sched.c 178 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/cpu_acct.h>
  55. #include <linux/kthread.h>
  56. #include <linux/seq_file.h>
  57. #include <linux/sysctl.h>
  58. #include <linux/syscalls.h>
  59. #include <linux/times.h>
  60. #include <linux/tsacct_kern.h>
  61. #include <linux/kprobes.h>
  62. #include <linux/delayacct.h>
  63. #include <linux/reciprocal_div.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <asm/tlb.h>
  67. #include <asm/irq_regs.h>
  68. /*
  69. * Scheduler clock - returns current time in nanosec units.
  70. * This is default implementation.
  71. * Architectures and sub-architectures can override this.
  72. */
  73. unsigned long long __attribute__((weak)) sched_clock(void)
  74. {
  75. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  76. }
  77. /*
  78. * Convert user-nice values [ -20 ... 0 ... 19 ]
  79. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  80. * and back.
  81. */
  82. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  83. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  84. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  85. /*
  86. * 'User priority' is the nice value converted to something we
  87. * can work with better when scaling various scheduler parameters,
  88. * it's a [ 0 ... 39 ] range.
  89. */
  90. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  91. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  92. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  93. /*
  94. * Some helpers for converting nanosecond timing to jiffy resolution
  95. */
  96. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  97. #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. #ifdef CONFIG_SMP
  108. /*
  109. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  110. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  111. */
  112. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  113. {
  114. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  115. }
  116. /*
  117. * Each time a sched group cpu_power is changed,
  118. * we must compute its reciprocal value
  119. */
  120. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  121. {
  122. sg->__cpu_power += val;
  123. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  124. }
  125. #endif
  126. static inline int rt_policy(int policy)
  127. {
  128. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  129. return 1;
  130. return 0;
  131. }
  132. static inline int task_has_rt_policy(struct task_struct *p)
  133. {
  134. return rt_policy(p->policy);
  135. }
  136. /*
  137. * This is the priority-queue data structure of the RT scheduling class:
  138. */
  139. struct rt_prio_array {
  140. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  141. struct list_head queue[MAX_RT_PRIO];
  142. };
  143. #ifdef CONFIG_FAIR_GROUP_SCHED
  144. #include <linux/cgroup.h>
  145. struct cfs_rq;
  146. /* task group related information */
  147. struct task_group {
  148. #ifdef CONFIG_FAIR_CGROUP_SCHED
  149. struct cgroup_subsys_state css;
  150. #endif
  151. /* schedulable entities of this group on each cpu */
  152. struct sched_entity **se;
  153. /* runqueue "owned" by this group on each cpu */
  154. struct cfs_rq **cfs_rq;
  155. unsigned long shares;
  156. /* spinlock to serialize modification to shares */
  157. spinlock_t lock;
  158. struct rcu_head rcu;
  159. };
  160. /* Default task group's sched entity on each cpu */
  161. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  162. /* Default task group's cfs_rq on each cpu */
  163. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  164. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  165. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  166. /* Default task group.
  167. * Every task in system belong to this group at bootup.
  168. */
  169. struct task_group init_task_group = {
  170. .se = init_sched_entity_p,
  171. .cfs_rq = init_cfs_rq_p,
  172. };
  173. #ifdef CONFIG_FAIR_USER_SCHED
  174. # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  175. #else
  176. # define INIT_TASK_GRP_LOAD NICE_0_LOAD
  177. #endif
  178. static int init_task_group_load = INIT_TASK_GRP_LOAD;
  179. /* return group to which a task belongs */
  180. static inline struct task_group *task_group(struct task_struct *p)
  181. {
  182. struct task_group *tg;
  183. #ifdef CONFIG_FAIR_USER_SCHED
  184. tg = p->user->tg;
  185. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  186. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  187. struct task_group, css);
  188. #else
  189. tg = &init_task_group;
  190. #endif
  191. return tg;
  192. }
  193. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  194. static inline void set_task_cfs_rq(struct task_struct *p)
  195. {
  196. p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
  197. p->se.parent = task_group(p)->se[task_cpu(p)];
  198. }
  199. #else
  200. static inline void set_task_cfs_rq(struct task_struct *p) { }
  201. #endif /* CONFIG_FAIR_GROUP_SCHED */
  202. /* CFS-related fields in a runqueue */
  203. struct cfs_rq {
  204. struct load_weight load;
  205. unsigned long nr_running;
  206. u64 exec_clock;
  207. u64 min_vruntime;
  208. struct rb_root tasks_timeline;
  209. struct rb_node *rb_leftmost;
  210. struct rb_node *rb_load_balance_curr;
  211. /* 'curr' points to currently running entity on this cfs_rq.
  212. * It is set to NULL otherwise (i.e when none are currently running).
  213. */
  214. struct sched_entity *curr;
  215. unsigned long nr_spread_over;
  216. #ifdef CONFIG_FAIR_GROUP_SCHED
  217. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  218. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  219. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  220. * (like users, containers etc.)
  221. *
  222. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  223. * list is used during load balance.
  224. */
  225. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  226. struct task_group *tg; /* group that "owns" this runqueue */
  227. #endif
  228. };
  229. /* Real-Time classes' related field in a runqueue: */
  230. struct rt_rq {
  231. struct rt_prio_array active;
  232. int rt_load_balance_idx;
  233. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  234. };
  235. /*
  236. * This is the main, per-CPU runqueue data structure.
  237. *
  238. * Locking rule: those places that want to lock multiple runqueues
  239. * (such as the load balancing or the thread migration code), lock
  240. * acquire operations must be ordered by ascending &runqueue.
  241. */
  242. struct rq {
  243. /* runqueue lock: */
  244. spinlock_t lock;
  245. /*
  246. * nr_running and cpu_load should be in the same cacheline because
  247. * remote CPUs use both these fields when doing load calculation.
  248. */
  249. unsigned long nr_running;
  250. #define CPU_LOAD_IDX_MAX 5
  251. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  252. unsigned char idle_at_tick;
  253. #ifdef CONFIG_NO_HZ
  254. unsigned char in_nohz_recently;
  255. #endif
  256. /* capture load from *all* tasks on this cpu: */
  257. struct load_weight load;
  258. unsigned long nr_load_updates;
  259. u64 nr_switches;
  260. struct cfs_rq cfs;
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. /* list of leaf cfs_rq on this cpu: */
  263. struct list_head leaf_cfs_rq_list;
  264. #endif
  265. struct rt_rq rt;
  266. /*
  267. * This is part of a global counter where only the total sum
  268. * over all CPUs matters. A task can increase this counter on
  269. * one CPU and if it got migrated afterwards it may decrease
  270. * it on another CPU. Always updated under the runqueue lock:
  271. */
  272. unsigned long nr_uninterruptible;
  273. struct task_struct *curr, *idle;
  274. unsigned long next_balance;
  275. struct mm_struct *prev_mm;
  276. u64 clock, prev_clock_raw;
  277. s64 clock_max_delta;
  278. unsigned int clock_warps, clock_overflows;
  279. u64 idle_clock;
  280. unsigned int clock_deep_idle_events;
  281. u64 tick_timestamp;
  282. atomic_t nr_iowait;
  283. #ifdef CONFIG_SMP
  284. struct sched_domain *sd;
  285. /* For active balancing */
  286. int active_balance;
  287. int push_cpu;
  288. /* cpu of this runqueue: */
  289. int cpu;
  290. struct task_struct *migration_thread;
  291. struct list_head migration_queue;
  292. #endif
  293. #ifdef CONFIG_SCHEDSTATS
  294. /* latency stats */
  295. struct sched_info rq_sched_info;
  296. /* sys_sched_yield() stats */
  297. unsigned int yld_exp_empty;
  298. unsigned int yld_act_empty;
  299. unsigned int yld_both_empty;
  300. unsigned int yld_count;
  301. /* schedule() stats */
  302. unsigned int sched_switch;
  303. unsigned int sched_count;
  304. unsigned int sched_goidle;
  305. /* try_to_wake_up() stats */
  306. unsigned int ttwu_count;
  307. unsigned int ttwu_local;
  308. /* BKL stats */
  309. unsigned int bkl_count;
  310. #endif
  311. struct lock_class_key rq_lock_key;
  312. };
  313. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  314. static DEFINE_MUTEX(sched_hotcpu_mutex);
  315. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  316. {
  317. rq->curr->sched_class->check_preempt_curr(rq, p);
  318. }
  319. static inline int cpu_of(struct rq *rq)
  320. {
  321. #ifdef CONFIG_SMP
  322. return rq->cpu;
  323. #else
  324. return 0;
  325. #endif
  326. }
  327. /*
  328. * Update the per-runqueue clock, as finegrained as the platform can give
  329. * us, but without assuming monotonicity, etc.:
  330. */
  331. static void __update_rq_clock(struct rq *rq)
  332. {
  333. u64 prev_raw = rq->prev_clock_raw;
  334. u64 now = sched_clock();
  335. s64 delta = now - prev_raw;
  336. u64 clock = rq->clock;
  337. #ifdef CONFIG_SCHED_DEBUG
  338. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  339. #endif
  340. /*
  341. * Protect against sched_clock() occasionally going backwards:
  342. */
  343. if (unlikely(delta < 0)) {
  344. clock++;
  345. rq->clock_warps++;
  346. } else {
  347. /*
  348. * Catch too large forward jumps too:
  349. */
  350. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  351. if (clock < rq->tick_timestamp + TICK_NSEC)
  352. clock = rq->tick_timestamp + TICK_NSEC;
  353. else
  354. clock++;
  355. rq->clock_overflows++;
  356. } else {
  357. if (unlikely(delta > rq->clock_max_delta))
  358. rq->clock_max_delta = delta;
  359. clock += delta;
  360. }
  361. }
  362. rq->prev_clock_raw = now;
  363. rq->clock = clock;
  364. }
  365. static void update_rq_clock(struct rq *rq)
  366. {
  367. if (likely(smp_processor_id() == cpu_of(rq)))
  368. __update_rq_clock(rq);
  369. }
  370. /*
  371. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  372. * See detach_destroy_domains: synchronize_sched for details.
  373. *
  374. * The domain tree of any CPU may only be accessed from within
  375. * preempt-disabled sections.
  376. */
  377. #define for_each_domain(cpu, __sd) \
  378. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  379. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  380. #define this_rq() (&__get_cpu_var(runqueues))
  381. #define task_rq(p) cpu_rq(task_cpu(p))
  382. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  383. /*
  384. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  385. */
  386. #ifdef CONFIG_SCHED_DEBUG
  387. # define const_debug __read_mostly
  388. #else
  389. # define const_debug static const
  390. #endif
  391. /*
  392. * Debugging: various feature bits
  393. */
  394. enum {
  395. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  396. SCHED_FEAT_START_DEBIT = 2,
  397. SCHED_FEAT_TREE_AVG = 4,
  398. SCHED_FEAT_APPROX_AVG = 8,
  399. SCHED_FEAT_WAKEUP_PREEMPT = 16,
  400. };
  401. const_debug unsigned int sysctl_sched_features =
  402. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  403. SCHED_FEAT_START_DEBIT * 1 |
  404. SCHED_FEAT_TREE_AVG * 0 |
  405. SCHED_FEAT_APPROX_AVG * 0 |
  406. SCHED_FEAT_WAKEUP_PREEMPT * 1;
  407. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  408. /*
  409. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  410. * clock constructed from sched_clock():
  411. */
  412. unsigned long long cpu_clock(int cpu)
  413. {
  414. unsigned long long now;
  415. unsigned long flags;
  416. struct rq *rq;
  417. local_irq_save(flags);
  418. rq = cpu_rq(cpu);
  419. update_rq_clock(rq);
  420. now = rq->clock;
  421. local_irq_restore(flags);
  422. return now;
  423. }
  424. EXPORT_SYMBOL_GPL(cpu_clock);
  425. #ifndef prepare_arch_switch
  426. # define prepare_arch_switch(next) do { } while (0)
  427. #endif
  428. #ifndef finish_arch_switch
  429. # define finish_arch_switch(prev) do { } while (0)
  430. #endif
  431. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  432. static inline int task_running(struct rq *rq, struct task_struct *p)
  433. {
  434. return rq->curr == p;
  435. }
  436. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  437. {
  438. }
  439. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  440. {
  441. #ifdef CONFIG_DEBUG_SPINLOCK
  442. /* this is a valid case when another task releases the spinlock */
  443. rq->lock.owner = current;
  444. #endif
  445. /*
  446. * If we are tracking spinlock dependencies then we have to
  447. * fix up the runqueue lock - which gets 'carried over' from
  448. * prev into current:
  449. */
  450. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  451. spin_unlock_irq(&rq->lock);
  452. }
  453. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  454. static inline int task_running(struct rq *rq, struct task_struct *p)
  455. {
  456. #ifdef CONFIG_SMP
  457. return p->oncpu;
  458. #else
  459. return rq->curr == p;
  460. #endif
  461. }
  462. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  463. {
  464. #ifdef CONFIG_SMP
  465. /*
  466. * We can optimise this out completely for !SMP, because the
  467. * SMP rebalancing from interrupt is the only thing that cares
  468. * here.
  469. */
  470. next->oncpu = 1;
  471. #endif
  472. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  473. spin_unlock_irq(&rq->lock);
  474. #else
  475. spin_unlock(&rq->lock);
  476. #endif
  477. }
  478. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  479. {
  480. #ifdef CONFIG_SMP
  481. /*
  482. * After ->oncpu is cleared, the task can be moved to a different CPU.
  483. * We must ensure this doesn't happen until the switch is completely
  484. * finished.
  485. */
  486. smp_wmb();
  487. prev->oncpu = 0;
  488. #endif
  489. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  490. local_irq_enable();
  491. #endif
  492. }
  493. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  494. /*
  495. * __task_rq_lock - lock the runqueue a given task resides on.
  496. * Must be called interrupts disabled.
  497. */
  498. static inline struct rq *__task_rq_lock(struct task_struct *p)
  499. __acquires(rq->lock)
  500. {
  501. for (;;) {
  502. struct rq *rq = task_rq(p);
  503. spin_lock(&rq->lock);
  504. if (likely(rq == task_rq(p)))
  505. return rq;
  506. spin_unlock(&rq->lock);
  507. }
  508. }
  509. /*
  510. * task_rq_lock - lock the runqueue a given task resides on and disable
  511. * interrupts. Note the ordering: we can safely lookup the task_rq without
  512. * explicitly disabling preemption.
  513. */
  514. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  515. __acquires(rq->lock)
  516. {
  517. struct rq *rq;
  518. for (;;) {
  519. local_irq_save(*flags);
  520. rq = task_rq(p);
  521. spin_lock(&rq->lock);
  522. if (likely(rq == task_rq(p)))
  523. return rq;
  524. spin_unlock_irqrestore(&rq->lock, *flags);
  525. }
  526. }
  527. static void __task_rq_unlock(struct rq *rq)
  528. __releases(rq->lock)
  529. {
  530. spin_unlock(&rq->lock);
  531. }
  532. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  533. __releases(rq->lock)
  534. {
  535. spin_unlock_irqrestore(&rq->lock, *flags);
  536. }
  537. /*
  538. * this_rq_lock - lock this runqueue and disable interrupts.
  539. */
  540. static struct rq *this_rq_lock(void)
  541. __acquires(rq->lock)
  542. {
  543. struct rq *rq;
  544. local_irq_disable();
  545. rq = this_rq();
  546. spin_lock(&rq->lock);
  547. return rq;
  548. }
  549. /*
  550. * We are going deep-idle (irqs are disabled):
  551. */
  552. void sched_clock_idle_sleep_event(void)
  553. {
  554. struct rq *rq = cpu_rq(smp_processor_id());
  555. spin_lock(&rq->lock);
  556. __update_rq_clock(rq);
  557. spin_unlock(&rq->lock);
  558. rq->clock_deep_idle_events++;
  559. }
  560. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  561. /*
  562. * We just idled delta nanoseconds (called with irqs disabled):
  563. */
  564. void sched_clock_idle_wakeup_event(u64 delta_ns)
  565. {
  566. struct rq *rq = cpu_rq(smp_processor_id());
  567. u64 now = sched_clock();
  568. rq->idle_clock += delta_ns;
  569. /*
  570. * Override the previous timestamp and ignore all
  571. * sched_clock() deltas that occured while we idled,
  572. * and use the PM-provided delta_ns to advance the
  573. * rq clock:
  574. */
  575. spin_lock(&rq->lock);
  576. rq->prev_clock_raw = now;
  577. rq->clock += delta_ns;
  578. spin_unlock(&rq->lock);
  579. }
  580. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  581. /*
  582. * resched_task - mark a task 'to be rescheduled now'.
  583. *
  584. * On UP this means the setting of the need_resched flag, on SMP it
  585. * might also involve a cross-CPU call to trigger the scheduler on
  586. * the target CPU.
  587. */
  588. #ifdef CONFIG_SMP
  589. #ifndef tsk_is_polling
  590. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  591. #endif
  592. static void resched_task(struct task_struct *p)
  593. {
  594. int cpu;
  595. assert_spin_locked(&task_rq(p)->lock);
  596. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  597. return;
  598. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  599. cpu = task_cpu(p);
  600. if (cpu == smp_processor_id())
  601. return;
  602. /* NEED_RESCHED must be visible before we test polling */
  603. smp_mb();
  604. if (!tsk_is_polling(p))
  605. smp_send_reschedule(cpu);
  606. }
  607. static void resched_cpu(int cpu)
  608. {
  609. struct rq *rq = cpu_rq(cpu);
  610. unsigned long flags;
  611. if (!spin_trylock_irqsave(&rq->lock, flags))
  612. return;
  613. resched_task(cpu_curr(cpu));
  614. spin_unlock_irqrestore(&rq->lock, flags);
  615. }
  616. #else
  617. static inline void resched_task(struct task_struct *p)
  618. {
  619. assert_spin_locked(&task_rq(p)->lock);
  620. set_tsk_need_resched(p);
  621. }
  622. #endif
  623. #if BITS_PER_LONG == 32
  624. # define WMULT_CONST (~0UL)
  625. #else
  626. # define WMULT_CONST (1UL << 32)
  627. #endif
  628. #define WMULT_SHIFT 32
  629. /*
  630. * Shift right and round:
  631. */
  632. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  633. static unsigned long
  634. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  635. struct load_weight *lw)
  636. {
  637. u64 tmp;
  638. if (unlikely(!lw->inv_weight))
  639. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  640. tmp = (u64)delta_exec * weight;
  641. /*
  642. * Check whether we'd overflow the 64-bit multiplication:
  643. */
  644. if (unlikely(tmp > WMULT_CONST))
  645. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  646. WMULT_SHIFT/2);
  647. else
  648. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  649. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  650. }
  651. static inline unsigned long
  652. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  653. {
  654. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  655. }
  656. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  657. {
  658. lw->weight += inc;
  659. }
  660. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  661. {
  662. lw->weight -= dec;
  663. }
  664. /*
  665. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  666. * of tasks with abnormal "nice" values across CPUs the contribution that
  667. * each task makes to its run queue's load is weighted according to its
  668. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  669. * scaled version of the new time slice allocation that they receive on time
  670. * slice expiry etc.
  671. */
  672. #define WEIGHT_IDLEPRIO 2
  673. #define WMULT_IDLEPRIO (1 << 31)
  674. /*
  675. * Nice levels are multiplicative, with a gentle 10% change for every
  676. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  677. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  678. * that remained on nice 0.
  679. *
  680. * The "10% effect" is relative and cumulative: from _any_ nice level,
  681. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  682. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  683. * If a task goes up by ~10% and another task goes down by ~10% then
  684. * the relative distance between them is ~25%.)
  685. */
  686. static const int prio_to_weight[40] = {
  687. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  688. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  689. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  690. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  691. /* 0 */ 1024, 820, 655, 526, 423,
  692. /* 5 */ 335, 272, 215, 172, 137,
  693. /* 10 */ 110, 87, 70, 56, 45,
  694. /* 15 */ 36, 29, 23, 18, 15,
  695. };
  696. /*
  697. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  698. *
  699. * In cases where the weight does not change often, we can use the
  700. * precalculated inverse to speed up arithmetics by turning divisions
  701. * into multiplications:
  702. */
  703. static const u32 prio_to_wmult[40] = {
  704. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  705. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  706. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  707. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  708. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  709. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  710. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  711. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  712. };
  713. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  714. /*
  715. * runqueue iterator, to support SMP load-balancing between different
  716. * scheduling classes, without having to expose their internal data
  717. * structures to the load-balancing proper:
  718. */
  719. struct rq_iterator {
  720. void *arg;
  721. struct task_struct *(*start)(void *);
  722. struct task_struct *(*next)(void *);
  723. };
  724. #ifdef CONFIG_SMP
  725. static unsigned long
  726. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  727. unsigned long max_load_move, struct sched_domain *sd,
  728. enum cpu_idle_type idle, int *all_pinned,
  729. int *this_best_prio, struct rq_iterator *iterator);
  730. static int
  731. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  732. struct sched_domain *sd, enum cpu_idle_type idle,
  733. struct rq_iterator *iterator);
  734. #endif
  735. #include "sched_stats.h"
  736. #include "sched_idletask.c"
  737. #include "sched_fair.c"
  738. #include "sched_rt.c"
  739. #ifdef CONFIG_SCHED_DEBUG
  740. # include "sched_debug.c"
  741. #endif
  742. #define sched_class_highest (&rt_sched_class)
  743. /*
  744. * Update delta_exec, delta_fair fields for rq.
  745. *
  746. * delta_fair clock advances at a rate inversely proportional to
  747. * total load (rq->load.weight) on the runqueue, while
  748. * delta_exec advances at the same rate as wall-clock (provided
  749. * cpu is not idle).
  750. *
  751. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  752. * runqueue over any given interval. This (smoothened) load is used
  753. * during load balance.
  754. *
  755. * This function is called /before/ updating rq->load
  756. * and when switching tasks.
  757. */
  758. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  759. {
  760. update_load_add(&rq->load, p->se.load.weight);
  761. }
  762. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  763. {
  764. update_load_sub(&rq->load, p->se.load.weight);
  765. }
  766. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  767. {
  768. rq->nr_running++;
  769. inc_load(rq, p);
  770. }
  771. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  772. {
  773. rq->nr_running--;
  774. dec_load(rq, p);
  775. }
  776. static void set_load_weight(struct task_struct *p)
  777. {
  778. if (task_has_rt_policy(p)) {
  779. p->se.load.weight = prio_to_weight[0] * 2;
  780. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  781. return;
  782. }
  783. /*
  784. * SCHED_IDLE tasks get minimal weight:
  785. */
  786. if (p->policy == SCHED_IDLE) {
  787. p->se.load.weight = WEIGHT_IDLEPRIO;
  788. p->se.load.inv_weight = WMULT_IDLEPRIO;
  789. return;
  790. }
  791. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  792. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  793. }
  794. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  795. {
  796. sched_info_queued(p);
  797. p->sched_class->enqueue_task(rq, p, wakeup);
  798. p->se.on_rq = 1;
  799. }
  800. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  801. {
  802. p->sched_class->dequeue_task(rq, p, sleep);
  803. p->se.on_rq = 0;
  804. }
  805. /*
  806. * __normal_prio - return the priority that is based on the static prio
  807. */
  808. static inline int __normal_prio(struct task_struct *p)
  809. {
  810. return p->static_prio;
  811. }
  812. /*
  813. * Calculate the expected normal priority: i.e. priority
  814. * without taking RT-inheritance into account. Might be
  815. * boosted by interactivity modifiers. Changes upon fork,
  816. * setprio syscalls, and whenever the interactivity
  817. * estimator recalculates.
  818. */
  819. static inline int normal_prio(struct task_struct *p)
  820. {
  821. int prio;
  822. if (task_has_rt_policy(p))
  823. prio = MAX_RT_PRIO-1 - p->rt_priority;
  824. else
  825. prio = __normal_prio(p);
  826. return prio;
  827. }
  828. /*
  829. * Calculate the current priority, i.e. the priority
  830. * taken into account by the scheduler. This value might
  831. * be boosted by RT tasks, or might be boosted by
  832. * interactivity modifiers. Will be RT if the task got
  833. * RT-boosted. If not then it returns p->normal_prio.
  834. */
  835. static int effective_prio(struct task_struct *p)
  836. {
  837. p->normal_prio = normal_prio(p);
  838. /*
  839. * If we are RT tasks or we were boosted to RT priority,
  840. * keep the priority unchanged. Otherwise, update priority
  841. * to the normal priority:
  842. */
  843. if (!rt_prio(p->prio))
  844. return p->normal_prio;
  845. return p->prio;
  846. }
  847. /*
  848. * activate_task - move a task to the runqueue.
  849. */
  850. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  851. {
  852. if (p->state == TASK_UNINTERRUPTIBLE)
  853. rq->nr_uninterruptible--;
  854. enqueue_task(rq, p, wakeup);
  855. inc_nr_running(p, rq);
  856. }
  857. /*
  858. * deactivate_task - remove a task from the runqueue.
  859. */
  860. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  861. {
  862. if (p->state == TASK_UNINTERRUPTIBLE)
  863. rq->nr_uninterruptible++;
  864. dequeue_task(rq, p, sleep);
  865. dec_nr_running(p, rq);
  866. }
  867. /**
  868. * task_curr - is this task currently executing on a CPU?
  869. * @p: the task in question.
  870. */
  871. inline int task_curr(const struct task_struct *p)
  872. {
  873. return cpu_curr(task_cpu(p)) == p;
  874. }
  875. /* Used instead of source_load when we know the type == 0 */
  876. unsigned long weighted_cpuload(const int cpu)
  877. {
  878. return cpu_rq(cpu)->load.weight;
  879. }
  880. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  881. {
  882. #ifdef CONFIG_SMP
  883. task_thread_info(p)->cpu = cpu;
  884. #endif
  885. set_task_cfs_rq(p);
  886. }
  887. #ifdef CONFIG_SMP
  888. /*
  889. * Is this task likely cache-hot:
  890. */
  891. static inline int
  892. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  893. {
  894. s64 delta;
  895. if (p->sched_class != &fair_sched_class)
  896. return 0;
  897. if (sysctl_sched_migration_cost == -1)
  898. return 1;
  899. if (sysctl_sched_migration_cost == 0)
  900. return 0;
  901. delta = now - p->se.exec_start;
  902. return delta < (s64)sysctl_sched_migration_cost;
  903. }
  904. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  905. {
  906. int old_cpu = task_cpu(p);
  907. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  908. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  909. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  910. u64 clock_offset;
  911. clock_offset = old_rq->clock - new_rq->clock;
  912. #ifdef CONFIG_SCHEDSTATS
  913. if (p->se.wait_start)
  914. p->se.wait_start -= clock_offset;
  915. if (p->se.sleep_start)
  916. p->se.sleep_start -= clock_offset;
  917. if (p->se.block_start)
  918. p->se.block_start -= clock_offset;
  919. if (old_cpu != new_cpu) {
  920. schedstat_inc(p, se.nr_migrations);
  921. if (task_hot(p, old_rq->clock, NULL))
  922. schedstat_inc(p, se.nr_forced2_migrations);
  923. }
  924. #endif
  925. p->se.vruntime -= old_cfsrq->min_vruntime -
  926. new_cfsrq->min_vruntime;
  927. __set_task_cpu(p, new_cpu);
  928. }
  929. struct migration_req {
  930. struct list_head list;
  931. struct task_struct *task;
  932. int dest_cpu;
  933. struct completion done;
  934. };
  935. /*
  936. * The task's runqueue lock must be held.
