hw.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  24. MODULE_AUTHOR("Atheros Communications");
  25. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  26. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  27. MODULE_LICENSE("Dual BSD/GPL");
  28. static int __init ath9k_init(void)
  29. {
  30. return 0;
  31. }
  32. module_init(ath9k_init);
  33. static void __exit ath9k_exit(void)
  34. {
  35. return;
  36. }
  37. module_exit(ath9k_exit);
  38. /* Private hardware callbacks */
  39. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  40. {
  41. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  42. }
  43. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  46. }
  47. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  48. struct ath9k_channel *chan)
  49. {
  50. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  51. }
  52. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  53. {
  54. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  55. return;
  56. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  57. }
  58. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  59. {
  60. /* You will not have this callback if using the old ANI */
  61. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  62. return;
  63. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  64. }
  65. /********************/
  66. /* Helper Functions */
  67. /********************/
  68. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  69. {
  70. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  71. struct ath_common *common = ath9k_hw_common(ah);
  72. unsigned int clockrate;
  73. if (!ah->curchan) /* should really check for CCK instead */
  74. clockrate = ATH9K_CLOCK_RATE_CCK;
  75. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  76. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  77. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  78. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  79. else
  80. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  81. if (conf_is_ht40(conf))
  82. clockrate *= 2;
  83. common->clockrate = clockrate;
  84. }
  85. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  86. {
  87. struct ath_common *common = ath9k_hw_common(ah);
  88. return usecs * common->clockrate;
  89. }
  90. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  91. {
  92. int i;
  93. BUG_ON(timeout < AH_TIME_QUANTUM);
  94. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  95. if ((REG_READ(ah, reg) & mask) == val)
  96. return true;
  97. udelay(AH_TIME_QUANTUM);
  98. }
  99. ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
  100. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  101. timeout, reg, REG_READ(ah, reg), mask, val);
  102. return false;
  103. }
  104. EXPORT_SYMBOL(ath9k_hw_wait);
  105. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  106. int column, unsigned int *writecnt)
  107. {
  108. int r;
  109. ENABLE_REGWRITE_BUFFER(ah);
  110. for (r = 0; r < array->ia_rows; r++) {
  111. REG_WRITE(ah, INI_RA(array, r, 0),
  112. INI_RA(array, r, column));
  113. DO_DELAY(*writecnt);
  114. }
  115. REGWRITE_BUFFER_FLUSH(ah);
  116. }
  117. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  118. {
  119. u32 retval;
  120. int i;
  121. for (i = 0, retval = 0; i < n; i++) {
  122. retval = (retval << 1) | (val & 1);
  123. val >>= 1;
  124. }
  125. return retval;
  126. }
  127. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  128. u8 phy, int kbps,
  129. u32 frameLen, u16 rateix,
  130. bool shortPreamble)
  131. {
  132. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  133. if (kbps == 0)
  134. return 0;
  135. switch (phy) {
  136. case WLAN_RC_PHY_CCK:
  137. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  138. if (shortPreamble)
  139. phyTime >>= 1;
  140. numBits = frameLen << 3;
  141. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  142. break;
  143. case WLAN_RC_PHY_OFDM:
  144. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  145. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  146. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  147. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  148. txTime = OFDM_SIFS_TIME_QUARTER
  149. + OFDM_PREAMBLE_TIME_QUARTER
  150. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  151. } else if (ah->curchan &&
  152. IS_CHAN_HALF_RATE(ah->curchan)) {
  153. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  154. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  155. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  156. txTime = OFDM_SIFS_TIME_HALF +
  157. OFDM_PREAMBLE_TIME_HALF
  158. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  159. } else {
  160. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  161. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  162. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  163. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  164. + (numSymbols * OFDM_SYMBOL_TIME);
  165. }
  166. break;
  167. default:
  168. ath_err(ath9k_hw_common(ah),
  169. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  170. txTime = 0;
  171. break;
  172. }
  173. return txTime;
  174. }
  175. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  176. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  177. struct ath9k_channel *chan,
  178. struct chan_centers *centers)
  179. {
  180. int8_t extoff;
  181. if (!IS_CHAN_HT40(chan)) {
  182. centers->ctl_center = centers->ext_center =
  183. centers->synth_center = chan->channel;
  184. return;
  185. }
  186. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  187. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  188. centers->synth_center =
  189. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  190. extoff = 1;
  191. } else {
  192. centers->synth_center =
  193. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  194. extoff = -1;
  195. }
  196. centers->ctl_center =
  197. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  198. /* 25 MHz spacing is supported by hw but not on upper layers */
  199. centers->ext_center =
  200. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  201. }
  202. /******************/
  203. /* Chip Revisions */
  204. /******************/
  205. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  206. {
  207. u32 val;
  208. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  209. if (val == 0xFF) {
  210. val = REG_READ(ah, AR_SREV);
  211. ah->hw_version.macVersion =
  212. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  213. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  214. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  215. } else {
  216. if (!AR_SREV_9100(ah))
  217. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  218. ah->hw_version.macRev = val & AR_SREV_REVISION;
  219. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  220. ah->is_pciexpress = true;
  221. }
  222. }
  223. /************************************/
  224. /* HW Attach, Detach, Init Routines */
  225. /************************************/
  226. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  227. {
  228. if (!AR_SREV_5416(ah))
  229. return;
  230. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  231. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  232. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  233. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  234. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  235. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  236. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  237. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  238. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  239. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  240. }
  241. /* This should work for all families including legacy */
  242. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  243. {
  244. struct ath_common *common = ath9k_hw_common(ah);
  245. u32 regAddr[2] = { AR_STA_ID0 };
  246. u32 regHold[2];
  247. static const u32 patternData[4] = {
  248. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  249. };
  250. int i, j, loop_max;
  251. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  252. loop_max = 2;
  253. regAddr[1] = AR_PHY_BASE + (8 << 2);
  254. } else
  255. loop_max = 1;
  256. for (i = 0; i < loop_max; i++) {
  257. u32 addr = regAddr[i];
  258. u32 wrData, rdData;
  259. regHold[i] = REG_READ(ah, addr);
  260. for (j = 0; j < 0x100; j++) {
  261. wrData = (j << 16) | j;
  262. REG_WRITE(ah, addr, wrData);
  263. rdData = REG_READ(ah, addr);
  264. if (rdData != wrData) {
  265. ath_err(common,
  266. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  267. addr, wrData, rdData);
  268. return false;
  269. }
  270. }
  271. for (j = 0; j < 4; j++) {
  272. wrData = patternData[j];
  273. REG_WRITE(ah, addr, wrData);
  274. rdData = REG_READ(ah, addr);
  275. if (wrData != rdData) {
  276. ath_err(common,
  277. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  278. addr, wrData, rdData);
  279. return false;
  280. }
  281. }
  282. REG_WRITE(ah, regAddr[i], regHold[i]);
  283. }
  284. udelay(100);
  285. return true;
  286. }
  287. static void ath9k_hw_init_config(struct ath_hw *ah)
  288. {
  289. int i;
  290. ah->config.dma_beacon_response_time = 2;
  291. ah->config.sw_beacon_response_time = 10;
  292. ah->config.additional_swba_backoff = 0;
  293. ah->config.ack_6mb = 0x0;
  294. ah->config.cwm_ignore_extcca = 0;
  295. ah->config.pcie_powersave_enable = 0;
  296. ah->config.pcie_clock_req = 0;
  297. ah->config.pcie_waen = 0;
  298. ah->config.analog_shiftreg = 1;
  299. ah->config.enable_ani = true;
  300. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  301. ah->config.spurchans[i][0] = AR_NO_SPUR;
  302. ah->config.spurchans[i][1] = AR_NO_SPUR;
  303. }
  304. /* PAPRD needs some more work to be enabled */
  305. ah->config.paprd_disable = 1;
  306. ah->config.rx_intr_mitigation = true;
  307. ah->config.pcieSerDesWrite = true;
  308. /*
  309. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  310. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  311. * This means we use it for all AR5416 devices, and the few
  312. * minor PCI AR9280 devices out there.
  313. *
  314. * Serialization is required because these devices do not handle
  315. * well the case of two concurrent reads/writes due to the latency
  316. * involved. During one read/write another read/write can be issued
  317. * on another CPU while the previous read/write may still be working
  318. * on our hardware, if we hit this case the hardware poops in a loop.
  319. * We prevent this by serializing reads and writes.
