page_alloc.c 174 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/ftrace_event.h>
  56. #include <linux/memcontrol.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/migrate.h>
  59. #include <linux/page-debug-flags.h>
  60. #include <linux/hugetlb.h>
  61. #include <linux/sched/rt.h>
  62. #include <asm/tlbflush.h>
  63. #include <asm/div64.h>
  64. #include "internal.h"
  65. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  66. static DEFINE_MUTEX(pcp_batch_high_lock);
  67. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  68. DEFINE_PER_CPU(int, numa_node);
  69. EXPORT_PER_CPU_SYMBOL(numa_node);
  70. #endif
  71. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  72. /*
  73. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  74. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  75. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  76. * defined in <linux/topology.h>.
  77. */
  78. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  79. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  80. #endif
  81. /*
  82. * Array of node states.
  83. */
  84. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  85. [N_POSSIBLE] = NODE_MASK_ALL,
  86. [N_ONLINE] = { { [0] = 1UL } },
  87. #ifndef CONFIG_NUMA
  88. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  89. #ifdef CONFIG_HIGHMEM
  90. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  91. #endif
  92. #ifdef CONFIG_MOVABLE_NODE
  93. [N_MEMORY] = { { [0] = 1UL } },
  94. #endif
  95. [N_CPU] = { { [0] = 1UL } },
  96. #endif /* NUMA */
  97. };
  98. EXPORT_SYMBOL(node_states);
  99. /* Protect totalram_pages and zone->managed_pages */
  100. static DEFINE_SPINLOCK(managed_page_count_lock);
  101. unsigned long totalram_pages __read_mostly;
  102. unsigned long totalreserve_pages __read_mostly;
  103. /*
  104. * When calculating the number of globally allowed dirty pages, there
  105. * is a certain number of per-zone reserves that should not be
  106. * considered dirtyable memory. This is the sum of those reserves
  107. * over all existing zones that contribute dirtyable memory.
  108. */
  109. unsigned long dirty_balance_reserve __read_mostly;
  110. int percpu_pagelist_fraction;
  111. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  112. #ifdef CONFIG_PM_SLEEP
  113. /*
  114. * The following functions are used by the suspend/hibernate code to temporarily
  115. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  116. * while devices are suspended. To avoid races with the suspend/hibernate code,
  117. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  118. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  119. * guaranteed not to run in parallel with that modification).
  120. */
  121. static gfp_t saved_gfp_mask;
  122. void pm_restore_gfp_mask(void)
  123. {
  124. WARN_ON(!mutex_is_locked(&pm_mutex));
  125. if (saved_gfp_mask) {
  126. gfp_allowed_mask = saved_gfp_mask;
  127. saved_gfp_mask = 0;
  128. }
  129. }
  130. void pm_restrict_gfp_mask(void)
  131. {
  132. WARN_ON(!mutex_is_locked(&pm_mutex));
  133. WARN_ON(saved_gfp_mask);
  134. saved_gfp_mask = gfp_allowed_mask;
  135. gfp_allowed_mask &= ~GFP_IOFS;
  136. }
  137. bool pm_suspended_storage(void)
  138. {
  139. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  140. return false;
  141. return true;
  142. }
  143. #endif /* CONFIG_PM_SLEEP */
  144. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  145. int pageblock_order __read_mostly;
  146. #endif
  147. static void __free_pages_ok(struct page *page, unsigned int order);
  148. /*
  149. * results with 256, 32 in the lowmem_reserve sysctl:
  150. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  151. * 1G machine -> (16M dma, 784M normal, 224M high)
  152. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  153. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  154. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  155. *
  156. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  157. * don't need any ZONE_NORMAL reservation
  158. */
  159. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  160. #ifdef CONFIG_ZONE_DMA
  161. 256,
  162. #endif
  163. #ifdef CONFIG_ZONE_DMA32
  164. 256,
  165. #endif
  166. #ifdef CONFIG_HIGHMEM
  167. 32,
  168. #endif
  169. 32,
  170. };
  171. EXPORT_SYMBOL(totalram_pages);
  172. static char * const zone_names[MAX_NR_ZONES] = {
  173. #ifdef CONFIG_ZONE_DMA
  174. "DMA",
  175. #endif
  176. #ifdef CONFIG_ZONE_DMA32
  177. "DMA32",
  178. #endif
  179. "Normal",
  180. #ifdef CONFIG_HIGHMEM
  181. "HighMem",
  182. #endif
  183. "Movable",
  184. };
  185. int min_free_kbytes = 1024;
  186. static unsigned long __meminitdata nr_kernel_pages;
  187. static unsigned long __meminitdata nr_all_pages;
  188. static unsigned long __meminitdata dma_reserve;
  189. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  190. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  191. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  192. static unsigned long __initdata required_kernelcore;
  193. static unsigned long __initdata required_movablecore;
  194. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  195. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  196. int movable_zone;
  197. EXPORT_SYMBOL(movable_zone);
  198. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  199. #if MAX_NUMNODES > 1
  200. int nr_node_ids __read_mostly = MAX_NUMNODES;
  201. int nr_online_nodes __read_mostly = 1;
  202. EXPORT_SYMBOL(nr_node_ids);
  203. EXPORT_SYMBOL(nr_online_nodes);
  204. #endif
  205. int page_group_by_mobility_disabled __read_mostly;
  206. void set_pageblock_migratetype(struct page *page, int migratetype)
  207. {
  208. if (unlikely(page_group_by_mobility_disabled))
  209. migratetype = MIGRATE_UNMOVABLE;
  210. set_pageblock_flags_group(page, (unsigned long)migratetype,
  211. PB_migrate, PB_migrate_end);
  212. }
  213. bool oom_killer_disabled __read_mostly;
  214. #ifdef CONFIG_DEBUG_VM
  215. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  216. {
  217. int ret = 0;
  218. unsigned seq;
  219. unsigned long pfn = page_to_pfn(page);
  220. unsigned long sp, start_pfn;
  221. do {
  222. seq = zone_span_seqbegin(zone);
  223. start_pfn = zone->zone_start_pfn;
  224. sp = zone->spanned_pages;
  225. if (!zone_spans_pfn(zone, pfn))
  226. ret = 1;
  227. } while (zone_span_seqretry(zone, seq));
  228. if (ret)
  229. pr_err("page %lu outside zone [ %lu - %lu ]\n",
  230. pfn, start_pfn, start_pfn + sp);
  231. return ret;
  232. }
  233. static int page_is_consistent(struct zone *zone, struct page *page)
  234. {
  235. if (!pfn_valid_within(page_to_pfn(page)))
  236. return 0;
  237. if (zone != page_zone(page))
  238. return 0;
  239. return 1;
  240. }
  241. /*
  242. * Temporary debugging check for pages not lying within a given zone.
  243. */
  244. static int bad_range(struct zone *zone, struct page *page)
  245. {
  246. if (page_outside_zone_boundaries(zone, page))
  247. return 1;
  248. if (!page_is_consistent(zone, page))
  249. return 1;
  250. return 0;
  251. }
  252. #else
  253. static inline int bad_range(struct zone *zone, struct page *page)
  254. {
  255. return 0;
  256. }
  257. #endif
  258. static void bad_page(struct page *page)
  259. {
  260. static unsigned long resume;
  261. static unsigned long nr_shown;
  262. static unsigned long nr_unshown;
  263. /* Don't complain about poisoned pages */
  264. if (PageHWPoison(page)) {
  265. page_mapcount_reset(page); /* remove PageBuddy */
  266. return;
  267. }
  268. /*
  269. * Allow a burst of 60 reports, then keep quiet for that minute;
  270. * or allow a steady drip of one report per second.
  271. */
  272. if (nr_shown == 60) {
  273. if (time_before(jiffies, resume)) {
  274. nr_unshown++;
  275. goto out;
  276. }
  277. if (nr_unshown) {
  278. printk(KERN_ALERT
  279. "BUG: Bad page state: %lu messages suppressed\n",
  280. nr_unshown);
  281. nr_unshown = 0;
  282. }
  283. nr_shown = 0;
  284. }
  285. if (nr_shown++ == 0)
  286. resume = jiffies + 60 * HZ;
  287. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  288. current->comm, page_to_pfn(page));
  289. dump_page(page);
  290. print_modules();
  291. dump_stack();
  292. out:
  293. /* Leave bad fields for debug, except PageBuddy could make trouble */
  294. page_mapcount_reset(page); /* remove PageBuddy */
  295. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  296. }
  297. /*
  298. * Higher-order pages are called "compound pages". They are structured thusly:
  299. *
  300. * The first PAGE_SIZE page is called the "head page".
  301. *
  302. * The remaining PAGE_SIZE pages are called "tail pages".
  303. *
  304. * All pages have PG_compound set. All tail pages have their ->first_page
  305. * pointing at the head page.
  306. *
  307. * The first tail page's ->lru.next holds the address of the compound page's
  308. * put_page() function. Its ->lru.prev holds the order of allocation.
  309. * This usage means that zero-order pages may not be compound.
  310. */
  311. static void free_compound_page(struct page *page)
  312. {
  313. __free_pages_ok(page, compound_order(page));
  314. }
  315. void prep_compound_page(struct page *page, unsigned long order)
  316. {
  317. int i;
  318. int nr_pages = 1 << order;
  319. set_compound_page_dtor(page, free_compound_page);
  320. set_compound_order(page, order);
  321. __SetPageHead(page);
  322. for (i = 1; i < nr_pages; i++) {
  323. struct page *p = page + i;
  324. __SetPageTail(p);
  325. set_page_count(p, 0);
  326. p->first_page = page;
  327. }
  328. }
  329. /* update __split_huge_page_refcount if you change this function */
  330. static int destroy_compound_page(struct page *page, unsigned long order)
  331. {
  332. int i;
  333. int nr_pages = 1 << order;
  334. int bad = 0;
  335. if (unlikely(compound_order(page) != order)) {
  336. bad_page(page);
  337. bad++;
  338. }
  339. __ClearPageHead(page);
  340. for (i = 1; i < nr_pages; i++) {
  341. struct page *p = page + i;
  342. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  343. bad_page(page);
  344. bad++;
  345. }
  346. __ClearPageTail(p);
  347. }
  348. return bad;
  349. }
  350. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  351. {
  352. int i;
  353. /*
  354. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  355. * and __GFP_HIGHMEM from hard or soft interrupt context.
