page_alloc.c 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/config.h>
  17. #include <linux/stddef.h>
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/notifier.h>
  31. #include <linux/topology.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cpuset.h>
  35. #include <linux/memory_hotplug.h>
  36. #include <linux/nodemask.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/mempolicy.h>
  39. #include <asm/tlbflush.h>
  40. #include "internal.h"
  41. /*
  42. * MCD - HACK: Find somewhere to initialize this EARLY, or make this
  43. * initializer cleaner
  44. */
  45. nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
  46. EXPORT_SYMBOL(node_online_map);
  47. nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
  48. EXPORT_SYMBOL(node_possible_map);
  49. struct pglist_data *pgdat_list __read_mostly;
  50. unsigned long totalram_pages __read_mostly;
  51. unsigned long totalhigh_pages __read_mostly;
  52. long nr_swap_pages;
  53. int percpu_pagelist_fraction;
  54. static void fastcall free_hot_cold_page(struct page *page, int cold);
  55. /*
  56. * results with 256, 32 in the lowmem_reserve sysctl:
  57. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  58. * 1G machine -> (16M dma, 784M normal, 224M high)
  59. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  60. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  61. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  62. *
  63. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  64. * don't need any ZONE_NORMAL reservation
  65. */
  66. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
  67. EXPORT_SYMBOL(totalram_pages);
  68. /*
  69. * Used by page_zone() to look up the address of the struct zone whose
  70. * id is encoded in the upper bits of page->flags
  71. */
  72. struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
  73. EXPORT_SYMBOL(zone_table);
  74. static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
  75. int min_free_kbytes = 1024;
  76. unsigned long __initdata nr_kernel_pages;
  77. unsigned long __initdata nr_all_pages;
  78. #ifdef CONFIG_DEBUG_VM
  79. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  80. {
  81. int ret = 0;
  82. unsigned seq;
  83. unsigned long pfn = page_to_pfn(page);
  84. do {
  85. seq = zone_span_seqbegin(zone);
  86. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  87. ret = 1;
  88. else if (pfn < zone->zone_start_pfn)
  89. ret = 1;
  90. } while (zone_span_seqretry(zone, seq));
  91. return ret;
  92. }
  93. static int page_is_consistent(struct zone *zone, struct page *page)
  94. {
  95. #ifdef CONFIG_HOLES_IN_ZONE
  96. if (!pfn_valid(page_to_pfn(page)))
  97. return 0;
  98. #endif
  99. if (zone != page_zone(page))
  100. return 0;
  101. return 1;
  102. }
  103. /*
  104. * Temporary debugging check for pages not lying within a given zone.
  105. */
  106. static int bad_range(struct zone *zone, struct page *page)
  107. {
  108. if (page_outside_zone_boundaries(zone, page))
  109. return 1;
  110. if (!page_is_consistent(zone, page))
  111. return 1;
  112. return 0;
  113. }
  114. #else
  115. static inline int bad_range(struct zone *zone, struct page *page)
  116. {
  117. return 0;
  118. }
  119. #endif
  120. static void bad_page(struct page *page)
  121. {
  122. printk(KERN_EMERG "Bad page state in process '%s'\n"
  123. "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  124. "Trying to fix it up, but a reboot is needed\n"
  125. "Backtrace:\n",
  126. current->comm, page, (int)(2*sizeof(unsigned long)),
  127. (unsigned long)page->flags, page->mapping,
  128. page_mapcount(page), page_count(page));
  129. dump_stack();
  130. page->flags &= ~(1 << PG_lru |
  131. 1 << PG_private |
  132. 1 << PG_locked |
  133. 1 << PG_active |
  134. 1 << PG_dirty |
  135. 1 << PG_reclaim |
  136. 1 << PG_slab |
  137. 1 << PG_swapcache |
  138. 1 << PG_writeback );
  139. set_page_count(page, 0);
  140. reset_page_mapcount(page);
  141. page->mapping = NULL;
  142. add_taint(TAINT_BAD_PAGE);
  143. }
  144. /*
  145. * Higher-order pages are called "compound pages". They are structured thusly:
  146. *
  147. * The first PAGE_SIZE page is called the "head page".
  148. *
  149. * The remaining PAGE_SIZE pages are called "tail pages".
  150. *
  151. * All pages have PG_compound set. All pages have their ->private pointing at
  152. * the head page (even the head page has this).
  153. *
  154. * The first tail page's ->mapping, if non-zero, holds the address of the
  155. * compound page's put_page() function.
  156. *
  157. * The order of the allocation is stored in the first tail page's ->index
  158. * This is only for debug at present. This usage means that zero-order pages
  159. * may not be compound.
  160. */
  161. static void prep_compound_page(struct page *page, unsigned long order)
  162. {
  163. int i;
  164. int nr_pages = 1 << order;
  165. page[1].mapping = NULL;
  166. page[1].index = order;
  167. for (i = 0; i < nr_pages; i++) {
  168. struct page *p = page + i;
  169. SetPageCompound(p);
  170. set_page_private(p, (unsigned long)page);
  171. }
  172. }
  173. static void destroy_compound_page(struct page *page, unsigned long order)
  174. {
  175. int i;
  176. int nr_pages = 1 << order;
  177. if (unlikely(page[1].index != order))
  178. bad_page(page);
  179. for (i = 0; i < nr_pages; i++) {
  180. struct page *p = page + i;
  181. if (unlikely(!PageCompound(p) |
  182. (page_private(p) != (unsigned long)page)))
  183. bad_page(page);
  184. ClearPageCompound(p);
  185. }
  186. }
  187. /*
  188. * function for dealing with page's order in buddy system.
  189. * zone->lock is already acquired when we use these.
  190. * So, we don't need atomic page->flags operations here.
  191. */
  192. static inline unsigned long page_order(struct page *page) {
  193. return page_private(page);
  194. }
  195. static inline void set_page_order(struct page *page, int order) {
  196. set_page_private(page, order);
  197. __SetPagePrivate(page);
  198. }
  199. static inline void rmv_page_order(struct page *page)
  200. {
  201. __ClearPagePrivate(page);
  202. set_page_private(page, 0);
  203. }
  204. /*
  205. * Locate the struct page for both the matching buddy in our
  206. * pair (buddy1) and the combined O(n+1) page they form (page).
  207. *
  208. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  209. * the following equation:
  210. * B2 = B1 ^ (1 << O)
  211. * For example, if the starting buddy (buddy2) is #8 its order
  212. * 1 buddy is #10:
  213. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  214. *
  215. * 2) Any buddy B will have an order O+1 parent P which
  216. * satisfies the following equation:
  217. * P = B & ~(1 << O)
  218. *
  219. * Assumption: *_mem_map is contigious at least up to MAX_ORDER
  220. */
  221. static inline struct page *
  222. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  223. {
  224. unsigned long buddy_idx = page_idx ^ (1 << order);
  225. return page + (buddy_idx - page_idx);
  226. }
  227. static inline unsigned long
  228. __find_combined_index(unsigned long page_idx, unsigned int order)
  229. {
  230. return (page_idx & ~(1 << order));
  231. }
  232. /*
  233. * This function checks whether a page is free && is the buddy
  234. * we can do coalesce a page and its buddy if
  235. * (a) the buddy is not in a hole &&
  236. * (b) the buddy is free &&
  237. * (c) the buddy is on the buddy system &&
  238. * (d) a page and its buddy have the same order.
  239. * for recording page's order, we use page_private(page) and PG_private.
  240. *
  241. */
  242. static inline int page_is_buddy(struct page *page, int order)
  243. {
  244. #ifdef CONFIG_HOLES_IN_ZONE
  245. if (!pfn_valid(page_to_pfn(page)))
  246. return 0;
  247. #endif
  248. if (PagePrivate(page) &&
  249. (page_order(page) == order) &&
  250. page_count(page) == 0)
  251. return 1;
  252. return 0;
  253. }
  254. /*
  255. * Freeing function for a buddy system allocator.
  256. *
  257. * The concept of a buddy system is to maintain direct-mapped table
  258. * (containing bit values) for memory blocks of various "orders".
  259. * The bottom level table contains the map for the smallest allocatable
  260. * units of memory (here, pages), and each level above it describes
  261. * pairs of units from the levels below, hence, "buddies".
  262. * At a high level, all that happens here is marking the table entry
  263. * at the bottom level available, and propagating the changes upward
  264. * as necessary, plus some accounting needed to play nicely with other
  265. * parts of the VM system.
  266. * At each level, we keep a list of pages, which are heads of continuous
  267. * free pages of length of (1 << order) and marked with PG_Private.Page's
  268. * order is recorded in page_private(page) field.
  269. * So when we are allocating or freeing one, we can derive the state of the
  270. * other. That is, if we allocate a small block, and both were
  271. * free, the remainder of the region must be split into blocks.
  272. * If a block is freed, and its buddy is also free, then this
  273. * triggers coalescing into a block of larger size.
  274. *
  275. * -- wli
  276. */
  277. static inline void __free_one_page(struct page *page,
  278. struct zone *zone, unsigned int order)
  279. {
  280. unsigned long page_idx;
  281. int order_size = 1 << order;
  282. if (unlikely(PageCompound(page)))
  283. destroy_compound_page(page, order);
  284. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  285. BUG_ON(page_idx & (order_size - 1));
  286. BUG_ON(bad_range(zone, page));
  287. zone->free_pages += order_size;
  288. while (order < MAX_ORDER-1) {
  289. unsigned long combined_idx;
  290. struct free_area *area;
  291. struct page *buddy;
  292. buddy = __page_find_buddy(page, page_idx, order);
  293. if (!page_is_buddy(buddy, order))
  294. break; /* Move the buddy up one level. */
  295. list_del(&buddy->lru);
  296. area = zone->free_area + order;
  297. area->nr_free--;
  298. rmv_page_order(buddy);
  299. combined_idx = __find_combined_index(page_idx, order);
  300. page = page + (combined_idx - page_idx);
  301. page_idx = combined_idx;
  302. order++;
  303. }
  304. set_page_order(page, order);
  305. list_add(&page->lru, &zone->free_area[order].free_list);
  306. zone->free_area[order].nr_free++;
  307. }
  308. static inline int free_pages_check(struct page *page)
  309. {
  310. if (unlikely(page_mapcount(page) |
  311. (page->mapping != NULL) |
  312. (page_count(page) != 0) |
  313. (page->flags & (
  314. 1 << PG_lru |
  315. 1 << PG_private |
  316. 1 << PG_locked |
  317. 1 << PG_active |
  318. 1 << PG_reclaim |
  319. 1 << PG_slab |
  320. 1 << PG_swapcache |
  321. 1 << PG_writeback |
  322. 1 << PG_reserved ))))
  323. bad_page(page);
  324. if (PageDirty(page))
  325. __ClearPageDirty(page);
  326. /*
  327. * For now, we report if PG_reserved was found set, but do not
  328. * clear it, and do not free the page. But we shall soon need
  329. * to do more, for when the ZERO_PAGE count wraps negative.