  320. *
  321. * This issue is not present on PCI-Express devices or pre-AR5416
  322. * devices (legacy, 802.11abg).
  323. */
  324. if (num_possible_cpus() > 1)
  325. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  326. }
  327. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  328. {
  329. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  330. regulatory->country_code = CTRY_DEFAULT;
  331. regulatory->power_limit = MAX_RATE_POWER;
  332. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  333. ah->hw_version.magic = AR5416_MAGIC;
  334. ah->hw_version.subvendorid = 0;
  335. ah->atim_window = 0;
  336. ah->sta_id1_defaults =
  337. AR_STA_ID1_CRPT_MIC_ENABLE |
  338. AR_STA_ID1_MCAST_KSRCH;
  339. if (AR_SREV_9100(ah))
  340. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  341. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  342. ah->slottime = 20;
  343. ah->globaltxtimeout = (u32) -1;
  344. ah->power_mode = ATH9K_PM_UNDEFINED;
  345. }
  346. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  347. {
  348. struct ath_common *common = ath9k_hw_common(ah);
  349. u32 sum;
  350. int i;
  351. u16 eeval;
  352. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  353. sum = 0;
  354. for (i = 0; i < 3; i++) {
  355. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  356. sum += eeval;
  357. common->macaddr[2 * i] = eeval >> 8;
  358. common->macaddr[2 * i + 1] = eeval & 0xff;
  359. }
  360. if (sum == 0 || sum == 0xffff * 3)
  361. return -EADDRNOTAVAIL;
  362. return 0;
  363. }
  364. static int ath9k_hw_post_init(struct ath_hw *ah)
  365. {
  366. struct ath_common *common = ath9k_hw_common(ah);
  367. int ecode;
  368. if (common->bus_ops->ath_bus_type != ATH_USB) {
  369. if (!ath9k_hw_chip_test(ah))
  370. return -ENODEV;
  371. }
  372. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  373. ecode = ar9002_hw_rf_claim(ah);
  374. if (ecode != 0)
  375. return ecode;
  376. }
  377. ecode = ath9k_hw_eeprom_init(ah);
  378. if (ecode != 0)
  379. return ecode;
  380. ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  381. "Eeprom VER: %d, REV: %d\n",
  382. ah->eep_ops->get_eeprom_ver(ah),
  383. ah->eep_ops->get_eeprom_rev(ah));
  384. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  385. if (ecode) {
  386. ath_err(ath9k_hw_common(ah),
  387. "Failed allocating banks for external radio\n");
  388. ath9k_hw_rf_free_ext_banks(ah);
  389. return ecode;
  390. }
  391. if (!AR_SREV_9100(ah)) {
  392. ath9k_hw_ani_setup(ah);
  393. ath9k_hw_ani_init(ah);
  394. }
  395. return 0;
  396. }
  397. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  398. {
  399. if (AR_SREV_9300_20_OR_LATER(ah))
  400. ar9003_hw_attach_ops(ah);
  401. else
  402. ar9002_hw_attach_ops(ah);
  403. }
  404. /* Called for all hardware families */
  405. static int __ath9k_hw_init(struct ath_hw *ah)
  406. {
  407. struct ath_common *common = ath9k_hw_common(ah);
  408. int r = 0;
  409. if (ah->hw_version.devid == AR5416_AR9100_DEVID)
  410. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  411. ath9k_hw_read_revisions(ah);
  412. /*
  413. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  414. * We need to do this to avoid RMW of this register. We cannot
  415. * read the reg when chip is asleep.
  416. */
  417. ah->WARegVal = REG_READ(ah, AR_WA);
  418. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  419. AR_WA_ASPM_TIMER_BASED_DISABLE);
  420. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  421. ath_err(common, "Couldn't reset chip\n");
  422. return -EIO;
  423. }
  424. ath9k_hw_init_defaults(ah);
  425. ath9k_hw_init_config(ah);
  426. ath9k_hw_attach_ops(ah);
  427. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  428. ath_err(common, "Couldn't wakeup chip\n");
  429. return -EIO;
  430. }
  431. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  432. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  433. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  434. !ah->is_pciexpress)) {
  435. ah->config.serialize_regmode =
  436. SER_REG_MODE_ON;
  437. } else {
  438. ah->config.serialize_regmode =
  439. SER_REG_MODE_OFF;
  440. }
  441. }
  442. ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  443. ah->config.serialize_regmode);
  444. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  445. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  446. else
  447. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  448. switch (ah->hw_version.macVersion) {
  449. case AR_SREV_VERSION_5416_PCI:
  450. case AR_SREV_VERSION_5416_PCIE:
  451. case AR_SREV_VERSION_9160:
  452. case AR_SREV_VERSION_9100:
  453. case AR_SREV_VERSION_9280:
  454. case AR_SREV_VERSION_9285:
  455. case AR_SREV_VERSION_9287:
  456. case AR_SREV_VERSION_9271:
  457. case AR_SREV_VERSION_9300:
  458. case AR_SREV_VERSION_9485:
  459. break;
  460. default:
  461. ath_err(common,
  462. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  463. ah->hw_version.macVersion, ah->hw_version.macRev);
  464. return -EOPNOTSUPP;
  465. }
  466. if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
  467. ah->is_pciexpress = false;
  468. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  469. ath9k_hw_init_cal_settings(ah);
  470. ah->ani_function = ATH9K_ANI_ALL;
  471. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  472. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  473. if (!AR_SREV_9300_20_OR_LATER(ah))
  474. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  475. ath9k_hw_init_mode_regs(ah);
  476. if (ah->is_pciexpress)
  477. ath9k_hw_configpcipowersave(ah, 0, 0);
  478. else
  479. ath9k_hw_disablepcie(ah);
  480. if (!AR_SREV_9300_20_OR_LATER(ah))
  481. ar9002_hw_cck_chan14_spread(ah);
  482. r = ath9k_hw_post_init(ah);
  483. if (r)
  484. return r;
  485. ath9k_hw_init_mode_gain_regs(ah);
  486. r = ath9k_hw_fill_cap_info(ah);
  487. if (r)
  488. return r;
  489. r = ath9k_hw_init_macaddr(ah);
  490. if (r) {
  491. ath_err(common, "Failed to initialize MAC address\n");
  492. return r;
  493. }
  494. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  495. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  496. else
  497. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  498. ah->bb_watchdog_timeout_ms = 25;
  499. common->state = ATH_HW_INITIALIZED;
  500. return 0;
  501. }
  502. int ath9k_hw_init(struct ath_hw *ah)
  503. {
  504. int ret;
  505. struct ath_common *common = ath9k_hw_common(ah);
  506. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  507. switch (ah->hw_version.devid) {
  508. case AR5416_DEVID_PCI:
  509. case AR5416_DEVID_PCIE:
  510. case AR5416_AR9100_DEVID:
  511. case AR9160_DEVID_PCI:
  512. case AR9280_DEVID_PCI:
  513. case AR9280_DEVID_PCIE:
  514. case AR9285_DEVID_PCIE:
  515. case AR9287_DEVID_PCI:
  516. case AR9287_DEVID_PCIE:
  517. case AR2427_DEVID_PCIE:
  518. case AR9300_DEVID_PCIE:
  519. case AR9300_DEVID_AR9485_PCIE:
  520. break;
  521. default:
  522. if (common->bus_ops->ath_bus_type == ATH_USB)
  523. break;
  524. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  525. ah->hw_version.devid);
  526. return -EOPNOTSUPP;
  527. }
  528. ret = __ath9k_hw_init(ah);
  529. if (ret) {
  530. ath_err(common,
  531. "Unable to initialize hardware; initialization status: %d\n",
  532. ret);
  533. return ret;
  534. }
  535. return 0;
  536. }
  537. EXPORT_SYMBOL(ath9k_hw_init);
  538. static void ath9k_hw_init_qos(struct ath_hw *ah)
  539. {
  540. ENABLE_REGWRITE_BUFFER(ah);
  541. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  542. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  543. REG_WRITE(ah, AR_QOS_NO_ACK,
  544. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  545. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  546. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  547. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  548. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  549. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  550. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  551. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  552. REGWRITE_BUFFER_FLUSH(ah);
  553. }
  554. unsigned long ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  555. {
  556. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  557. udelay(100);
  558. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  559. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  560. udelay(100);
  561. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  562. }
