kvm_main.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <asm/processor.h>
  42. #include <asm/io.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/pgtable.h>
  45. MODULE_AUTHOR("Qumranet");
  46. MODULE_LICENSE("GPL");
  47. DEFINE_SPINLOCK(kvm_lock);
  48. LIST_HEAD(vm_list);
  49. static cpumask_t cpus_hardware_enabled;
  50. struct kmem_cache *kvm_vcpu_cache;
  51. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  52. static __read_mostly struct preempt_ops kvm_preempt_ops;
  53. static struct dentry *debugfs_dir;
  54. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  55. unsigned long arg);
  56. static inline int valid_vcpu(int n)
  57. {
  58. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  59. }
  60. /*
  61. * Switches to specified vcpu, until a matching vcpu_put()
  62. */
  63. void vcpu_load(struct kvm_vcpu *vcpu)
  64. {
  65. int cpu;
  66. mutex_lock(&vcpu->mutex);
  67. cpu = get_cpu();
  68. preempt_notifier_register(&vcpu->preempt_notifier);
  69. kvm_arch_vcpu_load(vcpu, cpu);
  70. put_cpu();
  71. }
  72. void vcpu_put(struct kvm_vcpu *vcpu)
  73. {
  74. preempt_disable();
  75. kvm_arch_vcpu_put(vcpu);
  76. preempt_notifier_unregister(&vcpu->preempt_notifier);
  77. preempt_enable();
  78. mutex_unlock(&vcpu->mutex);
  79. }
  80. static void ack_flush(void *_completed)
  81. {
  82. }
  83. void kvm_flush_remote_tlbs(struct kvm *kvm)
  84. {
  85. int i, cpu;
  86. cpumask_t cpus;
  87. struct kvm_vcpu *vcpu;
  88. cpus_clear(cpus);
  89. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  90. vcpu = kvm->vcpus[i];
  91. if (!vcpu)
  92. continue;
  93. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  94. continue;
  95. cpu = vcpu->cpu;
  96. if (cpu != -1 && cpu != raw_smp_processor_id())
  97. cpu_set(cpu, cpus);
  98. }
  99. if (cpus_empty(cpus))
  100. return;
  101. ++kvm->stat.remote_tlb_flush;
  102. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  103. }
  104. void kvm_reload_remote_mmus(struct kvm *kvm)
  105. {
  106. int i, cpu;
  107. cpumask_t cpus;
  108. struct kvm_vcpu *vcpu;
  109. cpus_clear(cpus);
  110. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  111. vcpu = kvm->vcpus[i];
  112. if (!vcpu)
  113. continue;
  114. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  115. continue;
  116. cpu = vcpu->cpu;
  117. if (cpu != -1 && cpu != raw_smp_processor_id())
  118. cpu_set(cpu, cpus);
  119. }
  120. if (cpus_empty(cpus))
  121. return;
  122. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  123. }
  124. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  125. {
  126. struct page *page;
  127. int r;
  128. mutex_init(&vcpu->mutex);
  129. vcpu->cpu = -1;
  130. vcpu->kvm = kvm;
  131. vcpu->vcpu_id = id;
  132. init_waitqueue_head(&vcpu->wq);
  133. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  134. if (!page) {
  135. r = -ENOMEM;
  136. goto fail;
  137. }
  138. vcpu->run = page_address(page);
  139. r = kvm_arch_vcpu_init(vcpu);
  140. if (r < 0)
  141. goto fail_free_run;
  142. return 0;
  143. fail_free_run:
  144. free_page((unsigned long)vcpu->run);
  145. fail:
  146. return r;
  147. }
  148. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  149. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  150. {
  151. kvm_arch_vcpu_uninit(vcpu);
  152. free_page((unsigned long)vcpu->run);
  153. }
  154. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  155. static struct kvm *kvm_create_vm(void)
  156. {
  157. struct kvm *kvm = kvm_arch_create_vm();
  158. if (IS_ERR(kvm))
  159. goto out;
  160. kvm->mm = current->mm;
  161. atomic_inc(&kvm->mm->mm_count);
  162. spin_lock_init(&kvm->mmu_lock);
  163. kvm_io_bus_init(&kvm->pio_bus);
  164. mutex_init(&kvm->lock);
  165. kvm_io_bus_init(&kvm->mmio_bus);
  166. init_rwsem(&kvm->slots_lock);
  167. spin_lock(&kvm_lock);
  168. list_add(&kvm->vm_list, &vm_list);
  169. spin_unlock(&kvm_lock);
  170. out:
  171. return kvm;
  172. }
  173. /*
  174. * Free any memory in @free but not in @dont.
