(&ip->i_ipin_wait);
  2569. }
  2570. }
  2571. /*
  2572. * This is called to wait for the given inode to be unpinned.
  2573. * It will sleep until this happens. The caller must have the
  2574. * inode locked in at least shared mode so that the buffer cannot
  2575. * be subsequently pinned once someone is waiting for it to be
  2576. * unpinned.
  2577. */
  2578. STATIC void
  2579. xfs_iunpin_wait(
  2580. xfs_inode_t *ip)
  2581. {
  2582. xfs_inode_log_item_t *iip;
  2583. xfs_lsn_t lsn;
  2584. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2585. if (atomic_read(&ip->i_pincount) == 0) {
  2586. return;
  2587. }
  2588. iip = ip->i_itemp;
  2589. if (iip && iip->ili_last_lsn) {
  2590. lsn = iip->ili_last_lsn;
  2591. } else {
  2592. lsn = (xfs_lsn_t)0;
  2593. }
  2594. /*
  2595. * Give the log a push so we don't wait here too long.
  2596. */
  2597. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2598. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2599. }
  2600. /*
  2601. * xfs_iextents_copy()
  2602. *
  2603. * This is called to copy the REAL extents (as opposed to the delayed
  2604. * allocation extents) from the inode into the given buffer. It
  2605. * returns the number of bytes copied into the buffer.
  2606. *
  2607. * If there are no delayed allocation extents, then we can just
  2608. * memcpy() the extents into the buffer. Otherwise, we need to
  2609. * examine each extent in turn and skip those which are delayed.
  2610. */
  2611. int
  2612. xfs_iextents_copy(
  2613. xfs_inode_t *ip,
  2614. xfs_bmbt_rec_t *buffer,
  2615. int whichfork)
  2616. {
  2617. int copied;
  2618. xfs_bmbt_rec_t *dest_ep;
  2619. xfs_bmbt_rec_t *ep;
  2620. #ifdef XFS_BMAP_TRACE
  2621. static char fname[] = "xfs_iextents_copy";
  2622. #endif
  2623. int i;
  2624. xfs_ifork_t *ifp;
  2625. int nrecs;
  2626. xfs_fsblock_t start_block;
  2627. ifp = XFS_IFORK_PTR(ip, whichfork);
  2628. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2629. ASSERT(ifp->if_bytes > 0);
  2630. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2631. xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
  2632. ASSERT(nrecs > 0);
  2633. /*
  2634. * There are some delayed allocation extents in the
  2635. * inode, so copy the extents one at a time and skip
  2636. * the delayed ones. There must be at least one
  2637. * non-delayed extent.
  2638. */
  2639. dest_ep = buffer;
  2640. copied = 0;
  2641. for (i = 0; i < nrecs; i++) {
  2642. ep = xfs_iext_get_ext(ifp, i);
  2643. start_block = xfs_bmbt_get_startblock(ep);
  2644. if (ISNULLSTARTBLOCK(start_block)) {
  2645. /*
  2646. * It's a delayed allocation extent, so skip it.
  2647. */
  2648. continue;
  2649. }
  2650. /* Translate to on disk format */
  2651. put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
  2652. (__uint64_t*)&dest_ep->l0);
  2653. put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
  2654. (__uint64_t*)&dest_ep->l1);
  2655. dest_ep++;
  2656. copied++;
  2657. }
  2658. ASSERT(copied != 0);
  2659. xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
  2660. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2661. }
  2662. /*
  2663. * Each of the following cases stores data into the same region
  2664. * of the on-disk inode, so only one of them can be valid at
  2665. * any given time. While it is possible to have conflicting formats
  2666. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2667. * in EXTENTS format, this can only happen when the fork has
  2668. * changed formats after being modified but before being flushed.
  2669. * In these cases, the format always takes precedence, because the
  2670. * format indicates the current state of the fork.
  2671. */
  2672. /*ARGSUSED*/
  2673. STATIC int
  2674. xfs_iflush_fork(
  2675. xfs_inode_t *ip,
  2676. xfs_dinode_t *dip,
  2677. xfs_inode_log_item_t *iip,
  2678. int whichfork,
  2679. xfs_buf_t *bp)
  2680. {
  2681. char *cp;
  2682. xfs_ifork_t *ifp;
  2683. xfs_mount_t *mp;
  2684. #ifdef XFS_TRANS_DEBUG
  2685. int first;
  2686. #endif
  2687. static const short brootflag[2] =
  2688. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2689. static const short dataflag[2] =
  2690. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2691. static const short extflag[2] =
  2692. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2693. if (iip == NULL)
  2694. return 0;
  2695. ifp = XFS_IFORK_PTR(ip, whichfork);
  2696. /*
  2697. * This can happen if we gave up in iformat in an error path,
  2698. * for the attribute fork.
  2699. */
  2700. if (ifp == NULL) {
  2701. ASSERT(whichfork == XFS_ATTR_FORK);
  2702. return 0;
  2703. }
  2704. cp = XFS_DFORK_PTR(dip, whichfork);
  2705. mp = ip->i_mount;
  2706. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2707. case XFS_DINODE_FMT_LOCAL:
  2708. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2709. (ifp->if_bytes > 0)) {
  2710. ASSERT(ifp->if_u1.if_data != NULL);
  2711. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2712. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2713. }
  2714. if (whichfork == XFS_DATA_FORK) {
  2715. if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
  2716. XFS_ERROR_REPORT("xfs_iflush_fork",
  2717. XFS_ERRLEVEL_LOW, mp);
  2718. return XFS_ERROR(EFSCORRUPTED);
  2719. }
  2720. }
  2721. break;
  2722. case XFS_DINODE_FMT_EXTENTS:
  2723. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2724. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2725. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2726. (ifp->if_bytes == 0));
  2727. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2728. (ifp->if_bytes > 0));
  2729. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2730. (ifp->if_bytes > 0)) {
  2731. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2732. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2733. whichfork);
  2734. }
  2735. break;
  2736. case XFS_DINODE_FMT_BTREE:
  2737. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2738. (ifp->if_broot_bytes > 0)) {
  2739. ASSERT(ifp->if_broot != NULL);
  2740. ASSERT(ifp->if_broot_bytes <=
  2741. (XFS_IFORK_SIZE(ip, whichfork) +
  2742. XFS_BROOT_SIZE_ADJ));
  2743. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2744. (xfs_bmdr_block_t *)cp,
  2745. XFS_DFORK_SIZE(dip, mp, whichfork));
  2746. }
  2747. break;
  2748. case XFS_DINODE_FMT_DEV:
  2749. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2750. ASSERT(whichfork == XFS_DATA_FORK);
  2751. INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
  2752. }
  2753. break;
  2754. case XFS_DINODE_FMT_UUID:
  2755. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2756. ASSERT(whichfork == XFS_DATA_FORK);
  2757. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2758. sizeof(uuid_t));
  2759. }
  2760. break;
  2761. default:
  2762. ASSERT(0);
  2763. break;
  2764. }
  2765. return 0;
  2766. }
  2767. /*
  2768. * xfs_iflush() will write a modified inode's changes out to the
  2769. * inode's on disk home. The caller must have the inode lock held
  2770. * in at least shared mode and the inode flush semaphore must be
  2771. * held as well. The inode lock will still be held upon return from
  2772. * the call and the caller is free to unlock it.
  2773. * The inode flush lock will be unlocked when the inode reaches the disk.
  2774. * The flags indicate how the inode's buffer should be written out.
  2775. */
  2776. int
  2777. xfs_iflush(
  2778. xfs_inode_t *ip,
  2779. uint flags)
  2780. {
  2781. xfs_inode_log_item_t *iip;
  2782. xfs_buf_t *bp;
  2783. xfs_dinode_t *dip;
  2784. xfs_mount_t *mp;
  2785. int error;
  2786. /* REFERENCED */
  2787. xfs_chash_t *ch;
  2788. xfs_inode_t *iq;
  2789. int clcount; /* count of inodes clustered */
  2790. int bufwasdelwri;
  2791. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2792. SPLDECL(s);
  2793. XFS_STATS_INC(xs_iflush_count);
  2794. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2795. ASSERT(valusema(&ip->i_flock) <= 0);
  2796. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2797. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2798. iip = ip->i_itemp;
  2799. mp = ip->i_mount;
  2800. /*
  2801. * If the inode isn't dirty, then just release the inode
  2802. * flush lock and do nothing.