  356. */
  357. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  358. for (i = 0; i < (1 << order); i++)
  359. clear_highpage(page + i);
  360. }
  361. #ifdef CONFIG_DEBUG_PAGEALLOC
  362. unsigned int _debug_guardpage_minorder;
  363. static int __init debug_guardpage_minorder_setup(char *buf)
  364. {
  365. unsigned long res;
  366. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  367. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  368. return 0;
  369. }
  370. _debug_guardpage_minorder = res;
  371. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  372. return 0;
  373. }
  374. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  375. static inline void set_page_guard_flag(struct page *page)
  376. {
  377. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  378. }
  379. static inline void clear_page_guard_flag(struct page *page)
  380. {
  381. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  382. }
  383. #else
  384. static inline void set_page_guard_flag(struct page *page) { }
  385. static inline void clear_page_guard_flag(struct page *page) { }
  386. #endif
  387. static inline void set_page_order(struct page *page, int order)
  388. {
  389. set_page_private(page, order);
  390. __SetPageBuddy(page);
  391. }
  392. static inline void rmv_page_order(struct page *page)
  393. {
  394. __ClearPageBuddy(page);
  395. set_page_private(page, 0);
  396. }
  397. /*
  398. * Locate the struct page for both the matching buddy in our
  399. * pair (buddy1) and the combined O(n+1) page they form (page).
  400. *
  401. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  402. * the following equation:
  403. * B2 = B1 ^ (1 << O)
  404. * For example, if the starting buddy (buddy2) is #8 its order
  405. * 1 buddy is #10:
  406. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  407. *
  408. * 2) Any buddy B will have an order O+1 parent P which
  409. * satisfies the following equation:
  410. * P = B & ~(1 << O)
  411. *
  412. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  413. */
  414. static inline unsigned long
  415. __find_buddy_index(unsigned long page_idx, unsigned int order)
  416. {
  417. return page_idx ^ (1 << order);
  418. }
  419. /*
  420. * This function checks whether a page is free && is the buddy
  421. * we can do coalesce a page and its buddy if
  422. * (a) the buddy is not in a hole &&
  423. * (b) the buddy is in the buddy system &&
  424. * (c) a page and its buddy have the same order &&
  425. * (d) a page and its buddy are in the same zone.
  426. *
  427. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  428. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  429. *
  430. * For recording page's order, we use page_private(page).
  431. */
  432. static inline int page_is_buddy(struct page *page, struct page *buddy,
  433. int order)
  434. {
  435. if (!pfn_valid_within(page_to_pfn(buddy)))
  436. return 0;
  437. if (page_zone_id(page) != page_zone_id(buddy))
  438. return 0;
  439. if (page_is_guard(buddy) && page_order(buddy) == order) {
  440. VM_BUG_ON(page_count(buddy) != 0);
  441. return 1;
  442. }
  443. if (PageBuddy(buddy) && page_order(buddy) == order) {
  444. VM_BUG_ON(page_count(buddy) != 0);
  445. return 1;
  446. }
  447. return 0;
  448. }
  449. /*
  450. * Freeing function for a buddy system allocator.
  451. *
  452. * The concept of a buddy system is to maintain direct-mapped table
  453. * (containing bit values) for memory blocks of various "orders".
  454. * The bottom level table contains the map for the smallest allocatable
  455. * units of memory (here, pages), and each level above it describes
  456. * pairs of units from the levels below, hence, "buddies".
  457. * At a high level, all that happens here is marking the table entry
  458. * at the bottom level available, and propagating the changes upward
  459. * as necessary, plus some accounting needed to play nicely with other
  460. * parts of the VM system.
  461. * At each level, we keep a list of pages, which are heads of continuous
  462. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  463. * order is recorded in page_private(page) field.
  464. * So when we are allocating or freeing one, we can derive the state of the
  465. * other. That is, if we allocate a small block, and both were
  466. * free, the remainder of the region must be split into blocks.
  467. * If a block is freed, and its buddy is also free, then this
  468. * triggers coalescing into a block of larger size.
  469. *
  470. * -- nyc
  471. */
  472. static inline void __free_one_page(struct page *page,
  473. struct zone *zone, unsigned int order,
  474. int migratetype)
  475. {
  476. unsigned long page_idx;
  477. unsigned long combined_idx;
  478. unsigned long uninitialized_var(buddy_idx);
  479. struct page *buddy;
  480. VM_BUG_ON(!zone_is_initialized(zone));
  481. if (unlikely(PageCompound(page)))
  482. if (unlikely(destroy_compound_page(page, order)))
  483. return;
  484. VM_BUG_ON(migratetype == -1);
  485. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  486. VM_BUG_ON(page_idx & ((1 << order) - 1));
  487. VM_BUG_ON(bad_range(zone, page));
  488. while (order < MAX_ORDER-1) {
  489. buddy_idx = __find_buddy_index(page_idx, order);
  490. buddy = page + (buddy_idx - page_idx);
  491. if (!page_is_buddy(page, buddy, order))
  492. break;
  493. /*
  494. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  495. * merge with it and move up one order.
  496. */
  497. if (page_is_guard(buddy)) {
  498. clear_page_guard_flag(buddy);
  499. set_page_private(page, 0);
  500. __mod_zone_freepage_state(zone, 1 << order,
  501. migratetype);
  502. } else {
  503. list_del(&buddy->lru);
  504. zone->free_area[order].nr_free--;
  505. rmv_page_order(buddy);
  506. }
  507. combined_idx = buddy_idx & page_idx;
  508. page = page + (combined_idx - page_idx);
  509. page_idx = combined_idx;
  510. order++;
  511. }
  512. set_page_order(page, order);
  513. /*
  514. * If this is not the largest possible page, check if the buddy
  515. * of the next-highest order is free. If it is, it's possible
  516. * that pages are being freed that will coalesce soon. In case,
  517. * that is happening, add the free page to the tail of the list
  518. * so it's less likely to be used soon and more likely to be merged
  519. * as a higher order page
  520. */
  521. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  522. struct page *higher_page, *higher_buddy;
  523. combined_idx = buddy_idx & page_idx;
  524. higher_page = page + (combined_idx - page_idx);
  525. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  526. higher_buddy = higher_page + (buddy_idx - combined_idx);
  527. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  528. list_add_tail(&page->lru,
  529. &zone->free_area[order].free_list[migratetype]);
  530. goto out;
  531. }
  532. }
  533. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  534. out:
  535. zone->free_area[order].nr_free++;
  536. }
  537. static inline int free_pages_check(struct page *page)
  538. {
  539. if (unlikely(page_mapcount(page) |
  540. (page->mapping != NULL) |
  541. (atomic_read(&page->_count) != 0) |
  542. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  543. (mem_cgroup_bad_page_check(page)))) {
  544. bad_page(page);
  545. return 1;
  546. }
  547. page_nid_reset_last(page);
  548. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  549. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  550. return 0;
  551. }
  552. /*
  553. * Frees a number of pages from the PCP lists
  554. * Assumes all pages on list are in same zone, and of same order.
  555. * count is the number of pages to free.
  556. *
  557. * If the zone was previously in an "all pages pinned" state then look to
  558. * see if this freeing clears that state.
  559. *
  560. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  561. * pinned" detection logic.
  562. */
  563. static void free_pcppages_bulk(struct zone *zone, int count,
  564. struct per_cpu_pages *pcp)
  565. {
  566. int migratetype = 0;
  567. int batch_free = 0;
  568. int to_free = count;
  569. spin_lock(&zone->lock);
  570. zone->all_unreclaimable = 0;
  571. zone->pages_scanned = 0;
  572. while (to_free) {
  573. struct page *page;
  574. struct list_head *list;
  575. /*
  576. * Remove pages from lists in a round-robin fashion. A
  577. * batch_free count is maintained that is incremented when an
  578. * empty list is encountered. This is so more pages are freed
  579. * off fuller lists instead of spinning excessively around empty
  580. * lists
  581. */
  582. do {
  583. batch_free++;
  584. if (++migratetype == MIGRATE_PCPTYPES)
  585. migratetype = 0;
  586. list = &pcp->lists[migratetype];
  587. } while (list_empty(list));
  588. /* This is the only non-empty list. Free them all. */
  589. if (batch_free == MIGRATE_PCPTYPES)
  590. batch_free = to_free;
  591. do {
  592. int mt; /* migratetype of the to-be-freed page */
  593. page = list_entry(list->prev, struct page, lru);
  594. /* must delete as __free_one_page list manipulates */
  595. list_del(&page->lru);
  596. mt = get_freepage_migratetype(page);
  597. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  598. __free_one_page(page, zone, 0, mt);
  599. trace_mm_page_pcpu_drain(page, 0, mt);
  600. if (likely(!is_migrate_isolate_page(page))) {
  601. __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
  602. if (is_migrate_cma(mt))
  603. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
  604. }
  605. } while (--to_free && --batch_free && !list_empty(list));
  606. }
  607. spin_unlock(&zone->lock);
  608. }
  609. static void free_one_page(struct zone *zone, struct page *page, int order,
  610. int migratetype)
  611. {
  612. spin_lock(&zone->lock);
  613. zone->all_unreclaimable = 0;
  614. zone->pages_scanned = 0;
  615. __free_one_page(page, zone, order, migratetype);
  616. if (unlikely(!is_migrate_isolate(migratetype)))
  617. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  618. spin_unlock(&zone->lock);
  619. }
  620. static bool free_pages_prepare(struct page *page, unsigned int order)
  621. {
  622. int i;
  623. int bad = 0;
  624. trace_mm_page_free(page, order);
  625. kmemcheck_free_shadow(page, order);
  626. if (PageAnon(page))
  627. page->mapping = NULL;
  628. for (i = 0; i < (1 << order); i++)
  629. bad += free_pages_check(page + i);
  630. if (bad)
  631. return false;
  632. if (!PageHighMem(page)) {
  633. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  634. debug_check_no_obj_freed(page_address(page),
  635. PAGE_SIZE << order);
  636. }
  637. arch_free_page(page, order);
  638. kernel_map_pages(page, 1 << order, 0);
  639. return true;
  640. }
  641. static void __free_pages_ok(struct page *page, unsigned int order)
  642. {
  643. unsigned long flags;
  644. int migratetype;
  645. if (!free_pages_prepare(page, order))
  646. return;
  647. local_irq_save(flags);
  648. __count_vm_events(PGFREE, 1 << order);
  649. migratetype = get_pageblock_migratetype(page);
  650. set_freepage_migratetype(page, migratetype);
  651. free_one_page(page_zone(page), page, order, migratetype);
  652. local_irq_restore(flags);
  653. }
  654. void __init __free_pages_bootmem(struct page *page, unsigned int order)
  655. {
  656. unsigned int nr_pages = 1 << order;
  657. unsigned int loop;
  658. prefetchw(page);
  659. for (loop = 0; loop < nr_pages; loop++) {
  660. struct page *p = &page[loop];
  661. if (loop + 1 < nr_pages)
  662. prefetchw(p + 1);
  663. __ClearPageReserved(p);
  664. set_page_count(p, 0);
  665. }
  666. page_zone(page)->managed_pages += 1 << order;
  667. set_page_refcounted(page);
  668. __free_pages(page, order);
  669. }
  670. #ifdef CONFIG_CMA
  671. /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
  672. void __init init_cma_reserved_pageblock(struct page *page)
  673. {
  674. unsigned i = pageblock_nr_pages;
  675. struct page *p = page;
  676. do {
  677. __ClearPageReserved(p);
  678. set_page_count(p, 0);
  679. } while (++p, --i);
  680. set_page_refcounted(page);
  681. set_pageblock_migratetype(page, MIGRATE_CMA);
  682. __free_pages(page, pageblock_order);
  683. adjust_managed_page_count(page, pageblock_nr_pages);
  684. }
  685. #endif
  686. /*
  687. * The order of subdivision here is critical for the IO subsystem.