  937. * Returns true if you have to wait for migration thread.
  938. */
  939. static int
  940. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  941. {
  942. struct rq *rq = task_rq(p);
  943. /*
  944. * If the task is not on a runqueue (and not running), then
  945. * it is sufficient to simply update the task's cpu field.
  946. */
  947. if (!p->se.on_rq && !task_running(rq, p)) {
  948. set_task_cpu(p, dest_cpu);
  949. return 0;
  950. }
  951. init_completion(&req->done);
  952. req->task = p;
  953. req->dest_cpu = dest_cpu;
  954. list_add(&req->list, &rq->migration_queue);
  955. return 1;
  956. }
  957. /*
  958. * wait_task_inactive - wait for a thread to unschedule.
  959. *
  960. * The caller must ensure that the task *will* unschedule sometime soon,
  961. * else this function might spin for a *long* time. This function can't
  962. * be called with interrupts off, or it may introduce deadlock with
  963. * smp_call_function() if an IPI is sent by the same process we are
  964. * waiting to become inactive.
  965. */
  966. void wait_task_inactive(struct task_struct *p)
  967. {
  968. unsigned long flags;
  969. int running, on_rq;
  970. struct rq *rq;
  971. for (;;) {
  972. /*
  973. * We do the initial early heuristics without holding
  974. * any task-queue locks at all. We'll only try to get
  975. * the runqueue lock when things look like they will
  976. * work out!
  977. */
  978. rq = task_rq(p);
  979. /*
  980. * If the task is actively running on another CPU
  981. * still, just relax and busy-wait without holding
  982. * any locks.
  983. *
  984. * NOTE! Since we don't hold any locks, it's not
  985. * even sure that "rq" stays as the right runqueue!
  986. * But we don't care, since "task_running()" will
  987. * return false if the runqueue has changed and p
  988. * is actually now running somewhere else!
  989. */
  990. while (task_running(rq, p))
  991. cpu_relax();
  992. /*
  993. * Ok, time to look more closely! We need the rq
  994. * lock now, to be *sure*. If we're wrong, we'll
  995. * just go back and repeat.
  996. */
  997. rq = task_rq_lock(p, &flags);
  998. running = task_running(rq, p);
  999. on_rq = p->se.on_rq;
  1000. task_rq_unlock(rq, &flags);
  1001. /*
  1002. * Was it really running after all now that we
  1003. * checked with the proper locks actually held?
  1004. *
  1005. * Oops. Go back and try again..
  1006. */
  1007. if (unlikely(running)) {
  1008. cpu_relax();
  1009. continue;
  1010. }
  1011. /*
  1012. * It's not enough that it's not actively running,
  1013. * it must be off the runqueue _entirely_, and not
  1014. * preempted!
  1015. *
  1016. * So if it wa still runnable (but just not actively
  1017. * running right now), it's preempted, and we should
  1018. * yield - it could be a while.
  1019. */
  1020. if (unlikely(on_rq)) {
  1021. schedule_timeout_uninterruptible(1);
  1022. continue;
  1023. }
  1024. /*
  1025. * Ahh, all good. It wasn't running, and it wasn't
  1026. * runnable, which means that it will never become
  1027. * running in the future either. We're all done!
  1028. */
  1029. break;
  1030. }
  1031. }
  1032. /***
  1033. * kick_process - kick a running thread to enter/exit the kernel
  1034. * @p: the to-be-kicked thread
  1035. *
  1036. * Cause a process which is running on another CPU to enter
  1037. * kernel-mode, without any delay. (to get signals handled.)
  1038. *
  1039. * NOTE: this function doesnt have to take the runqueue lock,
  1040. * because all it wants to ensure is that the remote task enters
  1041. * the kernel. If the IPI races and the task has been migrated
  1042. * to another CPU then no harm is done and the purpose has been
  1043. * achieved as well.
  1044. */
  1045. void kick_process(struct task_struct *p)
  1046. {
  1047. int cpu;
  1048. preempt_disable();
  1049. cpu = task_cpu(p);
  1050. if ((cpu != smp_processor_id()) && task_curr(p))
  1051. smp_send_reschedule(cpu);
  1052. preempt_enable();
  1053. }
  1054. /*
  1055. * Return a low guess at the load of a migration-source cpu weighted
  1056. * according to the scheduling class and "nice" value.
  1057. *
  1058. * We want to under-estimate the load of migration sources, to
  1059. * balance conservatively.
  1060. */
  1061. static unsigned long source_load(int cpu, int type)
  1062. {
  1063. struct rq *rq = cpu_rq(cpu);
  1064. unsigned long total = weighted_cpuload(cpu);
  1065. if (type == 0)
  1066. return total;
  1067. return min(rq->cpu_load[type-1], total);
  1068. }
  1069. /*
  1070. * Return a high guess at the load of a migration-target cpu weighted
  1071. * according to the scheduling class and "nice" value.
  1072. */
  1073. static unsigned long target_load(int cpu, int type)
  1074. {
  1075. struct rq *rq = cpu_rq(cpu);
  1076. unsigned long total = weighted_cpuload(cpu);
  1077. if (type == 0)
  1078. return total;
  1079. return max(rq->cpu_load[type-1], total);
  1080. }
  1081. /*
  1082. * Return the average load per task on the cpu's run queue
  1083. */
  1084. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1085. {
  1086. struct rq *rq = cpu_rq(cpu);
  1087. unsigned long total = weighted_cpuload(cpu);
  1088. unsigned long n = rq->nr_running;
  1089. return n ? total / n : SCHED_LOAD_SCALE;
  1090. }
  1091. /*
  1092. * find_idlest_group finds and returns the least busy CPU group within the
  1093. * domain.
  1094. */
  1095. static struct sched_group *
  1096. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1097. {
  1098. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1099. unsigned long min_load = ULONG_MAX, this_load = 0;
  1100. int load_idx = sd->forkexec_idx;
  1101. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1102. do {
  1103. unsigned long load, avg_load;
  1104. int local_group;
  1105. int i;
  1106. /* Skip over this group if it has no CPUs allowed */
  1107. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1108. continue;
  1109. local_group = cpu_isset(this_cpu, group->cpumask);
  1110. /* Tally up the load of all CPUs in the group */
  1111. avg_load = 0;
  1112. for_each_cpu_mask(i, group->cpumask) {
  1113. /* Bias balancing toward cpus of our domain */
  1114. if (local_group)
  1115. load = source_load(i, load_idx);
  1116. else
  1117. load = target_load(i, load_idx);
  1118. avg_load += load;
  1119. }
  1120. /* Adjust by relative CPU power of the group */
  1121. avg_load = sg_div_cpu_power(group,
  1122. avg_load * SCHED_LOAD_SCALE);
  1123. if (local_group) {
  1124. this_load = avg_load;
  1125. this = group;
  1126. } else if (avg_load < min_load) {
  1127. min_load = avg_load;
  1128. idlest = group;
  1129. }
  1130. } while (group = group->next, group != sd->groups);
  1131. if (!idlest || 100*this_load < imbalance*min_load)
  1132. return NULL;
  1133. return idlest;
  1134. }
  1135. /*
  1136. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1137. */
  1138. static int
  1139. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1140. {
  1141. cpumask_t tmp;
  1142. unsigned long load, min_load = ULONG_MAX;
  1143. int idlest = -1;
  1144. int i;
  1145. /* Traverse only the allowed CPUs */
  1146. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1147. for_each_cpu_mask(i, tmp) {
  1148. load = weighted_cpuload(i);
  1149. if (load < min_load || (load == min_load && i == this_cpu)) {
  1150. min_load = load;
  1151. idlest = i;
  1152. }
  1153. }
  1154. return idlest;
  1155. }
  1156. /*
  1157. * sched_balance_self: balance the current task (running on cpu) in domains
  1158. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1159. * SD_BALANCE_EXEC.
  1160. *
  1161. * Balance, ie. select the least loaded group.
  1162. *
  1163. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1164. *
  1165. * preempt must be disabled.
  1166. */
  1167. static int sched_balance_self(int cpu, int flag)
  1168. {
  1169. struct task_struct *t = current;
  1170. struct sched_domain *tmp, *sd = NULL;
  1171. for_each_domain(cpu, tmp) {
  1172. /*
  1173. * If power savings logic is enabled for a domain, stop there.
  1174. */
  1175. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1176. break;
  1177. if (tmp->flags & flag)
  1178. sd = tmp;
  1179. }
  1180. while (sd) {
  1181. cpumask_t span;
  1182. struct sched_group *group;
  1183. int new_cpu, weight;
  1184. if (!(sd->flags & flag)) {
  1185. sd = sd->child;
  1186. continue;
  1187. }
  1188. span = sd->span;
  1189. group = find_idlest_group(sd, t, cpu);
  1190. if (!group) {
  1191. sd = sd->child;
  1192. continue;
  1193. }
  1194. new_cpu = find_idlest_cpu(group, t, cpu);
  1195. if (new_cpu == -1 || new_cpu == cpu) {
  1196. /* Now try balancing at a lower domain level of cpu */
  1197. sd = sd->child;
  1198. continue;
  1199. }
  1200. /* Now try balancing at a lower domain level of new_cpu */
  1201. cpu = new_cpu;
  1202. sd = NULL;
  1203. weight = cpus_weight(span);
  1204. for_each_domain(cpu, tmp) {
  1205. if (weight <= cpus_weight(tmp->span))
  1206. break;
  1207. if (tmp->flags & flag)
  1208. sd = tmp;
  1209. }
  1210. /* while loop will break here if sd == NULL */
  1211. }
  1212. return cpu;
  1213. }
  1214. #endif /* CONFIG_SMP */
  1215. /*
  1216. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1217. * not idle and an idle cpu is available. The span of cpus to
  1218. * search starts with cpus closest then further out as needed,
  1219. * so we always favor a closer, idle cpu.
  1220. *
  1221. * Returns the CPU we should wake onto.
  1222. */
  1223. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1224. static int wake_idle(int cpu, struct task_struct *p)
  1225. {
  1226. cpumask_t tmp;
  1227. struct sched_domain *sd;
  1228. int i;
  1229. /*
  1230. * If it is idle, then it is the best cpu to run this task.
  1231. *
  1232. * This cpu is also the best, if it has more than one task already.
  1233. * Siblings must be also busy(in most cases) as they didn't already
  1234. * pickup the extra load from this cpu and hence we need not check
  1235. * sibling runqueue info. This will avoid the checks and cache miss
  1236. * penalities associated with that.
  1237. */
  1238. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1239. return cpu;
  1240. for_each_domain(cpu, sd) {
  1241. if (sd->flags & SD_WAKE_IDLE) {
  1242. cpus_and(tmp, sd->span, p->cpus_allowed);
  1243. for_each_cpu_mask(i, tmp) {
  1244. if (idle_cpu(i)) {
  1245. if (i != task_cpu(p)) {
  1246. schedstat_inc(p,
  1247. se.nr_wakeups_idle);
  1248. }
  1249. return i;
  1250. }
  1251. }
  1252. } else {
  1253. break;
  1254. }
  1255. }
  1256. return cpu;
  1257. }
  1258. #else
  1259. static inline int wake_idle(int cpu, struct task_struct *p)
  1260. {
  1261. return cpu;
  1262. }
  1263. #endif
  1264. /***
  1265. * try_to_wake_up - wake up a thread
  1266. * @p: the to-be-woken-up thread
  1267. * @state: the mask of task states that can be woken
  1268. * @sync: do a synchronous wakeup?
  1269. *
  1270. * Put it on the run-queue if it's not already there. The "current"
  1271. * thread is always on the run-queue (except when the actual
  1272. * re-schedule is in progress), and as such you're allowed to do
  1273. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1274. * runnable without the overhead of this.
  1275. *
  1276. * returns failure only if the task is already active.
  1277. */
  1278. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1279. {
  1280. int cpu, orig_cpu, this_cpu, success = 0;
  1281. unsigned long flags;
  1282. long old_state;
  1283. struct rq *rq;
  1284. #ifdef CONFIG_SMP
  1285. struct sched_domain *sd, *this_sd = NULL;
  1286. unsigned long load, this_load;
  1287. int new_cpu;
  1288. #endif
  1289. rq = task_rq_lock(p, &flags);
  1290. old_state = p->state;
  1291. if (!(old_state & state))
  1292. goto out;
  1293. if (p->se.on_rq)
  1294. goto out_running;
  1295. cpu = task_cpu(p);
  1296. orig_cpu = cpu;
  1297. this_cpu = smp_processor_id();
  1298. #ifdef CONFIG_SMP
  1299. if (unlikely(task_running(rq, p)))
  1300. goto out_activate;
  1301. new_cpu = cpu;
  1302. schedstat_inc(rq, ttwu_count);
  1303. if (cpu == this_cpu) {
  1304. schedstat_inc(rq, ttwu_local);
  1305. goto out_set_cpu;
  1306. }
  1307. for_each_domain(this_cpu, sd) {
  1308. if (cpu_isset(cpu, sd->span)) {
  1309. schedstat_inc(sd, ttwu_wake_remote);
  1310. this_sd = sd;
  1311. break;
  1312. }
  1313. }
  1314. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1315. goto out_set_cpu;
  1316. /*
  1317. * Check for affine wakeup and passive balancing possibilities.
  1318. */
  1319. if (this_sd) {
  1320. int idx = this_sd->wake_idx;
  1321. unsigned int imbalance;
  1322. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1323. load = source_load(cpu, idx);
  1324. this_load = target_load(this_cpu, idx);
  1325. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1326. if (this_sd->flags & SD_WAKE_AFFINE) {
  1327. unsigned long tl = this_load;
  1328. unsigned long tl_per_task;
  1329. /*
  1330. * Attract cache-cold tasks on sync wakeups:
  1331. */
  1332. if (sync && !task_hot(p, rq->clock, this_sd))
  1333. goto out_set_cpu;
  1334. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1335. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1336. /*
  1337. * If sync wakeup then subtract the (maximum possible)
  1338. * effect of the currently running task from the load
  1339. * of the current CPU:
  1340. */
  1341. if (sync)
  1342. tl -= current->se.load.weight;
  1343. if ((tl <= load &&
  1344. tl + target_load(cpu, idx) <= tl_per_task) ||
  1345. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1346. /*
  1347. * This domain has SD_WAKE_AFFINE and
  1348. * p is cache cold in this domain, and
  1349. * there is no bad imbalance.
  1350. */
  1351. schedstat_inc(this_sd, ttwu_move_affine);
  1352. schedstat_inc(p, se.nr_wakeups_affine);
  1353. goto out_set_cpu;
  1354. }
  1355. }
  1356. /*
  1357. * Start passive balancing when half the imbalance_pct
  1358. * limit is reached.
  1359. */
  1360. if (this_sd->flags & SD_WAKE_BALANCE) {
  1361. if (imbalance*this_load <= 100*load) {
  1362. schedstat_inc(this_sd, ttwu_move_balance);
  1363. schedstat_inc(p, se.nr_wakeups_passive);
  1364. goto out_set_cpu;
  1365. }
  1366. }
  1367. }
  1368. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1369. out_set_cpu:
  1370. new_cpu = wake_idle(new_cpu, p);
  1371. if (new_cpu != cpu) {
  1372. set_task_cpu(p, new_cpu);
  1373. task_rq_unlock(rq, &flags);
  1374. /* might preempt at this point */
  1375. rq = task_rq_lock(p, &flags);
  1376. old_state = p->state;
  1377. if (!(old_state & state))
  1378. goto out;
  1379. if (p->se.on_rq)
  1380. goto out_running;
  1381. this_cpu = smp_processor_id();
  1382. cpu = task_cpu(p);
  1383. }
  1384. out_activate:
  1385. #endif /* CONFIG_SMP */
  1386. schedstat_inc(p, se.nr_wakeups);
  1387. if (sync)
  1388. schedstat_inc(p, se.nr_wakeups_sync);
  1389. if (orig_cpu != cpu)
  1390. schedstat_inc(p, se.nr_wakeups_migrate);
  1391. if (cpu == this_cpu)
  1392. schedstat_inc(p, se.nr_wakeups_local);
  1393. else
  1394. schedstat_inc(p, se.nr_wakeups_remote);
  1395. update_rq_clock(rq);
  1396. activate_task(rq, p, 1);
  1397. check_preempt_curr(rq, p);
  1398. success = 1;
  1399. out_running:
  1400. p->state = TASK_RUNNING;
  1401. out:
  1402. task_rq_unlock(rq, &flags);
  1403. return success;
  1404. }
  1405. int fastcall wake_up_process(struct task_struct *p)
  1406. {
  1407. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1408. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1409. }
  1410. EXPORT_SYMBOL(wake_up_process);
  1411. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1412. {
  1413. return try_to_wake_up(p, state, 0);
  1414. }
  1415. /*
  1416. * Perform scheduler related setup for a newly forked process p.
  1417. * p is forked by current.
  1418. *
  1419. * __sched_fork() is basic setup used by init_idle() too:
  1420. */
  1421. static void __sched_fork(struct task_struct *p)
  1422. {
  1423. p->se.exec_start = 0;
  1424. p->se.sum_exec_runtime = 0;
  1425. p->se.prev_sum_exec_runtime = 0;
  1426. #ifdef CONFIG_SCHEDSTATS
  1427. p->se.wait_start = 0;
  1428. p->se.sum_sleep_runtime = 0;
  1429. p->se.sleep_start = 0;
  1430. p->se.block_start = 0;
  1431. p->se.sleep_max = 0;
  1432. p->se.block_max = 0;
  1433. p->se.exec_max = 0;
  1434. p->se.slice_max = 0;
  1435. p->se.wait_max = 0;
  1436. #endif
  1437. INIT_LIST_HEAD(&p->run_list);
  1438. p->se.on_rq = 0;
  1439. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1440. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1441. #endif
  1442. /*
  1443. * We mark the process as running here, but have not actually
  1444. * inserted it onto the runqueue yet. This guarantees that
  1445. * nobody will actually run it, and a signal or other external
  1446. * event cannot wake it up and insert it on the runqueue either.
  1447. */
  1448. p->state = TASK_RUNNING;
  1449. }
  1450. /*
  1451. * fork()/clone()-time setup:
  1452. */
  1453. void sched_fork(struct task_struct *p, int clone_flags)
  1454. {
  1455. int cpu = get_cpu();
  1456. __sched_fork(p);
  1457. #ifdef CONFIG_SMP
  1458. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1459. #endif
  1460. set_task_cpu(p, cpu);
  1461. /*
  1462. * Make sure we do not leak PI boosting priority to the child:
  1463. */
  1464. p->prio = current->normal_prio;
  1465. if (!rt_prio(p->prio))
  1466. p->sched_class = &fair_sched_class;
  1467. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1468. if (likely(sched_info_on()))
  1469. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1470. #endif
  1471. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1472. p->oncpu = 0;
  1473. #endif
  1474. #ifdef CONFIG_PREEMPT
  1475. /* Want to start with kernel preemption disabled. */
  1476. task_thread_info(p)->preempt_count = 1;
  1477. #endif
  1478. put_cpu();
  1479. }
  1480. /*
  1481. * wake_up_new_task - wake up a newly created task for the first time.
  1482. *
  1483. * This function will do some initial scheduler statistics housekeeping
  1484. * that must be done for every newly created context, then puts the task
  1485. * on the runqueue and wakes it.
  1486. */
  1487. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1488. {
  1489. unsigned long flags;
  1490. struct rq *rq;
  1491. rq = task_rq_lock(p, &flags);
  1492. BUG_ON(p->state != TASK_RUNNING);
  1493. update_rq_clock(rq);
  1494. p->prio = effective_prio(p);
  1495. if (!p->sched_class->task_new || !current->se.on_rq) {
  1496. activate_task(rq, p, 0);
  1497. } else {
  1498. /*
  1499. * Let the scheduling class do new task startup
  1500. * management (if any):
  1501. */
  1502. p->sched_class->task_new(rq, p);
  1503. inc_nr_running(p, rq);
  1504. }
  1505. check_preempt_curr(rq, p);
  1506. task_rq_unlock(rq, &flags);
  1507. }
  1508. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1509. /**
  1510. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1511. * @notifier: notifier struct to register
  1512. */
  1513. void preempt_notifier_register(struct preempt_notifier *notifier)
  1514. {
  1515. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1516. }
  1517. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1518. /**
  1519. * preempt_notifier_unregister - no longer interested in preemption notifications
  1520. * @notifier: notifier struct to unregister
  1521. *
  1522. * This is safe to call from within a preemption notifier.
  1523. */
  1524. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1525. {
  1526. hlist_del(&notifier->link);
  1527. }
  1528. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1529. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1530. {
  1531. struct preempt_notifier *notifier;
  1532. struct hlist_node *node;
  1533. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1534. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1535. }
  1536. static void
  1537. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1538. struct task_struct *next)
  1539. {
  1540. struct preempt_notifier *notifier;
  1541. struct hlist_node *node;
  1542. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1543. notifier->ops->sched_out(notifier, next);
  1544. }
  1545. #else
  1546. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1547. {
  1548. }
  1549. static void
  1550. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1551. struct task_struct *next)
  1552. {
  1553. }
  1554. #endif
  1555. /**
  1556. * prepare_task_switch - prepare to switch tasks
  1557. * @rq: the runqueue preparing to switch
  1558. * @prev: the current task that is being switched out
  1559. * @next: the task we are going to switch to.
  1560. *
  1561. * This is called with the rq lock held and interrupts off. It must
  1562. * be paired with a subsequent finish_task_switch after the context
  1563. * switch.
  1564. *
  1565. * prepare_task_switch sets up locking and calls architecture specific
  1566. * hooks.
  1567. */
  1568. static inline void
  1569. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1570. struct task_struct *next)
  1571. {
  1572. fire_sched_out_preempt_notifiers(prev, next);
  1573. prepare_lock_switch(rq, next);
  1574. prepare_arch_switch(next);
  1575. }
  1576. /**
  1577. * finish_task_switch - clean up after a task-switch
  1578. * @rq: runqueue associated with task-switch
  1579. * @prev: the thread we just switched away from.
  1580. *
  1581. * finish_task_switch must be called after the context switch, paired
  1582. * with a prepare_task_switch call before the context switch.
  1583. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1584. * and do any other architecture-specific cleanup actions.
  1585. *
  1586. * Note that we may have delayed dropping an mm in context_switch(). If
  1587. * so, we finish that here outside of the runqueue lock. (Doing it
  1588. * with the lock held can cause deadlocks; see schedule() for
  1589. * details.)
  1590. */
  1591. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1592. __releases(rq->lock)
  1593. {
  1594. struct mm_struct *mm = rq->prev_mm;
  1595. long prev_state;
  1596. rq->prev_mm = NULL;
  1597. /*
  1598. * A task struct has one reference for the use as "current".
  1599. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1600. * schedule one last time. The schedule call will never return, and
  1601. * the scheduled task must drop that reference.
  1602. * The test for TASK_DEAD must occur while the runqueue locks are
  1603. * still held, otherwise prev could be scheduled on another cpu, die
  1604. * there before we look at prev->state, and then the reference would
  1605. * be dropped twice.
  1606. * Manfred Spraul <manfred@colorfullife.com>
  1607. */
  1608. prev_state = prev->state;
  1609. finish_arch_switch(prev);
  1610. finish_lock_switch(rq, prev);
  1611. fire_sched_in_preempt_notifiers(current);
  1612. if (mm)
  1613. mmdrop(mm);
  1614. if (unlikely(prev_state == TASK_DEAD)) {
  1615. /*
  1616. * Remove function-return probe instances associated with this
  1617. * task and put them back on the free list.
  1618. */
  1619. kprobe_flush_task(prev);
  1620. put_task_struct(prev);
  1621. }
  1622. }
  1623. /**
  1624. * schedule_tail - first thing a freshly forked thread must call.
  1625. * @prev: the thread we just switched away from.
  1626. */
  1627. asmlinkage void schedule_tail(struct task_struct *prev)
  1628. __releases(rq->lock)
  1629. {
  1630. struct rq *rq = this_rq();
  1631. finish_task_switch(rq, prev);
  1632. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1633. /* In this case, finish_task_switch does not reenable preemption */
  1634. preempt_enable();
  1635. #endif
  1636. if (current->set_child_tid)
  1637. put_user(task_pid_vnr(current), current->set_child_tid);
  1638. }
  1639. /*
  1640. * context_switch - switch to the new MM and the new
  1641. * thread's register state.
  1642. */
  1643. static inline void
  1644. context_switch(struct rq *rq, struct task_struct *prev,
  1645. struct task_struct *next)
  1646. {
  1647. struct mm_struct *mm, *oldmm;
  1648. prepare_task_switch(rq, prev, next);
  1649. mm = next->mm;
  1650. oldmm = prev->active_mm;
  1651. /*
  1652. * For paravirt, this is coupled with an exit in switch_to to
  1653. * combine the page table reload and the switch backend into
  1654. * one hypercall.
  1655. */
  1656. arch_enter_lazy_cpu_mode();
  1657. if (unlikely(!mm)) {
  1658. next->active_mm = oldmm;
  1659. atomic_inc(&oldmm->mm_count);
  1660. enter_lazy_tlb(oldmm, next);
  1661. } else
  1662. switch_mm(oldmm, mm, next);
  1663. if (unlikely(!prev->mm)) {
  1664. prev->active_mm = NULL;
  1665. rq->prev_mm = oldmm;
  1666. }
  1667. /*
  1668. * Since the runqueue lock will be released by the next
  1669. * task (which is an invalid locking op but in the case
  1670. * of the scheduler it's an obvious special-case), so we
  1671. * do an early lockdep release here:
  1672. */
  1673. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1674. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1675. #endif
  1676. /* Here we just switch the register state and the stack. */
  1677. switch_to(prev, next, prev);
  1678. barrier();
  1679. /*
  1680. * this_rq must be evaluated again because prev may have moved
  1681. * CPUs since it called schedule(), thus the 'rq' on its stack
  1682. * frame will be invalid.
  1683. */
  1684. finish_task_switch(this_rq(), prev);
  1685. }
  1686. /*
  1687. * nr_running, nr_uninterruptible and nr_context_switches:
  1688. *
  1689. * externally visible scheduler statistics: current number of runnable
  1690. * threads, current number of uninterruptible-sleeping threads, total
  1691. * number of context switches performed since bootup.