  2803. */
  2804. if ((ip->i_update_core == 0) &&
  2805. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2806. ASSERT((iip != NULL) ?
  2807. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2808. xfs_ifunlock(ip);
  2809. return 0;
  2810. }
  2811. /*
  2812. * We can't flush the inode until it is unpinned, so
  2813. * wait for it. We know noone new can pin it, because
  2814. * we are holding the inode lock shared and you need
  2815. * to hold it exclusively to pin the inode.
  2816. */
  2817. xfs_iunpin_wait(ip);
  2818. /*
  2819. * This may have been unpinned because the filesystem is shutting
  2820. * down forcibly. If that's the case we must not write this inode
  2821. * to disk, because the log record didn't make it to disk!
  2822. */
  2823. if (XFS_FORCED_SHUTDOWN(mp)) {
  2824. ip->i_update_core = 0;
  2825. if (iip)
  2826. iip->ili_format.ilf_fields = 0;
  2827. xfs_ifunlock(ip);
  2828. return XFS_ERROR(EIO);
  2829. }
  2830. /*
  2831. * Get the buffer containing the on-disk inode.
  2832. */
  2833. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2834. if (error) {
  2835. xfs_ifunlock(ip);
  2836. return error;
  2837. }
  2838. /*
  2839. * Decide how buffer will be flushed out. This is done before
  2840. * the call to xfs_iflush_int because this field is zeroed by it.
  2841. */
  2842. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2843. /*
  2844. * Flush out the inode buffer according to the directions
  2845. * of the caller. In the cases where the caller has given
  2846. * us a choice choose the non-delwri case. This is because
  2847. * the inode is in the AIL and we need to get it out soon.
  2848. */
  2849. switch (flags) {
  2850. case XFS_IFLUSH_SYNC:
  2851. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2852. flags = 0;
  2853. break;
  2854. case XFS_IFLUSH_ASYNC:
  2855. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2856. flags = INT_ASYNC;
  2857. break;
  2858. case XFS_IFLUSH_DELWRI:
  2859. flags = INT_DELWRI;
  2860. break;
  2861. default:
  2862. ASSERT(0);
  2863. flags = 0;
  2864. break;
  2865. }
  2866. } else {
  2867. switch (flags) {
  2868. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2869. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2870. case XFS_IFLUSH_DELWRI:
  2871. flags = INT_DELWRI;
  2872. break;
  2873. case XFS_IFLUSH_ASYNC:
  2874. flags = INT_ASYNC;
  2875. break;
  2876. case XFS_IFLUSH_SYNC:
  2877. flags = 0;
  2878. break;
  2879. default:
  2880. ASSERT(0);
  2881. flags = 0;
  2882. break;
  2883. }
  2884. }
  2885. /*
  2886. * First flush out the inode that xfs_iflush was called with.
  2887. */
  2888. error = xfs_iflush_int(ip, bp);
  2889. if (error) {
  2890. goto corrupt_out;
  2891. }
  2892. /*
  2893. * inode clustering:
  2894. * see if other inodes can be gathered into this write
  2895. */
  2896. ip->i_chash->chl_buf = bp;
  2897. ch = XFS_CHASH(mp, ip->i_blkno);
  2898. s = mutex_spinlock(&ch->ch_lock);
  2899. clcount = 0;
  2900. for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
  2901. /*
  2902. * Do an un-protected check to see if the inode is dirty and
  2903. * is a candidate for flushing. These checks will be repeated
  2904. * later after the appropriate locks are acquired.
  2905. */
  2906. iip = iq->i_itemp;
  2907. if ((iq->i_update_core == 0) &&
  2908. ((iip == NULL) ||
  2909. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2910. xfs_ipincount(iq) == 0) {
  2911. continue;
  2912. }
  2913. /*
  2914. * Try to get locks. If any are unavailable,
  2915. * then this inode cannot be flushed and is skipped.
  2916. */
  2917. /* get inode locks (just i_lock) */
  2918. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2919. /* get inode flush lock */
  2920. if (xfs_iflock_nowait(iq)) {
  2921. /* check if pinned */
  2922. if (xfs_ipincount(iq) == 0) {
  2923. /* arriving here means that
  2924. * this inode can be flushed.
  2925. * first re-check that it's
  2926. * dirty
  2927. */
  2928. iip = iq->i_itemp;
  2929. if ((iq->i_update_core != 0)||
  2930. ((iip != NULL) &&
  2931. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2932. clcount++;
  2933. error = xfs_iflush_int(iq, bp);
  2934. if (error) {
  2935. xfs_iunlock(iq,
  2936. XFS_ILOCK_SHARED);
  2937. goto cluster_corrupt_out;
  2938. }
  2939. } else {
  2940. xfs_ifunlock(iq);
  2941. }
  2942. } else {
  2943. xfs_ifunlock(iq);
  2944. }
  2945. }
  2946. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2947. }
  2948. }
  2949. mutex_spinunlock(&ch->ch_lock, s);
  2950. if (clcount) {
  2951. XFS_STATS_INC(xs_icluster_flushcnt);
  2952. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2953. }
  2954. /*
  2955. * If the buffer is pinned then push on the log so we won't
  2956. * get stuck waiting in the write for too long.
  2957. */
  2958. if (XFS_BUF_ISPINNED(bp)){
  2959. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  2960. }
  2961. if (flags & INT_DELWRI) {
  2962. xfs_bdwrite(mp, bp);
  2963. } else if (flags & INT_ASYNC) {
  2964. xfs_bawrite(mp, bp);
  2965. } else {
  2966. error = xfs_bwrite(mp, bp);
  2967. }
  2968. return error;
  2969. corrupt_out:
  2970. xfs_buf_relse(bp);
  2971. xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
  2972. xfs_iflush_abort(ip);
  2973. /*
  2974. * Unlocks the flush lock
  2975. */
  2976. return XFS_ERROR(EFSCORRUPTED);
  2977. cluster_corrupt_out:
  2978. /* Corruption detected in the clustering loop. Invalidate the
  2979. * inode buffer and shut down the filesystem.
  2980. */
  2981. mutex_spinunlock(&ch->ch_lock, s);
  2982. /*
  2983. * Clean up the buffer. If it was B_DELWRI, just release it --
  2984. * brelse can handle it with no problems. If not, shut down the
  2985. * filesystem before releasing the buffer.
  2986. */
  2987. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  2988. xfs_buf_relse(bp);
  2989. }
  2990. xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
  2991. if(!bufwasdelwri) {
  2992. /*
  2993. * Just like incore_relse: if we have b_iodone functions,
  2994. * mark the buffer as an error and call them. Otherwise
  2995. * mark it as stale and brelse.
  2996. */
  2997. if (XFS_BUF_IODONE_FUNC(bp)) {
  2998. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2999. XFS_BUF_UNDONE(bp);
  3000. XFS_BUF_STALE(bp);
  3001. XFS_BUF_SHUT(bp);
  3002. XFS_BUF_ERROR(bp,EIO);
  3003. xfs_biodone(bp);
  3004. } else {
  3005. XFS_BUF_STALE(bp);
  3006. xfs_buf_relse(bp);
  3007. }
  3008. }
  3009. xfs_iflush_abort(iq);
  3010. /*
  3011. * Unlocks the flush lock
  3012. */
  3013. return XFS_ERROR(EFSCORRUPTED);
  3014. }
  3015. STATIC int
  3016. xfs_iflush_int(
  3017. xfs_inode_t *ip,
  3018. xfs_buf_t *bp)
  3019. {
  3020. xfs_inode_log_item_t *iip;
  3021. xfs_dinode_t *dip;
  3022. xfs_mount_t *mp;
  3023. #ifdef XFS_TRANS_DEBUG
  3024. int first;
  3025. #endif
  3026. SPLDECL(s);
  3027. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3028. ASSERT(valusema(&ip->i_flock) <= 0);
  3029. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3030. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3031. iip = ip->i_itemp;
  3032. mp = ip->i_mount;
  3033. /*
  3034. * If the inode isn't dirty, then just release the inode
  3035. * flush lock and do nothing.