  563. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  564. #define DPLL3_PHASE_SHIFT_VAL 0x1
  565. static void ath9k_hw_init_pll(struct ath_hw *ah,
  566. struct ath9k_channel *chan)
  567. {
  568. u32 pll;
  569. if (AR_SREV_9485(ah)) {
  570. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  571. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  572. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  573. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  574. AR_CH0_DPLL2_KD, 0x40);
  575. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  576. AR_CH0_DPLL2_KI, 0x4);
  577. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  578. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  579. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  580. AR_CH0_BB_DPLL1_NINI, 0x58);
  581. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  582. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  583. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  584. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  585. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  586. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  587. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  588. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  589. /* program BB PLL phase_shift to 0x6 */
  590. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  591. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  592. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  593. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  594. udelay(1000);
  595. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  596. AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
  597. }
  598. pll = ath9k_hw_compute_pll_control(ah, chan);
  599. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  600. if (AR_SREV_9485(ah))
  601. udelay(1000);
  602. /* Switch the core clock for ar9271 to 117Mhz */
  603. if (AR_SREV_9271(ah)) {
  604. udelay(500);
  605. REG_WRITE(ah, 0x50040, 0x304);
  606. }
  607. udelay(RTC_PLL_SETTLE_DELAY);
  608. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  609. }
  610. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  611. enum nl80211_iftype opmode)
  612. {
  613. u32 imr_reg = AR_IMR_TXERR |
  614. AR_IMR_TXURN |
  615. AR_IMR_RXERR |
  616. AR_IMR_RXORN |
  617. AR_IMR_BCNMISC;
  618. if (AR_SREV_9300_20_OR_LATER(ah)) {
  619. imr_reg |= AR_IMR_RXOK_HP;
  620. if (ah->config.rx_intr_mitigation)
  621. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  622. else
  623. imr_reg |= AR_IMR_RXOK_LP;
  624. } else {
  625. if (ah->config.rx_intr_mitigation)
  626. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  627. else
  628. imr_reg |= AR_IMR_RXOK;
  629. }
  630. if (ah->config.tx_intr_mitigation)
  631. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  632. else
  633. imr_reg |= AR_IMR_TXOK;
  634. if (opmode == NL80211_IFTYPE_AP)
  635. imr_reg |= AR_IMR_MIB;
  636. ENABLE_REGWRITE_BUFFER(ah);
  637. REG_WRITE(ah, AR_IMR, imr_reg);
  638. ah->imrs2_reg |= AR_IMR_S2_GTT;
  639. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  640. if (!AR_SREV_9100(ah)) {
  641. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  642. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  643. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  644. }
  645. REGWRITE_BUFFER_FLUSH(ah);
  646. if (AR_SREV_9300_20_OR_LATER(ah)) {
  647. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  648. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  649. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  650. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  651. }
  652. }
  653. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  654. {
  655. u32 val = ath9k_hw_mac_to_clks(ah, us);
  656. val = min(val, (u32) 0xFFFF);
  657. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  658. }
  659. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  660. {
  661. u32 val = ath9k_hw_mac_to_clks(ah, us);
  662. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  663. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  664. }
  665. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  666. {
  667. u32 val = ath9k_hw_mac_to_clks(ah, us);
  668. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  669. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  670. }
  671. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  672. {
  673. if (tu > 0xFFFF) {
  674. ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
  675. "bad global tx timeout %u\n", tu);
  676. ah->globaltxtimeout = (u32) -1;
  677. return false;
  678. } else {
  679. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  680. ah->globaltxtimeout = tu;
  681. return true;
  682. }
  683. }
  684. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  685. {
  686. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  687. int acktimeout;
  688. int slottime;
  689. int sifstime;
  690. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  691. ah->misc_mode);
  692. if (ah->misc_mode != 0)
  693. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  694. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  695. sifstime = 16;
  696. else
  697. sifstime = 10;
  698. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  699. slottime = ah->slottime + 3 * ah->coverage_class;
  700. acktimeout = slottime + sifstime;
  701. /*
  702. * Workaround for early ACK timeouts, add an offset to match the
  703. * initval's 64us ack timeout value.
  704. * This was initially only meant to work around an issue with delayed
  705. * BA frames in some implementations, but it has been found to fix ACK
  706. * timeout issues in other cases as well.
  707. */
  708. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  709. acktimeout += 64 - sifstime - ah->slottime;
  710. ath9k_hw_setslottime(ah, ah->slottime);
  711. ath9k_hw_set_ack_timeout(ah, acktimeout);
  712. ath9k_hw_set_cts_timeout(ah, acktimeout);
  713. if (ah->globaltxtimeout != (u32) -1)
  714. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  715. }
  716. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  717. void ath9k_hw_deinit(struct ath_hw *ah)
  718. {
  719. struct ath_common *common = ath9k_hw_common(ah);
  720. if (common->state < ATH_HW_INITIALIZED)
  721. goto free_hw;
  722. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  723. free_hw:
  724. ath9k_hw_rf_free_ext_banks(ah);
  725. }
  726. EXPORT_SYMBOL(ath9k_hw_deinit);
  727. /*******/
  728. /* INI */
  729. /*******/
  730. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  731. {
  732. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  733. if (IS_CHAN_B(chan))
  734. ctl |= CTL_11B;
  735. else if (IS_CHAN_G(chan))
  736. ctl |= CTL_11G;
  737. else
  738. ctl |= CTL_11A;
  739. return ctl;
  740. }
  741. /****************************************/
  742. /* Reset and Channel Switching Routines */
  743. /****************************************/
  744. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  745. {
  746. struct ath_common *common = ath9k_hw_common(ah);
  747. ENABLE_REGWRITE_BUFFER(ah);
  748. /*
  749. * set AHB_MODE not to do cacheline prefetches
  750. */
  751. if (!AR_SREV_9300_20_OR_LATER(ah))
  752. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  753. /*
  754. * let mac dma reads be in 128 byte chunks
  755. */
  756. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  757. REGWRITE_BUFFER_FLUSH(ah);
  758. /*
  759. * Restore TX Trigger Level to its pre-reset value.
  760. * The initial value depends on whether aggregation is enabled, and is
  761. * adjusted whenever underruns are detected.
  762. */
  763. if (!AR_SREV_9300_20_OR_LATER(ah))
  764. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  765. ENABLE_REGWRITE_BUFFER(ah);
  766. /*
  767. * let mac dma writes be in 128 byte chunks
  768. */
  769. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  770. /*
  771. * Setup receive FIFO threshold to hold off TX activities
  772. */
  773. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  774. if (AR_SREV_9300_20_OR_LATER(ah)) {
  775. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  776. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  777. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  778. ah->caps.rx_status_len);
  779. }
  780. /*
  781. * reduce the number of usable entries in PCU TXBUF to avoid
  782. * wrap around issues.
  783. */
  784. if (AR_SREV_9285(ah)) {
  785. /* For AR9285 the number of Fifos are reduced to half.