  175. */
  176. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  177. struct kvm_memory_slot *dont)
  178. {
  179. if (!dont || free->rmap != dont->rmap)
  180. vfree(free->rmap);
  181. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  182. vfree(free->dirty_bitmap);
  183. if (!dont || free->lpage_info != dont->lpage_info)
  184. vfree(free->lpage_info);
  185. free->npages = 0;
  186. free->dirty_bitmap = NULL;
  187. free->rmap = NULL;
  188. free->lpage_info = NULL;
  189. }
  190. void kvm_free_physmem(struct kvm *kvm)
  191. {
  192. int i;
  193. for (i = 0; i < kvm->nmemslots; ++i)
  194. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  195. }
  196. static void kvm_destroy_vm(struct kvm *kvm)
  197. {
  198. struct mm_struct *mm = kvm->mm;
  199. spin_lock(&kvm_lock);
  200. list_del(&kvm->vm_list);
  201. spin_unlock(&kvm_lock);
  202. kvm_io_bus_destroy(&kvm->pio_bus);
  203. kvm_io_bus_destroy(&kvm->mmio_bus);
  204. kvm_arch_destroy_vm(kvm);
  205. mmdrop(mm);
  206. }
  207. static int kvm_vm_release(struct inode *inode, struct file *filp)
  208. {
  209. struct kvm *kvm = filp->private_data;
  210. kvm_destroy_vm(kvm);
  211. return 0;
  212. }
  213. /*
  214. * Allocate some memory and give it an address in the guest physical address
  215. * space.
  216. *
  217. * Discontiguous memory is allowed, mostly for framebuffers.
  218. *
  219. * Must be called holding mmap_sem for write.
  220. */
  221. int __kvm_set_memory_region(struct kvm *kvm,
  222. struct kvm_userspace_memory_region *mem,
  223. int user_alloc)
  224. {
  225. int r;
  226. gfn_t base_gfn;
  227. unsigned long npages;
  228. unsigned long i;
  229. struct kvm_memory_slot *memslot;
  230. struct kvm_memory_slot old, new;
  231. r = -EINVAL;
  232. /* General sanity checks */
  233. if (mem->memory_size & (PAGE_SIZE - 1))
  234. goto out;
  235. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  236. goto out;
  237. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  238. goto out;
  239. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  240. goto out;
  241. memslot = &kvm->memslots[mem->slot];
  242. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  243. npages = mem->memory_size >> PAGE_SHIFT;
  244. if (!npages)
  245. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  246. new = old = *memslot;
  247. new.base_gfn = base_gfn;
  248. new.npages = npages;
  249. new.flags = mem->flags;
  250. /* Disallow changing a memory slot's size. */
  251. r = -EINVAL;
  252. if (npages && old.npages && npages != old.npages)
  253. goto out_free;
  254. /* Check for overlaps */
  255. r = -EEXIST;
  256. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  257. struct kvm_memory_slot *s = &kvm->memslots[i];
  258. if (s == memslot)
  259. continue;
  260. if (!((base_gfn + npages <= s->base_gfn) ||
  261. (base_gfn >= s->base_gfn + s->npages)))
  262. goto out_free;
  263. }
  264. /* Free page dirty bitmap if unneeded */
  265. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  266. new.dirty_bitmap = NULL;
  267. r = -ENOMEM;
  268. /* Allocate if a slot is being created */
  269. if (npages && !new.rmap) {
  270. new.rmap = vmalloc(npages * sizeof(struct page *));
  271. if (!new.rmap)
  272. goto out_free;
  273. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  274. new.user_alloc = user_alloc;
  275. new.userspace_addr = mem->userspace_addr;
  276. }
  277. if (npages && !new.lpage_info) {
  278. int largepages = npages / KVM_PAGES_PER_HPAGE;
  279. if (npages % KVM_PAGES_PER_HPAGE)
  280. largepages++;
  281. if (base_gfn % KVM_PAGES_PER_HPAGE)
  282. largepages++;
  283. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  284. if (!new.lpage_info)
  285. goto out_free;
  286. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  287. if (base_gfn % KVM_PAGES_PER_HPAGE)
  288. new.lpage_info[0].write_count = 1;
  289. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  290. new.lpage_info[largepages-1].write_count = 1;
  291. }
  292. /* Allocate page dirty bitmap if needed */
  293. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  294. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  295. new.dirty_bitmap = vmalloc(dirty_bytes);
  296. if (!new.dirty_bitmap)
  297. goto out_free;
  298. memset(new.dirty_bitmap, 0, dirty_bytes);
  299. }
  300. if (mem->slot >= kvm->nmemslots)
  301. kvm->nmemslots = mem->slot + 1;
  302. *memslot = new;
  303. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  304. if (r) {
  305. *memslot = old;
  306. goto out_free;
  307. }
  308. kvm_free_physmem_slot(&old, &new);
  309. return 0;
  310. out_free:
  311. kvm_free_physmem_slot(&new, &old);
  312. out:
  313. return r;
  314. }
  315. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  316. int kvm_set_memory_region(struct kvm *kvm,
  317. struct kvm_userspace_memory_region *mem,
  318. int user_alloc)
  319. {
  320. int r;
