sched.c 218 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #include "sched_autogroup.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. #ifdef CONFIG_SCHED_AUTOGROUP
  230. struct autogroup *autogroup;
  231. #endif
  232. };
  233. /* task_group_lock serializes the addition/removal of task groups */
  234. static DEFINE_SPINLOCK(task_group_lock);
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  237. /*
  238. * A weight of 0 or 1 can cause arithmetics problems.
  239. * A weight of a cfs_rq is the sum of weights of which entities
  240. * are queued on this cfs_rq, so a weight of a entity should not be
  241. * too large, so as the shares value of a task group.
  242. * (The default weight is 1024 - so there's no practical
  243. * limitation from this.)
  244. */
  245. #define MIN_SHARES 2
  246. #define MAX_SHARES (1UL << 18)
  247. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  248. #endif
  249. /* Default task group.
  250. * Every task in system belong to this group at bootup.
  251. */
  252. struct task_group root_task_group;
  253. #endif /* CONFIG_CGROUP_SCHED */
  254. /* CFS-related fields in a runqueue */
  255. struct cfs_rq {
  256. struct load_weight load;
  257. unsigned long nr_running;
  258. u64 exec_clock;
  259. u64 min_vruntime;
  260. #ifndef CONFIG_64BIT
  261. u64 min_vruntime_copy;
  262. #endif
  263. struct rb_root tasks_timeline;
  264. struct rb_node *rb_leftmost;
  265. struct list_head tasks;
  266. struct list_head *balance_iterator;
  267. /*
  268. * 'curr' points to currently running entity on this cfs_rq.
  269. * It is set to NULL otherwise (i.e when none are currently running).
  270. */
  271. struct sched_entity *curr, *next, *last, *skip;
  272. #ifdef CONFIG_SCHED_DEBUG
  273. unsigned int nr_spread_over;
  274. #endif
  275. #ifdef CONFIG_FAIR_GROUP_SCHED
  276. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  277. /*
  278. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  279. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  280. * (like users, containers etc.)
  281. *
  282. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  283. * list is used during load balance.
  284. */
  285. int on_list;
  286. struct list_head leaf_cfs_rq_list;
  287. struct task_group *tg; /* group that "owns" this runqueue */
  288. #ifdef CONFIG_SMP
  289. /*
  290. * the part of load.weight contributed by tasks
  291. */
  292. unsigned long task_weight;
  293. /*
  294. * h_load = weight * f(tg)
  295. *
  296. * Where f(tg) is the recursive weight fraction assigned to
  297. * this group.
  298. */
  299. unsigned long h_load;
  300. /*
  301. * Maintaining per-cpu shares distribution for group scheduling
  302. *
  303. * load_stamp is the last time we updated the load average
  304. * load_last is the last time we updated the load average and saw load
  305. * load_unacc_exec_time is currently unaccounted execution time
  306. */
  307. u64 load_avg;
  308. u64 load_period;
  309. u64 load_stamp, load_last, load_unacc_exec_time;
  310. unsigned long load_contribution;
  311. #endif
  312. #endif
  313. };
  314. /* Real-Time classes' related field in a runqueue: */
  315. struct rt_rq {
  316. struct rt_prio_array active;
  317. unsigned long rt_nr_running;
  318. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  319. struct {
  320. int curr; /* highest queued rt task prio */
  321. #ifdef CONFIG_SMP
  322. int next; /* next highest */
  323. #endif
  324. } highest_prio;
  325. #endif
  326. #ifdef CONFIG_SMP
  327. unsigned long rt_nr_migratory;
  328. unsigned long rt_nr_total;
  329. int overloaded;
  330. struct plist_head pushable_tasks;
  331. #endif
  332. int rt_throttled;
  333. u64 rt_time;
  334. u64 rt_runtime;
  335. /* Nests inside the rq lock: */
  336. raw_spinlock_t rt_runtime_lock;
  337. #ifdef CONFIG_RT_GROUP_SCHED
  338. unsigned long rt_nr_boosted;
  339. struct rq *rq;
  340. struct list_head leaf_rt_rq_list;
  341. struct task_group *tg;
  342. #endif
  343. };
  344. #ifdef CONFIG_SMP
  345. /*
  346. * We add the notion of a root-domain which will be used to define per-domain
  347. * variables. Each exclusive cpuset essentially defines an island domain by
  348. * fully partitioning the member cpus from any other cpuset. Whenever a new
  349. * exclusive cpuset is created, we also create and attach a new root-domain
  350. * object.
  351. *
  352. */
  353. struct root_domain {
  354. atomic_t refcount;
  355. struct rcu_head rcu;
  356. cpumask_var_t span;
  357. cpumask_var_t online;
  358. /*
  359. * The "RT overload" flag: it gets set if a CPU has more than
  360. * one runnable RT task.
  361. */
  362. cpumask_var_t rto_mask;
  363. atomic_t rto_count;
  364. struct cpupri cpupri;
  365. };
  366. /*
  367. * By default the system creates a single root-domain with all cpus as
  368. * members (mimicking the global state we have today).
  369. */
  370. static struct root_domain def_root_domain;
  371. #endif /* CONFIG_SMP */
  372. /*
  373. * This is the main, per-CPU runqueue data structure.
  374. *
  375. * Locking rule: those places that want to lock multiple runqueues
  376. * (such as the load balancing or the thread migration code), lock
  377. * acquire operations must be ordered by ascending &runqueue.
  378. */
  379. struct rq {
  380. /* runqueue lock: */
  381. raw_spinlock_t lock;
  382. /*
  383. * nr_running and cpu_load should be in the same cacheline because
  384. * remote CPUs use both these fields when doing load calculation.
  385. */
  386. unsigned long nr_running;
  387. #define CPU_LOAD_IDX_MAX 5
  388. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  389. unsigned long last_load_update_tick;
  390. #ifdef CONFIG_NO_HZ
  391. u64 nohz_stamp;
  392. unsigned char nohz_balance_kick;
  393. #endif
  394. unsigned int skip_clock_update;
  395. /* capture load from *all* tasks on this cpu: */
  396. struct load_weight load;
  397. unsigned long nr_load_updates;
  398. u64 nr_switches;
  399. struct cfs_rq cfs;
  400. struct rt_rq rt;
  401. #ifdef CONFIG_FAIR_GROUP_SCHED
  402. /* list of leaf cfs_rq on this cpu: */
  403. struct list_head leaf_cfs_rq_list;
  404. #endif
  405. #ifdef CONFIG_RT_GROUP_SCHED
  406. struct list_head leaf_rt_rq_list;
  407. #endif
  408. /*
  409. * This is part of a global counter where only the total sum
  410. * over all CPUs matters. A task can increase this counter on
  411. * one CPU and if it got migrated afterwards it may decrease
  412. * it on another CPU. Always updated under the runqueue lock:
  413. */
  414. unsigned long nr_uninterruptible;
  415. struct task_struct *curr, *idle, *stop;
  416. unsigned long next_balance;
  417. struct mm_struct *prev_mm;
  418. u64 clock;
  419. u64 clock_task;
  420. atomic_t nr_iowait;
  421. #ifdef CONFIG_SMP
  422. struct root_domain *rd;
  423. struct sched_domain *sd;
  424. unsigned long cpu_power;
  425. unsigned char idle_at_tick;
  426. /* For active balancing */
  427. int post_schedule;
  428. int active_balance;
  429. int push_cpu;
  430. struct cpu_stop_work active_balance_work;
  431. /* cpu of this runqueue: */
  432. int cpu;
  433. int online;
  434. unsigned long avg_load_per_task;
  435. u64 rt_avg;
  436. u64 age_stamp;
  437. u64 idle_stamp;
  438. u64 avg_idle;
  439. #endif
  440. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  441. u64 prev_irq_time;
  442. #endif
  443. /* calc_load related fields */
  444. unsigned long calc_load_update;
  445. long calc_load_active;
  446. #ifdef CONFIG_SCHED_HRTICK
  447. #ifdef CONFIG_SMP
  448. int hrtick_csd_pending;
  449. struct call_single_data hrtick_csd;
  450. #endif
  451. struct hrtimer hrtick_timer;
  452. #endif
  453. #ifdef CONFIG_SCHEDSTATS
  454. /* latency stats */
  455. struct sched_info rq_sched_info;
  456. unsigned long long rq_cpu_time;
  457. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  458. /* sys_sched_yield() stats */
  459. unsigned int yld_count;
  460. /* schedule() stats */
  461. unsigned int sched_switch;
  462. unsigned int sched_count;
  463. unsigned int sched_goidle;
  464. /* try_to_wake_up() stats */
  465. unsigned int ttwu_count;
  466. unsigned int ttwu_local;
  467. #endif
  468. #ifdef CONFIG_SMP
  469. struct task_struct *wake_list;
  470. #endif
  471. };
  472. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  473. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  474. static inline int cpu_of(struct rq *rq)
  475. {
  476. #ifdef CONFIG_SMP
  477. return rq->cpu;
  478. #else
  479. return 0;
  480. #endif
  481. }
  482. #define rcu_dereference_check_sched_domain(p) \
  483. rcu_dereference_check((p), \
  484. rcu_read_lock_held() || \
  485. lockdep_is_held(&sched_domains_mutex))
  486. /*
  487. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  488. * See detach_destroy_domains: synchronize_sched for details.
  489. *
  490. * The domain tree of any CPU may only be accessed from within
  491. * preempt-disabled sections.
  492. */
  493. #define for_each_domain(cpu, __sd) \
  494. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  495. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  496. #define this_rq() (&__get_cpu_var(runqueues))
  497. #define task_rq(p) cpu_rq(task_cpu(p))
  498. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  499. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  500. #ifdef CONFIG_CGROUP_SCHED
  501. /*
  502. * Return the group to which this tasks belongs.
  503. *
  504. * We use task_subsys_state_check() and extend the RCU verification
  505. * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
  506. * holds that lock for each task it moves into the cgroup. Therefore
  507. * by holding that lock, we pin the task to the current cgroup.
  508. */
  509. static inline struct task_group *task_group(struct task_struct *p)
  510. {
  511. struct task_group *tg;
  512. struct cgroup_subsys_state *css;
  513. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  514. lockdep_is_held(&p->pi_lock));
  515. tg = container_of(css, struct task_group, css);
  516. return autogroup_task_group(p, tg);
  517. }
  518. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  519. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  520. {
  521. #ifdef CONFIG_FAIR_GROUP_SCHED
  522. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  523. p->se.parent = task_group(p)->se[cpu];
  524. #endif
  525. #ifdef CONFIG_RT_GROUP_SCHED
  526. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  527. p->rt.parent = task_group(p)->rt_se[cpu];
  528. #endif
  529. }
  530. #else /* CONFIG_CGROUP_SCHED */
  531. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  532. static inline struct task_group *task_group(struct task_struct *p)
  533. {
  534. return NULL;
  535. }
  536. #endif /* CONFIG_CGROUP_SCHED */
  537. static void update_rq_clock_task(struct rq *rq, s64 delta);
  538. static void update_rq_clock(struct rq *rq)
  539. {
  540. s64 delta;
  541. if (rq->skip_clock_update)
  542. return;
  543. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  544. rq->clock += delta;
  545. update_rq_clock_task(rq, delta);
  546. }
  547. /*
  548. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  549. */
  550. #ifdef CONFIG_SCHED_DEBUG
  551. # define const_debug __read_mostly
  552. #else
  553. # define const_debug static const
  554. #endif
  555. /**
  556. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  557. * @cpu: the processor in question.
  558. *
  559. * This interface allows printk to be called with the runqueue lock
  560. * held and know whether or not it is OK to wake up the klogd.
  561. */
  562. int runqueue_is_locked(int cpu)
  563. {
  564. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  565. }
  566. /*
  567. * Debugging: various feature bits
  568. */
  569. #define SCHED_FEAT(name, enabled) \
  570. __SCHED_FEAT_##name ,
  571. enum {
  572. #include "sched_features.h"
  573. };
  574. #undef SCHED_FEAT
  575. #define SCHED_FEAT(name, enabled) \
  576. (1UL << __SCHED_FEAT_##name) * enabled |
  577. const_debug unsigned int sysctl_sched_features =
  578. #include "sched_features.h"
  579. 0;
  580. #undef SCHED_FEAT
  581. #ifdef CONFIG_SCHED_DEBUG
  582. #define SCHED_FEAT(name, enabled) \
  583. #name ,
  584. static __read_mostly char *sched_feat_names[] = {
  585. #include "sched_features.h"
  586. NULL
  587. };
  588. #undef SCHED_FEAT
  589. static int sched_feat_show(struct seq_file *m, void *v)
  590. {
  591. int i;
  592. for (i = 0; sched_feat_names[i]; i++) {
  593. if (!(sysctl_sched_features & (1UL << i)))
  594. seq_puts(m, "NO_");
  595. seq_printf(m, "%s ", sched_feat_names[i]);
  596. }
  597. seq_puts(m, "\n");
  598. return 0;
  599. }
  600. static ssize_t
  601. sched_feat_write(struct file *filp, const char __user *ubuf,
  602. size_t cnt, loff_t *ppos)
  603. {
  604. char buf[64];
  605. char *cmp;
  606. int neg = 0;
  607. int i;
  608. if (cnt > 63)
  609. cnt = 63;
  610. if (copy_from_user(&buf, ubuf, cnt))
  611. return -EFAULT;
  612. buf[cnt] = 0;
  613. cmp = strstrip(buf);
  614. if (strncmp(cmp, "NO_", 3) == 0) {
  615. neg = 1;
  616. cmp += 3;
  617. }
  618. for (i = 0; sched_feat_names[i]; i++) {
  619. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  620. if (neg)
  621. sysctl_sched_features &= ~(1UL << i);
  622. else
  623. sysctl_sched_features |= (1UL << i);
  624. break;
  625. }
  626. }
  627. if (!sched_feat_names[i])
  628. return -EINVAL;
  629. *ppos += cnt;
  630. return cnt;
  631. }
  632. static int sched_feat_open(struct inode *inode, struct file *filp)
  633. {
  634. return single_open(filp, sched_feat_show, NULL);
  635. }
  636. static const struct file_operations sched_feat_fops = {
  637. .open = sched_feat_open,
  638. .write = sched_feat_write,
  639. .read = seq_read,
  640. .llseek = seq_lseek,
  641. .release = single_release,
  642. };
  643. static __init int sched_init_debug(void)
  644. {
  645. debugfs_create_file("sched_features", 0644, NULL, NULL,
  646. &sched_feat_fops);
  647. return 0;
  648. }
  649. late_initcall(sched_init_debug);
  650. #endif
  651. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  652. /*
  653. * Number of tasks to iterate in a single balance run.
  654. * Limited because this is done with IRQs disabled.
  655. */
  656. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  657. /*
  658. * period over which we average the RT time consumption, measured
  659. * in ms.
  660. *
  661. * default: 1s
  662. */
  663. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  664. /*
  665. * period over which we measure -rt task cpu usage in us.
  666. * default: 1s
  667. */
  668. unsigned int sysctl_sched_rt_period = 1000000;
  669. static __read_mostly int scheduler_running;
  670. /*
  671. * part of the period that we allow rt tasks to run in us.
  672. * default: 0.95s
  673. */
  674. int sysctl_sched_rt_runtime = 950000;
  675. static inline u64 global_rt_period(void)
  676. {
  677. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  678. }
  679. static inline u64 global_rt_runtime(void)
  680. {
  681. if (sysctl_sched_rt_runtime < 0)
  682. return RUNTIME_INF;
  683. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  684. }
  685. #ifndef prepare_arch_switch
  686. # define prepare_arch_switch(next) do { } while (0)
  687. #endif
  688. #ifndef finish_arch_switch
  689. # define finish_arch_switch(prev) do { } while (0)
  690. #endif
  691. static inline int task_current(struct rq *rq, struct task_struct *p)
  692. {
  693. return rq->curr == p;
  694. }
  695. static inline int task_running(struct rq *rq, struct task_struct *p)
  696. {
  697. #ifdef CONFIG_SMP
  698. return p->on_cpu;
  699. #else
  700. return task_current(rq, p);
  701. #endif
  702. }
  703. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  704. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  705. {
  706. #ifdef CONFIG_SMP
  707. /*
  708. * We can optimise this out completely for !SMP, because the
  709. * SMP rebalancing from interrupt is the only thing that cares
  710. * here.
  711. */
  712. next->on_cpu = 1;
  713. #endif
  714. }
  715. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  716. {
  717. #ifdef CONFIG_SMP
  718. /*
  719. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  720. * We must ensure this doesn't happen until the switch is completely
  721. * finished.
  722. */
  723. smp_wmb();
  724. prev->on_cpu = 0;
  725. #endif
  726. #ifdef CONFIG_DEBUG_SPINLOCK
  727. /* this is a valid case when another task releases the spinlock */
  728. rq->lock.owner = current;
  729. #endif
  730. /*
  731. * If we are tracking spinlock dependencies then we have to
  732. * fix up the runqueue lock - which gets 'carried over' from
  733. * prev into current:
  734. */
  735. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  736. raw_spin_unlock_irq(&rq->lock);
  737. }
  738. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  739. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  740. {
  741. #ifdef CONFIG_SMP
  742. /*
  743. * We can optimise this out completely for !SMP, because the
  744. * SMP rebalancing from interrupt is the only thing that cares
  745. * here.
  746. */
  747. next->on_cpu = 1;
  748. #endif
  749. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  750. raw_spin_unlock_irq(&rq->lock);
  751. #else
  752. raw_spin_unlock(&rq->lock);
  753. #endif
  754. }
  755. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  756. {
  757. #ifdef CONFIG_SMP
  758. /*
  759. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  760. * We must ensure this doesn't happen until the switch is completely
  761. * finished.
  762. */
  763. smp_wmb();
  764. prev->on_cpu = 0;
  765. #endif
  766. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  767. local_irq_enable();
  768. #endif
  769. }
  770. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  771. /*
  772. * __task_rq_lock - lock the rq @p resides on.
  773. */
  774. static inline struct rq *__task_rq_lock(struct task_struct *p)
  775. __acquires(rq->lock)
  776. {
  777. struct rq *rq;
  778. lockdep_assert_held(&p->pi_lock);
  779. for (;;) {
  780. rq = task_rq(p);
  781. raw_spin_lock(&rq->lock);
  782. if (likely(rq == task_rq(p)))
  783. return rq;
  784. raw_spin_unlock(&rq->lock);
  785. }
  786. }
  787. /*
  788. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  789. */
  790. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  791. __acquires(p->pi_lock)
  792. __acquires(rq->lock)
  793. {
  794. struct rq *rq;
  795. for (;;) {
  796. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  797. rq = task_rq(p);
  798. raw_spin_lock(&rq->lock);
  799. if (likely(rq == task_rq(p)))
  800. return rq;
  801. raw_spin_unlock(&rq->lock);
  802. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  803. }
  804. }
  805. static void __task_rq_unlock(struct rq *rq)
  806. __releases(rq->lock)
  807. {
  808. raw_spin_unlock(&rq->lock);
  809. }
  810. static inline void
  811. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  812. __releases(rq->lock)
  813. __releases(p->pi_lock)
  814. {
  815. raw_spin_unlock(&rq->lock);
  816. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  817. }
  818. /*
  819. * this_rq_lock - lock this runqueue and disable interrupts.
  820. */
  821. static struct rq *this_rq_lock(void)
  822. __acquires(rq->lock)
  823. {
  824. struct rq *rq;
  825. local_irq_disable();
  826. rq = this_rq();
  827. raw_spin_lock(&rq->lock);
  828. return rq;
  829. }
  830. #ifdef CONFIG_SCHED_HRTICK
  831. /*
  832. * Use HR-timers to deliver accurate preemption points.
  833. *
  834. * Its all a bit involved since we cannot program an hrt while holding the
  835. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  836. * reschedule event.
  837. *
  838. * When we get rescheduled we reprogram the hrtick_timer outside of the
  839. * rq->lock.
  840. */
  841. /*
  842. * Use hrtick when:
  843. * - enabled by features
  844. * - hrtimer is actually high res
  845. */
  846. static inline int hrtick_enabled(struct rq *rq)
  847. {
  848. if (!sched_feat(HRTICK))
  849. return 0;
  850. if (!cpu_active(cpu_of(rq)))
  851. return 0;
  852. return hrtimer_is_hres_active(&rq->hrtick_timer);
  853. }
  854. static void hrtick_clear(struct rq *rq)
  855. {
  856. if (hrtimer_active(&rq->hrtick_timer))
  857. hrtimer_cancel(&rq->hrtick_timer);
  858. }
  859. /*
  860. * High-resolution timer tick.
  861. * Runs from hardirq context with interrupts disabled.
  862. */
  863. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  864. {
  865. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  866. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  867. raw_spin_lock(&rq->lock);
  868. update_rq_clock(rq);
  869. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  870. raw_spin_unlock(&rq->lock);
  871. return HRTIMER_NORESTART;
  872. }
  873. #ifdef CONFIG_SMP
  874. /*
  875. * called from hardirq (IPI) context
  876. */
  877. static void __hrtick_start(void *arg)
  878. {
  879. struct rq *rq = arg;
  880. raw_spin_lock(&rq->lock);
  881. hrtimer_restart(&rq->hrtick_timer);
  882. rq->hrtick_csd_pending = 0;
  883. raw_spin_unlock(&rq->lock);
  884. }
  885. /*
  886. * Called to set the hrtick timer state.
  887. *
  888. * called with rq->lock held and irqs disabled
  889. */
  890. static void hrtick_start(struct rq *rq, u64 delay)
  891. {
  892. struct hrtimer *timer = &rq->hrtick_timer;
  893. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  894. hrtimer_set_expires(timer, time);
  895. if (rq == this_rq()) {
  896. hrtimer_restart(timer);
  897. } else if (!rq->hrtick_csd_pending) {
  898. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  899. rq->hrtick_csd_pending = 1;
  900. }
  901. }
  902. static int
  903. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  904. {
  905. int cpu = (int)(long)hcpu;
  906. switch (action) {
  907. case CPU_UP_CANCELED:
  908. case CPU_UP_CANCELED_FROZEN:
  909. case CPU_DOWN_PREPARE:
  910. case CPU_DOWN_PREPARE_FROZEN:
  911. case CPU_DEAD:
  912. case CPU_DEAD_FROZEN:
  913. hrtick_clear(cpu_rq(cpu));
  914. return NOTIFY_OK;
  915. }
  916. return NOTIFY_DONE;
  917. }
  918. static __init void init_hrtick(void)
  919. {
  920. hotcpu_notifier(hotplug_hrtick, 0);
  921. }
  922. #else
  923. /*
  924. * Called to set the hrtick timer state.
  925. *
  926. * called with rq->lock held and irqs disabled
  927. */
  928. static void hrtick_start(struct rq *rq, u64 delay)
  929. {
  930. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  931. HRTIMER_MODE_REL_PINNED, 0);
  932. }
  933. static inline void init_hrtick(void)
  934. {
  935. }
  936. #endif /* CONFIG_SMP */
  937. static void init_rq_hrtick(struct rq *rq)
  938. {
  939. #ifdef CONFIG_SMP
  940. rq->hrtick_csd_pending = 0;
  941. rq->hrtick_csd.flags = 0;
  942. rq->hrtick_csd.func = __hrtick_start;
  943. rq->hrtick_csd.info = rq;
  944. #endif
  945. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  946. rq->hrtick_timer.function = hrtick;
  947. }
  948. #else /* CONFIG_SCHED_HRTICK */
  949. static inline void hrtick_clear(struct rq *rq)
  950. {
  951. }
  952. static inline void init_rq_hrtick(struct rq *rq)
  953. {
  954. }
  955. static inline void init_hrtick(void)
  956. {
  957. }
  958. #endif /* CONFIG_SCHED_HRTICK */
  959. /*
  960. * resched_task - mark a task 'to be rescheduled now'.
  961. *
  962. * On UP this means the setting of the need_resched flag, on SMP it
  963. * might also involve a cross-CPU call to trigger the scheduler on
  964. * the target CPU.
  965. */
  966. #ifdef CONFIG_SMP
  967. #ifndef tsk_is_polling
  968. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  969. #endif
  970. static void resched_task(struct task_struct *p)
  971. {
  972. int cpu;
  973. assert_raw_spin_locked(&task_rq(p)->lock);
  974. if (test_tsk_need_resched(p))
  975. return;
  976. set_tsk_need_resched(p);
  977. cpu = task_cpu(p);
  978. if (cpu == smp_processor_id())
  979. return;
  980. /* NEED_RESCHED must be visible before we test polling */
  981. smp_mb();
  982. if (!tsk_is_polling(p))
  983. smp_send_reschedule(cpu);
  984. }
  985. static void resched_cpu(int cpu)
  986. {
  987. struct rq *rq = cpu_rq(cpu);
  988. unsigned long flags;
  989. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  990. return;
  991. resched_task(cpu_curr(cpu));
  992. raw_spin_unlock_irqrestore(&rq->lock, flags);
  993. }
  994. #ifdef CONFIG_NO_HZ
  995. /*
  996. * In the semi idle case, use the nearest busy cpu for migrating timers
  997. * from an idle cpu. This is good for power-savings.
  998. *
  999. * We don't do similar optimization for completely idle system, as
  1000. * selecting an idle cpu will add more delays to the timers than intended
  1001. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1002. */
  1003. int get_nohz_timer_target(void)
  1004. {
  1005. int cpu = smp_processor_id();
  1006. int i;
  1007. struct sched_domain *sd;
  1008. rcu_read_lock();
  1009. for_each_domain(cpu, sd) {
  1010. for_each_cpu(i, sched_domain_span(sd)) {
  1011. if (!idle_cpu(i)) {
  1012. cpu = i;
  1013. goto unlock;
  1014. }
  1015. }
  1016. }
  1017. unlock:
  1018. rcu_read_unlock();
  1019. return cpu;
  1020. }
  1021. /*
  1022. * When add_timer_on() enqueues a timer into the timer wheel of an
  1023. * idle CPU then this timer might expire before the next timer event
  1024. * which is scheduled to wake up that CPU. In case of a completely
  1025. * idle system the next event might even be infinite time into the
  1026. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1027. * leaves the inner idle loop so the newly added timer is taken into
  1028. * account when the CPU goes back to idle and evaluates the timer
  1029. * wheel for the next timer event.
  1030. */
  1031. void wake_up_idle_cpu(int cpu)
  1032. {
  1033. struct rq *rq = cpu_rq(cpu);
  1034. if (cpu == smp_processor_id())
  1035. return;
  1036. /*
  1037. * This is safe, as this function is called with the timer
  1038. * wheel base lock of (cpu) held. When the CPU is on the way
  1039. * to idle and has not yet set rq->curr to idle then it will
  1040. * be serialized on the timer wheel base lock and take the new
  1041. * timer into account automatically.
  1042. */
  1043. if (rq->curr != rq->idle)
  1044. return;
  1045. /*
  1046. * We can set TIF_RESCHED on the idle task of the other CPU
  1047. * lockless. The worst case is that the other CPU runs the
  1048. * idle task through an additional NOOP schedule()
  1049. */
  1050. set_tsk_need_resched(rq->idle);
  1051. /* NEED_RESCHED must be visible before we test polling */
  1052. smp_mb();
  1053. if (!tsk_is_polling(rq->idle))
  1054. smp_send_reschedule(cpu);
  1055. }
  1056. #endif /* CONFIG_NO_HZ */
  1057. static u64 sched_avg_period(void)
  1058. {
  1059. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1060. }
  1061. static void sched_avg_update(struct rq *rq)
  1062. {
  1063. s64 period = sched_avg_period();
  1064. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1065. /*
  1066. * Inline assembly required to prevent the compiler
  1067. * optimising this loop into a divmod call.
  1068. * See __iter_div_u64_rem() for another example of this.
  1069. */
  1070. asm("" : "+rm" (rq->age_stamp));
  1071. rq->age_stamp += period;
  1072. rq->rt_avg /= 2;
  1073. }
  1074. }
  1075. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1076. {
  1077. rq->rt_avg += rt_delta;
  1078. sched_avg_update(rq);
  1079. }
  1080. #else /* !CONFIG_SMP */
  1081. static void resched_task(struct task_struct *p)
  1082. {
  1083. assert_raw_spin_locked(&task_rq(p)->lock);
  1084. set_tsk_need_resched(p);
  1085. }
  1086. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1087. {
  1088. }
  1089. static void sched_avg_update(struct rq *rq)
  1090. {
  1091. }
  1092. #endif /* CONFIG_SMP */
  1093. #if BITS_PER_LONG == 32
  1094. # define WMULT_CONST (~0UL)
  1095. #else
  1096. # define WMULT_CONST (1UL << 32)
  1097. #endif
  1098. #define WMULT_SHIFT 32
  1099. /*
  1100. * Shift right and round:
  1101. */
  1102. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1103. /*
  1104. * delta *= weight / lw
  1105. */
  1106. static unsigned long
  1107. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1108. struct load_weight *lw)
  1109. {
  1110. u64 tmp;
  1111. if (!lw->inv_weight) {
  1112. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1113. lw->inv_weight = 1;
  1114. else
  1115. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1116. / (lw->weight+1);
  1117. }
  1118. tmp = (u64)delta_exec * weight;
  1119. /*
  1120. * Check whether we'd overflow the 64-bit multiplication:
  1121. */
  1122. if (unlikely(tmp > WMULT_CONST))
  1123. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1124. WMULT_SHIFT/2);
  1125. else
  1126. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1127. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1128. }
  1129. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1130. {
  1131. lw->weight += inc;
  1132. lw->inv_weight = 0;
  1133. }
  1134. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1135. {
  1136. lw->weight -= dec;
  1137. lw->inv_weight = 0;
  1138. }
  1139. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1140. {
  1141. lw->weight = w;
  1142. lw->inv_weight = 0;
  1143. }
  1144. /*
  1145. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1146. * of tasks with abnormal "nice" values across CPUs the contribution that
  1147. * each task makes to its run queue's load is weighted according to its
  1148. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1149. * scaled version of the new time slice allocation that they receive on time
  1150. * slice expiry etc.
  1151. */
  1152. #define WEIGHT_IDLEPRIO 3
  1153. #define WMULT_IDLEPRIO 1431655765
  1154. /*
  1155. * Nice levels are multiplicative, with a gentle 10% change for every
  1156. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1157. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1158. * that remained on nice 0.
  1159. *
  1160. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1161. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1162. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1163. * If a task goes up by ~10% and another task goes down by ~10% then
  1164. * the relative distance between them is ~25%.)
  1165. */
  1166. static const int prio_to_weight[40] = {
  1167. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1168. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1169. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1170. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1171. /* 0 */ 1024, 820, 655, 526, 423,
  1172. /* 5 */ 335, 272, 215, 172, 137,
  1173. /* 10 */ 110, 87, 70, 56, 45,
  1174. /* 15 */ 36, 29, 23, 18, 15,
  1175. };
  1176. /*
  1177. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1178. *
  1179. * In cases where the weight does not change often, we can use the
  1180. * precalculated inverse to speed up arithmetics by turning divisions
  1181. * into multiplications:
  1182. */
  1183. static const u32 prio_to_wmult[40] = {
  1184. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1185. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1186. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1187. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1188. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1189. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1190. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1191. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1192. };
  1193. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1194. enum cpuacct_stat_index {
  1195. CPUACCT_STAT_USER, /* ... user mode */
  1196. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1197. CPUACCT_STAT_NSTATS,
  1198. };
  1199. #ifdef CONFIG_CGROUP_CPUACCT
  1200. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1201. static void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val);
  1203. #else
  1204. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1205. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1206. enum cpuacct_stat_index idx, cputime_t val) {}
  1207. #endif
  1208. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_add(&rq->load, load);
  1211. }
  1212. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1213. {
  1214. update_load_sub(&rq->load, load);
  1215. }
  1216. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1217. typedef int (*tg_visitor)(struct task_group *, void *);
  1218. /*
  1219. * Iterate the full tree, calling @down when first entering a node and @up when
  1220. * leaving it for the final time.