  688. * Please do not alter this order without good reasons and regression
  689. * testing. Specifically, as large blocks of memory are subdivided,
  690. * the order in which smaller blocks are delivered depends on the order
  691. * they're subdivided in this function. This is the primary factor
  692. * influencing the order in which pages are delivered to the IO
  693. * subsystem according to empirical testing, and this is also justified
  694. * by considering the behavior of a buddy system containing a single
  695. * large block of memory acted on by a series of small allocations.
  696. * This behavior is a critical factor in sglist merging's success.
  697. *
  698. * -- nyc
  699. */
  700. static inline void expand(struct zone *zone, struct page *page,
  701. int low, int high, struct free_area *area,
  702. int migratetype)
  703. {
  704. unsigned long size = 1 << high;
  705. while (high > low) {
  706. area--;
  707. high--;
  708. size >>= 1;
  709. VM_BUG_ON(bad_range(zone, &page[size]));
  710. #ifdef CONFIG_DEBUG_PAGEALLOC
  711. if (high < debug_guardpage_minorder()) {
  712. /*
  713. * Mark as guard pages (or page), that will allow to
  714. * merge back to allocator when buddy will be freed.
  715. * Corresponding page table entries will not be touched,
  716. * pages will stay not present in virtual address space
  717. */
  718. INIT_LIST_HEAD(&page[size].lru);
  719. set_page_guard_flag(&page[size]);
  720. set_page_private(&page[size], high);
  721. /* Guard pages are not available for any usage */
  722. __mod_zone_freepage_state(zone, -(1 << high),
  723. migratetype);
  724. continue;
  725. }
  726. #endif
  727. list_add(&page[size].lru, &area->free_list[migratetype]);
  728. area->nr_free++;
  729. set_page_order(&page[size], high);
  730. }
  731. }
  732. /*
  733. * This page is about to be returned from the page allocator
  734. */
  735. static inline int check_new_page(struct page *page)
  736. {
  737. if (unlikely(page_mapcount(page) |
  738. (page->mapping != NULL) |
  739. (atomic_read(&page->_count) != 0) |
  740. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  741. (mem_cgroup_bad_page_check(page)))) {
  742. bad_page(page);
  743. return 1;
  744. }
  745. return 0;
  746. }
  747. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  748. {
  749. int i;
  750. for (i = 0; i < (1 << order); i++) {
  751. struct page *p = page + i;
  752. if (unlikely(check_new_page(p)))
  753. return 1;
  754. }
  755. set_page_private(page, 0);
  756. set_page_refcounted(page);
  757. arch_alloc_page(page, order);
  758. kernel_map_pages(page, 1 << order, 1);
  759. if (gfp_flags & __GFP_ZERO)
  760. prep_zero_page(page, order, gfp_flags);
  761. if (order && (gfp_flags & __GFP_COMP))
  762. prep_compound_page(page, order);
  763. return 0;
  764. }
  765. /*
  766. * Go through the free lists for the given migratetype and remove
  767. * the smallest available page from the freelists
  768. */
  769. static inline
  770. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  771. int migratetype)
  772. {
  773. unsigned int current_order;
  774. struct free_area * area;
  775. struct page *page;
  776. /* Find a page of the appropriate size in the preferred list */
  777. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  778. area = &(zone->free_area[current_order]);
  779. if (list_empty(&area->free_list[migratetype]))
  780. continue;
  781. page = list_entry(area->free_list[migratetype].next,
  782. struct page, lru);
  783. list_del(&page->lru);
  784. rmv_page_order(page);
  785. area->nr_free--;
  786. expand(zone, page, order, current_order, area, migratetype);
  787. return page;
  788. }
  789. return NULL;
  790. }
  791. /*
  792. * This array describes the order lists are fallen back to when
  793. * the free lists for the desirable migrate type are depleted
  794. */
  795. static int fallbacks[MIGRATE_TYPES][4] = {
  796. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  797. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  798. #ifdef CONFIG_CMA
  799. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  800. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  801. #else
  802. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  803. #endif
  804. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  805. #ifdef CONFIG_MEMORY_ISOLATION
  806. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  807. #endif
  808. };
  809. /*
  810. * Move the free pages in a range to the free lists of the requested type.
  811. * Note that start_page and end_pages are not aligned on a pageblock
  812. * boundary. If alignment is required, use move_freepages_block()
  813. */
  814. int move_freepages(struct zone *zone,
  815. struct page *start_page, struct page *end_page,
  816. int migratetype)
  817. {
  818. struct page *page;
  819. unsigned long order;
  820. int pages_moved = 0;
  821. #ifndef CONFIG_HOLES_IN_ZONE
  822. /*
  823. * page_zone is not safe to call in this context when
  824. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  825. * anyway as we check zone boundaries in move_freepages_block().
  826. * Remove at a later date when no bug reports exist related to
  827. * grouping pages by mobility
  828. */
  829. BUG_ON(page_zone(start_page) != page_zone(end_page));
  830. #endif
  831. for (page = start_page; page <= end_page;) {
  832. /* Make sure we are not inadvertently changing nodes */
  833. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  834. if (!pfn_valid_within(page_to_pfn(page))) {
  835. page++;
  836. continue;
  837. }
  838. if (!PageBuddy(page)) {
  839. page++;
  840. continue;
  841. }
  842. order = page_order(page);
  843. list_move(&page->lru,
  844. &zone->free_area[order].free_list[migratetype]);
  845. set_freepage_migratetype(page, migratetype);
  846. page += 1 << order;
  847. pages_moved += 1 << order;
  848. }
  849. return pages_moved;
  850. }
  851. int move_freepages_block(struct zone *zone, struct page *page,
  852. int migratetype)
  853. {
  854. unsigned long start_pfn, end_pfn;
  855. struct page *start_page, *end_page;
  856. start_pfn = page_to_pfn(page);
  857. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  858. start_page = pfn_to_page(start_pfn);
  859. end_page = start_page + pageblock_nr_pages - 1;
  860. end_pfn = start_pfn + pageblock_nr_pages - 1;
  861. /* Do not cross zone boundaries */
  862. if (!zone_spans_pfn(zone, start_pfn))
  863. start_page = page;
  864. if (!zone_spans_pfn(zone, end_pfn))
  865. return 0;
  866. return move_freepages(zone, start_page, end_page, migratetype);
  867. }
  868. static void change_pageblock_range(struct page *pageblock_page,
  869. int start_order, int migratetype)
  870. {
  871. int nr_pageblocks = 1 << (start_order - pageblock_order);
  872. while (nr_pageblocks--) {
  873. set_pageblock_migratetype(pageblock_page, migratetype);
  874. pageblock_page += pageblock_nr_pages;
  875. }
  876. }
  877. /* Remove an element from the buddy allocator from the fallback list */
  878. static inline struct page *
  879. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  880. {
  881. struct free_area * area;
  882. int current_order;
  883. struct page *page;
  884. int migratetype, i;
  885. /* Find the largest possible block of pages in the other list */
  886. for (current_order = MAX_ORDER-1; current_order >= order;
  887. --current_order) {
  888. for (i = 0;; i++) {
  889. migratetype = fallbacks[start_migratetype][i];
  890. /* MIGRATE_RESERVE handled later if necessary */
  891. if (migratetype == MIGRATE_RESERVE)
  892. break;
  893. area = &(zone->free_area[current_order]);
  894. if (list_empty(&area->free_list[migratetype]))
  895. continue;
  896. page = list_entry(area->free_list[migratetype].next,
  897. struct page, lru);
  898. area->nr_free--;
  899. /*
  900. * If breaking a large block of pages, move all free
  901. * pages to the preferred allocation list. If falling
  902. * back for a reclaimable kernel allocation, be more
  903. * aggressive about taking ownership of free pages
  904. *
  905. * On the other hand, never change migration
  906. * type of MIGRATE_CMA pageblocks nor move CMA
  907. * pages on different free lists. We don't
  908. * want unmovable pages to be allocated from
  909. * MIGRATE_CMA areas.
  910. */
  911. if (!is_migrate_cma(migratetype) &&
  912. (unlikely(current_order >= pageblock_order / 2) ||
  913. start_migratetype == MIGRATE_RECLAIMABLE ||
  914. page_group_by_mobility_disabled)) {
  915. int pages;
  916. pages = move_freepages_block(zone, page,
  917. start_migratetype);
  918. /* Claim the whole block if over half of it is free */
  919. if (pages >= (1 << (pageblock_order-1)) ||
  920. page_group_by_mobility_disabled)
  921. set_pageblock_migratetype(page,
  922. start_migratetype);
  923. migratetype = start_migratetype;
  924. }
  925. /* Remove the page from the freelists */
  926. list_del(&page->lru);
  927. rmv_page_order(page);
  928. /* Take ownership for orders >= pageblock_order */
  929. if (current_order >= pageblock_order &&
  930. !is_migrate_cma(migratetype))
  931. change_pageblock_range(page, current_order,
  932. start_migratetype);
  933. expand(zone, page, order, current_order, area,
  934. is_migrate_cma(migratetype)
  935. ? migratetype : start_migratetype);
  936. trace_mm_page_alloc_extfrag(page, order, current_order,
  937. start_migratetype, migratetype);
  938. return page;
  939. }
  940. }
  941. return NULL;
  942. }
  943. /*
  944. * Do the hard work of removing an element from the buddy allocator.
  945. * Call me with the zone->lock already held.