  321. down_write(&kvm->slots_lock);
  322. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  323. up_write(&kvm->slots_lock);
  324. return r;
  325. }
  326. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  327. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  328. struct
  329. kvm_userspace_memory_region *mem,
  330. int user_alloc)
  331. {
  332. if (mem->slot >= KVM_MEMORY_SLOTS)
  333. return -EINVAL;
  334. return kvm_set_memory_region(kvm, mem, user_alloc);
  335. }
  336. int kvm_get_dirty_log(struct kvm *kvm,
  337. struct kvm_dirty_log *log, int *is_dirty)
  338. {
  339. struct kvm_memory_slot *memslot;
  340. int r, i;
  341. int n;
  342. unsigned long any = 0;
  343. r = -EINVAL;
  344. if (log->slot >= KVM_MEMORY_SLOTS)
  345. goto out;
  346. memslot = &kvm->memslots[log->slot];
  347. r = -ENOENT;
  348. if (!memslot->dirty_bitmap)
  349. goto out;
  350. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  351. for (i = 0; !any && i < n/sizeof(long); ++i)
  352. any = memslot->dirty_bitmap[i];
  353. r = -EFAULT;
  354. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  355. goto out;
  356. if (any)
  357. *is_dirty = 1;
  358. r = 0;
  359. out:
  360. return r;
  361. }
  362. int is_error_page(struct page *page)
  363. {
  364. return page == bad_page;
  365. }
  366. EXPORT_SYMBOL_GPL(is_error_page);
  367. static inline unsigned long bad_hva(void)
  368. {
  369. return PAGE_OFFSET;
  370. }
  371. int kvm_is_error_hva(unsigned long addr)
  372. {
  373. return addr == bad_hva();
  374. }
  375. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  376. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  377. {
  378. int i;
  379. for (i = 0; i < kvm->nmemslots; ++i) {
  380. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  381. if (gfn >= memslot->base_gfn
  382. && gfn < memslot->base_gfn + memslot->npages)
  383. return memslot;
  384. }
  385. return NULL;
  386. }
  387. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  388. {
  389. gfn = unalias_gfn(kvm, gfn);
  390. return __gfn_to_memslot(kvm, gfn);
  391. }
  392. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  393. {
  394. int i;
  395. gfn = unalias_gfn(kvm, gfn);
  396. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  397. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  398. if (gfn >= memslot->base_gfn
  399. && gfn < memslot->base_gfn + memslot->npages)
  400. return 1;
  401. }
  402. return 0;
  403. }
  404. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  405. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  406. {
  407. struct kvm_memory_slot *slot;
  408. gfn = unalias_gfn(kvm, gfn);
  409. slot = __gfn_to_memslot(kvm, gfn);
  410. if (!slot)
  411. return bad_hva();
  412. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  413. }
  414. /*
  415. * Requires current->mm->mmap_sem to be held
  416. */
  417. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  418. {
  419. struct page *page[1];
  420. unsigned long addr;
  421. int npages;
  422. might_sleep();
  423. addr = gfn_to_hva(kvm, gfn);
  424. if (kvm_is_error_hva(addr)) {
  425. get_page(bad_page);
  426. return bad_page;
  427. }
  428. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  429. NULL);
  430. if (npages != 1) {
  431. get_page(bad_page);
  432. return bad_page;
  433. }
  434. return page[0];
  435. }
  436. EXPORT_SYMBOL_GPL(gfn_to_page);
  437. void kvm_release_page_clean(struct page *page)
  438. {
  439. put_page(page);
  440. }
  441. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  442. void kvm_release_page_dirty(struct page *page)
  443. {
  444. if (!PageReserved(page))
  445. SetPageDirty(page);
  446. put_page(page);
  447. }
  448. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  449. static int next_segment(unsigned long len, int offset)
  450. {
  451. if (len > PAGE_SIZE - offset)
  452. return PAGE_SIZE - offset;
  453. else
  454. return len;
  455. }
  456. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  457. int len)
  458. {
  459. int r;
  460. unsigned long addr;
  461. addr = gfn_to_hva(kvm, gfn);
  462. if (kvm_is_error_hva(addr))
  463. return -EFAULT;
  464. r = copy_from_user(data, (void __user *)addr + offset, len);
  465. if (r)
  466. return -EFAULT;
  467. return 0;
  468. }
  469. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  470. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  471. {
  472. gfn_t gfn = gpa >> PAGE_SHIFT;
  473. int seg;
  474. int offset = offset_in_page(gpa);
  475. int ret;
  476. while ((seg = next_segment(len, offset)) != 0) {
  477. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  478. if (ret < 0)
  479. return ret;
  480. offset = 0;
  481. len -= seg;
  482. data += seg;
  483. ++gfn;
  484. }
  485. return 0;
  486. }
  487. EXPORT_SYMBOL_GPL(kvm_read_guest);
  488. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  489. unsigned long len)