  1221. */
  1222. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1223. {
  1224. struct task_group *parent, *child;
  1225. int ret;
  1226. rcu_read_lock();
  1227. parent = &root_task_group;
  1228. down:
  1229. ret = (*down)(parent, data);
  1230. if (ret)
  1231. goto out_unlock;
  1232. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1233. parent = child;
  1234. goto down;
  1235. up:
  1236. continue;
  1237. }
  1238. ret = (*up)(parent, data);
  1239. if (ret)
  1240. goto out_unlock;
  1241. child = parent;
  1242. parent = parent->parent;
  1243. if (parent)
  1244. goto up;
  1245. out_unlock:
  1246. rcu_read_unlock();
  1247. return ret;
  1248. }
  1249. static int tg_nop(struct task_group *tg, void *data)
  1250. {
  1251. return 0;
  1252. }
  1253. #endif
  1254. #ifdef CONFIG_SMP
  1255. /* Used instead of source_load when we know the type == 0 */
  1256. static unsigned long weighted_cpuload(const int cpu)
  1257. {
  1258. return cpu_rq(cpu)->load.weight;
  1259. }
  1260. /*
  1261. * Return a low guess at the load of a migration-source cpu weighted
  1262. * according to the scheduling class and "nice" value.
  1263. *
  1264. * We want to under-estimate the load of migration sources, to
  1265. * balance conservatively.
  1266. */
  1267. static unsigned long source_load(int cpu, int type)
  1268. {
  1269. struct rq *rq = cpu_rq(cpu);
  1270. unsigned long total = weighted_cpuload(cpu);
  1271. if (type == 0 || !sched_feat(LB_BIAS))
  1272. return total;
  1273. return min(rq->cpu_load[type-1], total);
  1274. }
  1275. /*
  1276. * Return a high guess at the load of a migration-target cpu weighted
  1277. * according to the scheduling class and "nice" value.
  1278. */
  1279. static unsigned long target_load(int cpu, int type)
  1280. {
  1281. struct rq *rq = cpu_rq(cpu);
  1282. unsigned long total = weighted_cpuload(cpu);
  1283. if (type == 0 || !sched_feat(LB_BIAS))
  1284. return total;
  1285. return max(rq->cpu_load[type-1], total);
  1286. }
  1287. static unsigned long power_of(int cpu)
  1288. {
  1289. return cpu_rq(cpu)->cpu_power;
  1290. }
  1291. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1292. static unsigned long cpu_avg_load_per_task(int cpu)
  1293. {
  1294. struct rq *rq = cpu_rq(cpu);
  1295. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1296. if (nr_running)
  1297. rq->avg_load_per_task = rq->load.weight / nr_running;
  1298. else
  1299. rq->avg_load_per_task = 0;
  1300. return rq->avg_load_per_task;
  1301. }
  1302. #ifdef CONFIG_FAIR_GROUP_SCHED
  1303. /*
  1304. * Compute the cpu's hierarchical load factor for each task group.
  1305. * This needs to be done in a top-down fashion because the load of a child
  1306. * group is a fraction of its parents load.
  1307. */
  1308. static int tg_load_down(struct task_group *tg, void *data)
  1309. {
  1310. unsigned long load;
  1311. long cpu = (long)data;
  1312. if (!tg->parent) {
  1313. load = cpu_rq(cpu)->load.weight;
  1314. } else {
  1315. load = tg->parent->cfs_rq[cpu]->h_load;
  1316. load *= tg->se[cpu]->load.weight;
  1317. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1318. }
  1319. tg->cfs_rq[cpu]->h_load = load;
  1320. return 0;
  1321. }
  1322. static void update_h_load(long cpu)
  1323. {
  1324. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1325. }
  1326. #endif
  1327. #ifdef CONFIG_PREEMPT
  1328. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1329. /*
  1330. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1331. * way at the expense of forcing extra atomic operations in all
  1332. * invocations. This assures that the double_lock is acquired using the
  1333. * same underlying policy as the spinlock_t on this architecture, which
  1334. * reduces latency compared to the unfair variant below. However, it
  1335. * also adds more overhead and therefore may reduce throughput.
  1336. */
  1337. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1338. __releases(this_rq->lock)
  1339. __acquires(busiest->lock)
  1340. __acquires(this_rq->lock)
  1341. {
  1342. raw_spin_unlock(&this_rq->lock);
  1343. double_rq_lock(this_rq, busiest);
  1344. return 1;
  1345. }
  1346. #else
  1347. /*
  1348. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1349. * latency by eliminating extra atomic operations when the locks are
  1350. * already in proper order on entry. This favors lower cpu-ids and will
  1351. * grant the double lock to lower cpus over higher ids under contention,
  1352. * regardless of entry order into the function.
  1353. */
  1354. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1355. __releases(this_rq->lock)
  1356. __acquires(busiest->lock)
  1357. __acquires(this_rq->lock)
  1358. {
  1359. int ret = 0;
  1360. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1361. if (busiest < this_rq) {
  1362. raw_spin_unlock(&this_rq->lock);
  1363. raw_spin_lock(&busiest->lock);
  1364. raw_spin_lock_nested(&this_rq->lock,
  1365. SINGLE_DEPTH_NESTING);
  1366. ret = 1;
  1367. } else
  1368. raw_spin_lock_nested(&busiest->lock,
  1369. SINGLE_DEPTH_NESTING);
  1370. }
  1371. return ret;
  1372. }
  1373. #endif /* CONFIG_PREEMPT */
  1374. /*
  1375. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1376. */
  1377. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1378. {
  1379. if (unlikely(!irqs_disabled())) {
  1380. /* printk() doesn't work good under rq->lock */
  1381. raw_spin_unlock(&this_rq->lock);
  1382. BUG_ON(1);
  1383. }
  1384. return _double_lock_balance(this_rq, busiest);
  1385. }
  1386. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1387. __releases(busiest->lock)
  1388. {
  1389. raw_spin_unlock(&busiest->lock);
  1390. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1391. }
  1392. /*
  1393. * double_rq_lock - safely lock two runqueues
  1394. *
  1395. * Note this does not disable interrupts like task_rq_lock,
  1396. * you need to do so manually before calling.
  1397. */
  1398. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1399. __acquires(rq1->lock)
  1400. __acquires(rq2->lock)
  1401. {
  1402. BUG_ON(!irqs_disabled());
  1403. if (rq1 == rq2) {
  1404. raw_spin_lock(&rq1->lock);
  1405. __acquire(rq2->lock); /* Fake it out ;) */
  1406. } else {
  1407. if (rq1 < rq2) {
  1408. raw_spin_lock(&rq1->lock);
  1409. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1410. } else {
  1411. raw_spin_lock(&rq2->lock);
  1412. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1413. }
  1414. }
  1415. }
  1416. /*
  1417. * double_rq_unlock - safely unlock two runqueues
  1418. *
  1419. * Note this does not restore interrupts like task_rq_unlock,
  1420. * you need to do so manually after calling.
  1421. */
  1422. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1423. __releases(rq1->lock)
  1424. __releases(rq2->lock)
  1425. {
  1426. raw_spin_unlock(&rq1->lock);
  1427. if (rq1 != rq2)
  1428. raw_spin_unlock(&rq2->lock);
  1429. else
  1430. __release(rq2->lock);
  1431. }
  1432. #else /* CONFIG_SMP */
  1433. /*
  1434. * double_rq_lock - safely lock two runqueues
  1435. *
  1436. * Note this does not disable interrupts like task_rq_lock,
  1437. * you need to do so manually before calling.
  1438. */
  1439. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1440. __acquires(rq1->lock)
  1441. __acquires(rq2->lock)
  1442. {
  1443. BUG_ON(!irqs_disabled());
  1444. BUG_ON(rq1 != rq2);
  1445. raw_spin_lock(&rq1->lock);
  1446. __acquire(rq2->lock); /* Fake it out ;) */
  1447. }
  1448. /*
  1449. * double_rq_unlock - safely unlock two runqueues
  1450. *
  1451. * Note this does not restore interrupts like task_rq_unlock,
  1452. * you need to do so manually after calling.
  1453. */
  1454. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1455. __releases(rq1->lock)
  1456. __releases(rq2->lock)
  1457. {
  1458. BUG_ON(rq1 != rq2);
  1459. raw_spin_unlock(&rq1->lock);
  1460. __release(rq2->lock);
  1461. }
  1462. #endif
  1463. static void calc_load_account_idle(struct rq *this_rq);
  1464. static void update_sysctl(void);
  1465. static int get_update_sysctl_factor(void);
  1466. static void update_cpu_load(struct rq *this_rq);
  1467. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1468. {
  1469. set_task_rq(p, cpu);
  1470. #ifdef CONFIG_SMP
  1471. /*
  1472. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1473. * successfuly executed on another CPU. We must ensure that updates of
  1474. * per-task data have been completed by this moment.
  1475. */
  1476. smp_wmb();
  1477. task_thread_info(p)->cpu = cpu;
  1478. #endif
  1479. }
  1480. static const struct sched_class rt_sched_class;
  1481. #define sched_class_highest (&stop_sched_class)
  1482. #define for_each_class(class) \
  1483. for (class = sched_class_highest; class; class = class->next)
  1484. #include "sched_stats.h"
  1485. static void inc_nr_running(struct rq *rq)
  1486. {
  1487. rq->nr_running++;
  1488. }
  1489. static void dec_nr_running(struct rq *rq)
  1490. {
  1491. rq->nr_running--;
  1492. }
  1493. static void set_load_weight(struct task_struct *p)
  1494. {
  1495. /*
  1496. * SCHED_IDLE tasks get minimal weight:
  1497. */
  1498. if (p->policy == SCHED_IDLE) {
  1499. p->se.load.weight = WEIGHT_IDLEPRIO;
  1500. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1501. return;
  1502. }
  1503. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1504. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1505. }
  1506. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1507. {
  1508. update_rq_clock(rq);
  1509. sched_info_queued(p);
  1510. p->sched_class->enqueue_task(rq, p, flags);
  1511. }
  1512. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1513. {
  1514. update_rq_clock(rq);
  1515. sched_info_dequeued(p);
  1516. p->sched_class->dequeue_task(rq, p, flags);
  1517. }
  1518. /*
  1519. * activate_task - move a task to the runqueue.
  1520. */
  1521. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1522. {
  1523. if (task_contributes_to_load(p))
  1524. rq->nr_uninterruptible--;
  1525. enqueue_task(rq, p, flags);
  1526. inc_nr_running(rq);
  1527. }
  1528. /*
  1529. * deactivate_task - remove a task from the runqueue.
  1530. */
  1531. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1532. {
  1533. if (task_contributes_to_load(p))
  1534. rq->nr_uninterruptible++;
  1535. dequeue_task(rq, p, flags);
  1536. dec_nr_running(rq);
  1537. }
  1538. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1539. /*
  1540. * There are no locks covering percpu hardirq/softirq time.
  1541. * They are only modified in account_system_vtime, on corresponding CPU
  1542. * with interrupts disabled. So, writes are safe.
  1543. * They are read and saved off onto struct rq in update_rq_clock().
  1544. * This may result in other CPU reading this CPU's irq time and can
  1545. * race with irq/account_system_vtime on this CPU. We would either get old
  1546. * or new value with a side effect of accounting a slice of irq time to wrong
  1547. * task when irq is in progress while we read rq->clock. That is a worthy
  1548. * compromise in place of having locks on each irq in account_system_time.
  1549. */
  1550. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1551. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1552. static DEFINE_PER_CPU(u64, irq_start_time);
  1553. static int sched_clock_irqtime;
  1554. void enable_sched_clock_irqtime(void)
  1555. {
  1556. sched_clock_irqtime = 1;
  1557. }
  1558. void disable_sched_clock_irqtime(void)
  1559. {
  1560. sched_clock_irqtime = 0;
  1561. }
  1562. #ifndef CONFIG_64BIT
  1563. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1564. static inline void irq_time_write_begin(void)
  1565. {
  1566. __this_cpu_inc(irq_time_seq.sequence);
  1567. smp_wmb();
  1568. }
  1569. static inline void irq_time_write_end(void)
  1570. {
  1571. smp_wmb();
  1572. __this_cpu_inc(irq_time_seq.sequence);
  1573. }
  1574. static inline u64 irq_time_read(int cpu)
  1575. {
  1576. u64 irq_time;
  1577. unsigned seq;
  1578. do {
  1579. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1580. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1581. per_cpu(cpu_hardirq_time, cpu);
  1582. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1583. return irq_time;
  1584. }
  1585. #else /* CONFIG_64BIT */
  1586. static inline void irq_time_write_begin(void)
  1587. {
  1588. }
  1589. static inline void irq_time_write_end(void)
  1590. {
  1591. }
  1592. static inline u64 irq_time_read(int cpu)
  1593. {
  1594. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1595. }
  1596. #endif /* CONFIG_64BIT */
  1597. /*
  1598. * Called before incrementing preempt_count on {soft,}irq_enter
  1599. * and before decrementing preempt_count on {soft,}irq_exit.
  1600. */
  1601. void account_system_vtime(struct task_struct *curr)
  1602. {
  1603. unsigned long flags;
  1604. s64 delta;
  1605. int cpu;
  1606. if (!sched_clock_irqtime)
  1607. return;
  1608. local_irq_save(flags);
  1609. cpu = smp_processor_id();
  1610. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1611. __this_cpu_add(irq_start_time, delta);
  1612. irq_time_write_begin();
  1613. /*
  1614. * We do not account for softirq time from ksoftirqd here.
  1615. * We want to continue accounting softirq time to ksoftirqd thread
  1616. * in that case, so as not to confuse scheduler with a special task
  1617. * that do not consume any time, but still wants to run.
  1618. */
  1619. if (hardirq_count())
  1620. __this_cpu_add(cpu_hardirq_time, delta);
  1621. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1622. __this_cpu_add(cpu_softirq_time, delta);
  1623. irq_time_write_end();
  1624. local_irq_restore(flags);
  1625. }
  1626. EXPORT_SYMBOL_GPL(account_system_vtime);
  1627. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1628. {
  1629. s64 irq_delta;
  1630. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1631. /*
  1632. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1633. * this case when a previous update_rq_clock() happened inside a
  1634. * {soft,}irq region.
  1635. *
  1636. * When this happens, we stop ->clock_task and only update the
  1637. * prev_irq_time stamp to account for the part that fit, so that a next
  1638. * update will consume the rest. This ensures ->clock_task is
  1639. * monotonic.
  1640. *
  1641. * It does however cause some slight miss-attribution of {soft,}irq
  1642. * time, a more accurate solution would be to update the irq_time using
  1643. * the current rq->clock timestamp, except that would require using
  1644. * atomic ops.
  1645. */
  1646. if (irq_delta > delta)
  1647. irq_delta = delta;
  1648. rq->prev_irq_time += irq_delta;
  1649. delta -= irq_delta;
  1650. rq->clock_task += delta;
  1651. if (irq_delta && sched_feat(NONIRQ_POWER))
  1652. sched_rt_avg_update(rq, irq_delta);
  1653. }
  1654. static int irqtime_account_hi_update(void)
  1655. {
  1656. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1657. unsigned long flags;
  1658. u64 latest_ns;
  1659. int ret = 0;
  1660. local_irq_save(flags);
  1661. latest_ns = this_cpu_read(cpu_hardirq_time);
  1662. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1663. ret = 1;
  1664. local_irq_restore(flags);
  1665. return ret;
  1666. }
  1667. static int irqtime_account_si_update(void)
  1668. {
  1669. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1670. unsigned long flags;
  1671. u64 latest_ns;
  1672. int ret = 0;
  1673. local_irq_save(flags);
  1674. latest_ns = this_cpu_read(cpu_softirq_time);
  1675. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1676. ret = 1;
  1677. local_irq_restore(flags);
  1678. return ret;
  1679. }
  1680. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1681. #define sched_clock_irqtime (0)
  1682. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1683. {
  1684. rq->clock_task += delta;
  1685. }
  1686. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1687. #include "sched_idletask.c"
  1688. #include "sched_fair.c"
  1689. #include "sched_rt.c"
  1690. #include "sched_autogroup.c"
  1691. #include "sched_stoptask.c"
  1692. #ifdef CONFIG_SCHED_DEBUG
  1693. # include "sched_debug.c"
  1694. #endif
  1695. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1696. {
  1697. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1698. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1699. if (stop) {
  1700. /*
  1701. * Make it appear like a SCHED_FIFO task, its something
  1702. * userspace knows about and won't get confused about.
  1703. *
  1704. * Also, it will make PI more or less work without too
  1705. * much confusion -- but then, stop work should not
  1706. * rely on PI working anyway.
  1707. */
  1708. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1709. stop->sched_class = &stop_sched_class;
  1710. }
  1711. cpu_rq(cpu)->stop = stop;
  1712. if (old_stop) {
  1713. /*
  1714. * Reset it back to a normal scheduling class so that
  1715. * it can die in pieces.
  1716. */
  1717. old_stop->sched_class = &rt_sched_class;
  1718. }
  1719. }
  1720. /*
  1721. * __normal_prio - return the priority that is based on the static prio
  1722. */
  1723. static inline int __normal_prio(struct task_struct *p)
  1724. {
  1725. return p->static_prio;
  1726. }
  1727. /*
  1728. * Calculate the expected normal priority: i.e. priority
  1729. * without taking RT-inheritance into account. Might be
  1730. * boosted by interactivity modifiers. Changes upon fork,
  1731. * setprio syscalls, and whenever the interactivity
  1732. * estimator recalculates.
  1733. */
  1734. static inline int normal_prio(struct task_struct *p)
  1735. {
  1736. int prio;
  1737. if (task_has_rt_policy(p))
  1738. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1739. else
  1740. prio = __normal_prio(p);
  1741. return prio;
  1742. }
  1743. /*
  1744. * Calculate the current priority, i.e. the priority
  1745. * taken into account by the scheduler. This value might
  1746. * be boosted by RT tasks, or might be boosted by
  1747. * interactivity modifiers. Will be RT if the task got
  1748. * RT-boosted. If not then it returns p->normal_prio.
  1749. */
  1750. static int effective_prio(struct task_struct *p)
  1751. {
  1752. p->normal_prio = normal_prio(p);
  1753. /*
  1754. * If we are RT tasks or we were boosted to RT priority,
  1755. * keep the priority unchanged. Otherwise, update priority
  1756. * to the normal priority:
  1757. */
  1758. if (!rt_prio(p->prio))
  1759. return p->normal_prio;
  1760. return p->prio;
  1761. }
  1762. /**
  1763. * task_curr - is this task currently executing on a CPU?
  1764. * @p: the task in question.
  1765. */
  1766. inline int task_curr(const struct task_struct *p)
  1767. {
  1768. return cpu_curr(task_cpu(p)) == p;
  1769. }
  1770. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1771. const struct sched_class *prev_class,
  1772. int oldprio)
  1773. {
  1774. if (prev_class != p->sched_class) {
  1775. if (prev_class->switched_from)
  1776. prev_class->switched_from(rq, p);
  1777. p->sched_class->switched_to(rq, p);
  1778. } else if (oldprio != p->prio)
  1779. p->sched_class->prio_changed(rq, p, oldprio);
  1780. }
  1781. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1782. {
  1783. const struct sched_class *class;
  1784. if (p->sched_class == rq->curr->sched_class) {
  1785. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1786. } else {
  1787. for_each_class(class) {
  1788. if (class == rq->curr->sched_class)
  1789. break;
  1790. if (class == p->sched_class) {
  1791. resched_task(rq->curr);
  1792. break;
  1793. }
  1794. }
  1795. }
  1796. /*
  1797. * A queue event has occurred, and we're going to schedule. In
  1798. * this case, we can save a useless back to back clock update.
  1799. */
  1800. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1801. rq->skip_clock_update = 1;
  1802. }
  1803. #ifdef CONFIG_SMP
  1804. /*
  1805. * Is this task likely cache-hot:
  1806. */
  1807. static int
  1808. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1809. {
  1810. s64 delta;
  1811. if (p->sched_class != &fair_sched_class)
  1812. return 0;
  1813. if (unlikely(p->policy == SCHED_IDLE))
  1814. return 0;
  1815. /*
  1816. * Buddy candidates are cache hot:
  1817. */
  1818. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1819. (&p->se == cfs_rq_of(&p->se)->next ||
  1820. &p->se == cfs_rq_of(&p->se)->last))
  1821. return 1;
  1822. if (sysctl_sched_migration_cost == -1)
  1823. return 1;
  1824. if (sysctl_sched_migration_cost == 0)
  1825. return 0;
  1826. delta = now - p->se.exec_start;
  1827. return delta < (s64)sysctl_sched_migration_cost;
  1828. }
  1829. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1830. {
  1831. #ifdef CONFIG_SCHED_DEBUG
  1832. /*
  1833. * We should never call set_task_cpu() on a blocked task,
  1834. * ttwu() will sort out the placement.
  1835. */
  1836. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1837. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1838. #ifdef CONFIG_LOCKDEP
  1839. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1840. lockdep_is_held(&task_rq(p)->lock)));
  1841. #endif
  1842. #endif
  1843. trace_sched_migrate_task(p, new_cpu);
  1844. if (task_cpu(p) != new_cpu) {
  1845. p->se.nr_migrations++;
  1846. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1847. }
  1848. __set_task_cpu(p, new_cpu);
  1849. }
  1850. struct migration_arg {
  1851. struct task_struct *task;
  1852. int dest_cpu;
  1853. };
  1854. static int migration_cpu_stop(void *data);
  1855. /*
  1856. * wait_task_inactive - wait for a thread to unschedule.
  1857. *
  1858. * If @match_state is nonzero, it's the @p->state value just checked and
  1859. * not expected to change. If it changes, i.e. @p might have woken up,
  1860. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1861. * we return a positive number (its total switch count). If a second call
  1862. * a short while later returns the same number, the caller can be sure that
  1863. * @p has remained unscheduled the whole time.
  1864. *
  1865. * The caller must ensure that the task *will* unschedule sometime soon,
  1866. * else this function might spin for a *long* time. This function can't
  1867. * be called with interrupts off, or it may introduce deadlock with
  1868. * smp_call_function() if an IPI is sent by the same process we are
  1869. * waiting to become inactive.
  1870. */
  1871. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1872. {
  1873. unsigned long flags;
  1874. int running, on_rq;
  1875. unsigned long ncsw;
  1876. struct rq *rq;
  1877. for (;;) {
  1878. /*
  1879. * We do the initial early heuristics without holding
  1880. * any task-queue locks at all. We'll only try to get
  1881. * the runqueue lock when things look like they will
  1882. * work out!
  1883. */
  1884. rq = task_rq(p);
  1885. /*
  1886. * If the task is actively running on another CPU
  1887. * still, just relax and busy-wait without holding
  1888. * any locks.
  1889. *
  1890. * NOTE! Since we don't hold any locks, it's not
  1891. * even sure that "rq" stays as the right runqueue!
  1892. * But we don't care, since "task_running()" will
  1893. * return false if the runqueue has changed and p
  1894. * is actually now running somewhere else!
  1895. */
  1896. while (task_running(rq, p)) {
  1897. if (match_state && unlikely(p->state != match_state))
  1898. return 0;
  1899. cpu_relax();
  1900. }
  1901. /*
  1902. * Ok, time to look more closely! We need the rq
  1903. * lock now, to be *sure*. If we're wrong, we'll
  1904. * just go back and repeat.
  1905. */
  1906. rq = task_rq_lock(p, &flags);
  1907. trace_sched_wait_task(p);
  1908. running = task_running(rq, p);
  1909. on_rq = p->on_rq;
  1910. ncsw = 0;
  1911. if (!match_state || p->state == match_state)
  1912. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1913. task_rq_unlock(rq, p, &flags);
  1914. /*
  1915. * If it changed from the expected state, bail out now.
  1916. */
  1917. if (unlikely(!ncsw))
  1918. break;
  1919. /*
  1920. * Was it really running after all now that we
  1921. * checked with the proper locks actually held?
  1922. *
  1923. * Oops. Go back and try again..
  1924. */
  1925. if (unlikely(running)) {
  1926. cpu_relax();
  1927. continue;
  1928. }
  1929. /*
  1930. * It's not enough that it's not actively running,
  1931. * it must be off the runqueue _entirely_, and not
  1932. * preempted!
  1933. *
  1934. * So if it was still runnable (but just not actively
  1935. * running right now), it's preempted, and we should
  1936. * yield - it could be a while.
  1937. */
  1938. if (unlikely(on_rq)) {
  1939. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1940. set_current_state(TASK_UNINTERRUPTIBLE);
  1941. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1942. continue;
  1943. }
  1944. /*
  1945. * Ahh, all good. It wasn't running, and it wasn't
  1946. * runnable, which means that it will never become
  1947. * running in the future either. We're all done!
  1948. */
  1949. break;
  1950. }
  1951. return ncsw;
  1952. }
  1953. /***
  1954. * kick_process - kick a running thread to enter/exit the kernel
  1955. * @p: the to-be-kicked thread
  1956. *
  1957. * Cause a process which is running on another CPU to enter
  1958. * kernel-mode, without any delay. (to get signals handled.)
  1959. *
  1960. * NOTE: this function doesn't have to take the runqueue lock,
  1961. * because all it wants to ensure is that the remote task enters
  1962. * the kernel. If the IPI races and the task has been migrated
  1963. * to another CPU then no harm is done and the purpose has been
  1964. * achieved as well.
  1965. */
  1966. void kick_process(struct task_struct *p)
  1967. {
  1968. int cpu;
  1969. preempt_disable();
  1970. cpu = task_cpu(p);
  1971. if ((cpu != smp_processor_id()) && task_curr(p))
  1972. smp_send_reschedule(cpu);
  1973. preempt_enable();
  1974. }
  1975. EXPORT_SYMBOL_GPL(kick_process);
  1976. #endif /* CONFIG_SMP */
  1977. #ifdef CONFIG_SMP
  1978. /*
  1979. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1980. */
  1981. static int select_fallback_rq(int cpu, struct task_struct *p)
  1982. {
  1983. int dest_cpu;
  1984. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1985. /* Look for allowed, online CPU in same node. */
  1986. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1987. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1988. return dest_cpu;
  1989. /* Any allowed, online CPU? */
  1990. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1991. if (dest_cpu < nr_cpu_ids)
  1992. return dest_cpu;
  1993. /* No more Mr. Nice Guy. */
  1994. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1995. /*
  1996. * Don't tell them about moving exiting tasks or
  1997. * kernel threads (both mm NULL), since they never
  1998. * leave kernel.
  1999. */
  2000. if (p->mm && printk_ratelimit()) {
  2001. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2002. task_pid_nr(p), p->comm, cpu);
  2003. }
  2004. return dest_cpu;
  2005. }
  2006. /*
  2007. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2008. */
  2009. static inline
  2010. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2011. {
  2012. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2013. /*
  2014. * In order not to call set_task_cpu() on a blocking task we need
  2015. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2016. * cpu.
  2017. *
  2018. * Since this is common to all placement strategies, this lives here.
  2019. *
  2020. * [ this allows ->select_task() to simply return task_cpu(p) and
  2021. * not worry about this generic constraint ]
  2022. */
  2023. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2024. !cpu_online(cpu)))
  2025. cpu = select_fallback_rq(task_cpu(p), p);
  2026. return cpu;
  2027. }
  2028. static void update_avg(u64 *avg, u64 sample)
  2029. {
  2030. s64 diff = sample - *avg;
  2031. *avg += diff >> 3;
  2032. }
  2033. #endif
  2034. static void
  2035. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  2036. {
  2037. #ifdef CONFIG_SCHEDSTATS
  2038. struct rq *rq = this_rq();
  2039. #ifdef CONFIG_SMP
  2040. int this_cpu = smp_processor_id();
  2041. if (cpu == this_cpu) {
  2042. schedstat_inc(rq, ttwu_local);
  2043. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2044. } else {
  2045. struct sched_domain *sd;
  2046. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2047. rcu_read_lock();
  2048. for_each_domain(this_cpu, sd) {
  2049. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2050. schedstat_inc(sd, ttwu_wake_remote);
  2051. break;
  2052. }
  2053. }
  2054. rcu_read_unlock();
  2055. }
  2056. #endif /* CONFIG_SMP */
  2057. schedstat_inc(rq, ttwu_count);
  2058. schedstat_inc(p, se.statistics.nr_wakeups);
  2059. if (wake_flags & WF_SYNC)
  2060. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2061. if (cpu != task_cpu(p))
  2062. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2063. #endif /* CONFIG_SCHEDSTATS */
  2064. }
  2065. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2066. {
  2067. activate_task(rq, p, en_flags);
  2068. p->on_rq = 1;
  2069. /* if a worker is waking up, notify workqueue */
  2070. if (p->flags & PF_WQ_WORKER)
  2071. wq_worker_waking_up(p, cpu_of(rq));
  2072. }
  2073. /*
  2074. * Mark the task runnable and perform wakeup-preemption.
  2075. */
  2076. static void
  2077. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2078. {
  2079. trace_sched_wakeup(p, true);
  2080. check_preempt_curr(rq, p, wake_flags);
  2081. p->state = TASK_RUNNING;
  2082. #ifdef CONFIG_SMP
  2083. if (p->sched_class->task_woken)
  2084. p->sched_class->task_woken(rq, p);
  2085. if (unlikely(rq->idle_stamp)) {
  2086. u64 delta = rq->clock - rq->idle_stamp;
  2087. u64 max = 2*sysctl_sched_migration_cost;
  2088. if (delta > max)
  2089. rq->avg_idle = max;
  2090. else
  2091. update_avg(&rq->avg_idle, delta);
  2092. rq->idle_stamp = 0;
  2093. }
  2094. #endif
  2095. }
  2096. static void
  2097. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  2098. {
  2099. #ifdef CONFIG_SMP
  2100. if (p->sched_contributes_to_load)
  2101. rq->nr_uninterruptible--;
  2102. #endif
  2103. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2104. ttwu_do_wakeup(rq, p, wake_flags);
  2105. }
  2106. /*
  2107. * Called in case the task @p isn't fully descheduled from its runqueue,
  2108. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  2109. * since all we need to do is flip p->state to TASK_RUNNING, since
  2110. * the task is still ->on_rq.