  946. */
  947. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  948. int migratetype)
  949. {
  950. struct page *page;
  951. retry_reserve:
  952. page = __rmqueue_smallest(zone, order, migratetype);
  953. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  954. page = __rmqueue_fallback(zone, order, migratetype);
  955. /*
  956. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  957. * is used because __rmqueue_smallest is an inline function
  958. * and we want just one call site
  959. */
  960. if (!page) {
  961. migratetype = MIGRATE_RESERVE;
  962. goto retry_reserve;
  963. }
  964. }
  965. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  966. return page;
  967. }
  968. /*
  969. * Obtain a specified number of elements from the buddy allocator, all under
  970. * a single hold of the lock, for efficiency. Add them to the supplied list.
  971. * Returns the number of new pages which were placed at *list.
  972. */
  973. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  974. unsigned long count, struct list_head *list,
  975. int migratetype, int cold)
  976. {
  977. int mt = migratetype, i;
  978. spin_lock(&zone->lock);
  979. for (i = 0; i < count; ++i) {
  980. struct page *page = __rmqueue(zone, order, migratetype);
  981. if (unlikely(page == NULL))
  982. break;
  983. /*
  984. * Split buddy pages returned by expand() are received here
  985. * in physical page order. The page is added to the callers and
  986. * list and the list head then moves forward. From the callers
  987. * perspective, the linked list is ordered by page number in
  988. * some conditions. This is useful for IO devices that can
  989. * merge IO requests if the physical pages are ordered
  990. * properly.
  991. */
  992. if (likely(cold == 0))
  993. list_add(&page->lru, list);
  994. else
  995. list_add_tail(&page->lru, list);
  996. if (IS_ENABLED(CONFIG_CMA)) {
  997. mt = get_pageblock_migratetype(page);
  998. if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
  999. mt = migratetype;
  1000. }
  1001. set_freepage_migratetype(page, mt);
  1002. list = &page->lru;
  1003. if (is_migrate_cma(mt))
  1004. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1005. -(1 << order));
  1006. }
  1007. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1008. spin_unlock(&zone->lock);
  1009. return i;
  1010. }
  1011. #ifdef CONFIG_NUMA
  1012. /*
  1013. * Called from the vmstat counter updater to drain pagesets of this
  1014. * currently executing processor on remote nodes after they have
  1015. * expired.
  1016. *
  1017. * Note that this function must be called with the thread pinned to
  1018. * a single processor.
  1019. */
  1020. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1021. {
  1022. unsigned long flags;
  1023. int to_drain;
  1024. unsigned long batch;
  1025. local_irq_save(flags);
  1026. batch = ACCESS_ONCE(pcp->batch);
  1027. if (pcp->count >= batch)
  1028. to_drain = batch;
  1029. else
  1030. to_drain = pcp->count;
  1031. if (to_drain > 0) {
  1032. free_pcppages_bulk(zone, to_drain, pcp);
  1033. pcp->count -= to_drain;
  1034. }
  1035. local_irq_restore(flags);
  1036. }
  1037. #endif
  1038. /*
  1039. * Drain pages of the indicated processor.
  1040. *
  1041. * The processor must either be the current processor and the
  1042. * thread pinned to the current processor or a processor that
  1043. * is not online.
  1044. */
  1045. static void drain_pages(unsigned int cpu)
  1046. {
  1047. unsigned long flags;
  1048. struct zone *zone;
  1049. for_each_populated_zone(zone) {
  1050. struct per_cpu_pageset *pset;
  1051. struct per_cpu_pages *pcp;
  1052. local_irq_save(flags);
  1053. pset = per_cpu_ptr(zone->pageset, cpu);
  1054. pcp = &pset->pcp;
  1055. if (pcp->count) {
  1056. free_pcppages_bulk(zone, pcp->count, pcp);
  1057. pcp->count = 0;
  1058. }
  1059. local_irq_restore(flags);
  1060. }
  1061. }
  1062. /*
  1063. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1064. */
  1065. void drain_local_pages(void *arg)
  1066. {
  1067. drain_pages(smp_processor_id());
  1068. }
  1069. /*
  1070. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1071. *
  1072. * Note that this code is protected against sending an IPI to an offline
  1073. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1074. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1075. * nothing keeps CPUs from showing up after we populated the cpumask and
  1076. * before the call to on_each_cpu_mask().
  1077. */
  1078. void drain_all_pages(void)
  1079. {
  1080. int cpu;
  1081. struct per_cpu_pageset *pcp;
  1082. struct zone *zone;
  1083. /*
  1084. * Allocate in the BSS so we wont require allocation in
  1085. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1086. */
  1087. static cpumask_t cpus_with_pcps;
  1088. /*
  1089. * We don't care about racing with CPU hotplug event
  1090. * as offline notification will cause the notified
  1091. * cpu to drain that CPU pcps and on_each_cpu_mask
  1092. * disables preemption as part of its processing
  1093. */
  1094. for_each_online_cpu(cpu) {
  1095. bool has_pcps = false;
  1096. for_each_populated_zone(zone) {
  1097. pcp = per_cpu_ptr(zone->pageset, cpu);
  1098. if (pcp->pcp.count) {
  1099. has_pcps = true;
  1100. break;
  1101. }
  1102. }
  1103. if (has_pcps)
  1104. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1105. else
  1106. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1107. }
  1108. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1109. }
  1110. #ifdef CONFIG_HIBERNATION
  1111. void mark_free_pages(struct zone *zone)
  1112. {
  1113. unsigned long pfn, max_zone_pfn;
  1114. unsigned long flags;
  1115. int order, t;
  1116. struct list_head *curr;
  1117. if (!zone->spanned_pages)
  1118. return;
  1119. spin_lock_irqsave(&zone->lock, flags);
  1120. max_zone_pfn = zone_end_pfn(zone);
  1121. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1122. if (pfn_valid(pfn)) {
  1123. struct page *page = pfn_to_page(pfn);
  1124. if (!swsusp_page_is_forbidden(page))
  1125. swsusp_unset_page_free(page);
  1126. }
  1127. for_each_migratetype_order(order, t) {
  1128. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1129. unsigned long i;
  1130. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1131. for (i = 0; i < (1UL << order); i++)
  1132. swsusp_set_page_free(pfn_to_page(pfn + i));
  1133. }
  1134. }
  1135. spin_unlock_irqrestore(&zone->lock, flags);
  1136. }
  1137. #endif /* CONFIG_PM */
  1138. /*
  1139. * Free a 0-order page
  1140. * cold == 1 ? free a cold page : free a hot page
  1141. */
  1142. void free_hot_cold_page(struct page *page, int cold)
  1143. {
  1144. struct zone *zone = page_zone(page);
  1145. struct per_cpu_pages *pcp;
  1146. unsigned long flags;
  1147. int migratetype;
  1148. if (!free_pages_prepare(page, 0))
  1149. return;
  1150. migratetype = get_pageblock_migratetype(page);
  1151. set_freepage_migratetype(page, migratetype);
  1152. local_irq_save(flags);
  1153. __count_vm_event(PGFREE);
  1154. /*
  1155. * We only track unmovable, reclaimable and movable on pcp lists.
  1156. * Free ISOLATE pages back to the allocator because they are being
  1157. * offlined but treat RESERVE as movable pages so we can get those
  1158. * areas back if necessary. Otherwise, we may have to free
  1159. * excessively into the page allocator
  1160. */
  1161. if (migratetype >= MIGRATE_PCPTYPES) {
  1162. if (unlikely(is_migrate_isolate(migratetype))) {
  1163. free_one_page(zone, page, 0, migratetype);
  1164. goto out;
  1165. }
  1166. migratetype = MIGRATE_MOVABLE;
  1167. }
  1168. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1169. if (cold)
  1170. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1171. else
  1172. list_add(&page->lru, &pcp->lists[migratetype]);
  1173. pcp->count++;
  1174. if (pcp->count >= pcp->high) {
  1175. unsigned long batch = ACCESS_ONCE(pcp->batch);
  1176. free_pcppages_bulk(zone, batch, pcp);
  1177. pcp->count -= batch;
  1178. }
  1179. out:
  1180. local_irq_restore(flags);
  1181. }
  1182. /*
  1183. * Free a list of 0-order pages
  1184. */
  1185. void free_hot_cold_page_list(struct list_head *list, int cold)
  1186. {
  1187. struct page *page, *next;
  1188. list_for_each_entry_safe(page, next, list, lru) {
  1189. trace_mm_page_free_batched(page, cold);
  1190. free_hot_cold_page(page, cold);
  1191. }
  1192. }
  1193. /*
  1194. * split_page takes a non-compound higher-order page, and splits it into
  1195. * n (1<<order) sub-pages: page[0..n]
  1196. * Each sub-page must be freed individually.
  1197. *
  1198. * Note: this is probably too low level an operation for use in drivers.
  1199. * Please consult with lkml before using this in your driver.
  1200. */
  1201. void split_page(struct page *page, unsigned int order)
  1202. {
  1203. int i;
  1204. VM_BUG_ON(PageCompound(page));
  1205. VM_BUG_ON(!page_count(page));
  1206. #ifdef CONFIG_KMEMCHECK
  1207. /*
  1208. * Split shadow pages too, because free(page[0]) would
  1209. * otherwise free the whole shadow.
  1210. */
  1211. if (kmemcheck_page_is_tracked(page))
  1212. split_page(virt_to_page(page[0].shadow), order);
  1213. #endif
  1214. for (i = 1; i < (1 << order); i++)
  1215. set_page_refcounted(page + i);
  1216. }
  1217. EXPORT_SYMBOL_GPL(split_page);
  1218. static int __isolate_free_page(struct page *page, unsigned int order)
  1219. {
  1220. unsigned long watermark;
  1221. struct zone *zone;
  1222. int mt;
  1223. BUG_ON(!PageBuddy(page));
  1224. zone = page_zone(page);
  1225. mt = get_pageblock_migratetype(page);
  1226. if (!is_migrate_isolate(mt)) {
  1227. /* Obey watermarks as if the page was being allocated */
  1228. watermark = low_wmark_pages(zone) + (1 << order);
  1229. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1230. return 0;
  1231. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1232. }
  1233. /* Remove page from free list */
  1234. list_del(&page->lru);
  1235. zone->free_area[order].nr_free--;
  1236. rmv_page_order(page);
  1237. /* Set the pageblock if the isolated page is at least a pageblock */
  1238. if (order >= pageblock_order - 1) {
  1239. struct page *endpage = page + (1 << order) - 1;
  1240. for (; page < endpage; page += pageblock_nr_pages) {
  1241. int mt = get_pageblock_migratetype(page);
  1242. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1243. set_pageblock_migratetype(page,
  1244. MIGRATE_MOVABLE);
  1245. }
  1246. }
  1247. return 1UL << order;
  1248. }
  1249. /*
  1250. * Similar to split_page except the page is already free. As this is only
  1251. * being used for migration, the migratetype of the block also changes.
