qla3xxx.c 108 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/init.h>
  9. #include <linux/types.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/mempool.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kthread.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/ip.h>
  24. #include <linux/in.h>
  25. #include <linux/if_arp.h>
  26. #include <linux/if_ether.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/rtnetlink.h>
  32. #include <linux/if_vlan.h>
  33. #include <linux/delay.h>
  34. #include <linux/mm.h>
  35. #include "qla3xxx.h"
  36. #define DRV_NAME "qla3xxx"
  37. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  38. #define DRV_VERSION "v2.03.00-k4"
  39. #define PFX DRV_NAME " "
  40. static const char ql3xxx_driver_name[] = DRV_NAME;
  41. static const char ql3xxx_driver_version[] = DRV_VERSION;
  42. MODULE_AUTHOR("QLogic Corporation");
  43. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  44. MODULE_LICENSE("GPL");
  45. MODULE_VERSION(DRV_VERSION);
  46. static const u32 default_msg
  47. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  48. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  49. static int debug = -1; /* defaults above */
  50. module_param(debug, int, 0);
  51. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  52. static int msi;
  53. module_param(msi, int, 0);
  54. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  55. static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
  56. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  57. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  58. /* required last entry */
  59. {0,}
  60. };
  61. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  62. /*
  63. * These are the known PHY's which are used
  64. */
  65. typedef enum {
  66. PHY_TYPE_UNKNOWN = 0,
  67. PHY_VITESSE_VSC8211,
  68. PHY_AGERE_ET1011C,
  69. MAX_PHY_DEV_TYPES
  70. } PHY_DEVICE_et;
  71. typedef struct {
  72. PHY_DEVICE_et phyDevice;
  73. u32 phyIdOUI;
  74. u16 phyIdModel;
  75. char *name;
  76. } PHY_DEVICE_INFO_t;
  77. static const PHY_DEVICE_INFO_t PHY_DEVICES[] =
  78. {{PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
  79. {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
  80. {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
  81. };
  82. /*
  83. * Caller must take hw_lock.
  84. */
  85. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  86. u32 sem_mask, u32 sem_bits)
  87. {
  88. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  89. u32 value;
  90. unsigned int seconds = 3;
  91. do {
  92. writel((sem_mask | sem_bits),
  93. &port_regs->CommonRegs.semaphoreReg);
  94. value = readl(&port_regs->CommonRegs.semaphoreReg);
  95. if ((value & (sem_mask >> 16)) == sem_bits)
  96. return 0;
  97. ssleep(1);
  98. } while(--seconds);
  99. return -1;
  100. }
  101. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  102. {
  103. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  104. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  105. readl(&port_regs->CommonRegs.semaphoreReg);
  106. }
  107. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  108. {
  109. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  110. u32 value;
  111. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  112. value = readl(&port_regs->CommonRegs.semaphoreReg);
  113. return ((value & (sem_mask >> 16)) == sem_bits);
  114. }
  115. /*
  116. * Caller holds hw_lock.
  117. */
  118. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  119. {
  120. int i = 0;
  121. while (1) {
  122. if (!ql_sem_lock(qdev,
  123. QL_DRVR_SEM_MASK,
  124. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  125. * 2) << 1)) {
  126. if (i < 10) {
  127. ssleep(1);
  128. i++;
  129. } else {
  130. printk(KERN_ERR PFX "%s: Timed out waiting for "
  131. "driver lock...\n",
  132. qdev->ndev->name);
  133. return 0;
  134. }
  135. } else {
  136. printk(KERN_DEBUG PFX
  137. "%s: driver lock acquired.\n",
  138. qdev->ndev->name);
  139. return 1;
  140. }
  141. }
  142. }
  143. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  144. {
  145. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  146. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  147. &port_regs->CommonRegs.ispControlStatus);
  148. readl(&port_regs->CommonRegs.ispControlStatus);
  149. qdev->current_page = page;
  150. }
  151. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
  152. u32 __iomem * reg)
  153. {
  154. u32 value;
  155. unsigned long hw_flags;
  156. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  157. value = readl(reg);
  158. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  159. return value;
  160. }
  161. static u32 ql_read_common_reg(struct ql3_adapter *qdev,
  162. u32 __iomem * reg)
  163. {
  164. return readl(reg);
  165. }
  166. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  167. {
  168. u32 value;
  169. unsigned long hw_flags;
  170. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  171. if (qdev->current_page != 0)
  172. ql_set_register_page(qdev,0);
  173. value = readl(reg);
  174. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  175. return value;
  176. }
  177. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  178. {
  179. if (qdev->current_page != 0)
  180. ql_set_register_page(qdev,0);
  181. return readl(reg);
  182. }
  183. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  184. u32 __iomem *reg, u32 value)
  185. {
  186. unsigned long hw_flags;
  187. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  188. writel(value, reg);
  189. readl(reg);
  190. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  191. return;
  192. }
  193. static void ql_write_common_reg(struct ql3_adapter *qdev,
  194. u32 __iomem *reg, u32 value)
  195. {
  196. writel(value, reg);
  197. readl(reg);
  198. return;
  199. }
  200. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  201. u32 __iomem *reg, u32 value)
  202. {
  203. writel(value, reg);
  204. readl(reg);
  205. udelay(1);
  206. return;
  207. }
  208. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  209. u32 __iomem *reg, u32 value)
  210. {
  211. if (qdev->current_page != 0)
  212. ql_set_register_page(qdev,0);
  213. writel(value, reg);
  214. readl(reg);
  215. return;
  216. }
  217. /*
  218. * Caller holds hw_lock. Only called during init.
  219. */
  220. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  221. u32 __iomem *reg, u32 value)
  222. {
  223. if (qdev->current_page != 1)
  224. ql_set_register_page(qdev,1);
  225. writel(value, reg);
  226. readl(reg);
  227. return;
  228. }
  229. /*
  230. * Caller holds hw_lock. Only called during init.
  231. */
  232. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  233. u32 __iomem *reg, u32 value)
  234. {
  235. if (qdev->current_page != 2)
  236. ql_set_register_page(qdev,2);
  237. writel(value, reg);
  238. readl(reg);
  239. return;
  240. }
  241. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  242. {
  243. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  244. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  245. (ISP_IMR_ENABLE_INT << 16));
  246. }
  247. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  248. {
  249. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  250. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  251. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  252. }
  253. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  254. struct ql_rcv_buf_cb *lrg_buf_cb)
  255. {
  256. dma_addr_t map;
  257. int err;
  258. lrg_buf_cb->next = NULL;
  259. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  260. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  261. } else {
  262. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  263. qdev->lrg_buf_free_tail = lrg_buf_cb;
  264. }
  265. if (!lrg_buf_cb->skb) {
  266. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  267. qdev->lrg_buffer_len);
  268. if (unlikely(!lrg_buf_cb->skb)) {
  269. printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
  270. qdev->ndev->name);
  271. qdev->lrg_buf_skb_check++;
  272. } else {
  273. /*
  274. * We save some space to copy the ethhdr from first
  275. * buffer
  276. */
  277. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  278. map = pci_map_single(qdev->pdev,
  279. lrg_buf_cb->skb->data,
  280. qdev->lrg_buffer_len -
  281. QL_HEADER_SPACE,
  282. PCI_DMA_FROMDEVICE);
  283. err = pci_dma_mapping_error(map);
  284. if(err) {
  285. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  286. qdev->ndev->name, err);
  287. dev_kfree_skb(lrg_buf_cb->skb);
  288. lrg_buf_cb->skb = NULL;
  289. qdev->lrg_buf_skb_check++;
  290. return;
  291. }
  292. lrg_buf_cb->buf_phy_addr_low =
  293. cpu_to_le32(LS_64BITS(map));
  294. lrg_buf_cb->buf_phy_addr_high =
  295. cpu_to_le32(MS_64BITS(map));
  296. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  297. pci_unmap_len_set(lrg_buf_cb, maplen,
  298. qdev->lrg_buffer_len -
  299. QL_HEADER_SPACE);
  300. }
  301. }
  302. qdev->lrg_buf_free_count++;
  303. }
  304. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  305. *qdev)
  306. {
  307. struct ql_rcv_buf_cb *lrg_buf_cb;
  308. if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
  309. if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
  310. qdev->lrg_buf_free_tail = NULL;
  311. qdev->lrg_buf_free_count--;
  312. }
  313. return lrg_buf_cb;
  314. }
  315. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  316. static u32 dataBits = EEPROM_NO_DATA_BITS;
  317. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  318. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  319. unsigned short *value);
  320. /*
  321. * Caller holds hw_lock.
  322. */
  323. static void fm93c56a_select(struct ql3_adapter *qdev)
  324. {
  325. struct ql3xxx_port_registers __iomem *port_regs =
  326. qdev->mem_map_registers;
  327. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  328. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  329. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  330. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  331. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  332. }
  333. /*
  334. * Caller holds hw_lock.
  335. */
  336. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  337. {
  338. int i;
  339. u32 mask;
  340. u32 dataBit;
  341. u32 previousBit;
  342. struct ql3xxx_port_registers __iomem *port_regs =
  343. qdev->mem_map_registers;
  344. /* Clock in a zero, then do the start bit */
  345. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  346. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  347. AUBURN_EEPROM_DO_1);
  348. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  349. ISP_NVRAM_MASK | qdev->
  350. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  351. AUBURN_EEPROM_CLK_RISE);
  352. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  353. ISP_NVRAM_MASK | qdev->
  354. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  355. AUBURN_EEPROM_CLK_FALL);
  356. mask = 1 << (FM93C56A_CMD_BITS - 1);
  357. /* Force the previous data bit to be different */
  358. previousBit = 0xffff;
  359. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  360. dataBit =
  361. (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
  362. if (previousBit != dataBit) {
  363. /*
  364. * If the bit changed, then change the DO state to
  365. * match
  366. */
  367. ql_write_nvram_reg(qdev,
  368. &port_regs->CommonRegs.
  369. serialPortInterfaceReg,
  370. ISP_NVRAM_MASK | qdev->
  371. eeprom_cmd_data | dataBit);
  372. previousBit = dataBit;
  373. }
  374. ql_write_nvram_reg(qdev,
  375. &port_regs->CommonRegs.
  376. serialPortInterfaceReg,
  377. ISP_NVRAM_MASK | qdev->
  378. eeprom_cmd_data | dataBit |
  379. AUBURN_EEPROM_CLK_RISE);
  380. ql_write_nvram_reg(qdev,
  381. &port_regs->CommonRegs.
  382. serialPortInterfaceReg,
  383. ISP_NVRAM_MASK | qdev->
  384. eeprom_cmd_data | dataBit |
  385. AUBURN_EEPROM_CLK_FALL);
  386. cmd = cmd << 1;
  387. }
  388. mask = 1 << (addrBits - 1);
  389. /* Force the previous data bit to be different */
  390. previousBit = 0xffff;
  391. for (i = 0; i < addrBits; i++) {
  392. dataBit =
  393. (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
  394. AUBURN_EEPROM_DO_0;
  395. if (previousBit != dataBit) {
  396. /*
  397. * If the bit changed, then change the DO state to
  398. * match
  399. */
  400. ql_write_nvram_reg(qdev,
  401. &port_regs->CommonRegs.
  402. serialPortInterfaceReg,
  403. ISP_NVRAM_MASK | qdev->
  404. eeprom_cmd_data | dataBit);
  405. previousBit = dataBit;
  406. }
  407. ql_write_nvram_reg(qdev,
  408. &port_regs->CommonRegs.
  409. serialPortInterfaceReg,
  410. ISP_NVRAM_MASK | qdev->
  411. eeprom_cmd_data | dataBit |
  412. AUBURN_EEPROM_CLK_RISE);
  413. ql_write_nvram_reg(qdev,
  414. &port_regs->CommonRegs.
  415. serialPortInterfaceReg,
  416. ISP_NVRAM_MASK | qdev->
  417. eeprom_cmd_data | dataBit |
  418. AUBURN_EEPROM_CLK_FALL);
  419. eepromAddr = eepromAddr << 1;
  420. }
  421. }
  422. /*
  423. * Caller holds hw_lock.
  424. */
  425. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  426. {
  427. struct ql3xxx_port_registers __iomem *port_regs =
  428. qdev->mem_map_registers;
  429. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  430. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  431. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  432. }
  433. /*
  434. * Caller holds hw_lock.
  435. */
  436. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  437. {
  438. int i;
  439. u32 data = 0;
  440. u32 dataBit;
  441. struct ql3xxx_port_registers __iomem *port_regs =
  442. qdev->mem_map_registers;
  443. /* Read the data bits */
  444. /* The first bit is a dummy. Clock right over it. */
  445. for (i = 0; i < dataBits; i++) {
  446. ql_write_nvram_reg(qdev,
  447. &port_regs->CommonRegs.
  448. serialPortInterfaceReg,
  449. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  450. AUBURN_EEPROM_CLK_RISE);
  451. ql_write_nvram_reg(qdev,
  452. &port_regs->CommonRegs.
  453. serialPortInterfaceReg,
  454. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  455. AUBURN_EEPROM_CLK_FALL);
  456. dataBit =
  457. (ql_read_common_reg
  458. (qdev,
  459. &port_regs->CommonRegs.
  460. serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
  461. data = (data << 1) | dataBit;
  462. }
  463. *value = (u16) data;
  464. }
  465. /*
  466. * Caller holds hw_lock.
  467. */
  468. static void eeprom_readword(struct ql3_adapter *qdev,
  469. u32 eepromAddr, unsigned short *value)
  470. {
  471. fm93c56a_select(qdev);
  472. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  473. fm93c56a_datain(qdev, value);
  474. fm93c56a_deselect(qdev);
  475. }
  476. static void ql_swap_mac_addr(u8 * macAddress)
  477. {
  478. #ifdef __BIG_ENDIAN
  479. u8 temp;
  480. temp = macAddress[0];
  481. macAddress[0] = macAddress[1];
  482. macAddress[1] = temp;
  483. temp = macAddress[2];
  484. macAddress[2] = macAddress[3];
  485. macAddress[3] = temp;
  486. temp = macAddress[4];
  487. macAddress[4] = macAddress[5];
  488. macAddress[5] = temp;
  489. #endif
  490. }
  491. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  492. {
  493. u16 *pEEPROMData;
  494. u16 checksum = 0;
  495. u32 index;
  496. unsigned long hw_flags;
  497. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  498. pEEPROMData = (u16 *) & qdev->nvram_data;
  499. qdev->eeprom_cmd_data = 0;
  500. if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  501. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  502. 2) << 10)) {
  503. printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
  504. __func__);
  505. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  506. return -1;
  507. }
  508. for (index = 0; index < EEPROM_SIZE; index++) {
  509. eeprom_readword(qdev, index, pEEPROMData);
  510. checksum += *pEEPROMData;
  511. pEEPROMData++;
  512. }
  513. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  514. if (checksum != 0) {
  515. printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
  516. qdev->ndev->name, checksum);
  517. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  518. return -1;
  519. }
  520. /*
  521. * We have a problem with endianness for the MAC addresses
  522. * and the two 8-bit values version, and numPorts. We
  523. * have to swap them on big endian systems.