  2111. */
  2112. static int ttwu_remote(struct task_struct *p, int wake_flags)
  2113. {
  2114. struct rq *rq;
  2115. int ret = 0;
  2116. rq = __task_rq_lock(p);
  2117. if (p->on_rq) {
  2118. ttwu_do_wakeup(rq, p, wake_flags);
  2119. ret = 1;
  2120. }
  2121. __task_rq_unlock(rq);
  2122. return ret;
  2123. }
  2124. #ifdef CONFIG_SMP
  2125. static void sched_ttwu_pending(void)
  2126. {
  2127. struct rq *rq = this_rq();
  2128. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2129. if (!list)
  2130. return;
  2131. raw_spin_lock(&rq->lock);
  2132. while (list) {
  2133. struct task_struct *p = list;
  2134. list = list->wake_entry;
  2135. ttwu_do_activate(rq, p, 0);
  2136. }
  2137. raw_spin_unlock(&rq->lock);
  2138. }
  2139. void scheduler_ipi(void)
  2140. {
  2141. sched_ttwu_pending();
  2142. }
  2143. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  2144. {
  2145. struct rq *rq = cpu_rq(cpu);
  2146. struct task_struct *next = rq->wake_list;
  2147. for (;;) {
  2148. struct task_struct *old = next;
  2149. p->wake_entry = next;
  2150. next = cmpxchg(&rq->wake_list, old, p);
  2151. if (next == old)
  2152. break;
  2153. }
  2154. if (!next)
  2155. smp_send_reschedule(cpu);
  2156. }
  2157. #endif
  2158. static void ttwu_queue(struct task_struct *p, int cpu)
  2159. {
  2160. struct rq *rq = cpu_rq(cpu);
  2161. #if defined(CONFIG_SMP) && defined(CONFIG_SCHED_TTWU_QUEUE)
  2162. if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
  2163. ttwu_queue_remote(p, cpu);
  2164. return;
  2165. }
  2166. #endif
  2167. raw_spin_lock(&rq->lock);
  2168. ttwu_do_activate(rq, p, 0);
  2169. raw_spin_unlock(&rq->lock);
  2170. }
  2171. /**
  2172. * try_to_wake_up - wake up a thread
  2173. * @p: the thread to be awakened
  2174. * @state: the mask of task states that can be woken
  2175. * @wake_flags: wake modifier flags (WF_*)
  2176. *
  2177. * Put it on the run-queue if it's not already there. The "current"
  2178. * thread is always on the run-queue (except when the actual
  2179. * re-schedule is in progress), and as such you're allowed to do
  2180. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2181. * runnable without the overhead of this.
  2182. *
  2183. * Returns %true if @p was woken up, %false if it was already running
  2184. * or @state didn't match @p's state.
  2185. */
  2186. static int
  2187. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2188. {
  2189. unsigned long flags;
  2190. int cpu, success = 0;
  2191. smp_wmb();
  2192. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2193. if (!(p->state & state))
  2194. goto out;
  2195. success = 1; /* we're going to change ->state */
  2196. cpu = task_cpu(p);
  2197. if (p->on_rq && ttwu_remote(p, wake_flags))
  2198. goto stat;
  2199. #ifdef CONFIG_SMP
  2200. /*
  2201. * If the owning (remote) cpu is still in the middle of schedule() with
  2202. * this task as prev, wait until its done referencing the task.
  2203. */
  2204. while (p->on_cpu) {
  2205. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2206. /*
  2207. * If called from interrupt context we could have landed in the
  2208. * middle of schedule(), in this case we should take care not
  2209. * to spin on ->on_cpu if p is current, since that would
  2210. * deadlock.
  2211. */
  2212. if (p == current) {
  2213. ttwu_queue(p, cpu);
  2214. goto stat;
  2215. }
  2216. #endif
  2217. cpu_relax();
  2218. }
  2219. /*
  2220. * Pairs with the smp_wmb() in finish_lock_switch().
  2221. */
  2222. smp_rmb();
  2223. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2224. p->state = TASK_WAKING;
  2225. if (p->sched_class->task_waking)
  2226. p->sched_class->task_waking(p);
  2227. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2228. if (task_cpu(p) != cpu)
  2229. set_task_cpu(p, cpu);
  2230. #endif /* CONFIG_SMP */
  2231. ttwu_queue(p, cpu);
  2232. stat:
  2233. ttwu_stat(p, cpu, wake_flags);
  2234. out:
  2235. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2236. return success;
  2237. }
  2238. /**
  2239. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2240. * @p: the thread to be awakened
  2241. *
  2242. * Put @p on the run-queue if it's not already there. The caller must
  2243. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2244. * the current task.
  2245. */
  2246. static void try_to_wake_up_local(struct task_struct *p)
  2247. {
  2248. struct rq *rq = task_rq(p);
  2249. BUG_ON(rq != this_rq());
  2250. BUG_ON(p == current);
  2251. lockdep_assert_held(&rq->lock);
  2252. if (!raw_spin_trylock(&p->pi_lock)) {
  2253. raw_spin_unlock(&rq->lock);
  2254. raw_spin_lock(&p->pi_lock);
  2255. raw_spin_lock(&rq->lock);
  2256. }
  2257. if (!(p->state & TASK_NORMAL))
  2258. goto out;
  2259. if (!p->on_rq)
  2260. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2261. ttwu_do_wakeup(rq, p, 0);
  2262. ttwu_stat(p, smp_processor_id(), 0);
  2263. out:
  2264. raw_spin_unlock(&p->pi_lock);
  2265. }
  2266. /**
  2267. * wake_up_process - Wake up a specific process
  2268. * @p: The process to be woken up.
  2269. *
  2270. * Attempt to wake up the nominated process and move it to the set of runnable
  2271. * processes. Returns 1 if the process was woken up, 0 if it was already
  2272. * running.
  2273. *
  2274. * It may be assumed that this function implies a write memory barrier before
  2275. * changing the task state if and only if any tasks are woken up.
  2276. */
  2277. int wake_up_process(struct task_struct *p)
  2278. {
  2279. return try_to_wake_up(p, TASK_ALL, 0);
  2280. }
  2281. EXPORT_SYMBOL(wake_up_process);
  2282. int wake_up_state(struct task_struct *p, unsigned int state)
  2283. {
  2284. return try_to_wake_up(p, state, 0);
  2285. }
  2286. /*
  2287. * Perform scheduler related setup for a newly forked process p.
  2288. * p is forked by current.
  2289. *
  2290. * __sched_fork() is basic setup used by init_idle() too:
  2291. */
  2292. static void __sched_fork(struct task_struct *p)
  2293. {
  2294. p->on_rq = 0;
  2295. p->se.on_rq = 0;
  2296. p->se.exec_start = 0;
  2297. p->se.sum_exec_runtime = 0;
  2298. p->se.prev_sum_exec_runtime = 0;
  2299. p->se.nr_migrations = 0;
  2300. p->se.vruntime = 0;
  2301. INIT_LIST_HEAD(&p->se.group_node);
  2302. #ifdef CONFIG_SCHEDSTATS
  2303. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2304. #endif
  2305. INIT_LIST_HEAD(&p->rt.run_list);
  2306. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2307. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2308. #endif
  2309. }
  2310. /*
  2311. * fork()/clone()-time setup:
  2312. */
  2313. void sched_fork(struct task_struct *p)
  2314. {
  2315. unsigned long flags;
  2316. int cpu = get_cpu();
  2317. __sched_fork(p);
  2318. /*
  2319. * We mark the process as running here. This guarantees that
  2320. * nobody will actually run it, and a signal or other external
  2321. * event cannot wake it up and insert it on the runqueue either.
  2322. */
  2323. p->state = TASK_RUNNING;
  2324. /*
  2325. * Revert to default priority/policy on fork if requested.
  2326. */
  2327. if (unlikely(p->sched_reset_on_fork)) {
  2328. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2329. p->policy = SCHED_NORMAL;
  2330. p->normal_prio = p->static_prio;
  2331. }
  2332. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2333. p->static_prio = NICE_TO_PRIO(0);
  2334. p->normal_prio = p->static_prio;
  2335. set_load_weight(p);
  2336. }
  2337. /*
  2338. * We don't need the reset flag anymore after the fork. It has
  2339. * fulfilled its duty:
  2340. */
  2341. p->sched_reset_on_fork = 0;
  2342. }
  2343. /*
  2344. * Make sure we do not leak PI boosting priority to the child.
  2345. */
  2346. p->prio = current->normal_prio;
  2347. if (!rt_prio(p->prio))
  2348. p->sched_class = &fair_sched_class;
  2349. if (p->sched_class->task_fork)
  2350. p->sched_class->task_fork(p);
  2351. /*
  2352. * The child is not yet in the pid-hash so no cgroup attach races,
  2353. * and the cgroup is pinned to this child due to cgroup_fork()
  2354. * is ran before sched_fork().
  2355. *
  2356. * Silence PROVE_RCU.
  2357. */
  2358. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2359. set_task_cpu(p, cpu);
  2360. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2361. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2362. if (likely(sched_info_on()))
  2363. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2364. #endif
  2365. #if defined(CONFIG_SMP)
  2366. p->on_cpu = 0;
  2367. #endif
  2368. #ifdef CONFIG_PREEMPT
  2369. /* Want to start with kernel preemption disabled. */
  2370. task_thread_info(p)->preempt_count = 1;
  2371. #endif
  2372. #ifdef CONFIG_SMP
  2373. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2374. #endif
  2375. put_cpu();
  2376. }
  2377. /*
  2378. * wake_up_new_task - wake up a newly created task for the first time.
  2379. *
  2380. * This function will do some initial scheduler statistics housekeeping
  2381. * that must be done for every newly created context, then puts the task
  2382. * on the runqueue and wakes it.
  2383. */
  2384. void wake_up_new_task(struct task_struct *p)
  2385. {
  2386. unsigned long flags;
  2387. struct rq *rq;
  2388. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2389. #ifdef CONFIG_SMP
  2390. /*
  2391. * Fork balancing, do it here and not earlier because:
  2392. * - cpus_allowed can change in the fork path
  2393. * - any previously selected cpu might disappear through hotplug
  2394. */
  2395. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2396. #endif
  2397. rq = __task_rq_lock(p);
  2398. activate_task(rq, p, 0);
  2399. p->on_rq = 1;
  2400. trace_sched_wakeup_new(p, true);
  2401. check_preempt_curr(rq, p, WF_FORK);
  2402. #ifdef CONFIG_SMP
  2403. if (p->sched_class->task_woken)
  2404. p->sched_class->task_woken(rq, p);
  2405. #endif
  2406. task_rq_unlock(rq, p, &flags);
  2407. }
  2408. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2409. /**
  2410. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2411. * @notifier: notifier struct to register
  2412. */
  2413. void preempt_notifier_register(struct preempt_notifier *notifier)
  2414. {
  2415. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2416. }
  2417. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2418. /**
  2419. * preempt_notifier_unregister - no longer interested in preemption notifications
  2420. * @notifier: notifier struct to unregister
  2421. *
  2422. * This is safe to call from within a preemption notifier.
  2423. */
  2424. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2425. {
  2426. hlist_del(&notifier->link);
  2427. }
  2428. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2429. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2430. {
  2431. struct preempt_notifier *notifier;
  2432. struct hlist_node *node;
  2433. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2434. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2435. }
  2436. static void
  2437. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2438. struct task_struct *next)
  2439. {
  2440. struct preempt_notifier *notifier;
  2441. struct hlist_node *node;
  2442. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2443. notifier->ops->sched_out(notifier, next);
  2444. }
  2445. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2446. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2447. {
  2448. }
  2449. static void
  2450. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2451. struct task_struct *next)
  2452. {
  2453. }
  2454. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2455. /**
  2456. * prepare_task_switch - prepare to switch tasks
  2457. * @rq: the runqueue preparing to switch
  2458. * @prev: the current task that is being switched out
  2459. * @next: the task we are going to switch to.
  2460. *
  2461. * This is called with the rq lock held and interrupts off. It must
  2462. * be paired with a subsequent finish_task_switch after the context
  2463. * switch.
  2464. *
  2465. * prepare_task_switch sets up locking and calls architecture specific
  2466. * hooks.
  2467. */
  2468. static inline void
  2469. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2470. struct task_struct *next)
  2471. {
  2472. sched_info_switch(prev, next);
  2473. perf_event_task_sched_out(prev, next);
  2474. fire_sched_out_preempt_notifiers(prev, next);
  2475. prepare_lock_switch(rq, next);
  2476. prepare_arch_switch(next);
  2477. trace_sched_switch(prev, next);
  2478. }
  2479. /**
  2480. * finish_task_switch - clean up after a task-switch
  2481. * @rq: runqueue associated with task-switch
  2482. * @prev: the thread we just switched away from.
  2483. *
  2484. * finish_task_switch must be called after the context switch, paired
  2485. * with a prepare_task_switch call before the context switch.
  2486. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2487. * and do any other architecture-specific cleanup actions.
  2488. *
  2489. * Note that we may have delayed dropping an mm in context_switch(). If
  2490. * so, we finish that here outside of the runqueue lock. (Doing it
  2491. * with the lock held can cause deadlocks; see schedule() for
  2492. * details.)
  2493. */
  2494. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2495. __releases(rq->lock)
  2496. {
  2497. struct mm_struct *mm = rq->prev_mm;
  2498. long prev_state;
  2499. rq->prev_mm = NULL;
  2500. /*
  2501. * A task struct has one reference for the use as "current".
  2502. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2503. * schedule one last time. The schedule call will never return, and
  2504. * the scheduled task must drop that reference.
  2505. * The test for TASK_DEAD must occur while the runqueue locks are
  2506. * still held, otherwise prev could be scheduled on another cpu, die
  2507. * there before we look at prev->state, and then the reference would
  2508. * be dropped twice.
  2509. * Manfred Spraul <manfred@colorfullife.com>
  2510. */
  2511. prev_state = prev->state;
  2512. finish_arch_switch(prev);
  2513. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2514. local_irq_disable();
  2515. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2516. perf_event_task_sched_in(current);
  2517. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2518. local_irq_enable();
  2519. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2520. finish_lock_switch(rq, prev);
  2521. fire_sched_in_preempt_notifiers(current);
  2522. if (mm)
  2523. mmdrop(mm);
  2524. if (unlikely(prev_state == TASK_DEAD)) {
  2525. /*
  2526. * Remove function-return probe instances associated with this
  2527. * task and put them back on the free list.
  2528. */
  2529. kprobe_flush_task(prev);
  2530. put_task_struct(prev);
  2531. }
  2532. }
  2533. #ifdef CONFIG_SMP
  2534. /* assumes rq->lock is held */
  2535. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2536. {
  2537. if (prev->sched_class->pre_schedule)
  2538. prev->sched_class->pre_schedule(rq, prev);
  2539. }
  2540. /* rq->lock is NOT held, but preemption is disabled */
  2541. static inline void post_schedule(struct rq *rq)
  2542. {
  2543. if (rq->post_schedule) {
  2544. unsigned long flags;
  2545. raw_spin_lock_irqsave(&rq->lock, flags);
  2546. if (rq->curr->sched_class->post_schedule)
  2547. rq->curr->sched_class->post_schedule(rq);
  2548. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2549. rq->post_schedule = 0;
  2550. }
  2551. }
  2552. #else
  2553. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2554. {
  2555. }
  2556. static inline void post_schedule(struct rq *rq)
  2557. {
  2558. }
  2559. #endif
  2560. /**
  2561. * schedule_tail - first thing a freshly forked thread must call.
  2562. * @prev: the thread we just switched away from.
  2563. */
  2564. asmlinkage void schedule_tail(struct task_struct *prev)
  2565. __releases(rq->lock)
  2566. {
  2567. struct rq *rq = this_rq();
  2568. finish_task_switch(rq, prev);
  2569. /*
  2570. * FIXME: do we need to worry about rq being invalidated by the
  2571. * task_switch?
  2572. */
  2573. post_schedule(rq);
  2574. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2575. /* In this case, finish_task_switch does not reenable preemption */
  2576. preempt_enable();
  2577. #endif
  2578. if (current->set_child_tid)
  2579. put_user(task_pid_vnr(current), current->set_child_tid);
  2580. }
  2581. /*
  2582. * context_switch - switch to the new MM and the new
  2583. * thread's register state.
  2584. */
  2585. static inline void
  2586. context_switch(struct rq *rq, struct task_struct *prev,
  2587. struct task_struct *next)
  2588. {
  2589. struct mm_struct *mm, *oldmm;
  2590. prepare_task_switch(rq, prev, next);
  2591. mm = next->mm;
  2592. oldmm = prev->active_mm;
  2593. /*
  2594. * For paravirt, this is coupled with an exit in switch_to to
  2595. * combine the page table reload and the switch backend into
  2596. * one hypercall.
  2597. */
  2598. arch_start_context_switch(prev);
  2599. if (!mm) {
  2600. next->active_mm = oldmm;
  2601. atomic_inc(&oldmm->mm_count);
  2602. enter_lazy_tlb(oldmm, next);
  2603. } else
  2604. switch_mm(oldmm, mm, next);
  2605. if (!prev->mm) {
  2606. prev->active_mm = NULL;
  2607. rq->prev_mm = oldmm;
  2608. }
  2609. /*
  2610. * Since the runqueue lock will be released by the next
  2611. * task (which is an invalid locking op but in the case
  2612. * of the scheduler it's an obvious special-case), so we
  2613. * do an early lockdep release here:
  2614. */
  2615. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2616. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2617. #endif
  2618. /* Here we just switch the register state and the stack. */
  2619. switch_to(prev, next, prev);
  2620. barrier();
  2621. /*
  2622. * this_rq must be evaluated again because prev may have moved
  2623. * CPUs since it called schedule(), thus the 'rq' on its stack
  2624. * frame will be invalid.
  2625. */
  2626. finish_task_switch(this_rq(), prev);
  2627. }
  2628. /*
  2629. * nr_running, nr_uninterruptible and nr_context_switches:
  2630. *
  2631. * externally visible scheduler statistics: current number of runnable
  2632. * threads, current number of uninterruptible-sleeping threads, total
  2633. * number of context switches performed since bootup.
  2634. */
  2635. unsigned long nr_running(void)
  2636. {
  2637. unsigned long i, sum = 0;
  2638. for_each_online_cpu(i)
  2639. sum += cpu_rq(i)->nr_running;
  2640. return sum;
  2641. }
  2642. unsigned long nr_uninterruptible(void)
  2643. {
  2644. unsigned long i, sum = 0;
  2645. for_each_possible_cpu(i)
  2646. sum += cpu_rq(i)->nr_uninterruptible;
  2647. /*
  2648. * Since we read the counters lockless, it might be slightly
  2649. * inaccurate. Do not allow it to go below zero though:
  2650. */
  2651. if (unlikely((long)sum < 0))
  2652. sum = 0;
  2653. return sum;
  2654. }
  2655. unsigned long long nr_context_switches(void)
  2656. {
  2657. int i;
  2658. unsigned long long sum = 0;
  2659. for_each_possible_cpu(i)
  2660. sum += cpu_rq(i)->nr_switches;
  2661. return sum;
  2662. }
  2663. unsigned long nr_iowait(void)
  2664. {
  2665. unsigned long i, sum = 0;
  2666. for_each_possible_cpu(i)
  2667. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2668. return sum;
  2669. }
  2670. unsigned long nr_iowait_cpu(int cpu)
  2671. {
  2672. struct rq *this = cpu_rq(cpu);
  2673. return atomic_read(&this->nr_iowait);
  2674. }
  2675. unsigned long this_cpu_load(void)
  2676. {
  2677. struct rq *this = this_rq();
  2678. return this->cpu_load[0];
  2679. }
  2680. /* Variables and functions for calc_load */
  2681. static atomic_long_t calc_load_tasks;
  2682. static unsigned long calc_load_update;
  2683. unsigned long avenrun[3];
  2684. EXPORT_SYMBOL(avenrun);
  2685. static long calc_load_fold_active(struct rq *this_rq)
  2686. {
  2687. long nr_active, delta = 0;
  2688. nr_active = this_rq->nr_running;
  2689. nr_active += (long) this_rq->nr_uninterruptible;
  2690. if (nr_active != this_rq->calc_load_active) {
  2691. delta = nr_active - this_rq->calc_load_active;
  2692. this_rq->calc_load_active = nr_active;
  2693. }
  2694. return delta;
  2695. }
  2696. static unsigned long
  2697. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2698. {
  2699. load *= exp;
  2700. load += active * (FIXED_1 - exp);
  2701. load += 1UL << (FSHIFT - 1);
  2702. return load >> FSHIFT;
  2703. }
  2704. #ifdef CONFIG_NO_HZ
  2705. /*
  2706. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2707. *
  2708. * When making the ILB scale, we should try to pull this in as well.
  2709. */
  2710. static atomic_long_t calc_load_tasks_idle;
  2711. static void calc_load_account_idle(struct rq *this_rq)
  2712. {
  2713. long delta;
  2714. delta = calc_load_fold_active(this_rq);
  2715. if (delta)
  2716. atomic_long_add(delta, &calc_load_tasks_idle);
  2717. }
  2718. static long calc_load_fold_idle(void)
  2719. {
  2720. long delta = 0;
  2721. /*
  2722. * Its got a race, we don't care...
  2723. */
  2724. if (atomic_long_read(&calc_load_tasks_idle))
  2725. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2726. return delta;
  2727. }
  2728. /**
  2729. * fixed_power_int - compute: x^n, in O(log n) time
  2730. *
  2731. * @x: base of the power
  2732. * @frac_bits: fractional bits of @x
  2733. * @n: power to raise @x to.
  2734. *
  2735. * By exploiting the relation between the definition of the natural power
  2736. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2737. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2738. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2739. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2740. * of course trivially computable in O(log_2 n), the length of our binary
  2741. * vector.
  2742. */
  2743. static unsigned long
  2744. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2745. {
  2746. unsigned long result = 1UL << frac_bits;
  2747. if (n) for (;;) {
  2748. if (n & 1) {
  2749. result *= x;
  2750. result += 1UL << (frac_bits - 1);
  2751. result >>= frac_bits;
  2752. }
  2753. n >>= 1;
  2754. if (!n)
  2755. break;
  2756. x *= x;
  2757. x += 1UL << (frac_bits - 1);
  2758. x >>= frac_bits;
  2759. }
  2760. return result;
  2761. }
  2762. /*
  2763. * a1 = a0 * e + a * (1 - e)
  2764. *
  2765. * a2 = a1 * e + a * (1 - e)
  2766. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2767. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2768. *
  2769. * a3 = a2 * e + a * (1 - e)
  2770. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2771. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2772. *
  2773. * ...
  2774. *
  2775. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2776. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2777. * = a0 * e^n + a * (1 - e^n)
  2778. *
  2779. * [1] application of the geometric series:
  2780. *
  2781. * n 1 - x^(n+1)
  2782. * S_n := \Sum x^i = -------------
  2783. * i=0 1 - x
  2784. */
  2785. static unsigned long
  2786. calc_load_n(unsigned long load, unsigned long exp,
  2787. unsigned long active, unsigned int n)
  2788. {
  2789. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2790. }
  2791. /*
  2792. * NO_HZ can leave us missing all per-cpu ticks calling
  2793. * calc_load_account_active(), but since an idle CPU folds its delta into
  2794. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2795. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2796. *
  2797. * Once we've updated the global active value, we need to apply the exponential
  2798. * weights adjusted to the number of cycles missed.
  2799. */
  2800. static void calc_global_nohz(unsigned long ticks)
  2801. {
  2802. long delta, active, n;
  2803. if (time_before(jiffies, calc_load_update))
  2804. return;
  2805. /*
  2806. * If we crossed a calc_load_update boundary, make sure to fold
  2807. * any pending idle changes, the respective CPUs might have
  2808. * missed the tick driven calc_load_account_active() update
  2809. * due to NO_HZ.
  2810. */
  2811. delta = calc_load_fold_idle();
  2812. if (delta)
  2813. atomic_long_add(delta, &calc_load_tasks);
  2814. /*
  2815. * If we were idle for multiple load cycles, apply them.
  2816. */
  2817. if (ticks >= LOAD_FREQ) {
  2818. n = ticks / LOAD_FREQ;
  2819. active = atomic_long_read(&calc_load_tasks);
  2820. active = active > 0 ? active * FIXED_1 : 0;
  2821. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2822. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2823. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2824. calc_load_update += n * LOAD_FREQ;
  2825. }
  2826. /*
  2827. * Its possible the remainder of the above division also crosses
  2828. * a LOAD_FREQ period, the regular check in calc_global_load()
  2829. * which comes after this will take care of that.
  2830. *
  2831. * Consider us being 11 ticks before a cycle completion, and us
  2832. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2833. * age us 4 cycles, and the test in calc_global_load() will
  2834. * pick up the final one.
  2835. */
  2836. }
  2837. #else
  2838. static void calc_load_account_idle(struct rq *this_rq)
  2839. {
  2840. }
  2841. static inline long calc_load_fold_idle(void)
  2842. {
  2843. return 0;
  2844. }
  2845. static void calc_global_nohz(unsigned long ticks)
  2846. {
  2847. }
  2848. #endif
  2849. /**
  2850. * get_avenrun - get the load average array
  2851. * @loads: pointer to dest load array
  2852. * @offset: offset to add
  2853. * @shift: shift count to shift the result left
  2854. *
  2855. * These values are estimates at best, so no need for locking.
  2856. */
  2857. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2858. {
  2859. loads[0] = (avenrun[0] + offset) << shift;
  2860. loads[1] = (avenrun[1] + offset) << shift;
  2861. loads[2] = (avenrun[2] + offset) << shift;
  2862. }
  2863. /*
  2864. * calc_load - update the avenrun load estimates 10 ticks after the
  2865. * CPUs have updated calc_load_tasks.
  2866. */
  2867. void calc_global_load(unsigned long ticks)
  2868. {
  2869. long active;
  2870. calc_global_nohz(ticks);
  2871. if (time_before(jiffies, calc_load_update + 10))
  2872. return;
  2873. active = atomic_long_read(&calc_load_tasks);
  2874. active = active > 0 ? active * FIXED_1 : 0;
  2875. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2876. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2877. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2878. calc_load_update += LOAD_FREQ;
  2879. }
  2880. /*
  2881. * Called from update_cpu_load() to periodically update this CPU's
  2882. * active count.
  2883. */
  2884. static void calc_load_account_active(struct rq *this_rq)
  2885. {
  2886. long delta;
  2887. if (time_before(jiffies, this_rq->calc_load_update))
  2888. return;
  2889. delta = calc_load_fold_active(this_rq);
  2890. delta += calc_load_fold_idle();
  2891. if (delta)
  2892. atomic_long_add(delta, &calc_load_tasks);
  2893. this_rq->calc_load_update += LOAD_FREQ;
  2894. }
  2895. /*
  2896. * The exact cpuload at various idx values, calculated at every tick would be
  2897. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2898. *
  2899. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2900. * on nth tick when cpu may be busy, then we have:
  2901. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2902. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2903. *
  2904. * decay_load_missed() below does efficient calculation of
  2905. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2906. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2907. *
  2908. * The calculation is approximated on a 128 point scale.
  2909. * degrade_zero_ticks is the number of ticks after which load at any
  2910. * particular idx is approximated to be zero.
  2911. * degrade_factor is a precomputed table, a row for each load idx.
  2912. * Each column corresponds to degradation factor for a power of two ticks,
  2913. * based on 128 point scale.
  2914. * Example:
  2915. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2916. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2917. *
  2918. * With this power of 2 load factors, we can degrade the load n times
  2919. * by looking at 1 bits in n and doing as many mult/shift instead of
  2920. * n mult/shifts needed by the exact degradation.
  2921. */
  2922. #define DEGRADE_SHIFT 7
  2923. static const unsigned char
  2924. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2925. static const unsigned char
  2926. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2927. {0, 0, 0, 0, 0, 0, 0, 0},
  2928. {64, 32, 8, 0, 0, 0, 0, 0},
  2929. {96, 72, 40, 12, 1, 0, 0},
  2930. {112, 98, 75, 43, 15, 1, 0},
  2931. {120, 112, 98, 76, 45, 16, 2} };
  2932. /*
  2933. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2934. * would be when CPU is idle and so we just decay the old load without
  2935. * adding any new load.
  2936. */
  2937. static unsigned long
  2938. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2939. {
  2940. int j = 0;
  2941. if (!missed_updates)
  2942. return load;
  2943. if (missed_updates >= degrade_zero_ticks[idx])
  2944. return 0;
  2945. if (idx == 1)
  2946. return load >> missed_updates;
  2947. while (missed_updates) {
  2948. if (missed_updates % 2)
  2949. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2950. missed_updates >>= 1;
  2951. j++;
  2952. }
  2953. return load;
  2954. }
  2955. /*
  2956. * Update rq->cpu_load[] statistics. This function is usually called every
  2957. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2958. * every tick. We fix it up based on jiffies.
  2959. */
  2960. static void update_cpu_load(struct rq *this_rq)
  2961. {
  2962. unsigned long this_load = this_rq->load.weight;
  2963. unsigned long curr_jiffies = jiffies;
  2964. unsigned long pending_updates;
  2965. int i, scale;
  2966. this_rq->nr_load_updates++;
  2967. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2968. if (curr_jiffies == this_rq->last_load_update_tick)
  2969. return;
  2970. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2971. this_rq->last_load_update_tick = curr_jiffies;
  2972. /* Update our load: */
  2973. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2974. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2975. unsigned long old_load, new_load;
  2976. /* scale is effectively 1 << i now, and >> i divides by scale */
  2977. old_load = this_rq->cpu_load[i];
  2978. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2979. new_load = this_load;
  2980. /*
  2981. * Round up the averaging division if load is increasing. This
  2982. * prevents us from getting stuck on 9 if the load is 10, for
  2983. * example.
  2984. */
  2985. if (new_load > old_load)
  2986. new_load += scale - 1;
  2987. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2988. }
  2989. sched_avg_update(this_rq);
  2990. }
  2991. static void update_cpu_load_active(struct rq *this_rq)
  2992. {
  2993. update_cpu_load(this_rq);
  2994. calc_load_account_active(this_rq);
  2995. }
  2996. #ifdef CONFIG_SMP
  2997. /*
  2998. * sched_exec - execve() is a valuable balancing opportunity, because at
  2999. * this point the task has the smallest effective memory and cache footprint.
  3000. */
  3001. void sched_exec(void)
  3002. {
  3003. struct task_struct *p = current;
  3004. unsigned long flags;
  3005. int dest_cpu;
  3006. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3007. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  3008. if (dest_cpu == smp_processor_id())
  3009. goto unlock;
  3010. if (likely(cpu_active(dest_cpu))) {
  3011. struct migration_arg arg = { p, dest_cpu };
  3012. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3013. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  3014. return;
  3015. }
  3016. unlock:
  3017. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3018. }
  3019. #endif
  3020. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3021. EXPORT_PER_CPU_SYMBOL(kstat);
  3022. /*
  3023. * Return any ns on the sched_clock that have not yet been accounted in
  3024. * @p in case that task is currently running.
  3025. *
  3026. * Called with task_rq_lock() held on @rq.
  3027. */
  3028. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3029. {
  3030. u64 ns = 0;
  3031. if (task_current(rq, p)) {
  3032. update_rq_clock(rq);
  3033. ns = rq->clock_task - p->se.exec_start;
  3034. if ((s64)ns < 0)
  3035. ns = 0;
  3036. }
  3037. return ns;
  3038. }
  3039. unsigned long long task_delta_exec(struct task_struct *p)
  3040. {
  3041. unsigned long flags;
  3042. struct rq *rq;
  3043. u64 ns = 0;
  3044. rq = task_rq_lock(p, &flags);
  3045. ns = do_task_delta_exec(p, rq);
  3046. task_rq_unlock(rq, p, &flags);
  3047. return ns;
  3048. }
  3049. /*
  3050. * Return accounted runtime for the task.
  3051. * In case the task is currently running, return the runtime plus current's
  3052. * pending runtime that have not been accounted yet.
  3053. */
  3054. unsigned long long task_sched_runtime(struct task_struct *p)
  3055. {
  3056. unsigned long flags;
  3057. struct rq *rq;
  3058. u64 ns = 0;
  3059. rq = task_rq_lock(p, &flags);
  3060. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3061. task_rq_unlock(rq, p, &flags);
  3062. return ns;
  3063. }
  3064. /*
  3065. * Return sum_exec_runtime for the thread group.