  1252. * As this is called with interrupts disabled, the caller is responsible
  1253. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1254. * are enabled.
  1255. *
  1256. * Note: this is probably too low level an operation for use in drivers.
  1257. * Please consult with lkml before using this in your driver.
  1258. */
  1259. int split_free_page(struct page *page)
  1260. {
  1261. unsigned int order;
  1262. int nr_pages;
  1263. order = page_order(page);
  1264. nr_pages = __isolate_free_page(page, order);
  1265. if (!nr_pages)
  1266. return 0;
  1267. /* Split into individual pages */
  1268. set_page_refcounted(page);
  1269. split_page(page, order);
  1270. return nr_pages;
  1271. }
  1272. /*
  1273. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1274. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1275. * or two.
  1276. */
  1277. static inline
  1278. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1279. struct zone *zone, int order, gfp_t gfp_flags,
  1280. int migratetype)
  1281. {
  1282. unsigned long flags;
  1283. struct page *page;
  1284. int cold = !!(gfp_flags & __GFP_COLD);
  1285. again:
  1286. if (likely(order == 0)) {
  1287. struct per_cpu_pages *pcp;
  1288. struct list_head *list;
  1289. local_irq_save(flags);
  1290. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1291. list = &pcp->lists[migratetype];
  1292. if (list_empty(list)) {
  1293. pcp->count += rmqueue_bulk(zone, 0,
  1294. pcp->batch, list,
  1295. migratetype, cold);
  1296. if (unlikely(list_empty(list)))
  1297. goto failed;
  1298. }
  1299. if (cold)
  1300. page = list_entry(list->prev, struct page, lru);
  1301. else
  1302. page = list_entry(list->next, struct page, lru);
  1303. list_del(&page->lru);
  1304. pcp->count--;
  1305. } else {
  1306. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1307. /*
  1308. * __GFP_NOFAIL is not to be used in new code.
  1309. *
  1310. * All __GFP_NOFAIL callers should be fixed so that they
  1311. * properly detect and handle allocation failures.
  1312. *
  1313. * We most definitely don't want callers attempting to
  1314. * allocate greater than order-1 page units with
  1315. * __GFP_NOFAIL.
  1316. */
  1317. WARN_ON_ONCE(order > 1);
  1318. }
  1319. spin_lock_irqsave(&zone->lock, flags);
  1320. page = __rmqueue(zone, order, migratetype);
  1321. spin_unlock(&zone->lock);
  1322. if (!page)
  1323. goto failed;
  1324. __mod_zone_freepage_state(zone, -(1 << order),
  1325. get_pageblock_migratetype(page));
  1326. }
  1327. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1328. zone_statistics(preferred_zone, zone, gfp_flags);
  1329. local_irq_restore(flags);
  1330. VM_BUG_ON(bad_range(zone, page));
  1331. if (prep_new_page(page, order, gfp_flags))
  1332. goto again;
  1333. return page;
  1334. failed:
  1335. local_irq_restore(flags);
  1336. return NULL;
  1337. }
  1338. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1339. static struct {
  1340. struct fault_attr attr;
  1341. u32 ignore_gfp_highmem;
  1342. u32 ignore_gfp_wait;
  1343. u32 min_order;
  1344. } fail_page_alloc = {
  1345. .attr = FAULT_ATTR_INITIALIZER,
  1346. .ignore_gfp_wait = 1,
  1347. .ignore_gfp_highmem = 1,
  1348. .min_order = 1,
  1349. };
  1350. static int __init setup_fail_page_alloc(char *str)
  1351. {
  1352. return setup_fault_attr(&fail_page_alloc.attr, str);
  1353. }
  1354. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1355. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1356. {
  1357. if (order < fail_page_alloc.min_order)
  1358. return false;
  1359. if (gfp_mask & __GFP_NOFAIL)
  1360. return false;
  1361. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1362. return false;
  1363. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1364. return false;
  1365. return should_fail(&fail_page_alloc.attr, 1 << order);
  1366. }
  1367. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1368. static int __init fail_page_alloc_debugfs(void)
  1369. {
  1370. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1371. struct dentry *dir;
  1372. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1373. &fail_page_alloc.attr);
  1374. if (IS_ERR(dir))
  1375. return PTR_ERR(dir);
  1376. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1377. &fail_page_alloc.ignore_gfp_wait))
  1378. goto fail;
  1379. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1380. &fail_page_alloc.ignore_gfp_highmem))
  1381. goto fail;
  1382. if (!debugfs_create_u32("min-order", mode, dir,
  1383. &fail_page_alloc.min_order))
  1384. goto fail;
  1385. return 0;
  1386. fail:
  1387. debugfs_remove_recursive(dir);
  1388. return -ENOMEM;
  1389. }
  1390. late_initcall(fail_page_alloc_debugfs);
  1391. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1392. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1393. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1394. {
  1395. return false;
  1396. }
  1397. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1398. /*
  1399. * Return true if free pages are above 'mark'. This takes into account the order
  1400. * of the allocation.
  1401. */
  1402. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1403. int classzone_idx, int alloc_flags, long free_pages)
  1404. {
  1405. /* free_pages my go negative - that's OK */
  1406. long min = mark;
  1407. long lowmem_reserve = z->lowmem_reserve[classzone_idx];
  1408. int o;
  1409. long free_cma = 0;
  1410. free_pages -= (1 << order) - 1;
  1411. if (alloc_flags & ALLOC_HIGH)
  1412. min -= min / 2;
  1413. if (alloc_flags & ALLOC_HARDER)
  1414. min -= min / 4;
  1415. #ifdef CONFIG_CMA
  1416. /* If allocation can't use CMA areas don't use free CMA pages */
  1417. if (!(alloc_flags & ALLOC_CMA))
  1418. free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
  1419. #endif
  1420. if (free_pages - free_cma <= min + lowmem_reserve)
  1421. return false;
  1422. for (o = 0; o < order; o++) {
  1423. /* At the next order, this order's pages become unavailable */
  1424. free_pages -= z->free_area[o].nr_free << o;
  1425. /* Require fewer higher order pages to be free */
  1426. min >>= 1;
  1427. if (free_pages <= min)
  1428. return false;
  1429. }
  1430. return true;
  1431. }
  1432. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1433. int classzone_idx, int alloc_flags)
  1434. {
  1435. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1436. zone_page_state(z, NR_FREE_PAGES));
  1437. }
  1438. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1439. int classzone_idx, int alloc_flags)
  1440. {
  1441. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1442. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1443. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1444. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1445. free_pages);
  1446. }
  1447. #ifdef CONFIG_NUMA
  1448. /*
  1449. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1450. * skip over zones that are not allowed by the cpuset, or that have
  1451. * been recently (in last second) found to be nearly full. See further
  1452. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1453. * that have to skip over a lot of full or unallowed zones.
  1454. *
  1455. * If the zonelist cache is present in the passed in zonelist, then
  1456. * returns a pointer to the allowed node mask (either the current
  1457. * tasks mems_allowed, or node_states[N_MEMORY].)
  1458. *
  1459. * If the zonelist cache is not available for this zonelist, does
  1460. * nothing and returns NULL.
  1461. *
  1462. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1463. * a second since last zap'd) then we zap it out (clear its bits.)
  1464. *
  1465. * We hold off even calling zlc_setup, until after we've checked the
  1466. * first zone in the zonelist, on the theory that most allocations will
  1467. * be satisfied from that first zone, so best to examine that zone as
  1468. * quickly as we can.
  1469. */
  1470. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1471. {
  1472. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1473. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1474. zlc = zonelist->zlcache_ptr;
  1475. if (!zlc)
  1476. return NULL;
  1477. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1478. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1479. zlc->last_full_zap = jiffies;
  1480. }
  1481. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1482. &cpuset_current_mems_allowed :
  1483. &node_states[N_MEMORY];
  1484. return allowednodes;
  1485. }
  1486. /*
  1487. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1488. * if it is worth looking at further for free memory:
  1489. * 1) Check that the zone isn't thought to be full (doesn't have its
  1490. * bit set in the zonelist_cache fullzones BITMAP).
  1491. * 2) Check that the zones node (obtained from the zonelist_cache
  1492. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1493. * Return true (non-zero) if zone is worth looking at further, or
  1494. * else return false (zero) if it is not.
  1495. *
  1496. * This check -ignores- the distinction between various watermarks,
  1497. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1498. * found to be full for any variation of these watermarks, it will
  1499. * be considered full for up to one second by all requests, unless
  1500. * we are so low on memory on all allowed nodes that we are forced
  1501. * into the second scan of the zonelist.
  1502. *
  1503. * In the second scan we ignore this zonelist cache and exactly
  1504. * apply the watermarks to all zones, even it is slower to do so.
  1505. * We are low on memory in the second scan, and should leave no stone
  1506. * unturned looking for a free page.
  1507. */
  1508. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1509. nodemask_t *allowednodes)
  1510. {
  1511. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1512. int i; /* index of *z in zonelist zones */
  1513. int n; /* node that zone *z is on */
  1514. zlc = zonelist->zlcache_ptr;
  1515. if (!zlc)
  1516. return 1;
  1517. i = z - zonelist->_zonerefs;
  1518. n = zlc->z_to_n[i];
  1519. /* This zone is worth trying if it is allowed but not full */
  1520. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1521. }
  1522. /*
  1523. * Given 'z' scanning a zonelist, set the corresponding bit in
  1524. * zlc->fullzones, so that subsequent attempts to allocate a page
  1525. * from that zone don't waste time re-examining it.