  786. * So set the usable tx buf size also to half to
  787. * avoid data/delimiter underruns
  788. */
  789. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  790. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  791. } else if (!AR_SREV_9271(ah)) {
  792. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  793. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  794. }
  795. REGWRITE_BUFFER_FLUSH(ah);
  796. if (AR_SREV_9300_20_OR_LATER(ah))
  797. ath9k_hw_reset_txstatus_ring(ah);
  798. }
  799. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  800. {
  801. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  802. u32 set = AR_STA_ID1_KSRCH_MODE;
  803. switch (opmode) {
  804. case NL80211_IFTYPE_ADHOC:
  805. case NL80211_IFTYPE_MESH_POINT:
  806. set |= AR_STA_ID1_ADHOC;
  807. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  808. break;
  809. case NL80211_IFTYPE_AP:
  810. set |= AR_STA_ID1_STA_AP;
  811. /* fall through */
  812. case NL80211_IFTYPE_STATION:
  813. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  814. break;
  815. default:
  816. if (!ah->is_monitoring)
  817. set = 0;
  818. break;
  819. }
  820. REG_RMW(ah, AR_STA_ID1, set, mask);
  821. }
  822. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  823. u32 *coef_mantissa, u32 *coef_exponent)
  824. {
  825. u32 coef_exp, coef_man;
  826. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  827. if ((coef_scaled >> coef_exp) & 0x1)
  828. break;
  829. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  830. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  831. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  832. *coef_exponent = coef_exp - 16;
  833. }
  834. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  835. {
  836. u32 rst_flags;
  837. u32 tmpReg;
  838. if (AR_SREV_9100(ah)) {
  839. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  840. AR_RTC_DERIVED_CLK_PERIOD, 1);
  841. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  842. }
  843. ENABLE_REGWRITE_BUFFER(ah);
  844. if (AR_SREV_9300_20_OR_LATER(ah)) {
  845. REG_WRITE(ah, AR_WA, ah->WARegVal);
  846. udelay(10);
  847. }
  848. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  849. AR_RTC_FORCE_WAKE_ON_INT);
  850. if (AR_SREV_9100(ah)) {
  851. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  852. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  853. } else {
  854. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  855. if (tmpReg &
  856. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  857. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  858. u32 val;
  859. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  860. val = AR_RC_HOSTIF;
  861. if (!AR_SREV_9300_20_OR_LATER(ah))
  862. val |= AR_RC_AHB;
  863. REG_WRITE(ah, AR_RC, val);
  864. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  865. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  866. rst_flags = AR_RTC_RC_MAC_WARM;
  867. if (type == ATH9K_RESET_COLD)
  868. rst_flags |= AR_RTC_RC_MAC_COLD;
  869. }
  870. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  871. REGWRITE_BUFFER_FLUSH(ah);
  872. udelay(50);
  873. REG_WRITE(ah, AR_RTC_RC, 0);
  874. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  875. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  876. "RTC stuck in MAC reset\n");
  877. return false;
  878. }
  879. if (!AR_SREV_9100(ah))
  880. REG_WRITE(ah, AR_RC, 0);
  881. if (AR_SREV_9100(ah))
  882. udelay(50);
  883. return true;
  884. }
  885. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  886. {
  887. ENABLE_REGWRITE_BUFFER(ah);
  888. if (AR_SREV_9300_20_OR_LATER(ah)) {
  889. REG_WRITE(ah, AR_WA, ah->WARegVal);
  890. udelay(10);
  891. }
  892. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  893. AR_RTC_FORCE_WAKE_ON_INT);
  894. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  895. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  896. REG_WRITE(ah, AR_RTC_RESET, 0);
  897. REGWRITE_BUFFER_FLUSH(ah);
  898. if (!AR_SREV_9300_20_OR_LATER(ah))
  899. udelay(2);
  900. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  901. REG_WRITE(ah, AR_RC, 0);
  902. REG_WRITE(ah, AR_RTC_RESET, 1);
  903. if (!ath9k_hw_wait(ah,
  904. AR_RTC_STATUS,
  905. AR_RTC_STATUS_M,
  906. AR_RTC_STATUS_ON,
  907. AH_WAIT_TIMEOUT)) {
  908. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  909. "RTC not waking up\n");
  910. return false;
  911. }
  912. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  913. }
  914. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  915. {
  916. if (AR_SREV_9300_20_OR_LATER(ah)) {
  917. REG_WRITE(ah, AR_WA, ah->WARegVal);
  918. udelay(10);
  919. }
  920. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  921. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  922. switch (type) {
  923. case ATH9K_RESET_POWER_ON:
  924. return ath9k_hw_set_reset_power_on(ah);
  925. case ATH9K_RESET_WARM:
  926. case ATH9K_RESET_COLD:
  927. return ath9k_hw_set_reset(ah, type);
  928. default:
  929. return false;
  930. }
  931. }
  932. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  933. struct ath9k_channel *chan)
  934. {
  935. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  936. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  937. return false;
  938. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  939. return false;
  940. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  941. return false;
  942. ah->chip_fullsleep = false;
  943. ath9k_hw_init_pll(ah, chan);
  944. ath9k_hw_set_rfmode(ah, chan);
  945. return true;
  946. }
  947. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  948. struct ath9k_channel *chan)
  949. {
  950. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  951. struct ath_common *common = ath9k_hw_common(ah);
  952. struct ieee80211_channel *channel = chan->chan;
  953. u32 qnum;
  954. int r;
  955. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  956. if (ath9k_hw_numtxpending(ah, qnum)) {
  957. ath_dbg(common, ATH_DBG_QUEUE,
  958. "Transmit frames pending on queue %d\n", qnum);
  959. return false;
  960. }
  961. }
  962. if (!ath9k_hw_rfbus_req(ah)) {
  963. ath_err(common, "Could not kill baseband RX\n");
  964. return false;
  965. }
  966. ath9k_hw_set_channel_regs(ah, chan);
  967. r = ath9k_hw_rf_set_freq(ah, chan);
  968. if (r) {
  969. ath_err(common, "Failed to set channel\n");
  970. return false;
  971. }
  972. ath9k_hw_set_clockrate(ah);
  973. ah->eep_ops->set_txpower(ah, chan,
  974. ath9k_regd_get_ctl(regulatory, chan),
  975. channel->max_antenna_gain * 2,
  976. channel->max_power * 2,
  977. min((u32) MAX_RATE_POWER,
  978. (u32) regulatory->power_limit), false);
  979. ath9k_hw_rfbus_done(ah);
  980. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  981. ath9k_hw_set_delta_slope(ah, chan);
  982. ath9k_hw_spur_mitigate_freq(ah, chan);
  983. return true;
  984. }
  985. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  986. {
  987. u32 gpio_mask = ah->gpio_mask;
  988. int i;
  989. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  990. if (!(gpio_mask & 1))
  991. continue;
  992. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  993. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  994. }
  995. }
  996. bool ath9k_hw_check_alive(struct ath_hw *ah)
  997. {
  998. int count = 50;
  999. u32 reg;
  1000. if (AR_SREV_9285_12_OR_LATER(ah))
  1001. return true;
  1002. do {
  1003. reg = REG_READ(ah, AR_OBS_BUS_1);
  1004. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1005. continue;
  1006. switch (reg & 0x7E000B00) {
  1007. case 0x1E000000:
  1008. case 0x52000B00:
  1009. case 0x18000B00:
  1010. continue;
  1011. default:
  1012. return true;
  1013. }
  1014. } while (count-- > 0);
  1015. return false;
  1016. }
  1017. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1018. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1019. struct ath9k_hw_cal_data *caldata, bool bChannelChange)
  1020. {
  1021. struct ath_common *common = ath9k_hw_common(ah);
  1022. u32 saveLedState;
  1023. struct ath9k_channel *curchan = ah->curchan;
  1024. u32 saveDefAntenna;
  1025. u32 macStaId1;
  1026. u64 tsf = 0;
  1027. int i, r;
  1028. ah->txchainmask = common->tx_chainmask;
  1029. ah->rxchainmask = common->rx_chainmask;
  1030. if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
  1031. ath9k_hw_abortpcurecv(ah);
  1032. if (!ath9k_hw_stopdmarecv(ah)) {
  1033. ath_dbg(common, ATH_DBG_XMIT,
  1034. "Failed to stop receive dma\n");
  1035. bChannelChange = false;
  1036. }
  1037. }
  1038. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1039. return -EIO;
  1040. if (curchan && !ah->chip_fullsleep)
  1041. ath9k_hw_getnf(ah, curchan);
  1042. ah->caldata = caldata;
  1043. if (caldata &&
  1044. (chan->channel != caldata->channel ||
  1045. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1046. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1047. /* Operating channel changed, reset channel calibration data */
  1048. memset(caldata, 0, sizeof(*caldata));
  1049. ath9k_init_nfcal_hist_buffer(ah, chan);
  1050. }
  1051. if (bChannelChange &&
  1052. (ah->chip_fullsleep != true) &&
  1053. (ah->curchan != NULL) &&
  1054. (chan->channel != ah->curchan->channel) &&
  1055. ((chan->channelFlags & CHANNEL_ALL) ==
  1056. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1057. (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
  1058. if (ath9k_hw_channel_change(ah, chan)) {
  1059. ath9k_hw_loadnf(ah, ah->curchan);
  1060. ath9k_hw_start_nfcal(ah, true);
  1061. if (AR_SREV_9271(ah))
  1062. ar9002_hw_load_ani_reg(ah, chan);
  1063. return 0;
  1064. }
  1065. }
  1066. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1067. if (saveDefAntenna == 0)
  1068. saveDefAntenna = 1;
  1069. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1070. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1071. if (AR_SREV_9100(ah) ||
  1072. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1073. tsf = ath9k_hw_gettsf64(ah);
  1074. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1075. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1076. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1077. ath9k_hw_mark_phy_inactive(ah);
  1078. ah->paprd_table_write_done = false;
  1079. /* Only required on the first reset */
  1080. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1081. REG_WRITE(ah,
  1082. AR9271_RESET_POWER_DOWN_CONTROL,
  1083. AR9271_RADIO_RF_RST);
  1084. udelay(50);
  1085. }
  1086. if (!ath9k_hw_chip_reset(ah, chan)) {
  1087. ath_err(common, "Chip reset failed\n");
  1088. return -EINVAL;
  1089. }
  1090. /* Only required on the first reset */
  1091. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1092. ah->htc_reset_init = false;
  1093. REG_WRITE(ah,
  1094. AR9271_RESET_POWER_DOWN_CONTROL,
  1095. AR9271_GATE_MAC_CTL);
  1096. udelay(50);
  1097. }
  1098. /* Restore TSF */
  1099. if (tsf)
  1100. ath9k_hw_settsf64(ah, tsf);
  1101. if (AR_SREV_9280_20_OR_LATER(ah))
  1102. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1103. if (!AR_SREV_9300_20_OR_LATER(ah))
  1104. ar9002_hw_enable_async_fifo(ah);
  1105. r = ath9k_hw_process_ini(ah, chan);
  1106. if (r)
  1107. return r;
  1108. /*
  1109. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1110. * right after the chip reset. When that happens, write a new
  1111. * value after the initvals have been applied, with an offset
  1112. * based on measured time difference
  1113. */
  1114. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1115. tsf += 1500;
  1116. ath9k_hw_settsf64(ah, tsf);
  1117. }
  1118. /* Setup MFP options for CCMP */
  1119. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1120. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1121. * frames when constructing CCMP AAD. */
  1122. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1123. 0xc7ff);
  1124. ah->sw_mgmt_crypto = false;
  1125. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1126. /* Disable hardware crypto for management frames */
  1127. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1128. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1129. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1130. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1131. ah->sw_mgmt_crypto = true;
  1132. } else
  1133. ah->sw_mgmt_crypto = true;
  1134. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1135. ath9k_hw_set_delta_slope(ah, chan);
  1136. ath9k_hw_spur_mitigate_freq(ah, chan);
  1137. ah->eep_ops->set_board_values(ah, chan);
  1138. ENABLE_REGWRITE_BUFFER(ah);
  1139. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1140. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1141. | macStaId1
  1142. | AR_STA_ID1_RTS_USE_DEF
  1143. | (ah->config.