  3066. * In case the task is currently running, return the sum plus current's
  3067. * pending runtime that have not been accounted yet.
  3068. *
  3069. * Note that the thread group might have other running tasks as well,
  3070. * so the return value not includes other pending runtime that other
  3071. * running tasks might have.
  3072. */
  3073. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3074. {
  3075. struct task_cputime totals;
  3076. unsigned long flags;
  3077. struct rq *rq;
  3078. u64 ns;
  3079. rq = task_rq_lock(p, &flags);
  3080. thread_group_cputime(p, &totals);
  3081. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3082. task_rq_unlock(rq, p, &flags);
  3083. return ns;
  3084. }
  3085. /*
  3086. * Account user cpu time to a process.
  3087. * @p: the process that the cpu time gets accounted to
  3088. * @cputime: the cpu time spent in user space since the last update
  3089. * @cputime_scaled: cputime scaled by cpu frequency
  3090. */
  3091. void account_user_time(struct task_struct *p, cputime_t cputime,
  3092. cputime_t cputime_scaled)
  3093. {
  3094. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3095. cputime64_t tmp;
  3096. /* Add user time to process. */
  3097. p->utime = cputime_add(p->utime, cputime);
  3098. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3099. account_group_user_time(p, cputime);
  3100. /* Add user time to cpustat. */
  3101. tmp = cputime_to_cputime64(cputime);
  3102. if (TASK_NICE(p) > 0)
  3103. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3104. else
  3105. cpustat->user = cputime64_add(cpustat->user, tmp);
  3106. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3107. /* Account for user time used */
  3108. acct_update_integrals(p);
  3109. }
  3110. /*
  3111. * Account guest cpu time to a process.
  3112. * @p: the process that the cpu time gets accounted to
  3113. * @cputime: the cpu time spent in virtual machine since the last update
  3114. * @cputime_scaled: cputime scaled by cpu frequency
  3115. */
  3116. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3117. cputime_t cputime_scaled)
  3118. {
  3119. cputime64_t tmp;
  3120. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3121. tmp = cputime_to_cputime64(cputime);
  3122. /* Add guest time to process. */
  3123. p->utime = cputime_add(p->utime, cputime);
  3124. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3125. account_group_user_time(p, cputime);
  3126. p->gtime = cputime_add(p->gtime, cputime);
  3127. /* Add guest time to cpustat. */
  3128. if (TASK_NICE(p) > 0) {
  3129. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3130. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3131. } else {
  3132. cpustat->user = cputime64_add(cpustat->user, tmp);
  3133. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3134. }
  3135. }
  3136. /*
  3137. * Account system cpu time to a process and desired cpustat field
  3138. * @p: the process that the cpu time gets accounted to
  3139. * @cputime: the cpu time spent in kernel space since the last update
  3140. * @cputime_scaled: cputime scaled by cpu frequency
  3141. * @target_cputime64: pointer to cpustat field that has to be updated
  3142. */
  3143. static inline
  3144. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3145. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3146. {
  3147. cputime64_t tmp = cputime_to_cputime64(cputime);
  3148. /* Add system time to process. */
  3149. p->stime = cputime_add(p->stime, cputime);
  3150. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3151. account_group_system_time(p, cputime);
  3152. /* Add system time to cpustat. */
  3153. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3154. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3155. /* Account for system time used */
  3156. acct_update_integrals(p);
  3157. }
  3158. /*
  3159. * Account system cpu time to a process.
  3160. * @p: the process that the cpu time gets accounted to
  3161. * @hardirq_offset: the offset to subtract from hardirq_count()
  3162. * @cputime: the cpu time spent in kernel space since the last update
  3163. * @cputime_scaled: cputime scaled by cpu frequency
  3164. */
  3165. void account_system_time(struct task_struct *p, int hardirq_offset,
  3166. cputime_t cputime, cputime_t cputime_scaled)
  3167. {
  3168. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3169. cputime64_t *target_cputime64;
  3170. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3171. account_guest_time(p, cputime, cputime_scaled);
  3172. return;
  3173. }
  3174. if (hardirq_count() - hardirq_offset)
  3175. target_cputime64 = &cpustat->irq;
  3176. else if (in_serving_softirq())
  3177. target_cputime64 = &cpustat->softirq;
  3178. else
  3179. target_cputime64 = &cpustat->system;
  3180. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3181. }
  3182. /*
  3183. * Account for involuntary wait time.
  3184. * @cputime: the cpu time spent in involuntary wait
  3185. */
  3186. void account_steal_time(cputime_t cputime)
  3187. {
  3188. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3189. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3190. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3191. }
  3192. /*
  3193. * Account for idle time.
  3194. * @cputime: the cpu time spent in idle wait
  3195. */
  3196. void account_idle_time(cputime_t cputime)
  3197. {
  3198. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3199. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3200. struct rq *rq = this_rq();
  3201. if (atomic_read(&rq->nr_iowait) > 0)
  3202. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3203. else
  3204. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3205. }
  3206. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3207. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3208. /*
  3209. * Account a tick to a process and cpustat
  3210. * @p: the process that the cpu time gets accounted to
  3211. * @user_tick: is the tick from userspace
  3212. * @rq: the pointer to rq
  3213. *
  3214. * Tick demultiplexing follows the order
  3215. * - pending hardirq update
  3216. * - pending softirq update
  3217. * - user_time
  3218. * - idle_time
  3219. * - system time
  3220. * - check for guest_time
  3221. * - else account as system_time
  3222. *
  3223. * Check for hardirq is done both for system and user time as there is
  3224. * no timer going off while we are on hardirq and hence we may never get an
  3225. * opportunity to update it solely in system time.
  3226. * p->stime and friends are only updated on system time and not on irq
  3227. * softirq as those do not count in task exec_runtime any more.
  3228. */
  3229. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3230. struct rq *rq)
  3231. {
  3232. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3233. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3234. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3235. if (irqtime_account_hi_update()) {
  3236. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3237. } else if (irqtime_account_si_update()) {
  3238. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3239. } else if (this_cpu_ksoftirqd() == p) {
  3240. /*
  3241. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3242. * So, we have to handle it separately here.
  3243. * Also, p->stime needs to be updated for ksoftirqd.
  3244. */
  3245. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3246. &cpustat->softirq);
  3247. } else if (user_tick) {
  3248. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3249. } else if (p == rq->idle) {
  3250. account_idle_time(cputime_one_jiffy);
  3251. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3252. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3253. } else {
  3254. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3255. &cpustat->system);
  3256. }
  3257. }
  3258. static void irqtime_account_idle_ticks(int ticks)
  3259. {
  3260. int i;
  3261. struct rq *rq = this_rq();
  3262. for (i = 0; i < ticks; i++)
  3263. irqtime_account_process_tick(current, 0, rq);
  3264. }
  3265. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3266. static void irqtime_account_idle_ticks(int ticks) {}
  3267. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3268. struct rq *rq) {}
  3269. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3270. /*
  3271. * Account a single tick of cpu time.
  3272. * @p: the process that the cpu time gets accounted to
  3273. * @user_tick: indicates if the tick is a user or a system tick
  3274. */
  3275. void account_process_tick(struct task_struct *p, int user_tick)
  3276. {
  3277. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3278. struct rq *rq = this_rq();
  3279. if (sched_clock_irqtime) {
  3280. irqtime_account_process_tick(p, user_tick, rq);
  3281. return;
  3282. }
  3283. if (user_tick)
  3284. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3285. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3286. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3287. one_jiffy_scaled);
  3288. else
  3289. account_idle_time(cputime_one_jiffy);
  3290. }
  3291. /*
  3292. * Account multiple ticks of steal time.
  3293. * @p: the process from which the cpu time has been stolen
  3294. * @ticks: number of stolen ticks
  3295. */
  3296. void account_steal_ticks(unsigned long ticks)
  3297. {
  3298. account_steal_time(jiffies_to_cputime(ticks));
  3299. }
  3300. /*
  3301. * Account multiple ticks of idle time.
  3302. * @ticks: number of stolen ticks
  3303. */
  3304. void account_idle_ticks(unsigned long ticks)
  3305. {
  3306. if (sched_clock_irqtime) {
  3307. irqtime_account_idle_ticks(ticks);
  3308. return;
  3309. }
  3310. account_idle_time(jiffies_to_cputime(ticks));
  3311. }
  3312. #endif
  3313. /*
  3314. * Use precise platform statistics if available:
  3315. */
  3316. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3317. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3318. {
  3319. *ut = p->utime;
  3320. *st = p->stime;
  3321. }
  3322. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3323. {
  3324. struct task_cputime cputime;
  3325. thread_group_cputime(p, &cputime);
  3326. *ut = cputime.utime;
  3327. *st = cputime.stime;
  3328. }
  3329. #else
  3330. #ifndef nsecs_to_cputime
  3331. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3332. #endif
  3333. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3334. {
  3335. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3336. /*
  3337. * Use CFS's precise accounting:
  3338. */
  3339. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3340. if (total) {
  3341. u64 temp = rtime;
  3342. temp *= utime;
  3343. do_div(temp, total);
  3344. utime = (cputime_t)temp;
  3345. } else
  3346. utime = rtime;
  3347. /*
  3348. * Compare with previous values, to keep monotonicity:
  3349. */
  3350. p->prev_utime = max(p->prev_utime, utime);
  3351. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3352. *ut = p->prev_utime;
  3353. *st = p->prev_stime;
  3354. }
  3355. /*
  3356. * Must be called with siglock held.
  3357. */
  3358. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3359. {
  3360. struct signal_struct *sig = p->signal;
  3361. struct task_cputime cputime;
  3362. cputime_t rtime, utime, total;
  3363. thread_group_cputime(p, &cputime);
  3364. total = cputime_add(cputime.utime, cputime.stime);
  3365. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3366. if (total) {
  3367. u64 temp = rtime;
  3368. temp *= cputime.utime;
  3369. do_div(temp, total);
  3370. utime = (cputime_t)temp;
  3371. } else
  3372. utime = rtime;
  3373. sig->prev_utime = max(sig->prev_utime, utime);
  3374. sig->prev_stime = max(sig->prev_stime,
  3375. cputime_sub(rtime, sig->prev_utime));
  3376. *ut = sig->prev_utime;
  3377. *st = sig->prev_stime;
  3378. }
  3379. #endif
  3380. /*
  3381. * This function gets called by the timer code, with HZ frequency.
  3382. * We call it with interrupts disabled.
  3383. */
  3384. void scheduler_tick(void)
  3385. {
  3386. int cpu = smp_processor_id();
  3387. struct rq *rq = cpu_rq(cpu);
  3388. struct task_struct *curr = rq->curr;
  3389. sched_clock_tick();
  3390. raw_spin_lock(&rq->lock);
  3391. update_rq_clock(rq);
  3392. update_cpu_load_active(rq);
  3393. curr->sched_class->task_tick(rq, curr, 0);
  3394. raw_spin_unlock(&rq->lock);
  3395. perf_event_task_tick();
  3396. #ifdef CONFIG_SMP
  3397. rq->idle_at_tick = idle_cpu(cpu);
  3398. trigger_load_balance(rq, cpu);
  3399. #endif
  3400. }
  3401. notrace unsigned long get_parent_ip(unsigned long addr)
  3402. {
  3403. if (in_lock_functions(addr)) {
  3404. addr = CALLER_ADDR2;
  3405. if (in_lock_functions(addr))
  3406. addr = CALLER_ADDR3;
  3407. }
  3408. return addr;
  3409. }
  3410. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3411. defined(CONFIG_PREEMPT_TRACER))
  3412. void __kprobes add_preempt_count(int val)
  3413. {
  3414. #ifdef CONFIG_DEBUG_PREEMPT
  3415. /*
  3416. * Underflow?
  3417. */
  3418. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3419. return;
  3420. #endif
  3421. preempt_count() += val;
  3422. #ifdef CONFIG_DEBUG_PREEMPT
  3423. /*
  3424. * Spinlock count overflowing soon?
  3425. */
  3426. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3427. PREEMPT_MASK - 10);
  3428. #endif
  3429. if (preempt_count() == val)
  3430. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3431. }
  3432. EXPORT_SYMBOL(add_preempt_count);
  3433. void __kprobes sub_preempt_count(int val)
  3434. {
  3435. #ifdef CONFIG_DEBUG_PREEMPT
  3436. /*
  3437. * Underflow?
  3438. */
  3439. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3440. return;
  3441. /*
  3442. * Is the spinlock portion underflowing?
  3443. */
  3444. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3445. !(preempt_count() & PREEMPT_MASK)))
  3446. return;
  3447. #endif
  3448. if (preempt_count() == val)
  3449. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3450. preempt_count() -= val;
  3451. }
  3452. EXPORT_SYMBOL(sub_preempt_count);
  3453. #endif
  3454. /*
  3455. * Print scheduling while atomic bug:
  3456. */
  3457. static noinline void __schedule_bug(struct task_struct *prev)
  3458. {
  3459. struct pt_regs *regs = get_irq_regs();
  3460. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3461. prev->comm, prev->pid, preempt_count());
  3462. debug_show_held_locks(prev);
  3463. print_modules();
  3464. if (irqs_disabled())
  3465. print_irqtrace_events(prev);
  3466. if (regs)
  3467. show_regs(regs);
  3468. else
  3469. dump_stack();
  3470. }
  3471. /*
  3472. * Various schedule()-time debugging checks and statistics:
  3473. */
  3474. static inline void schedule_debug(struct task_struct *prev)
  3475. {
  3476. /*
  3477. * Test if we are atomic. Since do_exit() needs to call into
  3478. * schedule() atomically, we ignore that path for now.
  3479. * Otherwise, whine if we are scheduling when we should not be.
  3480. */
  3481. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3482. __schedule_bug(prev);
  3483. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3484. schedstat_inc(this_rq(), sched_count);
  3485. }
  3486. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3487. {
  3488. if (prev->on_rq)
  3489. update_rq_clock(rq);
  3490. prev->sched_class->put_prev_task(rq, prev);
  3491. }
  3492. /*
  3493. * Pick up the highest-prio task:
  3494. */
  3495. static inline struct task_struct *
  3496. pick_next_task(struct rq *rq)
  3497. {
  3498. const struct sched_class *class;
  3499. struct task_struct *p;
  3500. /*
  3501. * Optimization: we know that if all tasks are in
  3502. * the fair class we can call that function directly:
  3503. */
  3504. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3505. p = fair_sched_class.pick_next_task(rq);
  3506. if (likely(p))
  3507. return p;
  3508. }
  3509. for_each_class(class) {
  3510. p = class->pick_next_task(rq);
  3511. if (p)
  3512. return p;
  3513. }
  3514. BUG(); /* the idle class will always have a runnable task */
  3515. }
  3516. /*
  3517. * schedule() is the main scheduler function.
  3518. */
  3519. asmlinkage void __sched schedule(void)
  3520. {
  3521. struct task_struct *prev, *next;
  3522. unsigned long *switch_count;
  3523. struct rq *rq;
  3524. int cpu;
  3525. need_resched:
  3526. preempt_disable();
  3527. cpu = smp_processor_id();
  3528. rq = cpu_rq(cpu);
  3529. rcu_note_context_switch(cpu);
  3530. prev = rq->curr;
  3531. schedule_debug(prev);
  3532. if (sched_feat(HRTICK))
  3533. hrtick_clear(rq);
  3534. raw_spin_lock_irq(&rq->lock);
  3535. switch_count = &prev->nivcsw;
  3536. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3537. if (unlikely(signal_pending_state(prev->state, prev))) {
  3538. prev->state = TASK_RUNNING;
  3539. } else {
  3540. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3541. prev->on_rq = 0;
  3542. /*
  3543. * If a worker went to sleep, notify and ask workqueue
  3544. * whether it wants to wake up a task to maintain
  3545. * concurrency.
  3546. */
  3547. if (prev->flags & PF_WQ_WORKER) {
  3548. struct task_struct *to_wakeup;
  3549. to_wakeup = wq_worker_sleeping(prev, cpu);
  3550. if (to_wakeup)
  3551. try_to_wake_up_local(to_wakeup);
  3552. }
  3553. /*
  3554. * If we are going to sleep and we have plugged IO
  3555. * queued, make sure to submit it to avoid deadlocks.
  3556. */
  3557. if (blk_needs_flush_plug(prev)) {
  3558. raw_spin_unlock(&rq->lock);
  3559. blk_schedule_flush_plug(prev);
  3560. raw_spin_lock(&rq->lock);
  3561. }
  3562. }
  3563. switch_count = &prev->nvcsw;
  3564. }
  3565. pre_schedule(rq, prev);
  3566. if (unlikely(!rq->nr_running))
  3567. idle_balance(cpu, rq);
  3568. put_prev_task(rq, prev);
  3569. next = pick_next_task(rq);
  3570. clear_tsk_need_resched(prev);
  3571. rq->skip_clock_update = 0;
  3572. if (likely(prev != next)) {
  3573. rq->nr_switches++;
  3574. rq->curr = next;
  3575. ++*switch_count;
  3576. context_switch(rq, prev, next); /* unlocks the rq */
  3577. /*
  3578. * The context switch have flipped the stack from under us
  3579. * and restored the local variables which were saved when
  3580. * this task called schedule() in the past. prev == current
  3581. * is still correct, but it can be moved to another cpu/rq.
  3582. */
  3583. cpu = smp_processor_id();
  3584. rq = cpu_rq(cpu);
  3585. } else
  3586. raw_spin_unlock_irq(&rq->lock);
  3587. post_schedule(rq);
  3588. preempt_enable_no_resched();
  3589. if (need_resched())
  3590. goto need_resched;
  3591. }
  3592. EXPORT_SYMBOL(schedule);
  3593. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3594. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3595. {
  3596. bool ret = false;
  3597. rcu_read_lock();
  3598. if (lock->owner != owner)
  3599. goto fail;
  3600. /*
  3601. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3602. * lock->owner still matches owner, if that fails, owner might
  3603. * point to free()d memory, if it still matches, the rcu_read_lock()
  3604. * ensures the memory stays valid.
  3605. */
  3606. barrier();
  3607. ret = owner->on_cpu;
  3608. fail:
  3609. rcu_read_unlock();
  3610. return ret;
  3611. }
  3612. /*
  3613. * Look out! "owner" is an entirely speculative pointer
  3614. * access and not reliable.
  3615. */
  3616. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3617. {
  3618. if (!sched_feat(OWNER_SPIN))
  3619. return 0;
  3620. while (owner_running(lock, owner)) {
  3621. if (need_resched())
  3622. return 0;
  3623. arch_mutex_cpu_relax();
  3624. }
  3625. /*
  3626. * If the owner changed to another task there is likely
  3627. * heavy contention, stop spinning.
  3628. */
  3629. if (lock->owner)
  3630. return 0;
  3631. return 1;
  3632. }
  3633. #endif
  3634. #ifdef CONFIG_PREEMPT
  3635. /*
  3636. * this is the entry point to schedule() from in-kernel preemption
  3637. * off of preempt_enable. Kernel preemptions off return from interrupt
  3638. * occur there and call schedule directly.
  3639. */
  3640. asmlinkage void __sched notrace preempt_schedule(void)
  3641. {
  3642. struct thread_info *ti = current_thread_info();
  3643. /*
  3644. * If there is a non-zero preempt_count or interrupts are disabled,
  3645. * we do not want to preempt the current task. Just return..
  3646. */
  3647. if (likely(ti->preempt_count || irqs_disabled()))
  3648. return;
  3649. do {
  3650. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3651. schedule();
  3652. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3653. /*
  3654. * Check again in case we missed a preemption opportunity
  3655. * between schedule and now.
  3656. */
  3657. barrier();
  3658. } while (need_resched());
  3659. }
  3660. EXPORT_SYMBOL(preempt_schedule);
  3661. /*
  3662. * this is the entry point to schedule() from kernel preemption
  3663. * off of irq context.
  3664. * Note, that this is called and return with irqs disabled. This will
  3665. * protect us against recursive calling from irq.
  3666. */
  3667. asmlinkage void __sched preempt_schedule_irq(void)
  3668. {
  3669. struct thread_info *ti = current_thread_info();
  3670. /* Catch callers which need to be fixed */
  3671. BUG_ON(ti->preempt_count || !irqs_disabled());
  3672. do {
  3673. add_preempt_count(PREEMPT_ACTIVE);
  3674. local_irq_enable();
  3675. schedule();
  3676. local_irq_disable();
  3677. sub_preempt_count(PREEMPT_ACTIVE);
  3678. /*
  3679. * Check again in case we missed a preemption opportunity
  3680. * between schedule and now.
  3681. */
  3682. barrier();
  3683. } while (need_resched());
  3684. }
  3685. #endif /* CONFIG_PREEMPT */
  3686. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3687. void *key)
  3688. {
  3689. return try_to_wake_up(curr->private, mode, wake_flags);
  3690. }
  3691. EXPORT_SYMBOL(default_wake_function);
  3692. /*
  3693. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3694. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3695. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3696. *
  3697. * There are circumstances in which we can try to wake a task which has already
  3698. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3699. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3700. */
  3701. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3702. int nr_exclusive, int wake_flags, void *key)
  3703. {
  3704. wait_queue_t *curr, *next;
  3705. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3706. unsigned flags = curr->flags;
  3707. if (curr->func(curr, mode, wake_flags, key) &&
  3708. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3709. break;
  3710. }
  3711. }
  3712. /**
  3713. * __wake_up - wake up threads blocked on a waitqueue.
  3714. * @q: the waitqueue
  3715. * @mode: which threads
  3716. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3717. * @key: is directly passed to the wakeup function
  3718. *
  3719. * It may be assumed that this function implies a write memory barrier before
  3720. * changing the task state if and only if any tasks are woken up.
  3721. */
  3722. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3723. int nr_exclusive, void *key)
  3724. {
  3725. unsigned long flags;
  3726. spin_lock_irqsave(&q->lock, flags);
  3727. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3728. spin_unlock_irqrestore(&q->lock, flags);
  3729. }
  3730. EXPORT_SYMBOL(__wake_up);
  3731. /*
  3732. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3733. */
  3734. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3735. {
  3736. __wake_up_common(q, mode, 1, 0, NULL);
  3737. }
  3738. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3739. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3740. {
  3741. __wake_up_common(q, mode, 1, 0, key);
  3742. }
  3743. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3744. /**
  3745. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3746. * @q: the waitqueue
  3747. * @mode: which threads
  3748. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3749. * @key: opaque value to be passed to wakeup targets
  3750. *
  3751. * The sync wakeup differs that the waker knows that it will schedule
  3752. * away soon, so while the target thread will be woken up, it will not
  3753. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3754. * with each other. This can prevent needless bouncing between CPUs.
  3755. *
  3756. * On UP it can prevent extra preemption.
  3757. *
  3758. * It may be assumed that this function implies a write memory barrier before
  3759. * changing the task state if and only if any tasks are woken up.
  3760. */
  3761. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3762. int nr_exclusive, void *key)
  3763. {
  3764. unsigned long flags;
  3765. int wake_flags = WF_SYNC;
  3766. if (unlikely(!q))
  3767. return;
  3768. if (unlikely(!nr_exclusive))
  3769. wake_flags = 0;
  3770. spin_lock_irqsave(&q->lock, flags);
  3771. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3772. spin_unlock_irqrestore(&q->lock, flags);
  3773. }
  3774. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3775. /*
  3776. * __wake_up_sync - see __wake_up_sync_key()
  3777. */
  3778. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3779. {
  3780. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3781. }
  3782. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3783. /**
  3784. * complete: - signals a single thread waiting on this completion
  3785. * @x: holds the state of this particular completion
  3786. *
  3787. * This will wake up a single thread waiting on this completion. Threads will be
  3788. * awakened in the same order in which they were queued.
  3789. *
  3790. * See also complete_all(), wait_for_completion() and related routines.
  3791. *
  3792. * It may be assumed that this function implies a write memory barrier before
  3793. * changing the task state if and only if any tasks are woken up.
  3794. */
  3795. void complete(struct completion *x)
  3796. {
  3797. unsigned long flags;
  3798. spin_lock_irqsave(&x->wait.lock, flags);
  3799. x->done++;
  3800. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3801. spin_unlock_irqrestore(&x->wait.lock, flags);
  3802. }
  3803. EXPORT_SYMBOL(complete);
  3804. /**
  3805. * complete_all: - signals all threads waiting on this completion
  3806. * @x: holds the state of this particular completion
  3807. *
  3808. * This will wake up all threads waiting on this particular completion event.
  3809. *
  3810. * It may be assumed that this function implies a write memory barrier before
  3811. * changing the task state if and only if any tasks are woken up.
  3812. */
  3813. void complete_all(struct completion *x)
  3814. {
  3815. unsigned long flags;
  3816. spin_lock_irqsave(&x->wait.lock, flags);
  3817. x->done += UINT_MAX/2;
  3818. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3819. spin_unlock_irqrestore(&x->wait.lock, flags);
  3820. }
  3821. EXPORT_SYMBOL(complete_all);
  3822. static inline long __sched
  3823. do_wait_for_common(struct completion *x, long timeout, int state)
  3824. {
  3825. if (!x->done) {
  3826. DECLARE_WAITQUEUE(wait, current);
  3827. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3828. do {
  3829. if (signal_pending_state(state, current)) {
  3830. timeout = -ERESTARTSYS;
  3831. break;
  3832. }
  3833. __set_current_state(state);
  3834. spin_unlock_irq(&x->wait.lock);
  3835. timeout = schedule_timeout(timeout);
  3836. spin_lock_irq(&x->wait.lock);
  3837. } while (!x->done && timeout);
  3838. __remove_wait_queue(&x->wait, &wait);
  3839. if (!x->done)
  3840. return timeout;
  3841. }
  3842. x->done--;
  3843. return timeout ?: 1;
  3844. }
  3845. static long __sched
  3846. wait_for_common(struct completion *x, long timeout, int state)
  3847. {
  3848. might_sleep();
  3849. spin_lock_irq(&x->wait.lock);
  3850. timeout = do_wait_for_common(x, timeout, state);
  3851. spin_unlock_irq(&x->wait.lock);
  3852. return timeout;
  3853. }
  3854. /**
  3855. * wait_for_completion: - waits for completion of a task
  3856. * @x: holds the state of this particular completion
  3857. *
  3858. * This waits to be signaled for completion of a specific task. It is NOT
  3859. * interruptible and there is no timeout.
  3860. *
  3861. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3862. * and interrupt capability. Also see complete().
  3863. */
  3864. void __sched wait_for_completion(struct completion *x)
  3865. {
  3866. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3867. }
  3868. EXPORT_SYMBOL(wait_for_completion);
  3869. /**
  3870. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3871. * @x: holds the state of this particular completion
  3872. * @timeout: timeout value in jiffies
  3873. *
  3874. * This waits for either a completion of a specific task to be signaled or for a
  3875. * specified timeout to expire. The timeout is in jiffies. It is not
  3876. * interruptible.
  3877. */
  3878. unsigned long __sched
  3879. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3880. {
  3881. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3882. }
  3883. EXPORT_SYMBOL(wait_for_completion_timeout);
  3884. /**
  3885. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3886. * @x: holds the state of this particular completion
  3887. *
  3888. * This waits for completion of a specific task to be signaled. It is
  3889. * interruptible.
  3890. */
  3891. int __sched wait_for_completion_interruptible(struct completion *x)
  3892. {
  3893. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3894. if (t == -ERESTARTSYS)
  3895. return t;
  3896. return 0;
  3897. }
  3898. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3899. /**
  3900. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3901. * @x: holds the state of this particular completion
  3902. * @timeout: timeout value in jiffies
  3903. *
  3904. * This waits for either a completion of a specific task to be signaled or for a
  3905. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3906. */
  3907. long __sched
  3908. wait_for_completion_interruptible_timeout(struct completion *x,
  3909. unsigned long timeout)
  3910. {
  3911. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3912. }
  3913. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3914. /**
  3915. * wait_for_completion_killable: - waits for completion of a task (killable)
  3916. * @x: holds the state of this particular completion
  3917. *
  3918. * This waits to be signaled for completion of a specific task. It can be
  3919. * interrupted by a kill signal.
  3920. */
  3921. int __sched wait_for_completion_killable(struct completion *x)
  3922. {
  3923. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3924. if (t == -ERESTARTSYS)
  3925. return t;
  3926. return 0;
  3927. }
  3928. EXPORT_SYMBOL(wait_for_completion_killable);
  3929. /**
  3930. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3931. * @x: holds the state of this particular completion
  3932. * @timeout: timeout value in jiffies
  3933. *
  3934. * This waits for either a completion of a specific task to be
  3935. * signaled or for a specified timeout to expire. It can be
  3936. * interrupted by a kill signal. The timeout is in jiffies.
  3937. */
  3938. long __sched
  3939. wait_for_completion_killable_timeout(struct completion *x,
  3940. unsigned long timeout)
  3941. {
  3942. return wait_for_common(x, timeout, TASK_KILLABLE);
  3943. }
  3944. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3945. /**
  3946. * try_wait_for_completion - try to decrement a completion without blocking
  3947. * @x: completion structure
  3948. *
  3949. * Returns: 0 if a decrement cannot be done without blocking
  3950. * 1 if a decrement succeeded.
  3951. *
  3952. * If a completion is being used as a counting completion,
  3953. * attempt to decrement the counter without blocking. This
  3954. * enables us to avoid waiting if the resource the completion
  3955. * is protecting is not available.
  3956. */
  3957. bool try_wait_for_completion(struct completion *x)
  3958. {
  3959. unsigned long flags;
  3960. int ret = 1;
  3961. spin_lock_irqsave(&x->wait.lock, flags);
  3962. if (!x->done)
  3963. ret = 0;
  3964. else
  3965. x->done--;
  3966. spin_unlock_irqrestore(&x->wait.lock, flags);
  3967. return ret;
  3968. }
  3969. EXPORT_SYMBOL(try_wait_for_completion);
  3970. /**
  3971. * completion_done - Test to see if a completion has any waiters
  3972. * @x: completion structure
  3973. *
  3974. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3975. * 1 if there are no waiters.
  3976. *
  3977. */
  3978. bool completion_done(struct completion *x)
  3979. {
  3980. unsigned long flags;
  3981. int ret = 1;
  3982. spin_lock_irqsave(&x->wait.lock, flags);
  3983. if (!x->done)
  3984. ret = 0;
  3985. spin_unlock_irqrestore(&x->wait.lock, flags);
  3986. return ret;
  3987. }
  3988. EXPORT_SYMBOL(completion_done);
  3989. static long __sched
  3990. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3991. {
  3992. unsigned long flags;
  3993. wait_queue_t wait;
  3994. init_waitqueue_entry(&wait, current);
  3995. __set_current_state(state);
  3996. spin_lock_irqsave(&q->lock, flags);
  3997. __add_wait_queue(q, &wait);
  3998. spin_unlock(&q->lock);
  3999. timeout = schedule_timeout(timeout);
  4000. spin_lock_irq(&q->lock);
  4001. __remove_wait_queue(q, &wait);
  4002. spin_unlock_irqrestore(&q->lock, flags);
  4003. return timeout;
  4004. }
  4005. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4006. {
  4007. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4008. }
  4009. EXPORT_SYMBOL(interruptible_sleep_on);
  4010. long __sched
  4011. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4012. {
  4013. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4014. }
  4015. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4016. void __sched sleep_on(wait_queue_head_t *q)
  4017. {
  4018. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4019. }
  4020. EXPORT_SYMBOL(sleep_on);
  4021. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4022. {
  4023. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4024. }
  4025. EXPORT_SYMBOL(sleep_on_timeout);
  4026. #ifdef CONFIG_RT_MUTEXES
  4027. /*
  4028. * rt_mutex_setprio - set the current priority of a task
  4029. * @p: task
  4030. * @prio: prio value (kernel-internal form)
  4031. *
  4032. * This function changes the 'effective' priority of a task. It does
  4033. * not touch ->normal_prio like __setscheduler().