  330. */
  331. return PageReserved(page);
  332. }
  333. /*
  334. * Frees a list of pages.
  335. * Assumes all pages on list are in same zone, and of same order.
  336. * count is the number of pages to free.
  337. *
  338. * If the zone was previously in an "all pages pinned" state then look to
  339. * see if this freeing clears that state.
  340. *
  341. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  342. * pinned" detection logic.
  343. */
  344. static void free_pages_bulk(struct zone *zone, int count,
  345. struct list_head *list, int order)
  346. {
  347. spin_lock(&zone->lock);
  348. zone->all_unreclaimable = 0;
  349. zone->pages_scanned = 0;
  350. while (count--) {
  351. struct page *page;
  352. BUG_ON(list_empty(list));
  353. page = list_entry(list->prev, struct page, lru);
  354. /* have to delete it as __free_one_page list manipulates */
  355. list_del(&page->lru);
  356. __free_one_page(page, zone, order);
  357. }
  358. spin_unlock(&zone->lock);
  359. }
  360. static void free_one_page(struct zone *zone, struct page *page, int order)
  361. {
  362. LIST_HEAD(list);
  363. list_add(&page->lru, &list);
  364. free_pages_bulk(zone, 1, &list, order);
  365. }
  366. static void __free_pages_ok(struct page *page, unsigned int order)
  367. {
  368. unsigned long flags;
  369. int i;
  370. int reserved = 0;
  371. arch_free_page(page, order);
  372. #ifndef CONFIG_MMU
  373. for (i = 1 ; i < (1 << order) ; ++i)
  374. __put_page(page + i);
  375. #endif
  376. for (i = 0 ; i < (1 << order) ; ++i)
  377. reserved += free_pages_check(page + i);
  378. if (reserved)
  379. return;
  380. kernel_map_pages(page, 1 << order, 0);
  381. local_irq_save(flags);
  382. __mod_page_state(pgfree, 1 << order);
  383. free_one_page(page_zone(page), page, order);
  384. local_irq_restore(flags);
  385. }
  386. /*
  387. * permit the bootmem allocator to evade page validation on high-order frees
  388. */
  389. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  390. {
  391. if (order == 0) {
  392. __ClearPageReserved(page);
  393. set_page_count(page, 0);
  394. free_hot_cold_page(page, 0);
  395. } else {
  396. LIST_HEAD(list);
  397. int loop;
  398. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  399. struct page *p = &page[loop];
  400. if (loop + 16 < BITS_PER_LONG)
  401. prefetchw(p + 16);
  402. __ClearPageReserved(p);
  403. set_page_count(p, 0);
  404. }
  405. arch_free_page(page, order);
  406. mod_page_state(pgfree, 1 << order);
  407. list_add(&page->lru, &list);
  408. kernel_map_pages(page, 1 << order, 0);
  409. free_pages_bulk(page_zone(page), 1, &list, order);
  410. }
  411. }
  412. /*
  413. * The order of subdivision here is critical for the IO subsystem.
  414. * Please do not alter this order without good reasons and regression
  415. * testing. Specifically, as large blocks of memory are subdivided,
  416. * the order in which smaller blocks are delivered depends on the order
  417. * they're subdivided in this function. This is the primary factor
  418. * influencing the order in which pages are delivered to the IO
  419. * subsystem according to empirical testing, and this is also justified
  420. * by considering the behavior of a buddy system containing a single
  421. * large block of memory acted on by a series of small allocations.
  422. * This behavior is a critical factor in sglist merging's success.
  423. *
  424. * -- wli
  425. */
  426. static inline void expand(struct zone *zone, struct page *page,
  427. int low, int high, struct free_area *area)
  428. {
  429. unsigned long size = 1 << high;
  430. while (high > low) {
  431. area--;
  432. high--;
  433. size >>= 1;
  434. BUG_ON(bad_range(zone, &page[size]));
  435. list_add(&page[size].lru, &area->free_list);
  436. area->nr_free++;
  437. set_page_order(&page[size], high);
  438. }
  439. }
  440. /*
  441. * This page is about to be returned from the page allocator
  442. */
  443. static int prep_new_page(struct page *page, int order)
  444. {
  445. if (unlikely(page_mapcount(page) |
  446. (page->mapping != NULL) |
  447. (page_count(page) != 0) |
  448. (page->flags & (
  449. 1 << PG_lru |
  450. 1 << PG_private |
  451. 1 << PG_locked |
  452. 1 << PG_active |
  453. 1 << PG_dirty |
  454. 1 << PG_reclaim |
  455. 1 << PG_slab |
  456. 1 << PG_swapcache |
  457. 1 << PG_writeback |
  458. 1 << PG_reserved ))))
  459. bad_page(page);
  460. /*
  461. * For now, we report if PG_reserved was found set, but do not
  462. * clear it, and do not allocate the page: as a safety net.
  463. */
  464. if (PageReserved(page))
  465. return 1;
  466. page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
  467. 1 << PG_referenced | 1 << PG_arch_1 |
  468. 1 << PG_checked | 1 << PG_mappedtodisk);
  469. set_page_private(page, 0);
  470. set_page_refs(page, order);
  471. kernel_map_pages(page, 1 << order, 1);
  472. return 0;
  473. }
  474. /*
  475. * Do the hard work of removing an element from the buddy allocator.
  476. * Call me with the zone->lock already held.
  477. */
  478. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  479. {
  480. struct free_area * area;
  481. unsigned int current_order;
  482. struct page *page;
  483. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  484. area = zone->free_area + current_order;
  485. if (list_empty(&area->free_list))
  486. continue;
  487. page = list_entry(area->free_list.next, struct page, lru);
  488. list_del(&page->lru);
  489. rmv_page_order(page);
  490. area->nr_free--;
  491. zone->free_pages -= 1UL << order;
  492. expand(zone, page, order, current_order, area);
  493. return page;
  494. }
  495. return NULL;
  496. }
  497. /*
  498. * Obtain a specified number of elements from the buddy allocator, all under
  499. * a single hold of the lock, for efficiency. Add them to the supplied list.
  500. * Returns the number of new pages which were placed at *list.
  501. */
  502. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  503. unsigned long count, struct list_head *list)
  504. {
  505. int i;
  506. spin_lock(&zone->lock);
  507. for (i = 0; i < count; ++i) {
  508. struct page *page = __rmqueue(zone, order);
  509. if (unlikely(page == NULL))
  510. break;
  511. list_add_tail(&page->lru, list);
  512. }
  513. spin_unlock(&zone->lock);
  514. return i;
  515. }
  516. #ifdef CONFIG_NUMA
  517. /* Called from the slab reaper to drain remote pagesets */
  518. void drain_remote_pages(void)
  519. {
  520. struct zone *zone;
  521. int i;
  522. unsigned long flags;
  523. local_irq_save(flags);
  524. for_each_zone(zone) {
  525. struct per_cpu_pageset *pset;
  526. /* Do not drain local pagesets */
  527. if (zone->zone_pgdat->node_id == numa_node_id())
  528. continue;
  529. pset = zone_pcp(zone, smp_processor_id());
  530. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  531. struct per_cpu_pages *pcp;
  532. pcp = &pset->pcp[i];
  533. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  534. pcp->count = 0;
  535. }
  536. }
  537. local_irq_restore(flags);
  538. }
  539. #endif
  540. #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
  541. static void __drain_pages(unsigned int cpu)
  542. {
  543. unsigned long flags;
  544. struct zone *zone;
  545. int i;
  546. for_each_zone(zone) {
  547. struct per_cpu_pageset *pset;
  548. pset = zone_pcp(zone, cpu);
  549. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  550. struct per_cpu_pages *pcp;
  551. pcp = &pset->pcp[i];
  552. local_irq_save(flags);
  553. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  554. pcp->count = 0;
  555. local_irq_restore(flags);
  556. }
  557. }
  558. }
  559. #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
  560. #ifdef CONFIG_PM
  561. void mark_free_pages(struct zone *zone)
  562. {
  563. unsigned long zone_pfn, flags;
  564. int order;
  565. struct list_head *curr;
  566. if (!zone->spanned_pages)
  567. return;
  568. spin_lock_irqsave(&zone->lock, flags);
  569. for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
  570. ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
  571. for (order = MAX_ORDER - 1; order >= 0; --order)
  572. list_for_each(curr, &zone->free_area[order].free_list) {
  573. unsigned long start_pfn, i;
  574. start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
  575. for (i=0; i < (1<<order); i++)
  576. SetPageNosaveFree(pfn_to_page(start_pfn+i));
  577. }
  578. spin_unlock_irqrestore(&zone->lock, flags);
  579. }
  580. /*
  581. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  582. */
  583. void drain_local_pages(void)
  584. {
  585. unsigned long flags;
  586. local_irq_save(flags);
  587. __drain_pages(smp_processor_id());
  588. local_irq_restore(flags);
  589. }
  590. #endif /* CONFIG_PM */
  591. static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
  592. {
  593. #ifdef CONFIG_NUMA
  594. pg_data_t *pg = z->zone_pgdat;
  595. pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
  596. struct per_cpu_pageset *p;
  597. p = zone_pcp(z, cpu);
  598. if (pg == orig) {
  599. p->numa_hit++;
  600. } else {
  601. p->numa_miss++;
  602. zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
  603. }
  604. if (pg == NODE_DATA(numa_node_id()))
  605. p->local_node++;
  606. else
  607. p->other_node++;
  608. #endif
  609. }
  610. /*
  611. * Free a 0-order page
  612. */
  613. static void fastcall free_hot_cold_page(struct page *page, int cold)
  614. {
  615. struct zone *zone = page_zone(page);
  616. struct per_cpu_pages *pcp;
  617. unsigned long flags;
  618. arch_free_page(page, 0);
  619. if (PageAnon(page))
  620. page->mapping = NULL;
  621. if (free_pages_check(page))
  622. return;
  623. kernel_map_pages(page, 1, 0);
  624. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  625. local_irq_save(flags);
  626. __inc_page_state(pgfree);
  627. list_add(&page->lru, &pcp->list);
  628. pcp->count++;
  629. if (pcp->count >= pcp->high) {
  630. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  631. pcp->count -= pcp->batch;
  632. }
  633. local_irq_restore(flags);
  634. put_cpu();
  635. }
  636. void fastcall free_hot_page(struct page *page)
  637. {
  638. free_hot_cold_page(page, 0);
  639. }
  640. void fastcall free_cold_page(struct page *page)
  641. {
  642. free_hot_cold_page(page, 1);
  643. }
  644. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  645. {
  646. int i;
  647. BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  648. for(i = 0; i < (1 << order); i++)
  649. clear_highpage(page + i);
  650. }
  651. /*
  652. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  653. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  654. * or two.