  1144. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1145. | ah->sta_id1_defaults);
  1146. ath_hw_setbssidmask(common);
  1147. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1148. ath9k_hw_write_associd(ah);
  1149. REG_WRITE(ah, AR_ISR, ~0);
  1150. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1151. REGWRITE_BUFFER_FLUSH(ah);
  1152. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1153. r = ath9k_hw_rf_set_freq(ah, chan);
  1154. if (r)
  1155. return r;
  1156. ath9k_hw_set_clockrate(ah);
  1157. ENABLE_REGWRITE_BUFFER(ah);
  1158. for (i = 0; i < AR_NUM_DCU; i++)
  1159. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1160. REGWRITE_BUFFER_FLUSH(ah);
  1161. ah->intr_txqs = 0;
  1162. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1163. ath9k_hw_resettxqueue(ah, i);
  1164. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1165. ath9k_hw_ani_cache_ini_regs(ah);
  1166. ath9k_hw_init_qos(ah);
  1167. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1168. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1169. ath9k_hw_init_global_settings(ah);
  1170. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1171. ar9002_hw_update_async_fifo(ah);
  1172. ar9002_hw_enable_wep_aggregation(ah);
  1173. }
  1174. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1175. ath9k_hw_set_dma(ah);
  1176. REG_WRITE(ah, AR_OBS, 8);
  1177. if (ah->config.rx_intr_mitigation) {
  1178. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1179. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1180. }
  1181. if (ah->config.tx_intr_mitigation) {
  1182. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1183. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1184. }
  1185. ath9k_hw_init_bb(ah, chan);
  1186. if (!ath9k_hw_init_cal(ah, chan))
  1187. return -EIO;
  1188. ENABLE_REGWRITE_BUFFER(ah);
  1189. ath9k_hw_restore_chainmask(ah);
  1190. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1191. REGWRITE_BUFFER_FLUSH(ah);
  1192. /*
  1193. * For big endian systems turn on swapping for descriptors
  1194. */
  1195. if (AR_SREV_9100(ah)) {
  1196. u32 mask;
  1197. mask = REG_READ(ah, AR_CFG);
  1198. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1199. ath_dbg(common, ATH_DBG_RESET,
  1200. "CFG Byte Swap Set 0x%x\n", mask);
  1201. } else {
  1202. mask =
  1203. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1204. REG_WRITE(ah, AR_CFG, mask);
  1205. ath_dbg(common, ATH_DBG_RESET,
  1206. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1207. }
  1208. } else {
  1209. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1210. /* Configure AR9271 target WLAN */
  1211. if (AR_SREV_9271(ah))
  1212. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1213. else
  1214. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1215. }
  1216. #ifdef __BIG_ENDIAN
  1217. else
  1218. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1219. #endif
  1220. }
  1221. if (ah->btcoex_hw.enabled)
  1222. ath9k_hw_btcoex_enable(ah);
  1223. if (AR_SREV_9300_20_OR_LATER(ah))
  1224. ar9003_hw_bb_watchdog_config(ah);
  1225. ath9k_hw_apply_gpio_override(ah);
  1226. return 0;
  1227. }
  1228. EXPORT_SYMBOL(ath9k_hw_reset);
  1229. /******************************/
  1230. /* Power Management (Chipset) */
  1231. /******************************/
  1232. /*
  1233. * Notify Power Mgt is disabled in self-generated frames.
  1234. * If requested, force chip to sleep.
  1235. */
  1236. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1237. {
  1238. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1239. if (setChip) {
  1240. /*
  1241. * Clear the RTC force wake bit to allow the
  1242. * mac to go to sleep.
  1243. */
  1244. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1245. AR_RTC_FORCE_WAKE_EN);
  1246. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1247. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1248. /* Shutdown chip. Active low */
  1249. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1250. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1251. AR_RTC_RESET_EN);
  1252. }
  1253. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1254. if (AR_SREV_9300_20_OR_LATER(ah))
  1255. REG_WRITE(ah, AR_WA,
  1256. ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1257. }
  1258. /*
  1259. * Notify Power Management is enabled in self-generating
  1260. * frames. If request, set power mode of chip to
  1261. * auto/normal. Duration in units of 128us (1/8 TU).
  1262. */
  1263. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1264. {
  1265. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1266. if (setChip) {
  1267. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1268. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1269. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1270. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1271. AR_RTC_FORCE_WAKE_ON_INT);
  1272. } else {
  1273. /*
  1274. * Clear the RTC force wake bit to allow the
  1275. * mac to go to sleep.
  1276. */
  1277. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1278. AR_RTC_FORCE_WAKE_EN);
  1279. }
  1280. }
  1281. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1282. if (AR_SREV_9300_20_OR_LATER(ah))
  1283. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1284. }
  1285. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1286. {
  1287. u32 val;
  1288. int i;
  1289. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1290. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1291. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1292. udelay(10);
  1293. }
  1294. if (setChip) {
  1295. if ((REG_READ(ah, AR_RTC_STATUS) &
  1296. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1297. if (ath9k_hw_set_reset_reg(ah,
  1298. ATH9K_RESET_POWER_ON) != true) {
  1299. return false;
  1300. }
  1301. if (!AR_SREV_9300_20_OR_LATER(ah))
  1302. ath9k_hw_init_pll(ah, NULL);
  1303. }
  1304. if (AR_SREV_9100(ah))
  1305. REG_SET_BIT(ah, AR_RTC_RESET,
  1306. AR_RTC_RESET_EN);
  1307. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1308. AR_RTC_FORCE_WAKE_EN);
  1309. udelay(50);
  1310. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1311. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1312. if (val == AR_RTC_STATUS_ON)
  1313. break;
  1314. udelay(50);
  1315. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1316. AR_RTC_FORCE_WAKE_EN);
  1317. }
  1318. if (i == 0) {
  1319. ath_err(ath9k_hw_common(ah),
  1320. "Failed to wakeup in %uus\n",
  1321. POWER_UP_TIME / 20);
  1322. return false;
  1323. }
  1324. }
  1325. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1326. return true;
  1327. }
  1328. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1329. {
  1330. struct ath_common *common = ath9k_hw_common(ah);
  1331. int status = true, setChip = true;
  1332. static const char *modes[] = {
  1333. "AWAKE",
  1334. "FULL-SLEEP",
  1335. "NETWORK SLEEP",
  1336. "UNDEFINED"
  1337. };
  1338. if (ah->power_mode == mode)
  1339. return status;
  1340. ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
  1341. modes[ah->power_mode], modes[mode]);
  1342. switch (mode) {
  1343. case ATH9K_PM_AWAKE:
  1344. status = ath9k_hw_set_power_awake(ah, setChip);
  1345. break;
  1346. case ATH9K_PM_FULL_SLEEP:
  1347. ath9k_set_power_sleep(ah, setChip);
  1348. ah->chip_fullsleep = true;
  1349. break;
  1350. case ATH9K_PM_NETWORK_SLEEP:
  1351. ath9k_set_power_network_sleep(ah, setChip);
  1352. break;
  1353. default:
  1354. ath_err(common, "Unknown power mode %u\n", mode);
  1355. return false;
  1356. }
  1357. ah->power_mode = mode;
  1358. /*
  1359. * XXX: If this warning never comes up after a while then
  1360. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1361. * ath9k_hw_setpower() return type void.