  1692. */
  1693. unsigned long nr_running(void)
  1694. {
  1695. unsigned long i, sum = 0;
  1696. for_each_online_cpu(i)
  1697. sum += cpu_rq(i)->nr_running;
  1698. return sum;
  1699. }
  1700. unsigned long nr_uninterruptible(void)
  1701. {
  1702. unsigned long i, sum = 0;
  1703. for_each_possible_cpu(i)
  1704. sum += cpu_rq(i)->nr_uninterruptible;
  1705. /*
  1706. * Since we read the counters lockless, it might be slightly
  1707. * inaccurate. Do not allow it to go below zero though:
  1708. */
  1709. if (unlikely((long)sum < 0))
  1710. sum = 0;
  1711. return sum;
  1712. }
  1713. unsigned long long nr_context_switches(void)
  1714. {
  1715. int i;
  1716. unsigned long long sum = 0;
  1717. for_each_possible_cpu(i)
  1718. sum += cpu_rq(i)->nr_switches;
  1719. return sum;
  1720. }
  1721. unsigned long nr_iowait(void)
  1722. {
  1723. unsigned long i, sum = 0;
  1724. for_each_possible_cpu(i)
  1725. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1726. return sum;
  1727. }
  1728. unsigned long nr_active(void)
  1729. {
  1730. unsigned long i, running = 0, uninterruptible = 0;
  1731. for_each_online_cpu(i) {
  1732. running += cpu_rq(i)->nr_running;
  1733. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1734. }
  1735. if (unlikely((long)uninterruptible < 0))
  1736. uninterruptible = 0;
  1737. return running + uninterruptible;
  1738. }
  1739. /*
  1740. * Update rq->cpu_load[] statistics. This function is usually called every
  1741. * scheduler tick (TICK_NSEC).
  1742. */
  1743. static void update_cpu_load(struct rq *this_rq)
  1744. {
  1745. unsigned long this_load = this_rq->load.weight;
  1746. int i, scale;
  1747. this_rq->nr_load_updates++;
  1748. /* Update our load: */
  1749. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1750. unsigned long old_load, new_load;
  1751. /* scale is effectively 1 << i now, and >> i divides by scale */
  1752. old_load = this_rq->cpu_load[i];
  1753. new_load = this_load;
  1754. /*
  1755. * Round up the averaging division if load is increasing. This
  1756. * prevents us from getting stuck on 9 if the load is 10, for
  1757. * example.
  1758. */
  1759. if (new_load > old_load)
  1760. new_load += scale-1;
  1761. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1762. }
  1763. }
  1764. #ifdef CONFIG_SMP
  1765. /*
  1766. * double_rq_lock - safely lock two runqueues
  1767. *
  1768. * Note this does not disable interrupts like task_rq_lock,
  1769. * you need to do so manually before calling.
  1770. */
  1771. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1772. __acquires(rq1->lock)
  1773. __acquires(rq2->lock)
  1774. {
  1775. BUG_ON(!irqs_disabled());
  1776. if (rq1 == rq2) {
  1777. spin_lock(&rq1->lock);
  1778. __acquire(rq2->lock); /* Fake it out ;) */
  1779. } else {
  1780. if (rq1 < rq2) {
  1781. spin_lock(&rq1->lock);
  1782. spin_lock(&rq2->lock);
  1783. } else {
  1784. spin_lock(&rq2->lock);
  1785. spin_lock(&rq1->lock);
  1786. }
  1787. }
  1788. update_rq_clock(rq1);
  1789. update_rq_clock(rq2);
  1790. }
  1791. /*
  1792. * double_rq_unlock - safely unlock two runqueues
  1793. *
  1794. * Note this does not restore interrupts like task_rq_unlock,
  1795. * you need to do so manually after calling.
  1796. */
  1797. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1798. __releases(rq1->lock)
  1799. __releases(rq2->lock)
  1800. {
  1801. spin_unlock(&rq1->lock);
  1802. if (rq1 != rq2)
  1803. spin_unlock(&rq2->lock);
  1804. else
  1805. __release(rq2->lock);
  1806. }
  1807. /*
  1808. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1809. */
  1810. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1811. __releases(this_rq->lock)
  1812. __acquires(busiest->lock)
  1813. __acquires(this_rq->lock)
  1814. {
  1815. if (unlikely(!irqs_disabled())) {
  1816. /* printk() doesn't work good under rq->lock */
  1817. spin_unlock(&this_rq->lock);
  1818. BUG_ON(1);
  1819. }
  1820. if (unlikely(!spin_trylock(&busiest->lock))) {
  1821. if (busiest < this_rq) {
  1822. spin_unlock(&this_rq->lock);
  1823. spin_lock(&busiest->lock);
  1824. spin_lock(&this_rq->lock);
  1825. } else
  1826. spin_lock(&busiest->lock);
  1827. }
  1828. }
  1829. /*
  1830. * If dest_cpu is allowed for this process, migrate the task to it.
  1831. * This is accomplished by forcing the cpu_allowed mask to only
  1832. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1833. * the cpu_allowed mask is restored.
  1834. */
  1835. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1836. {
  1837. struct migration_req req;
  1838. unsigned long flags;
  1839. struct rq *rq;
  1840. rq = task_rq_lock(p, &flags);
  1841. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1842. || unlikely(cpu_is_offline(dest_cpu)))
  1843. goto out;
  1844. /* force the process onto the specified CPU */
  1845. if (migrate_task(p, dest_cpu, &req)) {
  1846. /* Need to wait for migration thread (might exit: take ref). */
  1847. struct task_struct *mt = rq->migration_thread;
  1848. get_task_struct(mt);
  1849. task_rq_unlock(rq, &flags);
  1850. wake_up_process(mt);
  1851. put_task_struct(mt);
  1852. wait_for_completion(&req.done);
  1853. return;
  1854. }
  1855. out:
  1856. task_rq_unlock(rq, &flags);
  1857. }
  1858. /*
  1859. * sched_exec - execve() is a valuable balancing opportunity, because at
  1860. * this point the task has the smallest effective memory and cache footprint.
  1861. */
  1862. void sched_exec(void)
  1863. {
  1864. int new_cpu, this_cpu = get_cpu();
  1865. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1866. put_cpu();
  1867. if (new_cpu != this_cpu)
  1868. sched_migrate_task(current, new_cpu);
  1869. }
  1870. /*
  1871. * pull_task - move a task from a remote runqueue to the local runqueue.
  1872. * Both runqueues must be locked.
  1873. */
  1874. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1875. struct rq *this_rq, int this_cpu)
  1876. {
  1877. deactivate_task(src_rq, p, 0);
  1878. set_task_cpu(p, this_cpu);
  1879. activate_task(this_rq, p, 0);
  1880. /*
  1881. * Note that idle threads have a prio of MAX_PRIO, for this test
  1882. * to be always true for them.
  1883. */
  1884. check_preempt_curr(this_rq, p);
  1885. }
  1886. /*
  1887. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1888. */
  1889. static
  1890. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1891. struct sched_domain *sd, enum cpu_idle_type idle,
  1892. int *all_pinned)
  1893. {
  1894. /*
  1895. * We do not migrate tasks that are:
  1896. * 1) running (obviously), or
  1897. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1898. * 3) are cache-hot on their current CPU.
  1899. */
  1900. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1901. schedstat_inc(p, se.nr_failed_migrations_affine);
  1902. return 0;
  1903. }
  1904. *all_pinned = 0;
  1905. if (task_running(rq, p)) {
  1906. schedstat_inc(p, se.nr_failed_migrations_running);
  1907. return 0;
  1908. }
  1909. /*
  1910. * Aggressive migration if:
  1911. * 1) task is cache cold, or
  1912. * 2) too many balance attempts have failed.
  1913. */
  1914. if (!task_hot(p, rq->clock, sd) ||
  1915. sd->nr_balance_failed > sd->cache_nice_tries) {
  1916. #ifdef CONFIG_SCHEDSTATS
  1917. if (task_hot(p, rq->clock, sd)) {
  1918. schedstat_inc(sd, lb_hot_gained[idle]);
  1919. schedstat_inc(p, se.nr_forced_migrations);
  1920. }
  1921. #endif
  1922. return 1;
  1923. }
  1924. if (task_hot(p, rq->clock, sd)) {
  1925. schedstat_inc(p, se.nr_failed_migrations_hot);
  1926. return 0;
  1927. }
  1928. return 1;
  1929. }
  1930. static unsigned long
  1931. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1932. unsigned long max_load_move, struct sched_domain *sd,
  1933. enum cpu_idle_type idle, int *all_pinned,
  1934. int *this_best_prio, struct rq_iterator *iterator)
  1935. {
  1936. int pulled = 0, pinned = 0, skip_for_load;
  1937. struct task_struct *p;
  1938. long rem_load_move = max_load_move;
  1939. if (max_load_move == 0)
  1940. goto out;
  1941. pinned = 1;
  1942. /*
  1943. * Start the load-balancing iterator:
  1944. */
  1945. p = iterator->start(iterator->arg);
  1946. next:
  1947. if (!p)
  1948. goto out;
  1949. /*
  1950. * To help distribute high priority tasks accross CPUs we don't
  1951. * skip a task if it will be the highest priority task (i.e. smallest
  1952. * prio value) on its new queue regardless of its load weight
  1953. */
  1954. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1955. SCHED_LOAD_SCALE_FUZZ;
  1956. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1957. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1958. p = iterator->next(iterator->arg);
  1959. goto next;
  1960. }
  1961. pull_task(busiest, p, this_rq, this_cpu);
  1962. pulled++;
  1963. rem_load_move -= p->se.load.weight;
  1964. /*
  1965. * We only want to steal up to the prescribed number of tasks
  1966. * and the prescribed amount of weighted load.
  1967. */
  1968. if (rem_load_move > 0) {
  1969. if (p->prio < *this_best_prio)
  1970. *this_best_prio = p->prio;
  1971. p = iterator->next(iterator->arg);
  1972. goto next;
  1973. }
  1974. out:
  1975. /*
  1976. * Right now, this is one of only two places pull_task() is called,
  1977. * so we can safely collect pull_task() stats here rather than
  1978. * inside pull_task().
  1979. */
  1980. schedstat_add(sd, lb_gained[idle], pulled);
  1981. if (all_pinned)
  1982. *all_pinned = pinned;
  1983. return max_load_move - rem_load_move;
  1984. }
  1985. /*
  1986. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1987. * this_rq, as part of a balancing operation within domain "sd".
  1988. * Returns 1 if successful and 0 otherwise.
  1989. *
  1990. * Called with both runqueues locked.
  1991. */
  1992. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1993. unsigned long max_load_move,
  1994. struct sched_domain *sd, enum cpu_idle_type idle,
  1995. int *all_pinned)
  1996. {
  1997. const struct sched_class *class = sched_class_highest;
  1998. unsigned long total_load_moved = 0;
  1999. int this_best_prio = this_rq->curr->prio;
  2000. do {
  2001. total_load_moved +=
  2002. class->load_balance(this_rq, this_cpu, busiest,
  2003. max_load_move - total_load_moved,
  2004. sd, idle, all_pinned, &this_best_prio);
  2005. class = class->next;
  2006. } while (class && max_load_move > total_load_moved);
  2007. return total_load_moved > 0;
  2008. }
  2009. static int
  2010. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2011. struct sched_domain *sd, enum cpu_idle_type idle,
  2012. struct rq_iterator *iterator)
  2013. {
  2014. struct task_struct *p = iterator->start(iterator->arg);
  2015. int pinned = 0;
  2016. while (p) {
  2017. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2018. pull_task(busiest, p, this_rq, this_cpu);
  2019. /*
  2020. * Right now, this is only the second place pull_task()
  2021. * is called, so we can safely collect pull_task()
  2022. * stats here rather than inside pull_task().
  2023. */
  2024. schedstat_inc(sd, lb_gained[idle]);
  2025. return 1;
  2026. }
  2027. p = iterator->next(iterator->arg);
  2028. }
  2029. return 0;
  2030. }
  2031. /*
  2032. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2033. * part of active balancing operations within "domain".
  2034. * Returns 1 if successful and 0 otherwise.
  2035. *
  2036. * Called with both runqueues locked.
  2037. */
  2038. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2039. struct sched_domain *sd, enum cpu_idle_type idle)
  2040. {
  2041. const struct sched_class *class;
  2042. for (class = sched_class_highest; class; class = class->next)
  2043. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2044. return 1;
  2045. return 0;
  2046. }
  2047. /*
  2048. * find_busiest_group finds and returns the busiest CPU group within the
  2049. * domain. It calculates and returns the amount of weighted load which
  2050. * should be moved to restore balance via the imbalance parameter.
  2051. */
  2052. static struct sched_group *
  2053. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2054. unsigned long *imbalance, enum cpu_idle_type idle,
  2055. int *sd_idle, cpumask_t *cpus, int *balance)
  2056. {
  2057. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2058. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2059. unsigned long max_pull;
  2060. unsigned long busiest_load_per_task, busiest_nr_running;
  2061. unsigned long this_load_per_task, this_nr_running;
  2062. int load_idx, group_imb = 0;
  2063. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2064. int power_savings_balance = 1;
  2065. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2066. unsigned long min_nr_running = ULONG_MAX;
  2067. struct sched_group *group_min = NULL, *group_leader = NULL;
  2068. #endif
  2069. max_load = this_load = total_load = total_pwr = 0;
  2070. busiest_load_per_task = busiest_nr_running = 0;
  2071. this_load_per_task = this_nr_running = 0;
  2072. if (idle == CPU_NOT_IDLE)
  2073. load_idx = sd->busy_idx;
  2074. else if (idle == CPU_NEWLY_IDLE)
  2075. load_idx = sd->newidle_idx;
  2076. else
  2077. load_idx = sd->idle_idx;
  2078. do {
  2079. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2080. int local_group;
  2081. int i;
  2082. int __group_imb = 0;
  2083. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2084. unsigned long sum_nr_running, sum_weighted_load;
  2085. local_group = cpu_isset(this_cpu, group->cpumask);
  2086. if (local_group)
  2087. balance_cpu = first_cpu(group->cpumask);
  2088. /* Tally up the load of all CPUs in the group */
  2089. sum_weighted_load = sum_nr_running = avg_load = 0;
  2090. max_cpu_load = 0;
  2091. min_cpu_load = ~0UL;
  2092. for_each_cpu_mask(i, group->cpumask) {
  2093. struct rq *rq;
  2094. if (!cpu_isset(i, *cpus))
  2095. continue;
  2096. rq = cpu_rq(i);
  2097. if (*sd_idle && rq->nr_running)
  2098. *sd_idle = 0;
  2099. /* Bias balancing toward cpus of our domain */
  2100. if (local_group) {
  2101. if (idle_cpu(i) && !first_idle_cpu) {
  2102. first_idle_cpu = 1;
  2103. balance_cpu = i;
  2104. }
  2105. load = target_load(i, load_idx);
  2106. } else {
  2107. load = source_load(i, load_idx);
  2108. if (load > max_cpu_load)
  2109. max_cpu_load = load;
  2110. if (min_cpu_load > load)
  2111. min_cpu_load = load;
  2112. }
  2113. avg_load += load;
  2114. sum_nr_running += rq->nr_running;
  2115. sum_weighted_load += weighted_cpuload(i);
  2116. }
  2117. /*
  2118. * First idle cpu or the first cpu(busiest) in this sched group
  2119. * is eligible for doing load balancing at this and above
  2120. * domains. In the newly idle case, we will allow all the cpu's
  2121. * to do the newly idle load balance.
  2122. */
  2123. if (idle != CPU_NEWLY_IDLE && local_group &&
  2124. balance_cpu != this_cpu && balance) {
  2125. *balance = 0;
  2126. goto ret;
  2127. }
  2128. total_load += avg_load;
  2129. total_pwr += group->__cpu_power;
  2130. /* Adjust by relative CPU power of the group */
  2131. avg_load = sg_div_cpu_power(group,
  2132. avg_load * SCHED_LOAD_SCALE);
  2133. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2134. __group_imb = 1;
  2135. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2136. if (local_group) {
  2137. this_load = avg_load;
  2138. this = group;
  2139. this_nr_running = sum_nr_running;
  2140. this_load_per_task = sum_weighted_load;
  2141. } else if (avg_load > max_load &&
  2142. (sum_nr_running > group_capacity || __group_imb)) {
  2143. max_load = avg_load;
  2144. busiest = group;
  2145. busiest_nr_running = sum_nr_running;
  2146. busiest_load_per_task = sum_weighted_load;
  2147. group_imb = __group_imb;
  2148. }
  2149. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2150. /*
  2151. * Busy processors will not participate in power savings
  2152. * balance.
  2153. */
  2154. if (idle == CPU_NOT_IDLE ||
  2155. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2156. goto group_next;
  2157. /*
  2158. * If the local group is idle or completely loaded
  2159. * no need to do power savings balance at this domain
  2160. */
  2161. if (local_group && (this_nr_running >= group_capacity ||
  2162. !this_nr_running))
  2163. power_savings_balance = 0;
  2164. /*
  2165. * If a group is already running at full capacity or idle,
  2166. * don't include that group in power savings calculations
  2167. */
  2168. if (!power_savings_balance || sum_nr_running >= group_capacity
  2169. || !sum_nr_running)
  2170. goto group_next;
  2171. /*
  2172. * Calculate the group which has the least non-idle load.
  2173. * This is the group from where we need to pick up the load
  2174. * for saving power
  2175. */
  2176. if ((sum_nr_running < min_nr_running) ||
  2177. (sum_nr_running == min_nr_running &&
  2178. first_cpu(group->cpumask) <
  2179. first_cpu(group_min->cpumask))) {
  2180. group_min = group;
  2181. min_nr_running = sum_nr_running;
  2182. min_load_per_task = sum_weighted_load /
  2183. sum_nr_running;
  2184. }
  2185. /*
  2186. * Calculate the group which is almost near its
  2187. * capacity but still has some space to pick up some load
  2188. * from other group and save more power
  2189. */
  2190. if (sum_nr_running <= group_capacity - 1) {
  2191. if (sum_nr_running > leader_nr_running ||
  2192. (sum_nr_running == leader_nr_running &&
  2193. first_cpu(group->cpumask) >
  2194. first_cpu(group_leader->cpumask))) {
  2195. group_leader = group;
  2196. leader_nr_running = sum_nr_running;
  2197. }
  2198. }
  2199. group_next:
  2200. #endif
  2201. group = group->next;
  2202. } while (group != sd->groups);
  2203. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2204. goto out_balanced;
  2205. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2206. if (this_load >= avg_load ||
  2207. 100*max_load <= sd->imbalance_pct*this_load)
  2208. goto out_balanced;
  2209. busiest_load_per_task /= busiest_nr_running;
  2210. if (group_imb)
  2211. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2212. /*
  2213. * We're trying to get all the cpus to the average_load, so we don't
  2214. * want to push ourselves above the average load, nor do we wish to
  2215. * reduce the max loaded cpu below the average load, as either of these
  2216. * actions would just result in more rebalancing later, and ping-pong
  2217. * tasks around. Thus we look for the minimum possible imbalance.
  2218. * Negative imbalances (*we* are more loaded than anyone else) will
  2219. * be counted as no imbalance for these purposes -- we can't fix that
  2220. * by pulling tasks to us. Be careful of negative numbers as they'll
  2221. * appear as very large values with unsigned longs.
  2222. */
  2223. if (max_load <= busiest_load_per_task)
  2224. goto out_balanced;
  2225. /*
  2226. * In the presence of smp nice balancing, certain scenarios can have
  2227. * max load less than avg load(as we skip the groups at or below
  2228. * its cpu_power, while calculating max_load..)
  2229. */
  2230. if (max_load < avg_load) {
  2231. *imbalance = 0;
  2232. goto small_imbalance;
  2233. }
  2234. /* Don't want to pull so many tasks that a group would go idle */
  2235. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2236. /* How much load to actually move to equalise the imbalance */
  2237. *imbalance = min(max_pull * busiest->__cpu_power,
  2238. (avg_load - this_load) * this->__cpu_power)
  2239. / SCHED_LOAD_SCALE;
  2240. /*
  2241. * if *imbalance is less than the average load per runnable task
  2242. * there is no gaurantee that any tasks will be moved so we'll have
  2243. * a think about bumping its value to force at least one task to be
  2244. * moved
  2245. */
  2246. if (*imbalance < busiest_load_per_task) {
  2247. unsigned long tmp, pwr_now, pwr_move;
  2248. unsigned int imbn;
  2249. small_imbalance:
  2250. pwr_move = pwr_now = 0;
  2251. imbn = 2;
  2252. if (this_nr_running) {
  2253. this_load_per_task /= this_nr_running;
  2254. if (busiest_load_per_task > this_load_per_task)
  2255. imbn = 1;
  2256. } else
  2257. this_load_per_task = SCHED_LOAD_SCALE;
  2258. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2259. busiest_load_per_task * imbn) {
  2260. *imbalance = busiest_load_per_task;
  2261. return busiest;
  2262. }
  2263. /*
  2264. * OK, we don't have enough imbalance to justify moving tasks,
  2265. * however we may be able to increase total CPU power used by
  2266. * moving them.
  2267. */
  2268. pwr_now += busiest->__cpu_power *
  2269. min(busiest_load_per_task, max_load);
  2270. pwr_now += this->__cpu_power *
  2271. min(this_load_per_task, this_load);
  2272. pwr_now /= SCHED_LOAD_SCALE;
  2273. /* Amount of load we'd subtract */
  2274. tmp = sg_div_cpu_power(busiest,
  2275. busiest_load_per_task * SCHED_LOAD_SCALE);
  2276. if (max_load > tmp)
  2277. pwr_move += busiest->__cpu_power *
  2278. min(busiest_load_per_task, max_load - tmp);
  2279. /* Amount of load we'd add */
  2280. if (max_load * busiest->__cpu_power <
  2281. busiest_load_per_task * SCHED_LOAD_SCALE)
  2282. tmp = sg_div_cpu_power(this,
  2283. max_load * busiest->__cpu_power);
  2284. else
  2285. tmp = sg_div_cpu_power(this,
  2286. busiest_load_per_task * SCHED_LOAD_SCALE);
  2287. pwr_move += this->__cpu_power *
  2288. min(this_load_per_task, this_load + tmp);
  2289. pwr_move /= SCHED_LOAD_SCALE;
  2290. /* Move if we gain throughput */
  2291. if (pwr_move > pwr_now)
  2292. *imbalance = busiest_load_per_task;
  2293. }
  2294. return busiest;
  2295. out_balanced:
  2296. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2297. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2298. goto ret;
  2299. if (this == group_leader && group_leader != group_min) {
  2300. *imbalance = min_load_per_task;
  2301. return group_min;
  2302. }
  2303. #endif
  2304. ret:
  2305. *imbalance = 0;
  2306. return NULL;
  2307. }
  2308. /*
  2309. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2310. */
  2311. static struct rq *
  2312. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2313. unsigned long imbalance, cpumask_t *cpus)
  2314. {
  2315. struct rq *busiest = NULL, *rq;
  2316. unsigned long max_load = 0;
  2317. int i;
  2318. for_each_cpu_mask(i, group->cpumask) {
  2319. unsigned long wl;
  2320. if (!cpu_isset(i, *cpus))
  2321. continue;
  2322. rq = cpu_rq(i);
  2323. wl = weighted_cpuload(i);
  2324. if (rq->nr_running == 1 && wl > imbalance)
  2325. continue;
  2326. if (wl > max_load) {
  2327. max_load = wl;
  2328. busiest = rq;
  2329. }
  2330. }
  2331. return busiest;
  2332. }
  2333. /*
  2334. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2335. * so long as it is large enough.
  2336. */
  2337. #define MAX_PINNED_INTERVAL 512
  2338. /*
  2339. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2340. * tasks if there is an imbalance.
  2341. */
  2342. static int load_balance(int this_cpu, struct rq *this_rq,
  2343. struct sched_domain *sd, enum cpu_idle_type idle,
  2344. int *balance)
  2345. {
  2346. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2347. struct sched_group *group;
  2348. unsigned long imbalance;
  2349. struct rq *busiest;
  2350. cpumask_t cpus = CPU_MASK_ALL;
  2351. unsigned long flags;
  2352. /*
  2353. * When power savings policy is enabled for the parent domain, idle
  2354. * sibling can pick up load irrespective of busy siblings. In this case,
  2355. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2356. * portraying it as CPU_NOT_IDLE.
  2357. */
  2358. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2359. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2360. sd_idle = 1;
  2361. schedstat_inc(sd, lb_count[idle]);
  2362. redo:
  2363. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2364. &cpus, balance);
  2365. if (*balance == 0)
  2366. goto out_balanced;
  2367. if (!group) {
  2368. schedstat_inc(sd, lb_nobusyg[idle]);
  2369. goto out_balanced;
  2370. }
  2371. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2372. if (!busiest) {
  2373. schedstat_inc(sd, lb_nobusyq[idle]);
  2374. goto out_balanced;
  2375. }
  2376. BUG_ON(busiest == this_rq);
  2377. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2378. ld_moved = 0;
  2379. if (busiest->nr_running > 1) {
  2380. /*
  2381. * Attempt to move tasks. If find_busiest_group has found
  2382. * an imbalance but busiest->nr_running <= 1, the group is
  2383. * still unbalanced. ld_moved simply stays zero, so it is
  2384. * correctly treated as an imbalance.
  2385. */
  2386. local_irq_save(flags);
  2387. double_rq_lock(this_rq, busiest);
  2388. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2389. imbalance, sd, idle, &all_pinned);
  2390. double_rq_unlock(this_rq, busiest);
  2391. local_irq_restore(flags);
  2392. /*
  2393. * some other cpu did the load balance for us.
  2394. */
  2395. if (ld_moved && this_cpu != smp_processor_id())
  2396. resched_cpu(this_cpu);
  2397. /* All tasks on this runqueue were pinned by CPU affinity */
  2398. if (unlikely(all_pinned)) {
  2399. cpu_clear(cpu_of(busiest), cpus);
  2400. if (!cpus_empty(cpus))
  2401. goto redo;
  2402. goto out_balanced;
  2403. }
  2404. }
  2405. if (!ld_moved) {
  2406. schedstat_inc(sd, lb_failed[idle]);
  2407. sd->nr_balance_failed++;
  2408. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2409. spin_lock_irqsave(&busiest->lock, flags);
  2410. /* don't kick the migration_thread, if the curr
  2411. * task on busiest cpu can't be moved to this_cpu
  2412. */
  2413. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2414. spin_unlock_irqrestore(&busiest->lock, flags);
  2415. all_pinned = 1;
  2416. goto out_one_pinned;
  2417. }
  2418. if (!busiest->active_balance) {
  2419. busiest->active_balance = 1;
  2420. busiest->push_cpu = this_cpu;
  2421. active_balance = 1;
  2422. }
  2423. spin_unlock_irqrestore(&busiest->lock, flags);
  2424. if (active_balance)
  2425. wake_up_process(busiest->migration_thread);
  2426. /*
  2427. * We've kicked active balancing, reset the failure
  2428. * counter.
  2429. */
  2430. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2431. }
  2432. } else
  2433. sd->nr_balance_failed = 0;
  2434. if (likely(!active_balance)) {
  2435. /* We were unbalanced, so reset the balancing interval */
  2436. sd->balance_interval = sd->min_interval;
  2437. } else {
  2438. /*
  2439. * If we've begun active balancing, start to back off. This
  2440. * case may not be covered by the all_pinned logic if there
  2441. * is only 1 task on the busy runqueue (because we don't call
  2442. * move_tasks).