  524. */
  525. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn0.macAddress);
  526. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn1.macAddress);
  527. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn2.macAddress);
  528. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn3.macAddress);
  529. pEEPROMData = (u16 *) & qdev->nvram_data.version;
  530. *pEEPROMData = le16_to_cpu(*pEEPROMData);
  531. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  532. return checksum;
  533. }
  534. static const u32 PHYAddr[2] = {
  535. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  536. };
  537. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  538. {
  539. struct ql3xxx_port_registers __iomem *port_regs =
  540. qdev->mem_map_registers;
  541. u32 temp;
  542. int count = 1000;
  543. while (count) {
  544. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  545. if (!(temp & MAC_MII_STATUS_BSY))
  546. return 0;
  547. udelay(10);
  548. count--;
  549. }
  550. return -1;
  551. }
  552. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  553. {
  554. struct ql3xxx_port_registers __iomem *port_regs =
  555. qdev->mem_map_registers;
  556. u32 scanControl;
  557. if (qdev->numPorts > 1) {
  558. /* Auto scan will cycle through multiple ports */
  559. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  560. } else {
  561. scanControl = MAC_MII_CONTROL_SC;
  562. }
  563. /*
  564. * Scan register 1 of PHY/PETBI,
  565. * Set up to scan both devices
  566. * The autoscan starts from the first register, completes
  567. * the last one before rolling over to the first
  568. */
  569. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  570. PHYAddr[0] | MII_SCAN_REGISTER);
  571. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  572. (scanControl) |
  573. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  574. }
  575. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  576. {
  577. u8 ret;
  578. struct ql3xxx_port_registers __iomem *port_regs =
  579. qdev->mem_map_registers;
  580. /* See if scan mode is enabled before we turn it off */
  581. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  582. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  583. /* Scan is enabled */
  584. ret = 1;
  585. } else {
  586. /* Scan is disabled */
  587. ret = 0;
  588. }
  589. /*
  590. * When disabling scan mode you must first change the MII register
  591. * address
  592. */
  593. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  594. PHYAddr[0] | MII_SCAN_REGISTER);
  595. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  596. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  597. MAC_MII_CONTROL_RC) << 16));
  598. return ret;
  599. }
  600. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  601. u16 regAddr, u16 value, u32 phyAddr)
  602. {
  603. struct ql3xxx_port_registers __iomem *port_regs =
  604. qdev->mem_map_registers;
  605. u8 scanWasEnabled;
  606. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  607. if (ql_wait_for_mii_ready(qdev)) {
  608. if (netif_msg_link(qdev))
  609. printk(KERN_WARNING PFX
  610. "%s Timed out waiting for management port to "
  611. "get free before issuing command.\n",
  612. qdev->ndev->name);
  613. return -1;
  614. }
  615. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  616. phyAddr | regAddr);
  617. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  618. /* Wait for write to complete 9/10/04 SJP */
  619. if (ql_wait_for_mii_ready(qdev)) {
  620. if (netif_msg_link(qdev))
  621. printk(KERN_WARNING PFX
  622. "%s: Timed out waiting for management port to"
  623. "get free before issuing command.\n",
  624. qdev->ndev->name);
  625. return -1;
  626. }
  627. if (scanWasEnabled)
  628. ql_mii_enable_scan_mode(qdev);
  629. return 0;
  630. }
  631. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  632. u16 * value, u32 phyAddr)
  633. {
  634. struct ql3xxx_port_registers __iomem *port_regs =
  635. qdev->mem_map_registers;
  636. u8 scanWasEnabled;
  637. u32 temp;
  638. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  639. if (ql_wait_for_mii_ready(qdev)) {
  640. if (netif_msg_link(qdev))
  641. printk(KERN_WARNING PFX
  642. "%s: Timed out waiting for management port to "
  643. "get free before issuing command.\n",
  644. qdev->ndev->name);
  645. return -1;
  646. }
  647. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  648. phyAddr | regAddr);
  649. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  650. (MAC_MII_CONTROL_RC << 16));
  651. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  652. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  653. /* Wait for the read to complete */
  654. if (ql_wait_for_mii_ready(qdev)) {
  655. if (netif_msg_link(qdev))
  656. printk(KERN_WARNING PFX
  657. "%s: Timed out waiting for management port to "
  658. "get free after issuing command.\n",
  659. qdev->ndev->name);
  660. return -1;
  661. }
  662. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  663. *value = (u16) temp;
  664. if (scanWasEnabled)
  665. ql_mii_enable_scan_mode(qdev);
  666. return 0;
  667. }
  668. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  669. {
  670. struct ql3xxx_port_registers __iomem *port_regs =
  671. qdev->mem_map_registers;
  672. ql_mii_disable_scan_mode(qdev);
  673. if (ql_wait_for_mii_ready(qdev)) {
  674. if (netif_msg_link(qdev))
  675. printk(KERN_WARNING PFX
  676. "%s: Timed out waiting for management port to "
  677. "get free before issuing command.\n",
  678. qdev->ndev->name);
  679. return -1;
  680. }
  681. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  682. qdev->PHYAddr | regAddr);
  683. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  684. /* Wait for write to complete. */
  685. if (ql_wait_for_mii_ready(qdev)) {
  686. if (netif_msg_link(qdev))
  687. printk(KERN_WARNING PFX
  688. "%s: Timed out waiting for management port to "
  689. "get free before issuing command.\n",
  690. qdev->ndev->name);
  691. return -1;
  692. }
  693. ql_mii_enable_scan_mode(qdev);
  694. return 0;
  695. }
  696. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  697. {
  698. u32 temp;
  699. struct ql3xxx_port_registers __iomem *port_regs =
  700. qdev->mem_map_registers;
  701. ql_mii_disable_scan_mode(qdev);
  702. if (ql_wait_for_mii_ready(qdev)) {
  703. if (netif_msg_link(qdev))
  704. printk(KERN_WARNING PFX
  705. "%s: Timed out waiting for management port to "
  706. "get free before issuing command.\n",
  707. qdev->ndev->name);
  708. return -1;
  709. }
  710. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  711. qdev->PHYAddr | regAddr);
  712. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  713. (MAC_MII_CONTROL_RC << 16));
  714. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  715. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  716. /* Wait for the read to complete */
  717. if (ql_wait_for_mii_ready(qdev)) {
  718. if (netif_msg_link(qdev))
  719. printk(KERN_WARNING PFX
  720. "%s: Timed out waiting for management port to "
  721. "get free before issuing command.\n",
  722. qdev->ndev->name);
  723. return -1;
  724. }
  725. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  726. *value = (u16) temp;
  727. ql_mii_enable_scan_mode(qdev);
  728. return 0;
  729. }
  730. static void ql_petbi_reset(struct ql3_adapter *qdev)
  731. {
  732. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  733. }
  734. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  735. {
  736. u16 reg;
  737. /* Enable Auto-negotiation sense */
  738. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  739. reg |= PETBI_TBI_AUTO_SENSE;
  740. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  741. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  742. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  743. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  744. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  745. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  746. }
  747. static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
  748. {
  749. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  750. PHYAddr[qdev->mac_index]);
  751. }
  752. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
  753. {
  754. u16 reg;
  755. /* Enable Auto-negotiation sense */
  756. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
  757. PHYAddr[qdev->mac_index]);
  758. reg |= PETBI_TBI_AUTO_SENSE;
  759. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
  760. PHYAddr[qdev->mac_index]);
  761. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  762. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
  763. PHYAddr[qdev->mac_index]);
  764. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  765. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  766. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  767. PHYAddr[qdev->mac_index]);
  768. }
  769. static void ql_petbi_init(struct ql3_adapter *qdev)
  770. {
  771. ql_petbi_reset(qdev);
  772. ql_petbi_start_neg(qdev);
  773. }
  774. static void ql_petbi_init_ex(struct ql3_adapter *qdev)
  775. {
  776. ql_petbi_reset_ex(qdev);
  777. ql_petbi_start_neg_ex(qdev);
  778. }
  779. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  780. {
  781. u16 reg;
  782. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  783. return 0;
  784. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  785. }
  786. static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
  787. {
  788. printk(KERN_INFO "%s: enabling Agere specific PHY\n", qdev->ndev->name);
  789. /* power down device bit 11 = 1 */
  790. ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
  791. /* enable diagnostic mode bit 2 = 1 */
  792. ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
  793. /* 1000MB amplitude adjust (see Agere errata) */
  794. ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
  795. /* 1000MB amplitude adjust (see Agere errata) */
  796. ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
  797. /* 100MB amplitude adjust (see Agere errata) */
  798. ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
  799. /* 100MB amplitude adjust (see Agere errata) */
  800. ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
  801. /* 10MB amplitude adjust (see Agere errata) */
  802. ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
  803. /* 10MB amplitude adjust (see Agere errata) */
  804. ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
  805. /* point to hidden reg 0x2806 */
  806. ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
  807. /* Write new PHYAD w/bit 5 set */
  808. ql_mii_write_reg_ex(qdev, 0x11, 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
  809. /*
  810. * Disable diagnostic mode bit 2 = 0
  811. * Power up device bit 11 = 0
  812. * Link up (on) and activity (blink)
  813. */
  814. ql_mii_write_reg(qdev, 0x12, 0x840a);
  815. ql_mii_write_reg(qdev, 0x00, 0x1140);
  816. ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
  817. }
  818. static PHY_DEVICE_et getPhyType (struct ql3_adapter *qdev,
  819. u16 phyIdReg0, u16 phyIdReg1)
  820. {
  821. PHY_DEVICE_et result = PHY_TYPE_UNKNOWN;
  822. u32 oui;
  823. u16 model;
  824. int i;
  825. if (phyIdReg0 == 0xffff) {
  826. return result;
  827. }
  828. if (phyIdReg1 == 0xffff) {
  829. return result;
  830. }
  831. /* oui is split between two registers */
  832. oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
  833. model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
  834. /* Scan table for this PHY */
  835. for(i = 0; i < MAX_PHY_DEV_TYPES; i++) {
  836. if ((oui == PHY_DEVICES[i].phyIdOUI) && (model == PHY_DEVICES[i].phyIdModel))
  837. {
  838. result = PHY_DEVICES[i].phyDevice;
  839. printk(KERN_INFO "%s: Phy: %s\n",
  840. qdev->ndev->name, PHY_DEVICES[i].name);
  841. break;
  842. }
  843. }
  844. return result;
  845. }
  846. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  847. {
  848. u16 reg;
  849. switch(qdev->phyType) {
  850. case PHY_AGERE_ET1011C:
  851. {
  852. if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
  853. return 0;
  854. reg = (reg >> 8) & 3;
  855. break;
  856. }
  857. default:
  858. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  859. return 0;
  860. reg = (((reg & 0x18) >> 3) & 3);
  861. }
  862. switch(reg) {
  863. case 2:
  864. return SPEED_1000;
  865. case 1:
  866. return SPEED_100;
  867. case 0:
  868. return SPEED_10;
  869. default:
  870. return -1;
  871. }
  872. }
  873. static int ql_is_full_dup(struct ql3_adapter *qdev)
  874. {
  875. u16 reg;
  876. switch(qdev->phyType) {
  877. case PHY_AGERE_ET1011C:
  878. {
  879. if (ql_mii_read_reg(qdev, 0x1A, &reg))
  880. return 0;
  881. return ((reg & 0x0080) && (reg & 0x1000)) != 0;
  882. }
  883. case PHY_VITESSE_VSC8211:
  884. default:
  885. {
  886. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  887. return 0;
  888. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  889. }
  890. }
  891. }
  892. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  893. {
  894. u16 reg;
  895. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  896. return 0;
  897. return (reg & PHY_NEG_PAUSE) != 0;
  898. }
  899. static int PHY_Setup(struct ql3_adapter *qdev)
  900. {
  901. u16 reg1;
  902. u16 reg2;
  903. bool agereAddrChangeNeeded = false;
  904. u32 miiAddr = 0;
  905. int err;
  906. /* Determine the PHY we are using by reading the ID's */
  907. err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
  908. if(err != 0) {
  909. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
  910. qdev->ndev->name);
  911. return err;
  912. }
  913. err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
  914. if(err != 0) {
  915. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
  916. qdev->ndev->name);
  917. return err;
  918. }
  919. /* Check if we have a Agere PHY */
  920. if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
  921. /* Determine which MII address we should be using
  922. determined by the index of the card */
  923. if (qdev->mac_index == 0) {
  924. miiAddr = MII_AGERE_ADDR_1;
  925. } else {
  926. miiAddr = MII_AGERE_ADDR_2;
  927. }
  928. err =ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
  929. if(err != 0) {
  930. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
  931. qdev->ndev->name);
  932. return err;
  933. }
  934. err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
  935. if(err != 0) {
  936. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
  937. qdev->ndev->name);
  938. return err;
  939. }
  940. /* We need to remember to initialize the Agere PHY */
  941. agereAddrChangeNeeded = true;
  942. }
  943. /* Determine the particular PHY we have on board to apply
  944. PHY specific initializations */
  945. qdev->phyType = getPhyType(qdev, reg1, reg2);
  946. if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
  947. /* need this here so address gets changed */
  948. phyAgereSpecificInit(qdev, miiAddr);
  949. } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
  950. printk(KERN_ERR "%s: PHY is unknown\n", qdev->ndev->name);
  951. return -EIO;
  952. }
  953. return 0;
  954. }
  955. /*
  956. * Caller holds hw_lock.
  957. */
  958. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  959. {
  960. struct ql3xxx_port_registers __iomem *port_regs =
  961. qdev->mem_map_registers;
  962. u32 value;
  963. if (enable)
  964. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  965. else
  966. value = (MAC_CONFIG_REG_PE << 16);
  967. if (qdev->mac_index)
  968. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  969. else
  970. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  971. }
  972. /*
  973. * Caller holds hw_lock.
  974. */
  975. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  976. {
  977. struct ql3xxx_port_registers __iomem *port_regs =
  978. qdev->mem_map_registers;
  979. u32 value;
  980. if (enable)
  981. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  982. else
  983. value = (MAC_CONFIG_REG_SR << 16);
  984. if (qdev->mac_index)
  985. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  986. else
  987. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  988. }
  989. /*
  990. * Caller holds hw_lock.
  991. */
  992. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  993. {
  994. struct ql3xxx_port_registers __iomem *port_regs =
  995. qdev->mem_map_registers;
  996. u32 value;
  997. if (enable)
  998. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  999. else
  1000. value = (MAC_CONFIG_REG_GM << 16);
  1001. if (qdev->mac_index)
  1002. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1003. else
  1004. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1005. }
  1006. /*
  1007. * Caller holds hw_lock.
  1008. */
  1009. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  1010. {
  1011. struct ql3xxx_port_registers __iomem *port_regs =
  1012. qdev->mem_map_registers;
  1013. u32 value;
  1014. if (enable)
  1015. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  1016. else
  1017. value = (MAC_CONFIG_REG_FD << 16);
  1018. if (qdev->mac_index)
  1019. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1020. else
  1021. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1022. }
  1023. /*
  1024. * Caller holds hw_lock.