  1362. */
  1363. if (!(ah->ah_flags & AH_UNPLUGGED))
  1364. ATH_DBG_WARN_ON_ONCE(!status);
  1365. return status;
  1366. }
  1367. EXPORT_SYMBOL(ath9k_hw_setpower);
  1368. /*******************/
  1369. /* Beacon Handling */
  1370. /*******************/
  1371. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1372. {
  1373. int flags = 0;
  1374. ENABLE_REGWRITE_BUFFER(ah);
  1375. switch (ah->opmode) {
  1376. case NL80211_IFTYPE_ADHOC:
  1377. case NL80211_IFTYPE_MESH_POINT:
  1378. REG_SET_BIT(ah, AR_TXCFG,
  1379. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1380. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1381. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1382. flags |= AR_NDP_TIMER_EN;
  1383. case NL80211_IFTYPE_AP:
  1384. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1385. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1386. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1387. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1388. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1389. flags |=
  1390. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1391. break;
  1392. default:
  1393. ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1394. "%s: unsupported opmode: %d\n",
  1395. __func__, ah->opmode);
  1396. return;
  1397. break;
  1398. }
  1399. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1400. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1401. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1402. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1403. REGWRITE_BUFFER_FLUSH(ah);
  1404. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1405. }
  1406. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1407. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1408. const struct ath9k_beacon_state *bs)
  1409. {
  1410. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1411. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1412. struct ath_common *common = ath9k_hw_common(ah);
  1413. ENABLE_REGWRITE_BUFFER(ah);
  1414. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1415. REG_WRITE(ah, AR_BEACON_PERIOD,
  1416. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1417. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1418. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1419. REGWRITE_BUFFER_FLUSH(ah);
  1420. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1421. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1422. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  1423. if (bs->bs_sleepduration > beaconintval)
  1424. beaconintval = bs->bs_sleepduration;
  1425. dtimperiod = bs->bs_dtimperiod;
  1426. if (bs->bs_sleepduration > dtimperiod)
  1427. dtimperiod = bs->bs_sleepduration;
  1428. if (beaconintval == dtimperiod)
  1429. nextTbtt = bs->bs_nextdtim;
  1430. else
  1431. nextTbtt = bs->bs_nexttbtt;
  1432. ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1433. ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1434. ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1435. ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1436. ENABLE_REGWRITE_BUFFER(ah);
  1437. REG_WRITE(ah, AR_NEXT_DTIM,
  1438. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1439. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1440. REG_WRITE(ah, AR_SLEEP1,
  1441. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1442. | AR_SLEEP1_ASSUME_DTIM);
  1443. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1444. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1445. else
  1446. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1447. REG_WRITE(ah, AR_SLEEP2,
  1448. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1449. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1450. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1451. REGWRITE_BUFFER_FLUSH(ah);
  1452. REG_SET_BIT(ah, AR_TIMER_MODE,
  1453. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1454. AR_DTIM_TIMER_EN);
  1455. /* TSF Out of Range Threshold */
  1456. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1457. }
  1458. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1459. /*******************/
  1460. /* HW Capabilities */
  1461. /*******************/
  1462. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1463. {
  1464. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1465. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1466. struct ath_common *common = ath9k_hw_common(ah);
  1467. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1468. u16 capField = 0, eeval;
  1469. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1470. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1471. regulatory->current_rd = eeval;
  1472. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1473. if (AR_SREV_9285_12_OR_LATER(ah))
  1474. eeval |= AR9285_RDEXT_DEFAULT;
  1475. regulatory->current_rd_ext = eeval;
  1476. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  1477. if (ah->opmode != NL80211_IFTYPE_AP &&
  1478. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1479. if (regulatory->current_rd == 0x64 ||
  1480. regulatory->current_rd == 0x65)
  1481. regulatory->current_rd += 5;
  1482. else if (regulatory->current_rd == 0x41)
  1483. regulatory->current_rd = 0x43;
  1484. ath_dbg(common, ATH_DBG_REGULATORY,
  1485. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1486. }
  1487. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1488. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1489. ath_err(common,
  1490. "no band has been marked as supported in EEPROM\n");
  1491. return -EINVAL;
  1492. }
  1493. if (eeval & AR5416_OPFLAGS_11A)
  1494. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1495. if (eeval & AR5416_OPFLAGS_11G)
  1496. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1497. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1498. /*
  1499. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1500. * the EEPROM.
  1501. */
  1502. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1503. !(eeval & AR5416_OPFLAGS_11A) &&
  1504. !(AR_SREV_9271(ah)))
  1505. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1506. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1507. else if (AR_SREV_9100(ah))
  1508. pCap->rx_chainmask = 0x7;
  1509. else
  1510. /* Use rx_chainmask from EEPROM. */
  1511. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1512. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1513. /* enable key search for every frame in an aggregate */
  1514. if (AR_SREV_9300_20_OR_LATER(ah))
  1515. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1516. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1517. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  1518. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1519. else
  1520. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1521. if (AR_SREV_9271(ah))
  1522. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1523. else if (AR_DEVID_7010(ah))
  1524. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1525. else if (AR_SREV_9285_12_OR_LATER(ah))
  1526. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1527. else if (AR_SREV_9280_20_OR_LATER(ah))
  1528. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1529. else
  1530. pCap->num_gpio_pins = AR_NUM_GPIO;
  1531. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1532. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1533. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1534. } else {
  1535. pCap->rts_aggr_limit = (8 * 1024);
  1536. }
  1537. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1538. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1539. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1540. ah->rfkill_gpio =
  1541. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1542. ah->rfkill_polarity =
  1543. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1544. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1545. }
  1546. #endif
  1547. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1548. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1549. else
  1550. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1551. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1552. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1553. else
  1554. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1555. if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
  1556. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
  1557. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
  1558. if (AR_SREV_9285(ah)) {
  1559. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1560. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
  1561. } else {
  1562. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1563. }
  1564. } else {
  1565. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1566. }
  1567. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1568. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  1569. if (!AR_SREV_9485(ah))
  1570. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  1571. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1572. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1573. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1574. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1575. pCap->txs_len = sizeof(struct ar9003_txs);
  1576. if (!ah->config.paprd_disable &&
  1577. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1578. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1579. } else {
  1580. pCap->tx_desc_len = sizeof(struct ath_desc);
  1581. if (AR_SREV_9280_20(ah) &&
  1582. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1583. AR5416_EEP_MINOR_VER_16) ||
  1584. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1585. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1586. }