  2443. */
  2444. if (sd->balance_interval < sd->max_interval)
  2445. sd->balance_interval *= 2;
  2446. }
  2447. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2448. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2449. return -1;
  2450. return ld_moved;
  2451. out_balanced:
  2452. schedstat_inc(sd, lb_balanced[idle]);
  2453. sd->nr_balance_failed = 0;
  2454. out_one_pinned:
  2455. /* tune up the balancing interval */
  2456. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2457. (sd->balance_interval < sd->max_interval))
  2458. sd->balance_interval *= 2;
  2459. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2460. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2461. return -1;
  2462. return 0;
  2463. }
  2464. /*
  2465. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2466. * tasks if there is an imbalance.
  2467. *
  2468. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2469. * this_rq is locked.
  2470. */
  2471. static int
  2472. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2473. {
  2474. struct sched_group *group;
  2475. struct rq *busiest = NULL;
  2476. unsigned long imbalance;
  2477. int ld_moved = 0;
  2478. int sd_idle = 0;
  2479. int all_pinned = 0;
  2480. cpumask_t cpus = CPU_MASK_ALL;
  2481. /*
  2482. * When power savings policy is enabled for the parent domain, idle
  2483. * sibling can pick up load irrespective of busy siblings. In this case,
  2484. * let the state of idle sibling percolate up as IDLE, instead of
  2485. * portraying it as CPU_NOT_IDLE.
  2486. */
  2487. if (sd->flags & SD_SHARE_CPUPOWER &&
  2488. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2489. sd_idle = 1;
  2490. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2491. redo:
  2492. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2493. &sd_idle, &cpus, NULL);
  2494. if (!group) {
  2495. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2496. goto out_balanced;
  2497. }
  2498. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2499. &cpus);
  2500. if (!busiest) {
  2501. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2502. goto out_balanced;
  2503. }
  2504. BUG_ON(busiest == this_rq);
  2505. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2506. ld_moved = 0;
  2507. if (busiest->nr_running > 1) {
  2508. /* Attempt to move tasks */
  2509. double_lock_balance(this_rq, busiest);
  2510. /* this_rq->clock is already updated */
  2511. update_rq_clock(busiest);
  2512. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2513. imbalance, sd, CPU_NEWLY_IDLE,
  2514. &all_pinned);
  2515. spin_unlock(&busiest->lock);
  2516. if (unlikely(all_pinned)) {
  2517. cpu_clear(cpu_of(busiest), cpus);
  2518. if (!cpus_empty(cpus))
  2519. goto redo;
  2520. }
  2521. }
  2522. if (!ld_moved) {
  2523. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2524. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2525. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2526. return -1;
  2527. } else
  2528. sd->nr_balance_failed = 0;
  2529. return ld_moved;
  2530. out_balanced:
  2531. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2532. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2533. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2534. return -1;
  2535. sd->nr_balance_failed = 0;
  2536. return 0;
  2537. }
  2538. /*
  2539. * idle_balance is called by schedule() if this_cpu is about to become
  2540. * idle. Attempts to pull tasks from other CPUs.
  2541. */
  2542. static void idle_balance(int this_cpu, struct rq *this_rq)
  2543. {
  2544. struct sched_domain *sd;
  2545. int pulled_task = -1;
  2546. unsigned long next_balance = jiffies + HZ;
  2547. for_each_domain(this_cpu, sd) {
  2548. unsigned long interval;
  2549. if (!(sd->flags & SD_LOAD_BALANCE))
  2550. continue;
  2551. if (sd->flags & SD_BALANCE_NEWIDLE)
  2552. /* If we've pulled tasks over stop searching: */
  2553. pulled_task = load_balance_newidle(this_cpu,
  2554. this_rq, sd);
  2555. interval = msecs_to_jiffies(sd->balance_interval);
  2556. if (time_after(next_balance, sd->last_balance + interval))
  2557. next_balance = sd->last_balance + interval;
  2558. if (pulled_task)
  2559. break;
  2560. }
  2561. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2562. /*
  2563. * We are going idle. next_balance may be set based on
  2564. * a busy processor. So reset next_balance.
  2565. */
  2566. this_rq->next_balance = next_balance;
  2567. }
  2568. }
  2569. /*
  2570. * active_load_balance is run by migration threads. It pushes running tasks
  2571. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2572. * running on each physical CPU where possible, and avoids physical /
  2573. * logical imbalances.
  2574. *
  2575. * Called with busiest_rq locked.
  2576. */
  2577. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2578. {
  2579. int target_cpu = busiest_rq->push_cpu;
  2580. struct sched_domain *sd;
  2581. struct rq *target_rq;
  2582. /* Is there any task to move? */
  2583. if (busiest_rq->nr_running <= 1)
  2584. return;
  2585. target_rq = cpu_rq(target_cpu);
  2586. /*
  2587. * This condition is "impossible", if it occurs
  2588. * we need to fix it. Originally reported by
  2589. * Bjorn Helgaas on a 128-cpu setup.
  2590. */
  2591. BUG_ON(busiest_rq == target_rq);
  2592. /* move a task from busiest_rq to target_rq */
  2593. double_lock_balance(busiest_rq, target_rq);
  2594. update_rq_clock(busiest_rq);
  2595. update_rq_clock(target_rq);
  2596. /* Search for an sd spanning us and the target CPU. */
  2597. for_each_domain(target_cpu, sd) {
  2598. if ((sd->flags & SD_LOAD_BALANCE) &&
  2599. cpu_isset(busiest_cpu, sd->span))
  2600. break;
  2601. }
  2602. if (likely(sd)) {
  2603. schedstat_inc(sd, alb_count);
  2604. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2605. sd, CPU_IDLE))
  2606. schedstat_inc(sd, alb_pushed);
  2607. else
  2608. schedstat_inc(sd, alb_failed);
  2609. }
  2610. spin_unlock(&target_rq->lock);
  2611. }
  2612. #ifdef CONFIG_NO_HZ
  2613. static struct {
  2614. atomic_t load_balancer;
  2615. cpumask_t cpu_mask;
  2616. } nohz ____cacheline_aligned = {
  2617. .load_balancer = ATOMIC_INIT(-1),
  2618. .cpu_mask = CPU_MASK_NONE,
  2619. };
  2620. /*
  2621. * This routine will try to nominate the ilb (idle load balancing)
  2622. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2623. * load balancing on behalf of all those cpus. If all the cpus in the system
  2624. * go into this tickless mode, then there will be no ilb owner (as there is
  2625. * no need for one) and all the cpus will sleep till the next wakeup event
  2626. * arrives...
  2627. *
  2628. * For the ilb owner, tick is not stopped. And this tick will be used
  2629. * for idle load balancing. ilb owner will still be part of
  2630. * nohz.cpu_mask..
  2631. *
  2632. * While stopping the tick, this cpu will become the ilb owner if there
  2633. * is no other owner. And will be the owner till that cpu becomes busy
  2634. * or if all cpus in the system stop their ticks at which point
  2635. * there is no need for ilb owner.
  2636. *
  2637. * When the ilb owner becomes busy, it nominates another owner, during the
  2638. * next busy scheduler_tick()
  2639. */
  2640. int select_nohz_load_balancer(int stop_tick)
  2641. {
  2642. int cpu = smp_processor_id();
  2643. if (stop_tick) {
  2644. cpu_set(cpu, nohz.cpu_mask);
  2645. cpu_rq(cpu)->in_nohz_recently = 1;
  2646. /*
  2647. * If we are going offline and still the leader, give up!
  2648. */
  2649. if (cpu_is_offline(cpu) &&
  2650. atomic_read(&nohz.load_balancer) == cpu) {
  2651. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2652. BUG();
  2653. return 0;
  2654. }
  2655. /* time for ilb owner also to sleep */
  2656. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2657. if (atomic_read(&nohz.load_balancer) == cpu)
  2658. atomic_set(&nohz.load_balancer, -1);
  2659. return 0;
  2660. }
  2661. if (atomic_read(&nohz.load_balancer) == -1) {
  2662. /* make me the ilb owner */
  2663. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2664. return 1;
  2665. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2666. return 1;
  2667. } else {
  2668. if (!cpu_isset(cpu, nohz.cpu_mask))
  2669. return 0;
  2670. cpu_clear(cpu, nohz.cpu_mask);
  2671. if (atomic_read(&nohz.load_balancer) == cpu)
  2672. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2673. BUG();
  2674. }
  2675. return 0;
  2676. }
  2677. #endif
  2678. static DEFINE_SPINLOCK(balancing);
  2679. /*
  2680. * It checks each scheduling domain to see if it is due to be balanced,
  2681. * and initiates a balancing operation if so.
  2682. *
  2683. * Balancing parameters are set up in arch_init_sched_domains.
  2684. */
  2685. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2686. {
  2687. int balance = 1;
  2688. struct rq *rq = cpu_rq(cpu);
  2689. unsigned long interval;
  2690. struct sched_domain *sd;
  2691. /* Earliest time when we have to do rebalance again */
  2692. unsigned long next_balance = jiffies + 60*HZ;
  2693. int update_next_balance = 0;
  2694. for_each_domain(cpu, sd) {
  2695. if (!(sd->flags & SD_LOAD_BALANCE))
  2696. continue;
  2697. interval = sd->balance_interval;
  2698. if (idle != CPU_IDLE)
  2699. interval *= sd->busy_factor;
  2700. /* scale ms to jiffies */
  2701. interval = msecs_to_jiffies(interval);
  2702. if (unlikely(!interval))
  2703. interval = 1;
  2704. if (interval > HZ*NR_CPUS/10)
  2705. interval = HZ*NR_CPUS/10;
  2706. if (sd->flags & SD_SERIALIZE) {
  2707. if (!spin_trylock(&balancing))
  2708. goto out;
  2709. }
  2710. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2711. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2712. /*
  2713. * We've pulled tasks over so either we're no
  2714. * longer idle, or one of our SMT siblings is
  2715. * not idle.
  2716. */
  2717. idle = CPU_NOT_IDLE;
  2718. }
  2719. sd->last_balance = jiffies;
  2720. }
  2721. if (sd->flags & SD_SERIALIZE)
  2722. spin_unlock(&balancing);
  2723. out:
  2724. if (time_after(next_balance, sd->last_balance + interval)) {
  2725. next_balance = sd->last_balance + interval;
  2726. update_next_balance = 1;
  2727. }
  2728. /*
  2729. * Stop the load balance at this level. There is another
  2730. * CPU in our sched group which is doing load balancing more
  2731. * actively.
  2732. */
  2733. if (!balance)
  2734. break;
  2735. }
  2736. /*
  2737. * next_balance will be updated only when there is a need.
  2738. * When the cpu is attached to null domain for ex, it will not be
  2739. * updated.
  2740. */
  2741. if (likely(update_next_balance))
  2742. rq->next_balance = next_balance;
  2743. }
  2744. /*
  2745. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2746. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2747. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2748. */
  2749. static void run_rebalance_domains(struct softirq_action *h)
  2750. {
  2751. int this_cpu = smp_processor_id();
  2752. struct rq *this_rq = cpu_rq(this_cpu);
  2753. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2754. CPU_IDLE : CPU_NOT_IDLE;
  2755. rebalance_domains(this_cpu, idle);
  2756. #ifdef CONFIG_NO_HZ
  2757. /*
  2758. * If this cpu is the owner for idle load balancing, then do the
  2759. * balancing on behalf of the other idle cpus whose ticks are
  2760. * stopped.
  2761. */
  2762. if (this_rq->idle_at_tick &&
  2763. atomic_read(&nohz.load_balancer) == this_cpu) {
  2764. cpumask_t cpus = nohz.cpu_mask;
  2765. struct rq *rq;
  2766. int balance_cpu;
  2767. cpu_clear(this_cpu, cpus);
  2768. for_each_cpu_mask(balance_cpu, cpus) {
  2769. /*
  2770. * If this cpu gets work to do, stop the load balancing
  2771. * work being done for other cpus. Next load
  2772. * balancing owner will pick it up.
  2773. */
  2774. if (need_resched())
  2775. break;
  2776. rebalance_domains(balance_cpu, CPU_IDLE);
  2777. rq = cpu_rq(balance_cpu);
  2778. if (time_after(this_rq->next_balance, rq->next_balance))
  2779. this_rq->next_balance = rq->next_balance;
  2780. }
  2781. }
  2782. #endif
  2783. }
  2784. /*
  2785. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2786. *
  2787. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2788. * idle load balancing owner or decide to stop the periodic load balancing,
  2789. * if the whole system is idle.
  2790. */
  2791. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2792. {
  2793. #ifdef CONFIG_NO_HZ
  2794. /*
  2795. * If we were in the nohz mode recently and busy at the current
  2796. * scheduler tick, then check if we need to nominate new idle
  2797. * load balancer.
  2798. */
  2799. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2800. rq->in_nohz_recently = 0;
  2801. if (atomic_read(&nohz.load_balancer) == cpu) {
  2802. cpu_clear(cpu, nohz.cpu_mask);
  2803. atomic_set(&nohz.load_balancer, -1);
  2804. }
  2805. if (atomic_read(&nohz.load_balancer) == -1) {
  2806. /*
  2807. * simple selection for now: Nominate the
  2808. * first cpu in the nohz list to be the next
  2809. * ilb owner.
  2810. *
  2811. * TBD: Traverse the sched domains and nominate
  2812. * the nearest cpu in the nohz.cpu_mask.
  2813. */
  2814. int ilb = first_cpu(nohz.cpu_mask);
  2815. if (ilb != NR_CPUS)
  2816. resched_cpu(ilb);
  2817. }
  2818. }
  2819. /*
  2820. * If this cpu is idle and doing idle load balancing for all the
  2821. * cpus with ticks stopped, is it time for that to stop?
  2822. */
  2823. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2824. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2825. resched_cpu(cpu);
  2826. return;
  2827. }
  2828. /*
  2829. * If this cpu is idle and the idle load balancing is done by
  2830. * someone else, then no need raise the SCHED_SOFTIRQ
  2831. */
  2832. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2833. cpu_isset(cpu, nohz.cpu_mask))
  2834. return;
  2835. #endif
  2836. if (time_after_eq(jiffies, rq->next_balance))
  2837. raise_softirq(SCHED_SOFTIRQ);
  2838. }
  2839. #else /* CONFIG_SMP */
  2840. /*
  2841. * on UP we do not need to balance between CPUs:
  2842. */
  2843. static inline void idle_balance(int cpu, struct rq *rq)
  2844. {
  2845. }
  2846. #endif
  2847. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2848. EXPORT_PER_CPU_SYMBOL(kstat);
  2849. /*
  2850. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2851. * that have not yet been banked in case the task is currently running.
  2852. */
  2853. unsigned long long task_sched_runtime(struct task_struct *p)
  2854. {
  2855. unsigned long flags;
  2856. u64 ns, delta_exec;
  2857. struct rq *rq;
  2858. rq = task_rq_lock(p, &flags);
  2859. ns = p->se.sum_exec_runtime;
  2860. if (rq->curr == p) {
  2861. update_rq_clock(rq);
  2862. delta_exec = rq->clock - p->se.exec_start;
  2863. if ((s64)delta_exec > 0)
  2864. ns += delta_exec;
  2865. }
  2866. task_rq_unlock(rq, &flags);
  2867. return ns;
  2868. }
  2869. /*
  2870. * Account user cpu time to a process.
  2871. * @p: the process that the cpu time gets accounted to
  2872. * @cputime: the cpu time spent in user space since the last update
  2873. */
  2874. void account_user_time(struct task_struct *p, cputime_t cputime)
  2875. {
  2876. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2877. cputime64_t tmp;
  2878. struct rq *rq = this_rq();
  2879. p->utime = cputime_add(p->utime, cputime);
  2880. if (p != rq->idle)
  2881. cpuacct_charge(p, cputime);
  2882. /* Add user time to cpustat. */
  2883. tmp = cputime_to_cputime64(cputime);
  2884. if (TASK_NICE(p) > 0)
  2885. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2886. else
  2887. cpustat->user = cputime64_add(cpustat->user, tmp);
  2888. }
  2889. /*
  2890. * Account guest cpu time to a process.
  2891. * @p: the process that the cpu time gets accounted to
  2892. * @cputime: the cpu time spent in virtual machine since the last update
  2893. */
  2894. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2895. {
  2896. cputime64_t tmp;
  2897. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2898. tmp = cputime_to_cputime64(cputime);
  2899. p->utime = cputime_add(p->utime, cputime);
  2900. p->gtime = cputime_add(p->gtime, cputime);
  2901. cpustat->user = cputime64_add(cpustat->user, tmp);
  2902. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2903. }
  2904. /*
  2905. * Account scaled user cpu time to a process.
  2906. * @p: the process that the cpu time gets accounted to
  2907. * @cputime: the cpu time spent in user space since the last update
  2908. */
  2909. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2910. {
  2911. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2912. }
  2913. /*
  2914. * Account system cpu time to a process.
  2915. * @p: the process that the cpu time gets accounted to
  2916. * @hardirq_offset: the offset to subtract from hardirq_count()
  2917. * @cputime: the cpu time spent in kernel space since the last update
  2918. */
  2919. void account_system_time(struct task_struct *p, int hardirq_offset,
  2920. cputime_t cputime)
  2921. {
  2922. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2923. struct rq *rq = this_rq();
  2924. cputime64_t tmp;
  2925. if (p->flags & PF_VCPU) {
  2926. account_guest_time(p, cputime);
  2927. return;
  2928. }
  2929. p->stime = cputime_add(p->stime, cputime);
  2930. /* Add system time to cpustat. */
  2931. tmp = cputime_to_cputime64(cputime);
  2932. if (hardirq_count() - hardirq_offset)
  2933. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2934. else if (softirq_count())
  2935. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2936. else if (p != rq->idle) {
  2937. cpustat->system = cputime64_add(cpustat->system, tmp);
  2938. cpuacct_charge(p, cputime);
  2939. } else if (atomic_read(&rq->nr_iowait) > 0)
  2940. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2941. else
  2942. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2943. /* Account for system time used */
  2944. acct_update_integrals(p);
  2945. }
  2946. /*
  2947. * Account scaled system cpu time to a process.
  2948. * @p: the process that the cpu time gets accounted to
  2949. * @hardirq_offset: the offset to subtract from hardirq_count()
  2950. * @cputime: the cpu time spent in kernel space since the last update
  2951. */
  2952. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2953. {
  2954. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2955. }
  2956. /*
  2957. * Account for involuntary wait time.
  2958. * @p: the process from which the cpu time has been stolen
  2959. * @steal: the cpu time spent in involuntary wait
  2960. */
  2961. void account_steal_time(struct task_struct *p, cputime_t steal)
  2962. {
  2963. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2964. cputime64_t tmp = cputime_to_cputime64(steal);
  2965. struct rq *rq = this_rq();
  2966. if (p == rq->idle) {
  2967. p->stime = cputime_add(p->stime, steal);
  2968. if (atomic_read(&rq->nr_iowait) > 0)
  2969. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2970. else
  2971. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2972. } else {
  2973. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2974. cpuacct_charge(p, -tmp);
  2975. }
  2976. }
  2977. /*
  2978. * This function gets called by the timer code, with HZ frequency.
  2979. * We call it with interrupts disabled.
  2980. *
  2981. * It also gets called by the fork code, when changing the parent's
  2982. * timeslices.
  2983. */
  2984. void scheduler_tick(void)
  2985. {
  2986. int cpu = smp_processor_id();
  2987. struct rq *rq = cpu_rq(cpu);
  2988. struct task_struct *curr = rq->curr;
  2989. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2990. spin_lock(&rq->lock);
  2991. __update_rq_clock(rq);
  2992. /*
  2993. * Let rq->clock advance by at least TICK_NSEC:
  2994. */
  2995. if (unlikely(rq->clock < next_tick))
  2996. rq->clock = next_tick;
  2997. rq->tick_timestamp = rq->clock;
  2998. update_cpu_load(rq);
  2999. if (curr != rq->idle) /* FIXME: needed? */
  3000. curr->sched_class->task_tick(rq, curr);
  3001. spin_unlock(&rq->lock);
  3002. #ifdef CONFIG_SMP
  3003. rq->idle_at_tick = idle_cpu(cpu);
  3004. trigger_load_balance(rq, cpu);
  3005. #endif
  3006. }
  3007. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3008. void fastcall add_preempt_count(int val)
  3009. {
  3010. /*
  3011. * Underflow?
  3012. */
  3013. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3014. return;
  3015. preempt_count() += val;
  3016. /*
  3017. * Spinlock count overflowing soon?
  3018. */
  3019. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3020. PREEMPT_MASK - 10);
  3021. }
  3022. EXPORT_SYMBOL(add_preempt_count);
  3023. void fastcall sub_preempt_count(int val)
  3024. {
  3025. /*
  3026. * Underflow?
  3027. */
  3028. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3029. return;
  3030. /*
  3031. * Is the spinlock portion underflowing?
  3032. */
  3033. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3034. !(preempt_count() & PREEMPT_MASK)))
  3035. return;
  3036. preempt_count() -= val;
  3037. }
  3038. EXPORT_SYMBOL(sub_preempt_count);
  3039. #endif
  3040. /*
  3041. * Print scheduling while atomic bug:
  3042. */
  3043. static noinline void __schedule_bug(struct task_struct *prev)
  3044. {
  3045. struct pt_regs *regs = get_irq_regs();
  3046. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3047. prev->comm, prev->pid, preempt_count());
  3048. debug_show_held_locks(prev);
  3049. if (irqs_disabled())
  3050. print_irqtrace_events(prev);
  3051. if (regs)
  3052. show_regs(regs);
  3053. else
  3054. dump_stack();
  3055. }
  3056. /*
  3057. * Various schedule()-time debugging checks and statistics:
  3058. */
  3059. static inline void schedule_debug(struct task_struct *prev)
  3060. {
  3061. /*
  3062. * Test if we are atomic. Since do_exit() needs to call into
  3063. * schedule() atomically, we ignore that path for now.
  3064. * Otherwise, whine if we are scheduling when we should not be.
  3065. */
  3066. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3067. __schedule_bug(prev);
  3068. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3069. schedstat_inc(this_rq(), sched_count);
  3070. #ifdef CONFIG_SCHEDSTATS
  3071. if (unlikely(prev->lock_depth >= 0)) {
  3072. schedstat_inc(this_rq(), bkl_count);
  3073. schedstat_inc(prev, sched_info.bkl_count);
  3074. }
  3075. #endif
  3076. }
  3077. /*
  3078. * Pick up the highest-prio task:
  3079. */
  3080. static inline struct task_struct *
  3081. pick_next_task(struct rq *rq, struct task_struct *prev)
  3082. {
  3083. const struct sched_class *class;
  3084. struct task_struct *p;
  3085. /*
  3086. * Optimization: we know that if all tasks are in
  3087. * the fair class we can call that function directly:
  3088. */
  3089. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3090. p = fair_sched_class.pick_next_task(rq);
  3091. if (likely(p))
  3092. return p;
  3093. }
  3094. class = sched_class_highest;
  3095. for ( ; ; ) {
  3096. p = class->pick_next_task(rq);
  3097. if (p)
  3098. return p;
  3099. /*
  3100. * Will never be NULL as the idle class always
  3101. * returns a non-NULL p:
  3102. */
  3103. class = class->next;
  3104. }
  3105. }
  3106. /*
  3107. * schedule() is the main scheduler function.
  3108. */
  3109. asmlinkage void __sched schedule(void)
  3110. {
  3111. struct task_struct *prev, *next;
  3112. long *switch_count;
  3113. struct rq *rq;
  3114. int cpu;
  3115. need_resched:
  3116. preempt_disable();
  3117. cpu = smp_processor_id();
  3118. rq = cpu_rq(cpu);
  3119. rcu_qsctr_inc(cpu);
  3120. prev = rq->curr;
  3121. switch_count = &prev->nivcsw;
  3122. release_kernel_lock(prev);
  3123. need_resched_nonpreemptible:
  3124. schedule_debug(prev);
  3125. /*
  3126. * Do the rq-clock update outside the rq lock:
  3127. */
  3128. local_irq_disable();
  3129. __update_rq_clock(rq);
  3130. spin_lock(&rq->lock);
  3131. clear_tsk_need_resched(prev);
  3132. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3133. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3134. unlikely(signal_pending(prev)))) {
  3135. prev->state = TASK_RUNNING;
  3136. } else {
  3137. deactivate_task(rq, prev, 1);
  3138. }
  3139. switch_count = &prev->nvcsw;
  3140. }
  3141. if (unlikely(!rq->nr_running))
  3142. idle_balance(cpu, rq);
  3143. prev->sched_class->put_prev_task(rq, prev);
  3144. next = pick_next_task(rq, prev);
  3145. sched_info_switch(prev, next);
  3146. if (likely(prev != next)) {
  3147. rq->nr_switches++;
  3148. rq->curr = next;
  3149. ++*switch_count;
  3150. context_switch(rq, prev, next); /* unlocks the rq */
  3151. } else
  3152. spin_unlock_irq(&rq->lock);
  3153. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3154. cpu = smp_processor_id();
  3155. rq = cpu_rq(cpu);
  3156. goto need_resched_nonpreemptible;
  3157. }
  3158. preempt_enable_no_resched();
  3159. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3160. goto need_resched;
  3161. }
  3162. EXPORT_SYMBOL(schedule);
  3163. #ifdef CONFIG_PREEMPT
  3164. /*
  3165. * this is the entry point to schedule() from in-kernel preemption
  3166. * off of preempt_enable. Kernel preemptions off return from interrupt
  3167. * occur there and call schedule directly.
  3168. */
  3169. asmlinkage void __sched preempt_schedule(void)
  3170. {
  3171. struct thread_info *ti = current_thread_info();
  3172. #ifdef CONFIG_PREEMPT_BKL
  3173. struct task_struct *task = current;
  3174. int saved_lock_depth;
  3175. #endif
  3176. /*
  3177. * If there is a non-zero preempt_count or interrupts are disabled,
  3178. * we do not want to preempt the current task. Just return..
  3179. */
  3180. if (likely(ti->preempt_count || irqs_disabled()))
  3181. return;
  3182. do {
  3183. add_preempt_count(PREEMPT_ACTIVE);
  3184. /*
  3185. * We keep the big kernel semaphore locked, but we
  3186. * clear ->lock_depth so that schedule() doesnt
  3187. * auto-release the semaphore:
  3188. */
  3189. #ifdef CONFIG_PREEMPT_BKL
  3190. saved_lock_depth = task->lock_depth;
  3191. task->lock_depth = -1;
  3192. #endif
  3193. schedule();
  3194. #ifdef CONFIG_PREEMPT_BKL
  3195. task->lock_depth = saved_lock_depth;
  3196. #endif
  3197. sub_preempt_count(PREEMPT_ACTIVE);
  3198. /*
  3199. * Check again in case we missed a preemption opportunity
  3200. * between schedule and now.
  3201. */
  3202. barrier();
  3203. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3204. }
  3205. EXPORT_SYMBOL(preempt_schedule);
  3206. /*
  3207. * this is the entry point to schedule() from kernel preemption
  3208. * off of irq context.