  1526. */
  1527. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1528. {
  1529. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1530. int i; /* index of *z in zonelist zones */
  1531. zlc = zonelist->zlcache_ptr;
  1532. if (!zlc)
  1533. return;
  1534. i = z - zonelist->_zonerefs;
  1535. set_bit(i, zlc->fullzones);
  1536. }
  1537. /*
  1538. * clear all zones full, called after direct reclaim makes progress so that
  1539. * a zone that was recently full is not skipped over for up to a second
  1540. */
  1541. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1542. {
  1543. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1544. zlc = zonelist->zlcache_ptr;
  1545. if (!zlc)
  1546. return;
  1547. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1548. }
  1549. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1550. {
  1551. return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
  1552. }
  1553. static void __paginginit init_zone_allows_reclaim(int nid)
  1554. {
  1555. int i;
  1556. for_each_online_node(i)
  1557. if (node_distance(nid, i) <= RECLAIM_DISTANCE)
  1558. node_set(i, NODE_DATA(nid)->reclaim_nodes);
  1559. else
  1560. zone_reclaim_mode = 1;
  1561. }
  1562. #else /* CONFIG_NUMA */
  1563. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1564. {
  1565. return NULL;
  1566. }
  1567. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1568. nodemask_t *allowednodes)
  1569. {
  1570. return 1;
  1571. }
  1572. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1573. {
  1574. }
  1575. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1576. {
  1577. }
  1578. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1579. {
  1580. return true;
  1581. }
  1582. static inline void init_zone_allows_reclaim(int nid)
  1583. {
  1584. }
  1585. #endif /* CONFIG_NUMA */
  1586. /*
  1587. * get_page_from_freelist goes through the zonelist trying to allocate
  1588. * a page.
  1589. */
  1590. static struct page *
  1591. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1592. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1593. struct zone *preferred_zone, int migratetype)
  1594. {
  1595. struct zoneref *z;
  1596. struct page *page = NULL;
  1597. int classzone_idx;
  1598. struct zone *zone;
  1599. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1600. int zlc_active = 0; /* set if using zonelist_cache */
  1601. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1602. classzone_idx = zone_idx(preferred_zone);
  1603. zonelist_scan:
  1604. /*
  1605. * Scan zonelist, looking for a zone with enough free.
  1606. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1607. */
  1608. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1609. high_zoneidx, nodemask) {
  1610. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1611. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1612. continue;
  1613. if ((alloc_flags & ALLOC_CPUSET) &&
  1614. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1615. continue;
  1616. /*
  1617. * When allocating a page cache page for writing, we
  1618. * want to get it from a zone that is within its dirty
  1619. * limit, such that no single zone holds more than its
  1620. * proportional share of globally allowed dirty pages.
  1621. * The dirty limits take into account the zone's
  1622. * lowmem reserves and high watermark so that kswapd
  1623. * should be able to balance it without having to
  1624. * write pages from its LRU list.
  1625. *
  1626. * This may look like it could increase pressure on
  1627. * lower zones by failing allocations in higher zones
  1628. * before they are full. But the pages that do spill
  1629. * over are limited as the lower zones are protected
  1630. * by this very same mechanism. It should not become
  1631. * a practical burden to them.
  1632. *
  1633. * XXX: For now, allow allocations to potentially
  1634. * exceed the per-zone dirty limit in the slowpath
  1635. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1636. * which is important when on a NUMA setup the allowed
  1637. * zones are together not big enough to reach the
  1638. * global limit. The proper fix for these situations
  1639. * will require awareness of zones in the
  1640. * dirty-throttling and the flusher threads.
  1641. */
  1642. if ((alloc_flags & ALLOC_WMARK_LOW) &&
  1643. (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
  1644. goto this_zone_full;
  1645. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1646. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1647. unsigned long mark;
  1648. int ret;
  1649. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1650. if (zone_watermark_ok(zone, order, mark,
  1651. classzone_idx, alloc_flags))
  1652. goto try_this_zone;
  1653. if (IS_ENABLED(CONFIG_NUMA) &&
  1654. !did_zlc_setup && nr_online_nodes > 1) {
  1655. /*
  1656. * we do zlc_setup if there are multiple nodes
  1657. * and before considering the first zone allowed
  1658. * by the cpuset.
  1659. */
  1660. allowednodes = zlc_setup(zonelist, alloc_flags);
  1661. zlc_active = 1;
  1662. did_zlc_setup = 1;
  1663. }
  1664. if (zone_reclaim_mode == 0 ||
  1665. !zone_allows_reclaim(preferred_zone, zone))
  1666. goto this_zone_full;
  1667. /*
  1668. * As we may have just activated ZLC, check if the first
  1669. * eligible zone has failed zone_reclaim recently.
  1670. */
  1671. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1672. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1673. continue;
  1674. ret = zone_reclaim(zone, gfp_mask, order);
  1675. switch (ret) {
  1676. case ZONE_RECLAIM_NOSCAN:
  1677. /* did not scan */
  1678. continue;
  1679. case ZONE_RECLAIM_FULL:
  1680. /* scanned but unreclaimable */
  1681. continue;
  1682. default:
  1683. /* did we reclaim enough */
  1684. if (zone_watermark_ok(zone, order, mark,
  1685. classzone_idx, alloc_flags))
  1686. goto try_this_zone;
  1687. /*
  1688. * Failed to reclaim enough to meet watermark.
  1689. * Only mark the zone full if checking the min
  1690. * watermark or if we failed to reclaim just
  1691. * 1<<order pages or else the page allocator
  1692. * fastpath will prematurely mark zones full
  1693. * when the watermark is between the low and
  1694. * min watermarks.
  1695. */
  1696. if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
  1697. ret == ZONE_RECLAIM_SOME)
  1698. goto this_zone_full;
  1699. continue;
  1700. }
  1701. }
  1702. try_this_zone:
  1703. page = buffered_rmqueue(preferred_zone, zone, order,
  1704. gfp_mask, migratetype);
  1705. if (page)
  1706. break;
  1707. this_zone_full:
  1708. if (IS_ENABLED(CONFIG_NUMA))
  1709. zlc_mark_zone_full(zonelist, z);
  1710. }
  1711. if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
  1712. /* Disable zlc cache for second zonelist scan */
  1713. zlc_active = 0;
  1714. goto zonelist_scan;
  1715. }
  1716. if (page)
  1717. /*
  1718. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
  1719. * necessary to allocate the page. The expectation is
  1720. * that the caller is taking steps that will free more
  1721. * memory. The caller should avoid the page being used
  1722. * for !PFMEMALLOC purposes.
  1723. */
  1724. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1725. return page;
  1726. }
  1727. /*
  1728. * Large machines with many possible nodes should not always dump per-node
  1729. * meminfo in irq context.
  1730. */
  1731. static inline bool should_suppress_show_mem(void)
  1732. {
  1733. bool ret = false;
  1734. #if NODES_SHIFT > 8
  1735. ret = in_interrupt();
  1736. #endif
  1737. return ret;
  1738. }
  1739. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1740. DEFAULT_RATELIMIT_INTERVAL,
  1741. DEFAULT_RATELIMIT_BURST);
  1742. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1743. {
  1744. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1745. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1746. debug_guardpage_minorder() > 0)
  1747. return;
  1748. /*
  1749. * Walking all memory to count page types is very expensive and should
  1750. * be inhibited in non-blockable contexts.
  1751. */
  1752. if (!(gfp_mask & __GFP_WAIT))
  1753. filter |= SHOW_MEM_FILTER_PAGE_COUNT;
  1754. /*
  1755. * This documents exceptions given to allocations in certain
  1756. * contexts that are allowed to allocate outside current's set
  1757. * of allowed nodes.
  1758. */
  1759. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1760. if (test_thread_flag(TIF_MEMDIE) ||
  1761. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1762. filter &= ~SHOW_MEM_FILTER_NODES;
  1763. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1764. filter &= ~SHOW_MEM_FILTER_NODES;
  1765. if (fmt) {
  1766. struct va_format vaf;
  1767. va_list args;
  1768. va_start(args, fmt);
  1769. vaf.fmt = fmt;
  1770. vaf.va = &args;
  1771. pr_warn("%pV", &vaf);
  1772. va_end(args);
  1773. }
  1774. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1775. current->comm, order, gfp_mask);
  1776. dump_stack();
  1777. if (!should_suppress_show_mem())
  1778. show_mem(filter);
  1779. }
  1780. static inline int
  1781. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1782. unsigned long did_some_progress,
  1783. unsigned long pages_reclaimed)
  1784. {
  1785. /* Do not loop if specifically requested */
  1786. if (gfp_mask & __GFP_NORETRY)
  1787. return 0;
  1788. /* Always retry if specifically requested */
  1789. if (gfp_mask & __GFP_NOFAIL)
  1790. return 1;
  1791. /*
  1792. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1793. * making forward progress without invoking OOM. Suspend also disables
  1794. * storage devices so kswapd will not help. Bail if we are suspending.
  1795. */
  1796. if (!did_some_progress && pm_suspended_storage())
  1797. return 0;
  1798. /*
  1799. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1800. * means __GFP_NOFAIL, but that may not be true in other
  1801. * implementations.
  1802. */
  1803. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1804. return 1;
  1805. /*
  1806. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1807. * specified, then we retry until we no longer reclaim any pages
  1808. * (above), or we've reclaimed an order of pages at least as
  1809. * large as the allocation's order. In both cases, if the
  1810. * allocation still fails, we stop retrying.
  1811. */
  1812. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1813. return 1;
  1814. return 0;
  1815. }
  1816. static inline struct page *
  1817. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1818. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1819. nodemask_t *nodemask, struct zone *preferred_zone,
  1820. int migratetype)
  1821. {
  1822. struct page *page;
  1823. /* Acquire the OOM killer lock for the zones in zonelist */
  1824. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1825. schedule_timeout_uninterruptible(1);
  1826. return NULL;
  1827. }
  1828. /*
  1829. * Go through the zonelist yet one more time, keep very high watermark
  1830. * here, this is only to catch a parallel oom killing, we must fail if
  1831. * we're still under heavy pressure.
  1832. */
  1833. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1834. order, zonelist, high_zoneidx,
  1835. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1836. preferred_zone, migratetype);
  1837. if (page)
  1838. goto out;
  1839. if (!(gfp_mask & __GFP_NOFAIL)) {
  1840. /* The OOM killer will not help higher order allocs */
  1841. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1842. goto out;
  1843. /* The OOM killer does not needlessly kill tasks for lowmem */
  1844. if (high_zoneidx < ZONE_NORMAL)
  1845. goto out;
  1846. /*
  1847. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1848. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1849. * The caller should handle page allocation failure by itself if
  1850. * it specifies __GFP_THISNODE.