  1025. */
  1026. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  1027. {
  1028. struct ql3xxx_port_registers __iomem *port_regs =
  1029. qdev->mem_map_registers;
  1030. u32 value;
  1031. if (enable)
  1032. value =
  1033. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  1034. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  1035. else
  1036. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  1037. if (qdev->mac_index)
  1038. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1039. else
  1040. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1041. }
  1042. /*
  1043. * Caller holds hw_lock.
  1044. */
  1045. static int ql_is_fiber(struct ql3_adapter *qdev)
  1046. {
  1047. struct ql3xxx_port_registers __iomem *port_regs =
  1048. qdev->mem_map_registers;
  1049. u32 bitToCheck = 0;
  1050. u32 temp;
  1051. switch (qdev->mac_index) {
  1052. case 0:
  1053. bitToCheck = PORT_STATUS_SM0;
  1054. break;
  1055. case 1:
  1056. bitToCheck = PORT_STATUS_SM1;
  1057. break;
  1058. }
  1059. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1060. return (temp & bitToCheck) != 0;
  1061. }
  1062. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  1063. {
  1064. u16 reg;
  1065. ql_mii_read_reg(qdev, 0x00, &reg);
  1066. return (reg & 0x1000) != 0;
  1067. }
  1068. /*
  1069. * Caller holds hw_lock.
  1070. */
  1071. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  1072. {
  1073. struct ql3xxx_port_registers __iomem *port_regs =
  1074. qdev->mem_map_registers;
  1075. u32 bitToCheck = 0;
  1076. u32 temp;
  1077. switch (qdev->mac_index) {
  1078. case 0:
  1079. bitToCheck = PORT_STATUS_AC0;
  1080. break;
  1081. case 1:
  1082. bitToCheck = PORT_STATUS_AC1;
  1083. break;
  1084. }
  1085. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1086. if (temp & bitToCheck) {
  1087. if (netif_msg_link(qdev))
  1088. printk(KERN_INFO PFX
  1089. "%s: Auto-Negotiate complete.\n",
  1090. qdev->ndev->name);
  1091. return 1;
  1092. } else {
  1093. if (netif_msg_link(qdev))
  1094. printk(KERN_WARNING PFX
  1095. "%s: Auto-Negotiate incomplete.\n",
  1096. qdev->ndev->name);
  1097. return 0;
  1098. }
  1099. }
  1100. /*
  1101. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  1102. */
  1103. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  1104. {
  1105. if (ql_is_fiber(qdev))
  1106. return ql_is_petbi_neg_pause(qdev);
  1107. else
  1108. return ql_is_phy_neg_pause(qdev);
  1109. }
  1110. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  1111. {
  1112. struct ql3xxx_port_registers __iomem *port_regs =
  1113. qdev->mem_map_registers;
  1114. u32 bitToCheck = 0;
  1115. u32 temp;
  1116. switch (qdev->mac_index) {
  1117. case 0:
  1118. bitToCheck = PORT_STATUS_AE0;
  1119. break;
  1120. case 1:
  1121. bitToCheck = PORT_STATUS_AE1;
  1122. break;
  1123. }
  1124. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1125. return (temp & bitToCheck) != 0;
  1126. }
  1127. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  1128. {
  1129. if (ql_is_fiber(qdev))
  1130. return SPEED_1000;
  1131. else
  1132. return ql_phy_get_speed(qdev);
  1133. }
  1134. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  1135. {
  1136. if (ql_is_fiber(qdev))
  1137. return 1;
  1138. else
  1139. return ql_is_full_dup(qdev);
  1140. }
  1141. /*
  1142. * Caller holds hw_lock.
  1143. */
  1144. static int ql_link_down_detect(struct ql3_adapter *qdev)
  1145. {
  1146. struct ql3xxx_port_registers __iomem *port_regs =
  1147. qdev->mem_map_registers;
  1148. u32 bitToCheck = 0;
  1149. u32 temp;
  1150. switch (qdev->mac_index) {
  1151. case 0:
  1152. bitToCheck = ISP_CONTROL_LINK_DN_0;
  1153. break;
  1154. case 1:
  1155. bitToCheck = ISP_CONTROL_LINK_DN_1;
  1156. break;
  1157. }
  1158. temp =
  1159. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  1160. return (temp & bitToCheck) != 0;
  1161. }
  1162. /*
  1163. * Caller holds hw_lock.
  1164. */
  1165. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1166. {
  1167. struct ql3xxx_port_registers __iomem *port_regs =
  1168. qdev->mem_map_registers;
  1169. switch (qdev->mac_index) {
  1170. case 0:
  1171. ql_write_common_reg(qdev,
  1172. &port_regs->CommonRegs.ispControlStatus,
  1173. (ISP_CONTROL_LINK_DN_0) |
  1174. (ISP_CONTROL_LINK_DN_0 << 16));
  1175. break;
  1176. case 1:
  1177. ql_write_common_reg(qdev,
  1178. &port_regs->CommonRegs.ispControlStatus,
  1179. (ISP_CONTROL_LINK_DN_1) |
  1180. (ISP_CONTROL_LINK_DN_1 << 16));
  1181. break;
  1182. default:
  1183. return 1;
  1184. }
  1185. return 0;
  1186. }
  1187. /*
  1188. * Caller holds hw_lock.
  1189. */
  1190. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
  1191. {
  1192. struct ql3xxx_port_registers __iomem *port_regs =
  1193. qdev->mem_map_registers;
  1194. u32 bitToCheck = 0;
  1195. u32 temp;
  1196. switch (qdev->mac_index) {
  1197. case 0:
  1198. bitToCheck = PORT_STATUS_F1_ENABLED;
  1199. break;
  1200. case 1:
  1201. bitToCheck = PORT_STATUS_F3_ENABLED;
  1202. break;
  1203. default:
  1204. break;
  1205. }
  1206. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1207. if (temp & bitToCheck) {
  1208. if (netif_msg_link(qdev))
  1209. printk(KERN_DEBUG PFX
  1210. "%s: is not link master.\n", qdev->ndev->name);
  1211. return 0;
  1212. } else {
  1213. if (netif_msg_link(qdev))
  1214. printk(KERN_DEBUG PFX
  1215. "%s: is link master.\n", qdev->ndev->name);
  1216. return 1;
  1217. }
  1218. }
  1219. static void ql_phy_reset_ex(struct ql3_adapter *qdev)
  1220. {
  1221. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
  1222. PHYAddr[qdev->mac_index]);
  1223. }
  1224. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
  1225. {
  1226. u16 reg;
  1227. u16 portConfiguration;
  1228. if(qdev->phyType == PHY_AGERE_ET1011C) {
  1229. /* turn off external loopback */
  1230. ql_mii_write_reg(qdev, 0x13, 0x0000);
  1231. }
  1232. if(qdev->mac_index == 0)
  1233. portConfiguration = qdev->nvram_data.macCfg_port0.portConfiguration;
  1234. else
  1235. portConfiguration = qdev->nvram_data.macCfg_port1.portConfiguration;
  1236. /* Some HBA's in the field are set to 0 and they need to
  1237. be reinterpreted with a default value */
  1238. if(portConfiguration == 0)
  1239. portConfiguration = PORT_CONFIG_DEFAULT;
  1240. /* Set the 1000 advertisements */
  1241. ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
  1242. PHYAddr[qdev->mac_index]);
  1243. reg &= ~PHY_GIG_ALL_PARAMS;
  1244. if(portConfiguration &
  1245. PORT_CONFIG_FULL_DUPLEX_ENABLED &
  1246. PORT_CONFIG_1000MB_SPEED) {
  1247. reg |= PHY_GIG_ADV_1000F;
  1248. }
  1249. if(portConfiguration &
  1250. PORT_CONFIG_HALF_DUPLEX_ENABLED &
  1251. PORT_CONFIG_1000MB_SPEED) {
  1252. reg |= PHY_GIG_ADV_1000H;
  1253. }
  1254. ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
  1255. PHYAddr[qdev->mac_index]);
  1256. /* Set the 10/100 & pause negotiation advertisements */
  1257. ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
  1258. PHYAddr[qdev->mac_index]);
  1259. reg &= ~PHY_NEG_ALL_PARAMS;
  1260. if(portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
  1261. reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
  1262. if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
  1263. if(portConfiguration & PORT_CONFIG_100MB_SPEED)
  1264. reg |= PHY_NEG_ADV_100F;
  1265. if(portConfiguration & PORT_CONFIG_10MB_SPEED)
  1266. reg |= PHY_NEG_ADV_10F;
  1267. }
  1268. if(portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
  1269. if(portConfiguration & PORT_CONFIG_100MB_SPEED)
  1270. reg |= PHY_NEG_ADV_100H;
  1271. if(portConfiguration & PORT_CONFIG_10MB_SPEED)
  1272. reg |= PHY_NEG_ADV_10H;
  1273. }
  1274. if(portConfiguration &
  1275. PORT_CONFIG_1000MB_SPEED) {
  1276. reg |= 1;
  1277. }
  1278. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
  1279. PHYAddr[qdev->mac_index]);
  1280. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
  1281. ql_mii_write_reg_ex(qdev, CONTROL_REG,
  1282. reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
  1283. PHYAddr[qdev->mac_index]);
  1284. }
  1285. static void ql_phy_init_ex(struct ql3_adapter *qdev)
  1286. {
  1287. ql_phy_reset_ex(qdev);
  1288. PHY_Setup(qdev);
  1289. ql_phy_start_neg_ex(qdev);
  1290. }
  1291. /*
  1292. * Caller holds hw_lock.
  1293. */
  1294. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1295. {
  1296. struct ql3xxx_port_registers __iomem *port_regs =
  1297. qdev->mem_map_registers;
  1298. u32 bitToCheck = 0;
  1299. u32 temp, linkState;
  1300. switch (qdev->mac_index) {
  1301. case 0:
  1302. bitToCheck = PORT_STATUS_UP0;
  1303. break;
  1304. case 1:
  1305. bitToCheck = PORT_STATUS_UP1;
  1306. break;
  1307. }
  1308. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1309. if (temp & bitToCheck) {
  1310. linkState = LS_UP;
  1311. } else {
  1312. linkState = LS_DOWN;
  1313. if (netif_msg_link(qdev))
  1314. printk(KERN_WARNING PFX
  1315. "%s: Link is down.\n", qdev->ndev->name);
  1316. }
  1317. return linkState;
  1318. }
  1319. static int ql_port_start(struct ql3_adapter *qdev)
  1320. {
  1321. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1322. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1323. 2) << 7)) {
  1324. printk(KERN_ERR "%s: Could not get hw lock for GIO\n",
  1325. qdev->ndev->name);
  1326. return -1;
  1327. }
  1328. if (ql_is_fiber(qdev)) {
  1329. ql_petbi_init(qdev);
  1330. } else {
  1331. /* Copper port */
  1332. ql_phy_init_ex(qdev);
  1333. }
  1334. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1335. return 0;
  1336. }
  1337. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1338. {
  1339. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1340. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1341. 2) << 7))
  1342. return -1;
  1343. if (!ql_auto_neg_error(qdev)) {
  1344. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1345. /* configure the MAC */
  1346. if (netif_msg_link(qdev))
  1347. printk(KERN_DEBUG PFX
  1348. "%s: Configuring link.\n",
  1349. qdev->ndev->
  1350. name);
  1351. ql_mac_cfg_soft_reset(qdev, 1);
  1352. ql_mac_cfg_gig(qdev,
  1353. (ql_get_link_speed
  1354. (qdev) ==
  1355. SPEED_1000));
  1356. ql_mac_cfg_full_dup(qdev,
  1357. ql_is_link_full_dup
  1358. (qdev));
  1359. ql_mac_cfg_pause(qdev,
  1360. ql_is_neg_pause
  1361. (qdev));
  1362. ql_mac_cfg_soft_reset(qdev, 0);
  1363. /* enable the MAC */
  1364. if (netif_msg_link(qdev))
  1365. printk(KERN_DEBUG PFX
  1366. "%s: Enabling mac.\n",
  1367. qdev->ndev->
  1368. name);
  1369. ql_mac_enable(qdev, 1);
  1370. }
  1371. if (netif_msg_link(qdev))
  1372. printk(KERN_DEBUG PFX
  1373. "%s: Change port_link_state LS_DOWN to LS_UP.\n",
  1374. qdev->ndev->name);
  1375. qdev->port_link_state = LS_UP;
  1376. netif_start_queue(qdev->ndev);
  1377. netif_carrier_on(qdev->ndev);
  1378. if (netif_msg_link(qdev))
  1379. printk(KERN_INFO PFX
  1380. "%s: Link is up at %d Mbps, %s duplex.\n",
  1381. qdev->ndev->name,
  1382. ql_get_link_speed(qdev),
  1383. ql_is_link_full_dup(qdev)
  1384. ? "full" : "half");
  1385. } else { /* Remote error detected */
  1386. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1387. if (netif_msg_link(qdev))
  1388. printk(KERN_DEBUG PFX
  1389. "%s: Remote error detected. "
  1390. "Calling ql_port_start().\n",
  1391. qdev->ndev->
  1392. name);
  1393. /*
  1394. * ql_port_start() is shared code and needs
  1395. * to lock the PHY on it's own.
  1396. */
  1397. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1398. if(ql_port_start(qdev)) {/* Restart port */
  1399. return -1;
  1400. } else
  1401. return 0;
  1402. }
  1403. }
  1404. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1405. return 0;
  1406. }
  1407. static void ql_link_state_machine_work(struct work_struct *work)
  1408. {
  1409. struct ql3_adapter *qdev =
  1410. container_of(work, struct ql3_adapter, link_state_work.work);
  1411. u32 curr_link_state;
  1412. unsigned long hw_flags;
  1413. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1414. curr_link_state = ql_get_link_state(qdev);
  1415. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  1416. if (netif_msg_link(qdev))
  1417. printk(KERN_INFO PFX
  1418. "%s: Reset in progress, skip processing link "
  1419. "state.\n", qdev->ndev->name);
  1420. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1421. /* Restart timer on 2 second interval. */
  1422. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);\
  1423. return;
  1424. }
  1425. switch (qdev->port_link_state) {
  1426. default:
  1427. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1428. ql_port_start(qdev);
  1429. }
  1430. qdev->port_link_state = LS_DOWN;
  1431. /* Fall Through */
  1432. case LS_DOWN:
  1433. if (netif_msg_link(qdev))
  1434. printk(KERN_DEBUG PFX
  1435. "%s: port_link_state = LS_DOWN.\n",
  1436. qdev->ndev->name);
  1437. if (curr_link_state == LS_UP) {
  1438. if (netif_msg_link(qdev))
  1439. printk(KERN_DEBUG PFX
  1440. "%s: curr_link_state = LS_UP.\n",
  1441. qdev->ndev->name);
  1442. if (ql_is_auto_neg_complete(qdev))
  1443. ql_finish_auto_neg(qdev);
  1444. if (qdev->port_link_state == LS_UP)
  1445. ql_link_down_detect_clear(qdev);
  1446. }
  1447. break;
  1448. case LS_UP:
  1449. /*
  1450. * See if the link is currently down or went down and came
  1451. * back up
  1452. */
  1453. if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
  1454. if (netif_msg_link(qdev))
  1455. printk(KERN_INFO PFX "%s: Link is down.\n",
  1456. qdev->ndev->name);
  1457. qdev->port_link_state = LS_DOWN;
  1458. }
  1459. break;
  1460. }
  1461. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1462. /* Restart timer on 2 second interval. */
  1463. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1464. }
  1465. /*
  1466. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1467. */
  1468. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1469. {
  1470. if (ql_this_adapter_controls_port(qdev))
  1471. set_bit(QL_LINK_MASTER,&qdev->flags);
  1472. else
  1473. clear_bit(QL_LINK_MASTER,&qdev->flags);
  1474. }
  1475. /*
  1476. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1477. */
  1478. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1479. {
  1480. ql_mii_enable_scan_mode(qdev);
  1481. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1482. if (ql_this_adapter_controls_port(qdev))
  1483. ql_petbi_init_ex(qdev);
  1484. } else {
  1485. if (ql_this_adapter_controls_port(qdev))
  1486. ql_phy_init_ex(qdev);
  1487. }
  1488. }
  1489. /*
  1490. * MII_Setup needs to be called before taking the PHY out of reset so that the
  1491. * management interface clock speed can be set properly. It would be better if
  1492. * we had a way to disable MDC until after the PHY is out of reset, but we
  1493. * don't have that capability.