  655. */
  656. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  657. struct zone *zone, int order, gfp_t gfp_flags)
  658. {
  659. unsigned long flags;
  660. struct page *page;
  661. int cold = !!(gfp_flags & __GFP_COLD);
  662. int cpu;
  663. again:
  664. cpu = get_cpu();
  665. if (likely(order == 0)) {
  666. struct per_cpu_pages *pcp;
  667. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  668. local_irq_save(flags);
  669. if (!pcp->count) {
  670. pcp->count += rmqueue_bulk(zone, 0,
  671. pcp->batch, &pcp->list);
  672. if (unlikely(!pcp->count))
  673. goto failed;
  674. }
  675. page = list_entry(pcp->list.next, struct page, lru);
  676. list_del(&page->lru);
  677. pcp->count--;
  678. } else {
  679. spin_lock_irqsave(&zone->lock, flags);
  680. page = __rmqueue(zone, order);
  681. spin_unlock(&zone->lock);
  682. if (!page)
  683. goto failed;
  684. }
  685. __mod_page_state_zone(zone, pgalloc, 1 << order);
  686. zone_statistics(zonelist, zone, cpu);
  687. local_irq_restore(flags);
  688. put_cpu();
  689. BUG_ON(bad_range(zone, page));
  690. if (prep_new_page(page, order))
  691. goto again;
  692. if (gfp_flags & __GFP_ZERO)
  693. prep_zero_page(page, order, gfp_flags);
  694. if (order && (gfp_flags & __GFP_COMP))
  695. prep_compound_page(page, order);
  696. return page;
  697. failed:
  698. local_irq_restore(flags);
  699. put_cpu();
  700. return NULL;
  701. }
  702. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  703. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  704. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  705. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  706. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  707. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  708. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  709. /*
  710. * Return 1 if free pages are above 'mark'. This takes into account the order
  711. * of the allocation.
  712. */
  713. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  714. int classzone_idx, int alloc_flags)
  715. {
  716. /* free_pages my go negative - that's OK */
  717. long min = mark, free_pages = z->free_pages - (1 << order) + 1;
  718. int o;
  719. if (alloc_flags & ALLOC_HIGH)
  720. min -= min / 2;
  721. if (alloc_flags & ALLOC_HARDER)
  722. min -= min / 4;
  723. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  724. return 0;
  725. for (o = 0; o < order; o++) {
  726. /* At the next order, this order's pages become unavailable */
  727. free_pages -= z->free_area[o].nr_free << o;
  728. /* Require fewer higher order pages to be free */
  729. min >>= 1;
  730. if (free_pages <= min)
  731. return 0;
  732. }
  733. return 1;
  734. }
  735. /*
  736. * get_page_from_freeliest goes through the zonelist trying to allocate
  737. * a page.
  738. */
  739. static struct page *
  740. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  741. struct zonelist *zonelist, int alloc_flags)
  742. {
  743. struct zone **z = zonelist->zones;
  744. struct page *page = NULL;
  745. int classzone_idx = zone_idx(*z);
  746. /*
  747. * Go through the zonelist once, looking for a zone with enough free.
  748. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  749. */
  750. do {
  751. if ((alloc_flags & ALLOC_CPUSET) &&
  752. !cpuset_zone_allowed(*z, gfp_mask))
  753. continue;
  754. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  755. unsigned long mark;
  756. if (alloc_flags & ALLOC_WMARK_MIN)
  757. mark = (*z)->pages_min;
  758. else if (alloc_flags & ALLOC_WMARK_LOW)
  759. mark = (*z)->pages_low;
  760. else
  761. mark = (*z)->pages_high;
  762. if (!zone_watermark_ok(*z, order, mark,
  763. classzone_idx, alloc_flags))
  764. continue;
  765. }
  766. page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
  767. if (page) {
  768. break;
  769. }
  770. } while (*(++z) != NULL);
  771. return page;
  772. }
  773. /*
  774. * This is the 'heart' of the zoned buddy allocator.
  775. */
  776. struct page * fastcall
  777. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  778. struct zonelist *zonelist)
  779. {
  780. const gfp_t wait = gfp_mask & __GFP_WAIT;
  781. struct zone **z;
  782. struct page *page;
  783. struct reclaim_state reclaim_state;
  784. struct task_struct *p = current;
  785. int do_retry;
  786. int alloc_flags;
  787. int did_some_progress;
  788. might_sleep_if(wait);
  789. restart:
  790. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  791. if (unlikely(*z == NULL)) {
  792. /* Should this ever happen?? */
  793. return NULL;
  794. }
  795. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  796. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  797. if (page)
  798. goto got_pg;
  799. do {
  800. wakeup_kswapd(*z, order);
  801. } while (*(++z));
  802. /*
  803. * OK, we're below the kswapd watermark and have kicked background
  804. * reclaim. Now things get more complex, so set up alloc_flags according
  805. * to how we want to proceed.
  806. *
  807. * The caller may dip into page reserves a bit more if the caller
  808. * cannot run direct reclaim, or if the caller has realtime scheduling
  809. * policy.
  810. */
  811. alloc_flags = ALLOC_WMARK_MIN;
  812. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  813. alloc_flags |= ALLOC_HARDER;
  814. if (gfp_mask & __GFP_HIGH)
  815. alloc_flags |= ALLOC_HIGH;
  816. alloc_flags |= ALLOC_CPUSET;
  817. /*
  818. * Go through the zonelist again. Let __GFP_HIGH and allocations
  819. * coming from realtime tasks go deeper into reserves.
  820. *
  821. * This is the last chance, in general, before the goto nopage.
  822. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  823. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  824. */
  825. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  826. if (page)
  827. goto got_pg;
  828. /* This allocation should allow future memory freeing. */
  829. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  830. && !in_interrupt()) {
  831. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  832. nofail_alloc:
  833. /* go through the zonelist yet again, ignoring mins */
  834. page = get_page_from_freelist(gfp_mask, order,
  835. zonelist, ALLOC_NO_WATERMARKS);
  836. if (page)
  837. goto got_pg;
  838. if (gfp_mask & __GFP_NOFAIL) {
  839. blk_congestion_wait(WRITE, HZ/50);
  840. goto nofail_alloc;
  841. }
  842. }
  843. goto nopage;
  844. }
  845. /* Atomic allocations - we can't balance anything */
  846. if (!wait)
  847. goto nopage;
  848. rebalance:
  849. cond_resched();
  850. /* We now go into synchronous reclaim */
  851. cpuset_memory_pressure_bump();
  852. p->flags |= PF_MEMALLOC;
  853. reclaim_state.reclaimed_slab = 0;
  854. p->reclaim_state = &reclaim_state;
  855. did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
  856. p->reclaim_state = NULL;
  857. p->flags &= ~PF_MEMALLOC;
  858. cond_resched();
  859. if (likely(did_some_progress)) {
  860. page = get_page_from_freelist(gfp_mask, order,
  861. zonelist, alloc_flags);
  862. if (page)
  863. goto got_pg;
  864. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  865. /*
  866. * Go through the zonelist yet one more time, keep
  867. * very high watermark here, this is only to catch
  868. * a parallel oom killing, we must fail if we're still
  869. * under heavy pressure.
  870. */
  871. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  872. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  873. if (page)
  874. goto got_pg;
  875. out_of_memory(gfp_mask, order);
  876. goto restart;
  877. }
  878. /*
  879. * Don't let big-order allocations loop unless the caller explicitly
  880. * requests that. Wait for some write requests to complete then retry.
  881. *
  882. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  883. * <= 3, but that may not be true in other implementations.
  884. */
  885. do_retry = 0;
  886. if (!(gfp_mask & __GFP_NORETRY)) {
  887. if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
  888. do_retry = 1;
  889. if (gfp_mask & __GFP_NOFAIL)
  890. do_retry = 1;
  891. }
  892. if (do_retry) {
  893. blk_congestion_wait(WRITE, HZ/50);
  894. goto rebalance;
  895. }
  896. nopage:
  897. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  898. printk(KERN_WARNING "%s: page allocation failure."
  899. " order:%d, mode:0x%x\n",
  900. p->comm, order, gfp_mask);
  901. dump_stack();
  902. show_mem();
  903. }
  904. got_pg:
  905. return page;
  906. }
  907. EXPORT_SYMBOL(__alloc_pages);
  908. /*
  909. * Common helper functions.