  1587. if (AR_SREV_9300_20_OR_LATER(ah))
  1588. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1589. if (AR_SREV_9300_20_OR_LATER(ah))
  1590. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  1591. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  1592. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1593. if (AR_SREV_9285(ah))
  1594. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  1595. ant_div_ctl1 =
  1596. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1597. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  1598. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  1599. }
  1600. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1601. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  1602. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  1603. }
  1604. if (AR_SREV_9485_10(ah)) {
  1605. pCap->pcie_lcr_extsync_en = true;
  1606. pCap->pcie_lcr_offset = 0x80;
  1607. }
  1608. tx_chainmask = pCap->tx_chainmask;
  1609. rx_chainmask = pCap->rx_chainmask;
  1610. while (tx_chainmask || rx_chainmask) {
  1611. if (tx_chainmask & BIT(0))
  1612. pCap->max_txchains++;
  1613. if (rx_chainmask & BIT(0))
  1614. pCap->max_rxchains++;
  1615. tx_chainmask >>= 1;
  1616. rx_chainmask >>= 1;
  1617. }
  1618. return 0;
  1619. }
  1620. /****************************/
  1621. /* GPIO / RFKILL / Antennae */
  1622. /****************************/
  1623. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1624. u32 gpio, u32 type)
  1625. {
  1626. int addr;
  1627. u32 gpio_shift, tmp;
  1628. if (gpio > 11)
  1629. addr = AR_GPIO_OUTPUT_MUX3;
  1630. else if (gpio > 5)
  1631. addr = AR_GPIO_OUTPUT_MUX2;
  1632. else
  1633. addr = AR_GPIO_OUTPUT_MUX1;
  1634. gpio_shift = (gpio % 6) * 5;
  1635. if (AR_SREV_9280_20_OR_LATER(ah)
  1636. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1637. REG_RMW(ah, addr, (type << gpio_shift),
  1638. (0x1f << gpio_shift));
  1639. } else {
  1640. tmp = REG_READ(ah, addr);
  1641. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1642. tmp &= ~(0x1f << gpio_shift);
  1643. tmp |= (type << gpio_shift);
  1644. REG_WRITE(ah, addr, tmp);
  1645. }
  1646. }
  1647. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1648. {
  1649. u32 gpio_shift;
  1650. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1651. if (AR_DEVID_7010(ah)) {
  1652. gpio_shift = gpio;
  1653. REG_RMW(ah, AR7010_GPIO_OE,
  1654. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  1655. (AR7010_GPIO_OE_MASK << gpio_shift));
  1656. return;
  1657. }
  1658. gpio_shift = gpio << 1;
  1659. REG_RMW(ah,
  1660. AR_GPIO_OE_OUT,
  1661. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1662. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1663. }
  1664. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1665. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1666. {
  1667. #define MS_REG_READ(x, y) \
  1668. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1669. if (gpio >= ah->caps.num_gpio_pins)
  1670. return 0xffffffff;
  1671. if (AR_DEVID_7010(ah)) {
  1672. u32 val;
  1673. val = REG_READ(ah, AR7010_GPIO_IN);
  1674. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  1675. } else if (AR_SREV_9300_20_OR_LATER(ah))
  1676. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  1677. AR_GPIO_BIT(gpio)) != 0;
  1678. else if (AR_SREV_9271(ah))
  1679. return MS_REG_READ(AR9271, gpio) != 0;
  1680. else if (AR_SREV_9287_11_OR_LATER(ah))
  1681. return MS_REG_READ(AR9287, gpio) != 0;
  1682. else if (AR_SREV_9285_12_OR_LATER(ah))
  1683. return MS_REG_READ(AR9285, gpio) != 0;
  1684. else if (AR_SREV_9280_20_OR_LATER(ah))
  1685. return MS_REG_READ(AR928X, gpio) != 0;
  1686. else
  1687. return MS_REG_READ(AR, gpio) != 0;
  1688. }
  1689. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1690. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1691. u32 ah_signal_type)
  1692. {
  1693. u32 gpio_shift;
  1694. if (AR_DEVID_7010(ah)) {
  1695. gpio_shift = gpio;
  1696. REG_RMW(ah, AR7010_GPIO_OE,
  1697. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  1698. (AR7010_GPIO_OE_MASK << gpio_shift));
  1699. return;
  1700. }
  1701. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1702. gpio_shift = 2 * gpio;
  1703. REG_RMW(ah,
  1704. AR_GPIO_OE_OUT,
  1705. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  1706. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1707. }
  1708. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  1709. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  1710. {
  1711. if (AR_DEVID_7010(ah)) {
  1712. val = val ? 0 : 1;
  1713. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  1714. AR_GPIO_BIT(gpio));
  1715. return;
  1716. }
  1717. if (AR_SREV_9271(ah))
  1718. val = ~val;
  1719. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  1720. AR_GPIO_BIT(gpio));
  1721. }
  1722. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  1723. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  1724. {
  1725. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  1726. }
  1727. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  1728. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  1729. {
  1730. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  1731. }
  1732. EXPORT_SYMBOL(ath9k_hw_setantenna);
  1733. /*********************/
  1734. /* General Operation */
  1735. /*********************/
  1736. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  1737. {
  1738. u32 bits = REG_READ(ah, AR_RX_FILTER);
  1739. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  1740. if (phybits & AR_PHY_ERR_RADAR)
  1741. bits |= ATH9K_RX_FILTER_PHYRADAR;
  1742. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  1743. bits |= ATH9K_RX_FILTER_PHYERR;
  1744. return bits;
  1745. }
  1746. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  1747. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  1748. {
  1749. u32 phybits;
  1750. ENABLE_REGWRITE_BUFFER(ah);
  1751. REG_WRITE(ah, AR_RX_FILTER, bits);
  1752. phybits = 0;
  1753. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  1754. phybits |= AR_PHY_ERR_RADAR;
  1755. if (bits & ATH9K_RX_FILTER_PHYERR)
  1756. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  1757. REG_WRITE(ah, AR_PHY_ERR, phybits);
  1758. if (phybits)
  1759. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  1760. else
  1761. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  1762. REGWRITE_BUFFER_FLUSH(ah);
  1763. }
  1764. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  1765. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  1766. {
  1767. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1768. return false;
  1769. ath9k_hw_init_pll(ah, NULL);
  1770. return true;
  1771. }
  1772. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  1773. bool ath9k_hw_disable(struct ath_hw *ah)
  1774. {
  1775. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1776. return false;
  1777. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  1778. return false;
  1779. ath9k_hw_init_pll(ah, NULL);
  1780. return true;
  1781. }
  1782. EXPORT_SYMBOL(ath9k_hw_disable);
  1783. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  1784. {
  1785. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1786. struct ath9k_channel *chan = ah->curchan;
  1787. struct ieee80211_channel *channel = chan->chan;
  1788. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  1789. ah->eep_ops->set_txpower(ah, chan,
  1790. ath9k_regd_get_ctl(regulatory, chan),
  1791. channel->max_antenna_gain * 2,
  1792. channel->max_power * 2,
  1793. min((u32) MAX_RATE_POWER,
  1794. (u32) regulatory->power_limit), test);
  1795. }
  1796. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  1797. void ath9k_hw_setopmode(struct ath_hw *ah)
  1798. {
  1799. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1800. }
  1801. EXPORT_SYMBOL(ath9k_hw_setopmode);
  1802. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  1803. {
  1804. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  1805. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  1806. }
  1807. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  1808. void ath9k_hw_write_associd(struct ath_hw *ah)
  1809. {
  1810. struct ath_common *common = ath9k_hw_common(ah);
  1811. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  1812. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  1813. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  1814. }
  1815. EXPORT_SYMBOL(ath9k_hw_write_associd);
  1816. #define ATH9K_MAX_TSF_READ 10
  1817. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  1818. {
  1819. u32 tsf_lower, tsf_upper1, tsf_upper2;
  1820. int i;
  1821. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  1822. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  1823. tsf_lower = REG_READ(ah, AR_TSF_L32);
  1824. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  1825. if (tsf_upper2 == tsf_upper1)
  1826. break;
  1827. tsf_upper1 = tsf_upper2;
  1828. }
  1829. WARN_ON( i == ATH9K_MAX_TSF_READ );
  1830. return (((u64)tsf_upper1 << 32) | tsf_lower);
  1831. }
  1832. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  1833. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  1834. {
  1835. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  1836. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  1837. }
  1838. EXPORT_SYMBOL(ath9k_hw_settsf64);
  1839. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  1840. {
  1841. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  1842. AH_TSF_WRITE_TIMEOUT))
  1843. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  1844. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  1845. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  1846. }