  3036. */
  3037. if ((ip->i_update_core == 0) &&
  3038. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3039. xfs_ifunlock(ip);
  3040. return 0;
  3041. }
  3042. /* set *dip = inode's place in the buffer */
  3043. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3044. /*
  3045. * Clear i_update_core before copying out the data.
  3046. * This is for coordination with our timestamp updates
  3047. * that don't hold the inode lock. They will always
  3048. * update the timestamps BEFORE setting i_update_core,
  3049. * so if we clear i_update_core after they set it we
  3050. * are guaranteed to see their updates to the timestamps.
  3051. * I believe that this depends on strongly ordered memory
  3052. * semantics, but we have that. We use the SYNCHRONIZE
  3053. * macro to make sure that the compiler does not reorder
  3054. * the i_update_core access below the data copy below.
  3055. */
  3056. ip->i_update_core = 0;
  3057. SYNCHRONIZE();
  3058. /*
  3059. * Make sure to get the latest atime from the Linux inode.
  3060. */
  3061. xfs_synchronize_atime(ip);
  3062. if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
  3063. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3064. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3065. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3066. ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
  3067. goto corrupt_out;
  3068. }
  3069. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3070. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3071. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3072. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3073. ip->i_ino, ip, ip->i_d.di_magic);
  3074. goto corrupt_out;
  3075. }
  3076. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3077. if (XFS_TEST_ERROR(
  3078. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3079. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3080. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3081. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3082. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3083. ip->i_ino, ip);
  3084. goto corrupt_out;
  3085. }
  3086. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3087. if (XFS_TEST_ERROR(
  3088. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3089. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3090. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3091. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3092. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3093. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3094. ip->i_ino, ip);
  3095. goto corrupt_out;
  3096. }
  3097. }
  3098. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3099. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3100. XFS_RANDOM_IFLUSH_5)) {
  3101. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3102. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3103. ip->i_ino,
  3104. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3105. ip->i_d.di_nblocks,
  3106. ip);
  3107. goto corrupt_out;
  3108. }
  3109. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3110. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3111. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3112. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3113. ip->i_ino, ip->i_d.di_forkoff, ip);
  3114. goto corrupt_out;
  3115. }
  3116. /*
  3117. * bump the flush iteration count, used to detect flushes which
  3118. * postdate a log record during recovery.
  3119. */
  3120. ip->i_d.di_flushiter++;
  3121. /*
  3122. * Copy the dirty parts of the inode into the on-disk
  3123. * inode. We always copy out the core of the inode,
  3124. * because if the inode is dirty at all the core must
  3125. * be.
  3126. */
  3127. xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
  3128. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3129. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3130. ip->i_d.di_flushiter = 0;
  3131. /*
  3132. * If this is really an old format inode and the superblock version
  3133. * has not been updated to support only new format inodes, then
  3134. * convert back to the old inode format. If the superblock version
  3135. * has been updated, then make the conversion permanent.
  3136. */
  3137. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3138. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3139. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3140. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3141. /*
  3142. * Convert it back.
  3143. */
  3144. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3145. INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
  3146. } else {
  3147. /*
  3148. * The superblock version has already been bumped,
  3149. * so just make the conversion to the new inode
  3150. * format permanent.
  3151. */
  3152. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3153. INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
  3154. ip->i_d.di_onlink = 0;
  3155. dip->di_core.di_onlink = 0;
  3156. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3157. memset(&(dip->di_core.di_pad[0]), 0,
  3158. sizeof(dip->di_core.di_pad));
  3159. ASSERT(ip->i_d.di_projid == 0);
  3160. }
  3161. }
  3162. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3163. goto corrupt_out;
  3164. }
  3165. if (XFS_IFORK_Q(ip)) {
  3166. /*
  3167. * The only error from xfs_iflush_fork is on the data fork.
  3168. */
  3169. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3170. }
  3171. xfs_inobp_check(mp, bp);
  3172. /*
  3173. * We've recorded everything logged in the inode, so we'd
  3174. * like to clear the ilf_fields bits so we don't log and
  3175. * flush things unnecessarily. However, we can't stop
  3176. * logging all this information until the data we've copied
  3177. * into the disk buffer is written to disk. If we did we might
  3178. * overwrite the copy of the inode in the log with all the
  3179. * data after re-logging only part of it, and in the face of
  3180. * a crash we wouldn't have all the data we need to recover.
  3181. *
  3182. * What we do is move the bits to the ili_last_fields field.
  3183. * When logging the inode, these bits are moved back to the
  3184. * ilf_fields field. In the xfs_iflush_done() routine we
  3185. * clear ili_last_fields, since we know that the information
  3186. * those bits represent is permanently on disk. As long as
  3187. * the flush completes before the inode is logged again, then
  3188. * both ilf_fields and ili_last_fields will be cleared.
  3189. *
  3190. * We can play with the ilf_fields bits here, because the inode
  3191. * lock must be held exclusively in order to set bits there
  3192. * and the flush lock protects the ili_last_fields bits.
  3193. * Set ili_logged so the flush done
  3194. * routine can tell whether or not to look in the AIL.
  3195. * Also, store the current LSN of the inode so that we can tell
  3196. * whether the item has moved in the AIL from xfs_iflush_done().
  3197. * In order to read the lsn we need the AIL lock, because
  3198. * it is a 64 bit value that cannot be read atomically.
  3199. */
  3200. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3201. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3202. iip->ili_format.ilf_fields = 0;
  3203. iip->ili_logged = 1;
  3204. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3205. AIL_LOCK(mp,s);
  3206. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3207. AIL_UNLOCK(mp, s);
  3208. /*
  3209. * Attach the function xfs_iflush_done to the inode's
  3210. * buffer. This will remove the inode from the AIL
  3211. * and unlock the inode's flush lock when the inode is
  3212. * completely written to disk.
  3213. */
  3214. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3215. xfs_iflush_done, (xfs_log_item_t *)iip);
  3216. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3217. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3218. } else {
  3219. /*
  3220. * We're flushing an inode which is not in the AIL and has
  3221. * not been logged but has i_update_core set. For this
  3222. * case we can use a B_DELWRI flush and immediately drop
  3223. * the inode flush lock because we can avoid the whole
  3224. * AIL state thing. It's OK to drop the flush lock now,
  3225. * because we've already locked the buffer and to do anything
  3226. * you really need both.
  3227. */
  3228. if (iip != NULL) {
  3229. ASSERT(iip->ili_logged == 0);
  3230. ASSERT(iip->ili_last_fields == 0);
  3231. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3232. }
  3233. xfs_ifunlock(ip);
  3234. }
  3235. return 0;
  3236. corrupt_out:
  3237. return XFS_ERROR(EFSCORRUPTED);
  3238. }
  3239. /*
  3240. * Flush all inactive inodes in mp.
  3241. */
  3242. void
  3243. xfs_iflush_all(
  3244. xfs_mount_t *mp)
  3245. {
  3246. xfs_inode_t *ip;
  3247. vnode_t *vp;
  3248. again:
  3249. XFS_MOUNT_ILOCK(mp);
  3250. ip = mp->m_inodes;
  3251. if (ip == NULL)
  3252. goto out;
  3253. do {
  3254. /* Make sure we skip markers inserted by sync */
  3255. if (ip->i_mount == NULL) {
  3256. ip = ip->i_mnext;
  3257. continue;
  3258. }
  3259. vp = XFS_ITOV_NULL(ip);
  3260. if (!vp) {
  3261. XFS_MOUNT_IUNLOCK(mp);
  3262. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3263. goto again;
  3264. }
  3265. ASSERT(vn_count(vp) == 0);
  3266. ip = ip->i_mnext;
  3267. } while (ip != mp->m_inodes);
  3268. out:
  3269. XFS_MOUNT_IUNLOCK(mp);
  3270. }
  3271. /*
  3272. * xfs_iaccess: check accessibility of inode for mode.