  4034. *
  4035. * Used by the rt_mutex code to implement priority inheritance logic.
  4036. */
  4037. void rt_mutex_setprio(struct task_struct *p, int prio)
  4038. {
  4039. int oldprio, on_rq, running;
  4040. struct rq *rq;
  4041. const struct sched_class *prev_class;
  4042. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4043. rq = __task_rq_lock(p);
  4044. trace_sched_pi_setprio(p, prio);
  4045. oldprio = p->prio;
  4046. prev_class = p->sched_class;
  4047. on_rq = p->on_rq;
  4048. running = task_current(rq, p);
  4049. if (on_rq)
  4050. dequeue_task(rq, p, 0);
  4051. if (running)
  4052. p->sched_class->put_prev_task(rq, p);
  4053. if (rt_prio(prio))
  4054. p->sched_class = &rt_sched_class;
  4055. else
  4056. p->sched_class = &fair_sched_class;
  4057. p->prio = prio;
  4058. if (running)
  4059. p->sched_class->set_curr_task(rq);
  4060. if (on_rq)
  4061. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4062. check_class_changed(rq, p, prev_class, oldprio);
  4063. __task_rq_unlock(rq);
  4064. }
  4065. #endif
  4066. void set_user_nice(struct task_struct *p, long nice)
  4067. {
  4068. int old_prio, delta, on_rq;
  4069. unsigned long flags;
  4070. struct rq *rq;
  4071. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4072. return;
  4073. /*
  4074. * We have to be careful, if called from sys_setpriority(),
  4075. * the task might be in the middle of scheduling on another CPU.
  4076. */
  4077. rq = task_rq_lock(p, &flags);
  4078. /*
  4079. * The RT priorities are set via sched_setscheduler(), but we still
  4080. * allow the 'normal' nice value to be set - but as expected
  4081. * it wont have any effect on scheduling until the task is
  4082. * SCHED_FIFO/SCHED_RR:
  4083. */
  4084. if (task_has_rt_policy(p)) {
  4085. p->static_prio = NICE_TO_PRIO(nice);
  4086. goto out_unlock;
  4087. }
  4088. on_rq = p->on_rq;
  4089. if (on_rq)
  4090. dequeue_task(rq, p, 0);
  4091. p->static_prio = NICE_TO_PRIO(nice);
  4092. set_load_weight(p);
  4093. old_prio = p->prio;
  4094. p->prio = effective_prio(p);
  4095. delta = p->prio - old_prio;
  4096. if (on_rq) {
  4097. enqueue_task(rq, p, 0);
  4098. /*
  4099. * If the task increased its priority or is running and
  4100. * lowered its priority, then reschedule its CPU:
  4101. */
  4102. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4103. resched_task(rq->curr);
  4104. }
  4105. out_unlock:
  4106. task_rq_unlock(rq, p, &flags);
  4107. }
  4108. EXPORT_SYMBOL(set_user_nice);
  4109. /*
  4110. * can_nice - check if a task can reduce its nice value
  4111. * @p: task
  4112. * @nice: nice value
  4113. */
  4114. int can_nice(const struct task_struct *p, const int nice)
  4115. {
  4116. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4117. int nice_rlim = 20 - nice;
  4118. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4119. capable(CAP_SYS_NICE));
  4120. }
  4121. #ifdef __ARCH_WANT_SYS_NICE
  4122. /*
  4123. * sys_nice - change the priority of the current process.
  4124. * @increment: priority increment
  4125. *
  4126. * sys_setpriority is a more generic, but much slower function that
  4127. * does similar things.
  4128. */
  4129. SYSCALL_DEFINE1(nice, int, increment)
  4130. {
  4131. long nice, retval;
  4132. /*
  4133. * Setpriority might change our priority at the same moment.
  4134. * We don't have to worry. Conceptually one call occurs first
  4135. * and we have a single winner.
  4136. */
  4137. if (increment < -40)
  4138. increment = -40;
  4139. if (increment > 40)
  4140. increment = 40;
  4141. nice = TASK_NICE(current) + increment;
  4142. if (nice < -20)
  4143. nice = -20;
  4144. if (nice > 19)
  4145. nice = 19;
  4146. if (increment < 0 && !can_nice(current, nice))
  4147. return -EPERM;
  4148. retval = security_task_setnice(current, nice);
  4149. if (retval)
  4150. return retval;
  4151. set_user_nice(current, nice);
  4152. return 0;
  4153. }
  4154. #endif
  4155. /**
  4156. * task_prio - return the priority value of a given task.
  4157. * @p: the task in question.
  4158. *
  4159. * This is the priority value as seen by users in /proc.
  4160. * RT tasks are offset by -200. Normal tasks are centered
  4161. * around 0, value goes from -16 to +15.
  4162. */
  4163. int task_prio(const struct task_struct *p)
  4164. {
  4165. return p->prio - MAX_RT_PRIO;
  4166. }
  4167. /**
  4168. * task_nice - return the nice value of a given task.
  4169. * @p: the task in question.
  4170. */
  4171. int task_nice(const struct task_struct *p)
  4172. {
  4173. return TASK_NICE(p);
  4174. }
  4175. EXPORT_SYMBOL(task_nice);
  4176. /**
  4177. * idle_cpu - is a given cpu idle currently?
  4178. * @cpu: the processor in question.
  4179. */
  4180. int idle_cpu(int cpu)
  4181. {
  4182. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4183. }
  4184. /**
  4185. * idle_task - return the idle task for a given cpu.
  4186. * @cpu: the processor in question.
  4187. */
  4188. struct task_struct *idle_task(int cpu)
  4189. {
  4190. return cpu_rq(cpu)->idle;
  4191. }
  4192. /**
  4193. * find_process_by_pid - find a process with a matching PID value.
  4194. * @pid: the pid in question.
  4195. */
  4196. static struct task_struct *find_process_by_pid(pid_t pid)
  4197. {
  4198. return pid ? find_task_by_vpid(pid) : current;
  4199. }
  4200. /* Actually do priority change: must hold rq lock. */
  4201. static void
  4202. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4203. {
  4204. p->policy = policy;
  4205. p->rt_priority = prio;
  4206. p->normal_prio = normal_prio(p);
  4207. /* we are holding p->pi_lock already */
  4208. p->prio = rt_mutex_getprio(p);
  4209. if (rt_prio(p->prio))
  4210. p->sched_class = &rt_sched_class;
  4211. else
  4212. p->sched_class = &fair_sched_class;
  4213. set_load_weight(p);
  4214. }
  4215. /*
  4216. * check the target process has a UID that matches the current process's
  4217. */
  4218. static bool check_same_owner(struct task_struct *p)
  4219. {
  4220. const struct cred *cred = current_cred(), *pcred;
  4221. bool match;
  4222. rcu_read_lock();
  4223. pcred = __task_cred(p);
  4224. if (cred->user->user_ns == pcred->user->user_ns)
  4225. match = (cred->euid == pcred->euid ||
  4226. cred->euid == pcred->uid);
  4227. else
  4228. match = false;
  4229. rcu_read_unlock();
  4230. return match;
  4231. }
  4232. static int __sched_setscheduler(struct task_struct *p, int policy,
  4233. const struct sched_param *param, bool user)
  4234. {
  4235. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4236. unsigned long flags;
  4237. const struct sched_class *prev_class;
  4238. struct rq *rq;
  4239. int reset_on_fork;
  4240. /* may grab non-irq protected spin_locks */
  4241. BUG_ON(in_interrupt());
  4242. recheck:
  4243. /* double check policy once rq lock held */
  4244. if (policy < 0) {
  4245. reset_on_fork = p->sched_reset_on_fork;
  4246. policy = oldpolicy = p->policy;
  4247. } else {
  4248. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4249. policy &= ~SCHED_RESET_ON_FORK;
  4250. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4251. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4252. policy != SCHED_IDLE)
  4253. return -EINVAL;
  4254. }
  4255. /*
  4256. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4257. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4258. * SCHED_BATCH and SCHED_IDLE is 0.
  4259. */
  4260. if (param->sched_priority < 0 ||
  4261. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4262. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4263. return -EINVAL;
  4264. if (rt_policy(policy) != (param->sched_priority != 0))
  4265. return -EINVAL;
  4266. /*
  4267. * Allow unprivileged RT tasks to decrease priority:
  4268. */
  4269. if (user && !capable(CAP_SYS_NICE)) {
  4270. if (rt_policy(policy)) {
  4271. unsigned long rlim_rtprio =
  4272. task_rlimit(p, RLIMIT_RTPRIO);
  4273. /* can't set/change the rt policy */
  4274. if (policy != p->policy && !rlim_rtprio)
  4275. return -EPERM;
  4276. /* can't increase priority */
  4277. if (param->sched_priority > p->rt_priority &&
  4278. param->sched_priority > rlim_rtprio)
  4279. return -EPERM;
  4280. }
  4281. /*
  4282. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4283. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4284. */
  4285. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4286. if (!can_nice(p, TASK_NICE(p)))
  4287. return -EPERM;
  4288. }
  4289. /* can't change other user's priorities */
  4290. if (!check_same_owner(p))
  4291. return -EPERM;
  4292. /* Normal users shall not reset the sched_reset_on_fork flag */
  4293. if (p->sched_reset_on_fork && !reset_on_fork)
  4294. return -EPERM;
  4295. }
  4296. if (user) {
  4297. retval = security_task_setscheduler(p);
  4298. if (retval)
  4299. return retval;
  4300. }
  4301. /*
  4302. * make sure no PI-waiters arrive (or leave) while we are
  4303. * changing the priority of the task:
  4304. *
  4305. * To be able to change p->policy safely, the appropriate
  4306. * runqueue lock must be held.
  4307. */
  4308. rq = task_rq_lock(p, &flags);
  4309. /*
  4310. * Changing the policy of the stop threads its a very bad idea
  4311. */
  4312. if (p == rq->stop) {
  4313. task_rq_unlock(rq, p, &flags);
  4314. return -EINVAL;
  4315. }
  4316. /*
  4317. * If not changing anything there's no need to proceed further:
  4318. */
  4319. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4320. param->sched_priority == p->rt_priority))) {
  4321. __task_rq_unlock(rq);
  4322. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4323. return 0;
  4324. }
  4325. #ifdef CONFIG_RT_GROUP_SCHED
  4326. if (user) {
  4327. /*
  4328. * Do not allow realtime tasks into groups that have no runtime
  4329. * assigned.
  4330. */
  4331. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4332. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4333. !task_group_is_autogroup(task_group(p))) {
  4334. task_rq_unlock(rq, p, &flags);
  4335. return -EPERM;
  4336. }
  4337. }
  4338. #endif
  4339. /* recheck policy now with rq lock held */
  4340. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4341. policy = oldpolicy = -1;
  4342. task_rq_unlock(rq, p, &flags);
  4343. goto recheck;
  4344. }
  4345. on_rq = p->on_rq;
  4346. running = task_current(rq, p);
  4347. if (on_rq)
  4348. deactivate_task(rq, p, 0);
  4349. if (running)
  4350. p->sched_class->put_prev_task(rq, p);
  4351. p->sched_reset_on_fork = reset_on_fork;
  4352. oldprio = p->prio;
  4353. prev_class = p->sched_class;
  4354. __setscheduler(rq, p, policy, param->sched_priority);
  4355. if (running)
  4356. p->sched_class->set_curr_task(rq);
  4357. if (on_rq)
  4358. activate_task(rq, p, 0);
  4359. check_class_changed(rq, p, prev_class, oldprio);
  4360. task_rq_unlock(rq, p, &flags);
  4361. rt_mutex_adjust_pi(p);
  4362. return 0;
  4363. }
  4364. /**
  4365. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4366. * @p: the task in question.
  4367. * @policy: new policy.
  4368. * @param: structure containing the new RT priority.
  4369. *
  4370. * NOTE that the task may be already dead.
  4371. */
  4372. int sched_setscheduler(struct task_struct *p, int policy,
  4373. const struct sched_param *param)
  4374. {
  4375. return __sched_setscheduler(p, policy, param, true);
  4376. }
  4377. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4378. /**
  4379. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4380. * @p: the task in question.
  4381. * @policy: new policy.
  4382. * @param: structure containing the new RT priority.
  4383. *
  4384. * Just like sched_setscheduler, only don't bother checking if the
  4385. * current context has permission. For example, this is needed in
  4386. * stop_machine(): we create temporary high priority worker threads,
  4387. * but our caller might not have that capability.
  4388. */
  4389. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4390. const struct sched_param *param)
  4391. {
  4392. return __sched_setscheduler(p, policy, param, false);
  4393. }
  4394. static int
  4395. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4396. {
  4397. struct sched_param lparam;
  4398. struct task_struct *p;
  4399. int retval;
  4400. if (!param || pid < 0)
  4401. return -EINVAL;
  4402. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4403. return -EFAULT;
  4404. rcu_read_lock();
  4405. retval = -ESRCH;
  4406. p = find_process_by_pid(pid);
  4407. if (p != NULL)
  4408. retval = sched_setscheduler(p, policy, &lparam);
  4409. rcu_read_unlock();
  4410. return retval;
  4411. }
  4412. /**
  4413. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4414. * @pid: the pid in question.
  4415. * @policy: new policy.
  4416. * @param: structure containing the new RT priority.
  4417. */
  4418. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4419. struct sched_param __user *, param)
  4420. {
  4421. /* negative values for policy are not valid */
  4422. if (policy < 0)
  4423. return -EINVAL;
  4424. return do_sched_setscheduler(pid, policy, param);
  4425. }
  4426. /**
  4427. * sys_sched_setparam - set/change the RT priority of a thread
  4428. * @pid: the pid in question.
  4429. * @param: structure containing the new RT priority.
  4430. */
  4431. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4432. {
  4433. return do_sched_setscheduler(pid, -1, param);
  4434. }
  4435. /**
  4436. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4437. * @pid: the pid in question.
  4438. */
  4439. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4440. {
  4441. struct task_struct *p;
  4442. int retval;
  4443. if (pid < 0)
  4444. return -EINVAL;
  4445. retval = -ESRCH;
  4446. rcu_read_lock();
  4447. p = find_process_by_pid(pid);
  4448. if (p) {
  4449. retval = security_task_getscheduler(p);
  4450. if (!retval)
  4451. retval = p->policy
  4452. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4453. }
  4454. rcu_read_unlock();
  4455. return retval;
  4456. }
  4457. /**
  4458. * sys_sched_getparam - get the RT priority of a thread
  4459. * @pid: the pid in question.
  4460. * @param: structure containing the RT priority.
  4461. */
  4462. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4463. {
  4464. struct sched_param lp;
  4465. struct task_struct *p;
  4466. int retval;
  4467. if (!param || pid < 0)
  4468. return -EINVAL;
  4469. rcu_read_lock();
  4470. p = find_process_by_pid(pid);
  4471. retval = -ESRCH;
  4472. if (!p)
  4473. goto out_unlock;
  4474. retval = security_task_getscheduler(p);
  4475. if (retval)
  4476. goto out_unlock;
  4477. lp.sched_priority = p->rt_priority;
  4478. rcu_read_unlock();
  4479. /*
  4480. * This one might sleep, we cannot do it with a spinlock held ...
  4481. */
  4482. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4483. return retval;
  4484. out_unlock:
  4485. rcu_read_unlock();
  4486. return retval;
  4487. }
  4488. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4489. {
  4490. cpumask_var_t cpus_allowed, new_mask;
  4491. struct task_struct *p;
  4492. int retval;
  4493. get_online_cpus();
  4494. rcu_read_lock();
  4495. p = find_process_by_pid(pid);
  4496. if (!p) {
  4497. rcu_read_unlock();
  4498. put_online_cpus();
  4499. return -ESRCH;
  4500. }
  4501. /* Prevent p going away */
  4502. get_task_struct(p);
  4503. rcu_read_unlock();
  4504. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4505. retval = -ENOMEM;
  4506. goto out_put_task;
  4507. }
  4508. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4509. retval = -ENOMEM;
  4510. goto out_free_cpus_allowed;
  4511. }
  4512. retval = -EPERM;
  4513. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4514. goto out_unlock;
  4515. retval = security_task_setscheduler(p);
  4516. if (retval)
  4517. goto out_unlock;
  4518. cpuset_cpus_allowed(p, cpus_allowed);
  4519. cpumask_and(new_mask, in_mask, cpus_allowed);
  4520. again:
  4521. retval = set_cpus_allowed_ptr(p, new_mask);
  4522. if (!retval) {
  4523. cpuset_cpus_allowed(p, cpus_allowed);
  4524. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4525. /*
  4526. * We must have raced with a concurrent cpuset
  4527. * update. Just reset the cpus_allowed to the
  4528. * cpuset's cpus_allowed
  4529. */
  4530. cpumask_copy(new_mask, cpus_allowed);
  4531. goto again;
  4532. }
  4533. }
  4534. out_unlock:
  4535. free_cpumask_var(new_mask);
  4536. out_free_cpus_allowed:
  4537. free_cpumask_var(cpus_allowed);
  4538. out_put_task:
  4539. put_task_struct(p);
  4540. put_online_cpus();
  4541. return retval;
  4542. }
  4543. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4544. struct cpumask *new_mask)
  4545. {
  4546. if (len < cpumask_size())
  4547. cpumask_clear(new_mask);
  4548. else if (len > cpumask_size())
  4549. len = cpumask_size();
  4550. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4551. }
  4552. /**
  4553. * sys_sched_setaffinity - set the cpu affinity of a process
  4554. * @pid: pid of the process
  4555. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4556. * @user_mask_ptr: user-space pointer to the new cpu mask
  4557. */
  4558. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4559. unsigned long __user *, user_mask_ptr)
  4560. {
  4561. cpumask_var_t new_mask;
  4562. int retval;
  4563. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4564. return -ENOMEM;
  4565. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4566. if (retval == 0)
  4567. retval = sched_setaffinity(pid, new_mask);
  4568. free_cpumask_var(new_mask);
  4569. return retval;
  4570. }
  4571. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4572. {
  4573. struct task_struct *p;
  4574. unsigned long flags;
  4575. int retval;
  4576. get_online_cpus();
  4577. rcu_read_lock();
  4578. retval = -ESRCH;
  4579. p = find_process_by_pid(pid);
  4580. if (!p)
  4581. goto out_unlock;
  4582. retval = security_task_getscheduler(p);
  4583. if (retval)
  4584. goto out_unlock;
  4585. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4586. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4587. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4588. out_unlock:
  4589. rcu_read_unlock();
  4590. put_online_cpus();
  4591. return retval;
  4592. }
  4593. /**
  4594. * sys_sched_getaffinity - get the cpu affinity of a process
  4595. * @pid: pid of the process
  4596. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4597. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4598. */
  4599. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4600. unsigned long __user *, user_mask_ptr)
  4601. {
  4602. int ret;
  4603. cpumask_var_t mask;
  4604. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4605. return -EINVAL;
  4606. if (len & (sizeof(unsigned long)-1))
  4607. return -EINVAL;
  4608. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4609. return -ENOMEM;
  4610. ret = sched_getaffinity(pid, mask);
  4611. if (ret == 0) {
  4612. size_t retlen = min_t(size_t, len, cpumask_size());
  4613. if (copy_to_user(user_mask_ptr, mask, retlen))
  4614. ret = -EFAULT;
  4615. else
  4616. ret = retlen;
  4617. }
  4618. free_cpumask_var(mask);
  4619. return ret;
  4620. }
  4621. /**
  4622. * sys_sched_yield - yield the current processor to other threads.
  4623. *
  4624. * This function yields the current CPU to other tasks. If there are no
  4625. * other threads running on this CPU then this function will return.
  4626. */
  4627. SYSCALL_DEFINE0(sched_yield)
  4628. {
  4629. struct rq *rq = this_rq_lock();
  4630. schedstat_inc(rq, yld_count);
  4631. current->sched_class->yield_task(rq);
  4632. /*
  4633. * Since we are going to call schedule() anyway, there's
  4634. * no need to preempt or enable interrupts:
  4635. */
  4636. __release(rq->lock);
  4637. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4638. do_raw_spin_unlock(&rq->lock);
  4639. preempt_enable_no_resched();
  4640. schedule();
  4641. return 0;
  4642. }
  4643. static inline int should_resched(void)
  4644. {
  4645. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4646. }
  4647. static void __cond_resched(void)
  4648. {
  4649. add_preempt_count(PREEMPT_ACTIVE);
  4650. schedule();
  4651. sub_preempt_count(PREEMPT_ACTIVE);
  4652. }
  4653. int __sched _cond_resched(void)
  4654. {
  4655. if (should_resched()) {
  4656. __cond_resched();
  4657. return 1;
  4658. }
  4659. return 0;
  4660. }
  4661. EXPORT_SYMBOL(_cond_resched);
  4662. /*
  4663. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4664. * call schedule, and on return reacquire the lock.
  4665. *
  4666. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4667. * operations here to prevent schedule() from being called twice (once via
  4668. * spin_unlock(), once by hand).
  4669. */
  4670. int __cond_resched_lock(spinlock_t *lock)
  4671. {
  4672. int resched = should_resched();
  4673. int ret = 0;
  4674. lockdep_assert_held(lock);
  4675. if (spin_needbreak(lock) || resched) {
  4676. spin_unlock(lock);
  4677. if (resched)
  4678. __cond_resched();
  4679. else
  4680. cpu_relax();
  4681. ret = 1;
  4682. spin_lock(lock);
  4683. }
  4684. return ret;
  4685. }
  4686. EXPORT_SYMBOL(__cond_resched_lock);
  4687. int __sched __cond_resched_softirq(void)
  4688. {
  4689. BUG_ON(!in_softirq());
  4690. if (should_resched()) {
  4691. local_bh_enable();
  4692. __cond_resched();
  4693. local_bh_disable();
  4694. return 1;
  4695. }
  4696. return 0;
  4697. }
  4698. EXPORT_SYMBOL(__cond_resched_softirq);
  4699. /**
  4700. * yield - yield the current processor to other threads.
  4701. *
  4702. * This is a shortcut for kernel-space yielding - it marks the
  4703. * thread runnable and calls sys_sched_yield().
  4704. */
  4705. void __sched yield(void)
  4706. {
  4707. set_current_state(TASK_RUNNING);
  4708. sys_sched_yield();
  4709. }
  4710. EXPORT_SYMBOL(yield);
  4711. /**
  4712. * yield_to - yield the current processor to another thread in
  4713. * your thread group, or accelerate that thread toward the
  4714. * processor it's on.
  4715. * @p: target task
  4716. * @preempt: whether task preemption is allowed or not
  4717. *
  4718. * It's the caller's job to ensure that the target task struct
  4719. * can't go away on us before we can do any checks.
  4720. *
  4721. * Returns true if we indeed boosted the target task.
  4722. */
  4723. bool __sched yield_to(struct task_struct *p, bool preempt)
  4724. {
  4725. struct task_struct *curr = current;
  4726. struct rq *rq, *p_rq;
  4727. unsigned long flags;
  4728. bool yielded = 0;
  4729. local_irq_save(flags);
  4730. rq = this_rq();
  4731. again:
  4732. p_rq = task_rq(p);
  4733. double_rq_lock(rq, p_rq);
  4734. while (task_rq(p) != p_rq) {
  4735. double_rq_unlock(rq, p_rq);
  4736. goto again;
  4737. }
  4738. if (!curr->sched_class->yield_to_task)
  4739. goto out;
  4740. if (curr->sched_class != p->sched_class)
  4741. goto out;
  4742. if (task_running(p_rq, p) || p->state)
  4743. goto out;
  4744. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4745. if (yielded) {
  4746. schedstat_inc(rq, yld_count);
  4747. /*
  4748. * Make p's CPU reschedule; pick_next_entity takes care of
  4749. * fairness.
  4750. */
  4751. if (preempt && rq != p_rq)
  4752. resched_task(p_rq->curr);
  4753. }
  4754. out:
  4755. double_rq_unlock(rq, p_rq);
  4756. local_irq_restore(flags);
  4757. if (yielded)
  4758. schedule();
  4759. return yielded;
  4760. }
  4761. EXPORT_SYMBOL_GPL(yield_to);
  4762. /*
  4763. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4764. * that process accounting knows that this is a task in IO wait state.
  4765. */
  4766. void __sched io_schedule(void)
  4767. {
  4768. struct rq *rq = raw_rq();
  4769. delayacct_blkio_start();
  4770. atomic_inc(&rq->nr_iowait);
  4771. blk_flush_plug(current);
  4772. current->in_iowait = 1;
  4773. schedule();
  4774. current->in_iowait = 0;
  4775. atomic_dec(&rq->nr_iowait);
  4776. delayacct_blkio_end();
  4777. }
  4778. EXPORT_SYMBOL(io_schedule);
  4779. long __sched io_schedule_timeout(long timeout)
  4780. {
  4781. struct rq *rq = raw_rq();
  4782. long ret;
  4783. delayacct_blkio_start();
  4784. atomic_inc(&rq->nr_iowait);
  4785. blk_flush_plug(current);
  4786. current->in_iowait = 1;
  4787. ret = schedule_timeout(timeout);
  4788. current->in_iowait = 0;
  4789. atomic_dec(&rq->nr_iowait);
  4790. delayacct_blkio_end();
  4791. return ret;
  4792. }
  4793. /**
  4794. * sys_sched_get_priority_max - return maximum RT priority.
  4795. * @policy: scheduling class.
  4796. *
  4797. * this syscall returns the maximum rt_priority that can be used
  4798. * by a given scheduling class.
  4799. */
  4800. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4801. {
  4802. int ret = -EINVAL;
  4803. switch (policy) {
  4804. case SCHED_FIFO:
  4805. case SCHED_RR:
  4806. ret = MAX_USER_RT_PRIO-1;
  4807. break;
  4808. case SCHED_NORMAL:
  4809. case SCHED_BATCH:
  4810. case SCHED_IDLE:
  4811. ret = 0;
  4812. break;
  4813. }
  4814. return ret;
  4815. }
  4816. /**
  4817. * sys_sched_get_priority_min - return minimum RT priority.
  4818. * @policy: scheduling class.
  4819. *
  4820. * this syscall returns the minimum rt_priority that can be used
  4821. * by a given scheduling class.
  4822. */
  4823. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4824. {
  4825. int ret = -EINVAL;
  4826. switch (policy) {
  4827. case SCHED_FIFO:
  4828. case SCHED_RR:
  4829. ret = 1;
  4830. break;
  4831. case SCHED_NORMAL:
  4832. case SCHED_BATCH:
  4833. case SCHED_IDLE:
  4834. ret = 0;
  4835. }
  4836. return ret;
  4837. }
  4838. /**
  4839. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4840. * @pid: pid of the process.
  4841. * @interval: userspace pointer to the timeslice value.
  4842. *
  4843. * this syscall writes the default timeslice value of a given process
  4844. * into the user-space timespec buffer. A value of '0' means infinity.
  4845. */
  4846. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4847. struct timespec __user *, interval)
  4848. {
  4849. struct task_struct *p;
  4850. unsigned int time_slice;
  4851. unsigned long flags;
  4852. struct rq *rq;
  4853. int retval;
  4854. struct timespec t;
  4855. if (pid < 0)
  4856. return -EINVAL;
  4857. retval = -ESRCH;
  4858. rcu_read_lock();
  4859. p = find_process_by_pid(pid);
  4860. if (!p)
  4861. goto out_unlock;
  4862. retval = security_task_getscheduler(p);
  4863. if (retval)
  4864. goto out_unlock;
  4865. rq = task_rq_lock(p, &flags);
  4866. time_slice = p->sched_class->get_rr_interval(rq, p);
  4867. task_rq_unlock(rq, p, &flags);
  4868. rcu_read_unlock();
  4869. jiffies_to_timespec(time_slice, &t);
  4870. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4871. return retval;
  4872. out_unlock:
  4873. rcu_read_unlock();
  4874. return retval;
  4875. }
  4876. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4877. void sched_show_task(struct task_struct *p)
  4878. {
  4879. unsigned long free = 0;
  4880. unsigned state;
  4881. state = p->state ? __ffs(p->state) + 1 : 0;
  4882. printk(KERN_INFO "%-15.15s %c", p->comm,
  4883. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4884. #if BITS_PER_LONG == 32
  4885. if (state == TASK_RUNNING)
  4886. printk(KERN_CONT " running ");
  4887. else
  4888. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4889. #else
  4890. if (state == TASK_RUNNING)
  4891. printk(KERN_CONT " running task ");
  4892. else
  4893. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4894. #endif
  4895. #ifdef CONFIG_DEBUG_STACK_USAGE
  4896. free = stack_not_used(p);
  4897. #endif
  4898. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4899. task_pid_nr(p), task_pid_nr(p->real_parent),
  4900. (unsigned long)task_thread_info(p)->flags);
  4901. show_stack(p, NULL);
  4902. }
  4903. void show_state_filter(unsigned long state_filter)
  4904. {
  4905. struct task_struct *g, *p;
  4906. #if BITS_PER_LONG == 32
  4907. printk(KERN_INFO
  4908. " task PC stack pid father\n");
  4909. #else
  4910. printk(KERN_INFO
  4911. " task PC stack pid father\n");
  4912. #endif
  4913. read_lock(&tasklist_lock);
  4914. do_each_thread(g, p) {
  4915. /*
  4916. * reset the NMI-timeout, listing all files on a slow
  4917. * console might take a lot of time:
  4918. */
  4919. touch_nmi_watchdog();
  4920. if (!state_filter || (p->state & state_filter))
  4921. sched_show_task(p);
  4922. } while_each_thread(g, p);
  4923. touch_all_softlockup_watchdogs();
  4924. #ifdef CONFIG_SCHED_DEBUG
  4925. sysrq_sched_debug_show();
  4926. #endif
  4927. read_unlock(&tasklist_lock);
  4928. /*
  4929. * Only show locks if all tasks are dumped:
  4930. */
  4931. if (!state_filter)
  4932. debug_show_all_locks();
  4933. }
  4934. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4935. {
  4936. idle->sched_class = &idle_sched_class;
  4937. }
  4938. /**
  4939. * init_idle - set up an idle thread for a given CPU
  4940. * @idle: task in question
  4941. * @cpu: cpu the idle task belongs to
  4942. *
  4943. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4944. * flag, to make booting more robust.
  4945. */
  4946. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4947. {
  4948. struct rq *rq = cpu_rq(cpu);
  4949. unsigned long flags;
  4950. raw_spin_lock_irqsave(&rq->lock, flags);
  4951. __sched_fork(idle);
  4952. idle->state = TASK_RUNNING;
  4953. idle->se.exec_start = sched_clock();
  4954. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4955. /*
  4956. * We're having a chicken and egg problem, even though we are
  4957. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4958. * lockdep check in task_group() will fail.
  4959. *
  4960. * Similar case to sched_fork(). / Alternatively we could
  4961. * use task_rq_lock() here and obtain the other rq->lock.