  910. */
  911. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  912. {
  913. struct page * page;
  914. page = alloc_pages(gfp_mask, order);
  915. if (!page)
  916. return 0;
  917. return (unsigned long) page_address(page);
  918. }
  919. EXPORT_SYMBOL(__get_free_pages);
  920. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  921. {
  922. struct page * page;
  923. /*
  924. * get_zeroed_page() returns a 32-bit address, which cannot represent
  925. * a highmem page
  926. */
  927. BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  928. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  929. if (page)
  930. return (unsigned long) page_address(page);
  931. return 0;
  932. }
  933. EXPORT_SYMBOL(get_zeroed_page);
  934. void __pagevec_free(struct pagevec *pvec)
  935. {
  936. int i = pagevec_count(pvec);
  937. while (--i >= 0)
  938. free_hot_cold_page(pvec->pages[i], pvec->cold);
  939. }
  940. fastcall void __free_pages(struct page *page, unsigned int order)
  941. {
  942. if (put_page_testzero(page)) {
  943. if (order == 0)
  944. free_hot_page(page);
  945. else
  946. __free_pages_ok(page, order);
  947. }
  948. }
  949. EXPORT_SYMBOL(__free_pages);
  950. fastcall void free_pages(unsigned long addr, unsigned int order)
  951. {
  952. if (addr != 0) {
  953. BUG_ON(!virt_addr_valid((void *)addr));
  954. __free_pages(virt_to_page((void *)addr), order);
  955. }
  956. }
  957. EXPORT_SYMBOL(free_pages);
  958. /*
  959. * Total amount of free (allocatable) RAM:
  960. */
  961. unsigned int nr_free_pages(void)
  962. {
  963. unsigned int sum = 0;
  964. struct zone *zone;
  965. for_each_zone(zone)
  966. sum += zone->free_pages;
  967. return sum;
  968. }
  969. EXPORT_SYMBOL(nr_free_pages);
  970. #ifdef CONFIG_NUMA
  971. unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
  972. {
  973. unsigned int i, sum = 0;
  974. for (i = 0; i < MAX_NR_ZONES; i++)
  975. sum += pgdat->node_zones[i].free_pages;
  976. return sum;
  977. }
  978. #endif
  979. static unsigned int nr_free_zone_pages(int offset)
  980. {
  981. /* Just pick one node, since fallback list is circular */
  982. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  983. unsigned int sum = 0;
  984. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  985. struct zone **zonep = zonelist->zones;
  986. struct zone *zone;
  987. for (zone = *zonep++; zone; zone = *zonep++) {
  988. unsigned long size = zone->present_pages;
  989. unsigned long high = zone->pages_high;
  990. if (size > high)
  991. sum += size - high;
  992. }
  993. return sum;
  994. }
  995. /*
  996. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  997. */
  998. unsigned int nr_free_buffer_pages(void)
  999. {
  1000. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1001. }
  1002. /*
  1003. * Amount of free RAM allocatable within all zones
  1004. */
  1005. unsigned int nr_free_pagecache_pages(void)
  1006. {
  1007. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
  1008. }
  1009. #ifdef CONFIG_HIGHMEM
  1010. unsigned int nr_free_highpages (void)
  1011. {
  1012. pg_data_t *pgdat;
  1013. unsigned int pages = 0;
  1014. for_each_pgdat(pgdat)
  1015. pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1016. return pages;
  1017. }
  1018. #endif
  1019. #ifdef CONFIG_NUMA
  1020. static void show_node(struct zone *zone)
  1021. {
  1022. printk("Node %d ", zone->zone_pgdat->node_id);
  1023. }
  1024. #else
  1025. #define show_node(zone) do { } while (0)
  1026. #endif
  1027. /*
  1028. * Accumulate the page_state information across all CPUs.
  1029. * The result is unavoidably approximate - it can change
  1030. * during and after execution of this function.
  1031. */
  1032. static DEFINE_PER_CPU(struct page_state, page_states) = {0};
  1033. atomic_t nr_pagecache = ATOMIC_INIT(0);
  1034. EXPORT_SYMBOL(nr_pagecache);
  1035. #ifdef CONFIG_SMP
  1036. DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
  1037. #endif
  1038. static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
  1039. {
  1040. int cpu = 0;
  1041. memset(ret, 0, sizeof(*ret));
  1042. cpus_and(*cpumask, *cpumask, cpu_online_map);
  1043. cpu = first_cpu(*cpumask);
  1044. while (cpu < NR_CPUS) {
  1045. unsigned long *in, *out, off;
  1046. in = (unsigned long *)&per_cpu(page_states, cpu);
  1047. cpu = next_cpu(cpu, *cpumask);
  1048. if (cpu < NR_CPUS)
  1049. prefetch(&per_cpu(page_states, cpu));
  1050. out = (unsigned long *)ret;
  1051. for (off = 0; off < nr; off++)
  1052. *out++ += *in++;
  1053. }
  1054. }
  1055. void get_page_state_node(struct page_state *ret, int node)
  1056. {
  1057. int nr;
  1058. cpumask_t mask = node_to_cpumask(node);
  1059. nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
  1060. nr /= sizeof(unsigned long);
  1061. __get_page_state(ret, nr+1, &mask);
  1062. }
  1063. void get_page_state(struct page_state *ret)
  1064. {
  1065. int nr;
  1066. cpumask_t mask = CPU_MASK_ALL;
  1067. nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
  1068. nr /= sizeof(unsigned long);
  1069. __get_page_state(ret, nr + 1, &mask);
  1070. }
  1071. void get_full_page_state(struct page_state *ret)
  1072. {
  1073. cpumask_t mask = CPU_MASK_ALL;
  1074. __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
  1075. }
  1076. unsigned long read_page_state_offset(unsigned long offset)
  1077. {
  1078. unsigned long ret = 0;
  1079. int cpu;
  1080. for_each_online_cpu(cpu) {
  1081. unsigned long in;
  1082. in = (unsigned long)&per_cpu(page_states, cpu) + offset;
  1083. ret += *((unsigned long *)in);
  1084. }
  1085. return ret;
  1086. }
  1087. void __mod_page_state_offset(unsigned long offset, unsigned long delta)
  1088. {
  1089. void *ptr;
  1090. ptr = &__get_cpu_var(page_states);
  1091. *(unsigned long *)(ptr + offset) += delta;
  1092. }
  1093. EXPORT_SYMBOL(__mod_page_state_offset);
  1094. void mod_page_state_offset(unsigned long offset, unsigned long delta)
  1095. {
  1096. unsigned long flags;
  1097. void *ptr;
  1098. local_irq_save(flags);
  1099. ptr = &__get_cpu_var(page_states);
  1100. *(unsigned long *)(ptr + offset) += delta;
  1101. local_irq_restore(flags);
  1102. }
  1103. EXPORT_SYMBOL(mod_page_state_offset);
  1104. void __get_zone_counts(unsigned long *active, unsigned long *inactive,
  1105. unsigned long *free, struct pglist_data *pgdat)
  1106. {
  1107. struct zone *zones = pgdat->node_zones;
  1108. int i;
  1109. *active = 0;
  1110. *inactive = 0;
  1111. *free = 0;
  1112. for (i = 0; i < MAX_NR_ZONES; i++) {
  1113. *active += zones[i].nr_active;
  1114. *inactive += zones[i].nr_inactive;
  1115. *free += zones[i].free_pages;
  1116. }
  1117. }
  1118. void get_zone_counts(unsigned long *active,
  1119. unsigned long *inactive, unsigned long *free)
  1120. {
  1121. struct pglist_data *pgdat;
  1122. *active = 0;
  1123. *inactive = 0;
  1124. *free = 0;
  1125. for_each_pgdat(pgdat) {
  1126. unsigned long l, m, n;
  1127. __get_zone_counts(&l, &m, &n, pgdat);
  1128. *active += l;
  1129. *inactive += m;
  1130. *free += n;
  1131. }
  1132. }
  1133. void si_meminfo(struct sysinfo *val)
  1134. {
  1135. val->totalram = totalram_pages;
  1136. val->sharedram = 0;
  1137. val->freeram = nr_free_pages();
  1138. val->bufferram = nr_blockdev_pages();
  1139. #ifdef CONFIG_HIGHMEM
  1140. val->totalhigh = totalhigh_pages;
  1141. val->freehigh = nr_free_highpages();
  1142. #else
  1143. val->totalhigh = 0;
  1144. val->freehigh = 0;
  1145. #endif
  1146. val->mem_unit = PAGE_SIZE;
  1147. }
  1148. EXPORT_SYMBOL(si_meminfo);
  1149. #ifdef CONFIG_NUMA
  1150. void si_meminfo_node(struct sysinfo *val, int nid)
  1151. {
  1152. pg_data_t *pgdat = NODE_DATA(nid);
  1153. val->totalram = pgdat->node_present_pages;
  1154. val->freeram = nr_free_pages_pgdat(pgdat);
  1155. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1156. val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1157. val->mem_unit = PAGE_SIZE;
  1158. }
  1159. #endif
  1160. #define K(x) ((x) << (PAGE_SHIFT-10))
  1161. /*
  1162. * Show free area list (used inside shift_scroll-lock stuff)
  1163. * We also calculate the percentage fragmentation. We do this by counting the
  1164. * memory on each free list with the exception of the first item on the list.
  1165. */
  1166. void show_free_areas(void)
  1167. {
  1168. struct page_state ps;
  1169. int cpu, temperature;
  1170. unsigned long active;
  1171. unsigned long inactive;
  1172. unsigned long free;
  1173. struct zone *zone;
  1174. for_each_zone(zone) {
  1175. show_node(zone);
  1176. printk("%s per-cpu:", zone->name);
  1177. if (!populated_zone(zone)) {
  1178. printk(" empty\n");
  1179. continue;
  1180. } else
  1181. printk("\n");
  1182. for_each_online_cpu(cpu) {
  1183. struct per_cpu_pageset *pageset;
  1184. pageset = zone_pcp(zone, cpu);
  1185. for (temperature = 0; temperature < 2; temperature++)
  1186. printk("cpu %d %s: high %d, batch %d used:%d\n",
  1187. cpu,
  1188. temperature ? "cold" : "hot",
  1189. pageset->pcp[temperature].high,
  1190. pageset->pcp[temperature].batch,
  1191. pageset->pcp[temperature].count);
  1192. }
  1193. }
  1194. get_page_state(&ps);
  1195. get_zone_counts(&active, &inactive, &free);
  1196. printk("Free pages: %11ukB (%ukB HighMem)\n",
  1197. K(nr_free_pages()),
  1198. K(nr_free_highpages()));
  1199. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
  1200. "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
  1201. active,
  1202. inactive,
  1203. ps.nr_dirty,
  1204. ps.nr_writeback,
  1205. ps.nr_unstable,
  1206. nr_free_pages(),
  1207. ps.nr_slab,
  1208. ps.nr_mapped,
  1209. ps.nr_page_table_pages);
  1210. for_each_zone(zone) {
  1211. int i;
  1212. show_node(zone);
  1213. printk("%s"
  1214. " free:%lukB"
  1215. " min:%lukB"
  1216. " low:%lukB"
  1217. " high:%lukB"
  1218. " active:%lukB"
  1219. " inactive:%lukB"
  1220. " present:%lukB"
  1221. " pages_scanned:%lu"
  1222. " all_unreclaimable? %s"
  1223. "\n",
  1224. zone->name,
  1225. K(zone->free_pages),
  1226. K(zone->pages_min),
  1227. K(zone->pages_low),
  1228. K(zone->pages_high),
  1229. K(zone->nr_active),
  1230. K(zone->nr_inactive),
  1231. K(zone->present_pages),
  1232. zone->pages_scanned,
  1233. (zone->all_unreclaimable ? "yes" : "no")
  1234. );
  1235. printk("lowmem_reserve[]:");
  1236. for (i = 0; i < MAX_NR_ZONES; i++)
  1237. printk(" %lu", zone->lowmem_reserve[i]);
  1238. printk("\n");
  1239. }
  1240. for_each_zone(zone) {
  1241. unsigned long nr, flags, order, total = 0;
  1242. show_node(zone);
  1243. printk("%s: ", zone->name);
  1244. if (!populated_zone(zone)) {
  1245. printk("empty\n");
  1246. continue;
  1247. }
  1248. spin_lock_irqsave(&zone->lock, flags);
  1249. for (order = 0; order < MAX_ORDER; order++) {
  1250. nr = zone->free_area[order].nr_free;
  1251. total += nr << order;
  1252. printk("%lu*%lukB ", nr, K(1UL) << order);
  1253. }
  1254. spin_unlock_irqrestore(&zone->lock, flags);
  1255. printk("= %lukB\n", K(total));
  1256. }
  1257. show_swap_cache_info();
  1258. }
  1259. /*
  1260. * Builds allocation fallback zone lists.