  1847. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  1848. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  1849. {
  1850. if (setting)
  1851. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  1852. else
  1853. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  1854. }
  1855. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  1856. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  1857. {
  1858. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  1859. u32 macmode;
  1860. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  1861. macmode = AR_2040_JOINED_RX_CLEAR;
  1862. else
  1863. macmode = 0;
  1864. REG_WRITE(ah, AR_2040_MODE, macmode);
  1865. }
  1866. /* HW Generic timers configuration */
  1867. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  1868. {
  1869. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1870. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1871. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1872. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1873. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1874. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1875. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1876. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1877. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  1878. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  1879. AR_NDP2_TIMER_MODE, 0x0002},
  1880. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  1881. AR_NDP2_TIMER_MODE, 0x0004},
  1882. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  1883. AR_NDP2_TIMER_MODE, 0x0008},
  1884. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  1885. AR_NDP2_TIMER_MODE, 0x0010},
  1886. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  1887. AR_NDP2_TIMER_MODE, 0x0020},
  1888. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  1889. AR_NDP2_TIMER_MODE, 0x0040},
  1890. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  1891. AR_NDP2_TIMER_MODE, 0x0080}
  1892. };
  1893. /* HW generic timer primitives */
  1894. /* compute and clear index of rightmost 1 */
  1895. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  1896. {
  1897. u32 b;
  1898. b = *mask;
  1899. b &= (0-b);
  1900. *mask &= ~b;
  1901. b *= debruijn32;
  1902. b >>= 27;
  1903. return timer_table->gen_timer_index[b];
  1904. }
  1905. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  1906. {
  1907. return REG_READ(ah, AR_TSF_L32);
  1908. }
  1909. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  1910. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  1911. void (*trigger)(void *),
  1912. void (*overflow)(void *),
  1913. void *arg,
  1914. u8 timer_index)
  1915. {
  1916. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1917. struct ath_gen_timer *timer;
  1918. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  1919. if (timer == NULL) {
  1920. ath_err(ath9k_hw_common(ah),
  1921. "Failed to allocate memory for hw timer[%d]\n",
  1922. timer_index);
  1923. return NULL;
  1924. }
  1925. /* allocate a hardware generic timer slot */
  1926. timer_table->timers[timer_index] = timer;
  1927. timer->index = timer_index;
  1928. timer->trigger = trigger;
  1929. timer->overflow = overflow;
  1930. timer->arg = arg;
  1931. return timer;
  1932. }
  1933. EXPORT_SYMBOL(ath_gen_timer_alloc);
  1934. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  1935. struct ath_gen_timer *timer,
  1936. u32 timer_next,
  1937. u32 timer_period)
  1938. {
  1939. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1940. u32 tsf;
  1941. BUG_ON(!timer_period);
  1942. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  1943. tsf = ath9k_hw_gettsf32(ah);
  1944. ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  1945. "current tsf %x period %x timer_next %x\n",
  1946. tsf, timer_period, timer_next);
  1947. /*
  1948. * Pull timer_next forward if the current TSF already passed it
  1949. * because of software latency
  1950. */
  1951. if (timer_next < tsf)
  1952. timer_next = tsf + timer_period;
  1953. /*
  1954. * Program generic timer registers
  1955. */
  1956. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  1957. timer_next);
  1958. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  1959. timer_period);
  1960. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  1961. gen_tmr_configuration[timer->index].mode_mask);
  1962. /* Enable both trigger and thresh interrupt masks */
  1963. REG_SET_BIT(ah, AR_IMR_S5,
  1964. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  1965. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  1966. }
  1967. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  1968. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  1969. {
  1970. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1971. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  1972. (timer->index >= ATH_MAX_GEN_TIMER)) {
  1973. return;
  1974. }
  1975. /* Clear generic timer enable bits. */
  1976. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  1977. gen_tmr_configuration[timer->index].mode_mask);
  1978. /* Disable both trigger and thresh interrupt masks */
  1979. REG_CLR_BIT(ah, AR_IMR_S5,
  1980. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  1981. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  1982. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  1983. }
  1984. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  1985. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  1986. {
  1987. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1988. /* free the hardware generic timer slot */
  1989. timer_table->timers[timer->index] = NULL;
  1990. kfree(timer);
  1991. }
  1992. EXPORT_SYMBOL(ath_gen_timer_free);
  1993. /*
  1994. * Generic Timer Interrupts handling
  1995. */
  1996. void ath_gen_timer_isr(struct ath_hw *ah)
  1997. {
  1998. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1999. struct ath_gen_timer *timer;
  2000. struct ath_common *common = ath9k_hw_common(ah);
  2001. u32 trigger_mask, thresh_mask, index;
  2002. /* get hardware generic timer interrupt status */
  2003. trigger_mask = ah->intr_gen_timer_trigger;
  2004. thresh_mask = ah->intr_gen_timer_thresh;
  2005. trigger_mask &= timer_table->timer_mask.val;
  2006. thresh_mask &= timer_table->timer_mask.val;
  2007. trigger_mask &= ~thresh_mask;
  2008. while (thresh_mask) {
  2009. index = rightmost_index(timer_table, &thresh_mask);
  2010. timer = timer_table->timers[index];
  2011. BUG_ON(!timer);
  2012. ath_dbg(common, ATH_DBG_HWTIMER,
  2013. "TSF overflow for Gen timer %d\n", index);
  2014. timer->overflow(timer->arg);
  2015. }
  2016. while (trigger_mask) {
  2017. index = rightmost_index(timer_table, &trigger_mask);
  2018. timer = timer_table->timers[index];
  2019. BUG_ON(!timer);
  2020. ath_dbg(common, ATH_DBG_HWTIMER,
  2021. "Gen timer[%d] trigger\n", index);
  2022. timer->trigger(timer->arg);
  2023. }
  2024. }
  2025. EXPORT_SYMBOL(ath_gen_timer_isr);
  2026. /********/
  2027. /* HTC */
  2028. /********/
  2029. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2030. {
  2031. ah->htc_reset_init = true;
  2032. }
  2033. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2034. static struct {
  2035. u32 version;
  2036. const char * name;
  2037. } ath_mac_bb_names[] = {
  2038. /* Devices with external radios */
  2039. { AR_SREV_VERSION_5416_PCI, "5416" },
  2040. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2041. { AR_SREV_VERSION_9100, "9100" },
  2042. { AR_SREV_VERSION_9160, "9160" },
  2043. /* Single-chip solutions */
  2044. { AR_SREV_VERSION_9280, "9280" },
  2045. { AR_SREV_VERSION_9285, "9285" },
  2046. { AR_SREV_VERSION_9287, "9287" },
  2047. { AR_SREV_VERSION_9271, "9271" },
  2048. { AR_SREV_VERSION_9300, "9300" },
  2049. { AR_SREV_VERSION_9485, "9485" },
  2050. };
  2051. /* For devices with external radios */
  2052. static struct {
  2053. u16 version;
  2054. const char * name;
  2055. } ath_rf_names[] = {
  2056. { 0, "5133" },
  2057. { AR_RAD5133_SREV_MAJOR, "5133" },
  2058. { AR_RAD5122_SREV_MAJOR, "5122" },
  2059. { AR_RAD2133_SREV_MAJOR, "2133" },
  2060. { AR_RAD2122_SREV_MAJOR, "2122" }
  2061. };
  2062. /*
  2063. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2064. */
  2065. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2066. {
  2067. int i;
  2068. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2069. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2070. return ath_mac_bb_names[i].name;
  2071. }
  2072. }
  2073. return "????";
  2074. }
  2075. /*
  2076. * Return the RF name. "????" is returned if the RF is unknown.
  2077. * Used for devices with external radios.
  2078. */
  2079. static const char *ath9k_hw_rf_name(u16 rf_version)
  2080. {
  2081. int i;
  2082. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2083. if (ath_rf_names[i].version == rf_version) {
  2084. return ath_rf_names[i].name;
  2085. }
  2086. }
  2087. return "????";
  2088. }
  2089. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2090. {
  2091. int used;
  2092. /* chipsets >= AR9280 are single-chip */
  2093. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2094. used = snprintf(hw_name, len,
  2095. "Atheros AR%s Rev:%x",
  2096. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2097. ah->hw_version.macRev);
  2098. }
  2099. else {
  2100. used = snprintf(hw_name, len,
  2101. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2102. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2103. ah->hw_version.macRev,
  2104. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2105. AR_RADIO_SREV_MAJOR)),
  2106. ah->hw_version.phyRev);
  2107. }
  2108. hw_name[used] = '\0';
  2109. }
  2110. EXPORT_SYMBOL(ath9k_hw_name);