  1494. */
  1495. static int ql_mii_setup(struct ql3_adapter *qdev)
  1496. {
  1497. u32 reg;
  1498. struct ql3xxx_port_registers __iomem *port_regs =
  1499. qdev->mem_map_registers;
  1500. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1501. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1502. 2) << 7))
  1503. return -1;
  1504. if (qdev->device_id == QL3032_DEVICE_ID)
  1505. ql_write_page0_reg(qdev,
  1506. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1507. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1508. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1509. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1510. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1511. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1512. return 0;
  1513. }
  1514. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1515. {
  1516. u32 supported;
  1517. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1518. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1519. | SUPPORTED_Autoneg;
  1520. } else {
  1521. supported = SUPPORTED_10baseT_Half
  1522. | SUPPORTED_10baseT_Full
  1523. | SUPPORTED_100baseT_Half
  1524. | SUPPORTED_100baseT_Full
  1525. | SUPPORTED_1000baseT_Half
  1526. | SUPPORTED_1000baseT_Full
  1527. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1528. }
  1529. return supported;
  1530. }
  1531. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1532. {
  1533. int status;
  1534. unsigned long hw_flags;
  1535. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1536. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1537. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1538. 2) << 7)) {
  1539. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1540. return 0;
  1541. }
  1542. status = ql_is_auto_cfg(qdev);
  1543. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1544. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1545. return status;
  1546. }
  1547. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1548. {
  1549. u32 status;
  1550. unsigned long hw_flags;
  1551. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1552. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1553. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1554. 2) << 7)) {
  1555. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1556. return 0;
  1557. }
  1558. status = ql_get_link_speed(qdev);
  1559. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1560. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1561. return status;
  1562. }
  1563. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1564. {
  1565. int status;
  1566. unsigned long hw_flags;
  1567. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1568. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1569. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1570. 2) << 7)) {
  1571. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1572. return 0;
  1573. }
  1574. status = ql_is_link_full_dup(qdev);
  1575. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1576. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1577. return status;
  1578. }
  1579. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1580. {
  1581. struct ql3_adapter *qdev = netdev_priv(ndev);
  1582. ecmd->transceiver = XCVR_INTERNAL;
  1583. ecmd->supported = ql_supported_modes(qdev);
  1584. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1585. ecmd->port = PORT_FIBRE;
  1586. } else {
  1587. ecmd->port = PORT_TP;
  1588. ecmd->phy_address = qdev->PHYAddr;
  1589. }
  1590. ecmd->advertising = ql_supported_modes(qdev);
  1591. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1592. ecmd->speed = ql_get_speed(qdev);
  1593. ecmd->duplex = ql_get_full_dup(qdev);
  1594. return 0;
  1595. }
  1596. static void ql_get_drvinfo(struct net_device *ndev,
  1597. struct ethtool_drvinfo *drvinfo)
  1598. {
  1599. struct ql3_adapter *qdev = netdev_priv(ndev);
  1600. strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
  1601. strncpy(drvinfo->version, ql3xxx_driver_version, 32);
  1602. strncpy(drvinfo->fw_version, "N/A", 32);
  1603. strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
  1604. drvinfo->regdump_len = 0;
  1605. drvinfo->eedump_len = 0;
  1606. }
  1607. static u32 ql_get_msglevel(struct net_device *ndev)
  1608. {
  1609. struct ql3_adapter *qdev = netdev_priv(ndev);
  1610. return qdev->msg_enable;
  1611. }
  1612. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1613. {
  1614. struct ql3_adapter *qdev = netdev_priv(ndev);
  1615. qdev->msg_enable = value;
  1616. }
  1617. static void ql_get_pauseparam(struct net_device *ndev,
  1618. struct ethtool_pauseparam *pause)
  1619. {
  1620. struct ql3_adapter *qdev = netdev_priv(ndev);
  1621. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1622. u32 reg;
  1623. if(qdev->mac_index == 0)
  1624. reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
  1625. else
  1626. reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
  1627. pause->autoneg = ql_get_auto_cfg_status(qdev);
  1628. pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
  1629. pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
  1630. }
  1631. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1632. .get_settings = ql_get_settings,
  1633. .get_drvinfo = ql_get_drvinfo,
  1634. .get_link = ethtool_op_get_link,
  1635. .get_msglevel = ql_get_msglevel,
  1636. .set_msglevel = ql_set_msglevel,
  1637. .get_pauseparam = ql_get_pauseparam,
  1638. };
  1639. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1640. {
  1641. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1642. dma_addr_t map;
  1643. int err;
  1644. while (lrg_buf_cb) {
  1645. if (!lrg_buf_cb->skb) {
  1646. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  1647. qdev->lrg_buffer_len);
  1648. if (unlikely(!lrg_buf_cb->skb)) {
  1649. printk(KERN_DEBUG PFX
  1650. "%s: Failed netdev_alloc_skb().\n",
  1651. qdev->ndev->name);
  1652. break;
  1653. } else {
  1654. /*
  1655. * We save some space to copy the ethhdr from
  1656. * first buffer
  1657. */
  1658. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1659. map = pci_map_single(qdev->pdev,
  1660. lrg_buf_cb->skb->data,
  1661. qdev->lrg_buffer_len -
  1662. QL_HEADER_SPACE,
  1663. PCI_DMA_FROMDEVICE);
  1664. err = pci_dma_mapping_error(map);
  1665. if(err) {
  1666. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  1667. qdev->ndev->name, err);
  1668. dev_kfree_skb(lrg_buf_cb->skb);
  1669. lrg_buf_cb->skb = NULL;
  1670. break;
  1671. }
  1672. lrg_buf_cb->buf_phy_addr_low =
  1673. cpu_to_le32(LS_64BITS(map));
  1674. lrg_buf_cb->buf_phy_addr_high =
  1675. cpu_to_le32(MS_64BITS(map));
  1676. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1677. pci_unmap_len_set(lrg_buf_cb, maplen,
  1678. qdev->lrg_buffer_len -
  1679. QL_HEADER_SPACE);
  1680. --qdev->lrg_buf_skb_check;
  1681. if (!qdev->lrg_buf_skb_check)
  1682. return 1;
  1683. }
  1684. }
  1685. lrg_buf_cb = lrg_buf_cb->next;
  1686. }
  1687. return 0;
  1688. }
  1689. /*
  1690. * Caller holds hw_lock.
  1691. */
  1692. static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
  1693. {
  1694. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1695. if (qdev->small_buf_release_cnt >= 16) {
  1696. while (qdev->small_buf_release_cnt >= 16) {
  1697. qdev->small_buf_q_producer_index++;
  1698. if (qdev->small_buf_q_producer_index ==
  1699. NUM_SBUFQ_ENTRIES)
  1700. qdev->small_buf_q_producer_index = 0;
  1701. qdev->small_buf_release_cnt -= 8;
  1702. }
  1703. wmb();
  1704. writel(qdev->small_buf_q_producer_index,
  1705. &port_regs->CommonRegs.rxSmallQProducerIndex);
  1706. }
  1707. }
  1708. /*
  1709. * Caller holds hw_lock.
  1710. */
  1711. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1712. {
  1713. struct bufq_addr_element *lrg_buf_q_ele;
  1714. int i;
  1715. struct ql_rcv_buf_cb *lrg_buf_cb;
  1716. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1717. if ((qdev->lrg_buf_free_count >= 8)
  1718. && (qdev->lrg_buf_release_cnt >= 16)) {
  1719. if (qdev->lrg_buf_skb_check)
  1720. if (!ql_populate_free_queue(qdev))
  1721. return;
  1722. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1723. while ((qdev->lrg_buf_release_cnt >= 16)
  1724. && (qdev->lrg_buf_free_count >= 8)) {
  1725. for (i = 0; i < 8; i++) {
  1726. lrg_buf_cb =
  1727. ql_get_from_lrg_buf_free_list(qdev);
  1728. lrg_buf_q_ele->addr_high =
  1729. lrg_buf_cb->buf_phy_addr_high;
  1730. lrg_buf_q_ele->addr_low =
  1731. lrg_buf_cb->buf_phy_addr_low;
  1732. lrg_buf_q_ele++;
  1733. qdev->lrg_buf_release_cnt--;
  1734. }
  1735. qdev->lrg_buf_q_producer_index++;
  1736. if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
  1737. qdev->lrg_buf_q_producer_index = 0;
  1738. if (qdev->lrg_buf_q_producer_index ==
  1739. (qdev->num_lbufq_entries - 1)) {
  1740. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1741. }
  1742. }
  1743. wmb();
  1744. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1745. writel(qdev->lrg_buf_q_producer_index,
  1746. &port_regs->CommonRegs.rxLargeQProducerIndex);
  1747. }
  1748. }
  1749. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1750. struct ob_mac_iocb_rsp *mac_rsp)
  1751. {
  1752. struct ql_tx_buf_cb *tx_cb;
  1753. int i;
  1754. int retval = 0;
  1755. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1756. printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
  1757. }
  1758. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1759. /* Check the transmit response flags for any errors */
  1760. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1761. printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
  1762. qdev->ndev->stats.tx_errors++;
  1763. retval = -EIO;
  1764. goto frame_not_sent;
  1765. }
  1766. if(tx_cb->seg_count == 0) {
  1767. printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
  1768. qdev->ndev->stats.tx_errors++;
  1769. retval = -EIO;
  1770. goto invalid_seg_count;
  1771. }
  1772. pci_unmap_single(qdev->pdev,
  1773. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  1774. pci_unmap_len(&tx_cb->map[0], maplen),
  1775. PCI_DMA_TODEVICE);
  1776. tx_cb->seg_count--;
  1777. if (tx_cb->seg_count) {
  1778. for (i = 1; i < tx_cb->seg_count; i++) {
  1779. pci_unmap_page(qdev->pdev,
  1780. pci_unmap_addr(&tx_cb->map[i],
  1781. mapaddr),
  1782. pci_unmap_len(&tx_cb->map[i], maplen),
  1783. PCI_DMA_TODEVICE);
  1784. }
  1785. }
  1786. qdev->ndev->stats.tx_packets++;
  1787. qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
  1788. frame_not_sent:
  1789. dev_kfree_skb_irq(tx_cb->skb);
  1790. tx_cb->skb = NULL;
  1791. invalid_seg_count:
  1792. atomic_inc(&qdev->tx_count);
  1793. }
  1794. static void ql_get_sbuf(struct ql3_adapter *qdev)
  1795. {
  1796. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1797. qdev->small_buf_index = 0;
  1798. qdev->small_buf_release_cnt++;
  1799. }
  1800. static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1801. {
  1802. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1803. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1804. qdev->lrg_buf_release_cnt++;
  1805. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1806. qdev->lrg_buf_index = 0;
  1807. return(lrg_buf_cb);
  1808. }
  1809. /*
  1810. * The difference between 3022 and 3032 for inbound completions:
  1811. * 3022 uses two buffers per completion. The first buffer contains
  1812. * (some) header info, the second the remainder of the headers plus
  1813. * the data. For this chip we reserve some space at the top of the
  1814. * receive buffer so that the header info in buffer one can be
  1815. * prepended to the buffer two. Buffer two is the sent up while
  1816. * buffer one is returned to the hardware to be reused.
  1817. * 3032 receives all of it's data and headers in one buffer for a
  1818. * simpler process. 3032 also supports checksum verification as
  1819. * can be seen in ql_process_macip_rx_intr().
  1820. */
  1821. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1822. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1823. {
  1824. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1825. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1826. struct sk_buff *skb;
  1827. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1828. /*
  1829. * Get the inbound address list (small buffer).
  1830. */
  1831. ql_get_sbuf(qdev);
  1832. if (qdev->device_id == QL3022_DEVICE_ID)
  1833. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1834. /* start of second buffer */
  1835. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1836. skb = lrg_buf_cb2->skb;
  1837. qdev->ndev->stats.rx_packets++;
  1838. qdev->ndev->stats.rx_bytes += length;
  1839. skb_put(skb, length);
  1840. pci_unmap_single(qdev->pdev,
  1841. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1842. pci_unmap_len(lrg_buf_cb2, maplen),
  1843. PCI_DMA_FROMDEVICE);
  1844. prefetch(skb->data);
  1845. skb->ip_summed = CHECKSUM_NONE;
  1846. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1847. netif_receive_skb(skb);
  1848. qdev->ndev->last_rx = jiffies;
  1849. lrg_buf_cb2->skb = NULL;
  1850. if (qdev->device_id == QL3022_DEVICE_ID)
  1851. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1852. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1853. }
  1854. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1855. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1856. {
  1857. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1858. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1859. struct sk_buff *skb1 = NULL, *skb2;
  1860. struct net_device *ndev = qdev->ndev;
  1861. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1862. u16 size = 0;
  1863. /*
  1864. * Get the inbound address list (small buffer).
  1865. */
  1866. ql_get_sbuf(qdev);
  1867. if (qdev->device_id == QL3022_DEVICE_ID) {
  1868. /* start of first buffer on 3022 */
  1869. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1870. skb1 = lrg_buf_cb1->skb;
  1871. size = ETH_HLEN;
  1872. if (*((u16 *) skb1->data) != 0xFFFF)
  1873. size += VLAN_ETH_HLEN - ETH_HLEN;
  1874. }
  1875. /* start of second buffer */
  1876. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1877. skb2 = lrg_buf_cb2->skb;
  1878. skb_put(skb2, length); /* Just the second buffer length here. */
  1879. pci_unmap_single(qdev->pdev,
  1880. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1881. pci_unmap_len(lrg_buf_cb2, maplen),
  1882. PCI_DMA_FROMDEVICE);
  1883. prefetch(skb2->data);
  1884. skb2->ip_summed = CHECKSUM_NONE;
  1885. if (qdev->device_id == QL3022_DEVICE_ID) {
  1886. /*
  1887. * Copy the ethhdr from first buffer to second. This
  1888. * is necessary for 3022 IP completions.