  3209. * Note, that this is called and return with irqs disabled. This will
  3210. * protect us against recursive calling from irq.
  3211. */
  3212. asmlinkage void __sched preempt_schedule_irq(void)
  3213. {
  3214. struct thread_info *ti = current_thread_info();
  3215. #ifdef CONFIG_PREEMPT_BKL
  3216. struct task_struct *task = current;
  3217. int saved_lock_depth;
  3218. #endif
  3219. /* Catch callers which need to be fixed */
  3220. BUG_ON(ti->preempt_count || !irqs_disabled());
  3221. do {
  3222. add_preempt_count(PREEMPT_ACTIVE);
  3223. /*
  3224. * We keep the big kernel semaphore locked, but we
  3225. * clear ->lock_depth so that schedule() doesnt
  3226. * auto-release the semaphore:
  3227. */
  3228. #ifdef CONFIG_PREEMPT_BKL
  3229. saved_lock_depth = task->lock_depth;
  3230. task->lock_depth = -1;
  3231. #endif
  3232. local_irq_enable();
  3233. schedule();
  3234. local_irq_disable();
  3235. #ifdef CONFIG_PREEMPT_BKL
  3236. task->lock_depth = saved_lock_depth;
  3237. #endif
  3238. sub_preempt_count(PREEMPT_ACTIVE);
  3239. /*
  3240. * Check again in case we missed a preemption opportunity
  3241. * between schedule and now.
  3242. */
  3243. barrier();
  3244. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3245. }
  3246. #endif /* CONFIG_PREEMPT */
  3247. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3248. void *key)
  3249. {
  3250. return try_to_wake_up(curr->private, mode, sync);
  3251. }
  3252. EXPORT_SYMBOL(default_wake_function);
  3253. /*
  3254. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3255. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3256. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3257. *
  3258. * There are circumstances in which we can try to wake a task which has already
  3259. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3260. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3261. */
  3262. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3263. int nr_exclusive, int sync, void *key)
  3264. {
  3265. wait_queue_t *curr, *next;
  3266. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3267. unsigned flags = curr->flags;
  3268. if (curr->func(curr, mode, sync, key) &&
  3269. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3270. break;
  3271. }
  3272. }
  3273. /**
  3274. * __wake_up - wake up threads blocked on a waitqueue.
  3275. * @q: the waitqueue
  3276. * @mode: which threads
  3277. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3278. * @key: is directly passed to the wakeup function
  3279. */
  3280. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3281. int nr_exclusive, void *key)
  3282. {
  3283. unsigned long flags;
  3284. spin_lock_irqsave(&q->lock, flags);
  3285. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3286. spin_unlock_irqrestore(&q->lock, flags);
  3287. }
  3288. EXPORT_SYMBOL(__wake_up);
  3289. /*
  3290. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3291. */
  3292. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3293. {
  3294. __wake_up_common(q, mode, 1, 0, NULL);
  3295. }
  3296. /**
  3297. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3298. * @q: the waitqueue
  3299. * @mode: which threads
  3300. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3301. *
  3302. * The sync wakeup differs that the waker knows that it will schedule
  3303. * away soon, so while the target thread will be woken up, it will not
  3304. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3305. * with each other. This can prevent needless bouncing between CPUs.
  3306. *
  3307. * On UP it can prevent extra preemption.
  3308. */
  3309. void fastcall
  3310. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3311. {
  3312. unsigned long flags;
  3313. int sync = 1;
  3314. if (unlikely(!q))
  3315. return;
  3316. if (unlikely(!nr_exclusive))
  3317. sync = 0;
  3318. spin_lock_irqsave(&q->lock, flags);
  3319. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3320. spin_unlock_irqrestore(&q->lock, flags);
  3321. }
  3322. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3323. void complete(struct completion *x)
  3324. {
  3325. unsigned long flags;
  3326. spin_lock_irqsave(&x->wait.lock, flags);
  3327. x->done++;
  3328. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3329. 1, 0, NULL);
  3330. spin_unlock_irqrestore(&x->wait.lock, flags);
  3331. }
  3332. EXPORT_SYMBOL(complete);
  3333. void complete_all(struct completion *x)
  3334. {
  3335. unsigned long flags;
  3336. spin_lock_irqsave(&x->wait.lock, flags);
  3337. x->done += UINT_MAX/2;
  3338. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3339. 0, 0, NULL);
  3340. spin_unlock_irqrestore(&x->wait.lock, flags);
  3341. }
  3342. EXPORT_SYMBOL(complete_all);
  3343. static inline long __sched
  3344. do_wait_for_common(struct completion *x, long timeout, int state)
  3345. {
  3346. if (!x->done) {
  3347. DECLARE_WAITQUEUE(wait, current);
  3348. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3349. __add_wait_queue_tail(&x->wait, &wait);
  3350. do {
  3351. if (state == TASK_INTERRUPTIBLE &&
  3352. signal_pending(current)) {
  3353. __remove_wait_queue(&x->wait, &wait);
  3354. return -ERESTARTSYS;
  3355. }
  3356. __set_current_state(state);
  3357. spin_unlock_irq(&x->wait.lock);
  3358. timeout = schedule_timeout(timeout);
  3359. spin_lock_irq(&x->wait.lock);
  3360. if (!timeout) {
  3361. __remove_wait_queue(&x->wait, &wait);
  3362. return timeout;
  3363. }
  3364. } while (!x->done);
  3365. __remove_wait_queue(&x->wait, &wait);
  3366. }
  3367. x->done--;
  3368. return timeout;
  3369. }
  3370. static long __sched
  3371. wait_for_common(struct completion *x, long timeout, int state)
  3372. {
  3373. might_sleep();
  3374. spin_lock_irq(&x->wait.lock);
  3375. timeout = do_wait_for_common(x, timeout, state);
  3376. spin_unlock_irq(&x->wait.lock);
  3377. return timeout;
  3378. }
  3379. void __sched wait_for_completion(struct completion *x)
  3380. {
  3381. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3382. }
  3383. EXPORT_SYMBOL(wait_for_completion);
  3384. unsigned long __sched
  3385. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3386. {
  3387. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3388. }
  3389. EXPORT_SYMBOL(wait_for_completion_timeout);
  3390. int __sched wait_for_completion_interruptible(struct completion *x)
  3391. {
  3392. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3393. if (t == -ERESTARTSYS)
  3394. return t;
  3395. return 0;
  3396. }
  3397. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3398. unsigned long __sched
  3399. wait_for_completion_interruptible_timeout(struct completion *x,
  3400. unsigned long timeout)
  3401. {
  3402. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3403. }
  3404. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3405. static long __sched
  3406. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3407. {
  3408. unsigned long flags;
  3409. wait_queue_t wait;
  3410. init_waitqueue_entry(&wait, current);
  3411. __set_current_state(state);
  3412. spin_lock_irqsave(&q->lock, flags);
  3413. __add_wait_queue(q, &wait);
  3414. spin_unlock(&q->lock);
  3415. timeout = schedule_timeout(timeout);
  3416. spin_lock_irq(&q->lock);
  3417. __remove_wait_queue(q, &wait);
  3418. spin_unlock_irqrestore(&q->lock, flags);
  3419. return timeout;
  3420. }
  3421. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3422. {
  3423. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3424. }
  3425. EXPORT_SYMBOL(interruptible_sleep_on);
  3426. long __sched
  3427. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3428. {
  3429. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3430. }
  3431. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3432. void __sched sleep_on(wait_queue_head_t *q)
  3433. {
  3434. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3435. }
  3436. EXPORT_SYMBOL(sleep_on);
  3437. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3438. {
  3439. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3440. }
  3441. EXPORT_SYMBOL(sleep_on_timeout);
  3442. #ifdef CONFIG_RT_MUTEXES
  3443. /*
  3444. * rt_mutex_setprio - set the current priority of a task
  3445. * @p: task
  3446. * @prio: prio value (kernel-internal form)
  3447. *
  3448. * This function changes the 'effective' priority of a task. It does
  3449. * not touch ->normal_prio like __setscheduler().
  3450. *
  3451. * Used by the rt_mutex code to implement priority inheritance logic.
  3452. */
  3453. void rt_mutex_setprio(struct task_struct *p, int prio)
  3454. {
  3455. unsigned long flags;
  3456. int oldprio, on_rq, running;
  3457. struct rq *rq;
  3458. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3459. rq = task_rq_lock(p, &flags);
  3460. update_rq_clock(rq);
  3461. oldprio = p->prio;
  3462. on_rq = p->se.on_rq;
  3463. running = task_running(rq, p);
  3464. if (on_rq) {
  3465. dequeue_task(rq, p, 0);
  3466. if (running)
  3467. p->sched_class->put_prev_task(rq, p);
  3468. }
  3469. if (rt_prio(prio))
  3470. p->sched_class = &rt_sched_class;
  3471. else
  3472. p->sched_class = &fair_sched_class;
  3473. p->prio = prio;
  3474. if (on_rq) {
  3475. if (running)
  3476. p->sched_class->set_curr_task(rq);
  3477. enqueue_task(rq, p, 0);
  3478. /*
  3479. * Reschedule if we are currently running on this runqueue and
  3480. * our priority decreased, or if we are not currently running on
  3481. * this runqueue and our priority is higher than the current's
  3482. */
  3483. if (running) {
  3484. if (p->prio > oldprio)
  3485. resched_task(rq->curr);
  3486. } else {
  3487. check_preempt_curr(rq, p);
  3488. }
  3489. }
  3490. task_rq_unlock(rq, &flags);
  3491. }
  3492. #endif
  3493. void set_user_nice(struct task_struct *p, long nice)
  3494. {
  3495. int old_prio, delta, on_rq;
  3496. unsigned long flags;
  3497. struct rq *rq;
  3498. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3499. return;
  3500. /*
  3501. * We have to be careful, if called from sys_setpriority(),
  3502. * the task might be in the middle of scheduling on another CPU.
  3503. */
  3504. rq = task_rq_lock(p, &flags);
  3505. update_rq_clock(rq);
  3506. /*
  3507. * The RT priorities are set via sched_setscheduler(), but we still
  3508. * allow the 'normal' nice value to be set - but as expected
  3509. * it wont have any effect on scheduling until the task is
  3510. * SCHED_FIFO/SCHED_RR:
  3511. */
  3512. if (task_has_rt_policy(p)) {
  3513. p->static_prio = NICE_TO_PRIO(nice);
  3514. goto out_unlock;
  3515. }
  3516. on_rq = p->se.on_rq;
  3517. if (on_rq) {
  3518. dequeue_task(rq, p, 0);
  3519. dec_load(rq, p);
  3520. }
  3521. p->static_prio = NICE_TO_PRIO(nice);
  3522. set_load_weight(p);
  3523. old_prio = p->prio;
  3524. p->prio = effective_prio(p);
  3525. delta = p->prio - old_prio;
  3526. if (on_rq) {
  3527. enqueue_task(rq, p, 0);
  3528. inc_load(rq, p);
  3529. /*
  3530. * If the task increased its priority or is running and
  3531. * lowered its priority, then reschedule its CPU:
  3532. */
  3533. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3534. resched_task(rq->curr);
  3535. }
  3536. out_unlock:
  3537. task_rq_unlock(rq, &flags);
  3538. }
  3539. EXPORT_SYMBOL(set_user_nice);
  3540. /*
  3541. * can_nice - check if a task can reduce its nice value
  3542. * @p: task
  3543. * @nice: nice value
  3544. */
  3545. int can_nice(const struct task_struct *p, const int nice)
  3546. {
  3547. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3548. int nice_rlim = 20 - nice;
  3549. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3550. capable(CAP_SYS_NICE));
  3551. }
  3552. #ifdef __ARCH_WANT_SYS_NICE
  3553. /*
  3554. * sys_nice - change the priority of the current process.
  3555. * @increment: priority increment
  3556. *
  3557. * sys_setpriority is a more generic, but much slower function that
  3558. * does similar things.
  3559. */
  3560. asmlinkage long sys_nice(int increment)
  3561. {
  3562. long nice, retval;
  3563. /*
  3564. * Setpriority might change our priority at the same moment.
  3565. * We don't have to worry. Conceptually one call occurs first
  3566. * and we have a single winner.
  3567. */
  3568. if (increment < -40)
  3569. increment = -40;
  3570. if (increment > 40)
  3571. increment = 40;
  3572. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3573. if (nice < -20)
  3574. nice = -20;
  3575. if (nice > 19)
  3576. nice = 19;
  3577. if (increment < 0 && !can_nice(current, nice))
  3578. return -EPERM;
  3579. retval = security_task_setnice(current, nice);
  3580. if (retval)
  3581. return retval;
  3582. set_user_nice(current, nice);
  3583. return 0;
  3584. }
  3585. #endif
  3586. /**
  3587. * task_prio - return the priority value of a given task.
  3588. * @p: the task in question.
  3589. *
  3590. * This is the priority value as seen by users in /proc.
  3591. * RT tasks are offset by -200. Normal tasks are centered
  3592. * around 0, value goes from -16 to +15.
  3593. */
  3594. int task_prio(const struct task_struct *p)
  3595. {
  3596. return p->prio - MAX_RT_PRIO;
  3597. }
  3598. /**
  3599. * task_nice - return the nice value of a given task.
  3600. * @p: the task in question.
  3601. */
  3602. int task_nice(const struct task_struct *p)
  3603. {
  3604. return TASK_NICE(p);
  3605. }
  3606. EXPORT_SYMBOL_GPL(task_nice);
  3607. /**
  3608. * idle_cpu - is a given cpu idle currently?
  3609. * @cpu: the processor in question.
  3610. */
  3611. int idle_cpu(int cpu)
  3612. {
  3613. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3614. }
  3615. /**
  3616. * idle_task - return the idle task for a given cpu.
  3617. * @cpu: the processor in question.
  3618. */
  3619. struct task_struct *idle_task(int cpu)
  3620. {
  3621. return cpu_rq(cpu)->idle;
  3622. }
  3623. /**
  3624. * find_process_by_pid - find a process with a matching PID value.
  3625. * @pid: the pid in question.
  3626. */
  3627. static struct task_struct *find_process_by_pid(pid_t pid)
  3628. {
  3629. return pid ? find_task_by_vpid(pid) : current;
  3630. }
  3631. /* Actually do priority change: must hold rq lock. */
  3632. static void
  3633. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3634. {
  3635. BUG_ON(p->se.on_rq);
  3636. p->policy = policy;
  3637. switch (p->policy) {
  3638. case SCHED_NORMAL:
  3639. case SCHED_BATCH:
  3640. case SCHED_IDLE:
  3641. p->sched_class = &fair_sched_class;
  3642. break;
  3643. case SCHED_FIFO:
  3644. case SCHED_RR:
  3645. p->sched_class = &rt_sched_class;
  3646. break;
  3647. }
  3648. p->rt_priority = prio;
  3649. p->normal_prio = normal_prio(p);
  3650. /* we are holding p->pi_lock already */
  3651. p->prio = rt_mutex_getprio(p);
  3652. set_load_weight(p);
  3653. }
  3654. /**
  3655. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3656. * @p: the task in question.
  3657. * @policy: new policy.
  3658. * @param: structure containing the new RT priority.
  3659. *
  3660. * NOTE that the task may be already dead.
  3661. */
  3662. int sched_setscheduler(struct task_struct *p, int policy,
  3663. struct sched_param *param)
  3664. {
  3665. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3666. unsigned long flags;
  3667. struct rq *rq;
  3668. /* may grab non-irq protected spin_locks */
  3669. BUG_ON(in_interrupt());
  3670. recheck:
  3671. /* double check policy once rq lock held */
  3672. if (policy < 0)
  3673. policy = oldpolicy = p->policy;
  3674. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3675. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3676. policy != SCHED_IDLE)
  3677. return -EINVAL;
  3678. /*
  3679. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3680. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3681. * SCHED_BATCH and SCHED_IDLE is 0.
  3682. */
  3683. if (param->sched_priority < 0 ||
  3684. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3685. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3686. return -EINVAL;
  3687. if (rt_policy(policy) != (param->sched_priority != 0))
  3688. return -EINVAL;
  3689. /*
  3690. * Allow unprivileged RT tasks to decrease priority:
  3691. */
  3692. if (!capable(CAP_SYS_NICE)) {
  3693. if (rt_policy(policy)) {
  3694. unsigned long rlim_rtprio;
  3695. if (!lock_task_sighand(p, &flags))
  3696. return -ESRCH;
  3697. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3698. unlock_task_sighand(p, &flags);
  3699. /* can't set/change the rt policy */
  3700. if (policy != p->policy && !rlim_rtprio)
  3701. return -EPERM;
  3702. /* can't increase priority */
  3703. if (param->sched_priority > p->rt_priority &&
  3704. param->sched_priority > rlim_rtprio)
  3705. return -EPERM;
  3706. }
  3707. /*
  3708. * Like positive nice levels, dont allow tasks to
  3709. * move out of SCHED_IDLE either:
  3710. */
  3711. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3712. return -EPERM;
  3713. /* can't change other user's priorities */
  3714. if ((current->euid != p->euid) &&
  3715. (current->euid != p->uid))
  3716. return -EPERM;
  3717. }
  3718. retval = security_task_setscheduler(p, policy, param);
  3719. if (retval)
  3720. return retval;
  3721. /*
  3722. * make sure no PI-waiters arrive (or leave) while we are
  3723. * changing the priority of the task:
  3724. */
  3725. spin_lock_irqsave(&p->pi_lock, flags);
  3726. /*
  3727. * To be able to change p->policy safely, the apropriate
  3728. * runqueue lock must be held.
  3729. */
  3730. rq = __task_rq_lock(p);
  3731. /* recheck policy now with rq lock held */
  3732. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3733. policy = oldpolicy = -1;
  3734. __task_rq_unlock(rq);
  3735. spin_unlock_irqrestore(&p->pi_lock, flags);
  3736. goto recheck;
  3737. }
  3738. update_rq_clock(rq);
  3739. on_rq = p->se.on_rq;
  3740. running = task_running(rq, p);
  3741. if (on_rq) {
  3742. deactivate_task(rq, p, 0);
  3743. if (running)
  3744. p->sched_class->put_prev_task(rq, p);
  3745. }
  3746. oldprio = p->prio;
  3747. __setscheduler(rq, p, policy, param->sched_priority);
  3748. if (on_rq) {
  3749. if (running)
  3750. p->sched_class->set_curr_task(rq);
  3751. activate_task(rq, p, 0);
  3752. /*
  3753. * Reschedule if we are currently running on this runqueue and
  3754. * our priority decreased, or if we are not currently running on
  3755. * this runqueue and our priority is higher than the current's
  3756. */
  3757. if (running) {
  3758. if (p->prio > oldprio)
  3759. resched_task(rq->curr);
  3760. } else {
  3761. check_preempt_curr(rq, p);
  3762. }
  3763. }
  3764. __task_rq_unlock(rq);
  3765. spin_unlock_irqrestore(&p->pi_lock, flags);
  3766. rt_mutex_adjust_pi(p);
  3767. return 0;
  3768. }
  3769. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3770. static int
  3771. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3772. {
  3773. struct sched_param lparam;
  3774. struct task_struct *p;
  3775. int retval;
  3776. if (!param || pid < 0)
  3777. return -EINVAL;
  3778. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3779. return -EFAULT;
  3780. rcu_read_lock();
  3781. retval = -ESRCH;
  3782. p = find_process_by_pid(pid);
  3783. if (p != NULL)
  3784. retval = sched_setscheduler(p, policy, &lparam);
  3785. rcu_read_unlock();
  3786. return retval;
  3787. }
  3788. /**
  3789. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3790. * @pid: the pid in question.
  3791. * @policy: new policy.
  3792. * @param: structure containing the new RT priority.
  3793. */
  3794. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3795. struct sched_param __user *param)
  3796. {
  3797. /* negative values for policy are not valid */
  3798. if (policy < 0)
  3799. return -EINVAL;
  3800. return do_sched_setscheduler(pid, policy, param);
  3801. }
  3802. /**
  3803. * sys_sched_setparam - set/change the RT priority of a thread
  3804. * @pid: the pid in question.
  3805. * @param: structure containing the new RT priority.
  3806. */
  3807. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3808. {
  3809. return do_sched_setscheduler(pid, -1, param);
  3810. }
  3811. /**
  3812. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3813. * @pid: the pid in question.
  3814. */
  3815. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3816. {
  3817. struct task_struct *p;
  3818. int retval;
  3819. if (pid < 0)
  3820. return -EINVAL;
  3821. retval = -ESRCH;
  3822. read_lock(&tasklist_lock);
  3823. p = find_process_by_pid(pid);
  3824. if (p) {
  3825. retval = security_task_getscheduler(p);
  3826. if (!retval)
  3827. retval = p->policy;
  3828. }
  3829. read_unlock(&tasklist_lock);
  3830. return retval;
  3831. }
  3832. /**
  3833. * sys_sched_getscheduler - get the RT priority of a thread
  3834. * @pid: the pid in question.
  3835. * @param: structure containing the RT priority.
  3836. */
  3837. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3838. {
  3839. struct sched_param lp;
  3840. struct task_struct *p;
  3841. int retval;
  3842. if (!param || pid < 0)
  3843. return -EINVAL;
  3844. read_lock(&tasklist_lock);
  3845. p = find_process_by_pid(pid);
  3846. retval = -ESRCH;
  3847. if (!p)
  3848. goto out_unlock;
  3849. retval = security_task_getscheduler(p);
  3850. if (retval)
  3851. goto out_unlock;
  3852. lp.sched_priority = p->rt_priority;
  3853. read_unlock(&tasklist_lock);
  3854. /*
  3855. * This one might sleep, we cannot do it with a spinlock held ...
  3856. */
  3857. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3858. return retval;
  3859. out_unlock:
  3860. read_unlock(&tasklist_lock);
  3861. return retval;
  3862. }
  3863. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3864. {
  3865. cpumask_t cpus_allowed;
  3866. struct task_struct *p;
  3867. int retval;
  3868. mutex_lock(&sched_hotcpu_mutex);
  3869. read_lock(&tasklist_lock);
  3870. p = find_process_by_pid(pid);
  3871. if (!p) {
  3872. read_unlock(&tasklist_lock);
  3873. mutex_unlock(&sched_hotcpu_mutex);
  3874. return -ESRCH;
  3875. }
  3876. /*
  3877. * It is not safe to call set_cpus_allowed with the
  3878. * tasklist_lock held. We will bump the task_struct's
  3879. * usage count and then drop tasklist_lock.
  3880. */
  3881. get_task_struct(p);
  3882. read_unlock(&tasklist_lock);
  3883. retval = -EPERM;
  3884. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3885. !capable(CAP_SYS_NICE))
  3886. goto out_unlock;
  3887. retval = security_task_setscheduler(p, 0, NULL);
  3888. if (retval)
  3889. goto out_unlock;
  3890. cpus_allowed = cpuset_cpus_allowed(p);
  3891. cpus_and(new_mask, new_mask, cpus_allowed);
  3892. again:
  3893. retval = set_cpus_allowed(p, new_mask);
  3894. if (!retval) {
  3895. cpus_allowed = cpuset_cpus_allowed(p);
  3896. if (!cpus_subset(new_mask, cpus_allowed)) {
  3897. /*
  3898. * We must have raced with a concurrent cpuset
  3899. * update. Just reset the cpus_allowed to the
  3900. * cpuset's cpus_allowed
  3901. */
  3902. new_mask = cpus_allowed;
  3903. goto again;
  3904. }
  3905. }
  3906. out_unlock:
  3907. put_task_struct(p);
  3908. mutex_unlock(&sched_hotcpu_mutex);
  3909. return retval;
  3910. }
  3911. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3912. cpumask_t *new_mask)
  3913. {
  3914. if (len < sizeof(cpumask_t)) {
  3915. memset(new_mask, 0, sizeof(cpumask_t));
  3916. } else if (len > sizeof(cpumask_t)) {
  3917. len = sizeof(cpumask_t);
  3918. }
  3919. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3920. }
  3921. /**
  3922. * sys_sched_setaffinity - set the cpu affinity of a process
  3923. * @pid: pid of the process
  3924. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3925. * @user_mask_ptr: user-space pointer to the new cpu mask
  3926. */
  3927. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3928. unsigned long __user *user_mask_ptr)
  3929. {
  3930. cpumask_t new_mask;
  3931. int retval;
  3932. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3933. if (retval)
  3934. return retval;
  3935. return sched_setaffinity(pid, new_mask);
  3936. }
  3937. /*
  3938. * Represents all cpu's present in the system
  3939. * In systems capable of hotplug, this map could dynamically grow
  3940. * as new cpu's are detected in the system via any platform specific
  3941. * method, such as ACPI for e.g.
  3942. */
  3943. cpumask_t cpu_present_map __read_mostly;
  3944. EXPORT_SYMBOL(cpu_present_map);
  3945. #ifndef CONFIG_SMP
  3946. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3947. EXPORT_SYMBOL(cpu_online_map);
  3948. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3949. EXPORT_SYMBOL(cpu_possible_map);
  3950. #endif
  3951. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3952. {
  3953. struct task_struct *p;
  3954. int retval;
  3955. mutex_lock(&sched_hotcpu_mutex);
  3956. read_lock(&tasklist_lock);
  3957. retval = -ESRCH;
  3958. p = find_process_by_pid(pid);
  3959. if (!p)
  3960. goto out_unlock;
  3961. retval = security_task_getscheduler(p);
  3962. if (retval)
  3963. goto out_unlock;
  3964. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3965. out_unlock:
  3966. read_unlock(&tasklist_lock);
  3967. mutex_unlock(&sched_hotcpu_mutex);
  3968. return retval;
  3969. }
  3970. /**
  3971. * sys_sched_getaffinity - get the cpu affinity of a process
  3972. * @pid: pid of the process
  3973. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3974. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3975. */
  3976. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3977. unsigned long __user *user_mask_ptr)
  3978. {
  3979. int ret;
  3980. cpumask_t mask;
  3981. if (len < sizeof(cpumask_t))
  3982. return -EINVAL;
  3983. ret = sched_getaffinity(pid, &mask);
  3984. if (ret < 0)
  3985. return ret;
  3986. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3987. return -EFAULT;
  3988. return sizeof(cpumask_t);
  3989. }
  3990. /**
  3991. * sys_sched_yield - yield the current processor to other threads.
  3992. *
  3993. * This function yields the current CPU to other tasks. If there are no
  3994. * other threads running on this CPU then this function will return.
  3995. */
  3996. asmlinkage long sys_sched_yield(void)
  3997. {
  3998. struct rq *rq = this_rq_lock();
  3999. schedstat_inc(rq, yld_count);
  4000. current->sched_class->yield_task(rq);
  4001. /*
  4002. * Since we are going to call schedule() anyway, there's
  4003. * no need to preempt or enable interrupts:
  4004. */
  4005. __release(rq->lock);
  4006. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4007. _raw_spin_unlock(&rq->lock);
  4008. preempt_enable_no_resched();
  4009. schedule();
  4010. return 0;
  4011. }
  4012. static void __cond_resched(void)
  4013. {
  4014. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4015. __might_sleep(__FILE__, __LINE__);
  4016. #endif
  4017. /*
  4018. * The BKS might be reacquired before we have dropped
  4019. * PREEMPT_ACTIVE, which could trigger a second
  4020. * cond_resched() call.