  1261. *
  1262. * Add all populated zones of a node to the zonelist.
  1263. */
  1264. static int __init build_zonelists_node(pg_data_t *pgdat,
  1265. struct zonelist *zonelist, int nr_zones, int zone_type)
  1266. {
  1267. struct zone *zone;
  1268. BUG_ON(zone_type > ZONE_HIGHMEM);
  1269. do {
  1270. zone = pgdat->node_zones + zone_type;
  1271. if (populated_zone(zone)) {
  1272. #ifndef CONFIG_HIGHMEM
  1273. BUG_ON(zone_type > ZONE_NORMAL);
  1274. #endif
  1275. zonelist->zones[nr_zones++] = zone;
  1276. check_highest_zone(zone_type);
  1277. }
  1278. zone_type--;
  1279. } while (zone_type >= 0);
  1280. return nr_zones;
  1281. }
  1282. static inline int highest_zone(int zone_bits)
  1283. {
  1284. int res = ZONE_NORMAL;
  1285. if (zone_bits & (__force int)__GFP_HIGHMEM)
  1286. res = ZONE_HIGHMEM;
  1287. if (zone_bits & (__force int)__GFP_DMA32)
  1288. res = ZONE_DMA32;
  1289. if (zone_bits & (__force int)__GFP_DMA)
  1290. res = ZONE_DMA;
  1291. return res;
  1292. }
  1293. #ifdef CONFIG_NUMA
  1294. #define MAX_NODE_LOAD (num_online_nodes())
  1295. static int __initdata node_load[MAX_NUMNODES];
  1296. /**
  1297. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1298. * @node: node whose fallback list we're appending
  1299. * @used_node_mask: nodemask_t of already used nodes
  1300. *
  1301. * We use a number of factors to determine which is the next node that should
  1302. * appear on a given node's fallback list. The node should not have appeared
  1303. * already in @node's fallback list, and it should be the next closest node
  1304. * according to the distance array (which contains arbitrary distance values
  1305. * from each node to each node in the system), and should also prefer nodes
  1306. * with no CPUs, since presumably they'll have very little allocation pressure
  1307. * on them otherwise.
  1308. * It returns -1 if no node is found.
  1309. */
  1310. static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
  1311. {
  1312. int i, n, val;
  1313. int min_val = INT_MAX;
  1314. int best_node = -1;
  1315. for_each_online_node(i) {
  1316. cpumask_t tmp;
  1317. /* Start from local node */
  1318. n = (node+i) % num_online_nodes();
  1319. /* Don't want a node to appear more than once */
  1320. if (node_isset(n, *used_node_mask))
  1321. continue;
  1322. /* Use the local node if we haven't already */
  1323. if (!node_isset(node, *used_node_mask)) {
  1324. best_node = node;
  1325. break;
  1326. }
  1327. /* Use the distance array to find the distance */
  1328. val = node_distance(node, n);
  1329. /* Give preference to headless and unused nodes */
  1330. tmp = node_to_cpumask(n);
  1331. if (!cpus_empty(tmp))
  1332. val += PENALTY_FOR_NODE_WITH_CPUS;
  1333. /* Slight preference for less loaded node */
  1334. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1335. val += node_load[n];
  1336. if (val < min_val) {
  1337. min_val = val;
  1338. best_node = n;
  1339. }
  1340. }
  1341. if (best_node >= 0)
  1342. node_set(best_node, *used_node_mask);
  1343. return best_node;
  1344. }
  1345. static void __init build_zonelists(pg_data_t *pgdat)
  1346. {
  1347. int i, j, k, node, local_node;
  1348. int prev_node, load;
  1349. struct zonelist *zonelist;
  1350. nodemask_t used_mask;
  1351. /* initialize zonelists */
  1352. for (i = 0; i < GFP_ZONETYPES; i++) {
  1353. zonelist = pgdat->node_zonelists + i;
  1354. zonelist->zones[0] = NULL;
  1355. }
  1356. /* NUMA-aware ordering of nodes */
  1357. local_node = pgdat->node_id;
  1358. load = num_online_nodes();
  1359. prev_node = local_node;
  1360. nodes_clear(used_mask);
  1361. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1362. /*
  1363. * We don't want to pressure a particular node.
  1364. * So adding penalty to the first node in same
  1365. * distance group to make it round-robin.
  1366. */
  1367. if (node_distance(local_node, node) !=
  1368. node_distance(local_node, prev_node))
  1369. node_load[node] += load;
  1370. prev_node = node;
  1371. load--;
  1372. for (i = 0; i < GFP_ZONETYPES; i++) {
  1373. zonelist = pgdat->node_zonelists + i;
  1374. for (j = 0; zonelist->zones[j] != NULL; j++);
  1375. k = highest_zone(i);
  1376. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1377. zonelist->zones[j] = NULL;
  1378. }
  1379. }
  1380. }
  1381. #else /* CONFIG_NUMA */
  1382. static void __init build_zonelists(pg_data_t *pgdat)
  1383. {
  1384. int i, j, k, node, local_node;
  1385. local_node = pgdat->node_id;
  1386. for (i = 0; i < GFP_ZONETYPES; i++) {
  1387. struct zonelist *zonelist;
  1388. zonelist = pgdat->node_zonelists + i;
  1389. j = 0;
  1390. k = highest_zone(i);
  1391. j = build_zonelists_node(pgdat, zonelist, j, k);
  1392. /*
  1393. * Now we build the zonelist so that it contains the zones
  1394. * of all the other nodes.
  1395. * We don't want to pressure a particular node, so when
  1396. * building the zones for node N, we make sure that the
  1397. * zones coming right after the local ones are those from
  1398. * node N+1 (modulo N)
  1399. */
  1400. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1401. if (!node_online(node))
  1402. continue;
  1403. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1404. }
  1405. for (node = 0; node < local_node; node++) {
  1406. if (!node_online(node))
  1407. continue;
  1408. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1409. }
  1410. zonelist->zones[j] = NULL;
  1411. }
  1412. }
  1413. #endif /* CONFIG_NUMA */
  1414. void __init build_all_zonelists(void)
  1415. {
  1416. int i;
  1417. for_each_online_node(i)
  1418. build_zonelists(NODE_DATA(i));
  1419. printk("Built %i zonelists\n", num_online_nodes());
  1420. cpuset_init_current_mems_allowed();
  1421. }
  1422. /*
  1423. * Helper functions to size the waitqueue hash table.
  1424. * Essentially these want to choose hash table sizes sufficiently
  1425. * large so that collisions trying to wait on pages are rare.
  1426. * But in fact, the number of active page waitqueues on typical
  1427. * systems is ridiculously low, less than 200. So this is even
  1428. * conservative, even though it seems large.
  1429. *
  1430. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1431. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1432. */
  1433. #define PAGES_PER_WAITQUEUE 256
  1434. static inline unsigned long wait_table_size(unsigned long pages)
  1435. {
  1436. unsigned long size = 1;
  1437. pages /= PAGES_PER_WAITQUEUE;
  1438. while (size < pages)
  1439. size <<= 1;
  1440. /*
  1441. * Once we have dozens or even hundreds of threads sleeping
  1442. * on IO we've got bigger problems than wait queue collision.
  1443. * Limit the size of the wait table to a reasonable size.
  1444. */
  1445. size = min(size, 4096UL);
  1446. return max(size, 4UL);
  1447. }
  1448. /*
  1449. * This is an integer logarithm so that shifts can be used later
  1450. * to extract the more random high bits from the multiplicative
  1451. * hash function before the remainder is taken.
  1452. */
  1453. static inline unsigned long wait_table_bits(unsigned long size)
  1454. {
  1455. return ffz(~size);
  1456. }
  1457. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1458. static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
  1459. unsigned long *zones_size, unsigned long *zholes_size)
  1460. {
  1461. unsigned long realtotalpages, totalpages = 0;
  1462. int i;
  1463. for (i = 0; i < MAX_NR_ZONES; i++)
  1464. totalpages += zones_size[i];
  1465. pgdat->node_spanned_pages = totalpages;
  1466. realtotalpages = totalpages;
  1467. if (zholes_size)
  1468. for (i = 0; i < MAX_NR_ZONES; i++)
  1469. realtotalpages -= zholes_size[i];
  1470. pgdat->node_present_pages = realtotalpages;
  1471. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
  1472. }
  1473. /*
  1474. * Initially all pages are reserved - free ones are freed
  1475. * up by free_all_bootmem() once the early boot process is
  1476. * done. Non-atomic initialization, single-pass.