  1851. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1852. */
  1853. if (gfp_mask & __GFP_THISNODE)
  1854. goto out;
  1855. }
  1856. /* Exhausted what can be done so it's blamo time */
  1857. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1858. out:
  1859. clear_zonelist_oom(zonelist, gfp_mask);
  1860. return page;
  1861. }
  1862. #ifdef CONFIG_COMPACTION
  1863. /* Try memory compaction for high-order allocations before reclaim */
  1864. static struct page *
  1865. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1866. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1867. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1868. int migratetype, bool sync_migration,
  1869. bool *contended_compaction, bool *deferred_compaction,
  1870. unsigned long *did_some_progress)
  1871. {
  1872. if (!order)
  1873. return NULL;
  1874. if (compaction_deferred(preferred_zone, order)) {
  1875. *deferred_compaction = true;
  1876. return NULL;
  1877. }
  1878. current->flags |= PF_MEMALLOC;
  1879. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1880. nodemask, sync_migration,
  1881. contended_compaction);
  1882. current->flags &= ~PF_MEMALLOC;
  1883. if (*did_some_progress != COMPACT_SKIPPED) {
  1884. struct page *page;
  1885. /* Page migration frees to the PCP lists but we want merging */
  1886. drain_pages(get_cpu());
  1887. put_cpu();
  1888. page = get_page_from_freelist(gfp_mask, nodemask,
  1889. order, zonelist, high_zoneidx,
  1890. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1891. preferred_zone, migratetype);
  1892. if (page) {
  1893. preferred_zone->compact_blockskip_flush = false;
  1894. preferred_zone->compact_considered = 0;
  1895. preferred_zone->compact_defer_shift = 0;
  1896. if (order >= preferred_zone->compact_order_failed)
  1897. preferred_zone->compact_order_failed = order + 1;
  1898. count_vm_event(COMPACTSUCCESS);
  1899. return page;
  1900. }
  1901. /*
  1902. * It's bad if compaction run occurs and fails.
  1903. * The most likely reason is that pages exist,
  1904. * but not enough to satisfy watermarks.
  1905. */
  1906. count_vm_event(COMPACTFAIL);
  1907. /*
  1908. * As async compaction considers a subset of pageblocks, only
  1909. * defer if the failure was a sync compaction failure.
  1910. */
  1911. if (sync_migration)
  1912. defer_compaction(preferred_zone, order);
  1913. cond_resched();
  1914. }
  1915. return NULL;
  1916. }
  1917. #else
  1918. static inline struct page *
  1919. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1920. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1921. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1922. int migratetype, bool sync_migration,
  1923. bool *contended_compaction, bool *deferred_compaction,
  1924. unsigned long *did_some_progress)
  1925. {
  1926. return NULL;
  1927. }
  1928. #endif /* CONFIG_COMPACTION */
  1929. /* Perform direct synchronous page reclaim */
  1930. static int
  1931. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  1932. nodemask_t *nodemask)
  1933. {
  1934. struct reclaim_state reclaim_state;
  1935. int progress;
  1936. cond_resched();
  1937. /* We now go into synchronous reclaim */
  1938. cpuset_memory_pressure_bump();
  1939. current->flags |= PF_MEMALLOC;
  1940. lockdep_set_current_reclaim_state(gfp_mask);
  1941. reclaim_state.reclaimed_slab = 0;
  1942. current->reclaim_state = &reclaim_state;
  1943. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1944. current->reclaim_state = NULL;
  1945. lockdep_clear_current_reclaim_state();
  1946. current->flags &= ~PF_MEMALLOC;
  1947. cond_resched();
  1948. return progress;
  1949. }
  1950. /* The really slow allocator path where we enter direct reclaim */
  1951. static inline struct page *
  1952. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1953. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1954. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1955. int migratetype, unsigned long *did_some_progress)
  1956. {
  1957. struct page *page = NULL;
  1958. bool drained = false;
  1959. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  1960. nodemask);
  1961. if (unlikely(!(*did_some_progress)))
  1962. return NULL;
  1963. /* After successful reclaim, reconsider all zones for allocation */
  1964. if (IS_ENABLED(CONFIG_NUMA))
  1965. zlc_clear_zones_full(zonelist);
  1966. retry:
  1967. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1968. zonelist, high_zoneidx,
  1969. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1970. preferred_zone, migratetype);
  1971. /*
  1972. * If an allocation failed after direct reclaim, it could be because
  1973. * pages are pinned on the per-cpu lists. Drain them and try again
  1974. */
  1975. if (!page && !drained) {
  1976. drain_all_pages();
  1977. drained = true;
  1978. goto retry;
  1979. }
  1980. return page;
  1981. }
  1982. /*
  1983. * This is called in the allocator slow-path if the allocation request is of
  1984. * sufficient urgency to ignore watermarks and take other desperate measures
  1985. */
  1986. static inline struct page *
  1987. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1988. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1989. nodemask_t *nodemask, struct zone *preferred_zone,
  1990. int migratetype)
  1991. {
  1992. struct page *page;
  1993. do {
  1994. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1995. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1996. preferred_zone, migratetype);
  1997. if (!page && gfp_mask & __GFP_NOFAIL)
  1998. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1999. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2000. return page;
  2001. }
  2002. static inline
  2003. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  2004. enum zone_type high_zoneidx,
  2005. enum zone_type classzone_idx)
  2006. {
  2007. struct zoneref *z;
  2008. struct zone *zone;
  2009. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  2010. wakeup_kswapd(zone, order, classzone_idx);
  2011. }
  2012. static inline int
  2013. gfp_to_alloc_flags(gfp_t gfp_mask)
  2014. {
  2015. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2016. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2017. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2018. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2019. /*
  2020. * The caller may dip into page reserves a bit more if the caller
  2021. * cannot run direct reclaim, or if the caller has realtime scheduling
  2022. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2023. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  2024. */
  2025. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2026. if (!wait) {
  2027. /*
  2028. * Not worth trying to allocate harder for
  2029. * __GFP_NOMEMALLOC even if it can't schedule.
  2030. */
  2031. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2032. alloc_flags |= ALLOC_HARDER;
  2033. /*
  2034. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  2035. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  2036. */
  2037. alloc_flags &= ~ALLOC_CPUSET;
  2038. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2039. alloc_flags |= ALLOC_HARDER;
  2040. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2041. if (gfp_mask & __GFP_MEMALLOC)
  2042. alloc_flags |= ALLOC_NO_WATERMARKS;
  2043. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2044. alloc_flags |= ALLOC_NO_WATERMARKS;
  2045. else if (!in_interrupt() &&
  2046. ((current->flags & PF_MEMALLOC) ||
  2047. unlikely(test_thread_flag(TIF_MEMDIE))))
  2048. alloc_flags |= ALLOC_NO_WATERMARKS;
  2049. }
  2050. #ifdef CONFIG_CMA
  2051. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2052. alloc_flags |= ALLOC_CMA;
  2053. #endif
  2054. return alloc_flags;
  2055. }
  2056. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2057. {
  2058. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2059. }
  2060. static inline struct page *
  2061. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2062. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2063. nodemask_t *nodemask, struct zone *preferred_zone,
  2064. int migratetype)
  2065. {
  2066. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2067. struct page *page = NULL;
  2068. int alloc_flags;
  2069. unsigned long pages_reclaimed = 0;
  2070. unsigned long did_some_progress;
  2071. bool sync_migration = false;
  2072. bool deferred_compaction = false;
  2073. bool contended_compaction = false;
  2074. /*
  2075. * In the slowpath, we sanity check order to avoid ever trying to
  2076. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2077. * be using allocators in order of preference for an area that is
  2078. * too large.
  2079. */
  2080. if (order >= MAX_ORDER) {
  2081. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2082. return NULL;
  2083. }
  2084. /*
  2085. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2086. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2087. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2088. * using a larger set of nodes after it has established that the
  2089. * allowed per node queues are empty and that nodes are
  2090. * over allocated.
  2091. */
  2092. if (IS_ENABLED(CONFIG_NUMA) &&
  2093. (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2094. goto nopage;
  2095. restart:
  2096. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2097. wake_all_kswapd(order, zonelist, high_zoneidx,
  2098. zone_idx(preferred_zone));
  2099. /*
  2100. * OK, we're below the kswapd watermark and have kicked background
  2101. * reclaim. Now things get more complex, so set up alloc_flags according
  2102. * to how we want to proceed.
  2103. */
  2104. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2105. /*
  2106. * Find the true preferred zone if the allocation is unconstrained by
  2107. * cpusets.
  2108. */
  2109. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  2110. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  2111. &preferred_zone);
  2112. rebalance:
  2113. /* This is the last chance, in general, before the goto nopage. */
  2114. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2115. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2116. preferred_zone, migratetype);
  2117. if (page)
  2118. goto got_pg;
  2119. /* Allocate without watermarks if the context allows */
  2120. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2121. /*
  2122. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2123. * the allocation is high priority and these type of
  2124. * allocations are system rather than user orientated
  2125. */
  2126. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2127. page = __alloc_pages_high_priority(gfp_mask, order,
  2128. zonelist, high_zoneidx, nodemask,
  2129. preferred_zone, migratetype);
  2130. if (page) {
  2131. goto got_pg;
  2132. }
  2133. }
  2134. /* Atomic allocations - we can't balance anything */
  2135. if (!wait)
  2136. goto nopage;
  2137. /* Avoid recursion of direct reclaim */
  2138. if (current->flags & PF_MEMALLOC)
  2139. goto nopage;
  2140. /* Avoid allocations with no watermarks from looping endlessly */
  2141. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2142. goto nopage;
  2143. /*
  2144. * Try direct compaction. The first pass is asynchronous. Subsequent
  2145. * attempts after direct reclaim are synchronous
  2146. */
  2147. page = __alloc_pages_direct_compact(gfp_mask, order,
  2148. zonelist, high_zoneidx,
  2149. nodemask,
  2150. alloc_flags, preferred_zone,
  2151. migratetype, sync_migration,
  2152. &contended_compaction,
  2153. &deferred_compaction,
  2154. &did_some_progress);
  2155. if (page)
  2156. goto got_pg;
  2157. sync_migration = true;
  2158. /*
  2159. * If compaction is deferred for high-order allocations, it is because
  2160. * sync compaction recently failed. In this is the case and the caller
  2161. * requested a movable allocation that does not heavily disrupt the
  2162. * system then fail the allocation instead of entering direct reclaim.