  3273. */
  3274. int
  3275. xfs_iaccess(
  3276. xfs_inode_t *ip,
  3277. mode_t mode,
  3278. cred_t *cr)
  3279. {
  3280. int error;
  3281. mode_t orgmode = mode;
  3282. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3283. if (mode & S_IWUSR) {
  3284. umode_t imode = inode->i_mode;
  3285. if (IS_RDONLY(inode) &&
  3286. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3287. return XFS_ERROR(EROFS);
  3288. if (IS_IMMUTABLE(inode))
  3289. return XFS_ERROR(EACCES);
  3290. }
  3291. /*
  3292. * If there's an Access Control List it's used instead of
  3293. * the mode bits.
  3294. */
  3295. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3296. return error ? XFS_ERROR(error) : 0;
  3297. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3298. mode >>= 3;
  3299. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3300. mode >>= 3;
  3301. }
  3302. /*
  3303. * If the DACs are ok we don't need any capability check.
  3304. */
  3305. if ((ip->i_d.di_mode & mode) == mode)
  3306. return 0;
  3307. /*
  3308. * Read/write DACs are always overridable.
  3309. * Executable DACs are overridable if at least one exec bit is set.
  3310. */
  3311. if (!(orgmode & S_IXUSR) ||
  3312. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3313. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3314. return 0;
  3315. if ((orgmode == S_IRUSR) ||
  3316. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3317. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3318. return 0;
  3319. #ifdef NOISE
  3320. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3321. #endif /* NOISE */
  3322. return XFS_ERROR(EACCES);
  3323. }
  3324. return XFS_ERROR(EACCES);
  3325. }
  3326. /*
  3327. * xfs_iroundup: round up argument to next power of two
  3328. */
  3329. uint
  3330. xfs_iroundup(
  3331. uint v)
  3332. {
  3333. int i;
  3334. uint m;
  3335. if ((v & (v - 1)) == 0)
  3336. return v;
  3337. ASSERT((v & 0x80000000) == 0);
  3338. if ((v & (v + 1)) == 0)
  3339. return v + 1;
  3340. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3341. if (v & m)
  3342. continue;
  3343. v |= m;
  3344. if ((v & (v + 1)) == 0)
  3345. return v + 1;
  3346. }
  3347. ASSERT(0);
  3348. return( 0 );
  3349. }
  3350. #ifdef XFS_ILOCK_TRACE
  3351. ktrace_t *xfs_ilock_trace_buf;
  3352. void
  3353. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3354. {
  3355. ktrace_enter(ip->i_lock_trace,
  3356. (void *)ip,
  3357. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3358. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3359. (void *)ra, /* caller of ilock */
  3360. (void *)(unsigned long)current_cpu(),
  3361. (void *)(unsigned long)current_pid(),
  3362. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3363. }
  3364. #endif
  3365. /*
  3366. * Return a pointer to the extent record at file index idx.
  3367. */
  3368. xfs_bmbt_rec_t *
  3369. xfs_iext_get_ext(
  3370. xfs_ifork_t *ifp, /* inode fork pointer */
  3371. xfs_extnum_t idx) /* index of target extent */
  3372. {
  3373. ASSERT(idx >= 0);
  3374. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3375. return ifp->if_u1.if_ext_irec->er_extbuf;
  3376. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3377. xfs_ext_irec_t *erp; /* irec pointer */
  3378. int erp_idx = 0; /* irec index */
  3379. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3380. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3381. return &erp->er_extbuf[page_idx];
  3382. } else if (ifp->if_bytes) {
  3383. return &ifp->if_u1.if_extents[idx];
  3384. } else {
  3385. return NULL;
  3386. }
  3387. }
  3388. /*
  3389. * Insert new item(s) into the extent records for incore inode
  3390. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3391. */
  3392. void
  3393. xfs_iext_insert(
  3394. xfs_ifork_t *ifp, /* inode fork pointer */
  3395. xfs_extnum_t idx, /* starting index of new items */
  3396. xfs_extnum_t count, /* number of inserted items */
  3397. xfs_bmbt_irec_t *new) /* items to insert */
  3398. {
  3399. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3400. xfs_extnum_t i; /* extent record index */
  3401. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3402. xfs_iext_add(ifp, idx, count);
  3403. for (i = idx; i < idx + count; i++, new++) {
  3404. ep = xfs_iext_get_ext(ifp, i);
  3405. xfs_bmbt_set_all(ep, new);
  3406. }
  3407. }
  3408. /*
  3409. * This is called when the amount of space required for incore file
  3410. * extents needs to be increased. The ext_diff parameter stores the
  3411. * number of new extents being added and the idx parameter contains
  3412. * the extent index where the new extents will be added. If the new
  3413. * extents are being appended, then we just need to (re)allocate and
  3414. * initialize the space. Otherwise, if the new extents are being
  3415. * inserted into the middle of the existing entries, a bit more work
  3416. * is required to make room for the new extents to be inserted. The
  3417. * caller is responsible for filling in the new extent entries upon
  3418. * return.
  3419. */
  3420. void
  3421. xfs_iext_add(
  3422. xfs_ifork_t *ifp, /* inode fork pointer */
  3423. xfs_extnum_t idx, /* index to begin adding exts */
  3424. int ext_diff) /* number of extents to add */
  3425. {
  3426. int byte_diff; /* new bytes being added */
  3427. int new_size; /* size of extents after adding */
  3428. xfs_extnum_t nextents; /* number of extents in file */
  3429. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3430. ASSERT((idx >= 0) && (idx <= nextents));
  3431. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3432. new_size = ifp->if_bytes + byte_diff;
  3433. /*
  3434. * If the new number of extents (nextents + ext_diff)
  3435. * fits inside the inode, then continue to use the inline
  3436. * extent buffer.
  3437. */
  3438. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3439. if (idx < nextents) {
  3440. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3441. &ifp->if_u2.if_inline_ext[idx],
  3442. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3443. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3444. }
  3445. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3446. ifp->if_real_bytes = 0;
  3447. ifp->if_lastex = nextents + ext_diff;
  3448. }
  3449. /*
  3450. * Otherwise use a linear (direct) extent list.
  3451. * If the extents are currently inside the inode,
  3452. * xfs_iext_realloc_direct will switch us from
  3453. * inline to direct extent allocation mode.
  3454. */
  3455. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3456. xfs_iext_realloc_direct(ifp, new_size);
  3457. if (idx < nextents) {
  3458. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3459. &ifp->if_u1.if_extents[idx],
  3460. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3461. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3462. }
  3463. }
  3464. /* Indirection array */
  3465. else {
  3466. xfs_ext_irec_t *erp;
  3467. int erp_idx = 0;
  3468. int page_idx = idx;
  3469. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3470. if (ifp->if_flags & XFS_IFEXTIREC) {
  3471. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3472. } else {
  3473. xfs_iext_irec_init(ifp);
  3474. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3475. erp = ifp->if_u1.if_ext_irec;
  3476. }
  3477. /* Extents fit in target extent page */
  3478. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3479. if (page_idx < erp->er_extcount) {
  3480. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3481. &erp->er_extbuf[page_idx],
  3482. (erp->er_extcount - page_idx) *
  3483. sizeof(xfs_bmbt_rec_t));
  3484. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3485. }
  3486. erp->er_extcount += ext_diff;
  3487. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3488. }
  3489. /* Insert a new extent page */
  3490. else if (erp) {
  3491. xfs_iext_add_indirect_multi(ifp,
  3492. erp_idx, page_idx, ext_diff);
  3493. }
  3494. /*
  3495. * If extent(s) are being appended to the last page in
  3496. * the indirection array and the new extent(s) don't fit
  3497. * in the page, then erp is NULL and erp_idx is set to
  3498. * the next index needed in the indirection array.