  1477. */
  1478. void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1479. unsigned long start_pfn)
  1480. {
  1481. struct page *page;
  1482. unsigned long end_pfn = start_pfn + size;
  1483. unsigned long pfn;
  1484. for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
  1485. if (!early_pfn_valid(pfn))
  1486. continue;
  1487. page = pfn_to_page(pfn);
  1488. set_page_links(page, zone, nid, pfn);
  1489. set_page_count(page, 1);
  1490. reset_page_mapcount(page);
  1491. SetPageReserved(page);
  1492. INIT_LIST_HEAD(&page->lru);
  1493. #ifdef WANT_PAGE_VIRTUAL
  1494. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1495. if (!is_highmem_idx(zone))
  1496. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1497. #endif
  1498. }
  1499. }
  1500. void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
  1501. unsigned long size)
  1502. {
  1503. int order;
  1504. for (order = 0; order < MAX_ORDER ; order++) {
  1505. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1506. zone->free_area[order].nr_free = 0;
  1507. }
  1508. }
  1509. #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
  1510. void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
  1511. unsigned long size)
  1512. {
  1513. unsigned long snum = pfn_to_section_nr(pfn);
  1514. unsigned long end = pfn_to_section_nr(pfn + size);
  1515. if (FLAGS_HAS_NODE)
  1516. zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
  1517. else
  1518. for (; snum <= end; snum++)
  1519. zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
  1520. }
  1521. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1522. #define memmap_init(size, nid, zone, start_pfn) \
  1523. memmap_init_zone((size), (nid), (zone), (start_pfn))
  1524. #endif
  1525. static int __devinit zone_batchsize(struct zone *zone)
  1526. {
  1527. int batch;
  1528. /*
  1529. * The per-cpu-pages pools are set to around 1000th of the
  1530. * size of the zone. But no more than 1/2 of a meg.
  1531. *
  1532. * OK, so we don't know how big the cache is. So guess.
  1533. */
  1534. batch = zone->present_pages / 1024;
  1535. if (batch * PAGE_SIZE > 512 * 1024)
  1536. batch = (512 * 1024) / PAGE_SIZE;
  1537. batch /= 4; /* We effectively *= 4 below */
  1538. if (batch < 1)
  1539. batch = 1;
  1540. /*
  1541. * Clamp the batch to a 2^n - 1 value. Having a power
  1542. * of 2 value was found to be more likely to have
  1543. * suboptimal cache aliasing properties in some cases.
  1544. *
  1545. * For example if 2 tasks are alternately allocating
  1546. * batches of pages, one task can end up with a lot
  1547. * of pages of one half of the possible page colors
  1548. * and the other with pages of the other colors.
  1549. */
  1550. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  1551. return batch;
  1552. }
  1553. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  1554. {
  1555. struct per_cpu_pages *pcp;
  1556. memset(p, 0, sizeof(*p));
  1557. pcp = &p->pcp[0]; /* hot */
  1558. pcp->count = 0;
  1559. pcp->high = 6 * batch;
  1560. pcp->batch = max(1UL, 1 * batch);
  1561. INIT_LIST_HEAD(&pcp->list);
  1562. pcp = &p->pcp[1]; /* cold*/
  1563. pcp->count = 0;
  1564. pcp->high = 2 * batch;
  1565. pcp->batch = max(1UL, batch/2);
  1566. INIT_LIST_HEAD(&pcp->list);
  1567. }
  1568. /*
  1569. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  1570. * to the value high for the pageset p.
  1571. */
  1572. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  1573. unsigned long high)
  1574. {
  1575. struct per_cpu_pages *pcp;
  1576. pcp = &p->pcp[0]; /* hot list */
  1577. pcp->high = high;
  1578. pcp->batch = max(1UL, high/4);
  1579. if ((high/4) > (PAGE_SHIFT * 8))
  1580. pcp->batch = PAGE_SHIFT * 8;
  1581. }
  1582. #ifdef CONFIG_NUMA
  1583. /*
  1584. * Boot pageset table. One per cpu which is going to be used for all
  1585. * zones and all nodes. The parameters will be set in such a way
  1586. * that an item put on a list will immediately be handed over to
  1587. * the buddy list. This is safe since pageset manipulation is done
  1588. * with interrupts disabled.
  1589. *
  1590. * Some NUMA counter updates may also be caught by the boot pagesets.
  1591. *
  1592. * The boot_pagesets must be kept even after bootup is complete for
  1593. * unused processors and/or zones. They do play a role for bootstrapping
  1594. * hotplugged processors.
  1595. *
  1596. * zoneinfo_show() and maybe other functions do
  1597. * not check if the processor is online before following the pageset pointer.
  1598. * Other parts of the kernel may not check if the zone is available.
  1599. */
  1600. static struct per_cpu_pageset
  1601. boot_pageset[NR_CPUS];
  1602. /*
  1603. * Dynamically allocate memory for the
  1604. * per cpu pageset array in struct zone.
  1605. */
  1606. static int __devinit process_zones(int cpu)
  1607. {
  1608. struct zone *zone, *dzone;
  1609. for_each_zone(zone) {
  1610. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  1611. GFP_KERNEL, cpu_to_node(cpu));
  1612. if (!zone_pcp(zone, cpu))
  1613. goto bad;
  1614. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  1615. if (percpu_pagelist_fraction)
  1616. setup_pagelist_highmark(zone_pcp(zone, cpu),
  1617. (zone->present_pages / percpu_pagelist_fraction));
  1618. }
  1619. return 0;
  1620. bad:
  1621. for_each_zone(dzone) {
  1622. if (dzone == zone)
  1623. break;
  1624. kfree(zone_pcp(dzone, cpu));
  1625. zone_pcp(dzone, cpu) = NULL;
  1626. }
  1627. return -ENOMEM;
  1628. }
  1629. static inline void free_zone_pagesets(int cpu)
  1630. {
  1631. struct zone *zone;
  1632. for_each_zone(zone) {
  1633. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  1634. zone_pcp(zone, cpu) = NULL;
  1635. kfree(pset);
  1636. }
  1637. }
  1638. static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
  1639. unsigned long action,
  1640. void *hcpu)
  1641. {
  1642. int cpu = (long)hcpu;
  1643. int ret = NOTIFY_OK;
  1644. switch (action) {
  1645. case CPU_UP_PREPARE:
  1646. if (process_zones(cpu))
  1647. ret = NOTIFY_BAD;
  1648. break;
  1649. case CPU_UP_CANCELED:
  1650. case CPU_DEAD:
  1651. free_zone_pagesets(cpu);
  1652. break;
  1653. default:
  1654. break;
  1655. }
  1656. return ret;
  1657. }
  1658. static struct notifier_block pageset_notifier =
  1659. { &pageset_cpuup_callback, NULL, 0 };
  1660. void __init setup_per_cpu_pageset(void)
  1661. {
  1662. int err;
  1663. /* Initialize per_cpu_pageset for cpu 0.
  1664. * A cpuup callback will do this for every cpu
  1665. * as it comes online
  1666. */
  1667. err = process_zones(smp_processor_id());
  1668. BUG_ON(err);
  1669. register_cpu_notifier(&pageset_notifier);
  1670. }
  1671. #endif
  1672. static __devinit
  1673. void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  1674. {
  1675. int i;
  1676. struct pglist_data *pgdat = zone->zone_pgdat;
  1677. /*
  1678. * The per-page waitqueue mechanism uses hashed waitqueues
  1679. * per zone.
  1680. */
  1681. zone->wait_table_size = wait_table_size(zone_size_pages);
  1682. zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
  1683. zone->wait_table = (wait_queue_head_t *)
  1684. alloc_bootmem_node(pgdat, zone->wait_table_size
  1685. * sizeof(wait_queue_head_t));
  1686. for(i = 0; i < zone->wait_table_size; ++i)
  1687. init_waitqueue_head(zone->wait_table + i);
  1688. }
  1689. static __devinit void zone_pcp_init(struct zone *zone)
  1690. {
  1691. int cpu;
  1692. unsigned long batch = zone_batchsize(zone);
  1693. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  1694. #ifdef CONFIG_NUMA
  1695. /* Early boot. Slab allocator not functional yet */
  1696. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  1697. setup_pageset(&boot_pageset[cpu],0);
  1698. #else
  1699. setup_pageset(zone_pcp(zone,cpu), batch);
  1700. #endif
  1701. }
  1702. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  1703. zone->name, zone->present_pages, batch);
  1704. }
  1705. static __devinit void init_currently_empty_zone(struct zone *zone,
  1706. unsigned long zone_start_pfn, unsigned long size)
  1707. {
  1708. struct pglist_data *pgdat = zone->zone_pgdat;
  1709. zone_wait_table_init(zone, size);
  1710. pgdat->nr_zones = zone_idx(zone) + 1;
  1711. zone->zone_mem_map = pfn_to_page(zone_start_pfn);
  1712. zone->zone_start_pfn = zone_start_pfn;
  1713. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  1714. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  1715. }
  1716. /*
  1717. * Set up the zone data structures:
  1718. * - mark all pages reserved
  1719. * - mark all memory queues empty
  1720. * - clear the memory bitmaps
  1721. */
  1722. static void __init free_area_init_core(struct pglist_data *pgdat,
  1723. unsigned long *zones_size, unsigned long *zholes_size)
  1724. {
  1725. unsigned long j;
  1726. int nid = pgdat->node_id;
  1727. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  1728. pgdat_resize_init(pgdat);
  1729. pgdat->nr_zones = 0;
  1730. init_waitqueue_head(&pgdat->kswapd_wait);
  1731. pgdat->kswapd_max_order = 0;
  1732. for (j = 0; j < MAX_NR_ZONES; j++) {
  1733. struct zone *zone = pgdat->node_zones + j;
  1734. unsigned long size, realsize;
  1735. realsize = size = zones_size[j];
  1736. if (zholes_size)
  1737. realsize -= zholes_size[j];
  1738. if (j < ZONE_HIGHMEM)
  1739. nr_kernel_pages += realsize;
  1740. nr_all_pages += realsize;
  1741. zone->spanned_pages = size;
  1742. zone->present_pages = realsize;
  1743. zone->name = zone_names[j];
  1744. spin_lock_init(&zone->lock);
  1745. spin_lock_init(&zone->lru_lock);
  1746. zone_seqlock_init(zone);
  1747. zone->zone_pgdat = pgdat;
  1748. zone->free_pages = 0;
  1749. zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
  1750. zone_pcp_init(zone);
  1751. INIT_LIST_HEAD(&zone->active_list);
  1752. INIT_LIST_HEAD(&zone->inactive_list);
  1753. zone->nr_scan_active = 0;
  1754. zone->nr_scan_inactive = 0;
  1755. zone->nr_active = 0;
  1756. zone->nr_inactive = 0;
  1757. atomic_set(&zone->reclaim_in_progress, 0);
  1758. if (!size)
  1759. continue;
  1760. zonetable_add(zone, nid, j, zone_start_pfn, size);
  1761. init_currently_empty_zone(zone, zone_start_pfn, size);
  1762. zone_start_pfn += size;
  1763. }
  1764. }
  1765. static void __init alloc_node_mem_map(struct pglist_data *pgdat)
  1766. {
  1767. /* Skip empty nodes */
  1768. if (!pgdat->node_spanned_pages)
  1769. return;
  1770. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  1771. /* ia64 gets its own node_mem_map, before this, without bootmem */
  1772. if (!pgdat->node_mem_map) {
  1773. unsigned long size;
  1774. struct page *map;
  1775. size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
  1776. map = alloc_remap(pgdat->node_id, size);
  1777. if (!map)
  1778. map = alloc_bootmem_node(pgdat, size);
  1779. pgdat->node_mem_map = map;
  1780. }
  1781. #ifdef CONFIG_FLATMEM
  1782. /*
  1783. * With no DISCONTIG, the global mem_map is just set as node 0's
  1784. */
  1785. if (pgdat == NODE_DATA(0))
  1786. mem_map = NODE_DATA(0)->node_mem_map;
  1787. #endif
  1788. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  1789. }
  1790. void __init free_area_init_node(int nid, struct pglist_data *pgdat,
  1791. unsigned long *zones_size, unsigned long node_start_pfn,
  1792. unsigned long *zholes_size)
  1793. {
  1794. pgdat->node_id = nid;
  1795. pgdat->node_start_pfn = node_start_pfn;
  1796. calculate_zone_totalpages(pgdat, zones_size, zholes_size);
  1797. alloc_node_mem_map(pgdat);
  1798. free_area_init_core(pgdat, zones_size, zholes_size);
  1799. }
  1800. #ifndef CONFIG_NEED_MULTIPLE_NODES
  1801. static bootmem_data_t contig_bootmem_data;
  1802. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  1803. EXPORT_SYMBOL(contig_page_data);
  1804. #endif
  1805. void __init free_area_init(unsigned long *zones_size)
  1806. {
  1807. free_area_init_node(0, NODE_DATA(0), zones_size,
  1808. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  1809. }
  1810. #ifdef CONFIG_PROC_FS
  1811. #include <linux/seq_file.h>
  1812. static void *frag_start(struct seq_file *m, loff_t *pos)
  1813. {
  1814. pg_data_t *pgdat;
  1815. loff_t node = *pos;
  1816. for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
  1817. --node;
  1818. return pgdat;
  1819. }
  1820. static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
  1821. {
  1822. pg_data_t *pgdat = (pg_data_t *)arg;
  1823. (*pos)++;
  1824. return pgdat->pgdat_next;
  1825. }
  1826. static void frag_stop(struct seq_file *m, void *arg)
  1827. {
  1828. }
  1829. /*
  1830. * This walks the free areas for each zone.