  490. {
  491. int r;
  492. unsigned long addr;
  493. gfn_t gfn = gpa >> PAGE_SHIFT;
  494. int offset = offset_in_page(gpa);
  495. addr = gfn_to_hva(kvm, gfn);
  496. if (kvm_is_error_hva(addr))
  497. return -EFAULT;
  498. pagefault_disable();
  499. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  500. pagefault_enable();
  501. if (r)
  502. return -EFAULT;
  503. return 0;
  504. }
  505. EXPORT_SYMBOL(kvm_read_guest_atomic);
  506. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  507. int offset, int len)
  508. {
  509. int r;
  510. unsigned long addr;
  511. addr = gfn_to_hva(kvm, gfn);
  512. if (kvm_is_error_hva(addr))
  513. return -EFAULT;
  514. r = copy_to_user((void __user *)addr + offset, data, len);
  515. if (r)
  516. return -EFAULT;
  517. mark_page_dirty(kvm, gfn);
  518. return 0;
  519. }
  520. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  521. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  522. unsigned long len)
  523. {
  524. gfn_t gfn = gpa >> PAGE_SHIFT;
  525. int seg;
  526. int offset = offset_in_page(gpa);
  527. int ret;
  528. while ((seg = next_segment(len, offset)) != 0) {
  529. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  530. if (ret < 0)
  531. return ret;
  532. offset = 0;
  533. len -= seg;
  534. data += seg;
  535. ++gfn;
  536. }
  537. return 0;
  538. }
  539. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  540. {
  541. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  542. }
  543. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  544. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  545. {
  546. gfn_t gfn = gpa >> PAGE_SHIFT;
  547. int seg;
  548. int offset = offset_in_page(gpa);
  549. int ret;
  550. while ((seg = next_segment(len, offset)) != 0) {
  551. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  552. if (ret < 0)
  553. return ret;
  554. offset = 0;
  555. len -= seg;
  556. ++gfn;
  557. }
  558. return 0;
  559. }
  560. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  561. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  562. {
  563. struct kvm_memory_slot *memslot;
  564. gfn = unalias_gfn(kvm, gfn);
  565. memslot = __gfn_to_memslot(kvm, gfn);
  566. if (memslot && memslot->dirty_bitmap) {
  567. unsigned long rel_gfn = gfn - memslot->base_gfn;
  568. /* avoid RMW */
  569. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  570. set_bit(rel_gfn, memslot->dirty_bitmap);
  571. }
  572. }
  573. /*
  574. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  575. */
  576. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  577. {
  578. DECLARE_WAITQUEUE(wait, current);
  579. add_wait_queue(&vcpu->wq, &wait);
  580. /*
  581. * We will block until either an interrupt or a signal wakes us up
  582. */
  583. while (!kvm_cpu_has_interrupt(vcpu)
  584. && !signal_pending(current)
  585. && !kvm_arch_vcpu_runnable(vcpu)) {
  586. set_current_state(TASK_INTERRUPTIBLE);
  587. vcpu_put(vcpu);
  588. schedule();
  589. vcpu_load(vcpu);
  590. }
  591. __set_current_state(TASK_RUNNING);
  592. remove_wait_queue(&vcpu->wq, &wait);
  593. }
  594. void kvm_resched(struct kvm_vcpu *vcpu)
  595. {
  596. if (!need_resched())
  597. return;
  598. cond_resched();
  599. }
  600. EXPORT_SYMBOL_GPL(kvm_resched);
  601. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  602. {
  603. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  604. struct page *page;
  605. if (vmf->pgoff == 0)
  606. page = virt_to_page(vcpu->run);
  607. #ifdef CONFIG_X86
  608. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  609. page = virt_to_page(vcpu->arch.pio_data);
  610. #endif
  611. else
  612. return VM_FAULT_SIGBUS;
  613. get_page(page);
  614. vmf->page = page;
  615. return 0;
  616. }
  617. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  618. .fault = kvm_vcpu_fault,
  619. };
  620. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  621. {
  622. vma->vm_ops = &kvm_vcpu_vm_ops;
  623. return 0;
  624. }
  625. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  626. {
  627. struct kvm_vcpu *vcpu = filp->private_data;
  628. fput(vcpu->kvm->filp);
  629. return 0;
  630. }
  631. static const struct file_operations kvm_vcpu_fops = {
  632. .release = kvm_vcpu_release,
  633. .unlocked_ioctl = kvm_vcpu_ioctl,
  634. .compat_ioctl = kvm_vcpu_ioctl,
  635. .mmap = kvm_vcpu_mmap,
  636. };
  637. /*
  638. * Allocates an inode for the vcpu.
  639. */
  640. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  641. {
  642. int fd, r;
  643. struct inode *inode;
  644. struct file *file;
  645. r = anon_inode_getfd(&fd, &inode, &file,
  646. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  647. if (r)
  648. return r;
  649. atomic_inc(&vcpu->kvm->filp->f_count);
  650. return fd;
  651. }
  652. /*
  653. * Creates some virtual cpus. Good luck creating more than one.