  3499. */
  3500. else {
  3501. int count = ext_diff;
  3502. while (count) {
  3503. erp = xfs_iext_irec_new(ifp, erp_idx);
  3504. erp->er_extcount = count;
  3505. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3506. if (count) {
  3507. erp_idx++;
  3508. }
  3509. }
  3510. }
  3511. }
  3512. ifp->if_bytes = new_size;
  3513. }
  3514. /*
  3515. * This is called when incore extents are being added to the indirection
  3516. * array and the new extents do not fit in the target extent list. The
  3517. * erp_idx parameter contains the irec index for the target extent list
  3518. * in the indirection array, and the idx parameter contains the extent
  3519. * index within the list. The number of extents being added is stored
  3520. * in the count parameter.
  3521. *
  3522. * |-------| |-------|
  3523. * | | | | idx - number of extents before idx
  3524. * | idx | | count |
  3525. * | | | | count - number of extents being inserted at idx
  3526. * |-------| |-------|
  3527. * | count | | nex2 | nex2 - number of extents after idx + count
  3528. * |-------| |-------|
  3529. */
  3530. void
  3531. xfs_iext_add_indirect_multi(
  3532. xfs_ifork_t *ifp, /* inode fork pointer */
  3533. int erp_idx, /* target extent irec index */
  3534. xfs_extnum_t idx, /* index within target list */
  3535. int count) /* new extents being added */
  3536. {
  3537. int byte_diff; /* new bytes being added */
  3538. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3539. xfs_extnum_t ext_diff; /* number of extents to add */
  3540. xfs_extnum_t ext_cnt; /* new extents still needed */
  3541. xfs_extnum_t nex2; /* extents after idx + count */
  3542. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3543. int nlists; /* number of irec's (lists) */
  3544. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3545. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3546. nex2 = erp->er_extcount - idx;
  3547. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3548. /*
  3549. * Save second part of target extent list
  3550. * (all extents past */
  3551. if (nex2) {
  3552. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3553. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3554. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3555. erp->er_extcount -= nex2;
  3556. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3557. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3558. }
  3559. /*
  3560. * Add the new extents to the end of the target
  3561. * list, then allocate new irec record(s) and
  3562. * extent buffer(s) as needed to store the rest
  3563. * of the new extents.
  3564. */
  3565. ext_cnt = count;
  3566. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3567. if (ext_diff) {
  3568. erp->er_extcount += ext_diff;
  3569. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3570. ext_cnt -= ext_diff;
  3571. }
  3572. while (ext_cnt) {
  3573. erp_idx++;
  3574. erp = xfs_iext_irec_new(ifp, erp_idx);
  3575. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3576. erp->er_extcount = ext_diff;
  3577. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3578. ext_cnt -= ext_diff;
  3579. }
  3580. /* Add nex2 extents back to indirection array */
  3581. if (nex2) {
  3582. xfs_extnum_t ext_avail;
  3583. int i;
  3584. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3585. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3586. i = 0;
  3587. /*
  3588. * If nex2 extents fit in the current page, append
  3589. * nex2_ep after the new extents.
  3590. */
  3591. if (nex2 <= ext_avail) {
  3592. i = erp->er_extcount;
  3593. }
  3594. /*
  3595. * Otherwise, check if space is available in the
  3596. * next page.
  3597. */
  3598. else if ((erp_idx < nlists - 1) &&
  3599. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3600. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3601. erp_idx++;
  3602. erp++;
  3603. /* Create a hole for nex2 extents */
  3604. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3605. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3606. }
  3607. /*
  3608. * Final choice, create a new extent page for
  3609. * nex2 extents.
  3610. */
  3611. else {
  3612. erp_idx++;
  3613. erp = xfs_iext_irec_new(ifp, erp_idx);
  3614. }
  3615. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3616. kmem_free(nex2_ep, byte_diff);
  3617. erp->er_extcount += nex2;
  3618. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3619. }
  3620. }
  3621. /*
  3622. * This is called when the amount of space required for incore file
  3623. * extents needs to be decreased. The ext_diff parameter stores the
  3624. * number of extents to be removed and the idx parameter contains
  3625. * the extent index where the extents will be removed from.
  3626. *
  3627. * If the amount of space needed has decreased below the linear
  3628. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3629. * extent array. Otherwise, use kmem_realloc() to adjust the
  3630. * size to what is needed.
  3631. */
  3632. void
  3633. xfs_iext_remove(
  3634. xfs_ifork_t *ifp, /* inode fork pointer */
  3635. xfs_extnum_t idx, /* index to begin removing exts */
  3636. int ext_diff) /* number of extents to remove */
  3637. {
  3638. xfs_extnum_t nextents; /* number of extents in file */
  3639. int new_size; /* size of extents after removal */
  3640. ASSERT(ext_diff > 0);
  3641. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3642. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3643. if (new_size == 0) {
  3644. xfs_iext_destroy(ifp);
  3645. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3646. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3647. } else if (ifp->if_real_bytes) {
  3648. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3649. } else {
  3650. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3651. }
  3652. ifp->if_bytes = new_size;
  3653. }
  3654. /*
  3655. * This removes ext_diff extents from the inline buffer, beginning
  3656. * at extent index idx.
  3657. */
  3658. void
  3659. xfs_iext_remove_inline(
  3660. xfs_ifork_t *ifp, /* inode fork pointer */
  3661. xfs_extnum_t idx, /* index to begin removing exts */
  3662. int ext_diff) /* number of extents to remove */
  3663. {
  3664. int nextents; /* number of extents in file */
  3665. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3666. ASSERT(idx < XFS_INLINE_EXTS);
  3667. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3668. ASSERT(((nextents - ext_diff) > 0) &&
  3669. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3670. if (idx + ext_diff < nextents) {
  3671. memmove(&ifp->if_u2.if_inline_ext[idx],
  3672. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3673. (nextents - (idx + ext_diff)) *
  3674. sizeof(xfs_bmbt_rec_t));
  3675. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3676. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3677. } else {
  3678. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3679. ext_diff * sizeof(xfs_bmbt_rec_t));
  3680. }
  3681. }
  3682. /*
  3683. * This removes ext_diff extents from a linear (direct) extent list,
  3684. * beginning at extent index idx. If the extents are being removed
  3685. * from the end of the list (ie. truncate) then we just need to re-
  3686. * allocate the list to remove the extra space. Otherwise, if the
  3687. * extents are being removed from the middle of the existing extent
  3688. * entries, then we first need to move the extent records beginning
  3689. * at idx + ext_diff up in the list to overwrite the records being
  3690. * removed, then remove the extra space via kmem_realloc.
  3691. */
  3692. void
  3693. xfs_iext_remove_direct(
  3694. xfs_ifork_t *ifp, /* inode fork pointer */
  3695. xfs_extnum_t idx, /* index to begin removing exts */
  3696. int ext_diff) /* number of extents to remove */
  3697. {
  3698. xfs_extnum_t nextents; /* number of extents in file */
  3699. int new_size; /* size of extents after removal */
  3700. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3701. new_size = ifp->if_bytes -
  3702. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3703. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3704. if (new_size == 0) {
  3705. xfs_iext_destroy(ifp);
  3706. return;
  3707. }
  3708. /* Move extents up in the list (if needed) */
  3709. if (idx + ext_diff < nextents) {
  3710. memmove(&ifp->if_u1.if_extents[idx],
  3711. &ifp->if_u1.if_extents[idx + ext_diff],
  3712. (nextents - (idx + ext_diff)) *
  3713. sizeof(xfs_bmbt_rec_t));
  3714. }
  3715. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3716. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3717. /*
  3718. * Reallocate the direct extent list. If the extents
  3719. * will fit inside the inode then xfs_iext_realloc_direct
  3720. * will switch from direct to inline extent allocation
  3721. * mode for us.
  3722. */
  3723. xfs_iext_realloc_direct(ifp, new_size);
  3724. ifp->if_bytes = new_size;
  3725. }
  3726. /*
  3727. * This is called when incore extents are being removed from the
  3728. * indirection array and the extents being removed span multiple extent
  3729. * buffers. The idx parameter contains the file extent index where we
  3730. * want to begin removing extents, and the count parameter contains
  3731. * how many extents need to be removed.