  1889. */
  1890. skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
  1891. skb_push(skb2, size), size);
  1892. } else {
  1893. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1894. if (checksum &
  1895. (IB_IP_IOCB_RSP_3032_ICE |
  1896. IB_IP_IOCB_RSP_3032_CE)) {
  1897. printk(KERN_ERR
  1898. "%s: Bad checksum for this %s packet, checksum = %x.\n",
  1899. __func__,
  1900. ((checksum &
  1901. IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
  1902. "UDP"),checksum);
  1903. } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
  1904. (checksum & IB_IP_IOCB_RSP_3032_UDP &&
  1905. !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
  1906. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1907. }
  1908. }
  1909. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1910. netif_receive_skb(skb2);
  1911. ndev->stats.rx_packets++;
  1912. ndev->stats.rx_bytes += length;
  1913. ndev->last_rx = jiffies;
  1914. lrg_buf_cb2->skb = NULL;
  1915. if (qdev->device_id == QL3022_DEVICE_ID)
  1916. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1917. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1918. }
  1919. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1920. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1921. {
  1922. struct net_rsp_iocb *net_rsp;
  1923. struct net_device *ndev = qdev->ndev;
  1924. int work_done = 0;
  1925. /* While there are entries in the completion queue. */
  1926. while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
  1927. qdev->rsp_consumer_index) && (work_done < work_to_do)) {
  1928. net_rsp = qdev->rsp_current;
  1929. rmb();
  1930. /*
  1931. * Fix 4032 chipe undocumented "feature" where bit-8 is set if the
  1932. * inbound completion is for a VLAN.
  1933. */
  1934. if (qdev->device_id == QL3032_DEVICE_ID)
  1935. net_rsp->opcode &= 0x7f;
  1936. switch (net_rsp->opcode) {
  1937. case OPCODE_OB_MAC_IOCB_FN0:
  1938. case OPCODE_OB_MAC_IOCB_FN2:
  1939. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1940. net_rsp);
  1941. (*tx_cleaned)++;
  1942. break;
  1943. case OPCODE_IB_MAC_IOCB:
  1944. case OPCODE_IB_3032_MAC_IOCB:
  1945. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1946. net_rsp);
  1947. (*rx_cleaned)++;
  1948. break;
  1949. case OPCODE_IB_IP_IOCB:
  1950. case OPCODE_IB_3032_IP_IOCB:
  1951. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1952. net_rsp);
  1953. (*rx_cleaned)++;
  1954. break;
  1955. default:
  1956. {
  1957. u32 *tmp = (u32 *) net_rsp;
  1958. printk(KERN_ERR PFX
  1959. "%s: Hit default case, not "
  1960. "handled!\n"
  1961. " dropping the packet, opcode = "
  1962. "%x.\n",
  1963. ndev->name, net_rsp->opcode);
  1964. printk(KERN_ERR PFX
  1965. "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
  1966. (unsigned long int)tmp[0],
  1967. (unsigned long int)tmp[1],
  1968. (unsigned long int)tmp[2],
  1969. (unsigned long int)tmp[3]);
  1970. }
  1971. }
  1972. qdev->rsp_consumer_index++;
  1973. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1974. qdev->rsp_consumer_index = 0;
  1975. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1976. } else {
  1977. qdev->rsp_current++;
  1978. }
  1979. work_done = *tx_cleaned + *rx_cleaned;
  1980. }
  1981. return work_done;
  1982. }
  1983. static int ql_poll(struct napi_struct *napi, int budget)
  1984. {
  1985. struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
  1986. struct net_device *ndev = qdev->ndev;
  1987. int rx_cleaned = 0, tx_cleaned = 0;
  1988. unsigned long hw_flags;
  1989. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1990. if (!netif_carrier_ok(ndev))
  1991. goto quit_polling;
  1992. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
  1993. if (tx_cleaned + rx_cleaned != budget ||
  1994. !netif_running(ndev)) {
  1995. quit_polling:
  1996. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1997. __netif_rx_complete(ndev, napi);
  1998. ql_update_small_bufq_prod_index(qdev);
  1999. ql_update_lrg_bufq_prod_index(qdev);
  2000. writel(qdev->rsp_consumer_index,
  2001. &port_regs->CommonRegs.rspQConsumerIndex);
  2002. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2003. ql_enable_interrupts(qdev);
  2004. }
  2005. return tx_cleaned + rx_cleaned;
  2006. }
  2007. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  2008. {
  2009. struct net_device *ndev = dev_id;
  2010. struct ql3_adapter *qdev = netdev_priv(ndev);
  2011. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2012. u32 value;
  2013. int handled = 1;
  2014. u32 var;
  2015. port_regs = qdev->mem_map_registers;
  2016. value =
  2017. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2018. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  2019. spin_lock(&qdev->adapter_lock);
  2020. netif_stop_queue(qdev->ndev);
  2021. netif_carrier_off(qdev->ndev);
  2022. ql_disable_interrupts(qdev);
  2023. qdev->port_link_state = LS_DOWN;
  2024. set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
  2025. if (value & ISP_CONTROL_FE) {
  2026. /*
  2027. * Chip Fatal Error.
  2028. */
  2029. var =
  2030. ql_read_page0_reg_l(qdev,
  2031. &port_regs->PortFatalErrStatus);
  2032. printk(KERN_WARNING PFX
  2033. "%s: Resetting chip. PortFatalErrStatus "
  2034. "register = 0x%x\n", ndev->name, var);
  2035. set_bit(QL_RESET_START,&qdev->flags) ;
  2036. } else {
  2037. /*
  2038. * Soft Reset Requested.
  2039. */
  2040. set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
  2041. printk(KERN_ERR PFX
  2042. "%s: Another function issued a reset to the "
  2043. "chip. ISR value = %x.\n", ndev->name, value);
  2044. }
  2045. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  2046. spin_unlock(&qdev->adapter_lock);
  2047. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  2048. ql_disable_interrupts(qdev);
  2049. if (likely(netif_rx_schedule_prep(ndev, &qdev->napi))) {
  2050. __netif_rx_schedule(ndev, &qdev->napi);
  2051. }
  2052. } else {
  2053. return IRQ_NONE;
  2054. }
  2055. return IRQ_RETVAL(handled);
  2056. }
  2057. /*
  2058. * Get the total number of segments needed for the
  2059. * given number of fragments. This is necessary because
  2060. * outbound address lists (OAL) will be used when more than
  2061. * two frags are given. Each address list has 5 addr/len
  2062. * pairs. The 5th pair in each AOL is used to point to
  2063. * the next AOL if more frags are coming.
  2064. * That is why the frags:segment count ratio is not linear.
  2065. */
  2066. static int ql_get_seg_count(struct ql3_adapter *qdev,
  2067. unsigned short frags)
  2068. {
  2069. if (qdev->device_id == QL3022_DEVICE_ID)
  2070. return 1;
  2071. switch(frags) {
  2072. case 0: return 1; /* just the skb->data seg */
  2073. case 1: return 2; /* skb->data + 1 frag */
  2074. case 2: return 3; /* skb->data + 2 frags */
  2075. case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
  2076. case 4: return 6;
  2077. case 5: return 7;
  2078. case 6: return 8;
  2079. case 7: return 10;
  2080. case 8: return 11;
  2081. case 9: return 12;
  2082. case 10: return 13;
  2083. case 11: return 15;
  2084. case 12: return 16;
  2085. case 13: return 17;
  2086. case 14: return 18;
  2087. case 15: return 20;
  2088. case 16: return 21;
  2089. case 17: return 22;
  2090. case 18: return 23;
  2091. }
  2092. return -1;
  2093. }
  2094. static void ql_hw_csum_setup(const struct sk_buff *skb,
  2095. struct ob_mac_iocb_req *mac_iocb_ptr)
  2096. {
  2097. const struct iphdr *ip = ip_hdr(skb);
  2098. mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
  2099. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  2100. if (ip->protocol == IPPROTO_TCP) {
  2101. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  2102. OB_3032MAC_IOCB_REQ_IC;
  2103. } else {
  2104. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  2105. OB_3032MAC_IOCB_REQ_IC;
  2106. }
  2107. }
  2108. /*
  2109. * Map the buffers for this transmit. This will return
  2110. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  2111. */
  2112. static int ql_send_map(struct ql3_adapter *qdev,
  2113. struct ob_mac_iocb_req *mac_iocb_ptr,
  2114. struct ql_tx_buf_cb *tx_cb,
  2115. struct sk_buff *skb)
  2116. {
  2117. struct oal *oal;
  2118. struct oal_entry *oal_entry;
  2119. int len = skb_headlen(skb);
  2120. dma_addr_t map;
  2121. int err;
  2122. int completed_segs, i;
  2123. int seg_cnt, seg = 0;
  2124. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  2125. seg_cnt = tx_cb->seg_count;
  2126. /*
  2127. * Map the skb buffer first.
  2128. */
  2129. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2130. err = pci_dma_mapping_error(map);
  2131. if(err) {
  2132. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2133. qdev->ndev->name, err);
  2134. return NETDEV_TX_BUSY;
  2135. }
  2136. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2137. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2138. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2139. oal_entry->len = cpu_to_le32(len);
  2140. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2141. pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
  2142. seg++;
  2143. if (seg_cnt == 1) {
  2144. /* Terminate the last segment. */
  2145. oal_entry->len =
  2146. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  2147. } else {
  2148. oal = tx_cb->oal;
  2149. for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
  2150. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  2151. oal_entry++;
  2152. if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  2153. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  2154. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  2155. (seg == 17 && seg_cnt > 18)) {
  2156. /* Continuation entry points to outbound address list. */
  2157. map = pci_map_single(qdev->pdev, oal,
  2158. sizeof(struct oal),
  2159. PCI_DMA_TODEVICE);
  2160. err = pci_dma_mapping_error(map);
  2161. if(err) {
  2162. printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
  2163. qdev->ndev->name, err);
  2164. goto map_error;
  2165. }
  2166. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2167. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2168. oal_entry->len =
  2169. cpu_to_le32(sizeof(struct oal) |
  2170. OAL_CONT_ENTRY);
  2171. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
  2172. map);
  2173. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  2174. sizeof(struct oal));
  2175. oal_entry = (struct oal_entry *)oal;
  2176. oal++;
  2177. seg++;
  2178. }
  2179. map =
  2180. pci_map_page(qdev->pdev, frag->page,
  2181. frag->page_offset, frag->size,
  2182. PCI_DMA_TODEVICE);
  2183. err = pci_dma_mapping_error(map);
  2184. if(err) {
  2185. printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
  2186. qdev->ndev->name, err);
  2187. goto map_error;
  2188. }
  2189. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2190. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2191. oal_entry->len = cpu_to_le32(frag->size);
  2192. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2193. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  2194. frag->size);
  2195. }
  2196. /* Terminate the last segment. */
  2197. oal_entry->len =
  2198. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  2199. }
  2200. return NETDEV_TX_OK;
  2201. map_error:
  2202. /* A PCI mapping failed and now we will need to back out
  2203. * We need to traverse through the oal's and associated pages which
  2204. * have been mapped and now we must unmap them to clean up properly
  2205. */
  2206. seg = 1;
  2207. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2208. oal = tx_cb->oal;
  2209. for (i=0; i<completed_segs; i++,seg++) {
  2210. oal_entry++;
  2211. if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  2212. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  2213. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  2214. (seg == 17 && seg_cnt > 18)) {
  2215. pci_unmap_single(qdev->pdev,
  2216. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  2217. pci_unmap_len(&tx_cb->map[seg], maplen),
  2218. PCI_DMA_TODEVICE);
  2219. oal++;
  2220. seg++;
  2221. }
  2222. pci_unmap_page(qdev->pdev,
  2223. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  2224. pci_unmap_len(&tx_cb->map[seg], maplen),
  2225. PCI_DMA_TODEVICE);
  2226. }
  2227. pci_unmap_single(qdev->pdev,
  2228. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  2229. pci_unmap_addr(&tx_cb->map[0], maplen),
  2230. PCI_DMA_TODEVICE);
  2231. return NETDEV_TX_BUSY;
  2232. }
  2233. /*
  2234. * The difference between 3022 and 3032 sends:
  2235. * 3022 only supports a simple single segment transmission.
  2236. * 3032 supports checksumming and scatter/gather lists (fragments).
  2237. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  2238. * in the IOCB plus a chain of outbound address lists (OAL) that
  2239. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  2240. * will used to point to an OAL when more ALP entries are required.
  2241. * The IOCB is always the top of the chain followed by one or more
  2242. * OALs (when necessary).