  1831. */
  1832. static int frag_show(struct seq_file *m, void *arg)
  1833. {
  1834. pg_data_t *pgdat = (pg_data_t *)arg;
  1835. struct zone *zone;
  1836. struct zone *node_zones = pgdat->node_zones;
  1837. unsigned long flags;
  1838. int order;
  1839. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
  1840. if (!populated_zone(zone))
  1841. continue;
  1842. spin_lock_irqsave(&zone->lock, flags);
  1843. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  1844. for (order = 0; order < MAX_ORDER; ++order)
  1845. seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
  1846. spin_unlock_irqrestore(&zone->lock, flags);
  1847. seq_putc(m, '\n');
  1848. }
  1849. return 0;
  1850. }
  1851. struct seq_operations fragmentation_op = {
  1852. .start = frag_start,
  1853. .next = frag_next,
  1854. .stop = frag_stop,
  1855. .show = frag_show,
  1856. };
  1857. /*
  1858. * Output information about zones in @pgdat.
  1859. */
  1860. static int zoneinfo_show(struct seq_file *m, void *arg)
  1861. {
  1862. pg_data_t *pgdat = arg;
  1863. struct zone *zone;
  1864. struct zone *node_zones = pgdat->node_zones;
  1865. unsigned long flags;
  1866. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
  1867. int i;
  1868. if (!populated_zone(zone))
  1869. continue;
  1870. spin_lock_irqsave(&zone->lock, flags);
  1871. seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
  1872. seq_printf(m,
  1873. "\n pages free %lu"
  1874. "\n min %lu"
  1875. "\n low %lu"
  1876. "\n high %lu"
  1877. "\n active %lu"
  1878. "\n inactive %lu"
  1879. "\n scanned %lu (a: %lu i: %lu)"
  1880. "\n spanned %lu"
  1881. "\n present %lu",
  1882. zone->free_pages,
  1883. zone->pages_min,
  1884. zone->pages_low,
  1885. zone->pages_high,
  1886. zone->nr_active,
  1887. zone->nr_inactive,
  1888. zone->pages_scanned,
  1889. zone->nr_scan_active, zone->nr_scan_inactive,
  1890. zone->spanned_pages,
  1891. zone->present_pages);
  1892. seq_printf(m,
  1893. "\n protection: (%lu",
  1894. zone->lowmem_reserve[0]);
  1895. for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
  1896. seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
  1897. seq_printf(m,
  1898. ")"
  1899. "\n pagesets");
  1900. for_each_online_cpu(i) {
  1901. struct per_cpu_pageset *pageset;
  1902. int j;
  1903. pageset = zone_pcp(zone, i);
  1904. for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
  1905. if (pageset->pcp[j].count)
  1906. break;
  1907. }
  1908. if (j == ARRAY_SIZE(pageset->pcp))
  1909. continue;
  1910. for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
  1911. seq_printf(m,
  1912. "\n cpu: %i pcp: %i"
  1913. "\n count: %i"
  1914. "\n high: %i"
  1915. "\n batch: %i",
  1916. i, j,
  1917. pageset->pcp[j].count,
  1918. pageset->pcp[j].high,
  1919. pageset->pcp[j].batch);
  1920. }
  1921. #ifdef CONFIG_NUMA
  1922. seq_printf(m,
  1923. "\n numa_hit: %lu"
  1924. "\n numa_miss: %lu"
  1925. "\n numa_foreign: %lu"
  1926. "\n interleave_hit: %lu"
  1927. "\n local_node: %lu"
  1928. "\n other_node: %lu",
  1929. pageset->numa_hit,
  1930. pageset->numa_miss,
  1931. pageset->numa_foreign,
  1932. pageset->interleave_hit,
  1933. pageset->local_node,
  1934. pageset->other_node);
  1935. #endif
  1936. }
  1937. seq_printf(m,
  1938. "\n all_unreclaimable: %u"
  1939. "\n prev_priority: %i"
  1940. "\n temp_priority: %i"
  1941. "\n start_pfn: %lu",
  1942. zone->all_unreclaimable,
  1943. zone->prev_priority,
  1944. zone->temp_priority,
  1945. zone->zone_start_pfn);
  1946. spin_unlock_irqrestore(&zone->lock, flags);
  1947. seq_putc(m, '\n');
  1948. }
  1949. return 0;
  1950. }
  1951. struct seq_operations zoneinfo_op = {
  1952. .start = frag_start, /* iterate over all zones. The same as in
  1953. * fragmentation. */
  1954. .next = frag_next,
  1955. .stop = frag_stop,
  1956. .show = zoneinfo_show,
  1957. };
  1958. static char *vmstat_text[] = {
  1959. "nr_dirty",
  1960. "nr_writeback",
  1961. "nr_unstable",
  1962. "nr_page_table_pages",
  1963. "nr_mapped",
  1964. "nr_slab",
  1965. "pgpgin",
  1966. "pgpgout",
  1967. "pswpin",
  1968. "pswpout",
  1969. "pgalloc_high",
  1970. "pgalloc_normal",
  1971. "pgalloc_dma32",
  1972. "pgalloc_dma",
  1973. "pgfree",
  1974. "pgactivate",
  1975. "pgdeactivate",
  1976. "pgfault",
  1977. "pgmajfault",
  1978. "pgrefill_high",
  1979. "pgrefill_normal",
  1980. "pgrefill_dma32",
  1981. "pgrefill_dma",
  1982. "pgsteal_high",
  1983. "pgsteal_normal",
  1984. "pgsteal_dma32",
  1985. "pgsteal_dma",
  1986. "pgscan_kswapd_high",
  1987. "pgscan_kswapd_normal",
  1988. "pgscan_kswapd_dma32",
  1989. "pgscan_kswapd_dma",
  1990. "pgscan_direct_high",
  1991. "pgscan_direct_normal",
  1992. "pgscan_direct_dma32",
  1993. "pgscan_direct_dma",
  1994. "pginodesteal",
  1995. "slabs_scanned",
  1996. "kswapd_steal",
  1997. "kswapd_inodesteal",
  1998. "pageoutrun",
  1999. "allocstall",
  2000. "pgrotated",
  2001. "nr_bounce",
  2002. };
  2003. static void *vmstat_start(struct seq_file *m, loff_t *pos)
  2004. {
  2005. struct page_state *ps;
  2006. if (*pos >= ARRAY_SIZE(vmstat_text))
  2007. return NULL;
  2008. ps = kmalloc(sizeof(*ps), GFP_KERNEL);
  2009. m->private = ps;
  2010. if (!ps)
  2011. return ERR_PTR(-ENOMEM);
  2012. get_full_page_state(ps);
  2013. ps->pgpgin /= 2; /* sectors -> kbytes */
  2014. ps->pgpgout /= 2;
  2015. return (unsigned long *)ps + *pos;
  2016. }
  2017. static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
  2018. {
  2019. (*pos)++;
  2020. if (*pos >= ARRAY_SIZE(vmstat_text))
  2021. return NULL;
  2022. return (unsigned long *)m->private + *pos;
  2023. }
  2024. static int vmstat_show(struct seq_file *m, void *arg)
  2025. {
  2026. unsigned long *l = arg;
  2027. unsigned long off = l - (unsigned long *)m->private;
  2028. seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
  2029. return 0;
  2030. }
  2031. static void vmstat_stop(struct seq_file *m, void *arg)
  2032. {
  2033. kfree(m->private);
  2034. m->private = NULL;
  2035. }
  2036. struct seq_operations vmstat_op = {
  2037. .start = vmstat_start,
  2038. .next = vmstat_next,
  2039. .stop = vmstat_stop,
  2040. .show = vmstat_show,
  2041. };
  2042. #endif /* CONFIG_PROC_FS */
  2043. #ifdef CONFIG_HOTPLUG_CPU
  2044. static int page_alloc_cpu_notify(struct notifier_block *self,
  2045. unsigned long action, void *hcpu)
  2046. {
  2047. int cpu = (unsigned long)hcpu;
  2048. long *count;
  2049. unsigned long *src, *dest;
  2050. if (action == CPU_DEAD) {
  2051. int i;
  2052. /* Drain local pagecache count. */
  2053. count = &per_cpu(nr_pagecache_local, cpu);
  2054. atomic_add(*count, &nr_pagecache);
  2055. *count = 0;
  2056. local_irq_disable();
  2057. __drain_pages(cpu);
  2058. /* Add dead cpu's page_states to our own. */
  2059. dest = (unsigned long *)&__get_cpu_var(page_states);
  2060. src = (unsigned long *)&per_cpu(page_states, cpu);
  2061. for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
  2062. i++) {
  2063. dest[i] += src[i];
  2064. src[i] = 0;
  2065. }
  2066. local_irq_enable();
  2067. }
  2068. return NOTIFY_OK;
  2069. }
  2070. #endif /* CONFIG_HOTPLUG_CPU */
  2071. void __init page_alloc_init(void)
  2072. {
  2073. hotcpu_notifier(page_alloc_cpu_notify, 0);
  2074. }
  2075. /*
  2076. * setup_per_zone_lowmem_reserve - called whenever
  2077. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  2078. * has a correct pages reserved value, so an adequate number of
  2079. * pages are left in the zone after a successful __alloc_pages().