  4962. *
  4963. * Silence PROVE_RCU
  4964. */
  4965. rcu_read_lock();
  4966. __set_task_cpu(idle, cpu);
  4967. rcu_read_unlock();
  4968. rq->curr = rq->idle = idle;
  4969. #if defined(CONFIG_SMP)
  4970. idle->on_cpu = 1;
  4971. #endif
  4972. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4973. /* Set the preempt count _outside_ the spinlocks! */
  4974. task_thread_info(idle)->preempt_count = 0;
  4975. /*
  4976. * The idle tasks have their own, simple scheduling class:
  4977. */
  4978. idle->sched_class = &idle_sched_class;
  4979. ftrace_graph_init_idle_task(idle, cpu);
  4980. }
  4981. /*
  4982. * In a system that switches off the HZ timer nohz_cpu_mask
  4983. * indicates which cpus entered this state. This is used
  4984. * in the rcu update to wait only for active cpus. For system
  4985. * which do not switch off the HZ timer nohz_cpu_mask should
  4986. * always be CPU_BITS_NONE.
  4987. */
  4988. cpumask_var_t nohz_cpu_mask;
  4989. /*
  4990. * Increase the granularity value when there are more CPUs,
  4991. * because with more CPUs the 'effective latency' as visible
  4992. * to users decreases. But the relationship is not linear,
  4993. * so pick a second-best guess by going with the log2 of the
  4994. * number of CPUs.
  4995. *
  4996. * This idea comes from the SD scheduler of Con Kolivas:
  4997. */
  4998. static int get_update_sysctl_factor(void)
  4999. {
  5000. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5001. unsigned int factor;
  5002. switch (sysctl_sched_tunable_scaling) {
  5003. case SCHED_TUNABLESCALING_NONE:
  5004. factor = 1;
  5005. break;
  5006. case SCHED_TUNABLESCALING_LINEAR:
  5007. factor = cpus;
  5008. break;
  5009. case SCHED_TUNABLESCALING_LOG:
  5010. default:
  5011. factor = 1 + ilog2(cpus);
  5012. break;
  5013. }
  5014. return factor;
  5015. }
  5016. static void update_sysctl(void)
  5017. {
  5018. unsigned int factor = get_update_sysctl_factor();
  5019. #define SET_SYSCTL(name) \
  5020. (sysctl_##name = (factor) * normalized_sysctl_##name)
  5021. SET_SYSCTL(sched_min_granularity);
  5022. SET_SYSCTL(sched_latency);
  5023. SET_SYSCTL(sched_wakeup_granularity);
  5024. #undef SET_SYSCTL
  5025. }
  5026. static inline void sched_init_granularity(void)
  5027. {
  5028. update_sysctl();
  5029. }
  5030. #ifdef CONFIG_SMP
  5031. /*
  5032. * This is how migration works:
  5033. *
  5034. * 1) we invoke migration_cpu_stop() on the target CPU using
  5035. * stop_one_cpu().
  5036. * 2) stopper starts to run (implicitly forcing the migrated thread
  5037. * off the CPU)
  5038. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5039. * 4) if it's in the wrong runqueue then the migration thread removes
  5040. * it and puts it into the right queue.
  5041. * 5) stopper completes and stop_one_cpu() returns and the migration
  5042. * is done.
  5043. */
  5044. /*
  5045. * Change a given task's CPU affinity. Migrate the thread to a
  5046. * proper CPU and schedule it away if the CPU it's executing on
  5047. * is removed from the allowed bitmask.
  5048. *
  5049. * NOTE: the caller must have a valid reference to the task, the
  5050. * task must not exit() & deallocate itself prematurely. The
  5051. * call is not atomic; no spinlocks may be held.
  5052. */
  5053. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5054. {
  5055. unsigned long flags;
  5056. struct rq *rq;
  5057. unsigned int dest_cpu;
  5058. int ret = 0;
  5059. rq = task_rq_lock(p, &flags);
  5060. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5061. ret = -EINVAL;
  5062. goto out;
  5063. }
  5064. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5065. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5066. ret = -EINVAL;
  5067. goto out;
  5068. }
  5069. if (p->sched_class->set_cpus_allowed)
  5070. p->sched_class->set_cpus_allowed(p, new_mask);
  5071. else {
  5072. cpumask_copy(&p->cpus_allowed, new_mask);
  5073. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5074. }
  5075. /* Can the task run on the task's current CPU? If so, we're done */
  5076. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5077. goto out;
  5078. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5079. if (p->on_rq) {
  5080. struct migration_arg arg = { p, dest_cpu };
  5081. /* Need help from migration thread: drop lock and wait. */
  5082. task_rq_unlock(rq, p, &flags);
  5083. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5084. tlb_migrate_finish(p->mm);
  5085. return 0;
  5086. }
  5087. out:
  5088. task_rq_unlock(rq, p, &flags);
  5089. return ret;
  5090. }
  5091. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5092. /*
  5093. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5094. * this because either it can't run here any more (set_cpus_allowed()
  5095. * away from this CPU, or CPU going down), or because we're
  5096. * attempting to rebalance this task on exec (sched_exec).
  5097. *
  5098. * So we race with normal scheduler movements, but that's OK, as long
  5099. * as the task is no longer on this CPU.
  5100. *
  5101. * Returns non-zero if task was successfully migrated.
  5102. */
  5103. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5104. {
  5105. struct rq *rq_dest, *rq_src;
  5106. int ret = 0;
  5107. if (unlikely(!cpu_active(dest_cpu)))
  5108. return ret;
  5109. rq_src = cpu_rq(src_cpu);
  5110. rq_dest = cpu_rq(dest_cpu);
  5111. raw_spin_lock(&p->pi_lock);
  5112. double_rq_lock(rq_src, rq_dest);
  5113. /* Already moved. */
  5114. if (task_cpu(p) != src_cpu)
  5115. goto done;
  5116. /* Affinity changed (again). */
  5117. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5118. goto fail;
  5119. /*
  5120. * If we're not on a rq, the next wake-up will ensure we're
  5121. * placed properly.
  5122. */
  5123. if (p->on_rq) {
  5124. deactivate_task(rq_src, p, 0);
  5125. set_task_cpu(p, dest_cpu);
  5126. activate_task(rq_dest, p, 0);
  5127. check_preempt_curr(rq_dest, p, 0);
  5128. }
  5129. done:
  5130. ret = 1;
  5131. fail:
  5132. double_rq_unlock(rq_src, rq_dest);
  5133. raw_spin_unlock(&p->pi_lock);
  5134. return ret;
  5135. }
  5136. /*
  5137. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5138. * and performs thread migration by bumping thread off CPU then
  5139. * 'pushing' onto another runqueue.
  5140. */
  5141. static int migration_cpu_stop(void *data)
  5142. {
  5143. struct migration_arg *arg = data;
  5144. /*
  5145. * The original target cpu might have gone down and we might
  5146. * be on another cpu but it doesn't matter.
  5147. */
  5148. local_irq_disable();
  5149. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5150. local_irq_enable();
  5151. return 0;
  5152. }
  5153. #ifdef CONFIG_HOTPLUG_CPU
  5154. /*
  5155. * Ensures that the idle task is using init_mm right before its cpu goes
  5156. * offline.
  5157. */
  5158. void idle_task_exit(void)
  5159. {
  5160. struct mm_struct *mm = current->active_mm;
  5161. BUG_ON(cpu_online(smp_processor_id()));
  5162. if (mm != &init_mm)
  5163. switch_mm(mm, &init_mm, current);
  5164. mmdrop(mm);
  5165. }
  5166. /*
  5167. * While a dead CPU has no uninterruptible tasks queued at this point,
  5168. * it might still have a nonzero ->nr_uninterruptible counter, because
  5169. * for performance reasons the counter is not stricly tracking tasks to
  5170. * their home CPUs. So we just add the counter to another CPU's counter,
  5171. * to keep the global sum constant after CPU-down:
  5172. */
  5173. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5174. {
  5175. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5176. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5177. rq_src->nr_uninterruptible = 0;
  5178. }
  5179. /*
  5180. * remove the tasks which were accounted by rq from calc_load_tasks.
  5181. */
  5182. static void calc_global_load_remove(struct rq *rq)
  5183. {
  5184. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5185. rq->calc_load_active = 0;
  5186. }
  5187. /*
  5188. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5189. * try_to_wake_up()->select_task_rq().
  5190. *
  5191. * Called with rq->lock held even though we'er in stop_machine() and
  5192. * there's no concurrency possible, we hold the required locks anyway
  5193. * because of lock validation efforts.
  5194. */
  5195. static void migrate_tasks(unsigned int dead_cpu)
  5196. {
  5197. struct rq *rq = cpu_rq(dead_cpu);
  5198. struct task_struct *next, *stop = rq->stop;
  5199. int dest_cpu;
  5200. /*
  5201. * Fudge the rq selection such that the below task selection loop
  5202. * doesn't get stuck on the currently eligible stop task.
  5203. *
  5204. * We're currently inside stop_machine() and the rq is either stuck
  5205. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5206. * either way we should never end up calling schedule() until we're
  5207. * done here.
  5208. */
  5209. rq->stop = NULL;
  5210. for ( ; ; ) {
  5211. /*
  5212. * There's this thread running, bail when that's the only
  5213. * remaining thread.
  5214. */
  5215. if (rq->nr_running == 1)
  5216. break;
  5217. next = pick_next_task(rq);
  5218. BUG_ON(!next);
  5219. next->sched_class->put_prev_task(rq, next);
  5220. /* Find suitable destination for @next, with force if needed. */
  5221. dest_cpu = select_fallback_rq(dead_cpu, next);
  5222. raw_spin_unlock(&rq->lock);
  5223. __migrate_task(next, dead_cpu, dest_cpu);
  5224. raw_spin_lock(&rq->lock);
  5225. }
  5226. rq->stop = stop;
  5227. }
  5228. #endif /* CONFIG_HOTPLUG_CPU */
  5229. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5230. static struct ctl_table sd_ctl_dir[] = {
  5231. {
  5232. .procname = "sched_domain",
  5233. .mode = 0555,
  5234. },
  5235. {}
  5236. };
  5237. static struct ctl_table sd_ctl_root[] = {
  5238. {
  5239. .procname = "kernel",
  5240. .mode = 0555,
  5241. .child = sd_ctl_dir,
  5242. },
  5243. {}
  5244. };
  5245. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5246. {
  5247. struct ctl_table *entry =
  5248. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5249. return entry;
  5250. }
  5251. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5252. {
  5253. struct ctl_table *entry;
  5254. /*
  5255. * In the intermediate directories, both the child directory and
  5256. * procname are dynamically allocated and could fail but the mode
  5257. * will always be set. In the lowest directory the names are
  5258. * static strings and all have proc handlers.
  5259. */
  5260. for (entry = *tablep; entry->mode; entry++) {
  5261. if (entry->child)
  5262. sd_free_ctl_entry(&entry->child);
  5263. if (entry->proc_handler == NULL)
  5264. kfree(entry->procname);
  5265. }
  5266. kfree(*tablep);
  5267. *tablep = NULL;
  5268. }
  5269. static void
  5270. set_table_entry(struct ctl_table *entry,
  5271. const char *procname, void *data, int maxlen,
  5272. mode_t mode, proc_handler *proc_handler)
  5273. {
  5274. entry->procname = procname;
  5275. entry->data = data;
  5276. entry->maxlen = maxlen;
  5277. entry->mode = mode;
  5278. entry->proc_handler = proc_handler;
  5279. }
  5280. static struct ctl_table *
  5281. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5282. {
  5283. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5284. if (table == NULL)
  5285. return NULL;
  5286. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5287. sizeof(long), 0644, proc_doulongvec_minmax);
  5288. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5289. sizeof(long), 0644, proc_doulongvec_minmax);
  5290. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5291. sizeof(int), 0644, proc_dointvec_minmax);
  5292. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5293. sizeof(int), 0644, proc_dointvec_minmax);
  5294. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5295. sizeof(int), 0644, proc_dointvec_minmax);
  5296. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5297. sizeof(int), 0644, proc_dointvec_minmax);
  5298. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5299. sizeof(int), 0644, proc_dointvec_minmax);
  5300. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5301. sizeof(int), 0644, proc_dointvec_minmax);
  5302. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5303. sizeof(int), 0644, proc_dointvec_minmax);
  5304. set_table_entry(&table[9], "cache_nice_tries",
  5305. &sd->cache_nice_tries,
  5306. sizeof(int), 0644, proc_dointvec_minmax);
  5307. set_table_entry(&table[10], "flags", &sd->flags,
  5308. sizeof(int), 0644, proc_dointvec_minmax);
  5309. set_table_entry(&table[11], "name", sd->name,
  5310. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5311. /* &table[12] is terminator */
  5312. return table;
  5313. }
  5314. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5315. {
  5316. struct ctl_table *entry, *table;
  5317. struct sched_domain *sd;
  5318. int domain_num = 0, i;
  5319. char buf[32];
  5320. for_each_domain(cpu, sd)
  5321. domain_num++;
  5322. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5323. if (table == NULL)
  5324. return NULL;
  5325. i = 0;
  5326. for_each_domain(cpu, sd) {
  5327. snprintf(buf, 32, "domain%d", i);
  5328. entry->procname = kstrdup(buf, GFP_KERNEL);
  5329. entry->mode = 0555;
  5330. entry->child = sd_alloc_ctl_domain_table(sd);
  5331. entry++;
  5332. i++;
  5333. }
  5334. return table;
  5335. }
  5336. static struct ctl_table_header *sd_sysctl_header;
  5337. static void register_sched_domain_sysctl(void)
  5338. {
  5339. int i, cpu_num = num_possible_cpus();
  5340. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5341. char buf[32];
  5342. WARN_ON(sd_ctl_dir[0].child);
  5343. sd_ctl_dir[0].child = entry;
  5344. if (entry == NULL)
  5345. return;
  5346. for_each_possible_cpu(i) {
  5347. snprintf(buf, 32, "cpu%d", i);
  5348. entry->procname = kstrdup(buf, GFP_KERNEL);
  5349. entry->mode = 0555;
  5350. entry->child = sd_alloc_ctl_cpu_table(i);
  5351. entry++;
  5352. }
  5353. WARN_ON(sd_sysctl_header);
  5354. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5355. }
  5356. /* may be called multiple times per register */
  5357. static void unregister_sched_domain_sysctl(void)
  5358. {
  5359. if (sd_sysctl_header)
  5360. unregister_sysctl_table(sd_sysctl_header);
  5361. sd_sysctl_header = NULL;
  5362. if (sd_ctl_dir[0].child)
  5363. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5364. }
  5365. #else
  5366. static void register_sched_domain_sysctl(void)
  5367. {
  5368. }
  5369. static void unregister_sched_domain_sysctl(void)
  5370. {
  5371. }
  5372. #endif
  5373. static void set_rq_online(struct rq *rq)
  5374. {
  5375. if (!rq->online) {
  5376. const struct sched_class *class;
  5377. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5378. rq->online = 1;
  5379. for_each_class(class) {
  5380. if (class->rq_online)
  5381. class->rq_online(rq);
  5382. }
  5383. }
  5384. }
  5385. static void set_rq_offline(struct rq *rq)
  5386. {
  5387. if (rq->online) {
  5388. const struct sched_class *class;
  5389. for_each_class(class) {
  5390. if (class->rq_offline)
  5391. class->rq_offline(rq);
  5392. }
  5393. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5394. rq->online = 0;
  5395. }
  5396. }
  5397. /*
  5398. * migration_call - callback that gets triggered when a CPU is added.
  5399. * Here we can start up the necessary migration thread for the new CPU.
  5400. */
  5401. static int __cpuinit
  5402. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5403. {
  5404. int cpu = (long)hcpu;
  5405. unsigned long flags;
  5406. struct rq *rq = cpu_rq(cpu);
  5407. switch (action & ~CPU_TASKS_FROZEN) {
  5408. case CPU_UP_PREPARE:
  5409. rq->calc_load_update = calc_load_update;
  5410. break;
  5411. case CPU_ONLINE:
  5412. /* Update our root-domain */
  5413. raw_spin_lock_irqsave(&rq->lock, flags);
  5414. if (rq->rd) {
  5415. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5416. set_rq_online(rq);
  5417. }
  5418. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5419. break;
  5420. #ifdef CONFIG_HOTPLUG_CPU
  5421. case CPU_DYING:
  5422. sched_ttwu_pending();
  5423. /* Update our root-domain */
  5424. raw_spin_lock_irqsave(&rq->lock, flags);
  5425. if (rq->rd) {
  5426. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5427. set_rq_offline(rq);
  5428. }
  5429. migrate_tasks(cpu);
  5430. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5431. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5432. migrate_nr_uninterruptible(rq);
  5433. calc_global_load_remove(rq);
  5434. break;
  5435. #endif
  5436. }
  5437. update_max_interval();
  5438. return NOTIFY_OK;
  5439. }
  5440. /*
  5441. * Register at high priority so that task migration (migrate_all_tasks)
  5442. * happens before everything else. This has to be lower priority than
  5443. * the notifier in the perf_event subsystem, though.
  5444. */
  5445. static struct notifier_block __cpuinitdata migration_notifier = {
  5446. .notifier_call = migration_call,
  5447. .priority = CPU_PRI_MIGRATION,
  5448. };
  5449. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5450. unsigned long action, void *hcpu)
  5451. {
  5452. switch (action & ~CPU_TASKS_FROZEN) {
  5453. case CPU_ONLINE:
  5454. case CPU_DOWN_FAILED:
  5455. set_cpu_active((long)hcpu, true);
  5456. return NOTIFY_OK;
  5457. default:
  5458. return NOTIFY_DONE;
  5459. }
  5460. }
  5461. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5462. unsigned long action, void *hcpu)
  5463. {
  5464. switch (action & ~CPU_TASKS_FROZEN) {
  5465. case CPU_DOWN_PREPARE:
  5466. set_cpu_active((long)hcpu, false);
  5467. return NOTIFY_OK;
  5468. default:
  5469. return NOTIFY_DONE;
  5470. }
  5471. }
  5472. static int __init migration_init(void)
  5473. {
  5474. void *cpu = (void *)(long)smp_processor_id();
  5475. int err;
  5476. /* Initialize migration for the boot CPU */
  5477. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5478. BUG_ON(err == NOTIFY_BAD);
  5479. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5480. register_cpu_notifier(&migration_notifier);
  5481. /* Register cpu active notifiers */
  5482. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5483. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5484. return 0;
  5485. }
  5486. early_initcall(migration_init);
  5487. #endif
  5488. #ifdef CONFIG_SMP
  5489. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  5490. #ifdef CONFIG_SCHED_DEBUG
  5491. static __read_mostly int sched_domain_debug_enabled;
  5492. static int __init sched_domain_debug_setup(char *str)
  5493. {
  5494. sched_domain_debug_enabled = 1;
  5495. return 0;
  5496. }
  5497. early_param("sched_debug", sched_domain_debug_setup);
  5498. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5499. struct cpumask *groupmask)
  5500. {
  5501. struct sched_group *group = sd->groups;
  5502. char str[256];
  5503. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5504. cpumask_clear(groupmask);
  5505. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5506. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5507. printk("does not load-balance\n");
  5508. if (sd->parent)
  5509. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5510. " has parent");
  5511. return -1;
  5512. }
  5513. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5514. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5515. printk(KERN_ERR "ERROR: domain->span does not contain "
  5516. "CPU%d\n", cpu);
  5517. }
  5518. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5519. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5520. " CPU%d\n", cpu);
  5521. }
  5522. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5523. do {
  5524. if (!group) {
  5525. printk("\n");
  5526. printk(KERN_ERR "ERROR: group is NULL\n");
  5527. break;
  5528. }
  5529. if (!group->cpu_power) {
  5530. printk(KERN_CONT "\n");
  5531. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5532. "set\n");
  5533. break;
  5534. }
  5535. if (!cpumask_weight(sched_group_cpus(group))) {
  5536. printk(KERN_CONT "\n");
  5537. printk(KERN_ERR "ERROR: empty group\n");
  5538. break;
  5539. }
  5540. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5541. printk(KERN_CONT "\n");
  5542. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5543. break;
  5544. }
  5545. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5546. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5547. printk(KERN_CONT " %s", str);
  5548. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5549. printk(KERN_CONT " (cpu_power = %d)",
  5550. group->cpu_power);
  5551. }
  5552. group = group->next;
  5553. } while (group != sd->groups);
  5554. printk(KERN_CONT "\n");
  5555. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5556. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5557. if (sd->parent &&
  5558. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5559. printk(KERN_ERR "ERROR: parent span is not a superset "
  5560. "of domain->span\n");
  5561. return 0;
  5562. }
  5563. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5564. {
  5565. int level = 0;
  5566. if (!sched_domain_debug_enabled)
  5567. return;
  5568. if (!sd) {
  5569. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5570. return;
  5571. }
  5572. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5573. for (;;) {
  5574. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  5575. break;
  5576. level++;
  5577. sd = sd->parent;
  5578. if (!sd)
  5579. break;
  5580. }
  5581. }
  5582. #else /* !CONFIG_SCHED_DEBUG */
  5583. # define sched_domain_debug(sd, cpu) do { } while (0)
  5584. #endif /* CONFIG_SCHED_DEBUG */
  5585. static int sd_degenerate(struct sched_domain *sd)
  5586. {
  5587. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5588. return 1;
  5589. /* Following flags need at least 2 groups */
  5590. if (sd->flags & (SD_LOAD_BALANCE |
  5591. SD_BALANCE_NEWIDLE |
  5592. SD_BALANCE_FORK |
  5593. SD_BALANCE_EXEC |
  5594. SD_SHARE_CPUPOWER |
  5595. SD_SHARE_PKG_RESOURCES)) {
  5596. if (sd->groups != sd->groups->next)
  5597. return 0;
  5598. }
  5599. /* Following flags don't use groups */
  5600. if (sd->flags & (SD_WAKE_AFFINE))
  5601. return 0;
  5602. return 1;
  5603. }
  5604. static int
  5605. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5606. {
  5607. unsigned long cflags = sd->flags, pflags = parent->flags;
  5608. if (sd_degenerate(parent))
  5609. return 1;
  5610. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5611. return 0;
  5612. /* Flags needing groups don't count if only 1 group in parent */
  5613. if (parent->groups == parent->groups->next) {
  5614. pflags &= ~(SD_LOAD_BALANCE |
  5615. SD_BALANCE_NEWIDLE |
  5616. SD_BALANCE_FORK |
  5617. SD_BALANCE_EXEC |
  5618. SD_SHARE_CPUPOWER |
  5619. SD_SHARE_PKG_RESOURCES);
  5620. if (nr_node_ids == 1)
  5621. pflags &= ~SD_SERIALIZE;
  5622. }
  5623. if (~cflags & pflags)
  5624. return 0;
  5625. return 1;
  5626. }
  5627. static void free_rootdomain(struct rcu_head *rcu)
  5628. {
  5629. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5630. cpupri_cleanup(&rd->cpupri);
  5631. free_cpumask_var(rd->rto_mask);
  5632. free_cpumask_var(rd->online);
  5633. free_cpumask_var(rd->span);
  5634. kfree(rd);
  5635. }
  5636. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5637. {
  5638. struct root_domain *old_rd = NULL;
  5639. unsigned long flags;
  5640. raw_spin_lock_irqsave(&rq->lock, flags);
  5641. if (rq->rd) {
  5642. old_rd = rq->rd;
  5643. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5644. set_rq_offline(rq);
  5645. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5646. /*
  5647. * If we dont want to free the old_rt yet then
  5648. * set old_rd to NULL to skip the freeing later
  5649. * in this function:
  5650. */
  5651. if (!atomic_dec_and_test(&old_rd->refcount))
  5652. old_rd = NULL;
  5653. }
  5654. atomic_inc(&rd->refcount);
  5655. rq->rd = rd;
  5656. cpumask_set_cpu(rq->cpu, rd->span);
  5657. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5658. set_rq_online(rq);
  5659. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5660. if (old_rd)
  5661. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5662. }
  5663. static int init_rootdomain(struct root_domain *rd)
  5664. {
  5665. memset(rd, 0, sizeof(*rd));
  5666. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5667. goto out;
  5668. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5669. goto free_span;
  5670. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5671. goto free_online;
  5672. if (cpupri_init(&rd->cpupri) != 0)
  5673. goto free_rto_mask;
  5674. return 0;
  5675. free_rto_mask:
  5676. free_cpumask_var(rd->rto_mask);
  5677. free_online:
  5678. free_cpumask_var(rd->online);
  5679. free_span:
  5680. free_cpumask_var(rd->span);
  5681. out:
  5682. return -ENOMEM;
  5683. }
  5684. static void init_defrootdomain(void)
  5685. {
  5686. init_rootdomain(&def_root_domain);
  5687. atomic_set(&def_root_domain.refcount, 1);
  5688. }
  5689. static struct root_domain *alloc_rootdomain(void)
  5690. {
  5691. struct root_domain *rd;
  5692. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5693. if (!rd)
  5694. return NULL;
  5695. if (init_rootdomain(rd) != 0) {
  5696. kfree(rd);
  5697. return NULL;
  5698. }
  5699. return rd;
  5700. }
  5701. static void free_sched_domain(struct rcu_head *rcu)
  5702. {
  5703. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5704. if (atomic_dec_and_test(&sd->groups->ref))
  5705. kfree(sd->groups);
  5706. kfree(sd);
  5707. }
  5708. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5709. {
  5710. call_rcu(&sd->rcu, free_sched_domain);
  5711. }
  5712. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5713. {
  5714. for (; sd; sd = sd->parent)
  5715. destroy_sched_domain(sd, cpu);
  5716. }
  5717. /*
  5718. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5719. * hold the hotplug lock.
  5720. */
  5721. static void
  5722. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5723. {
  5724. struct rq *rq = cpu_rq(cpu);
  5725. struct sched_domain *tmp;
  5726. /* Remove the sched domains which do not contribute to scheduling. */
  5727. for (tmp = sd; tmp; ) {
  5728. struct sched_domain *parent = tmp->parent;
  5729. if (!parent)
  5730. break;
  5731. if (sd_parent_degenerate(tmp, parent)) {
  5732. tmp->parent = parent->parent;
  5733. if (parent->parent)
  5734. parent->parent->child = tmp;
  5735. destroy_sched_domain(parent, cpu);
  5736. } else
  5737. tmp = tmp->parent;
  5738. }
  5739. if (sd && sd_degenerate(sd)) {
  5740. tmp = sd;
  5741. sd = sd->parent;
  5742. destroy_sched_domain(tmp, cpu);
  5743. if (sd)
  5744. sd->child = NULL;
  5745. }
  5746. sched_domain_debug(sd, cpu);
  5747. rq_attach_root(rq, rd);
  5748. tmp = rq->sd;
  5749. rcu_assign_pointer(rq->sd, sd);
  5750. destroy_sched_domains(tmp, cpu);
  5751. }
  5752. /* cpus with isolated domains */
  5753. static cpumask_var_t cpu_isolated_map;
  5754. /* Setup the mask of cpus configured for isolated domains */
  5755. static int __init isolated_cpu_setup(char *str)
  5756. {
  5757. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5758. cpulist_parse(str, cpu_isolated_map);
  5759. return 1;
  5760. }
  5761. __setup("isolcpus=", isolated_cpu_setup);
  5762. #define SD_NODES_PER_DOMAIN 16
  5763. #ifdef CONFIG_NUMA
  5764. /**
  5765. * find_next_best_node - find the next node to include in a sched_domain
  5766. * @node: node whose sched_domain we're building
  5767. * @used_nodes: nodes already in the sched_domain
  5768. *
  5769. * Find the next node to include in a given scheduling domain. Simply
  5770. * finds the closest node not already in the @used_nodes map.
  5771. *
  5772. * Should use nodemask_t.
  5773. */
  5774. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5775. {
  5776. int i, n, val, min_val, best_node = -1;
  5777. min_val = INT_MAX;
  5778. for (i = 0; i < nr_node_ids; i++) {
  5779. /* Start at @node */
  5780. n = (node + i) % nr_node_ids;
  5781. if (!nr_cpus_node(n))
  5782. continue;
  5783. /* Skip already used nodes */
  5784. if (node_isset(n, *used_nodes))
  5785. continue;
  5786. /* Simple min distance search */
  5787. val = node_distance(node, n);
  5788. if (val < min_val) {
  5789. min_val = val;
  5790. best_node = n;
  5791. }
  5792. }
  5793. if (best_node != -1)
  5794. node_set(best_node, *used_nodes);
  5795. return best_node;
  5796. }
  5797. /**
  5798. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5799. * @node: node whose cpumask we're constructing
  5800. * @span: resulting cpumask
  5801. *
  5802. * Given a node, construct a good cpumask for its sched_domain to span. It
  5803. * should be one that prevents unnecessary balancing, but also spreads tasks
  5804. * out optimally.
  5805. */
  5806. static void sched_domain_node_span(int node, struct cpumask *span)
  5807. {
  5808. nodemask_t used_nodes;
  5809. int i;
  5810. cpumask_clear(span);
  5811. nodes_clear(used_nodes);
  5812. cpumask_or(span, span, cpumask_of_node(node));
  5813. node_set(node, used_nodes);
  5814. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5815. int next_node = find_next_best_node(node, &used_nodes);
  5816. if (next_node < 0)
  5817. break;
  5818. cpumask_or(span, span, cpumask_of_node(next_node));
  5819. }
  5820. }
  5821. static const struct cpumask *cpu_node_mask(int cpu)
  5822. {
  5823. lockdep_assert_held(&sched_domains_mutex);
  5824. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5825. return sched_domains_tmpmask;
  5826. }
  5827. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5828. {
  5829. return cpu_possible_mask;
  5830. }
  5831. #endif /* CONFIG_NUMA */
  5832. static const struct cpumask *cpu_cpu_mask(int cpu)
  5833. {
  5834. return cpumask_of_node(cpu_to_node(cpu));
  5835. }
  5836. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5837. struct sd_data {
  5838. struct sched_domain **__percpu sd;
  5839. struct sched_group **__percpu sg;
  5840. };
  5841. struct s_data {
  5842. struct sched_domain ** __percpu sd;
  5843. struct root_domain *rd;
  5844. };
  5845. enum s_alloc {
  5846. sa_rootdomain,
  5847. sa_sd,
  5848. sa_sd_storage,
  5849. sa_none,
  5850. };
  5851. struct sched_domain_topology_level;
  5852. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5853. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5854. struct sched_domain_topology_level {
  5855. sched_domain_init_f init;
  5856. sched_domain_mask_f mask;
  5857. struct sd_data data;
  5858. };
  5859. /*
  5860. * Assumes the sched_domain tree is fully constructed
  5861. */
  5862. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5863. {
  5864. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5865. struct sched_domain *child = sd->child;
  5866. if (child)
  5867. cpu = cpumask_first(sched_domain_span(child));
  5868. if (sg)
  5869. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5870. return cpu;
  5871. }
  5872. /*
  5873. * build_sched_groups takes the cpumask we wish to span, and a pointer
  5874. * to a function which identifies what group(along with sched group) a CPU
  5875. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5876. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5877. *
  5878. * build_sched_groups will build a circular linked list of the groups
  5879. * covered by the given span, and will set each group's ->cpumask correctly,
  5880. * and ->cpu_power to 0.