  654. */
  655. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  656. {
  657. int r;
  658. struct kvm_vcpu *vcpu;
  659. if (!valid_vcpu(n))
  660. return -EINVAL;
  661. vcpu = kvm_arch_vcpu_create(kvm, n);
  662. if (IS_ERR(vcpu))
  663. return PTR_ERR(vcpu);
  664. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  665. r = kvm_arch_vcpu_setup(vcpu);
  666. if (r)
  667. goto vcpu_destroy;
  668. mutex_lock(&kvm->lock);
  669. if (kvm->vcpus[n]) {
  670. r = -EEXIST;
  671. mutex_unlock(&kvm->lock);
  672. goto vcpu_destroy;
  673. }
  674. kvm->vcpus[n] = vcpu;
  675. mutex_unlock(&kvm->lock);
  676. /* Now it's all set up, let userspace reach it */
  677. r = create_vcpu_fd(vcpu);
  678. if (r < 0)
  679. goto unlink;
  680. return r;
  681. unlink:
  682. mutex_lock(&kvm->lock);
  683. kvm->vcpus[n] = NULL;
  684. mutex_unlock(&kvm->lock);
  685. vcpu_destroy:
  686. kvm_arch_vcpu_destroy(vcpu);
  687. return r;
  688. }
  689. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  690. {
  691. if (sigset) {
  692. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  693. vcpu->sigset_active = 1;
  694. vcpu->sigset = *sigset;
  695. } else
  696. vcpu->sigset_active = 0;
  697. return 0;
  698. }
  699. static long kvm_vcpu_ioctl(struct file *filp,
  700. unsigned int ioctl, unsigned long arg)
  701. {
  702. struct kvm_vcpu *vcpu = filp->private_data;
  703. void __user *argp = (void __user *)arg;
  704. int r;
  705. if (vcpu->kvm->mm != current->mm)
  706. return -EIO;
  707. switch (ioctl) {
  708. case KVM_RUN:
  709. r = -EINVAL;
  710. if (arg)
  711. goto out;
  712. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  713. break;
  714. case KVM_GET_REGS: {
  715. struct kvm_regs *kvm_regs;
  716. r = -ENOMEM;
  717. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  718. if (!kvm_regs)
  719. goto out;
  720. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  721. if (r)
  722. goto out_free1;
  723. r = -EFAULT;
  724. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  725. goto out_free1;
  726. r = 0;
  727. out_free1:
  728. kfree(kvm_regs);
  729. break;
  730. }
  731. case KVM_SET_REGS: {
  732. struct kvm_regs *kvm_regs;
  733. r = -ENOMEM;
  734. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  735. if (!kvm_regs)
  736. goto out;
  737. r = -EFAULT;
  738. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  739. goto out_free2;
  740. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  741. if (r)
  742. goto out_free2;
  743. r = 0;
  744. out_free2:
  745. kfree(kvm_regs);
  746. break;
  747. }
  748. case KVM_GET_SREGS: {
  749. struct kvm_sregs kvm_sregs;
  750. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  751. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  752. if (r)
  753. goto out;
  754. r = -EFAULT;
  755. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  756. goto out;
  757. r = 0;
  758. break;
  759. }
  760. case KVM_SET_SREGS: {
  761. struct kvm_sregs kvm_sregs;
  762. r = -EFAULT;
  763. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  764. goto out;
  765. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  766. if (r)
  767. goto out;
  768. r = 0;
  769. break;
  770. }
  771. case KVM_TRANSLATE: {
  772. struct kvm_translation tr;
  773. r = -EFAULT;
  774. if (copy_from_user(&tr, argp, sizeof tr))
  775. goto out;
  776. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  777. if (r)
  778. goto out;
  779. r = -EFAULT;
  780. if (copy_to_user(argp, &tr, sizeof tr))
  781. goto out;
  782. r = 0;
  783. break;
  784. }
  785. case KVM_DEBUG_GUEST: {
  786. struct kvm_debug_guest dbg;
  787. r = -EFAULT;
  788. if (copy_from_user(&dbg, argp, sizeof dbg))
  789. goto out;
  790. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  791. if (r)
  792. goto out;
  793. r = 0;
  794. break;
  795. }
  796. case KVM_SET_SIGNAL_MASK: {
  797. struct kvm_signal_mask __user *sigmask_arg = argp;
  798. struct kvm_signal_mask kvm_sigmask;
  799. sigset_t sigset, *p;
  800. p = NULL;
  801. if (argp) {
  802. r = -EFAULT;
  803. if (copy_from_user(&kvm_sigmask, argp,
  804. sizeof kvm_sigmask))
  805. goto out;
  806. r = -EINVAL;
  807. if (kvm_sigmask.len != sizeof sigset)
  808. goto out;