  4021. */
  4022. do {
  4023. add_preempt_count(PREEMPT_ACTIVE);
  4024. schedule();
  4025. sub_preempt_count(PREEMPT_ACTIVE);
  4026. } while (need_resched());
  4027. }
  4028. int __sched cond_resched(void)
  4029. {
  4030. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4031. system_state == SYSTEM_RUNNING) {
  4032. __cond_resched();
  4033. return 1;
  4034. }
  4035. return 0;
  4036. }
  4037. EXPORT_SYMBOL(cond_resched);
  4038. /*
  4039. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4040. * call schedule, and on return reacquire the lock.
  4041. *
  4042. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4043. * operations here to prevent schedule() from being called twice (once via
  4044. * spin_unlock(), once by hand).
  4045. */
  4046. int cond_resched_lock(spinlock_t *lock)
  4047. {
  4048. int ret = 0;
  4049. if (need_lockbreak(lock)) {
  4050. spin_unlock(lock);
  4051. cpu_relax();
  4052. ret = 1;
  4053. spin_lock(lock);
  4054. }
  4055. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4056. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4057. _raw_spin_unlock(lock);
  4058. preempt_enable_no_resched();
  4059. __cond_resched();
  4060. ret = 1;
  4061. spin_lock(lock);
  4062. }
  4063. return ret;
  4064. }
  4065. EXPORT_SYMBOL(cond_resched_lock);
  4066. int __sched cond_resched_softirq(void)
  4067. {
  4068. BUG_ON(!in_softirq());
  4069. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4070. local_bh_enable();
  4071. __cond_resched();
  4072. local_bh_disable();
  4073. return 1;
  4074. }
  4075. return 0;
  4076. }
  4077. EXPORT_SYMBOL(cond_resched_softirq);
  4078. /**
  4079. * yield - yield the current processor to other threads.
  4080. *
  4081. * This is a shortcut for kernel-space yielding - it marks the
  4082. * thread runnable and calls sys_sched_yield().
  4083. */
  4084. void __sched yield(void)
  4085. {
  4086. set_current_state(TASK_RUNNING);
  4087. sys_sched_yield();
  4088. }
  4089. EXPORT_SYMBOL(yield);
  4090. /*
  4091. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4092. * that process accounting knows that this is a task in IO wait state.
  4093. *
  4094. * But don't do that if it is a deliberate, throttling IO wait (this task
  4095. * has set its backing_dev_info: the queue against which it should throttle)
  4096. */
  4097. void __sched io_schedule(void)
  4098. {
  4099. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4100. delayacct_blkio_start();
  4101. atomic_inc(&rq->nr_iowait);
  4102. schedule();
  4103. atomic_dec(&rq->nr_iowait);
  4104. delayacct_blkio_end();
  4105. }
  4106. EXPORT_SYMBOL(io_schedule);
  4107. long __sched io_schedule_timeout(long timeout)
  4108. {
  4109. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4110. long ret;
  4111. delayacct_blkio_start();
  4112. atomic_inc(&rq->nr_iowait);
  4113. ret = schedule_timeout(timeout);
  4114. atomic_dec(&rq->nr_iowait);
  4115. delayacct_blkio_end();
  4116. return ret;
  4117. }
  4118. /**
  4119. * sys_sched_get_priority_max - return maximum RT priority.
  4120. * @policy: scheduling class.
  4121. *
  4122. * this syscall returns the maximum rt_priority that can be used
  4123. * by a given scheduling class.
  4124. */
  4125. asmlinkage long sys_sched_get_priority_max(int policy)
  4126. {
  4127. int ret = -EINVAL;
  4128. switch (policy) {
  4129. case SCHED_FIFO:
  4130. case SCHED_RR:
  4131. ret = MAX_USER_RT_PRIO-1;
  4132. break;
  4133. case SCHED_NORMAL:
  4134. case SCHED_BATCH:
  4135. case SCHED_IDLE:
  4136. ret = 0;
  4137. break;
  4138. }
  4139. return ret;
  4140. }
  4141. /**
  4142. * sys_sched_get_priority_min - return minimum RT priority.
  4143. * @policy: scheduling class.
  4144. *
  4145. * this syscall returns the minimum rt_priority that can be used
  4146. * by a given scheduling class.
  4147. */
  4148. asmlinkage long sys_sched_get_priority_min(int policy)
  4149. {
  4150. int ret = -EINVAL;
  4151. switch (policy) {
  4152. case SCHED_FIFO:
  4153. case SCHED_RR:
  4154. ret = 1;
  4155. break;
  4156. case SCHED_NORMAL:
  4157. case SCHED_BATCH:
  4158. case SCHED_IDLE:
  4159. ret = 0;
  4160. }
  4161. return ret;
  4162. }
  4163. /**
  4164. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4165. * @pid: pid of the process.
  4166. * @interval: userspace pointer to the timeslice value.
  4167. *
  4168. * this syscall writes the default timeslice value of a given process
  4169. * into the user-space timespec buffer. A value of '0' means infinity.
  4170. */
  4171. asmlinkage
  4172. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4173. {
  4174. struct task_struct *p;
  4175. unsigned int time_slice;
  4176. int retval;
  4177. struct timespec t;
  4178. if (pid < 0)
  4179. return -EINVAL;
  4180. retval = -ESRCH;
  4181. read_lock(&tasklist_lock);
  4182. p = find_process_by_pid(pid);
  4183. if (!p)
  4184. goto out_unlock;
  4185. retval = security_task_getscheduler(p);
  4186. if (retval)
  4187. goto out_unlock;
  4188. if (p->policy == SCHED_FIFO)
  4189. time_slice = 0;
  4190. else if (p->policy == SCHED_RR)
  4191. time_slice = DEF_TIMESLICE;
  4192. else {
  4193. struct sched_entity *se = &p->se;
  4194. unsigned long flags;
  4195. struct rq *rq;
  4196. rq = task_rq_lock(p, &flags);
  4197. time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  4198. task_rq_unlock(rq, &flags);
  4199. }
  4200. read_unlock(&tasklist_lock);
  4201. jiffies_to_timespec(time_slice, &t);
  4202. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4203. return retval;
  4204. out_unlock:
  4205. read_unlock(&tasklist_lock);
  4206. return retval;
  4207. }
  4208. static const char stat_nam[] = "RSDTtZX";
  4209. static void show_task(struct task_struct *p)
  4210. {
  4211. unsigned long free = 0;
  4212. unsigned state;
  4213. state = p->state ? __ffs(p->state) + 1 : 0;
  4214. printk(KERN_INFO "%-13.13s %c", p->comm,
  4215. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4216. #if BITS_PER_LONG == 32
  4217. if (state == TASK_RUNNING)
  4218. printk(KERN_CONT " running ");
  4219. else
  4220. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4221. #else
  4222. if (state == TASK_RUNNING)
  4223. printk(KERN_CONT " running task ");
  4224. else
  4225. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4226. #endif
  4227. #ifdef CONFIG_DEBUG_STACK_USAGE
  4228. {
  4229. unsigned long *n = end_of_stack(p);
  4230. while (!*n)
  4231. n++;
  4232. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4233. }
  4234. #endif
  4235. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4236. task_pid_nr(p), task_pid_nr(p->parent));
  4237. if (state != TASK_RUNNING)
  4238. show_stack(p, NULL);
  4239. }
  4240. void show_state_filter(unsigned long state_filter)
  4241. {
  4242. struct task_struct *g, *p;
  4243. #if BITS_PER_LONG == 32
  4244. printk(KERN_INFO
  4245. " task PC stack pid father\n");
  4246. #else
  4247. printk(KERN_INFO
  4248. " task PC stack pid father\n");
  4249. #endif
  4250. read_lock(&tasklist_lock);
  4251. do_each_thread(g, p) {
  4252. /*
  4253. * reset the NMI-timeout, listing all files on a slow
  4254. * console might take alot of time:
  4255. */
  4256. touch_nmi_watchdog();
  4257. if (!state_filter || (p->state & state_filter))
  4258. show_task(p);
  4259. } while_each_thread(g, p);
  4260. touch_all_softlockup_watchdogs();
  4261. #ifdef CONFIG_SCHED_DEBUG
  4262. sysrq_sched_debug_show();
  4263. #endif
  4264. read_unlock(&tasklist_lock);
  4265. /*
  4266. * Only show locks if all tasks are dumped:
  4267. */
  4268. if (state_filter == -1)
  4269. debug_show_all_locks();
  4270. }
  4271. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4272. {
  4273. idle->sched_class = &idle_sched_class;
  4274. }
  4275. /**
  4276. * init_idle - set up an idle thread for a given CPU
  4277. * @idle: task in question
  4278. * @cpu: cpu the idle task belongs to
  4279. *
  4280. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4281. * flag, to make booting more robust.
  4282. */
  4283. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4284. {
  4285. struct rq *rq = cpu_rq(cpu);
  4286. unsigned long flags;
  4287. __sched_fork(idle);
  4288. idle->se.exec_start = sched_clock();
  4289. idle->prio = idle->normal_prio = MAX_PRIO;
  4290. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4291. __set_task_cpu(idle, cpu);
  4292. spin_lock_irqsave(&rq->lock, flags);
  4293. rq->curr = rq->idle = idle;
  4294. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4295. idle->oncpu = 1;
  4296. #endif
  4297. spin_unlock_irqrestore(&rq->lock, flags);
  4298. /* Set the preempt count _outside_ the spinlocks! */
  4299. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4300. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4301. #else
  4302. task_thread_info(idle)->preempt_count = 0;
  4303. #endif
  4304. /*
  4305. * The idle tasks have their own, simple scheduling class:
  4306. */
  4307. idle->sched_class = &idle_sched_class;
  4308. }
  4309. /*
  4310. * In a system that switches off the HZ timer nohz_cpu_mask
  4311. * indicates which cpus entered this state. This is used
  4312. * in the rcu update to wait only for active cpus. For system
  4313. * which do not switch off the HZ timer nohz_cpu_mask should
  4314. * always be CPU_MASK_NONE.
  4315. */
  4316. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4317. /*
  4318. * Increase the granularity value when there are more CPUs,
  4319. * because with more CPUs the 'effective latency' as visible
  4320. * to users decreases. But the relationship is not linear,
  4321. * so pick a second-best guess by going with the log2 of the
  4322. * number of CPUs.
  4323. *
  4324. * This idea comes from the SD scheduler of Con Kolivas:
  4325. */
  4326. static inline void sched_init_granularity(void)
  4327. {
  4328. unsigned int factor = 1 + ilog2(num_online_cpus());
  4329. const unsigned long limit = 200000000;
  4330. sysctl_sched_min_granularity *= factor;
  4331. if (sysctl_sched_min_granularity > limit)
  4332. sysctl_sched_min_granularity = limit;
  4333. sysctl_sched_latency *= factor;
  4334. if (sysctl_sched_latency > limit)
  4335. sysctl_sched_latency = limit;
  4336. sysctl_sched_wakeup_granularity *= factor;
  4337. sysctl_sched_batch_wakeup_granularity *= factor;
  4338. }
  4339. #ifdef CONFIG_SMP
  4340. /*
  4341. * This is how migration works:
  4342. *
  4343. * 1) we queue a struct migration_req structure in the source CPU's
  4344. * runqueue and wake up that CPU's migration thread.
  4345. * 2) we down() the locked semaphore => thread blocks.
  4346. * 3) migration thread wakes up (implicitly it forces the migrated
  4347. * thread off the CPU)
  4348. * 4) it gets the migration request and checks whether the migrated
  4349. * task is still in the wrong runqueue.
  4350. * 5) if it's in the wrong runqueue then the migration thread removes
  4351. * it and puts it into the right queue.
  4352. * 6) migration thread up()s the semaphore.
  4353. * 7) we wake up and the migration is done.
  4354. */
  4355. /*
  4356. * Change a given task's CPU affinity. Migrate the thread to a
  4357. * proper CPU and schedule it away if the CPU it's executing on
  4358. * is removed from the allowed bitmask.
  4359. *
  4360. * NOTE: the caller must have a valid reference to the task, the
  4361. * task must not exit() & deallocate itself prematurely. The
  4362. * call is not atomic; no spinlocks may be held.
  4363. */
  4364. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4365. {
  4366. struct migration_req req;
  4367. unsigned long flags;
  4368. struct rq *rq;
  4369. int ret = 0;
  4370. rq = task_rq_lock(p, &flags);
  4371. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4372. ret = -EINVAL;
  4373. goto out;
  4374. }
  4375. p->cpus_allowed = new_mask;
  4376. /* Can the task run on the task's current CPU? If so, we're done */
  4377. if (cpu_isset(task_cpu(p), new_mask))
  4378. goto out;
  4379. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4380. /* Need help from migration thread: drop lock and wait. */
  4381. task_rq_unlock(rq, &flags);
  4382. wake_up_process(rq->migration_thread);
  4383. wait_for_completion(&req.done);
  4384. tlb_migrate_finish(p->mm);
  4385. return 0;
  4386. }
  4387. out:
  4388. task_rq_unlock(rq, &flags);
  4389. return ret;
  4390. }
  4391. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4392. /*
  4393. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4394. * this because either it can't run here any more (set_cpus_allowed()
  4395. * away from this CPU, or CPU going down), or because we're
  4396. * attempting to rebalance this task on exec (sched_exec).
  4397. *
  4398. * So we race with normal scheduler movements, but that's OK, as long
  4399. * as the task is no longer on this CPU.
  4400. *
  4401. * Returns non-zero if task was successfully migrated.
  4402. */
  4403. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4404. {
  4405. struct rq *rq_dest, *rq_src;
  4406. int ret = 0, on_rq;
  4407. if (unlikely(cpu_is_offline(dest_cpu)))
  4408. return ret;
  4409. rq_src = cpu_rq(src_cpu);
  4410. rq_dest = cpu_rq(dest_cpu);
  4411. double_rq_lock(rq_src, rq_dest);
  4412. /* Already moved. */
  4413. if (task_cpu(p) != src_cpu)
  4414. goto out;
  4415. /* Affinity changed (again). */
  4416. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4417. goto out;
  4418. on_rq = p->se.on_rq;
  4419. if (on_rq)
  4420. deactivate_task(rq_src, p, 0);
  4421. set_task_cpu(p, dest_cpu);
  4422. if (on_rq) {
  4423. activate_task(rq_dest, p, 0);
  4424. check_preempt_curr(rq_dest, p);
  4425. }
  4426. ret = 1;
  4427. out:
  4428. double_rq_unlock(rq_src, rq_dest);
  4429. return ret;
  4430. }
  4431. /*
  4432. * migration_thread - this is a highprio system thread that performs
  4433. * thread migration by bumping thread off CPU then 'pushing' onto
  4434. * another runqueue.
  4435. */
  4436. static int migration_thread(void *data)
  4437. {
  4438. int cpu = (long)data;
  4439. struct rq *rq;
  4440. rq = cpu_rq(cpu);
  4441. BUG_ON(rq->migration_thread != current);
  4442. set_current_state(TASK_INTERRUPTIBLE);
  4443. while (!kthread_should_stop()) {
  4444. struct migration_req *req;
  4445. struct list_head *head;
  4446. spin_lock_irq(&rq->lock);
  4447. if (cpu_is_offline(cpu)) {
  4448. spin_unlock_irq(&rq->lock);
  4449. goto wait_to_die;
  4450. }
  4451. if (rq->active_balance) {
  4452. active_load_balance(rq, cpu);
  4453. rq->active_balance = 0;
  4454. }
  4455. head = &rq->migration_queue;
  4456. if (list_empty(head)) {
  4457. spin_unlock_irq(&rq->lock);
  4458. schedule();
  4459. set_current_state(TASK_INTERRUPTIBLE);
  4460. continue;
  4461. }
  4462. req = list_entry(head->next, struct migration_req, list);
  4463. list_del_init(head->next);
  4464. spin_unlock(&rq->lock);
  4465. __migrate_task(req->task, cpu, req->dest_cpu);
  4466. local_irq_enable();
  4467. complete(&req->done);
  4468. }
  4469. __set_current_state(TASK_RUNNING);
  4470. return 0;
  4471. wait_to_die:
  4472. /* Wait for kthread_stop */
  4473. set_current_state(TASK_INTERRUPTIBLE);
  4474. while (!kthread_should_stop()) {
  4475. schedule();
  4476. set_current_state(TASK_INTERRUPTIBLE);
  4477. }
  4478. __set_current_state(TASK_RUNNING);
  4479. return 0;
  4480. }
  4481. #ifdef CONFIG_HOTPLUG_CPU
  4482. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4483. {
  4484. int ret;
  4485. local_irq_disable();
  4486. ret = __migrate_task(p, src_cpu, dest_cpu);
  4487. local_irq_enable();
  4488. return ret;
  4489. }
  4490. /*
  4491. * Figure out where task on dead CPU should go, use force if necessary.
  4492. * NOTE: interrupts should be disabled by the caller
  4493. */
  4494. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4495. {
  4496. unsigned long flags;
  4497. cpumask_t mask;
  4498. struct rq *rq;
  4499. int dest_cpu;
  4500. do {
  4501. /* On same node? */
  4502. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4503. cpus_and(mask, mask, p->cpus_allowed);
  4504. dest_cpu = any_online_cpu(mask);
  4505. /* On any allowed CPU? */
  4506. if (dest_cpu == NR_CPUS)
  4507. dest_cpu = any_online_cpu(p->cpus_allowed);
  4508. /* No more Mr. Nice Guy. */
  4509. if (dest_cpu == NR_CPUS) {
  4510. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4511. /*
  4512. * Try to stay on the same cpuset, where the
  4513. * current cpuset may be a subset of all cpus.
  4514. * The cpuset_cpus_allowed_locked() variant of
  4515. * cpuset_cpus_allowed() will not block. It must be
  4516. * called within calls to cpuset_lock/cpuset_unlock.
  4517. */
  4518. rq = task_rq_lock(p, &flags);
  4519. p->cpus_allowed = cpus_allowed;
  4520. dest_cpu = any_online_cpu(p->cpus_allowed);
  4521. task_rq_unlock(rq, &flags);
  4522. /*
  4523. * Don't tell them about moving exiting tasks or
  4524. * kernel threads (both mm NULL), since they never
  4525. * leave kernel.
  4526. */
  4527. if (p->mm && printk_ratelimit())
  4528. printk(KERN_INFO "process %d (%s) no "
  4529. "longer affine to cpu%d\n",
  4530. task_pid_nr(p), p->comm, dead_cpu);
  4531. }
  4532. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4533. }
  4534. /*
  4535. * While a dead CPU has no uninterruptible tasks queued at this point,
  4536. * it might still have a nonzero ->nr_uninterruptible counter, because
  4537. * for performance reasons the counter is not stricly tracking tasks to
  4538. * their home CPUs. So we just add the counter to another CPU's counter,
  4539. * to keep the global sum constant after CPU-down:
  4540. */
  4541. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4542. {
  4543. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4544. unsigned long flags;
  4545. local_irq_save(flags);
  4546. double_rq_lock(rq_src, rq_dest);
  4547. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4548. rq_src->nr_uninterruptible = 0;
  4549. double_rq_unlock(rq_src, rq_dest);
  4550. local_irq_restore(flags);
  4551. }
  4552. /* Run through task list and migrate tasks from the dead cpu. */
  4553. static void migrate_live_tasks(int src_cpu)
  4554. {
  4555. struct task_struct *p, *t;
  4556. read_lock(&tasklist_lock);
  4557. do_each_thread(t, p) {
  4558. if (p == current)
  4559. continue;
  4560. if (task_cpu(p) == src_cpu)
  4561. move_task_off_dead_cpu(src_cpu, p);
  4562. } while_each_thread(t, p);
  4563. read_unlock(&tasklist_lock);
  4564. }
  4565. /*
  4566. * activate_idle_task - move idle task to the _front_ of runqueue.
  4567. */
  4568. static void activate_idle_task(struct task_struct *p, struct rq *rq)
  4569. {
  4570. update_rq_clock(rq);
  4571. if (p->state == TASK_UNINTERRUPTIBLE)
  4572. rq->nr_uninterruptible--;
  4573. enqueue_task(rq, p, 0);
  4574. inc_nr_running(p, rq);
  4575. }
  4576. /*
  4577. * Schedules idle task to be the next runnable task on current CPU.
  4578. * It does so by boosting its priority to highest possible and adding it to
  4579. * the _front_ of the runqueue. Used by CPU offline code.
  4580. */
  4581. void sched_idle_next(void)
  4582. {
  4583. int this_cpu = smp_processor_id();
  4584. struct rq *rq = cpu_rq(this_cpu);
  4585. struct task_struct *p = rq->idle;
  4586. unsigned long flags;
  4587. /* cpu has to be offline */
  4588. BUG_ON(cpu_online(this_cpu));
  4589. /*
  4590. * Strictly not necessary since rest of the CPUs are stopped by now
  4591. * and interrupts disabled on the current cpu.
  4592. */
  4593. spin_lock_irqsave(&rq->lock, flags);
  4594. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4595. /* Add idle task to the _front_ of its priority queue: */
  4596. activate_idle_task(p, rq);
  4597. spin_unlock_irqrestore(&rq->lock, flags);
  4598. }
  4599. /*
  4600. * Ensures that the idle task is using init_mm right before its cpu goes
  4601. * offline.
  4602. */
  4603. void idle_task_exit(void)
  4604. {
  4605. struct mm_struct *mm = current->active_mm;
  4606. BUG_ON(cpu_online(smp_processor_id()));
  4607. if (mm != &init_mm)
  4608. switch_mm(mm, &init_mm, current);
  4609. mmdrop(mm);
  4610. }
  4611. /* called under rq->lock with disabled interrupts */
  4612. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4613. {
  4614. struct rq *rq = cpu_rq(dead_cpu);
  4615. /* Must be exiting, otherwise would be on tasklist. */
  4616. BUG_ON(!p->exit_state);
  4617. /* Cannot have done final schedule yet: would have vanished. */
  4618. BUG_ON(p->state == TASK_DEAD);
  4619. get_task_struct(p);
  4620. /*
  4621. * Drop lock around migration; if someone else moves it,
  4622. * that's OK. No task can be added to this CPU, so iteration is
  4623. * fine.
  4624. */
  4625. spin_unlock_irq(&rq->lock);
  4626. move_task_off_dead_cpu(dead_cpu, p);
  4627. spin_lock_irq(&rq->lock);
  4628. put_task_struct(p);
  4629. }
  4630. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4631. static void migrate_dead_tasks(unsigned int dead_cpu)
  4632. {
  4633. struct rq *rq = cpu_rq(dead_cpu);
  4634. struct task_struct *next;
  4635. for ( ; ; ) {
  4636. if (!rq->nr_running)
  4637. break;
  4638. update_rq_clock(rq);
  4639. next = pick_next_task(rq, rq->curr);
  4640. if (!next)
  4641. break;
  4642. migrate_dead(dead_cpu, next);
  4643. }
  4644. }
  4645. #endif /* CONFIG_HOTPLUG_CPU */
  4646. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4647. static struct ctl_table sd_ctl_dir[] = {
  4648. {
  4649. .procname = "sched_domain",
  4650. .mode = 0555,
  4651. },
  4652. {0, },
  4653. };
  4654. static struct ctl_table sd_ctl_root[] = {
  4655. {
  4656. .ctl_name = CTL_KERN,
  4657. .procname = "kernel",
  4658. .mode = 0555,
  4659. .child = sd_ctl_dir,
  4660. },
  4661. {0, },
  4662. };
  4663. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4664. {
  4665. struct ctl_table *entry =
  4666. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4667. return entry;
  4668. }
  4669. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4670. {
  4671. struct ctl_table *entry;
  4672. /*
  4673. * In the intermediate directories, both the child directory and
  4674. * procname are dynamically allocated and could fail but the mode
  4675. * will always be set. In the lowest directory the names are
  4676. * static strings and all have proc handlers.
  4677. */
  4678. for (entry = *tablep; entry->mode; entry++) {
  4679. if (entry->child)
  4680. sd_free_ctl_entry(&entry->child);
  4681. if (entry->proc_handler == NULL)
  4682. kfree(entry->procname);
  4683. }
  4684. kfree(*tablep);
  4685. *tablep = NULL;
  4686. }
  4687. static void
  4688. set_table_entry(struct ctl_table *entry,
  4689. const char *procname, void *data, int maxlen,
  4690. mode_t mode, proc_handler *proc_handler)
  4691. {
  4692. entry->procname = procname;
  4693. entry->data = data;
  4694. entry->maxlen = maxlen;
  4695. entry->mode = mode;
  4696. entry->proc_handler = proc_handler;
  4697. }
  4698. static struct ctl_table *
  4699. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4700. {
  4701. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4702. if (table == NULL)
  4703. return NULL;
  4704. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4705. sizeof(long), 0644, proc_doulongvec_minmax);
  4706. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4707. sizeof(long), 0644, proc_doulongvec_minmax);
  4708. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4709. sizeof(int), 0644, proc_dointvec_minmax);
  4710. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4711. sizeof(int), 0644, proc_dointvec_minmax);
  4712. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4713. sizeof(int), 0644, proc_dointvec_minmax);
  4714. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4715. sizeof(int), 0644, proc_dointvec_minmax);
  4716. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4717. sizeof(int), 0644, proc_dointvec_minmax);
  4718. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4719. sizeof(int), 0644, proc_dointvec_minmax);
  4720. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4721. sizeof(int), 0644, proc_dointvec_minmax);
  4722. set_table_entry(&table[9], "cache_nice_tries",
  4723. &sd->cache_nice_tries,
  4724. sizeof(int), 0644, proc_dointvec_minmax);
  4725. set_table_entry(&table[10], "flags", &sd->flags,
  4726. sizeof(int), 0644, proc_dointvec_minmax);
  4727. /* &table[11] is terminator */
  4728. return table;
  4729. }
  4730. static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
  4731. {
  4732. struct ctl_table *entry, *table;
  4733. struct sched_domain *sd;
  4734. int domain_num = 0, i;
  4735. char buf[32];
  4736. for_each_domain(cpu, sd)
  4737. domain_num++;
  4738. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4739. if (table == NULL)
  4740. return NULL;
  4741. i = 0;
  4742. for_each_domain(cpu, sd) {
  4743. snprintf(buf, 32, "domain%d", i);
  4744. entry->procname = kstrdup(buf, GFP_KERNEL);
  4745. entry->mode = 0555;
  4746. entry->child = sd_alloc_ctl_domain_table(sd);
  4747. entry++;
  4748. i++;
  4749. }
  4750. return table;
  4751. }
  4752. static struct ctl_table_header *sd_sysctl_header;
  4753. static void register_sched_domain_sysctl(void)
  4754. {
  4755. int i, cpu_num = num_online_cpus();
  4756. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4757. char buf[32];
  4758. WARN_ON(sd_ctl_dir[0].child);
  4759. sd_ctl_dir[0].child = entry;
  4760. if (entry == NULL)
  4761. return;
  4762. for_each_online_cpu(i) {
  4763. snprintf(buf, 32, "cpu%d", i);
  4764. entry->procname = kstrdup(buf, GFP_KERNEL);
  4765. entry->mode = 0555;
  4766. entry->child = sd_alloc_ctl_cpu_table(i);
  4767. entry++;
  4768. }
  4769. WARN_ON(sd_sysctl_header);
  4770. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4771. }
  4772. /* may be called multiple times per register */
  4773. static void unregister_sched_domain_sysctl(void)
  4774. {
  4775. if (sd_sysctl_header)
  4776. unregister_sysctl_table(sd_sysctl_header);
  4777. sd_sysctl_header = NULL;
  4778. if (sd_ctl_dir[0].child)
  4779. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4780. }
  4781. #else
  4782. static void register_sched_domain_sysctl(void)
  4783. {
  4784. }
  4785. static void unregister_sched_domain_sysctl(void)
  4786. {
  4787. }
  4788. #endif
  4789. /*
  4790. * migration_call - callback that gets triggered when a CPU is added.