  3732. *
  3733. * |-------| |-------|
  3734. * | nex1 | | | nex1 - number of extents before idx
  3735. * |-------| | count |
  3736. * | | | | count - number of extents being removed at idx
  3737. * | count | |-------|
  3738. * | | | nex2 | nex2 - number of extents after idx + count
  3739. * |-------| |-------|
  3740. */
  3741. void
  3742. xfs_iext_remove_indirect(
  3743. xfs_ifork_t *ifp, /* inode fork pointer */
  3744. xfs_extnum_t idx, /* index to begin removing extents */
  3745. int count) /* number of extents to remove */
  3746. {
  3747. xfs_ext_irec_t *erp; /* indirection array pointer */
  3748. int erp_idx = 0; /* indirection array index */
  3749. xfs_extnum_t ext_cnt; /* extents left to remove */
  3750. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3751. xfs_extnum_t nex1; /* number of extents before idx */
  3752. xfs_extnum_t nex2; /* extents after idx + count */
  3753. int nlists; /* entries in indirection array */
  3754. int page_idx = idx; /* index in target extent list */
  3755. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3756. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3757. ASSERT(erp != NULL);
  3758. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3759. nex1 = page_idx;
  3760. ext_cnt = count;
  3761. while (ext_cnt) {
  3762. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3763. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3764. /*
  3765. * Check for deletion of entire list;
  3766. * xfs_iext_irec_remove() updates extent offsets.
  3767. */
  3768. if (ext_diff == erp->er_extcount) {
  3769. xfs_iext_irec_remove(ifp, erp_idx);
  3770. ext_cnt -= ext_diff;
  3771. nex1 = 0;
  3772. if (ext_cnt) {
  3773. ASSERT(erp_idx < ifp->if_real_bytes /
  3774. XFS_IEXT_BUFSZ);
  3775. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3776. nex1 = 0;
  3777. continue;
  3778. } else {
  3779. break;
  3780. }
  3781. }
  3782. /* Move extents up (if needed) */
  3783. if (nex2) {
  3784. memmove(&erp->er_extbuf[nex1],
  3785. &erp->er_extbuf[nex1 + ext_diff],
  3786. nex2 * sizeof(xfs_bmbt_rec_t));
  3787. }
  3788. /* Zero out rest of page */
  3789. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3790. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3791. /* Update remaining counters */
  3792. erp->er_extcount -= ext_diff;
  3793. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3794. ext_cnt -= ext_diff;
  3795. nex1 = 0;
  3796. erp_idx++;
  3797. erp++;
  3798. }
  3799. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3800. xfs_iext_irec_compact(ifp);
  3801. }
  3802. /*
  3803. * Create, destroy, or resize a linear (direct) block of extents.
  3804. */
  3805. void
  3806. xfs_iext_realloc_direct(
  3807. xfs_ifork_t *ifp, /* inode fork pointer */
  3808. int new_size) /* new size of extents */
  3809. {
  3810. int rnew_size; /* real new size of extents */
  3811. rnew_size = new_size;
  3812. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3813. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3814. (new_size != ifp->if_real_bytes)));
  3815. /* Free extent records */
  3816. if (new_size == 0) {
  3817. xfs_iext_destroy(ifp);
  3818. }
  3819. /* Resize direct extent list and zero any new bytes */
  3820. else if (ifp->if_real_bytes) {
  3821. /* Check if extents will fit inside the inode */
  3822. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3823. xfs_iext_direct_to_inline(ifp, new_size /
  3824. (uint)sizeof(xfs_bmbt_rec_t));
  3825. ifp->if_bytes = new_size;
  3826. return;
  3827. }
  3828. if ((new_size & (new_size - 1)) != 0) {
  3829. rnew_size = xfs_iroundup(new_size);
  3830. }
  3831. if (rnew_size != ifp->if_real_bytes) {
  3832. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3833. kmem_realloc(ifp->if_u1.if_extents,
  3834. rnew_size,
  3835. ifp->if_real_bytes,
  3836. KM_SLEEP);
  3837. }
  3838. if (rnew_size > ifp->if_real_bytes) {
  3839. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3840. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3841. rnew_size - ifp->if_real_bytes);
  3842. }
  3843. }
  3844. /*
  3845. * Switch from the inline extent buffer to a direct
  3846. * extent list. Be sure to include the inline extent
  3847. * bytes in new_size.
  3848. */
  3849. else {
  3850. new_size += ifp->if_bytes;
  3851. if ((new_size & (new_size - 1)) != 0) {
  3852. rnew_size = xfs_iroundup(new_size);
  3853. }
  3854. xfs_iext_inline_to_direct(ifp, rnew_size);
  3855. }
  3856. ifp->if_real_bytes = rnew_size;
  3857. ifp->if_bytes = new_size;
  3858. }
  3859. /*
  3860. * Switch from linear (direct) extent records to inline buffer.
  3861. */
  3862. void
  3863. xfs_iext_direct_to_inline(
  3864. xfs_ifork_t *ifp, /* inode fork pointer */
  3865. xfs_extnum_t nextents) /* number of extents in file */
  3866. {
  3867. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3868. ASSERT(nextents <= XFS_INLINE_EXTS);
  3869. /*
  3870. * The inline buffer was zeroed when we switched
  3871. * from inline to direct extent allocation mode,
  3872. * so we don't need to clear it here.
  3873. */
  3874. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3875. nextents * sizeof(xfs_bmbt_rec_t));
  3876. kmem_free(ifp->if_u1.if_extents, KM_SLEEP);
  3877. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3878. ifp->if_real_bytes = 0;
  3879. }
  3880. /*
  3881. * Switch from inline buffer to linear (direct) extent records.
  3882. * new_size should already be rounded up to the next power of 2
  3883. * by the caller (when appropriate), so use new_size as it is.
  3884. * However, since new_size may be rounded up, we can't update
  3885. * if_bytes here. It is the caller's responsibility to update
  3886. * if_bytes upon return.
  3887. */
  3888. void
  3889. xfs_iext_inline_to_direct(
  3890. xfs_ifork_t *ifp, /* inode fork pointer */
  3891. int new_size) /* number of extents in file */
  3892. {
  3893. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3894. kmem_alloc(new_size, KM_SLEEP);
  3895. memset(ifp->if_u1.if_extents, 0, new_size);
  3896. if (ifp->if_bytes) {
  3897. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3898. ifp->if_bytes);
  3899. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3900. sizeof(xfs_bmbt_rec_t));
  3901. }
  3902. ifp->if_real_bytes = new_size;
  3903. }
  3904. /*
  3905. * Resize an extent indirection array to new_size bytes.
  3906. */
  3907. void
  3908. xfs_iext_realloc_indirect(
  3909. xfs_ifork_t *ifp, /* inode fork pointer */
  3910. int new_size) /* new indirection array size */
  3911. {
  3912. int nlists; /* number of irec's (ex lists) */
  3913. int size; /* current indirection array size */
  3914. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3915. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3916. size = nlists * sizeof(xfs_ext_irec_t);
  3917. ASSERT(ifp->if_real_bytes);
  3918. ASSERT((new_size >= 0) && (new_size != size));
  3919. if (new_size == 0) {
  3920. xfs_iext_destroy(ifp);
  3921. } else {
  3922. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3923. kmem_realloc(ifp->if_u1.if_ext_irec,
  3924. new_size, size, KM_SLEEP);
  3925. }
  3926. }
  3927. /*
  3928. * Switch from indirection array to linear (direct) extent allocations.
  3929. */
  3930. void
  3931. xfs_iext_indirect_to_direct(
  3932. xfs_ifork_t *ifp) /* inode fork pointer */
  3933. {
  3934. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3935. xfs_extnum_t nextents; /* number of extents in file */
  3936. int size; /* size of file extents */
  3937. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3938. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3939. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3940. size = nextents * sizeof(xfs_bmbt_rec_t);
  3941. xfs_iext_irec_compact_full(ifp);
  3942. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3943. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3944. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3945. ifp->if_flags &= ~XFS_IFEXTIREC;
  3946. ifp->if_u1.if_extents = ep;
  3947. ifp->if_bytes = size;
  3948. if (nextents < XFS_LINEAR_EXTS) {
  3949. xfs_iext_realloc_direct(ifp, size);
  3950. }
  3951. }
  3952. /*
  3953. * Free incore file extents.