  2243. */
  2244. static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
  2245. {
  2246. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2247. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2248. struct ql_tx_buf_cb *tx_cb;
  2249. u32 tot_len = skb->len;
  2250. struct ob_mac_iocb_req *mac_iocb_ptr;
  2251. if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
  2252. return NETDEV_TX_BUSY;
  2253. }
  2254. tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
  2255. if((tx_cb->seg_count = ql_get_seg_count(qdev,
  2256. (skb_shinfo(skb)->nr_frags))) == -1) {
  2257. printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
  2258. return NETDEV_TX_OK;
  2259. }
  2260. mac_iocb_ptr = tx_cb->queue_entry;
  2261. memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
  2262. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2263. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2264. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2265. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2266. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2267. tx_cb->skb = skb;
  2268. if (qdev->device_id == QL3032_DEVICE_ID &&
  2269. skb->ip_summed == CHECKSUM_PARTIAL)
  2270. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2271. if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
  2272. printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
  2273. return NETDEV_TX_BUSY;
  2274. }
  2275. wmb();
  2276. qdev->req_producer_index++;
  2277. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2278. qdev->req_producer_index = 0;
  2279. wmb();
  2280. ql_write_common_reg_l(qdev,
  2281. &port_regs->CommonRegs.reqQProducerIndex,
  2282. qdev->req_producer_index);
  2283. ndev->trans_start = jiffies;
  2284. if (netif_msg_tx_queued(qdev))
  2285. printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
  2286. ndev->name, qdev->req_producer_index, skb->len);
  2287. atomic_dec(&qdev->tx_count);
  2288. return NETDEV_TX_OK;
  2289. }
  2290. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2291. {
  2292. qdev->req_q_size =
  2293. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2294. qdev->req_q_virt_addr =
  2295. pci_alloc_consistent(qdev->pdev,
  2296. (size_t) qdev->req_q_size,
  2297. &qdev->req_q_phy_addr);
  2298. if ((qdev->req_q_virt_addr == NULL) ||
  2299. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2300. printk(KERN_ERR PFX "%s: reqQ failed.\n",
  2301. qdev->ndev->name);
  2302. return -ENOMEM;
  2303. }
  2304. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2305. qdev->rsp_q_virt_addr =
  2306. pci_alloc_consistent(qdev->pdev,
  2307. (size_t) qdev->rsp_q_size,
  2308. &qdev->rsp_q_phy_addr);
  2309. if ((qdev->rsp_q_virt_addr == NULL) ||
  2310. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2311. printk(KERN_ERR PFX
  2312. "%s: rspQ allocation failed\n",
  2313. qdev->ndev->name);
  2314. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2315. qdev->req_q_virt_addr,
  2316. qdev->req_q_phy_addr);
  2317. return -ENOMEM;
  2318. }
  2319. set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2320. return 0;
  2321. }
  2322. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2323. {
  2324. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
  2325. printk(KERN_INFO PFX
  2326. "%s: Already done.\n", qdev->ndev->name);
  2327. return;
  2328. }
  2329. pci_free_consistent(qdev->pdev,
  2330. qdev->req_q_size,
  2331. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2332. qdev->req_q_virt_addr = NULL;
  2333. pci_free_consistent(qdev->pdev,
  2334. qdev->rsp_q_size,
  2335. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2336. qdev->rsp_q_virt_addr = NULL;
  2337. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2338. }
  2339. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2340. {
  2341. /* Create Large Buffer Queue */
  2342. qdev->lrg_buf_q_size =
  2343. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2344. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2345. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2346. else
  2347. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2348. qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
  2349. if (qdev->lrg_buf == NULL) {
  2350. printk(KERN_ERR PFX
  2351. "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
  2352. return -ENOMEM;
  2353. }
  2354. qdev->lrg_buf_q_alloc_virt_addr =
  2355. pci_alloc_consistent(qdev->pdev,
  2356. qdev->lrg_buf_q_alloc_size,
  2357. &qdev->lrg_buf_q_alloc_phy_addr);
  2358. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2359. printk(KERN_ERR PFX
  2360. "%s: lBufQ failed\n", qdev->ndev->name);
  2361. return -ENOMEM;
  2362. }
  2363. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2364. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2365. /* Create Small Buffer Queue */
  2366. qdev->small_buf_q_size =
  2367. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2368. if (qdev->small_buf_q_size < PAGE_SIZE)
  2369. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2370. else
  2371. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2372. qdev->small_buf_q_alloc_virt_addr =
  2373. pci_alloc_consistent(qdev->pdev,
  2374. qdev->small_buf_q_alloc_size,
  2375. &qdev->small_buf_q_alloc_phy_addr);
  2376. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2377. printk(KERN_ERR PFX
  2378. "%s: Small Buffer Queue allocation failed.\n",
  2379. qdev->ndev->name);
  2380. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2381. qdev->lrg_buf_q_alloc_virt_addr,
  2382. qdev->lrg_buf_q_alloc_phy_addr);
  2383. return -ENOMEM;
  2384. }
  2385. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2386. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2387. set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2388. return 0;
  2389. }
  2390. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2391. {
  2392. if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
  2393. printk(KERN_INFO PFX
  2394. "%s: Already done.\n", qdev->ndev->name);
  2395. return;
  2396. }
  2397. if(qdev->lrg_buf) kfree(qdev->lrg_buf);
  2398. pci_free_consistent(qdev->pdev,
  2399. qdev->lrg_buf_q_alloc_size,
  2400. qdev->lrg_buf_q_alloc_virt_addr,
  2401. qdev->lrg_buf_q_alloc_phy_addr);
  2402. qdev->lrg_buf_q_virt_addr = NULL;
  2403. pci_free_consistent(qdev->pdev,
  2404. qdev->small_buf_q_alloc_size,
  2405. qdev->small_buf_q_alloc_virt_addr,
  2406. qdev->small_buf_q_alloc_phy_addr);
  2407. qdev->small_buf_q_virt_addr = NULL;
  2408. clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2409. }
  2410. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2411. {
  2412. int i;
  2413. struct bufq_addr_element *small_buf_q_entry;
  2414. /* Currently we allocate on one of memory and use it for smallbuffers */
  2415. qdev->small_buf_total_size =
  2416. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2417. QL_SMALL_BUFFER_SIZE);
  2418. qdev->small_buf_virt_addr =
  2419. pci_alloc_consistent(qdev->pdev,
  2420. qdev->small_buf_total_size,
  2421. &qdev->small_buf_phy_addr);
  2422. if (qdev->small_buf_virt_addr == NULL) {
  2423. printk(KERN_ERR PFX
  2424. "%s: Failed to get small buffer memory.\n",
  2425. qdev->ndev->name);
  2426. return -ENOMEM;
  2427. }
  2428. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2429. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2430. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2431. /* Initialize the small buffer queue. */
  2432. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2433. small_buf_q_entry->addr_high =
  2434. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2435. small_buf_q_entry->addr_low =
  2436. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2437. (i * QL_SMALL_BUFFER_SIZE));
  2438. small_buf_q_entry++;
  2439. }
  2440. qdev->small_buf_index = 0;
  2441. set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
  2442. return 0;
  2443. }
  2444. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2445. {
  2446. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
  2447. printk(KERN_INFO PFX
  2448. "%s: Already done.\n", qdev->ndev->name);
  2449. return;
  2450. }
  2451. if (qdev->small_buf_virt_addr != NULL) {
  2452. pci_free_consistent(qdev->pdev,
  2453. qdev->small_buf_total_size,
  2454. qdev->small_buf_virt_addr,
  2455. qdev->small_buf_phy_addr);
  2456. qdev->small_buf_virt_addr = NULL;
  2457. }
  2458. }
  2459. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2460. {
  2461. int i = 0;
  2462. struct ql_rcv_buf_cb *lrg_buf_cb;
  2463. for (i = 0; i < qdev->num_large_buffers; i++) {
  2464. lrg_buf_cb = &qdev->lrg_buf[i];
  2465. if (lrg_buf_cb->skb) {
  2466. dev_kfree_skb(lrg_buf_cb->skb);
  2467. pci_unmap_single(qdev->pdev,
  2468. pci_unmap_addr(lrg_buf_cb, mapaddr),
  2469. pci_unmap_len(lrg_buf_cb, maplen),
  2470. PCI_DMA_FROMDEVICE);
  2471. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2472. } else {
  2473. break;
  2474. }
  2475. }
  2476. }
  2477. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2478. {
  2479. int i;
  2480. struct ql_rcv_buf_cb *lrg_buf_cb;
  2481. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2482. for (i = 0; i < qdev->num_large_buffers; i++) {
  2483. lrg_buf_cb = &qdev->lrg_buf[i];
  2484. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2485. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2486. buf_addr_ele++;
  2487. }
  2488. qdev->lrg_buf_index = 0;
  2489. qdev->lrg_buf_skb_check = 0;
  2490. }
  2491. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2492. {
  2493. int i;
  2494. struct ql_rcv_buf_cb *lrg_buf_cb;
  2495. struct sk_buff *skb;
  2496. dma_addr_t map;
  2497. int err;
  2498. for (i = 0; i < qdev->num_large_buffers; i++) {
  2499. skb = netdev_alloc_skb(qdev->ndev,
  2500. qdev->lrg_buffer_len);
  2501. if (unlikely(!skb)) {
  2502. /* Better luck next round */
  2503. printk(KERN_ERR PFX
  2504. "%s: large buff alloc failed, "
  2505. "for %d bytes at index %d.\n",
  2506. qdev->ndev->name,
  2507. qdev->lrg_buffer_len * 2, i);
  2508. ql_free_large_buffers(qdev);
  2509. return -ENOMEM;
  2510. } else {
  2511. lrg_buf_cb = &qdev->lrg_buf[i];
  2512. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2513. lrg_buf_cb->index = i;
  2514. lrg_buf_cb->skb = skb;
  2515. /*
  2516. * We save some space to copy the ethhdr from first
  2517. * buffer
  2518. */
  2519. skb_reserve(skb, QL_HEADER_SPACE);
  2520. map = pci_map_single(qdev->pdev,
  2521. skb->data,
  2522. qdev->lrg_buffer_len -
  2523. QL_HEADER_SPACE,
  2524. PCI_DMA_FROMDEVICE);
  2525. err = pci_dma_mapping_error(map);
  2526. if(err) {
  2527. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2528. qdev->ndev->name, err);
  2529. ql_free_large_buffers(qdev);
  2530. return -ENOMEM;
  2531. }
  2532. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2533. pci_unmap_len_set(lrg_buf_cb, maplen,
  2534. qdev->lrg_buffer_len -
  2535. QL_HEADER_SPACE);
  2536. lrg_buf_cb->buf_phy_addr_low =
  2537. cpu_to_le32(LS_64BITS(map));
  2538. lrg_buf_cb->buf_phy_addr_high =
  2539. cpu_to_le32(MS_64BITS(map));
  2540. }
  2541. }
  2542. return 0;
  2543. }
  2544. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2545. {
  2546. struct ql_tx_buf_cb *tx_cb;
  2547. int i;
  2548. tx_cb = &qdev->tx_buf[0];
  2549. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2550. if (tx_cb->oal) {
  2551. kfree(tx_cb->oal);
  2552. tx_cb->oal = NULL;
  2553. }
  2554. tx_cb++;
  2555. }
  2556. }
  2557. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2558. {
  2559. struct ql_tx_buf_cb *tx_cb;
  2560. int i;
  2561. struct ob_mac_iocb_req *req_q_curr =
  2562. qdev->req_q_virt_addr;
  2563. /* Create free list of transmit buffers */
  2564. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2565. tx_cb = &qdev->tx_buf[i];
  2566. tx_cb->skb = NULL;
  2567. tx_cb->queue_entry = req_q_curr;
  2568. req_q_curr++;
  2569. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2570. if (tx_cb->oal == NULL)
  2571. return -1;
  2572. }
  2573. return 0;
  2574. }
  2575. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2576. {
  2577. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2578. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2579. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2580. }
  2581. else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2582. /*
  2583. * Bigger buffers, so less of them.
  2584. */
  2585. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2586. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2587. } else {
  2588. printk(KERN_ERR PFX
  2589. "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
  2590. qdev->ndev->name);
  2591. return -ENOMEM;
  2592. }
  2593. qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2594. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2595. qdev->max_frame_size =
  2596. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2597. /*
  2598. * First allocate a page of shared memory and use it for shadow
  2599. * locations of Network Request Queue Consumer Address Register and
  2600. * Network Completion Queue Producer Index Register
  2601. */
  2602. qdev->shadow_reg_virt_addr =
  2603. pci_alloc_consistent(qdev->pdev,
  2604. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2605. if (qdev->shadow_reg_virt_addr != NULL) {
  2606. qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
  2607. qdev->req_consumer_index_phy_addr_high =
  2608. MS_64BITS(qdev->shadow_reg_phy_addr);
  2609. qdev->req_consumer_index_phy_addr_low =
  2610. LS_64BITS(qdev->shadow_reg_phy_addr);
  2611. qdev->prsp_producer_index =
  2612. (u32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2613. qdev->rsp_producer_index_phy_addr_high =
  2614. qdev->req_consumer_index_phy_addr_high;
  2615. qdev->rsp_producer_index_phy_addr_low =
  2616. qdev->req_consumer_index_phy_addr_low + 8;
  2617. } else {
  2618. printk(KERN_ERR PFX
  2619. "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
  2620. return -ENOMEM;
  2621. }
  2622. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2623. printk(KERN_ERR PFX
  2624. "%s: ql_alloc_net_req_rsp_queues failed.\n",
  2625. qdev->ndev->name);
  2626. goto err_req_rsp;
  2627. }
  2628. if (ql_alloc_buffer_queues(qdev) != 0) {
  2629. printk(KERN_ERR PFX
  2630. "%s: ql_alloc_buffer_queues failed.\n",
  2631. qdev->ndev->name);
  2632. goto err_buffer_queues;
  2633. }
  2634. if (ql_alloc_small_buffers(qdev) != 0) {
  2635. printk(KERN_ERR PFX
  2636. "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
  2637. goto err_small_buffers;
  2638. }
  2639. if (ql_alloc_large_buffers(qdev) != 0) {
  2640. printk(KERN_ERR PFX
  2641. "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
  2642. goto err_small_buffers;
  2643. }
  2644. /* Initialize the large buffer queue. */
  2645. ql_init_large_buffers(qdev);
  2646. if (ql_create_send_free_list(qdev))
  2647. goto err_free_list;
  2648. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2649. return 0;
  2650. err_free_list:
  2651. ql_free_send_free_list(qdev);
  2652. err_small_buffers:
  2653. ql_free_buffer_queues(qdev);
  2654. err_buffer_queues:
  2655. ql_free_net_req_rsp_queues(qdev);
  2656. err_req_rsp:
  2657. pci_free_consistent(qdev->pdev,
  2658. PAGE_SIZE,
  2659. qdev->shadow_reg_virt_addr,
  2660. qdev->shadow_reg_phy_addr);
  2661. return -ENOMEM;
  2662. }
  2663. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2664. {
  2665. ql_free_send_free_list(qdev);
  2666. ql_free_large_buffers(qdev);
  2667. ql_free_small_buffers(qdev);
  2668. ql_free_buffer_queues(qdev);
  2669. ql_free_net_req_rsp_queues(qdev);
  2670. if (qdev->shadow_reg_virt_addr != NULL) {
  2671. pci_free_consistent(qdev->pdev,
  2672. PAGE_SIZE,
  2673. qdev->shadow_reg_virt_addr,
  2674. qdev->shadow_reg_phy_addr);
  2675. qdev->shadow_reg_virt_addr = NULL;
  2676. }
  2677. }
  2678. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2679. {
  2680. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2681. (void __iomem *)qdev->mem_map_registers;
  2682. if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2683. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2684. 2) << 4))
  2685. return -1;
  2686. ql_write_page2_reg(qdev,
  2687. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2688. ql_write_page2_reg(qdev,
  2689. &local_ram->maxBufletCount,
  2690. qdev->nvram_data.bufletCount);
  2691. ql_write_page2_reg(qdev,
  2692. &local_ram->freeBufletThresholdLow,
  2693. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2694. (qdev->nvram_data.tcpWindowThreshold0));
  2695. ql_write_page2_reg(qdev,
  2696. &local_ram->freeBufletThresholdHigh,
  2697. qdev->nvram_data.tcpWindowThreshold50);
  2698. ql_write_page2_reg(qdev,
  2699. &local_ram->ipHashTableBase,
  2700. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2701. qdev->nvram_data.ipHashTableBaseLo);
  2702. ql_write_page2_reg(qdev,
  2703. &local_ram->ipHashTableCount,
  2704. qdev->nvram_data.ipHashTableSize);
  2705. ql_write_page2_reg(qdev,
  2706. &local_ram->tcpHashTableBase,
  2707. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2708. qdev->nvram_data.tcpHashTableBaseLo);
  2709. ql_write_page2_reg(qdev,
  2710. &local_ram->tcpHashTableCount,
  2711. qdev->nvram_data.tcpHashTableSize);
  2712. ql_write_page2_reg(qdev,
  2713. &local_ram->ncbBase,
  2714. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2715. qdev->nvram_data.ncbTableBaseLo);
  2716. ql_write_page2_reg(qdev,
  2717. &local_ram->maxNcbCount,
  2718. qdev->nvram_data.ncbTableSize);
  2719. ql_write_page2_reg(qdev,
  2720. &local_ram->drbBase,
  2721. (qdev->nvram_data.drbTableBaseHi << 16) |
  2722. qdev->nvram_data.drbTableBaseLo);
  2723. ql_write_page2_reg(qdev,
  2724. &local_ram->maxDrbCount,
  2725. qdev->nvram_data.drbTableSize);
  2726. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2727. return 0;
  2728. }
  2729. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2730. {
  2731. u32 value;
  2732. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2733. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2734. (void __iomem *)port_regs;
  2735. u32 delay = 10;
  2736. int status = 0;
  2737. if(ql_mii_setup(qdev))
  2738. return -1;
  2739. /* Bring out PHY out of reset */
  2740. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2741. (ISP_SERIAL_PORT_IF_WE |
  2742. (ISP_SERIAL_PORT_IF_WE << 16)));
  2743. qdev->port_link_state = LS_DOWN;
  2744. netif_carrier_off(qdev->ndev);
  2745. /* V2 chip fix for ARS-39168. */
  2746. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2747. (ISP_SERIAL_PORT_IF_SDE |
  2748. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2749. /* Request Queue Registers */
  2750. *((u32 *) (qdev->preq_consumer_index)) = 0;
  2751. atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
  2752. qdev->req_producer_index = 0;
  2753. ql_write_page1_reg(qdev,
  2754. &hmem_regs->reqConsumerIndexAddrHigh,
  2755. qdev->req_consumer_index_phy_addr_high);
  2756. ql_write_page1_reg(qdev,
  2757. &hmem_regs->reqConsumerIndexAddrLow,
  2758. qdev->req_consumer_index_phy_addr_low);
  2759. ql_write_page1_reg(qdev,
  2760. &hmem_regs->reqBaseAddrHigh,
  2761. MS_64BITS(qdev->req_q_phy_addr));
  2762. ql_write_page1_reg(qdev,
  2763. &hmem_regs->reqBaseAddrLow,
  2764. LS_64BITS(qdev->req_q_phy_addr));
  2765. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2766. /* Response Queue Registers */
  2767. *((u16 *) (qdev->prsp_producer_index)) = 0;
  2768. qdev->rsp_consumer_index = 0;
  2769. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2770. ql_write_page1_reg(qdev,
  2771. &hmem_regs->rspProducerIndexAddrHigh,
  2772. qdev->rsp_producer_index_phy_addr_high);
  2773. ql_write_page1_reg(qdev,
  2774. &hmem_regs->rspProducerIndexAddrLow,
  2775. qdev->rsp_producer_index_phy_addr_low);
  2776. ql_write_page1_reg(qdev,
  2777. &hmem_regs->rspBaseAddrHigh,
  2778. MS_64BITS(qdev->rsp_q_phy_addr));
  2779. ql_write_page1_reg(qdev,
  2780. &hmem_regs->rspBaseAddrLow,
  2781. LS_64BITS(qdev->rsp_q_phy_addr));
  2782. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2783. /* Large Buffer Queue */
  2784. ql_write_page1_reg(qdev,
  2785. &hmem_regs->rxLargeQBaseAddrHigh,
  2786. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2787. ql_write_page1_reg(qdev,
  2788. &hmem_regs->rxLargeQBaseAddrLow,
  2789. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2790. ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
  2791. ql_write_page1_reg(qdev,
  2792. &hmem_regs->rxLargeBufferLength,
  2793. qdev->lrg_buffer_len);
  2794. /* Small Buffer Queue */
  2795. ql_write_page1_reg(qdev,
  2796. &hmem_regs->rxSmallQBaseAddrHigh,
  2797. MS_64BITS(qdev->small_buf_q_phy_addr));
  2798. ql_write_page1_reg(qdev,
  2799. &hmem_regs->rxSmallQBaseAddrLow,
  2800. LS_64BITS(qdev->small_buf_q_phy_addr));
  2801. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2802. ql_write_page1_reg(qdev,
  2803. &hmem_regs->rxSmallBufferLength,
  2804. QL_SMALL_BUFFER_SIZE);
  2805. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2806. qdev->small_buf_release_cnt = 8;
  2807. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2808. qdev->lrg_buf_release_cnt = 8;
  2809. qdev->lrg_buf_next_free =
  2810. (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
  2811. qdev->small_buf_index = 0;
  2812. qdev->lrg_buf_index = 0;
  2813. qdev->lrg_buf_free_count = 0;
  2814. qdev->lrg_buf_free_head = NULL;
  2815. qdev->lrg_buf_free_tail = NULL;
  2816. ql_write_common_reg(qdev,
  2817. &port_regs->CommonRegs.