  5881. */
  5882. static void
  5883. build_sched_groups(struct sched_domain *sd)
  5884. {
  5885. struct sched_group *first = NULL, *last = NULL;
  5886. struct sd_data *sdd = sd->private;
  5887. const struct cpumask *span = sched_domain_span(sd);
  5888. struct cpumask *covered;
  5889. int i;
  5890. lockdep_assert_held(&sched_domains_mutex);
  5891. covered = sched_domains_tmpmask;
  5892. cpumask_clear(covered);
  5893. for_each_cpu(i, span) {
  5894. struct sched_group *sg;
  5895. int group = get_group(i, sdd, &sg);
  5896. int j;
  5897. if (cpumask_test_cpu(i, covered))
  5898. continue;
  5899. cpumask_clear(sched_group_cpus(sg));
  5900. sg->cpu_power = 0;
  5901. for_each_cpu(j, span) {
  5902. if (get_group(j, sdd, NULL) != group)
  5903. continue;
  5904. cpumask_set_cpu(j, covered);
  5905. cpumask_set_cpu(j, sched_group_cpus(sg));
  5906. }
  5907. if (!first)
  5908. first = sg;
  5909. if (last)
  5910. last->next = sg;
  5911. last = sg;
  5912. }
  5913. last->next = first;
  5914. }
  5915. /*
  5916. * Initialize sched groups cpu_power.
  5917. *
  5918. * cpu_power indicates the capacity of sched group, which is used while
  5919. * distributing the load between different sched groups in a sched domain.
  5920. * Typically cpu_power for all the groups in a sched domain will be same unless
  5921. * there are asymmetries in the topology. If there are asymmetries, group
  5922. * having more cpu_power will pickup more load compared to the group having
  5923. * less cpu_power.
  5924. */
  5925. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5926. {
  5927. WARN_ON(!sd || !sd->groups);
  5928. if (cpu != group_first_cpu(sd->groups))
  5929. return;
  5930. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  5931. update_group_power(sd, cpu);
  5932. }
  5933. /*
  5934. * Initializers for schedule domains
  5935. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5936. */
  5937. #ifdef CONFIG_SCHED_DEBUG
  5938. # define SD_INIT_NAME(sd, type) sd->name = #type
  5939. #else
  5940. # define SD_INIT_NAME(sd, type) do { } while (0)
  5941. #endif
  5942. #define SD_INIT_FUNC(type) \
  5943. static noinline struct sched_domain * \
  5944. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5945. { \
  5946. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5947. *sd = SD_##type##_INIT; \
  5948. SD_INIT_NAME(sd, type); \
  5949. sd->private = &tl->data; \
  5950. return sd; \
  5951. }
  5952. SD_INIT_FUNC(CPU)
  5953. #ifdef CONFIG_NUMA
  5954. SD_INIT_FUNC(ALLNODES)
  5955. SD_INIT_FUNC(NODE)
  5956. #endif
  5957. #ifdef CONFIG_SCHED_SMT
  5958. SD_INIT_FUNC(SIBLING)
  5959. #endif
  5960. #ifdef CONFIG_SCHED_MC
  5961. SD_INIT_FUNC(MC)
  5962. #endif
  5963. #ifdef CONFIG_SCHED_BOOK
  5964. SD_INIT_FUNC(BOOK)
  5965. #endif
  5966. static int default_relax_domain_level = -1;
  5967. int sched_domain_level_max;
  5968. static int __init setup_relax_domain_level(char *str)
  5969. {
  5970. unsigned long val;
  5971. val = simple_strtoul(str, NULL, 0);
  5972. if (val < sched_domain_level_max)
  5973. default_relax_domain_level = val;
  5974. return 1;
  5975. }
  5976. __setup("relax_domain_level=", setup_relax_domain_level);
  5977. static void set_domain_attribute(struct sched_domain *sd,
  5978. struct sched_domain_attr *attr)
  5979. {
  5980. int request;
  5981. if (!attr || attr->relax_domain_level < 0) {
  5982. if (default_relax_domain_level < 0)
  5983. return;
  5984. else
  5985. request = default_relax_domain_level;
  5986. } else
  5987. request = attr->relax_domain_level;
  5988. if (request < sd->level) {
  5989. /* turn off idle balance on this domain */
  5990. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5991. } else {
  5992. /* turn on idle balance on this domain */
  5993. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5994. }
  5995. }
  5996. static void __sdt_free(const struct cpumask *cpu_map);
  5997. static int __sdt_alloc(const struct cpumask *cpu_map);
  5998. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5999. const struct cpumask *cpu_map)
  6000. {
  6001. switch (what) {
  6002. case sa_rootdomain:
  6003. if (!atomic_read(&d->rd->refcount))
  6004. free_rootdomain(&d->rd->rcu); /* fall through */
  6005. case sa_sd:
  6006. free_percpu(d->sd); /* fall through */
  6007. case sa_sd_storage:
  6008. __sdt_free(cpu_map); /* fall through */
  6009. case sa_none:
  6010. break;
  6011. }
  6012. }
  6013. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6014. const struct cpumask *cpu_map)
  6015. {
  6016. memset(d, 0, sizeof(*d));
  6017. if (__sdt_alloc(cpu_map))
  6018. return sa_sd_storage;
  6019. d->sd = alloc_percpu(struct sched_domain *);
  6020. if (!d->sd)
  6021. return sa_sd_storage;
  6022. d->rd = alloc_rootdomain();
  6023. if (!d->rd)
  6024. return sa_sd;
  6025. return sa_rootdomain;
  6026. }
  6027. /*
  6028. * NULL the sd_data elements we've used to build the sched_domain and
  6029. * sched_group structure so that the subsequent __free_domain_allocs()
  6030. * will not free the data we're using.
  6031. */
  6032. static void claim_allocations(int cpu, struct sched_domain *sd)
  6033. {
  6034. struct sd_data *sdd = sd->private;
  6035. struct sched_group *sg = sd->groups;
  6036. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  6037. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  6038. if (cpu == cpumask_first(sched_group_cpus(sg))) {
  6039. WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
  6040. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  6041. }
  6042. }
  6043. #ifdef CONFIG_SCHED_SMT
  6044. static const struct cpumask *cpu_smt_mask(int cpu)
  6045. {
  6046. return topology_thread_cpumask(cpu);
  6047. }
  6048. #endif
  6049. /*
  6050. * Topology list, bottom-up.
  6051. */
  6052. static struct sched_domain_topology_level default_topology[] = {
  6053. #ifdef CONFIG_SCHED_SMT
  6054. { sd_init_SIBLING, cpu_smt_mask, },
  6055. #endif
  6056. #ifdef CONFIG_SCHED_MC
  6057. { sd_init_MC, cpu_coregroup_mask, },
  6058. #endif
  6059. #ifdef CONFIG_SCHED_BOOK
  6060. { sd_init_BOOK, cpu_book_mask, },
  6061. #endif
  6062. { sd_init_CPU, cpu_cpu_mask, },
  6063. #ifdef CONFIG_NUMA
  6064. { sd_init_NODE, cpu_node_mask, },
  6065. { sd_init_ALLNODES, cpu_allnodes_mask, },
  6066. #endif
  6067. { NULL, },
  6068. };
  6069. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  6070. static int __sdt_alloc(const struct cpumask *cpu_map)
  6071. {
  6072. struct sched_domain_topology_level *tl;
  6073. int j;
  6074. for (tl = sched_domain_topology; tl->init; tl++) {
  6075. struct sd_data *sdd = &tl->data;
  6076. sdd->sd = alloc_percpu(struct sched_domain *);
  6077. if (!sdd->sd)
  6078. return -ENOMEM;
  6079. sdd->sg = alloc_percpu(struct sched_group *);
  6080. if (!sdd->sg)
  6081. return -ENOMEM;
  6082. for_each_cpu(j, cpu_map) {
  6083. struct sched_domain *sd;
  6084. struct sched_group *sg;
  6085. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  6086. GFP_KERNEL, cpu_to_node(j));
  6087. if (!sd)
  6088. return -ENOMEM;
  6089. *per_cpu_ptr(sdd->sd, j) = sd;
  6090. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6091. GFP_KERNEL, cpu_to_node(j));
  6092. if (!sg)
  6093. return -ENOMEM;
  6094. *per_cpu_ptr(sdd->sg, j) = sg;
  6095. }
  6096. }
  6097. return 0;
  6098. }
  6099. static void __sdt_free(const struct cpumask *cpu_map)
  6100. {
  6101. struct sched_domain_topology_level *tl;
  6102. int j;
  6103. for (tl = sched_domain_topology; tl->init; tl++) {
  6104. struct sd_data *sdd = &tl->data;
  6105. for_each_cpu(j, cpu_map) {
  6106. kfree(*per_cpu_ptr(sdd->sd, j));
  6107. kfree(*per_cpu_ptr(sdd->sg, j));
  6108. }
  6109. free_percpu(sdd->sd);
  6110. free_percpu(sdd->sg);
  6111. }
  6112. }
  6113. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  6114. struct s_data *d, const struct cpumask *cpu_map,
  6115. struct sched_domain_attr *attr, struct sched_domain *child,
  6116. int cpu)
  6117. {
  6118. struct sched_domain *sd = tl->init(tl, cpu);
  6119. if (!sd)
  6120. return child;
  6121. set_domain_attribute(sd, attr);
  6122. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  6123. if (child) {
  6124. sd->level = child->level + 1;
  6125. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  6126. child->parent = sd;
  6127. }
  6128. sd->child = child;
  6129. return sd;
  6130. }
  6131. /*
  6132. * Build sched domains for a given set of cpus and attach the sched domains
  6133. * to the individual cpus
  6134. */
  6135. static int build_sched_domains(const struct cpumask *cpu_map,
  6136. struct sched_domain_attr *attr)
  6137. {
  6138. enum s_alloc alloc_state = sa_none;
  6139. struct sched_domain *sd;
  6140. struct s_data d;
  6141. int i, ret = -ENOMEM;
  6142. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6143. if (alloc_state != sa_rootdomain)
  6144. goto error;
  6145. /* Set up domains for cpus specified by the cpu_map. */
  6146. for_each_cpu(i, cpu_map) {
  6147. struct sched_domain_topology_level *tl;
  6148. sd = NULL;
  6149. for (tl = sched_domain_topology; tl->init; tl++)
  6150. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  6151. while (sd->child)
  6152. sd = sd->child;
  6153. *per_cpu_ptr(d.sd, i) = sd;
  6154. }
  6155. /* Build the groups for the domains */
  6156. for_each_cpu(i, cpu_map) {
  6157. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6158. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  6159. get_group(i, sd->private, &sd->groups);
  6160. atomic_inc(&sd->groups->ref);
  6161. if (i != cpumask_first(sched_domain_span(sd)))
  6162. continue;
  6163. build_sched_groups(sd);
  6164. }
  6165. }
  6166. /* Calculate CPU power for physical packages and nodes */
  6167. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  6168. if (!cpumask_test_cpu(i, cpu_map))
  6169. continue;
  6170. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6171. claim_allocations(i, sd);
  6172. init_sched_groups_power(i, sd);
  6173. }
  6174. }
  6175. /* Attach the domains */
  6176. rcu_read_lock();
  6177. for_each_cpu(i, cpu_map) {
  6178. sd = *per_cpu_ptr(d.sd, i);
  6179. cpu_attach_domain(sd, d.rd, i);
  6180. }
  6181. rcu_read_unlock();
  6182. ret = 0;
  6183. error:
  6184. __free_domain_allocs(&d, alloc_state, cpu_map);
  6185. return ret;
  6186. }
  6187. static cpumask_var_t *doms_cur; /* current sched domains */
  6188. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6189. static struct sched_domain_attr *dattr_cur;
  6190. /* attribues of custom domains in 'doms_cur' */
  6191. /*
  6192. * Special case: If a kmalloc of a doms_cur partition (array of
  6193. * cpumask) fails, then fallback to a single sched domain,
  6194. * as determined by the single cpumask fallback_doms.
  6195. */
  6196. static cpumask_var_t fallback_doms;
  6197. /*
  6198. * arch_update_cpu_topology lets virtualized architectures update the
  6199. * cpu core maps. It is supposed to return 1 if the topology changed
  6200. * or 0 if it stayed the same.
  6201. */
  6202. int __attribute__((weak)) arch_update_cpu_topology(void)
  6203. {
  6204. return 0;
  6205. }
  6206. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6207. {
  6208. int i;
  6209. cpumask_var_t *doms;
  6210. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6211. if (!doms)
  6212. return NULL;
  6213. for (i = 0; i < ndoms; i++) {
  6214. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6215. free_sched_domains(doms, i);
  6216. return NULL;
  6217. }
  6218. }
  6219. return doms;
  6220. }
  6221. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6222. {
  6223. unsigned int i;
  6224. for (i = 0; i < ndoms; i++)
  6225. free_cpumask_var(doms[i]);
  6226. kfree(doms);
  6227. }
  6228. /*
  6229. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6230. * For now this just excludes isolated cpus, but could be used to
  6231. * exclude other special cases in the future.
  6232. */
  6233. static int init_sched_domains(const struct cpumask *cpu_map)
  6234. {
  6235. int err;
  6236. arch_update_cpu_topology();
  6237. ndoms_cur = 1;
  6238. doms_cur = alloc_sched_domains(ndoms_cur);
  6239. if (!doms_cur)
  6240. doms_cur = &fallback_doms;
  6241. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6242. dattr_cur = NULL;
  6243. err = build_sched_domains(doms_cur[0], NULL);
  6244. register_sched_domain_sysctl();
  6245. return err;
  6246. }
  6247. /*
  6248. * Detach sched domains from a group of cpus specified in cpu_map
  6249. * These cpus will now be attached to the NULL domain
  6250. */
  6251. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6252. {
  6253. int i;
  6254. rcu_read_lock();
  6255. for_each_cpu(i, cpu_map)
  6256. cpu_attach_domain(NULL, &def_root_domain, i);
  6257. rcu_read_unlock();
  6258. }
  6259. /* handle null as "default" */
  6260. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6261. struct sched_domain_attr *new, int idx_new)
  6262. {
  6263. struct sched_domain_attr tmp;
  6264. /* fast path */
  6265. if (!new && !cur)
  6266. return 1;
  6267. tmp = SD_ATTR_INIT;
  6268. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6269. new ? (new + idx_new) : &tmp,
  6270. sizeof(struct sched_domain_attr));
  6271. }
  6272. /*
  6273. * Partition sched domains as specified by the 'ndoms_new'
  6274. * cpumasks in the array doms_new[] of cpumasks. This compares
  6275. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6276. * It destroys each deleted domain and builds each new domain.
  6277. *
  6278. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6279. * The masks don't intersect (don't overlap.) We should setup one
  6280. * sched domain for each mask. CPUs not in any of the cpumasks will
  6281. * not be load balanced. If the same cpumask appears both in the
  6282. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6283. * it as it is.
  6284. *
  6285. * The passed in 'doms_new' should be allocated using
  6286. * alloc_sched_domains. This routine takes ownership of it and will
  6287. * free_sched_domains it when done with it. If the caller failed the
  6288. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6289. * and partition_sched_domains() will fallback to the single partition
  6290. * 'fallback_doms', it also forces the domains to be rebuilt.
  6291. *
  6292. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6293. * ndoms_new == 0 is a special case for destroying existing domains,
  6294. * and it will not create the default domain.
  6295. *
  6296. * Call with hotplug lock held
  6297. */
  6298. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6299. struct sched_domain_attr *dattr_new)
  6300. {
  6301. int i, j, n;
  6302. int new_topology;
  6303. mutex_lock(&sched_domains_mutex);
  6304. /* always unregister in case we don't destroy any domains */
  6305. unregister_sched_domain_sysctl();
  6306. /* Let architecture update cpu core mappings. */
  6307. new_topology = arch_update_cpu_topology();
  6308. n = doms_new ? ndoms_new : 0;
  6309. /* Destroy deleted domains */
  6310. for (i = 0; i < ndoms_cur; i++) {
  6311. for (j = 0; j < n && !new_topology; j++) {
  6312. if (cpumask_equal(doms_cur[i], doms_new[j])
  6313. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6314. goto match1;
  6315. }
  6316. /* no match - a current sched domain not in new doms_new[] */
  6317. detach_destroy_domains(doms_cur[i]);
  6318. match1:
  6319. ;
  6320. }
  6321. if (doms_new == NULL) {
  6322. ndoms_cur = 0;
  6323. doms_new = &fallback_doms;
  6324. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6325. WARN_ON_ONCE(dattr_new);
  6326. }
  6327. /* Build new domains */
  6328. for (i = 0; i < ndoms_new; i++) {
  6329. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6330. if (cpumask_equal(doms_new[i], doms_cur[j])
  6331. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6332. goto match2;
  6333. }
  6334. /* no match - add a new doms_new */
  6335. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6336. match2:
  6337. ;
  6338. }
  6339. /* Remember the new sched domains */
  6340. if (doms_cur != &fallback_doms)
  6341. free_sched_domains(doms_cur, ndoms_cur);
  6342. kfree(dattr_cur); /* kfree(NULL) is safe */
  6343. doms_cur = doms_new;
  6344. dattr_cur = dattr_new;
  6345. ndoms_cur = ndoms_new;
  6346. register_sched_domain_sysctl();
  6347. mutex_unlock(&sched_domains_mutex);
  6348. }
  6349. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6350. static void reinit_sched_domains(void)
  6351. {
  6352. get_online_cpus();
  6353. /* Destroy domains first to force the rebuild */
  6354. partition_sched_domains(0, NULL, NULL);
  6355. rebuild_sched_domains();
  6356. put_online_cpus();
  6357. }
  6358. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6359. {
  6360. unsigned int level = 0;
  6361. if (sscanf(buf, "%u", &level) != 1)
  6362. return -EINVAL;
  6363. /*
  6364. * level is always be positive so don't check for
  6365. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6366. * What happens on 0 or 1 byte write,
  6367. * need to check for count as well?
  6368. */
  6369. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6370. return -EINVAL;
  6371. if (smt)
  6372. sched_smt_power_savings = level;
  6373. else
  6374. sched_mc_power_savings = level;
  6375. reinit_sched_domains();
  6376. return count;
  6377. }
  6378. #ifdef CONFIG_SCHED_MC
  6379. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6380. struct sysdev_class_attribute *attr,
  6381. char *page)
  6382. {
  6383. return sprintf(page, "%u\n", sched_mc_power_savings);
  6384. }
  6385. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6386. struct sysdev_class_attribute *attr,
  6387. const char *buf, size_t count)
  6388. {
  6389. return sched_power_savings_store(buf, count, 0);
  6390. }
  6391. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6392. sched_mc_power_savings_show,
  6393. sched_mc_power_savings_store);
  6394. #endif
  6395. #ifdef CONFIG_SCHED_SMT
  6396. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6397. struct sysdev_class_attribute *attr,
  6398. char *page)
  6399. {
  6400. return sprintf(page, "%u\n", sched_smt_power_savings);
  6401. }
  6402. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6403. struct sysdev_class_attribute *attr,
  6404. const char *buf, size_t count)
  6405. {
  6406. return sched_power_savings_store(buf, count, 1);
  6407. }
  6408. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6409. sched_smt_power_savings_show,
  6410. sched_smt_power_savings_store);
  6411. #endif
  6412. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6413. {
  6414. int err = 0;
  6415. #ifdef CONFIG_SCHED_SMT
  6416. if (smt_capable())
  6417. err = sysfs_create_file(&cls->kset.kobj,
  6418. &attr_sched_smt_power_savings.attr);
  6419. #endif
  6420. #ifdef CONFIG_SCHED_MC
  6421. if (!err && mc_capable())
  6422. err = sysfs_create_file(&cls->kset.kobj,
  6423. &attr_sched_mc_power_savings.attr);
  6424. #endif
  6425. return err;
  6426. }
  6427. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6428. /*
  6429. * Update cpusets according to cpu_active mask. If cpusets are
  6430. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6431. * around partition_sched_domains().
  6432. */
  6433. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6434. void *hcpu)
  6435. {
  6436. switch (action & ~CPU_TASKS_FROZEN) {
  6437. case CPU_ONLINE:
  6438. case CPU_DOWN_FAILED:
  6439. cpuset_update_active_cpus();
  6440. return NOTIFY_OK;
  6441. default:
  6442. return NOTIFY_DONE;
  6443. }
  6444. }
  6445. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6446. void *hcpu)
  6447. {
  6448. switch (action & ~CPU_TASKS_FROZEN) {
  6449. case CPU_DOWN_PREPARE:
  6450. cpuset_update_active_cpus();
  6451. return NOTIFY_OK;
  6452. default:
  6453. return NOTIFY_DONE;
  6454. }
  6455. }
  6456. static int update_runtime(struct notifier_block *nfb,
  6457. unsigned long action, void *hcpu)
  6458. {
  6459. int cpu = (int)(long)hcpu;
  6460. switch (action) {
  6461. case CPU_DOWN_PREPARE:
  6462. case CPU_DOWN_PREPARE_FROZEN:
  6463. disable_runtime(cpu_rq(cpu));
  6464. return NOTIFY_OK;
  6465. case CPU_DOWN_FAILED:
  6466. case CPU_DOWN_FAILED_FROZEN:
  6467. case CPU_ONLINE:
  6468. case CPU_ONLINE_FROZEN:
  6469. enable_runtime(cpu_rq(cpu));
  6470. return NOTIFY_OK;
  6471. default:
  6472. return NOTIFY_DONE;
  6473. }
  6474. }
  6475. void __init sched_init_smp(void)
  6476. {
  6477. cpumask_var_t non_isolated_cpus;
  6478. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6479. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6480. get_online_cpus();
  6481. mutex_lock(&sched_domains_mutex);
  6482. init_sched_domains(cpu_active_mask);
  6483. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6484. if (cpumask_empty(non_isolated_cpus))
  6485. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6486. mutex_unlock(&sched_domains_mutex);
  6487. put_online_cpus();
  6488. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6489. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6490. /* RT runtime code needs to handle some hotplug events */
  6491. hotcpu_notifier(update_runtime, 0);
  6492. init_hrtick();
  6493. /* Move init over to a non-isolated CPU */
  6494. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6495. BUG();
  6496. sched_init_granularity();
  6497. free_cpumask_var(non_isolated_cpus);
  6498. init_sched_rt_class();
  6499. }
  6500. #else
  6501. void __init sched_init_smp(void)
  6502. {
  6503. sched_init_granularity();
  6504. }
  6505. #endif /* CONFIG_SMP */
  6506. const_debug unsigned int sysctl_timer_migration = 1;
  6507. int in_sched_functions(unsigned long addr)
  6508. {
  6509. return in_lock_functions(addr) ||
  6510. (addr >= (unsigned long)__sched_text_start
  6511. && addr < (unsigned long)__sched_text_end);
  6512. }
  6513. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6514. {
  6515. cfs_rq->tasks_timeline = RB_ROOT;
  6516. INIT_LIST_HEAD(&cfs_rq->tasks);
  6517. #ifdef CONFIG_FAIR_GROUP_SCHED
  6518. cfs_rq->rq = rq;
  6519. /* allow initial update_cfs_load() to truncate */
  6520. #ifdef CONFIG_SMP
  6521. cfs_rq->load_stamp = 1;
  6522. #endif
  6523. #endif
  6524. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6525. }
  6526. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6527. {
  6528. struct rt_prio_array *array;
  6529. int i;
  6530. array = &rt_rq->active;
  6531. for (i = 0; i < MAX_RT_PRIO; i++) {
  6532. INIT_LIST_HEAD(array->queue + i);
  6533. __clear_bit(i, array->bitmap);
  6534. }
  6535. /* delimiter for bitsearch: */
  6536. __set_bit(MAX_RT_PRIO, array->bitmap);
  6537. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6538. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6539. #ifdef CONFIG_SMP
  6540. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6541. #endif
  6542. #endif
  6543. #ifdef CONFIG_SMP
  6544. rt_rq->rt_nr_migratory = 0;
  6545. rt_rq->overloaded = 0;
  6546. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6547. #endif
  6548. rt_rq->rt_time = 0;
  6549. rt_rq->rt_throttled = 0;
  6550. rt_rq->rt_runtime = 0;
  6551. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6552. #ifdef CONFIG_RT_GROUP_SCHED
  6553. rt_rq->rt_nr_boosted = 0;
  6554. rt_rq->rq = rq;
  6555. #endif
  6556. }
  6557. #ifdef CONFIG_FAIR_GROUP_SCHED
  6558. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6559. struct sched_entity *se, int cpu,
  6560. struct sched_entity *parent)
  6561. {
  6562. struct rq *rq = cpu_rq(cpu);
  6563. tg->cfs_rq[cpu] = cfs_rq;
  6564. init_cfs_rq(cfs_rq, rq);
  6565. cfs_rq->tg = tg;
  6566. tg->se[cpu] = se;
  6567. /* se could be NULL for root_task_group */
  6568. if (!se)
  6569. return;
  6570. if (!parent)
  6571. se->cfs_rq = &rq->cfs;
  6572. else
  6573. se->cfs_rq = parent->my_q;
  6574. se->my_q = cfs_rq;
  6575. update_load_set(&se->load, 0);
  6576. se->parent = parent;
  6577. }
  6578. #endif
  6579. #ifdef CONFIG_RT_GROUP_SCHED
  6580. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6581. struct sched_rt_entity *rt_se, int cpu,
  6582. struct sched_rt_entity *parent)
  6583. {
  6584. struct rq *rq = cpu_rq(cpu);
  6585. tg->rt_rq[cpu] = rt_rq;
  6586. init_rt_rq(rt_rq, rq);
  6587. rt_rq->tg = tg;
  6588. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6589. tg->rt_se[cpu] = rt_se;
  6590. if (!rt_se)
  6591. return;
  6592. if (!parent)
  6593. rt_se->rt_rq = &rq->rt;
  6594. else
  6595. rt_se->rt_rq = parent->my_q;
  6596. rt_se->my_q = rt_rq;
  6597. rt_se->parent = parent;
  6598. INIT_LIST_HEAD(&rt_se->run_list);
  6599. }
  6600. #endif
  6601. void __init sched_init(void)
  6602. {
  6603. int i, j;
  6604. unsigned long alloc_size = 0, ptr;
  6605. #ifdef CONFIG_FAIR_GROUP_SCHED
  6606. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6607. #endif
  6608. #ifdef CONFIG_RT_GROUP_SCHED
  6609. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6610. #endif
  6611. #ifdef CONFIG_CPUMASK_OFFSTACK
  6612. alloc_size += num_possible_cpus() * cpumask_size();
  6613. #endif
  6614. if (alloc_size) {
  6615. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6616. #ifdef CONFIG_FAIR_GROUP_SCHED
  6617. root_task_group.se = (struct sched_entity **)ptr;
  6618. ptr += nr_cpu_ids * sizeof(void **);
  6619. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6620. ptr += nr_cpu_ids * sizeof(void **);
  6621. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6622. #ifdef CONFIG_RT_GROUP_SCHED
  6623. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6624. ptr += nr_cpu_ids * sizeof(void **);
  6625. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6626. ptr += nr_cpu_ids * sizeof(void **);
  6627. #endif /* CONFIG_RT_GROUP_SCHED */
  6628. #ifdef CONFIG_CPUMASK_OFFSTACK
  6629. for_each_possible_cpu(i) {
  6630. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6631. ptr += cpumask_size();
  6632. }
  6633. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6634. }
  6635. #ifdef CONFIG_SMP
  6636. init_defrootdomain();
  6637. #endif
  6638. init_rt_bandwidth(&def_rt_bandwidth,
  6639. global_rt_period(), global_rt_runtime());
  6640. #ifdef CONFIG_RT_GROUP_SCHED
  6641. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6642. global_rt_period(), global_rt_runtime());
  6643. #endif /* CONFIG_RT_GROUP_SCHED */
  6644. #ifdef CONFIG_CGROUP_SCHED
  6645. list_add(&root_task_group.list, &task_groups);
  6646. INIT_LIST_HEAD(&root_task_group.children);
  6647. autogroup_init(&init_task);
  6648. #endif /* CONFIG_CGROUP_SCHED */
  6649. for_each_possible_cpu(i) {
  6650. struct rq *rq;
  6651. rq = cpu_rq(i);
  6652. raw_spin_lock_init(&rq->lock);
  6653. rq->nr_running = 0;
  6654. rq->calc_load_active = 0;
  6655. rq->calc_load_update = jiffies + LOAD_FREQ;
  6656. init_cfs_rq(&rq->cfs, rq);
  6657. init_rt_rq(&rq->rt, rq);
  6658. #ifdef CONFIG_FAIR_GROUP_SCHED
  6659. root_task_group.shares = root_task_group_load;
  6660. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6661. /*
  6662. * How much cpu bandwidth does root_task_group get?
  6663. *
  6664. * In case of task-groups formed thr' the cgroup filesystem, it
  6665. * gets 100% of the cpu resources in the system. This overall
  6666. * system cpu resource is divided among the tasks of
  6667. * root_task_group and its child task-groups in a fair manner,
  6668. * based on each entity's (task or task-group's) weight
  6669. * (se->load.weight).
  6670. *
  6671. * In other words, if root_task_group has 10 tasks of weight
  6672. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6673. * then A0's share of the cpu resource is:
  6674. *
  6675. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6676. *
  6677. * We achieve this by letting root_task_group's tasks sit
  6678. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6679. */
  6680. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6681. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6682. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6683. #ifdef CONFIG_RT_GROUP_SCHED
  6684. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6685. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6686. #endif
  6687. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6688. rq->cpu_load[j] = 0;
  6689. rq->last_load_update_tick = jiffies;
  6690. #ifdef CONFIG_SMP
  6691. rq->sd = NULL;
  6692. rq->rd = NULL;
  6693. rq->cpu_power = SCHED_LOAD_SCALE;
  6694. rq->post_schedule = 0;
  6695. rq->active_balance = 0;
  6696. rq->next_balance = jiffies;
  6697. rq->push_cpu = 0;
  6698. rq->cpu = i;
  6699. rq->online = 0;
  6700. rq->idle_stamp = 0;
  6701. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6702. rq_attach_root(rq, &def_root_domain);
  6703. #ifdef CONFIG_NO_HZ
  6704. rq->nohz_balance_kick = 0;
  6705. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6706. #endif
  6707. #endif
  6708. init_rq_hrtick(rq);
  6709. atomic_set(&rq->nr_iowait, 0);
  6710. }
  6711. set_load_weight(&init_task);
  6712. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6713. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6714. #endif
  6715. #ifdef CONFIG_SMP
  6716. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6717. #endif
  6718. #ifdef CONFIG_RT_MUTEXES
  6719. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6720. #endif
  6721. /*
  6722. * The boot idle thread does lazy MMU switching as well:
  6723. */
  6724. atomic_inc(&init_mm.mm_count);
  6725. enter_lazy_tlb(&init_mm, current);
  6726. /*
  6727. * Make us the idle thread. Technically, schedule() should not be
  6728. * called from this thread, however somewhere below it might be,
  6729. * but because we are the idle thread, we just pick up running again
  6730. * when this runqueue becomes "idle".