  2080. */
  2081. static void setup_per_zone_lowmem_reserve(void)
  2082. {
  2083. struct pglist_data *pgdat;
  2084. int j, idx;
  2085. for_each_pgdat(pgdat) {
  2086. for (j = 0; j < MAX_NR_ZONES; j++) {
  2087. struct zone *zone = pgdat->node_zones + j;
  2088. unsigned long present_pages = zone->present_pages;
  2089. zone->lowmem_reserve[j] = 0;
  2090. for (idx = j-1; idx >= 0; idx--) {
  2091. struct zone *lower_zone;
  2092. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  2093. sysctl_lowmem_reserve_ratio[idx] = 1;
  2094. lower_zone = pgdat->node_zones + idx;
  2095. lower_zone->lowmem_reserve[j] = present_pages /
  2096. sysctl_lowmem_reserve_ratio[idx];
  2097. present_pages += lower_zone->present_pages;
  2098. }
  2099. }
  2100. }
  2101. }
  2102. /*
  2103. * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
  2104. * that the pages_{min,low,high} values for each zone are set correctly
  2105. * with respect to min_free_kbytes.
  2106. */
  2107. void setup_per_zone_pages_min(void)
  2108. {
  2109. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  2110. unsigned long lowmem_pages = 0;
  2111. struct zone *zone;
  2112. unsigned long flags;
  2113. /* Calculate total number of !ZONE_HIGHMEM pages */
  2114. for_each_zone(zone) {
  2115. if (!is_highmem(zone))
  2116. lowmem_pages += zone->present_pages;
  2117. }
  2118. for_each_zone(zone) {
  2119. unsigned long tmp;
  2120. spin_lock_irqsave(&zone->lru_lock, flags);
  2121. tmp = (pages_min * zone->present_pages) / lowmem_pages;
  2122. if (is_highmem(zone)) {
  2123. /*
  2124. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  2125. * need highmem pages, so cap pages_min to a small
  2126. * value here.
  2127. *
  2128. * The (pages_high-pages_low) and (pages_low-pages_min)
  2129. * deltas controls asynch page reclaim, and so should
  2130. * not be capped for highmem.
  2131. */
  2132. int min_pages;
  2133. min_pages = zone->present_pages / 1024;
  2134. if (min_pages < SWAP_CLUSTER_MAX)
  2135. min_pages = SWAP_CLUSTER_MAX;
  2136. if (min_pages > 128)
  2137. min_pages = 128;
  2138. zone->pages_min = min_pages;
  2139. } else {
  2140. /*
  2141. * If it's a lowmem zone, reserve a number of pages
  2142. * proportionate to the zone's size.
  2143. */
  2144. zone->pages_min = tmp;
  2145. }
  2146. zone->pages_low = zone->pages_min + tmp / 4;
  2147. zone->pages_high = zone->pages_min + tmp / 2;
  2148. spin_unlock_irqrestore(&zone->lru_lock, flags);
  2149. }
  2150. }
  2151. /*
  2152. * Initialise min_free_kbytes.
  2153. *
  2154. * For small machines we want it small (128k min). For large machines
  2155. * we want it large (64MB max). But it is not linear, because network
  2156. * bandwidth does not increase linearly with machine size. We use
  2157. *
  2158. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  2159. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  2160. *
  2161. * which yields
  2162. *
  2163. * 16MB: 512k
  2164. * 32MB: 724k
  2165. * 64MB: 1024k
  2166. * 128MB: 1448k
  2167. * 256MB: 2048k
  2168. * 512MB: 2896k
  2169. * 1024MB: 4096k
  2170. * 2048MB: 5792k
  2171. * 4096MB: 8192k
  2172. * 8192MB: 11584k
  2173. * 16384MB: 16384k
  2174. */
  2175. static int __init init_per_zone_pages_min(void)
  2176. {
  2177. unsigned long lowmem_kbytes;
  2178. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  2179. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  2180. if (min_free_kbytes < 128)
  2181. min_free_kbytes = 128;
  2182. if (min_free_kbytes > 65536)
  2183. min_free_kbytes = 65536;
  2184. setup_per_zone_pages_min();
  2185. setup_per_zone_lowmem_reserve();
  2186. return 0;
  2187. }
  2188. module_init(init_per_zone_pages_min)
  2189. /*
  2190. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  2191. * that we can call two helper functions whenever min_free_kbytes
  2192. * changes.
  2193. */
  2194. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  2195. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2196. {
  2197. proc_dointvec(table, write, file, buffer, length, ppos);
  2198. setup_per_zone_pages_min();
  2199. return 0;
  2200. }
  2201. /*
  2202. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  2203. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  2204. * whenever sysctl_lowmem_reserve_ratio changes.
  2205. *
  2206. * The reserve ratio obviously has absolutely no relation with the
  2207. * pages_min watermarks. The lowmem reserve ratio can only make sense
  2208. * if in function of the boot time zone sizes.
  2209. */
  2210. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  2211. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2212. {
  2213. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2214. setup_per_zone_lowmem_reserve();
  2215. return 0;
  2216. }
  2217. /*
  2218. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  2219. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  2220. * can have before it gets flushed back to buddy allocator.
  2221. */
  2222. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  2223. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2224. {
  2225. struct zone *zone;
  2226. unsigned int cpu;
  2227. int ret;
  2228. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2229. if (!write || (ret == -EINVAL))
  2230. return ret;
  2231. for_each_zone(zone) {
  2232. for_each_online_cpu(cpu) {
  2233. unsigned long high;
  2234. high = zone->present_pages / percpu_pagelist_fraction;
  2235. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  2236. }
  2237. }
  2238. return 0;
  2239. }
  2240. __initdata int hashdist = HASHDIST_DEFAULT;
  2241. #ifdef CONFIG_NUMA
  2242. static int __init set_hashdist(char *str)
  2243. {
  2244. if (!str)
  2245. return 0;
  2246. hashdist = simple_strtoul(str, &str, 0);
  2247. return 1;
  2248. }
  2249. __setup("hashdist=", set_hashdist);
  2250. #endif
  2251. /*
  2252. * allocate a large system hash table from bootmem
  2253. * - it is assumed that the hash table must contain an exact power-of-2
  2254. * quantity of entries
  2255. * - limit is the number of hash buckets, not the total allocation size
  2256. */
  2257. void *__init alloc_large_system_hash(const char *tablename,
  2258. unsigned long bucketsize,
  2259. unsigned long numentries,
  2260. int scale,
  2261. int flags,
  2262. unsigned int *_hash_shift,
  2263. unsigned int *_hash_mask,
  2264. unsigned long limit)
  2265. {
  2266. unsigned long long max = limit;
  2267. unsigned long log2qty, size;
  2268. void *table = NULL;
  2269. /* allow the kernel cmdline to have a say */
  2270. if (!numentries) {
  2271. /* round applicable memory size up to nearest megabyte */
  2272. numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
  2273. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  2274. numentries >>= 20 - PAGE_SHIFT;
  2275. numentries <<= 20 - PAGE_SHIFT;
  2276. /* limit to 1 bucket per 2^scale bytes of low memory */
  2277. if (scale > PAGE_SHIFT)
  2278. numentries >>= (scale - PAGE_SHIFT);
  2279. else
  2280. numentries <<= (PAGE_SHIFT - scale);
  2281. }
  2282. /* rounded up to nearest power of 2 in size */
  2283. numentries = 1UL << (long_log2(numentries) + 1);
  2284. /* limit allocation size to 1/16 total memory by default */
  2285. if (max == 0) {
  2286. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  2287. do_div(max, bucketsize);
  2288. }
  2289. if (numentries > max)
  2290. numentries = max;
  2291. log2qty = long_log2(numentries);
  2292. do {
  2293. size = bucketsize << log2qty;
  2294. if (flags & HASH_EARLY)
  2295. table = alloc_bootmem(size);
  2296. else if (hashdist)
  2297. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  2298. else {
  2299. unsigned long order;
  2300. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  2301. ;
  2302. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  2303. }
  2304. } while (!table && size > PAGE_SIZE && --log2qty);
  2305. if (!table)
  2306. panic("Failed to allocate %s hash table\n", tablename);
  2307. printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
  2308. tablename,
  2309. (1U << log2qty),
  2310. long_log2(size) - PAGE_SHIFT,
  2311. size);
  2312. if (_hash_shift)
  2313. *_hash_shift = log2qty;
  2314. if (_hash_mask)
  2315. *_hash_mask = (1 << log2qty) - 1;
  2316. return table;
  2317. }