  2818. rxSmallQProducerIndex,
  2819. qdev->small_buf_q_producer_index);
  2820. ql_write_common_reg(qdev,
  2821. &port_regs->CommonRegs.
  2822. rxLargeQProducerIndex,
  2823. qdev->lrg_buf_q_producer_index);
  2824. /*
  2825. * Find out if the chip has already been initialized. If it has, then
  2826. * we skip some of the initialization.
  2827. */
  2828. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2829. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2830. if ((value & PORT_STATUS_IC) == 0) {
  2831. /* Chip has not been configured yet, so let it rip. */
  2832. if(ql_init_misc_registers(qdev)) {
  2833. status = -1;
  2834. goto out;
  2835. }
  2836. value = qdev->nvram_data.tcpMaxWindowSize;
  2837. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2838. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2839. if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2840. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2841. * 2) << 13)) {
  2842. status = -1;
  2843. goto out;
  2844. }
  2845. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2846. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2847. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2848. 16) | (INTERNAL_CHIP_SD |
  2849. INTERNAL_CHIP_WE)));
  2850. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2851. }
  2852. if (qdev->mac_index)
  2853. ql_write_page0_reg(qdev,
  2854. &port_regs->mac1MaxFrameLengthReg,
  2855. qdev->max_frame_size);
  2856. else
  2857. ql_write_page0_reg(qdev,
  2858. &port_regs->mac0MaxFrameLengthReg,
  2859. qdev->max_frame_size);
  2860. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2861. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2862. 2) << 7)) {
  2863. status = -1;
  2864. goto out;
  2865. }
  2866. PHY_Setup(qdev);
  2867. ql_init_scan_mode(qdev);
  2868. ql_get_phy_owner(qdev);
  2869. /* Load the MAC Configuration */
  2870. /* Program lower 32 bits of the MAC address */
  2871. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2872. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2873. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2874. ((qdev->ndev->dev_addr[2] << 24)
  2875. | (qdev->ndev->dev_addr[3] << 16)
  2876. | (qdev->ndev->dev_addr[4] << 8)
  2877. | qdev->ndev->dev_addr[5]));
  2878. /* Program top 16 bits of the MAC address */
  2879. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2880. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2881. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2882. ((qdev->ndev->dev_addr[0] << 8)
  2883. | qdev->ndev->dev_addr[1]));
  2884. /* Enable Primary MAC */
  2885. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2886. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2887. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2888. /* Clear Primary and Secondary IP addresses */
  2889. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2890. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2891. (qdev->mac_index << 2)));
  2892. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2893. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2894. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2895. ((qdev->mac_index << 2) + 1)));
  2896. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2897. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2898. /* Indicate Configuration Complete */
  2899. ql_write_page0_reg(qdev,
  2900. &port_regs->portControl,
  2901. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2902. do {
  2903. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2904. if (value & PORT_STATUS_IC)
  2905. break;
  2906. msleep(500);
  2907. } while (--delay);
  2908. if (delay == 0) {
  2909. printk(KERN_ERR PFX
  2910. "%s: Hw Initialization timeout.\n", qdev->ndev->name);
  2911. status = -1;
  2912. goto out;
  2913. }
  2914. /* Enable Ethernet Function */
  2915. if (qdev->device_id == QL3032_DEVICE_ID) {
  2916. value =
  2917. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2918. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
  2919. QL3032_PORT_CONTROL_ET);
  2920. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2921. ((value << 16) | value));
  2922. } else {
  2923. value =
  2924. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2925. PORT_CONTROL_HH);
  2926. ql_write_page0_reg(qdev, &port_regs->portControl,
  2927. ((value << 16) | value));
  2928. }
  2929. out:
  2930. return status;
  2931. }
  2932. /*
  2933. * Caller holds hw_lock.
  2934. */
  2935. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2936. {
  2937. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2938. int status = 0;
  2939. u16 value;
  2940. int max_wait_time;
  2941. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2942. clear_bit(QL_RESET_DONE, &qdev->flags);
  2943. /*
  2944. * Issue soft reset to chip.
  2945. */
  2946. printk(KERN_DEBUG PFX
  2947. "%s: Issue soft reset to chip.\n",
  2948. qdev->ndev->name);
  2949. ql_write_common_reg(qdev,
  2950. &port_regs->CommonRegs.ispControlStatus,
  2951. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2952. /* Wait 3 seconds for reset to complete. */
  2953. printk(KERN_DEBUG PFX
  2954. "%s: Wait 10 milliseconds for reset to complete.\n",
  2955. qdev->ndev->name);
  2956. /* Wait until the firmware tells us the Soft Reset is done */
  2957. max_wait_time = 5;
  2958. do {
  2959. value =
  2960. ql_read_common_reg(qdev,
  2961. &port_regs->CommonRegs.ispControlStatus);
  2962. if ((value & ISP_CONTROL_SR) == 0)
  2963. break;
  2964. ssleep(1);
  2965. } while ((--max_wait_time));
  2966. /*
  2967. * Also, make sure that the Network Reset Interrupt bit has been
  2968. * cleared after the soft reset has taken place.
  2969. */
  2970. value =
  2971. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2972. if (value & ISP_CONTROL_RI) {
  2973. printk(KERN_DEBUG PFX
  2974. "ql_adapter_reset: clearing RI after reset.\n");
  2975. ql_write_common_reg(qdev,
  2976. &port_regs->CommonRegs.
  2977. ispControlStatus,
  2978. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2979. }
  2980. if (max_wait_time == 0) {
  2981. /* Issue Force Soft Reset */
  2982. ql_write_common_reg(qdev,
  2983. &port_regs->CommonRegs.
  2984. ispControlStatus,
  2985. ((ISP_CONTROL_FSR << 16) |
  2986. ISP_CONTROL_FSR));
  2987. /*
  2988. * Wait until the firmware tells us the Force Soft Reset is
  2989. * done
  2990. */
  2991. max_wait_time = 5;
  2992. do {
  2993. value =
  2994. ql_read_common_reg(qdev,
  2995. &port_regs->CommonRegs.
  2996. ispControlStatus);
  2997. if ((value & ISP_CONTROL_FSR) == 0) {
  2998. break;
  2999. }
  3000. ssleep(1);
  3001. } while ((--max_wait_time));
  3002. }
  3003. if (max_wait_time == 0)
  3004. status = 1;
  3005. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  3006. set_bit(QL_RESET_DONE, &qdev->flags);
  3007. return status;
  3008. }
  3009. static void ql_set_mac_info(struct ql3_adapter *qdev)
  3010. {
  3011. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3012. u32 value, port_status;
  3013. u8 func_number;
  3014. /* Get the function number */
  3015. value =
  3016. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  3017. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  3018. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  3019. switch (value & ISP_CONTROL_FN_MASK) {
  3020. case ISP_CONTROL_FN0_NET:
  3021. qdev->mac_index = 0;
  3022. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  3023. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  3024. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  3025. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  3026. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  3027. if (port_status & PORT_STATUS_SM0)
  3028. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  3029. else
  3030. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  3031. break;
  3032. case ISP_CONTROL_FN1_NET:
  3033. qdev->mac_index = 1;
  3034. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  3035. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  3036. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  3037. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  3038. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  3039. if (port_status & PORT_STATUS_SM1)
  3040. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  3041. else
  3042. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  3043. break;
  3044. case ISP_CONTROL_FN0_SCSI:
  3045. case ISP_CONTROL_FN1_SCSI:
  3046. default:
  3047. printk(KERN_DEBUG PFX
  3048. "%s: Invalid function number, ispControlStatus = 0x%x\n",
  3049. qdev->ndev->name,value);
  3050. break;
  3051. }
  3052. qdev->numPorts = qdev->nvram_data.numPorts;
  3053. }
  3054. static void ql_display_dev_info(struct net_device *ndev)
  3055. {
  3056. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3057. struct pci_dev *pdev = qdev->pdev;
  3058. DECLARE_MAC_BUF(mac);
  3059. printk(KERN_INFO PFX
  3060. "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
  3061. DRV_NAME, qdev->index, qdev->chip_rev_id,
  3062. (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
  3063. qdev->pci_slot);
  3064. printk(KERN_INFO PFX
  3065. "%s Interface.\n",
  3066. test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
  3067. /*
  3068. * Print PCI bus width/type.
  3069. */
  3070. printk(KERN_INFO PFX
  3071. "Bus interface is %s %s.\n",
  3072. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  3073. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  3074. printk(KERN_INFO PFX
  3075. "mem IO base address adjusted = 0x%p\n",
  3076. qdev->mem_map_registers);
  3077. printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
  3078. if (netif_msg_probe(qdev))
  3079. printk(KERN_INFO PFX
  3080. "%s: MAC address %s\n",
  3081. ndev->name, print_mac(mac, ndev->dev_addr));
  3082. }
  3083. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  3084. {
  3085. struct net_device *ndev = qdev->ndev;
  3086. int retval = 0;
  3087. netif_stop_queue(ndev);
  3088. netif_carrier_off(ndev);
  3089. clear_bit(QL_ADAPTER_UP,&qdev->flags);
  3090. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3091. ql_disable_interrupts(qdev);
  3092. free_irq(qdev->pdev->irq, ndev);
  3093. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  3094. printk(KERN_INFO PFX
  3095. "%s: calling pci_disable_msi().\n", qdev->ndev->name);
  3096. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  3097. pci_disable_msi(qdev->pdev);
  3098. }
  3099. del_timer_sync(&qdev->adapter_timer);
  3100. napi_disable(&qdev->napi);
  3101. if (do_reset) {
  3102. int soft_reset;
  3103. unsigned long hw_flags;
  3104. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3105. if (ql_wait_for_drvr_lock(qdev)) {
  3106. if ((soft_reset = ql_adapter_reset(qdev))) {
  3107. printk(KERN_ERR PFX
  3108. "%s: ql_adapter_reset(%d) FAILED!\n",
  3109. ndev->name, qdev->index);
  3110. }
  3111. printk(KERN_ERR PFX
  3112. "%s: Releaseing driver lock via chip reset.\n",ndev->name);
  3113. } else {
  3114. printk(KERN_ERR PFX
  3115. "%s: Could not acquire driver lock to do "
  3116. "reset!\n", ndev->name);
  3117. retval = -1;
  3118. }
  3119. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3120. }
  3121. ql_free_mem_resources(qdev);
  3122. return retval;
  3123. }
  3124. static int ql_adapter_up(struct ql3_adapter *qdev)
  3125. {
  3126. struct net_device *ndev = qdev->ndev;
  3127. int err;
  3128. unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
  3129. unsigned long hw_flags;
  3130. if (ql_alloc_mem_resources(qdev)) {
  3131. printk(KERN_ERR PFX
  3132. "%s Unable to allocate buffers.\n", ndev->name);
  3133. return -ENOMEM;
  3134. }
  3135. if (qdev->msi) {
  3136. if (pci_enable_msi(qdev->pdev)) {
  3137. printk(KERN_ERR PFX
  3138. "%s: User requested MSI, but MSI failed to "
  3139. "initialize. Continuing without MSI.\n",
  3140. qdev->ndev->name);
  3141. qdev->msi = 0;
  3142. } else {
  3143. printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
  3144. set_bit(QL_MSI_ENABLED,&qdev->flags);
  3145. irq_flags &= ~IRQF_SHARED;
  3146. }
  3147. }
  3148. if ((err = request_irq(qdev->pdev->irq,
  3149. ql3xxx_isr,
  3150. irq_flags, ndev->name, ndev))) {
  3151. printk(KERN_ERR PFX
  3152. "%s: Failed to reserve interrupt %d already in use.\n",
  3153. ndev->name, qdev->pdev->irq);
  3154. goto err_irq;
  3155. }
  3156. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3157. if ((err = ql_wait_for_drvr_lock(qdev))) {
  3158. if ((err = ql_adapter_initialize(qdev))) {
  3159. printk(KERN_ERR PFX
  3160. "%s: Unable to initialize adapter.\n",
  3161. ndev->name);
  3162. goto err_init;
  3163. }
  3164. printk(KERN_ERR PFX
  3165. "%s: Releaseing driver lock.\n",ndev->name);
  3166. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  3167. } else {
  3168. printk(KERN_ERR PFX
  3169. "%s: Could not aquire driver lock.\n",
  3170. ndev->name);
  3171. goto err_lock;
  3172. }
  3173. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3174. set_bit(QL_ADAPTER_UP,&qdev->flags);
  3175. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3176. napi_enable(&qdev->napi);
  3177. ql_enable_interrupts(qdev);
  3178. return 0;
  3179. err_init:
  3180. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  3181. err_lock:
  3182. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3183. free_irq(qdev->pdev->irq, ndev);
  3184. err_irq:
  3185. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  3186. printk(KERN_INFO PFX
  3187. "%s: calling pci_disable_msi().\n",
  3188. qdev->ndev->name);
  3189. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  3190. pci_disable_msi(qdev->pdev);
  3191. }
  3192. return err;
  3193. }
  3194. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  3195. {
  3196. if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
  3197. printk(KERN_ERR PFX
  3198. "%s: Driver up/down cycle failed, "
  3199. "closing device\n",qdev->ndev->name);
  3200. dev_close(qdev->ndev);
  3201. return -1;
  3202. }
  3203. return 0;
  3204. }
  3205. static int ql3xxx_close(struct net_device *ndev)
  3206. {
  3207. struct ql3_adapter *qdev = netdev_priv(ndev);
  3208. /*
  3209. * Wait for device to recover from a reset.