  4791. * Here we can start up the necessary migration thread for the new CPU.
  4792. */
  4793. static int __cpuinit
  4794. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4795. {
  4796. struct task_struct *p;
  4797. int cpu = (long)hcpu;
  4798. unsigned long flags;
  4799. struct rq *rq;
  4800. switch (action) {
  4801. case CPU_LOCK_ACQUIRE:
  4802. mutex_lock(&sched_hotcpu_mutex);
  4803. break;
  4804. case CPU_UP_PREPARE:
  4805. case CPU_UP_PREPARE_FROZEN:
  4806. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4807. if (IS_ERR(p))
  4808. return NOTIFY_BAD;
  4809. kthread_bind(p, cpu);
  4810. /* Must be high prio: stop_machine expects to yield to it. */
  4811. rq = task_rq_lock(p, &flags);
  4812. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4813. task_rq_unlock(rq, &flags);
  4814. cpu_rq(cpu)->migration_thread = p;
  4815. break;
  4816. case CPU_ONLINE:
  4817. case CPU_ONLINE_FROZEN:
  4818. /* Strictly unnecessary, as first user will wake it. */
  4819. wake_up_process(cpu_rq(cpu)->migration_thread);
  4820. break;
  4821. #ifdef CONFIG_HOTPLUG_CPU
  4822. case CPU_UP_CANCELED:
  4823. case CPU_UP_CANCELED_FROZEN:
  4824. if (!cpu_rq(cpu)->migration_thread)
  4825. break;
  4826. /* Unbind it from offline cpu so it can run. Fall thru. */
  4827. kthread_bind(cpu_rq(cpu)->migration_thread,
  4828. any_online_cpu(cpu_online_map));
  4829. kthread_stop(cpu_rq(cpu)->migration_thread);
  4830. cpu_rq(cpu)->migration_thread = NULL;
  4831. break;
  4832. case CPU_DEAD:
  4833. case CPU_DEAD_FROZEN:
  4834. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4835. migrate_live_tasks(cpu);
  4836. rq = cpu_rq(cpu);
  4837. kthread_stop(rq->migration_thread);
  4838. rq->migration_thread = NULL;
  4839. /* Idle task back to normal (off runqueue, low prio) */
  4840. spin_lock_irq(&rq->lock);
  4841. update_rq_clock(rq);
  4842. deactivate_task(rq, rq->idle, 0);
  4843. rq->idle->static_prio = MAX_PRIO;
  4844. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4845. rq->idle->sched_class = &idle_sched_class;
  4846. migrate_dead_tasks(cpu);
  4847. spin_unlock_irq(&rq->lock);
  4848. cpuset_unlock();
  4849. migrate_nr_uninterruptible(rq);
  4850. BUG_ON(rq->nr_running != 0);
  4851. /* No need to migrate the tasks: it was best-effort if
  4852. * they didn't take sched_hotcpu_mutex. Just wake up
  4853. * the requestors. */
  4854. spin_lock_irq(&rq->lock);
  4855. while (!list_empty(&rq->migration_queue)) {
  4856. struct migration_req *req;
  4857. req = list_entry(rq->migration_queue.next,
  4858. struct migration_req, list);
  4859. list_del_init(&req->list);
  4860. complete(&req->done);
  4861. }
  4862. spin_unlock_irq(&rq->lock);
  4863. break;
  4864. #endif
  4865. case CPU_LOCK_RELEASE:
  4866. mutex_unlock(&sched_hotcpu_mutex);
  4867. break;
  4868. }
  4869. return NOTIFY_OK;
  4870. }
  4871. /* Register at highest priority so that task migration (migrate_all_tasks)
  4872. * happens before everything else.
  4873. */
  4874. static struct notifier_block __cpuinitdata migration_notifier = {
  4875. .notifier_call = migration_call,
  4876. .priority = 10
  4877. };
  4878. int __init migration_init(void)
  4879. {
  4880. void *cpu = (void *)(long)smp_processor_id();
  4881. int err;
  4882. /* Start one for the boot CPU: */
  4883. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4884. BUG_ON(err == NOTIFY_BAD);
  4885. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4886. register_cpu_notifier(&migration_notifier);
  4887. return 0;
  4888. }
  4889. #endif
  4890. #ifdef CONFIG_SMP
  4891. /* Number of possible processor ids */
  4892. int nr_cpu_ids __read_mostly = NR_CPUS;
  4893. EXPORT_SYMBOL(nr_cpu_ids);
  4894. #ifdef CONFIG_SCHED_DEBUG
  4895. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4896. {
  4897. struct sched_group *group = sd->groups;
  4898. cpumask_t groupmask;
  4899. char str[NR_CPUS];
  4900. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4901. cpus_clear(groupmask);
  4902. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4903. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4904. printk("does not load-balance\n");
  4905. if (sd->parent)
  4906. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4907. " has parent");
  4908. return -1;
  4909. }
  4910. printk(KERN_CONT "span %s\n", str);
  4911. if (!cpu_isset(cpu, sd->span)) {
  4912. printk(KERN_ERR "ERROR: domain->span does not contain "
  4913. "CPU%d\n", cpu);
  4914. }
  4915. if (!cpu_isset(cpu, group->cpumask)) {
  4916. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4917. " CPU%d\n", cpu);
  4918. }
  4919. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4920. do {
  4921. if (!group) {
  4922. printk("\n");
  4923. printk(KERN_ERR "ERROR: group is NULL\n");
  4924. break;
  4925. }
  4926. if (!group->__cpu_power) {
  4927. printk(KERN_CONT "\n");
  4928. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4929. "set\n");
  4930. break;
  4931. }
  4932. if (!cpus_weight(group->cpumask)) {
  4933. printk(KERN_CONT "\n");
  4934. printk(KERN_ERR "ERROR: empty group\n");
  4935. break;
  4936. }
  4937. if (cpus_intersects(groupmask, group->cpumask)) {
  4938. printk(KERN_CONT "\n");
  4939. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4940. break;
  4941. }
  4942. cpus_or(groupmask, groupmask, group->cpumask);
  4943. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4944. printk(KERN_CONT " %s", str);
  4945. group = group->next;
  4946. } while (group != sd->groups);
  4947. printk(KERN_CONT "\n");
  4948. if (!cpus_equal(sd->span, groupmask))
  4949. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4950. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  4951. printk(KERN_ERR "ERROR: parent span is not a superset "
  4952. "of domain->span\n");
  4953. return 0;
  4954. }
  4955. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4956. {
  4957. int level = 0;
  4958. if (!sd) {
  4959. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4960. return;
  4961. }
  4962. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4963. for (;;) {
  4964. if (sched_domain_debug_one(sd, cpu, level))
  4965. break;
  4966. level++;
  4967. sd = sd->parent;
  4968. if (!sd)
  4969. break;
  4970. }
  4971. }
  4972. #else
  4973. # define sched_domain_debug(sd, cpu) do { } while (0)
  4974. #endif
  4975. static int sd_degenerate(struct sched_domain *sd)
  4976. {
  4977. if (cpus_weight(sd->span) == 1)
  4978. return 1;
  4979. /* Following flags need at least 2 groups */
  4980. if (sd->flags & (SD_LOAD_BALANCE |
  4981. SD_BALANCE_NEWIDLE |
  4982. SD_BALANCE_FORK |
  4983. SD_BALANCE_EXEC |
  4984. SD_SHARE_CPUPOWER |
  4985. SD_SHARE_PKG_RESOURCES)) {
  4986. if (sd->groups != sd->groups->next)
  4987. return 0;
  4988. }
  4989. /* Following flags don't use groups */
  4990. if (sd->flags & (SD_WAKE_IDLE |
  4991. SD_WAKE_AFFINE |
  4992. SD_WAKE_BALANCE))
  4993. return 0;
  4994. return 1;
  4995. }
  4996. static int
  4997. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4998. {
  4999. unsigned long cflags = sd->flags, pflags = parent->flags;
  5000. if (sd_degenerate(parent))
  5001. return 1;
  5002. if (!cpus_equal(sd->span, parent->span))
  5003. return 0;
  5004. /* Does parent contain flags not in child? */
  5005. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5006. if (cflags & SD_WAKE_AFFINE)
  5007. pflags &= ~SD_WAKE_BALANCE;
  5008. /* Flags needing groups don't count if only 1 group in parent */
  5009. if (parent->groups == parent->groups->next) {
  5010. pflags &= ~(SD_LOAD_BALANCE |
  5011. SD_BALANCE_NEWIDLE |
  5012. SD_BALANCE_FORK |
  5013. SD_BALANCE_EXEC |
  5014. SD_SHARE_CPUPOWER |
  5015. SD_SHARE_PKG_RESOURCES);
  5016. }
  5017. if (~cflags & pflags)
  5018. return 0;
  5019. return 1;
  5020. }
  5021. /*
  5022. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5023. * hold the hotplug lock.
  5024. */
  5025. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  5026. {
  5027. struct rq *rq = cpu_rq(cpu);
  5028. struct sched_domain *tmp;
  5029. /* Remove the sched domains which do not contribute to scheduling. */
  5030. for (tmp = sd; tmp; tmp = tmp->parent) {
  5031. struct sched_domain *parent = tmp->parent;
  5032. if (!parent)
  5033. break;
  5034. if (sd_parent_degenerate(tmp, parent)) {
  5035. tmp->parent = parent->parent;
  5036. if (parent->parent)
  5037. parent->parent->child = tmp;
  5038. }
  5039. }
  5040. if (sd && sd_degenerate(sd)) {
  5041. sd = sd->parent;
  5042. if (sd)
  5043. sd->child = NULL;
  5044. }
  5045. sched_domain_debug(sd, cpu);
  5046. rcu_assign_pointer(rq->sd, sd);
  5047. }
  5048. /* cpus with isolated domains */
  5049. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5050. /* Setup the mask of cpus configured for isolated domains */
  5051. static int __init isolated_cpu_setup(char *str)
  5052. {
  5053. int ints[NR_CPUS], i;
  5054. str = get_options(str, ARRAY_SIZE(ints), ints);
  5055. cpus_clear(cpu_isolated_map);
  5056. for (i = 1; i <= ints[0]; i++)
  5057. if (ints[i] < NR_CPUS)
  5058. cpu_set(ints[i], cpu_isolated_map);
  5059. return 1;
  5060. }
  5061. __setup("isolcpus=", isolated_cpu_setup);
  5062. /*
  5063. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5064. * to a function which identifies what group(along with sched group) a CPU
  5065. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5066. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5067. *
  5068. * init_sched_build_groups will build a circular linked list of the groups
  5069. * covered by the given span, and will set each group's ->cpumask correctly,
  5070. * and ->cpu_power to 0.
  5071. */
  5072. static void
  5073. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5074. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5075. struct sched_group **sg))
  5076. {
  5077. struct sched_group *first = NULL, *last = NULL;
  5078. cpumask_t covered = CPU_MASK_NONE;
  5079. int i;
  5080. for_each_cpu_mask(i, span) {
  5081. struct sched_group *sg;
  5082. int group = group_fn(i, cpu_map, &sg);
  5083. int j;
  5084. if (cpu_isset(i, covered))
  5085. continue;
  5086. sg->cpumask = CPU_MASK_NONE;
  5087. sg->__cpu_power = 0;
  5088. for_each_cpu_mask(j, span) {
  5089. if (group_fn(j, cpu_map, NULL) != group)
  5090. continue;
  5091. cpu_set(j, covered);
  5092. cpu_set(j, sg->cpumask);
  5093. }
  5094. if (!first)
  5095. first = sg;
  5096. if (last)
  5097. last->next = sg;
  5098. last = sg;
  5099. }
  5100. last->next = first;
  5101. }
  5102. #define SD_NODES_PER_DOMAIN 16
  5103. #ifdef CONFIG_NUMA
  5104. /**
  5105. * find_next_best_node - find the next node to include in a sched_domain
  5106. * @node: node whose sched_domain we're building
  5107. * @used_nodes: nodes already in the sched_domain
  5108. *
  5109. * Find the next node to include in a given scheduling domain. Simply
  5110. * finds the closest node not already in the @used_nodes map.
  5111. *
  5112. * Should use nodemask_t.
  5113. */
  5114. static int find_next_best_node(int node, unsigned long *used_nodes)
  5115. {
  5116. int i, n, val, min_val, best_node = 0;
  5117. min_val = INT_MAX;
  5118. for (i = 0; i < MAX_NUMNODES; i++) {
  5119. /* Start at @node */
  5120. n = (node + i) % MAX_NUMNODES;
  5121. if (!nr_cpus_node(n))
  5122. continue;
  5123. /* Skip already used nodes */
  5124. if (test_bit(n, used_nodes))
  5125. continue;
  5126. /* Simple min distance search */
  5127. val = node_distance(node, n);
  5128. if (val < min_val) {
  5129. min_val = val;
  5130. best_node = n;
  5131. }
  5132. }
  5133. set_bit(best_node, used_nodes);
  5134. return best_node;
  5135. }
  5136. /**
  5137. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5138. * @node: node whose cpumask we're constructing
  5139. * @size: number of nodes to include in this span
  5140. *
  5141. * Given a node, construct a good cpumask for its sched_domain to span. It
  5142. * should be one that prevents unnecessary balancing, but also spreads tasks
  5143. * out optimally.
  5144. */
  5145. static cpumask_t sched_domain_node_span(int node)
  5146. {
  5147. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5148. cpumask_t span, nodemask;
  5149. int i;
  5150. cpus_clear(span);
  5151. bitmap_zero(used_nodes, MAX_NUMNODES);
  5152. nodemask = node_to_cpumask(node);
  5153. cpus_or(span, span, nodemask);
  5154. set_bit(node, used_nodes);
  5155. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5156. int next_node = find_next_best_node(node, used_nodes);
  5157. nodemask = node_to_cpumask(next_node);
  5158. cpus_or(span, span, nodemask);
  5159. }
  5160. return span;
  5161. }
  5162. #endif
  5163. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5164. /*
  5165. * SMT sched-domains:
  5166. */
  5167. #ifdef CONFIG_SCHED_SMT
  5168. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5169. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5170. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5171. struct sched_group **sg)
  5172. {
  5173. if (sg)
  5174. *sg = &per_cpu(sched_group_cpus, cpu);
  5175. return cpu;
  5176. }
  5177. #endif
  5178. /*
  5179. * multi-core sched-domains:
  5180. */
  5181. #ifdef CONFIG_SCHED_MC
  5182. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5183. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5184. #endif
  5185. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5186. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5187. struct sched_group **sg)
  5188. {
  5189. int group;
  5190. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5191. cpus_and(mask, mask, *cpu_map);
  5192. group = first_cpu(mask);
  5193. if (sg)
  5194. *sg = &per_cpu(sched_group_core, group);
  5195. return group;
  5196. }
  5197. #elif defined(CONFIG_SCHED_MC)
  5198. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5199. struct sched_group **sg)
  5200. {
  5201. if (sg)
  5202. *sg = &per_cpu(sched_group_core, cpu);
  5203. return cpu;
  5204. }
  5205. #endif
  5206. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5207. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5208. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5209. struct sched_group **sg)
  5210. {
  5211. int group;
  5212. #ifdef CONFIG_SCHED_MC
  5213. cpumask_t mask = cpu_coregroup_map(cpu);
  5214. cpus_and(mask, mask, *cpu_map);
  5215. group = first_cpu(mask);
  5216. #elif defined(CONFIG_SCHED_SMT)
  5217. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5218. cpus_and(mask, mask, *cpu_map);
  5219. group = first_cpu(mask);
  5220. #else
  5221. group = cpu;
  5222. #endif
  5223. if (sg)
  5224. *sg = &per_cpu(sched_group_phys, group);
  5225. return group;
  5226. }
  5227. #ifdef CONFIG_NUMA
  5228. /*
  5229. * The init_sched_build_groups can't handle what we want to do with node
  5230. * groups, so roll our own. Now each node has its own list of groups which
  5231. * gets dynamically allocated.
  5232. */
  5233. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5234. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5235. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5236. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5237. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5238. struct sched_group **sg)
  5239. {
  5240. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5241. int group;
  5242. cpus_and(nodemask, nodemask, *cpu_map);
  5243. group = first_cpu(nodemask);
  5244. if (sg)
  5245. *sg = &per_cpu(sched_group_allnodes, group);
  5246. return group;
  5247. }
  5248. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5249. {
  5250. struct sched_group *sg = group_head;
  5251. int j;
  5252. if (!sg)
  5253. return;
  5254. do {
  5255. for_each_cpu_mask(j, sg->cpumask) {
  5256. struct sched_domain *sd;
  5257. sd = &per_cpu(phys_domains, j);
  5258. if (j != first_cpu(sd->groups->cpumask)) {
  5259. /*
  5260. * Only add "power" once for each
  5261. * physical package.
  5262. */
  5263. continue;
  5264. }
  5265. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5266. }
  5267. sg = sg->next;
  5268. } while (sg != group_head);
  5269. }
  5270. #endif
  5271. #ifdef CONFIG_NUMA
  5272. /* Free memory allocated for various sched_group structures */
  5273. static void free_sched_groups(const cpumask_t *cpu_map)
  5274. {
  5275. int cpu, i;
  5276. for_each_cpu_mask(cpu, *cpu_map) {
  5277. struct sched_group **sched_group_nodes
  5278. = sched_group_nodes_bycpu[cpu];
  5279. if (!sched_group_nodes)
  5280. continue;
  5281. for (i = 0; i < MAX_NUMNODES; i++) {
  5282. cpumask_t nodemask = node_to_cpumask(i);
  5283. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5284. cpus_and(nodemask, nodemask, *cpu_map);
  5285. if (cpus_empty(nodemask))
  5286. continue;
  5287. if (sg == NULL)
  5288. continue;
  5289. sg = sg->next;
  5290. next_sg:
  5291. oldsg = sg;
  5292. sg = sg->next;
  5293. kfree(oldsg);
  5294. if (oldsg != sched_group_nodes[i])
  5295. goto next_sg;
  5296. }
  5297. kfree(sched_group_nodes);
  5298. sched_group_nodes_bycpu[cpu] = NULL;
  5299. }
  5300. }
  5301. #else
  5302. static void free_sched_groups(const cpumask_t *cpu_map)
  5303. {
  5304. }
  5305. #endif
  5306. /*
  5307. * Initialize sched groups cpu_power.
  5308. *
  5309. * cpu_power indicates the capacity of sched group, which is used while
  5310. * distributing the load between different sched groups in a sched domain.
  5311. * Typically cpu_power for all the groups in a sched domain will be same unless
  5312. * there are asymmetries in the topology. If there are asymmetries, group
  5313. * having more cpu_power will pickup more load compared to the group having
  5314. * less cpu_power.
  5315. *
  5316. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5317. * the maximum number of tasks a group can handle in the presence of other idle
  5318. * or lightly loaded groups in the same sched domain.
  5319. */
  5320. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5321. {
  5322. struct sched_domain *child;
  5323. struct sched_group *group;
  5324. WARN_ON(!sd || !sd->groups);
  5325. if (cpu != first_cpu(sd->groups->cpumask))
  5326. return;
  5327. child = sd->child;
  5328. sd->groups->__cpu_power = 0;
  5329. /*
  5330. * For perf policy, if the groups in child domain share resources
  5331. * (for example cores sharing some portions of the cache hierarchy
  5332. * or SMT), then set this domain groups cpu_power such that each group
  5333. * can handle only one task, when there are other idle groups in the
  5334. * same sched domain.
  5335. */
  5336. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5337. (child->flags &
  5338. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5339. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5340. return;
  5341. }
  5342. /*
  5343. * add cpu_power of each child group to this groups cpu_power
  5344. */
  5345. group = child->groups;
  5346. do {
  5347. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5348. group = group->next;
  5349. } while (group != child->groups);
  5350. }
  5351. /*
  5352. * Build sched domains for a given set of cpus and attach the sched domains
  5353. * to the individual cpus
  5354. */
  5355. static int build_sched_domains(const cpumask_t *cpu_map)
  5356. {
  5357. int i;
  5358. #ifdef CONFIG_NUMA
  5359. struct sched_group **sched_group_nodes = NULL;
  5360. int sd_allnodes = 0;
  5361. /*
  5362. * Allocate the per-node list of sched groups
  5363. */
  5364. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5365. GFP_KERNEL);
  5366. if (!sched_group_nodes) {
  5367. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5368. return -ENOMEM;
  5369. }
  5370. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5371. #endif
  5372. /*
  5373. * Set up domains for cpus specified by the cpu_map.
  5374. */
  5375. for_each_cpu_mask(i, *cpu_map) {
  5376. struct sched_domain *sd = NULL, *p;
  5377. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5378. cpus_and(nodemask, nodemask, *cpu_map);
  5379. #ifdef CONFIG_NUMA
  5380. if (cpus_weight(*cpu_map) >
  5381. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5382. sd = &per_cpu(allnodes_domains, i);
  5383. *sd = SD_ALLNODES_INIT;
  5384. sd->span = *cpu_map;
  5385. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5386. p = sd;
  5387. sd_allnodes = 1;
  5388. } else
  5389. p = NULL;
  5390. sd = &per_cpu(node_domains, i);
  5391. *sd = SD_NODE_INIT;
  5392. sd->span = sched_domain_node_span(cpu_to_node(i));
  5393. sd->parent = p;
  5394. if (p)
  5395. p->child = sd;
  5396. cpus_and(sd->span, sd->span, *cpu_map);
  5397. #endif
  5398. p = sd;
  5399. sd = &per_cpu(phys_domains, i);
  5400. *sd = SD_CPU_INIT;
  5401. sd->span = nodemask;
  5402. sd->parent = p;
  5403. if (p)
  5404. p->child = sd;
  5405. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5406. #ifdef CONFIG_SCHED_MC
  5407. p = sd;
  5408. sd = &per_cpu(core_domains, i);
  5409. *sd = SD_MC_INIT;
  5410. sd->span = cpu_coregroup_map(i);
  5411. cpus_and(sd->span, sd->span, *cpu_map);
  5412. sd->parent = p;
  5413. p->child = sd;
  5414. cpu_to_core_group(i, cpu_map, &sd->groups);
  5415. #endif
  5416. #ifdef CONFIG_SCHED_SMT
  5417. p = sd;
  5418. sd = &per_cpu(cpu_domains, i);
  5419. *sd = SD_SIBLING_INIT;
  5420. sd->span = per_cpu(cpu_sibling_map, i);
  5421. cpus_and(sd->span, sd->span, *cpu_map);
  5422. sd->parent = p;
  5423. p->child = sd;
  5424. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5425. #endif
  5426. }
  5427. #ifdef CONFIG_SCHED_SMT
  5428. /* Set up CPU (sibling) groups */
  5429. for_each_cpu_mask(i, *cpu_map) {
  5430. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5431. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5432. if (i != first_cpu(this_sibling_map))
  5433. continue;
  5434. init_sched_build_groups(this_sibling_map, cpu_map,
  5435. &cpu_to_cpu_group);
  5436. }
  5437. #endif
  5438. #ifdef CONFIG_SCHED_MC
  5439. /* Set up multi-core groups */
  5440. for_each_cpu_mask(i, *cpu_map) {
  5441. cpumask_t this_core_map = cpu_coregroup_map(i);
  5442. cpus_and(this_core_map, this_core_map, *cpu_map);
  5443. if (i != first_cpu(this_core_map))
  5444. continue;
  5445. init_sched_build_groups(this_core_map, cpu_map,
  5446. &cpu_to_core_group);
  5447. }
  5448. #endif
  5449. /* Set up physical groups */
  5450. for (i = 0; i < MAX_NUMNODES; i++) {
  5451. cpumask_t nodemask = node_to_cpumask(i);
  5452. cpus_and(nodemask, nodemask, *cpu_map);
  5453. if (cpus_empty(nodemask))
  5454. continue;
  5455. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5456. }
  5457. #ifdef CONFIG_NUMA
  5458. /* Set up node groups */
  5459. if (sd_allnodes)
  5460. init_sched_build_groups(*cpu_map, cpu_map,
  5461. &cpu_to_allnodes_group);
  5462. for (i = 0; i < MAX_NUMNODES; i++) {
  5463. /* Set up node groups */
  5464. struct sched_group *sg, *prev;
  5465. cpumask_t nodemask = node_to_cpumask(i);
  5466. cpumask_t domainspan;
  5467. cpumask_t covered = CPU_MASK_NONE;
  5468. int j;
  5469. cpus_and(nodemask, nodemask, *cpu_map);
  5470. if (cpus_empty(nodemask)) {
  5471. sched_group_nodes[i] = NULL;
  5472. continue;
  5473. }
  5474. domainspan = sched_domain_node_span(i);
  5475. cpus_and(domainspan, domainspan, *cpu_map);
  5476. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5477. if (!sg) {
  5478. printk(KERN_WARNING "Can not alloc domain group for "
  5479. "node %d\n", i);
  5480. goto error;
  5481. }
  5482. sched_group_nodes[i] = sg;
  5483. for_each_cpu_mask(j, nodemask) {
  5484. struct sched_domain *sd;
  5485. sd = &per_cpu(node_domains, j);
  5486. sd->groups = sg;
  5487. }
  5488. sg->__cpu_power = 0;
  5489. sg->cpumask = nodemask;
  5490. sg->next = sg;
  5491. cpus_or(covered, covered, nodemask);
  5492. prev = sg;
  5493. for (j = 0; j < MAX_NUMNODES; j++) {
  5494. cpumask_t tmp, notcovered;
  5495. int n = (i + j) % MAX_NUMNODES;
  5496. cpus_complement(notcovered, covered);
  5497. cpus_and(tmp, notcovered, *cpu_map);
  5498. cpus_and(tmp, tmp, domainspan);
  5499. if (cpus_empty(tmp))
  5500. break;
  5501. nodemask = node_to_cpumask(n);
  5502. cpus_and(tmp, tmp, nodemask);
  5503. if (cpus_empty(tmp))
  5504. continue;
  5505. sg = kmalloc_node(sizeof(struct sched_group),
  5506. GFP_KERNEL, i);
  5507. if (!sg) {
  5508. printk(KERN_WARNING
  5509. "Can not alloc domain group for node %d\n", j);
  5510. goto error;
  5511. }
  5512. sg->__cpu_power = 0;
  5513. sg->cpumask = tmp;
  5514. sg->next = prev->next;
  5515. cpus_or(covered, covered, tmp);
  5516. prev->next = sg;
  5517. prev = sg;
  5518. }
  5519. }
  5520. #endif
  5521. /* Calculate CPU power for physical packages and nodes */
  5522. #ifdef CONFIG_SCHED_SMT
  5523. for_each_cpu_mask(i, *cpu_map) {
  5524. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5525. init_sched_groups_power(i, sd);
  5526. }
  5527. #endif
  5528. #ifdef CONFIG_SCHED_MC
  5529. for_each_cpu_mask(i, *cpu_map) {
  5530. struct sched_domain *sd = &per_cpu(core_domains, i);
  5531. init_sched_groups_power(i, sd);
  5532. }
  5533. #endif
  5534. for_each_cpu_mask(i, *cpu_map) {
  5535. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5536. init_sched_groups_power(i, sd);
  5537. }
  5538. #ifdef CONFIG_NUMA
  5539. for (i = 0; i < MAX_NUMNODES; i++)
  5540. init_numa_sched_groups_power(sched_group_nodes[i]);
  5541. if (sd_allnodes) {
  5542. struct sched_group *sg;
  5543. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5544. init_numa_sched_groups_power(sg);
  5545. }
  5546. #endif
  5547. /* Attach the domains */
  5548. for_each_cpu_mask(i, *cpu_map) {
  5549. struct sched_domain *sd;
  5550. #ifdef CONFIG_SCHED_SMT
  5551. sd = &per_cpu(cpu_domains, i);
  5552. #elif defined(CONFIG_SCHED_MC)
  5553. sd = &per_cpu(core_domains, i);
  5554. #else
  5555. sd = &per_cpu(phys_domains, i);
  5556. #endif
  5557. cpu_attach_domain(sd, i);
  5558. }
  5559. return 0;
  5560. #ifdef CONFIG_NUMA
  5561. error:
  5562. free_sched_groups(cpu_map);
  5563. return -ENOMEM;
  5564. #endif
  5565. }
  5566. static cpumask_t *doms_cur; /* current sched domains */
  5567. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5568. /*
  5569. * Special case: If a kmalloc of a doms_cur partition (array of
  5570. * cpumask_t) fails, then fallback to a single sched domain,
  5571. * as determined by the single cpumask_t fallback_doms.