  809. r = -EFAULT;
  810. if (copy_from_user(&sigset, sigmask_arg->sigset,
  811. sizeof sigset))
  812. goto out;
  813. p = &sigset;
  814. }
  815. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  816. break;
  817. }
  818. case KVM_GET_FPU: {
  819. struct kvm_fpu fpu;
  820. memset(&fpu, 0, sizeof fpu);
  821. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  822. if (r)
  823. goto out;
  824. r = -EFAULT;
  825. if (copy_to_user(argp, &fpu, sizeof fpu))
  826. goto out;
  827. r = 0;
  828. break;
  829. }
  830. case KVM_SET_FPU: {
  831. struct kvm_fpu fpu;
  832. r = -EFAULT;
  833. if (copy_from_user(&fpu, argp, sizeof fpu))
  834. goto out;
  835. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  836. if (r)
  837. goto out;
  838. r = 0;
  839. break;
  840. }
  841. default:
  842. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  843. }
  844. out:
  845. return r;
  846. }
  847. static long kvm_vm_ioctl(struct file *filp,
  848. unsigned int ioctl, unsigned long arg)
  849. {
  850. struct kvm *kvm = filp->private_data;
  851. void __user *argp = (void __user *)arg;
  852. int r;
  853. if (kvm->mm != current->mm)
  854. return -EIO;
  855. switch (ioctl) {
  856. case KVM_CREATE_VCPU:
  857. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  858. if (r < 0)
  859. goto out;
  860. break;
  861. case KVM_SET_USER_MEMORY_REGION: {
  862. struct kvm_userspace_memory_region kvm_userspace_mem;
  863. r = -EFAULT;
  864. if (copy_from_user(&kvm_userspace_mem, argp,
  865. sizeof kvm_userspace_mem))
  866. goto out;
  867. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  868. if (r)
  869. goto out;
  870. break;
  871. }
  872. case KVM_GET_DIRTY_LOG: {
  873. struct kvm_dirty_log log;
  874. r = -EFAULT;
  875. if (copy_from_user(&log, argp, sizeof log))
  876. goto out;
  877. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  878. if (r)
  879. goto out;
  880. break;
  881. }
  882. default:
  883. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  884. }
  885. out:
  886. return r;
  887. }
  888. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  889. {
  890. struct kvm *kvm = vma->vm_file->private_data;
  891. struct page *page;
  892. if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
  893. return VM_FAULT_SIGBUS;
  894. page = gfn_to_page(kvm, vmf->pgoff);
  895. if (is_error_page(page)) {
  896. kvm_release_page_clean(page);
  897. return VM_FAULT_SIGBUS;
  898. }
  899. vmf->page = page;
  900. return 0;
  901. }
  902. static struct vm_operations_struct kvm_vm_vm_ops = {
  903. .fault = kvm_vm_fault,
  904. };
  905. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  906. {
  907. vma->vm_ops = &kvm_vm_vm_ops;
  908. return 0;
  909. }
  910. static const struct file_operations kvm_vm_fops = {
  911. .release = kvm_vm_release,
  912. .unlocked_ioctl = kvm_vm_ioctl,
  913. .compat_ioctl = kvm_vm_ioctl,
  914. .mmap = kvm_vm_mmap,
  915. };
  916. static int kvm_dev_ioctl_create_vm(void)
  917. {
  918. int fd, r;
  919. struct inode *inode;
  920. struct file *file;
  921. struct kvm *kvm;
  922. kvm = kvm_create_vm();
  923. if (IS_ERR(kvm))
  924. return PTR_ERR(kvm);
  925. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  926. if (r) {
  927. kvm_destroy_vm(kvm);
  928. return r;
  929. }
  930. kvm->filp = file;
  931. return fd;
  932. }
  933. static long kvm_dev_ioctl(struct file *filp,
  934. unsigned int ioctl, unsigned long arg)
  935. {
  936. void __user *argp = (void __user *)arg;
  937. long r = -EINVAL;
  938. switch (ioctl) {
  939. case KVM_GET_API_VERSION:
  940. r = -EINVAL;
  941. if (arg)
  942. goto out;
  943. r = KVM_API_VERSION;
  944. break;
  945. case KVM_CREATE_VM:
  946. r = -EINVAL;
  947. if (arg)
  948. goto out;
  949. r = kvm_dev_ioctl_create_vm();
  950. break;
  951. case KVM_CHECK_EXTENSION:
  952. r = kvm_dev_ioctl_check_extension((long)argp);
  953. break;
  954. case KVM_GET_VCPU_MMAP_SIZE:
  955. r = -EINVAL;
  956. if (arg)
  957. goto out;
  958. r = PAGE_SIZE; /* struct kvm_run */
  959. #ifdef CONFIG_X86
  960. r += PAGE_SIZE; /* pio data page */
  961. #endif
  962. break;
  963. default:
  964. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  965. }
  966. out:
  967. return r;