  3954. */
  3955. void
  3956. xfs_iext_destroy(
  3957. xfs_ifork_t *ifp) /* inode fork pointer */
  3958. {
  3959. if (ifp->if_flags & XFS_IFEXTIREC) {
  3960. int erp_idx;
  3961. int nlists;
  3962. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3963. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3964. xfs_iext_irec_remove(ifp, erp_idx);
  3965. }
  3966. ifp->if_flags &= ~XFS_IFEXTIREC;
  3967. } else if (ifp->if_real_bytes) {
  3968. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3969. } else if (ifp->if_bytes) {
  3970. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3971. sizeof(xfs_bmbt_rec_t));
  3972. }
  3973. ifp->if_u1.if_extents = NULL;
  3974. ifp->if_real_bytes = 0;
  3975. ifp->if_bytes = 0;
  3976. }
  3977. /*
  3978. * Return a pointer to the extent record for file system block bno.
  3979. */
  3980. xfs_bmbt_rec_t * /* pointer to found extent record */
  3981. xfs_iext_bno_to_ext(
  3982. xfs_ifork_t *ifp, /* inode fork pointer */
  3983. xfs_fileoff_t bno, /* block number to search for */
  3984. xfs_extnum_t *idxp) /* index of target extent */
  3985. {
  3986. xfs_bmbt_rec_t *base; /* pointer to first extent */
  3987. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3988. xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
  3989. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3990. int high; /* upper boundary in search */
  3991. xfs_extnum_t idx = 0; /* index of target extent */
  3992. int low; /* lower boundary in search */
  3993. xfs_extnum_t nextents; /* number of file extents */
  3994. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3995. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3996. if (nextents == 0) {
  3997. *idxp = 0;
  3998. return NULL;
  3999. }
  4000. low = 0;
  4001. if (ifp->if_flags & XFS_IFEXTIREC) {
  4002. /* Find target extent list */
  4003. int erp_idx = 0;
  4004. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4005. base = erp->er_extbuf;
  4006. high = erp->er_extcount - 1;
  4007. } else {
  4008. base = ifp->if_u1.if_extents;
  4009. high = nextents - 1;
  4010. }
  4011. /* Binary search extent records */
  4012. while (low <= high) {
  4013. idx = (low + high) >> 1;
  4014. ep = base + idx;
  4015. startoff = xfs_bmbt_get_startoff(ep);
  4016. blockcount = xfs_bmbt_get_blockcount(ep);
  4017. if (bno < startoff) {
  4018. high = idx - 1;
  4019. } else if (bno >= startoff + blockcount) {
  4020. low = idx + 1;
  4021. } else {
  4022. /* Convert back to file-based extent index */
  4023. if (ifp->if_flags & XFS_IFEXTIREC) {
  4024. idx += erp->er_extoff;
  4025. }
  4026. *idxp = idx;
  4027. return ep;
  4028. }
  4029. }
  4030. /* Convert back to file-based extent index */
  4031. if (ifp->if_flags & XFS_IFEXTIREC) {
  4032. idx += erp->er_extoff;
  4033. }
  4034. if (bno >= startoff + blockcount) {
  4035. if (++idx == nextents) {
  4036. ep = NULL;
  4037. } else {
  4038. ep = xfs_iext_get_ext(ifp, idx);
  4039. }
  4040. }
  4041. *idxp = idx;
  4042. return ep;
  4043. }
  4044. /*
  4045. * Return a pointer to the indirection array entry containing the
  4046. * extent record for filesystem block bno. Store the index of the
  4047. * target irec in *erp_idxp.
  4048. */
  4049. xfs_ext_irec_t * /* pointer to found extent record */
  4050. xfs_iext_bno_to_irec(
  4051. xfs_ifork_t *ifp, /* inode fork pointer */
  4052. xfs_fileoff_t bno, /* block number to search for */
  4053. int *erp_idxp) /* irec index of target ext list */
  4054. {
  4055. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4056. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4057. int erp_idx; /* indirection array index */
  4058. int nlists; /* number of extent irec's (lists) */
  4059. int high; /* binary search upper limit */
  4060. int low; /* binary search lower limit */
  4061. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4062. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4063. erp_idx = 0;
  4064. low = 0;
  4065. high = nlists - 1;
  4066. while (low <= high) {
  4067. erp_idx = (low + high) >> 1;
  4068. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4069. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4070. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4071. high = erp_idx - 1;
  4072. } else if (erp_next && bno >=
  4073. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4074. low = erp_idx + 1;
  4075. } else {
  4076. break;
  4077. }
  4078. }
  4079. *erp_idxp = erp_idx;
  4080. return erp;
  4081. }
  4082. /*
  4083. * Return a pointer to the indirection array entry containing the
  4084. * extent record at file extent index *idxp. Store the index of the
  4085. * target irec in *erp_idxp and store the page index of the target
  4086. * extent record in *idxp.
  4087. */
  4088. xfs_ext_irec_t *
  4089. xfs_iext_idx_to_irec(
  4090. xfs_ifork_t *ifp, /* inode fork pointer */
  4091. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4092. int *erp_idxp, /* pointer to target irec */
  4093. int realloc) /* new bytes were just added */
  4094. {
  4095. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4096. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4097. int erp_idx; /* indirection array index */
  4098. int nlists; /* number of irec's (ex lists) */
  4099. int high; /* binary search upper limit */
  4100. int low; /* binary search lower limit */
  4101. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4102. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4103. ASSERT(page_idx >= 0 && page_idx <=
  4104. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4105. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4106. erp_idx = 0;
  4107. low = 0;
  4108. high = nlists - 1;
  4109. /* Binary search extent irec's */
  4110. while (low <= high) {
  4111. erp_idx = (low + high) >> 1;
  4112. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4113. prev = erp_idx > 0 ? erp - 1 : NULL;
  4114. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4115. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4116. high = erp_idx - 1;
  4117. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4118. (page_idx == erp->er_extoff + erp->er_extcount &&
  4119. !realloc)) {
  4120. low = erp_idx + 1;
  4121. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4122. erp->er_extcount == XFS_LINEAR_EXTS) {
  4123. ASSERT(realloc);
  4124. page_idx = 0;
  4125. erp_idx++;
  4126. erp = erp_idx < nlists ? erp + 1 : NULL;
  4127. break;
  4128. } else {
  4129. page_idx -= erp->er_extoff;
  4130. break;
  4131. }
  4132. }
  4133. *idxp = page_idx;
  4134. *erp_idxp = erp_idx;
  4135. return(erp);
  4136. }
  4137. /*
  4138. * Allocate and initialize an indirection array once the space needed
  4139. * for incore extents increases above XFS_IEXT_BUFSZ.
  4140. */
  4141. void
  4142. xfs_iext_irec_init(
  4143. xfs_ifork_t *ifp) /* inode fork pointer */
  4144. {
  4145. xfs_ext_irec_t *erp; /* indirection array pointer */
  4146. xfs_extnum_t nextents; /* number of extents in file */
  4147. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4148. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4149. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4150. erp = (xfs_ext_irec_t *)
  4151. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4152. if (nextents == 0) {
  4153. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  4154. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4155. } else if (!ifp->if_real_bytes) {
  4156. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4157. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4158. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4159. }
  4160. erp->er_extbuf = ifp->if_u1.if_extents;
  4161. erp->er_extcount = nextents;
  4162. erp->er_extoff = 0;
  4163. ifp->if_flags |= XFS_IFEXTIREC;
  4164. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4165. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4166. ifp->if_u1.if_ext_irec = erp;
  4167. return;
  4168. }
  4169. /*
  4170. * Allocate and initialize a new entry in the indirection array.