  5572. */
  5573. static cpumask_t fallback_doms;
  5574. /*
  5575. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5576. * For now this just excludes isolated cpus, but could be used to
  5577. * exclude other special cases in the future.
  5578. */
  5579. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5580. {
  5581. int err;
  5582. ndoms_cur = 1;
  5583. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5584. if (!doms_cur)
  5585. doms_cur = &fallback_doms;
  5586. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5587. err = build_sched_domains(doms_cur);
  5588. register_sched_domain_sysctl();
  5589. return err;
  5590. }
  5591. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5592. {
  5593. free_sched_groups(cpu_map);
  5594. }
  5595. /*
  5596. * Detach sched domains from a group of cpus specified in cpu_map
  5597. * These cpus will now be attached to the NULL domain
  5598. */
  5599. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5600. {
  5601. int i;
  5602. unregister_sched_domain_sysctl();
  5603. for_each_cpu_mask(i, *cpu_map)
  5604. cpu_attach_domain(NULL, i);
  5605. synchronize_sched();
  5606. arch_destroy_sched_domains(cpu_map);
  5607. }
  5608. /*
  5609. * Partition sched domains as specified by the 'ndoms_new'
  5610. * cpumasks in the array doms_new[] of cpumasks. This compares
  5611. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5612. * It destroys each deleted domain and builds each new domain.
  5613. *
  5614. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5615. * The masks don't intersect (don't overlap.) We should setup one
  5616. * sched domain for each mask. CPUs not in any of the cpumasks will
  5617. * not be load balanced. If the same cpumask appears both in the
  5618. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5619. * it as it is.
  5620. *
  5621. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5622. * ownership of it and will kfree it when done with it. If the caller
  5623. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5624. * and partition_sched_domains() will fallback to the single partition
  5625. * 'fallback_doms'.
  5626. *
  5627. * Call with hotplug lock held
  5628. */
  5629. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5630. {
  5631. int i, j;
  5632. /* always unregister in case we don't destroy any domains */
  5633. unregister_sched_domain_sysctl();
  5634. if (doms_new == NULL) {
  5635. ndoms_new = 1;
  5636. doms_new = &fallback_doms;
  5637. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5638. }
  5639. /* Destroy deleted domains */
  5640. for (i = 0; i < ndoms_cur; i++) {
  5641. for (j = 0; j < ndoms_new; j++) {
  5642. if (cpus_equal(doms_cur[i], doms_new[j]))
  5643. goto match1;
  5644. }
  5645. /* no match - a current sched domain not in new doms_new[] */
  5646. detach_destroy_domains(doms_cur + i);
  5647. match1:
  5648. ;
  5649. }
  5650. /* Build new domains */
  5651. for (i = 0; i < ndoms_new; i++) {
  5652. for (j = 0; j < ndoms_cur; j++) {
  5653. if (cpus_equal(doms_new[i], doms_cur[j]))
  5654. goto match2;
  5655. }
  5656. /* no match - add a new doms_new */
  5657. build_sched_domains(doms_new + i);
  5658. match2:
  5659. ;
  5660. }
  5661. /* Remember the new sched domains */
  5662. if (doms_cur != &fallback_doms)
  5663. kfree(doms_cur);
  5664. doms_cur = doms_new;
  5665. ndoms_cur = ndoms_new;
  5666. register_sched_domain_sysctl();
  5667. }
  5668. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5669. static int arch_reinit_sched_domains(void)
  5670. {
  5671. int err;
  5672. mutex_lock(&sched_hotcpu_mutex);
  5673. detach_destroy_domains(&cpu_online_map);
  5674. err = arch_init_sched_domains(&cpu_online_map);
  5675. mutex_unlock(&sched_hotcpu_mutex);
  5676. return err;
  5677. }
  5678. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5679. {
  5680. int ret;
  5681. if (buf[0] != '0' && buf[0] != '1')
  5682. return -EINVAL;
  5683. if (smt)
  5684. sched_smt_power_savings = (buf[0] == '1');
  5685. else
  5686. sched_mc_power_savings = (buf[0] == '1');
  5687. ret = arch_reinit_sched_domains();
  5688. return ret ? ret : count;
  5689. }
  5690. #ifdef CONFIG_SCHED_MC
  5691. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5692. {
  5693. return sprintf(page, "%u\n", sched_mc_power_savings);
  5694. }
  5695. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5696. const char *buf, size_t count)
  5697. {
  5698. return sched_power_savings_store(buf, count, 0);
  5699. }
  5700. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5701. sched_mc_power_savings_store);
  5702. #endif
  5703. #ifdef CONFIG_SCHED_SMT
  5704. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5705. {
  5706. return sprintf(page, "%u\n", sched_smt_power_savings);
  5707. }
  5708. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5709. const char *buf, size_t count)
  5710. {
  5711. return sched_power_savings_store(buf, count, 1);
  5712. }
  5713. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5714. sched_smt_power_savings_store);
  5715. #endif
  5716. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5717. {
  5718. int err = 0;
  5719. #ifdef CONFIG_SCHED_SMT
  5720. if (smt_capable())
  5721. err = sysfs_create_file(&cls->kset.kobj,
  5722. &attr_sched_smt_power_savings.attr);
  5723. #endif
  5724. #ifdef CONFIG_SCHED_MC
  5725. if (!err && mc_capable())
  5726. err = sysfs_create_file(&cls->kset.kobj,
  5727. &attr_sched_mc_power_savings.attr);
  5728. #endif
  5729. return err;
  5730. }
  5731. #endif
  5732. /*
  5733. * Force a reinitialization of the sched domains hierarchy. The domains
  5734. * and groups cannot be updated in place without racing with the balancing
  5735. * code, so we temporarily attach all running cpus to the NULL domain
  5736. * which will prevent rebalancing while the sched domains are recalculated.
  5737. */
  5738. static int update_sched_domains(struct notifier_block *nfb,
  5739. unsigned long action, void *hcpu)
  5740. {
  5741. switch (action) {
  5742. case CPU_UP_PREPARE:
  5743. case CPU_UP_PREPARE_FROZEN:
  5744. case CPU_DOWN_PREPARE:
  5745. case CPU_DOWN_PREPARE_FROZEN:
  5746. detach_destroy_domains(&cpu_online_map);
  5747. return NOTIFY_OK;
  5748. case CPU_UP_CANCELED:
  5749. case CPU_UP_CANCELED_FROZEN:
  5750. case CPU_DOWN_FAILED:
  5751. case CPU_DOWN_FAILED_FROZEN:
  5752. case CPU_ONLINE:
  5753. case CPU_ONLINE_FROZEN:
  5754. case CPU_DEAD:
  5755. case CPU_DEAD_FROZEN:
  5756. /*
  5757. * Fall through and re-initialise the domains.
  5758. */
  5759. break;
  5760. default:
  5761. return NOTIFY_DONE;
  5762. }
  5763. /* The hotplug lock is already held by cpu_up/cpu_down */
  5764. arch_init_sched_domains(&cpu_online_map);
  5765. return NOTIFY_OK;
  5766. }
  5767. void __init sched_init_smp(void)
  5768. {
  5769. cpumask_t non_isolated_cpus;
  5770. mutex_lock(&sched_hotcpu_mutex);
  5771. arch_init_sched_domains(&cpu_online_map);
  5772. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5773. if (cpus_empty(non_isolated_cpus))
  5774. cpu_set(smp_processor_id(), non_isolated_cpus);
  5775. mutex_unlock(&sched_hotcpu_mutex);
  5776. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5777. hotcpu_notifier(update_sched_domains, 0);
  5778. /* Move init over to a non-isolated CPU */
  5779. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5780. BUG();
  5781. sched_init_granularity();
  5782. }
  5783. #else
  5784. void __init sched_init_smp(void)
  5785. {
  5786. sched_init_granularity();
  5787. }
  5788. #endif /* CONFIG_SMP */
  5789. int in_sched_functions(unsigned long addr)
  5790. {
  5791. /* Linker adds these: start and end of __sched functions */
  5792. extern char __sched_text_start[], __sched_text_end[];
  5793. return in_lock_functions(addr) ||
  5794. (addr >= (unsigned long)__sched_text_start
  5795. && addr < (unsigned long)__sched_text_end);
  5796. }
  5797. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5798. {
  5799. cfs_rq->tasks_timeline = RB_ROOT;
  5800. #ifdef CONFIG_FAIR_GROUP_SCHED
  5801. cfs_rq->rq = rq;
  5802. #endif
  5803. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5804. }
  5805. void __init sched_init(void)
  5806. {
  5807. int highest_cpu = 0;
  5808. int i, j;
  5809. for_each_possible_cpu(i) {
  5810. struct rt_prio_array *array;
  5811. struct rq *rq;
  5812. rq = cpu_rq(i);
  5813. spin_lock_init(&rq->lock);
  5814. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5815. rq->nr_running = 0;
  5816. rq->clock = 1;
  5817. init_cfs_rq(&rq->cfs, rq);
  5818. #ifdef CONFIG_FAIR_GROUP_SCHED
  5819. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5820. {
  5821. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5822. struct sched_entity *se =
  5823. &per_cpu(init_sched_entity, i);
  5824. init_cfs_rq_p[i] = cfs_rq;
  5825. init_cfs_rq(cfs_rq, rq);
  5826. cfs_rq->tg = &init_task_group;
  5827. list_add(&cfs_rq->leaf_cfs_rq_list,
  5828. &rq->leaf_cfs_rq_list);
  5829. init_sched_entity_p[i] = se;
  5830. se->cfs_rq = &rq->cfs;
  5831. se->my_q = cfs_rq;
  5832. se->load.weight = init_task_group_load;
  5833. se->load.inv_weight =
  5834. div64_64(1ULL<<32, init_task_group_load);
  5835. se->parent = NULL;
  5836. }
  5837. init_task_group.shares = init_task_group_load;
  5838. spin_lock_init(&init_task_group.lock);
  5839. #endif
  5840. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5841. rq->cpu_load[j] = 0;
  5842. #ifdef CONFIG_SMP
  5843. rq->sd = NULL;
  5844. rq->active_balance = 0;
  5845. rq->next_balance = jiffies;
  5846. rq->push_cpu = 0;
  5847. rq->cpu = i;
  5848. rq->migration_thread = NULL;
  5849. INIT_LIST_HEAD(&rq->migration_queue);
  5850. #endif
  5851. atomic_set(&rq->nr_iowait, 0);
  5852. array = &rq->rt.active;
  5853. for (j = 0; j < MAX_RT_PRIO; j++) {
  5854. INIT_LIST_HEAD(array->queue + j);
  5855. __clear_bit(j, array->bitmap);
  5856. }
  5857. highest_cpu = i;
  5858. /* delimiter for bitsearch: */
  5859. __set_bit(MAX_RT_PRIO, array->bitmap);
  5860. }
  5861. set_load_weight(&init_task);
  5862. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5863. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5864. #endif
  5865. #ifdef CONFIG_SMP
  5866. nr_cpu_ids = highest_cpu + 1;
  5867. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5868. #endif
  5869. #ifdef CONFIG_RT_MUTEXES
  5870. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5871. #endif
  5872. /*
  5873. * The boot idle thread does lazy MMU switching as well:
  5874. */
  5875. atomic_inc(&init_mm.mm_count);
  5876. enter_lazy_tlb(&init_mm, current);
  5877. /*
  5878. * Make us the idle thread. Technically, schedule() should not be
  5879. * called from this thread, however somewhere below it might be,
  5880. * but because we are the idle thread, we just pick up running again
  5881. * when this runqueue becomes "idle".
  5882. */
  5883. init_idle(current, smp_processor_id());
  5884. /*
  5885. * During early bootup we pretend to be a normal task:
  5886. */
  5887. current->sched_class = &fair_sched_class;
  5888. }
  5889. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5890. void __might_sleep(char *file, int line)
  5891. {
  5892. #ifdef in_atomic
  5893. static unsigned long prev_jiffy; /* ratelimiting */
  5894. if ((in_atomic() || irqs_disabled()) &&
  5895. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5896. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5897. return;
  5898. prev_jiffy = jiffies;
  5899. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5900. " context at %s:%d\n", file, line);
  5901. printk("in_atomic():%d, irqs_disabled():%d\n",
  5902. in_atomic(), irqs_disabled());
  5903. debug_show_held_locks(current);
  5904. if (irqs_disabled())
  5905. print_irqtrace_events(current);
  5906. dump_stack();
  5907. }
  5908. #endif
  5909. }
  5910. EXPORT_SYMBOL(__might_sleep);
  5911. #endif
  5912. #ifdef CONFIG_MAGIC_SYSRQ
  5913. static void normalize_task(struct rq *rq, struct task_struct *p)
  5914. {
  5915. int on_rq;
  5916. update_rq_clock(rq);
  5917. on_rq = p->se.on_rq;
  5918. if (on_rq)
  5919. deactivate_task(rq, p, 0);
  5920. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5921. if (on_rq) {
  5922. activate_task(rq, p, 0);
  5923. resched_task(rq->curr);
  5924. }
  5925. }
  5926. void normalize_rt_tasks(void)
  5927. {
  5928. struct task_struct *g, *p;
  5929. unsigned long flags;
  5930. struct rq *rq;
  5931. read_lock_irq(&tasklist_lock);
  5932. do_each_thread(g, p) {
  5933. /*
  5934. * Only normalize user tasks:
  5935. */
  5936. if (!p->mm)
  5937. continue;
  5938. p->se.exec_start = 0;
  5939. #ifdef CONFIG_SCHEDSTATS
  5940. p->se.wait_start = 0;
  5941. p->se.sleep_start = 0;
  5942. p->se.block_start = 0;
  5943. #endif
  5944. task_rq(p)->clock = 0;
  5945. if (!rt_task(p)) {
  5946. /*
  5947. * Renice negative nice level userspace
  5948. * tasks back to 0:
  5949. */
  5950. if (TASK_NICE(p) < 0 && p->mm)
  5951. set_user_nice(p, 0);
  5952. continue;
  5953. }
  5954. spin_lock_irqsave(&p->pi_lock, flags);
  5955. rq = __task_rq_lock(p);
  5956. normalize_task(rq, p);
  5957. __task_rq_unlock(rq);
  5958. spin_unlock_irqrestore(&p->pi_lock, flags);
  5959. } while_each_thread(g, p);
  5960. read_unlock_irq(&tasklist_lock);
  5961. }
  5962. #endif /* CONFIG_MAGIC_SYSRQ */
  5963. #ifdef CONFIG_IA64
  5964. /*
  5965. * These functions are only useful for the IA64 MCA handling.
  5966. *
  5967. * They can only be called when the whole system has been
  5968. * stopped - every CPU needs to be quiescent, and no scheduling
  5969. * activity can take place. Using them for anything else would
  5970. * be a serious bug, and as a result, they aren't even visible
  5971. * under any other configuration.
  5972. */
  5973. /**
  5974. * curr_task - return the current task for a given cpu.
  5975. * @cpu: the processor in question.
  5976. *
  5977. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5978. */
  5979. struct task_struct *curr_task(int cpu)
  5980. {
  5981. return cpu_curr(cpu);
  5982. }
  5983. /**
  5984. * set_curr_task - set the current task for a given cpu.
  5985. * @cpu: the processor in question.
  5986. * @p: the task pointer to set.
  5987. *
  5988. * Description: This function must only be used when non-maskable interrupts
  5989. * are serviced on a separate stack. It allows the architecture to switch the
  5990. * notion of the current task on a cpu in a non-blocking manner. This function
  5991. * must be called with all CPU's synchronized, and interrupts disabled, the
  5992. * and caller must save the original value of the current task (see
  5993. * curr_task() above) and restore that value before reenabling interrupts and
  5994. * re-starting the system.
  5995. *
  5996. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5997. */
  5998. void set_curr_task(int cpu, struct task_struct *p)
  5999. {
  6000. cpu_curr(cpu) = p;
  6001. }
  6002. #endif
  6003. #ifdef CONFIG_FAIR_GROUP_SCHED
  6004. /* allocate runqueue etc for a new task group */
  6005. struct task_group *sched_create_group(void)
  6006. {
  6007. struct task_group *tg;
  6008. struct cfs_rq *cfs_rq;
  6009. struct sched_entity *se;
  6010. struct rq *rq;
  6011. int i;
  6012. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6013. if (!tg)
  6014. return ERR_PTR(-ENOMEM);
  6015. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6016. if (!tg->cfs_rq)
  6017. goto err;
  6018. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6019. if (!tg->se)
  6020. goto err;
  6021. for_each_possible_cpu(i) {
  6022. rq = cpu_rq(i);
  6023. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6024. cpu_to_node(i));
  6025. if (!cfs_rq)
  6026. goto err;
  6027. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6028. cpu_to_node(i));
  6029. if (!se)
  6030. goto err;
  6031. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6032. memset(se, 0, sizeof(struct sched_entity));
  6033. tg->cfs_rq[i] = cfs_rq;
  6034. init_cfs_rq(cfs_rq, rq);
  6035. cfs_rq->tg = tg;
  6036. tg->se[i] = se;
  6037. se->cfs_rq = &rq->cfs;
  6038. se->my_q = cfs_rq;
  6039. se->load.weight = NICE_0_LOAD;
  6040. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6041. se->parent = NULL;
  6042. }
  6043. for_each_possible_cpu(i) {
  6044. rq = cpu_rq(i);
  6045. cfs_rq = tg->cfs_rq[i];
  6046. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6047. }
  6048. tg->shares = NICE_0_LOAD;
  6049. spin_lock_init(&tg->lock);
  6050. return tg;
  6051. err:
  6052. for_each_possible_cpu(i) {
  6053. if (tg->cfs_rq)
  6054. kfree(tg->cfs_rq[i]);
  6055. if (tg->se)
  6056. kfree(tg->se[i]);
  6057. }
  6058. kfree(tg->cfs_rq);
  6059. kfree(tg->se);
  6060. kfree(tg);
  6061. return ERR_PTR(-ENOMEM);
  6062. }
  6063. /* rcu callback to free various structures associated with a task group */
  6064. static void free_sched_group(struct rcu_head *rhp)
  6065. {
  6066. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6067. struct cfs_rq *cfs_rq;
  6068. struct sched_entity *se;
  6069. int i;
  6070. /* now it should be safe to free those cfs_rqs */
  6071. for_each_possible_cpu(i) {
  6072. cfs_rq = tg->cfs_rq[i];
  6073. kfree(cfs_rq);
  6074. se = tg->se[i];
  6075. kfree(se);
  6076. }
  6077. kfree(tg->cfs_rq);
  6078. kfree(tg->se);
  6079. kfree(tg);
  6080. }
  6081. /* Destroy runqueue etc associated with a task group */
  6082. void sched_destroy_group(struct task_group *tg)
  6083. {
  6084. struct cfs_rq *cfs_rq = NULL;
  6085. int i;
  6086. for_each_possible_cpu(i) {
  6087. cfs_rq = tg->cfs_rq[i];
  6088. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6089. }
  6090. BUG_ON(!cfs_rq);
  6091. /* wait for possible concurrent references to cfs_rqs complete */
  6092. call_rcu(&tg->rcu, free_sched_group);
  6093. }
  6094. /* change task's runqueue when it moves between groups.
  6095. * The caller of this function should have put the task in its new group
  6096. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6097. * reflect its new group.
  6098. */
  6099. void sched_move_task(struct task_struct *tsk)
  6100. {
  6101. int on_rq, running;
  6102. unsigned long flags;
  6103. struct rq *rq;
  6104. rq = task_rq_lock(tsk, &flags);
  6105. if (tsk->sched_class != &fair_sched_class)
  6106. goto done;
  6107. update_rq_clock(rq);
  6108. running = task_running(rq, tsk);
  6109. on_rq = tsk->se.on_rq;
  6110. if (on_rq) {
  6111. dequeue_task(rq, tsk, 0);
  6112. if (unlikely(running))
  6113. tsk->sched_class->put_prev_task(rq, tsk);
  6114. }
  6115. set_task_cfs_rq(tsk);
  6116. if (on_rq) {
  6117. if (unlikely(running))
  6118. tsk->sched_class->set_curr_task(rq);
  6119. enqueue_task(rq, tsk, 0);
  6120. }
  6121. done:
  6122. task_rq_unlock(rq, &flags);
  6123. }
  6124. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6125. {
  6126. struct cfs_rq *cfs_rq = se->cfs_rq;
  6127. struct rq *rq = cfs_rq->rq;
  6128. int on_rq;
  6129. spin_lock_irq(&rq->lock);
  6130. on_rq = se->on_rq;
  6131. if (on_rq)
  6132. dequeue_entity(cfs_rq, se, 0);
  6133. se->load.weight = shares;
  6134. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6135. if (on_rq)
  6136. enqueue_entity(cfs_rq, se, 0);
  6137. spin_unlock_irq(&rq->lock);
  6138. }
  6139. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6140. {
  6141. int i;
  6142. spin_lock(&tg->lock);
  6143. if (tg->shares == shares)
  6144. goto done;
  6145. tg->shares = shares;
  6146. for_each_possible_cpu(i)
  6147. set_se_shares(tg->se[i], shares);
  6148. done:
  6149. spin_unlock(&tg->lock);
  6150. return 0;
  6151. }
  6152. unsigned long sched_group_shares(struct task_group *tg)
  6153. {
  6154. return tg->shares;
  6155. }
  6156. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6157. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6158. /* return corresponding task_group object of a cgroup */
  6159. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6160. {
  6161. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6162. struct task_group, css);
  6163. }
  6164. static struct cgroup_subsys_state *
  6165. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6166. {
  6167. struct task_group *tg;
  6168. if (!cgrp->parent) {
  6169. /* This is early initialization for the top cgroup */
  6170. init_task_group.css.cgroup = cgrp;
  6171. return &init_task_group.css;
  6172. }
  6173. /* we support only 1-level deep hierarchical scheduler atm */
  6174. if (cgrp->parent->parent)
  6175. return ERR_PTR(-EINVAL);
  6176. tg = sched_create_group();
  6177. if (IS_ERR(tg))
  6178. return ERR_PTR(-ENOMEM);
  6179. /* Bind the cgroup to task_group object we just created */
  6180. tg->css.cgroup = cgrp;
  6181. return &tg->css;
  6182. }
  6183. static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
  6184. struct cgroup *cgrp)
  6185. {
  6186. struct task_group *tg = cgroup_tg(cgrp);
  6187. sched_destroy_group(tg);
  6188. }
  6189. static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
  6190. struct cgroup *cgrp, struct task_struct *tsk)
  6191. {
  6192. /* We don't support RT-tasks being in separate groups */
  6193. if (tsk->sched_class != &fair_sched_class)
  6194. return -EINVAL;
  6195. return 0;
  6196. }
  6197. static void
  6198. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6199. struct cgroup *old_cont, struct task_struct *tsk)
  6200. {
  6201. sched_move_task(tsk);
  6202. }
  6203. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6204. u64 shareval)
  6205. {
  6206. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6207. }
  6208. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6209. {
  6210. struct task_group *tg = cgroup_tg(cgrp);
  6211. return (u64) tg->shares;
  6212. }
  6213. static u64 cpu_usage_read(struct cgroup *cgrp, struct cftype *cft)
  6214. {
  6215. struct task_group *tg = cgroup_tg(cgrp);
  6216. unsigned long flags;
  6217. u64 res = 0;
  6218. int i;
  6219. for_each_possible_cpu(i) {
  6220. /*
  6221. * Lock to prevent races with updating 64-bit counters
  6222. * on 32-bit arches.
  6223. */
  6224. spin_lock_irqsave(&cpu_rq(i)->lock, flags);
  6225. res += tg->se[i]->sum_exec_runtime;
  6226. spin_unlock_irqrestore(&cpu_rq(i)->lock, flags);
  6227. }
  6228. /* Convert from ns to ms */
  6229. do_div(res, NSEC_PER_MSEC);
  6230. return res;
  6231. }
  6232. static struct cftype cpu_files[] = {
  6233. {
  6234. .name = "shares",
  6235. .read_uint = cpu_shares_read_uint,
  6236. .write_uint = cpu_shares_write_uint,
  6237. },
  6238. {
  6239. .name = "usage",
  6240. .read_uint = cpu_usage_read,
  6241. },
  6242. };
  6243. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6244. {
  6245. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6246. }
  6247. struct cgroup_subsys cpu_cgroup_subsys = {
  6248. .name = "cpu",
  6249. .create = cpu_cgroup_create,
  6250. .destroy = cpu_cgroup_destroy,
  6251. .can_attach = cpu_cgroup_can_attach,
  6252. .attach = cpu_cgroup_attach,
  6253. .populate = cpu_cgroup_populate,
  6254. .subsys_id = cpu_cgroup_subsys_id,
  6255. .early_init = 1,
  6256. };
  6257. #endif /* CONFIG_FAIR_CGROUP_SCHED */