  968. }
  969. static struct file_operations kvm_chardev_ops = {
  970. .unlocked_ioctl = kvm_dev_ioctl,
  971. .compat_ioctl = kvm_dev_ioctl,
  972. };
  973. static struct miscdevice kvm_dev = {
  974. KVM_MINOR,
  975. "kvm",
  976. &kvm_chardev_ops,
  977. };
  978. static void hardware_enable(void *junk)
  979. {
  980. int cpu = raw_smp_processor_id();
  981. if (cpu_isset(cpu, cpus_hardware_enabled))
  982. return;
  983. cpu_set(cpu, cpus_hardware_enabled);
  984. kvm_arch_hardware_enable(NULL);
  985. }
  986. static void hardware_disable(void *junk)
  987. {
  988. int cpu = raw_smp_processor_id();
  989. if (!cpu_isset(cpu, cpus_hardware_enabled))
  990. return;
  991. cpu_clear(cpu, cpus_hardware_enabled);
  992. decache_vcpus_on_cpu(cpu);
  993. kvm_arch_hardware_disable(NULL);
  994. }
  995. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  996. void *v)
  997. {
  998. int cpu = (long)v;
  999. val &= ~CPU_TASKS_FROZEN;
  1000. switch (val) {
  1001. case CPU_DYING:
  1002. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1003. cpu);
  1004. hardware_disable(NULL);
  1005. break;
  1006. case CPU_UP_CANCELED:
  1007. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1008. cpu);
  1009. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  1010. break;
  1011. case CPU_ONLINE:
  1012. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1013. cpu);
  1014. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1015. break;
  1016. }
  1017. return NOTIFY_OK;
  1018. }
  1019. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1020. void *v)
  1021. {
  1022. if (val == SYS_RESTART) {
  1023. /*
  1024. * Some (well, at least mine) BIOSes hang on reboot if
  1025. * in vmx root mode.
  1026. */
  1027. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1028. on_each_cpu(hardware_disable, NULL, 0, 1);
  1029. }
  1030. return NOTIFY_OK;
  1031. }
  1032. static struct notifier_block kvm_reboot_notifier = {
  1033. .notifier_call = kvm_reboot,
  1034. .priority = 0,
  1035. };
  1036. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1037. {
  1038. memset(bus, 0, sizeof(*bus));
  1039. }
  1040. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1041. {
  1042. int i;
  1043. for (i = 0; i < bus->dev_count; i++) {
  1044. struct kvm_io_device *pos = bus->devs[i];
  1045. kvm_iodevice_destructor(pos);
  1046. }
  1047. }
  1048. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1049. {
  1050. int i;
  1051. for (i = 0; i < bus->dev_count; i++) {
  1052. struct kvm_io_device *pos = bus->devs[i];
  1053. if (pos->in_range(pos, addr))
  1054. return pos;
  1055. }
  1056. return NULL;
  1057. }
  1058. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1059. {
  1060. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1061. bus->devs[bus->dev_count++] = dev;
  1062. }
  1063. static struct notifier_block kvm_cpu_notifier = {
  1064. .notifier_call = kvm_cpu_hotplug,
  1065. .priority = 20, /* must be > scheduler priority */
  1066. };
  1067. static int vm_stat_get(void *_offset, u64 *val)
  1068. {
  1069. unsigned offset = (long)_offset;
  1070. struct kvm *kvm;
  1071. *val = 0;
  1072. spin_lock(&kvm_lock);
  1073. list_for_each_entry(kvm, &vm_list, vm_list)
  1074. *val += *(u32 *)((void *)kvm + offset);
  1075. spin_unlock(&kvm_lock);
  1076. return 0;
  1077. }
  1078. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1079. static int vcpu_stat_get(void *_offset, u64 *val)
  1080. {
  1081. unsigned offset = (long)_offset;
  1082. struct kvm *kvm;
  1083. struct kvm_vcpu *vcpu;
  1084. int i;
  1085. *val = 0;
  1086. spin_lock(&kvm_lock);
  1087. list_for_each_entry(kvm, &vm_list, vm_list)
  1088. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1089. vcpu = kvm->vcpus[i];
  1090. if (vcpu)
  1091. *val += *(u32 *)((void *)vcpu + offset);
  1092. }
  1093. spin_unlock(&kvm_lock);
  1094. return 0;
  1095. }
  1096. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1097. static struct file_operations *stat_fops[] = {
  1098. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1099. [KVM_STAT_VM] = &vm_stat_fops,
  1100. };
  1101. static void kvm_init_debug(void)
  1102. {
  1103. struct kvm_stats_debugfs_item *p;