  6731. */
  6732. init_idle(current, smp_processor_id());
  6733. calc_load_update = jiffies + LOAD_FREQ;
  6734. /*
  6735. * During early bootup we pretend to be a normal task:
  6736. */
  6737. current->sched_class = &fair_sched_class;
  6738. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6739. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6740. #ifdef CONFIG_SMP
  6741. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6742. #ifdef CONFIG_NO_HZ
  6743. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6744. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6745. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6746. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6747. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6748. #endif
  6749. /* May be allocated at isolcpus cmdline parse time */
  6750. if (cpu_isolated_map == NULL)
  6751. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6752. #endif /* SMP */
  6753. scheduler_running = 1;
  6754. }
  6755. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6756. static inline int preempt_count_equals(int preempt_offset)
  6757. {
  6758. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6759. return (nested == preempt_offset);
  6760. }
  6761. void __might_sleep(const char *file, int line, int preempt_offset)
  6762. {
  6763. #ifdef in_atomic
  6764. static unsigned long prev_jiffy; /* ratelimiting */
  6765. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6766. system_state != SYSTEM_RUNNING || oops_in_progress)
  6767. return;
  6768. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6769. return;
  6770. prev_jiffy = jiffies;
  6771. printk(KERN_ERR
  6772. "BUG: sleeping function called from invalid context at %s:%d\n",
  6773. file, line);
  6774. printk(KERN_ERR
  6775. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6776. in_atomic(), irqs_disabled(),
  6777. current->pid, current->comm);
  6778. debug_show_held_locks(current);
  6779. if (irqs_disabled())
  6780. print_irqtrace_events(current);
  6781. dump_stack();
  6782. #endif
  6783. }
  6784. EXPORT_SYMBOL(__might_sleep);
  6785. #endif
  6786. #ifdef CONFIG_MAGIC_SYSRQ
  6787. static void normalize_task(struct rq *rq, struct task_struct *p)
  6788. {
  6789. const struct sched_class *prev_class = p->sched_class;
  6790. int old_prio = p->prio;
  6791. int on_rq;
  6792. on_rq = p->on_rq;
  6793. if (on_rq)
  6794. deactivate_task(rq, p, 0);
  6795. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6796. if (on_rq) {
  6797. activate_task(rq, p, 0);
  6798. resched_task(rq->curr);
  6799. }
  6800. check_class_changed(rq, p, prev_class, old_prio);
  6801. }
  6802. void normalize_rt_tasks(void)
  6803. {
  6804. struct task_struct *g, *p;
  6805. unsigned long flags;
  6806. struct rq *rq;
  6807. read_lock_irqsave(&tasklist_lock, flags);
  6808. do_each_thread(g, p) {
  6809. /*
  6810. * Only normalize user tasks:
  6811. */
  6812. if (!p->mm)
  6813. continue;
  6814. p->se.exec_start = 0;
  6815. #ifdef CONFIG_SCHEDSTATS
  6816. p->se.statistics.wait_start = 0;
  6817. p->se.statistics.sleep_start = 0;
  6818. p->se.statistics.block_start = 0;
  6819. #endif
  6820. if (!rt_task(p)) {
  6821. /*
  6822. * Renice negative nice level userspace
  6823. * tasks back to 0:
  6824. */
  6825. if (TASK_NICE(p) < 0 && p->mm)
  6826. set_user_nice(p, 0);
  6827. continue;
  6828. }
  6829. raw_spin_lock(&p->pi_lock);
  6830. rq = __task_rq_lock(p);
  6831. normalize_task(rq, p);
  6832. __task_rq_unlock(rq);
  6833. raw_spin_unlock(&p->pi_lock);
  6834. } while_each_thread(g, p);
  6835. read_unlock_irqrestore(&tasklist_lock, flags);
  6836. }
  6837. #endif /* CONFIG_MAGIC_SYSRQ */
  6838. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6839. /*
  6840. * These functions are only useful for the IA64 MCA handling, or kdb.
  6841. *
  6842. * They can only be called when the whole system has been
  6843. * stopped - every CPU needs to be quiescent, and no scheduling
  6844. * activity can take place. Using them for anything else would
  6845. * be a serious bug, and as a result, they aren't even visible
  6846. * under any other configuration.
  6847. */
  6848. /**
  6849. * curr_task - return the current task for a given cpu.
  6850. * @cpu: the processor in question.
  6851. *
  6852. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6853. */
  6854. struct task_struct *curr_task(int cpu)
  6855. {
  6856. return cpu_curr(cpu);
  6857. }
  6858. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6859. #ifdef CONFIG_IA64
  6860. /**
  6861. * set_curr_task - set the current task for a given cpu.
  6862. * @cpu: the processor in question.
  6863. * @p: the task pointer to set.
  6864. *
  6865. * Description: This function must only be used when non-maskable interrupts
  6866. * are serviced on a separate stack. It allows the architecture to switch the
  6867. * notion of the current task on a cpu in a non-blocking manner. This function
  6868. * must be called with all CPU's synchronized, and interrupts disabled, the
  6869. * and caller must save the original value of the current task (see
  6870. * curr_task() above) and restore that value before reenabling interrupts and
  6871. * re-starting the system.
  6872. *
  6873. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6874. */
  6875. void set_curr_task(int cpu, struct task_struct *p)
  6876. {
  6877. cpu_curr(cpu) = p;
  6878. }
  6879. #endif
  6880. #ifdef CONFIG_FAIR_GROUP_SCHED
  6881. static void free_fair_sched_group(struct task_group *tg)
  6882. {
  6883. int i;
  6884. for_each_possible_cpu(i) {
  6885. if (tg->cfs_rq)
  6886. kfree(tg->cfs_rq[i]);
  6887. if (tg->se)
  6888. kfree(tg->se[i]);
  6889. }
  6890. kfree(tg->cfs_rq);
  6891. kfree(tg->se);
  6892. }
  6893. static
  6894. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6895. {
  6896. struct cfs_rq *cfs_rq;
  6897. struct sched_entity *se;
  6898. int i;
  6899. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6900. if (!tg->cfs_rq)
  6901. goto err;
  6902. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6903. if (!tg->se)
  6904. goto err;
  6905. tg->shares = NICE_0_LOAD;
  6906. for_each_possible_cpu(i) {
  6907. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6908. GFP_KERNEL, cpu_to_node(i));
  6909. if (!cfs_rq)
  6910. goto err;
  6911. se = kzalloc_node(sizeof(struct sched_entity),
  6912. GFP_KERNEL, cpu_to_node(i));
  6913. if (!se)
  6914. goto err_free_rq;
  6915. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  6916. }
  6917. return 1;
  6918. err_free_rq:
  6919. kfree(cfs_rq);
  6920. err:
  6921. return 0;
  6922. }
  6923. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6924. {
  6925. struct rq *rq = cpu_rq(cpu);
  6926. unsigned long flags;
  6927. /*
  6928. * Only empty task groups can be destroyed; so we can speculatively
  6929. * check on_list without danger of it being re-added.
  6930. */
  6931. if (!tg->cfs_rq[cpu]->on_list)
  6932. return;
  6933. raw_spin_lock_irqsave(&rq->lock, flags);
  6934. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  6935. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6936. }
  6937. #else /* !CONFG_FAIR_GROUP_SCHED */
  6938. static inline void free_fair_sched_group(struct task_group *tg)
  6939. {
  6940. }
  6941. static inline
  6942. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6943. {
  6944. return 1;
  6945. }
  6946. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6947. {
  6948. }
  6949. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6950. #ifdef CONFIG_RT_GROUP_SCHED
  6951. static void free_rt_sched_group(struct task_group *tg)
  6952. {
  6953. int i;
  6954. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6955. for_each_possible_cpu(i) {
  6956. if (tg->rt_rq)
  6957. kfree(tg->rt_rq[i]);
  6958. if (tg->rt_se)
  6959. kfree(tg->rt_se[i]);
  6960. }
  6961. kfree(tg->rt_rq);
  6962. kfree(tg->rt_se);
  6963. }
  6964. static
  6965. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6966. {
  6967. struct rt_rq *rt_rq;
  6968. struct sched_rt_entity *rt_se;
  6969. int i;
  6970. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6971. if (!tg->rt_rq)
  6972. goto err;
  6973. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6974. if (!tg->rt_se)
  6975. goto err;
  6976. init_rt_bandwidth(&tg->rt_bandwidth,
  6977. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6978. for_each_possible_cpu(i) {
  6979. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6980. GFP_KERNEL, cpu_to_node(i));
  6981. if (!rt_rq)
  6982. goto err;
  6983. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6984. GFP_KERNEL, cpu_to_node(i));
  6985. if (!rt_se)
  6986. goto err_free_rq;
  6987. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  6988. }
  6989. return 1;
  6990. err_free_rq:
  6991. kfree(rt_rq);
  6992. err:
  6993. return 0;
  6994. }
  6995. #else /* !CONFIG_RT_GROUP_SCHED */
  6996. static inline void free_rt_sched_group(struct task_group *tg)
  6997. {
  6998. }
  6999. static inline
  7000. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7001. {
  7002. return 1;
  7003. }
  7004. #endif /* CONFIG_RT_GROUP_SCHED */
  7005. #ifdef CONFIG_CGROUP_SCHED
  7006. static void free_sched_group(struct task_group *tg)
  7007. {
  7008. free_fair_sched_group(tg);
  7009. free_rt_sched_group(tg);
  7010. autogroup_free(tg);
  7011. kfree(tg);
  7012. }
  7013. /* allocate runqueue etc for a new task group */
  7014. struct task_group *sched_create_group(struct task_group *parent)
  7015. {
  7016. struct task_group *tg;
  7017. unsigned long flags;
  7018. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7019. if (!tg)
  7020. return ERR_PTR(-ENOMEM);
  7021. if (!alloc_fair_sched_group(tg, parent))
  7022. goto err;
  7023. if (!alloc_rt_sched_group(tg, parent))
  7024. goto err;
  7025. spin_lock_irqsave(&task_group_lock, flags);
  7026. list_add_rcu(&tg->list, &task_groups);
  7027. WARN_ON(!parent); /* root should already exist */
  7028. tg->parent = parent;
  7029. INIT_LIST_HEAD(&tg->children);
  7030. list_add_rcu(&tg->siblings, &parent->children);
  7031. spin_unlock_irqrestore(&task_group_lock, flags);
  7032. return tg;
  7033. err:
  7034. free_sched_group(tg);
  7035. return ERR_PTR(-ENOMEM);
  7036. }
  7037. /* rcu callback to free various structures associated with a task group */
  7038. static void free_sched_group_rcu(struct rcu_head *rhp)
  7039. {
  7040. /* now it should be safe to free those cfs_rqs */
  7041. free_sched_group(container_of(rhp, struct task_group, rcu));
  7042. }
  7043. /* Destroy runqueue etc associated with a task group */
  7044. void sched_destroy_group(struct task_group *tg)
  7045. {
  7046. unsigned long flags;
  7047. int i;
  7048. /* end participation in shares distribution */
  7049. for_each_possible_cpu(i)
  7050. unregister_fair_sched_group(tg, i);
  7051. spin_lock_irqsave(&task_group_lock, flags);
  7052. list_del_rcu(&tg->list);
  7053. list_del_rcu(&tg->siblings);
  7054. spin_unlock_irqrestore(&task_group_lock, flags);
  7055. /* wait for possible concurrent references to cfs_rqs complete */
  7056. call_rcu(&tg->rcu, free_sched_group_rcu);
  7057. }
  7058. /* change task's runqueue when it moves between groups.
  7059. * The caller of this function should have put the task in its new group
  7060. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7061. * reflect its new group.
  7062. */
  7063. void sched_move_task(struct task_struct *tsk)
  7064. {
  7065. int on_rq, running;
  7066. unsigned long flags;
  7067. struct rq *rq;
  7068. rq = task_rq_lock(tsk, &flags);
  7069. running = task_current(rq, tsk);
  7070. on_rq = tsk->on_rq;
  7071. if (on_rq)
  7072. dequeue_task(rq, tsk, 0);
  7073. if (unlikely(running))
  7074. tsk->sched_class->put_prev_task(rq, tsk);
  7075. #ifdef CONFIG_FAIR_GROUP_SCHED
  7076. if (tsk->sched_class->task_move_group)
  7077. tsk->sched_class->task_move_group(tsk, on_rq);
  7078. else
  7079. #endif
  7080. set_task_rq(tsk, task_cpu(tsk));
  7081. if (unlikely(running))
  7082. tsk->sched_class->set_curr_task(rq);
  7083. if (on_rq)
  7084. enqueue_task(rq, tsk, 0);
  7085. task_rq_unlock(rq, tsk, &flags);
  7086. }
  7087. #endif /* CONFIG_CGROUP_SCHED */
  7088. #ifdef CONFIG_FAIR_GROUP_SCHED
  7089. static DEFINE_MUTEX(shares_mutex);
  7090. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7091. {
  7092. int i;
  7093. unsigned long flags;
  7094. /*
  7095. * We can't change the weight of the root cgroup.
  7096. */
  7097. if (!tg->se[0])
  7098. return -EINVAL;
  7099. if (shares < MIN_SHARES)
  7100. shares = MIN_SHARES;
  7101. else if (shares > MAX_SHARES)
  7102. shares = MAX_SHARES;
  7103. mutex_lock(&shares_mutex);
  7104. if (tg->shares == shares)
  7105. goto done;
  7106. tg->shares = shares;
  7107. for_each_possible_cpu(i) {
  7108. struct rq *rq = cpu_rq(i);
  7109. struct sched_entity *se;
  7110. se = tg->se[i];
  7111. /* Propagate contribution to hierarchy */
  7112. raw_spin_lock_irqsave(&rq->lock, flags);
  7113. for_each_sched_entity(se)
  7114. update_cfs_shares(group_cfs_rq(se));
  7115. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7116. }
  7117. done:
  7118. mutex_unlock(&shares_mutex);
  7119. return 0;
  7120. }
  7121. unsigned long sched_group_shares(struct task_group *tg)
  7122. {
  7123. return tg->shares;
  7124. }
  7125. #endif
  7126. #ifdef CONFIG_RT_GROUP_SCHED
  7127. /*
  7128. * Ensure that the real time constraints are schedulable.
  7129. */
  7130. static DEFINE_MUTEX(rt_constraints_mutex);
  7131. static unsigned long to_ratio(u64 period, u64 runtime)
  7132. {
  7133. if (runtime == RUNTIME_INF)
  7134. return 1ULL << 20;
  7135. return div64_u64(runtime << 20, period);
  7136. }
  7137. /* Must be called with tasklist_lock held */
  7138. static inline int tg_has_rt_tasks(struct task_group *tg)
  7139. {
  7140. struct task_struct *g, *p;
  7141. do_each_thread(g, p) {
  7142. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7143. return 1;
  7144. } while_each_thread(g, p);
  7145. return 0;
  7146. }
  7147. struct rt_schedulable_data {
  7148. struct task_group *tg;
  7149. u64 rt_period;
  7150. u64 rt_runtime;
  7151. };
  7152. static int tg_schedulable(struct task_group *tg, void *data)
  7153. {
  7154. struct rt_schedulable_data *d = data;
  7155. struct task_group *child;
  7156. unsigned long total, sum = 0;
  7157. u64 period, runtime;
  7158. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7159. runtime = tg->rt_bandwidth.rt_runtime;
  7160. if (tg == d->tg) {
  7161. period = d->rt_period;
  7162. runtime = d->rt_runtime;
  7163. }
  7164. /*
  7165. * Cannot have more runtime than the period.
  7166. */
  7167. if (runtime > period && runtime != RUNTIME_INF)
  7168. return -EINVAL;
  7169. /*
  7170. * Ensure we don't starve existing RT tasks.
  7171. */
  7172. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7173. return -EBUSY;
  7174. total = to_ratio(period, runtime);
  7175. /*
  7176. * Nobody can have more than the global setting allows.
  7177. */
  7178. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7179. return -EINVAL;
  7180. /*
  7181. * The sum of our children's runtime should not exceed our own.
  7182. */
  7183. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7184. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7185. runtime = child->rt_bandwidth.rt_runtime;
  7186. if (child == d->tg) {
  7187. period = d->rt_period;
  7188. runtime = d->rt_runtime;
  7189. }
  7190. sum += to_ratio(period, runtime);
  7191. }
  7192. if (sum > total)
  7193. return -EINVAL;
  7194. return 0;
  7195. }
  7196. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7197. {
  7198. struct rt_schedulable_data data = {
  7199. .tg = tg,
  7200. .rt_period = period,
  7201. .rt_runtime = runtime,
  7202. };
  7203. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7204. }
  7205. static int tg_set_bandwidth(struct task_group *tg,
  7206. u64 rt_period, u64 rt_runtime)
  7207. {
  7208. int i, err = 0;
  7209. mutex_lock(&rt_constraints_mutex);
  7210. read_lock(&tasklist_lock);
  7211. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7212. if (err)
  7213. goto unlock;
  7214. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7215. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7216. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7217. for_each_possible_cpu(i) {
  7218. struct rt_rq *rt_rq = tg->rt_rq[i];
  7219. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7220. rt_rq->rt_runtime = rt_runtime;
  7221. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7222. }
  7223. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7224. unlock:
  7225. read_unlock(&tasklist_lock);
  7226. mutex_unlock(&rt_constraints_mutex);
  7227. return err;
  7228. }
  7229. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7230. {
  7231. u64 rt_runtime, rt_period;
  7232. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7233. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7234. if (rt_runtime_us < 0)
  7235. rt_runtime = RUNTIME_INF;
  7236. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7237. }
  7238. long sched_group_rt_runtime(struct task_group *tg)
  7239. {
  7240. u64 rt_runtime_us;
  7241. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7242. return -1;
  7243. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7244. do_div(rt_runtime_us, NSEC_PER_USEC);
  7245. return rt_runtime_us;
  7246. }
  7247. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7248. {
  7249. u64 rt_runtime, rt_period;
  7250. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7251. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7252. if (rt_period == 0)
  7253. return -EINVAL;
  7254. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7255. }
  7256. long sched_group_rt_period(struct task_group *tg)
  7257. {
  7258. u64 rt_period_us;
  7259. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7260. do_div(rt_period_us, NSEC_PER_USEC);
  7261. return rt_period_us;
  7262. }
  7263. static int sched_rt_global_constraints(void)
  7264. {
  7265. u64 runtime, period;
  7266. int ret = 0;
  7267. if (sysctl_sched_rt_period <= 0)
  7268. return -EINVAL;
  7269. runtime = global_rt_runtime();
  7270. period = global_rt_period();
  7271. /*
  7272. * Sanity check on the sysctl variables.
  7273. */
  7274. if (runtime > period && runtime != RUNTIME_INF)
  7275. return -EINVAL;
  7276. mutex_lock(&rt_constraints_mutex);
  7277. read_lock(&tasklist_lock);
  7278. ret = __rt_schedulable(NULL, 0, 0);
  7279. read_unlock(&tasklist_lock);
  7280. mutex_unlock(&rt_constraints_mutex);
  7281. return ret;
  7282. }
  7283. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7284. {
  7285. /* Don't accept realtime tasks when there is no way for them to run */
  7286. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7287. return 0;
  7288. return 1;
  7289. }
  7290. #else /* !CONFIG_RT_GROUP_SCHED */
  7291. static int sched_rt_global_constraints(void)
  7292. {
  7293. unsigned long flags;
  7294. int i;
  7295. if (sysctl_sched_rt_period <= 0)
  7296. return -EINVAL;
  7297. /*
  7298. * There's always some RT tasks in the root group
  7299. * -- migration, kstopmachine etc..
  7300. */
  7301. if (sysctl_sched_rt_runtime == 0)
  7302. return -EBUSY;
  7303. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7304. for_each_possible_cpu(i) {
  7305. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7306. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7307. rt_rq->rt_runtime = global_rt_runtime();
  7308. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7309. }
  7310. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7311. return 0;
  7312. }
  7313. #endif /* CONFIG_RT_GROUP_SCHED */
  7314. int sched_rt_handler(struct ctl_table *table, int write,
  7315. void __user *buffer, size_t *lenp,
  7316. loff_t *ppos)
  7317. {
  7318. int ret;
  7319. int old_period, old_runtime;
  7320. static DEFINE_MUTEX(mutex);
  7321. mutex_lock(&mutex);
  7322. old_period = sysctl_sched_rt_period;
  7323. old_runtime = sysctl_sched_rt_runtime;
  7324. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7325. if (!ret && write) {
  7326. ret = sched_rt_global_constraints();
  7327. if (ret) {
  7328. sysctl_sched_rt_period = old_period;
  7329. sysctl_sched_rt_runtime = old_runtime;
  7330. } else {
  7331. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7332. def_rt_bandwidth.rt_period =
  7333. ns_to_ktime(global_rt_period());
  7334. }
  7335. }
  7336. mutex_unlock(&mutex);
  7337. return ret;
  7338. }
  7339. #ifdef CONFIG_CGROUP_SCHED
  7340. /* return corresponding task_group object of a cgroup */
  7341. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7342. {
  7343. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7344. struct task_group, css);
  7345. }
  7346. static struct cgroup_subsys_state *
  7347. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7348. {
  7349. struct task_group *tg, *parent;
  7350. if (!cgrp->parent) {
  7351. /* This is early initialization for the top cgroup */
  7352. return &root_task_group.css;
  7353. }
  7354. parent = cgroup_tg(cgrp->parent);
  7355. tg = sched_create_group(parent);
  7356. if (IS_ERR(tg))
  7357. return ERR_PTR(-ENOMEM);
  7358. return &tg->css;
  7359. }
  7360. static void
  7361. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7362. {
  7363. struct task_group *tg = cgroup_tg(cgrp);
  7364. sched_destroy_group(tg);
  7365. }
  7366. static int
  7367. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7368. {
  7369. #ifdef CONFIG_RT_GROUP_SCHED
  7370. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7371. return -EINVAL;
  7372. #else
  7373. /* We don't support RT-tasks being in separate groups */
  7374. if (tsk->sched_class != &fair_sched_class)
  7375. return -EINVAL;
  7376. #endif
  7377. return 0;
  7378. }
  7379. static int
  7380. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7381. struct task_struct *tsk, bool threadgroup)
  7382. {
  7383. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7384. if (retval)
  7385. return retval;
  7386. if (threadgroup) {
  7387. struct task_struct *c;
  7388. rcu_read_lock();
  7389. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7390. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7391. if (retval) {
  7392. rcu_read_unlock();
  7393. return retval;
  7394. }
  7395. }
  7396. rcu_read_unlock();
  7397. }
  7398. return 0;
  7399. }
  7400. static void
  7401. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7402. struct cgroup *old_cont, struct task_struct *tsk,
  7403. bool threadgroup)
  7404. {
  7405. sched_move_task(tsk);
  7406. if (threadgroup) {
  7407. struct task_struct *c;
  7408. rcu_read_lock();
  7409. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7410. sched_move_task(c);
  7411. }
  7412. rcu_read_unlock();
  7413. }
  7414. }
  7415. static void
  7416. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7417. struct cgroup *old_cgrp, struct task_struct *task)
  7418. {
  7419. /*
  7420. * cgroup_exit() is called in the copy_process() failure path.
  7421. * Ignore this case since the task hasn't ran yet, this avoids
  7422. * trying to poke a half freed task state from generic code.
  7423. */
  7424. if (!(task->flags & PF_EXITING))
  7425. return;
  7426. sched_move_task(task);
  7427. }
  7428. #ifdef CONFIG_FAIR_GROUP_SCHED
  7429. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7430. u64 shareval)
  7431. {
  7432. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7433. }
  7434. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7435. {
  7436. struct task_group *tg = cgroup_tg(cgrp);
  7437. return (u64) tg->shares;
  7438. }
  7439. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7440. #ifdef CONFIG_RT_GROUP_SCHED
  7441. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7442. s64 val)
  7443. {
  7444. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7445. }
  7446. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7447. {
  7448. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7449. }
  7450. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7451. u64 rt_period_us)
  7452. {
  7453. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7454. }
  7455. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7456. {
  7457. return sched_group_rt_period(cgroup_tg(cgrp));
  7458. }
  7459. #endif /* CONFIG_RT_GROUP_SCHED */
  7460. static struct cftype cpu_files[] = {
  7461. #ifdef CONFIG_FAIR_GROUP_SCHED
  7462. {
  7463. .name = "shares",
  7464. .read_u64 = cpu_shares_read_u64,
  7465. .write_u64 = cpu_shares_write_u64,
  7466. },
  7467. #endif
  7468. #ifdef CONFIG_RT_GROUP_SCHED
  7469. {
  7470. .name = "rt_runtime_us",
  7471. .read_s64 = cpu_rt_runtime_read,
  7472. .write_s64 = cpu_rt_runtime_write,
  7473. },
  7474. {
  7475. .name = "rt_period_us",
  7476. .read_u64 = cpu_rt_period_read_uint,
  7477. .write_u64 = cpu_rt_period_write_uint,
  7478. },
  7479. #endif
  7480. };
  7481. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7482. {
  7483. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7484. }
  7485. struct cgroup_subsys cpu_cgroup_subsys = {
  7486. .name = "cpu",
  7487. .create = cpu_cgroup_create,
  7488. .destroy = cpu_cgroup_destroy,
  7489. .can_attach = cpu_cgroup_can_attach,
  7490. .attach = cpu_cgroup_attach,
  7491. .exit = cpu_cgroup_exit,
  7492. .populate = cpu_cgroup_populate,
  7493. .subsys_id = cpu_cgroup_subsys_id,
  7494. .early_init = 1,
  7495. };
  7496. #endif /* CONFIG_CGROUP_SCHED */
  7497. #ifdef CONFIG_CGROUP_CPUACCT
  7498. /*
  7499. * CPU accounting code for task groups.
  7500. *
  7501. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7502. * (balbir@in.ibm.com).
  7503. */
  7504. /* track cpu usage of a group of tasks and its child groups */
  7505. struct cpuacct {
  7506. struct cgroup_subsys_state css;
  7507. /* cpuusage holds pointer to a u64-type object on every cpu */
  7508. u64 __percpu *cpuusage;
  7509. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7510. struct cpuacct *parent;
  7511. };
  7512. struct cgroup_subsys cpuacct_subsys;
  7513. /* return cpu accounting group corresponding to this container */
  7514. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7515. {
  7516. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7517. struct cpuacct, css);
  7518. }
  7519. /* return cpu accounting group to which this task belongs */
  7520. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7521. {
  7522. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7523. struct cpuacct, css);
  7524. }
  7525. /* create a new cpu accounting group */
  7526. static struct cgroup_subsys_state *cpuacct_create(
  7527. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7528. {
  7529. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7530. int i;
  7531. if (!ca)
  7532. goto out;
  7533. ca->cpuusage = alloc_percpu(u64);
  7534. if (!ca->cpuusage)
  7535. goto out_free_ca;
  7536. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7537. if (percpu_counter_init(&ca->cpustat[i], 0))
  7538. goto out_free_counters;
  7539. if (cgrp->parent)
  7540. ca->parent = cgroup_ca(cgrp->parent);
  7541. return &ca->css;
  7542. out_free_counters:
  7543. while (--i >= 0)
  7544. percpu_counter_destroy(&ca->cpustat[i]);
  7545. free_percpu(ca->cpuusage);
  7546. out_free_ca:
  7547. kfree(ca);
  7548. out:
  7549. return ERR_PTR(-ENOMEM);
  7550. }
  7551. /* destroy an existing cpu accounting group */
  7552. static void
  7553. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7554. {
  7555. struct cpuacct *ca = cgroup_ca(cgrp);
  7556. int i;
  7557. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7558. percpu_counter_destroy(&ca->cpustat[i]);
  7559. free_percpu(ca->cpuusage);
  7560. kfree(ca);
  7561. }
  7562. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7563. {
  7564. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7565. u64 data;
  7566. #ifndef CONFIG_64BIT
  7567. /*
  7568. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7569. */
  7570. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7571. data = *cpuusage;
  7572. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7573. #else
  7574. data = *cpuusage;
  7575. #endif
  7576. return data;
  7577. }
  7578. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7579. {
  7580. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7581. #ifndef CONFIG_64BIT
  7582. /*
  7583. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7584. */
  7585. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7586. *cpuusage = val;
  7587. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7588. #else
  7589. *cpuusage = val;
  7590. #endif
  7591. }
  7592. /* return total cpu usage (in nanoseconds) of a group */
  7593. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7594. {
  7595. struct cpuacct *ca = cgroup_ca(cgrp);
  7596. u64 totalcpuusage = 0;
  7597. int i;
  7598. for_each_present_cpu(i)
  7599. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7600. return totalcpuusage;
  7601. }
  7602. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7603. u64 reset)
  7604. {
  7605. struct cpuacct *ca = cgroup_ca(cgrp);
  7606. int err = 0;
  7607. int i;
  7608. if (reset) {
  7609. err = -EINVAL;
  7610. goto out;
  7611. }
  7612. for_each_present_cpu(i)
  7613. cpuacct_cpuusage_write(ca, i, 0);
  7614. out:
  7615. return err;
  7616. }
  7617. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7618. struct seq_file *m)
  7619. {
  7620. struct cpuacct *ca = cgroup_ca(cgroup);
  7621. u64 percpu;
  7622. int i;
  7623. for_each_present_cpu(i) {
  7624. percpu = cpuacct_cpuusage_read(ca, i);
  7625. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7626. }
  7627. seq_printf(m, "\n");
  7628. return 0;
  7629. }
  7630. static const char *cpuacct_stat_desc[] = {
  7631. [CPUACCT_STAT_USER] = "user",
  7632. [CPUACCT_STAT_SYSTEM] = "system",
  7633. };
  7634. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7635. struct cgroup_map_cb *cb)
  7636. {
  7637. struct cpuacct *ca = cgroup_ca(cgrp);
  7638. int i;
  7639. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7640. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7641. val = cputime64_to_clock_t(val);
  7642. cb->fill(cb, cpuacct_stat_desc[i], val);
  7643. }
  7644. return 0;
  7645. }
  7646. static struct cftype files[] = {
  7647. {
  7648. .name = "usage",
  7649. .read_u64 = cpuusage_read,
  7650. .write_u64 = cpuusage_write,
  7651. },
  7652. {
  7653. .name = "usage_percpu",
  7654. .read_seq_string = cpuacct_percpu_seq_read,
  7655. },
  7656. {
  7657. .name = "stat",
  7658. .read_map = cpuacct_stats_show,
  7659. },
  7660. };
  7661. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7662. {
  7663. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7664. }
  7665. /*
  7666. * charge this task's execution time to its accounting group.
  7667. *
  7668. * called with rq->lock held.
  7669. */
  7670. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7671. {
  7672. struct cpuacct *ca;
  7673. int cpu;
  7674. if (unlikely(!cpuacct_subsys.active))
  7675. return;
  7676. cpu = task_cpu(tsk);
  7677. rcu_read_lock();
  7678. ca = task_ca(tsk);
  7679. for (; ca; ca = ca->parent) {
  7680. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7681. *cpuusage += cputime;
  7682. }
  7683. rcu_read_unlock();
  7684. }
  7685. /*
  7686. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7687. * in cputime_t units. As a result, cpuacct_update_stats calls
  7688. * percpu_counter_add with values large enough to always overflow the
  7689. * per cpu batch limit causing bad SMP scalability.
  7690. *
  7691. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7692. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7693. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7694. */
  7695. #ifdef CONFIG_SMP
  7696. #define CPUACCT_BATCH \
  7697. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7698. #else
  7699. #define CPUACCT_BATCH 0
  7700. #endif
  7701. /*
  7702. * Charge the system/user time to the task's accounting group.
  7703. */
  7704. static void cpuacct_update_stats(struct task_struct *tsk,
  7705. enum cpuacct_stat_index idx, cputime_t val)
  7706. {
  7707. struct cpuacct *ca;
  7708. int batch = CPUACCT_BATCH;
  7709. if (unlikely(!cpuacct_subsys.active))
  7710. return;
  7711. rcu_read_lock();
  7712. ca = task_ca(tsk);
  7713. do {
  7714. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7715. ca = ca->parent;
  7716. } while (ca);
  7717. rcu_read_unlock();
  7718. }
  7719. struct cgroup_subsys cpuacct_subsys = {
  7720. .name = "cpuacct",
  7721. .create = cpuacct_create,
  7722. .destroy = cpuacct_destroy,
  7723. .populate = cpuacct_populate,
  7724. .subsys_id = cpuacct_subsys_id,
  7725. };
  7726. #endif /* CONFIG_CGROUP_CPUACCT */