  3210. * (Rarely happens, but possible.)
  3211. */
  3212. while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
  3213. msleep(50);
  3214. ql_adapter_down(qdev,QL_DO_RESET);
  3215. return 0;
  3216. }
  3217. static int ql3xxx_open(struct net_device *ndev)
  3218. {
  3219. struct ql3_adapter *qdev = netdev_priv(ndev);
  3220. return (ql_adapter_up(qdev));
  3221. }
  3222. static void ql3xxx_set_multicast_list(struct net_device *ndev)
  3223. {
  3224. /*
  3225. * We are manually parsing the list in the net_device structure.
  3226. */
  3227. return;
  3228. }
  3229. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  3230. {
  3231. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3232. struct ql3xxx_port_registers __iomem *port_regs =
  3233. qdev->mem_map_registers;
  3234. struct sockaddr *addr = p;
  3235. unsigned long hw_flags;
  3236. if (netif_running(ndev))
  3237. return -EBUSY;
  3238. if (!is_valid_ether_addr(addr->sa_data))
  3239. return -EADDRNOTAVAIL;
  3240. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3241. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3242. /* Program lower 32 bits of the MAC address */
  3243. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3244. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3245. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3246. ((ndev->dev_addr[2] << 24) | (ndev->
  3247. dev_addr[3] << 16) |
  3248. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3249. /* Program top 16 bits of the MAC address */
  3250. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3251. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3252. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3253. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3254. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3255. return 0;
  3256. }
  3257. static void ql3xxx_tx_timeout(struct net_device *ndev)
  3258. {
  3259. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3260. printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
  3261. /*
  3262. * Stop the queues, we've got a problem.
  3263. */
  3264. netif_stop_queue(ndev);
  3265. /*
  3266. * Wake up the worker to process this event.
  3267. */
  3268. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3269. }
  3270. static void ql_reset_work(struct work_struct *work)
  3271. {
  3272. struct ql3_adapter *qdev =
  3273. container_of(work, struct ql3_adapter, reset_work.work);
  3274. struct net_device *ndev = qdev->ndev;
  3275. u32 value;
  3276. struct ql_tx_buf_cb *tx_cb;
  3277. int max_wait_time, i;
  3278. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3279. unsigned long hw_flags;
  3280. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
  3281. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3282. /*
  3283. * Loop through the active list and return the skb.
  3284. */
  3285. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3286. int j;
  3287. tx_cb = &qdev->tx_buf[i];
  3288. if (tx_cb->skb) {
  3289. printk(KERN_DEBUG PFX
  3290. "%s: Freeing lost SKB.\n",
  3291. qdev->ndev->name);
  3292. pci_unmap_single(qdev->pdev,
  3293. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  3294. pci_unmap_len(&tx_cb->map[0], maplen),
  3295. PCI_DMA_TODEVICE);
  3296. for(j=1;j<tx_cb->seg_count;j++) {
  3297. pci_unmap_page(qdev->pdev,
  3298. pci_unmap_addr(&tx_cb->map[j],mapaddr),
  3299. pci_unmap_len(&tx_cb->map[j],maplen),
  3300. PCI_DMA_TODEVICE);
  3301. }
  3302. dev_kfree_skb(tx_cb->skb);
  3303. tx_cb->skb = NULL;
  3304. }
  3305. }
  3306. printk(KERN_ERR PFX
  3307. "%s: Clearing NRI after reset.\n", qdev->ndev->name);
  3308. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3309. ql_write_common_reg(qdev,
  3310. &port_regs->CommonRegs.
  3311. ispControlStatus,
  3312. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3313. /*
  3314. * Wait the for Soft Reset to Complete.
  3315. */
  3316. max_wait_time = 10;
  3317. do {
  3318. value = ql_read_common_reg(qdev,
  3319. &port_regs->CommonRegs.
  3320. ispControlStatus);
  3321. if ((value & ISP_CONTROL_SR) == 0) {
  3322. printk(KERN_DEBUG PFX
  3323. "%s: reset completed.\n",
  3324. qdev->ndev->name);
  3325. break;
  3326. }
  3327. if (value & ISP_CONTROL_RI) {
  3328. printk(KERN_DEBUG PFX
  3329. "%s: clearing NRI after reset.\n",
  3330. qdev->ndev->name);
  3331. ql_write_common_reg(qdev,
  3332. &port_regs->
  3333. CommonRegs.
  3334. ispControlStatus,
  3335. ((ISP_CONTROL_RI <<
  3336. 16) | ISP_CONTROL_RI));
  3337. }
  3338. ssleep(1);
  3339. } while (--max_wait_time);
  3340. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3341. if (value & ISP_CONTROL_SR) {
  3342. /*
  3343. * Set the reset flags and clear the board again.
  3344. * Nothing else to do...
  3345. */
  3346. printk(KERN_ERR PFX
  3347. "%s: Timed out waiting for reset to "
  3348. "complete.\n", ndev->name);
  3349. printk(KERN_ERR PFX
  3350. "%s: Do a reset.\n", ndev->name);
  3351. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3352. clear_bit(QL_RESET_START,&qdev->flags);
  3353. ql_cycle_adapter(qdev,QL_DO_RESET);
  3354. return;
  3355. }
  3356. clear_bit(QL_RESET_ACTIVE,&qdev->flags);
  3357. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3358. clear_bit(QL_RESET_START,&qdev->flags);
  3359. ql_cycle_adapter(qdev,QL_NO_RESET);
  3360. }
  3361. }
  3362. static void ql_tx_timeout_work(struct work_struct *work)
  3363. {
  3364. struct ql3_adapter *qdev =
  3365. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3366. ql_cycle_adapter(qdev, QL_DO_RESET);
  3367. }
  3368. static void ql_get_board_info(struct ql3_adapter *qdev)
  3369. {
  3370. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3371. u32 value;
  3372. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3373. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3374. if (value & PORT_STATUS_64)
  3375. qdev->pci_width = 64;
  3376. else
  3377. qdev->pci_width = 32;
  3378. if (value & PORT_STATUS_X)
  3379. qdev->pci_x = 1;
  3380. else
  3381. qdev->pci_x = 0;
  3382. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3383. }
  3384. static void ql3xxx_timer(unsigned long ptr)
  3385. {
  3386. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3387. queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
  3388. }
  3389. static int __devinit ql3xxx_probe(struct pci_dev *pdev,
  3390. const struct pci_device_id *pci_entry)
  3391. {
  3392. struct net_device *ndev = NULL;
  3393. struct ql3_adapter *qdev = NULL;
  3394. static int cards_found = 0;
  3395. int pci_using_dac, err;
  3396. err = pci_enable_device(pdev);
  3397. if (err) {
  3398. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  3399. pci_name(pdev));
  3400. goto err_out;
  3401. }
  3402. err = pci_request_regions(pdev, DRV_NAME);
  3403. if (err) {
  3404. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  3405. pci_name(pdev));
  3406. goto err_out_disable_pdev;
  3407. }
  3408. pci_set_master(pdev);
  3409. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3410. pci_using_dac = 1;
  3411. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3412. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  3413. pci_using_dac = 0;
  3414. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3415. }
  3416. if (err) {
  3417. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  3418. pci_name(pdev));
  3419. goto err_out_free_regions;
  3420. }
  3421. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3422. if (!ndev) {
  3423. printk(KERN_ERR PFX "%s could not alloc etherdev\n",
  3424. pci_name(pdev));
  3425. err = -ENOMEM;
  3426. goto err_out_free_regions;
  3427. }
  3428. SET_NETDEV_DEV(ndev, &pdev->dev);
  3429. pci_set_drvdata(pdev, ndev);
  3430. qdev = netdev_priv(ndev);
  3431. qdev->index = cards_found;
  3432. qdev->ndev = ndev;
  3433. qdev->pdev = pdev;
  3434. qdev->device_id = pci_entry->device;
  3435. qdev->port_link_state = LS_DOWN;
  3436. if (msi)
  3437. qdev->msi = 1;
  3438. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3439. if (pci_using_dac)
  3440. ndev->features |= NETIF_F_HIGHDMA;
  3441. if (qdev->device_id == QL3032_DEVICE_ID)
  3442. ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3443. qdev->mem_map_registers =
  3444. ioremap_nocache(pci_resource_start(pdev, 1),
  3445. pci_resource_len(qdev->pdev, 1));
  3446. if (!qdev->mem_map_registers) {
  3447. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  3448. pci_name(pdev));
  3449. err = -EIO;
  3450. goto err_out_free_ndev;
  3451. }
  3452. spin_lock_init(&qdev->adapter_lock);
  3453. spin_lock_init(&qdev->hw_lock);
  3454. /* Set driver entry points */
  3455. ndev->open = ql3xxx_open;
  3456. ndev->hard_start_xmit = ql3xxx_send;
  3457. ndev->stop = ql3xxx_close;
  3458. ndev->set_multicast_list = ql3xxx_set_multicast_list;
  3459. SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
  3460. ndev->set_mac_address = ql3xxx_set_mac_address;
  3461. ndev->tx_timeout = ql3xxx_tx_timeout;
  3462. ndev->watchdog_timeo = 5 * HZ;
  3463. netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
  3464. ndev->irq = pdev->irq;
  3465. /* make sure the EEPROM is good */
  3466. if (ql_get_nvram_params(qdev)) {
  3467. printk(KERN_ALERT PFX
  3468. "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
  3469. qdev->index);
  3470. err = -EIO;
  3471. goto err_out_iounmap;
  3472. }
  3473. ql_set_mac_info(qdev);
  3474. /* Validate and set parameters */
  3475. if (qdev->mac_index) {
  3476. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3477. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn2.macAddress,
  3478. ETH_ALEN);
  3479. } else {
  3480. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3481. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn0.macAddress,
  3482. ETH_ALEN);
  3483. }
  3484. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3485. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3486. /* Turn off support for multicasting */
  3487. ndev->flags &= ~IFF_MULTICAST;
  3488. /* Record PCI bus information. */
  3489. ql_get_board_info(qdev);
  3490. /*
  3491. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3492. * jumbo frames.
  3493. */
  3494. if (qdev->pci_x) {
  3495. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3496. }
  3497. err = register_netdev(ndev);
  3498. if (err) {
  3499. printk(KERN_ERR PFX "%s: cannot register net device\n",
  3500. pci_name(pdev));
  3501. goto err_out_iounmap;
  3502. }
  3503. /* we're going to reset, so assume we have no link for now */
  3504. netif_carrier_off(ndev);
  3505. netif_stop_queue(ndev);
  3506. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3507. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3508. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3509. INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
  3510. init_timer(&qdev->adapter_timer);
  3511. qdev->adapter_timer.function = ql3xxx_timer;
  3512. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3513. qdev->adapter_timer.data = (unsigned long)qdev;
  3514. if(!cards_found) {
  3515. printk(KERN_ALERT PFX "%s\n", DRV_STRING);
  3516. printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
  3517. DRV_NAME, DRV_VERSION);
  3518. }
  3519. ql_display_dev_info(ndev);
  3520. cards_found++;
  3521. return 0;
  3522. err_out_iounmap:
  3523. iounmap(qdev->mem_map_registers);
  3524. err_out_free_ndev:
  3525. free_netdev(ndev);
  3526. err_out_free_regions:
  3527. pci_release_regions(pdev);
  3528. err_out_disable_pdev:
  3529. pci_disable_device(pdev);
  3530. pci_set_drvdata(pdev, NULL);
  3531. err_out:
  3532. return err;
  3533. }
  3534. static void __devexit ql3xxx_remove(struct pci_dev *pdev)
  3535. {
  3536. struct net_device *ndev = pci_get_drvdata(pdev);
  3537. struct ql3_adapter *qdev = netdev_priv(ndev);
  3538. unregister_netdev(ndev);
  3539. qdev = netdev_priv(ndev);
  3540. ql_disable_interrupts(qdev);
  3541. if (qdev->workqueue) {
  3542. cancel_delayed_work(&qdev->reset_work);
  3543. cancel_delayed_work(&qdev->tx_timeout_work);
  3544. destroy_workqueue(qdev->workqueue);
  3545. qdev->workqueue = NULL;
  3546. }
  3547. iounmap(qdev->mem_map_registers);
  3548. pci_release_regions(pdev);
  3549. pci_set_drvdata(pdev, NULL);
  3550. free_netdev(ndev);
  3551. }
  3552. static struct pci_driver ql3xxx_driver = {
  3553. .name = DRV_NAME,
  3554. .id_table = ql3xxx_pci_tbl,
  3555. .probe = ql3xxx_probe,
  3556. .remove = __devexit_p(ql3xxx_remove),
  3557. };
  3558. static int __init ql3xxx_init_module(void)
  3559. {
  3560. return pci_register_driver(&ql3xxx_driver);
  3561. }
  3562. static void __exit ql3xxx_exit(void)
  3563. {
  3564. pci_unregister_driver(&ql3xxx_driver);
  3565. }
  3566. module_init(ql3xxx_init_module);
  3567. module_exit(ql3xxx_exit);