  4171. */
  4172. xfs_ext_irec_t *
  4173. xfs_iext_irec_new(
  4174. xfs_ifork_t *ifp, /* inode fork pointer */
  4175. int erp_idx) /* index for new irec */
  4176. {
  4177. xfs_ext_irec_t *erp; /* indirection array pointer */
  4178. int i; /* loop counter */
  4179. int nlists; /* number of irec's (ex lists) */
  4180. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4181. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4182. /* Resize indirection array */
  4183. xfs_iext_realloc_indirect(ifp, ++nlists *
  4184. sizeof(xfs_ext_irec_t));
  4185. /*
  4186. * Move records down in the array so the
  4187. * new page can use erp_idx.
  4188. */
  4189. erp = ifp->if_u1.if_ext_irec;
  4190. for (i = nlists - 1; i > erp_idx; i--) {
  4191. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4192. }
  4193. ASSERT(i == erp_idx);
  4194. /* Initialize new extent record */
  4195. erp = ifp->if_u1.if_ext_irec;
  4196. erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
  4197. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4198. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4199. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4200. erp[erp_idx].er_extcount = 0;
  4201. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4202. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4203. return (&erp[erp_idx]);
  4204. }
  4205. /*
  4206. * Remove a record from the indirection array.
  4207. */
  4208. void
  4209. xfs_iext_irec_remove(
  4210. xfs_ifork_t *ifp, /* inode fork pointer */
  4211. int erp_idx) /* irec index to remove */
  4212. {
  4213. xfs_ext_irec_t *erp; /* indirection array pointer */
  4214. int i; /* loop counter */
  4215. int nlists; /* number of irec's (ex lists) */
  4216. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4217. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4218. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4219. if (erp->er_extbuf) {
  4220. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4221. -erp->er_extcount);
  4222. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4223. }
  4224. /* Compact extent records */
  4225. erp = ifp->if_u1.if_ext_irec;
  4226. for (i = erp_idx; i < nlists - 1; i++) {
  4227. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4228. }
  4229. /*
  4230. * Manually free the last extent record from the indirection
  4231. * array. A call to xfs_iext_realloc_indirect() with a size
  4232. * of zero would result in a call to xfs_iext_destroy() which
  4233. * would in turn call this function again, creating a nasty
  4234. * infinite loop.
  4235. */
  4236. if (--nlists) {
  4237. xfs_iext_realloc_indirect(ifp,
  4238. nlists * sizeof(xfs_ext_irec_t));
  4239. } else {
  4240. kmem_free(ifp->if_u1.if_ext_irec,
  4241. sizeof(xfs_ext_irec_t));
  4242. }
  4243. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4244. }
  4245. /*
  4246. * This is called to clean up large amounts of unused memory allocated
  4247. * by the indirection array. Before compacting anything though, verify
  4248. * that the indirection array is still needed and switch back to the
  4249. * linear extent list (or even the inline buffer) if possible. The
  4250. * compaction policy is as follows:
  4251. *
  4252. * Full Compaction: Extents fit into a single page (or inline buffer)
  4253. * Full Compaction: Extents occupy less than 10% of allocated space
  4254. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4255. * No Compaction: Extents occupy at least 50% of allocated space
  4256. */
  4257. void
  4258. xfs_iext_irec_compact(
  4259. xfs_ifork_t *ifp) /* inode fork pointer */
  4260. {
  4261. xfs_extnum_t nextents; /* number of extents in file */
  4262. int nlists; /* number of irec's (ex lists) */
  4263. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4264. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4265. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4266. if (nextents == 0) {
  4267. xfs_iext_destroy(ifp);
  4268. } else if (nextents <= XFS_INLINE_EXTS) {
  4269. xfs_iext_indirect_to_direct(ifp);
  4270. xfs_iext_direct_to_inline(ifp, nextents);
  4271. } else if (nextents <= XFS_LINEAR_EXTS) {
  4272. xfs_iext_indirect_to_direct(ifp);
  4273. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4274. xfs_iext_irec_compact_full(ifp);
  4275. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4276. xfs_iext_irec_compact_pages(ifp);
  4277. }
  4278. }
  4279. /*
  4280. * Combine extents from neighboring extent pages.
  4281. */
  4282. void
  4283. xfs_iext_irec_compact_pages(
  4284. xfs_ifork_t *ifp) /* inode fork pointer */
  4285. {
  4286. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4287. int erp_idx = 0; /* indirection array index */
  4288. int nlists; /* number of irec's (ex lists) */
  4289. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4290. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4291. while (erp_idx < nlists - 1) {
  4292. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4293. erp_next = erp + 1;
  4294. if (erp_next->er_extcount <=
  4295. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4296. memmove(&erp->er_extbuf[erp->er_extcount],
  4297. erp_next->er_extbuf, erp_next->er_extcount *
  4298. sizeof(xfs_bmbt_rec_t));
  4299. erp->er_extcount += erp_next->er_extcount;
  4300. /*
  4301. * Free page before removing extent record
  4302. * so er_extoffs don't get modified in
  4303. * xfs_iext_irec_remove.
  4304. */
  4305. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4306. erp_next->er_extbuf = NULL;
  4307. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4308. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4309. } else {
  4310. erp_idx++;
  4311. }
  4312. }
  4313. }
  4314. /*
  4315. * Fully compact the extent records managed by the indirection array.
  4316. */
  4317. void
  4318. xfs_iext_irec_compact_full(
  4319. xfs_ifork_t *ifp) /* inode fork pointer */
  4320. {
  4321. xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
  4322. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4323. int erp_idx = 0; /* extent irec index */
  4324. int ext_avail; /* empty entries in ex list */
  4325. int ext_diff; /* number of exts to add */
  4326. int nlists; /* number of irec's (ex lists) */
  4327. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4328. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4329. erp = ifp->if_u1.if_ext_irec;
  4330. ep = &erp->er_extbuf[erp->er_extcount];
  4331. erp_next = erp + 1;
  4332. ep_next = erp_next->er_extbuf;
  4333. while (erp_idx < nlists - 1) {
  4334. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4335. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4336. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4337. erp->er_extcount += ext_diff;
  4338. erp_next->er_extcount -= ext_diff;
  4339. /* Remove next page */
  4340. if (erp_next->er_extcount == 0) {
  4341. /*
  4342. * Free page before removing extent record
  4343. * so er_extoffs don't get modified in
  4344. * xfs_iext_irec_remove.
  4345. */
  4346. kmem_free(erp_next->er_extbuf,
  4347. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4348. erp_next->er_extbuf = NULL;
  4349. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4350. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4351. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4352. /* Update next page */
  4353. } else {
  4354. /* Move rest of page up to become next new page */
  4355. memmove(erp_next->er_extbuf, ep_next,
  4356. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4357. ep_next = erp_next->er_extbuf;
  4358. memset(&ep_next[erp_next->er_extcount], 0,
  4359. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4360. sizeof(xfs_bmbt_rec_t));
  4361. }
  4362. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4363. erp_idx++;
  4364. if (erp_idx < nlists)
  4365. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4366. else
  4367. break;
  4368. }
  4369. ep = &erp->er_extbuf[erp->er_extcount];
  4370. erp_next = erp + 1;
  4371. ep_next = erp_next->er_extbuf;
  4372. }
  4373. }
  4374. /*
  4375. * This is called to update the er_extoff field in the indirection
  4376. * array when extents have been added or removed from one of the
  4377. * extent lists. erp_idx contains the irec index to begin updating
  4378. * at and ext_diff contains the number of extents that were added
  4379. * or removed.
  4380. */
  4381. void
  4382. xfs_iext_irec_update_extoffs(
  4383. xfs_ifork_t *ifp, /* inode fork pointer */
  4384. int erp_idx, /* irec index to update */
  4385. int ext_diff) /* number of new extents */
  4386. {
  4387. int i; /* loop counter */
  4388. int nlists; /* number of irec's (ex lists */
  4389. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4390. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4391. for (i = erp_idx; i < nlists; i++) {
  4392. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4393. }
  4394. }