  1104. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1105. for (p = debugfs_entries; p->name; ++p)
  1106. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1107. (void *)(long)p->offset,
  1108. stat_fops[p->kind]);
  1109. }
  1110. static void kvm_exit_debug(void)
  1111. {
  1112. struct kvm_stats_debugfs_item *p;
  1113. for (p = debugfs_entries; p->name; ++p)
  1114. debugfs_remove(p->dentry);
  1115. debugfs_remove(debugfs_dir);
  1116. }
  1117. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1118. {
  1119. hardware_disable(NULL);
  1120. return 0;
  1121. }
  1122. static int kvm_resume(struct sys_device *dev)
  1123. {
  1124. hardware_enable(NULL);
  1125. return 0;
  1126. }
  1127. static struct sysdev_class kvm_sysdev_class = {
  1128. .name = "kvm",
  1129. .suspend = kvm_suspend,
  1130. .resume = kvm_resume,
  1131. };
  1132. static struct sys_device kvm_sysdev = {
  1133. .id = 0,
  1134. .cls = &kvm_sysdev_class,
  1135. };
  1136. struct page *bad_page;
  1137. static inline
  1138. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1139. {
  1140. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1141. }
  1142. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1143. {
  1144. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1145. kvm_arch_vcpu_load(vcpu, cpu);
  1146. }
  1147. static void kvm_sched_out(struct preempt_notifier *pn,
  1148. struct task_struct *next)
  1149. {
  1150. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1151. kvm_arch_vcpu_put(vcpu);
  1152. }
  1153. int kvm_init(void *opaque, unsigned int vcpu_size,
  1154. struct module *module)
  1155. {
  1156. int r;
  1157. int cpu;
  1158. kvm_init_debug();
  1159. r = kvm_arch_init(opaque);
  1160. if (r)
  1161. goto out_fail;
  1162. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1163. if (bad_page == NULL) {
  1164. r = -ENOMEM;
  1165. goto out;
  1166. }
  1167. r = kvm_arch_hardware_setup();
  1168. if (r < 0)
  1169. goto out_free_0;
  1170. for_each_online_cpu(cpu) {
  1171. smp_call_function_single(cpu,
  1172. kvm_arch_check_processor_compat,
  1173. &r, 0, 1);
  1174. if (r < 0)
  1175. goto out_free_1;
  1176. }
  1177. on_each_cpu(hardware_enable, NULL, 0, 1);
  1178. r = register_cpu_notifier(&kvm_cpu_notifier);
  1179. if (r)
  1180. goto out_free_2;
  1181. register_reboot_notifier(&kvm_reboot_notifier);
  1182. r = sysdev_class_register(&kvm_sysdev_class);
  1183. if (r)
  1184. goto out_free_3;
  1185. r = sysdev_register(&kvm_sysdev);
  1186. if (r)
  1187. goto out_free_4;
  1188. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1189. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1190. __alignof__(struct kvm_vcpu),
  1191. 0, NULL);
  1192. if (!kvm_vcpu_cache) {
  1193. r = -ENOMEM;
  1194. goto out_free_5;
  1195. }
  1196. kvm_chardev_ops.owner = module;
  1197. r = misc_register(&kvm_dev);
  1198. if (r) {
  1199. printk(KERN_ERR "kvm: misc device register failed\n");
  1200. goto out_free;
  1201. }
  1202. kvm_preempt_ops.sched_in = kvm_sched_in;
  1203. kvm_preempt_ops.sched_out = kvm_sched_out;
  1204. return 0;
  1205. out_free:
  1206. kmem_cache_destroy(kvm_vcpu_cache);
  1207. out_free_5:
  1208. sysdev_unregister(&kvm_sysdev);
  1209. out_free_4:
  1210. sysdev_class_unregister(&kvm_sysdev_class);
  1211. out_free_3:
  1212. unregister_reboot_notifier(&kvm_reboot_notifier);
  1213. unregister_cpu_notifier(&kvm_cpu_notifier);
  1214. out_free_2:
  1215. on_each_cpu(hardware_disable, NULL, 0, 1);
  1216. out_free_1:
  1217. kvm_arch_hardware_unsetup();
  1218. out_free_0:
  1219. __free_page(bad_page);
  1220. out:
  1221. kvm_arch_exit();
  1222. kvm_exit_debug();
  1223. out_fail:
  1224. return r;
  1225. }
  1226. EXPORT_SYMBOL_GPL(kvm_init);
  1227. void kvm_exit(void)
  1228. {
  1229. misc_deregister(&kvm_dev);
  1230. kmem_cache_destroy(kvm_vcpu_cache);
  1231. sysdev_unregister(&kvm_sysdev);
  1232. sysdev_class_unregister(&kvm_sysdev_class);
  1233. unregister_reboot_notifier(&kvm_reboot_notifier);
  1234. unregister_cpu_notifier(&kvm_cpu_notifier);
  1235. on_each_cpu(hardware_disable, NULL, 0, 1);
  1236. kvm_arch_hardware_unsetup();
  1237. kvm_arch_exit();
  1238. kvm_exit_debug();
  1239. __free_page(bad_page);
  1240. }
  1241. EXPORT_SYMBOL_GPL(kvm_exit);