  2163. */
  2164. if ((deferred_compaction || contended_compaction) &&
  2165. (gfp_mask & __GFP_NO_KSWAPD))
  2166. goto nopage;
  2167. /* Try direct reclaim and then allocating */
  2168. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2169. zonelist, high_zoneidx,
  2170. nodemask,
  2171. alloc_flags, preferred_zone,
  2172. migratetype, &did_some_progress);
  2173. if (page)
  2174. goto got_pg;
  2175. /*
  2176. * If we failed to make any progress reclaiming, then we are
  2177. * running out of options and have to consider going OOM
  2178. */
  2179. if (!did_some_progress) {
  2180. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  2181. if (oom_killer_disabled)
  2182. goto nopage;
  2183. /* Coredumps can quickly deplete all memory reserves */
  2184. if ((current->flags & PF_DUMPCORE) &&
  2185. !(gfp_mask & __GFP_NOFAIL))
  2186. goto nopage;
  2187. page = __alloc_pages_may_oom(gfp_mask, order,
  2188. zonelist, high_zoneidx,
  2189. nodemask, preferred_zone,
  2190. migratetype);
  2191. if (page)
  2192. goto got_pg;
  2193. if (!(gfp_mask & __GFP_NOFAIL)) {
  2194. /*
  2195. * The oom killer is not called for high-order
  2196. * allocations that may fail, so if no progress
  2197. * is being made, there are no other options and
  2198. * retrying is unlikely to help.
  2199. */
  2200. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2201. goto nopage;
  2202. /*
  2203. * The oom killer is not called for lowmem
  2204. * allocations to prevent needlessly killing
  2205. * innocent tasks.
  2206. */
  2207. if (high_zoneidx < ZONE_NORMAL)
  2208. goto nopage;
  2209. }
  2210. goto restart;
  2211. }
  2212. }
  2213. /* Check if we should retry the allocation */
  2214. pages_reclaimed += did_some_progress;
  2215. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2216. pages_reclaimed)) {
  2217. /* Wait for some write requests to complete then retry */
  2218. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2219. goto rebalance;
  2220. } else {
  2221. /*
  2222. * High-order allocations do not necessarily loop after
  2223. * direct reclaim and reclaim/compaction depends on compaction
  2224. * being called after reclaim so call directly if necessary
  2225. */
  2226. page = __alloc_pages_direct_compact(gfp_mask, order,
  2227. zonelist, high_zoneidx,
  2228. nodemask,
  2229. alloc_flags, preferred_zone,
  2230. migratetype, sync_migration,
  2231. &contended_compaction,
  2232. &deferred_compaction,
  2233. &did_some_progress);
  2234. if (page)
  2235. goto got_pg;
  2236. }
  2237. nopage:
  2238. warn_alloc_failed(gfp_mask, order, NULL);
  2239. return page;
  2240. got_pg:
  2241. if (kmemcheck_enabled)
  2242. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2243. return page;
  2244. }
  2245. /*
  2246. * This is the 'heart' of the zoned buddy allocator.
  2247. */
  2248. struct page *
  2249. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2250. struct zonelist *zonelist, nodemask_t *nodemask)
  2251. {
  2252. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2253. struct zone *preferred_zone;
  2254. struct page *page = NULL;
  2255. int migratetype = allocflags_to_migratetype(gfp_mask);
  2256. unsigned int cpuset_mems_cookie;
  2257. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
  2258. struct mem_cgroup *memcg = NULL;
  2259. gfp_mask &= gfp_allowed_mask;
  2260. lockdep_trace_alloc(gfp_mask);
  2261. might_sleep_if(gfp_mask & __GFP_WAIT);
  2262. if (should_fail_alloc_page(gfp_mask, order))
  2263. return NULL;
  2264. /*
  2265. * Check the zones suitable for the gfp_mask contain at least one
  2266. * valid zone. It's possible to have an empty zonelist as a result
  2267. * of GFP_THISNODE and a memoryless node
  2268. */
  2269. if (unlikely(!zonelist->_zonerefs->zone))
  2270. return NULL;
  2271. /*
  2272. * Will only have any effect when __GFP_KMEMCG is set. This is
  2273. * verified in the (always inline) callee
  2274. */
  2275. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2276. return NULL;
  2277. retry_cpuset:
  2278. cpuset_mems_cookie = get_mems_allowed();
  2279. /* The preferred zone is used for statistics later */
  2280. first_zones_zonelist(zonelist, high_zoneidx,
  2281. nodemask ? : &cpuset_current_mems_allowed,
  2282. &preferred_zone);
  2283. if (!preferred_zone)
  2284. goto out;
  2285. #ifdef CONFIG_CMA
  2286. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2287. alloc_flags |= ALLOC_CMA;
  2288. #endif
  2289. /* First allocation attempt */
  2290. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2291. zonelist, high_zoneidx, alloc_flags,
  2292. preferred_zone, migratetype);
  2293. if (unlikely(!page)) {
  2294. /*
  2295. * Runtime PM, block IO and its error handling path
  2296. * can deadlock because I/O on the device might not
  2297. * complete.
  2298. */
  2299. gfp_mask = memalloc_noio_flags(gfp_mask);
  2300. page = __alloc_pages_slowpath(gfp_mask, order,
  2301. zonelist, high_zoneidx, nodemask,
  2302. preferred_zone, migratetype);
  2303. }
  2304. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2305. out:
  2306. /*
  2307. * When updating a task's mems_allowed, it is possible to race with
  2308. * parallel threads in such a way that an allocation can fail while
  2309. * the mask is being updated. If a page allocation is about to fail,
  2310. * check if the cpuset changed during allocation and if so, retry.
  2311. */
  2312. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  2313. goto retry_cpuset;
  2314. memcg_kmem_commit_charge(page, memcg, order);
  2315. return page;
  2316. }
  2317. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2318. /*
  2319. * Common helper functions.
  2320. */
  2321. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2322. {
  2323. struct page *page;
  2324. /*
  2325. * __get_free_pages() returns a 32-bit address, which cannot represent
  2326. * a highmem page
  2327. */
  2328. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2329. page = alloc_pages(gfp_mask, order);
  2330. if (!page)
  2331. return 0;
  2332. return (unsigned long) page_address(page);
  2333. }
  2334. EXPORT_SYMBOL(__get_free_pages);
  2335. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2336. {
  2337. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2338. }
  2339. EXPORT_SYMBOL(get_zeroed_page);
  2340. void __free_pages(struct page *page, unsigned int order)
  2341. {
  2342. if (put_page_testzero(page)) {
  2343. if (order == 0)
  2344. free_hot_cold_page(page, 0);
  2345. else
  2346. __free_pages_ok(page, order);
  2347. }
  2348. }
  2349. EXPORT_SYMBOL(__free_pages);
  2350. void free_pages(unsigned long addr, unsigned int order)
  2351. {
  2352. if (addr != 0) {
  2353. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2354. __free_pages(virt_to_page((void *)addr), order);
  2355. }
  2356. }
  2357. EXPORT_SYMBOL(free_pages);
  2358. /*
  2359. * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
  2360. * pages allocated with __GFP_KMEMCG.
  2361. *
  2362. * Those pages are accounted to a particular memcg, embedded in the
  2363. * corresponding page_cgroup. To avoid adding a hit in the allocator to search
  2364. * for that information only to find out that it is NULL for users who have no
  2365. * interest in that whatsoever, we provide these functions.
  2366. *
  2367. * The caller knows better which flags it relies on.
  2368. */
  2369. void __free_memcg_kmem_pages(struct page *page, unsigned int order)
  2370. {
  2371. memcg_kmem_uncharge_pages(page, order);
  2372. __free_pages(page, order);
  2373. }
  2374. void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
  2375. {
  2376. if (addr != 0) {
  2377. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2378. __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
  2379. }
  2380. }
  2381. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2382. {
  2383. if (addr) {
  2384. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2385. unsigned long used = addr + PAGE_ALIGN(size);
  2386. split_page(virt_to_page((void *)addr), order);
  2387. while (used < alloc_end) {
  2388. free_page(used);
  2389. used += PAGE_SIZE;
  2390. }
  2391. }
  2392. return (void *)addr;
  2393. }
  2394. /**
  2395. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2396. * @size: the number of bytes to allocate
  2397. * @gfp_mask: GFP flags for the allocation
  2398. *
  2399. * This function is similar to alloc_pages(), except that it allocates the
  2400. * minimum number of pages to satisfy the request. alloc_pages() can only
  2401. * allocate memory in power-of-two pages.
  2402. *
  2403. * This function is also limited by MAX_ORDER.
  2404. *
  2405. * Memory allocated by this function must be released by free_pages_exact().
  2406. */
  2407. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2408. {
  2409. unsigned int order = get_order(size);
  2410. unsigned long addr;
  2411. addr = __get_free_pages(gfp_mask, order);
  2412. return make_alloc_exact(addr, order, size);
  2413. }
  2414. EXPORT_SYMBOL(alloc_pages_exact);
  2415. /**
  2416. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2417. * pages on a node.
  2418. * @nid: the preferred node ID where memory should be allocated
  2419. * @size: the number of bytes to allocate
  2420. * @gfp_mask: GFP flags for the allocation
  2421. *
  2422. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2423. * back.
  2424. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2425. * but is not exact.
  2426. */
  2427. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2428. {
  2429. unsigned order = get_order(size);
  2430. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2431. if (!p)
  2432. return NULL;
  2433. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2434. }
  2435. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2436. /**
  2437. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2438. * @virt: the value returned by alloc_pages_exact.
  2439. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2440. *
  2441. * Release the memory allocated by a previous call to alloc_pages_exact.
  2442. */
  2443. void free_pages_exact(void *virt, size_t size)
  2444. {
  2445. unsigned long addr = (unsigned long)virt;
  2446. unsigned long end = addr + PAGE_ALIGN(size);
  2447. while (addr < end) {
  2448. free_page(addr);
  2449. addr += PAGE_SIZE;
  2450. }
  2451. }
  2452. EXPORT_SYMBOL(free_pages_exact);
  2453. /**
  2454. * nr_free_zone_pages - count number of pages beyond high watermark
  2455. * @offset: The zone index of the highest zone
  2456. *
  2457. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  2458. * high watermark within all zones at or below a given zone index. For each
  2459. * zone, the number of pages is calculated as:
  2460. * managed_pages - high_pages
  2461. */
  2462. static unsigned long nr_free_zone_pages(int offset)
  2463. {
  2464. struct zoneref *z;
  2465. struct zone *zone;
  2466. /* Just pick one node, since fallback list is circular */
  2467. unsigned long sum = 0;
  2468. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2469. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2470. unsigned long size = zone->managed_pages;
  2471. unsigned long high = high_wmark_pages(zone);
  2472. if (size > high)
  2473. sum += size - high;
  2474. }
  2475. return sum;
  2476. }
  2477. /**
  2478. * nr_free_buffer_pages - count number of pages beyond high watermark
  2479. *
  2480. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  2481. * watermark within ZONE_DMA and ZONE_NORMAL.
  2482. */
  2483. unsigned long nr_free_buffer_pages(void)
  2484. {
  2485. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2486. }
  2487. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2488. /**
  2489. * nr_free_pagecache_pages - count number of pages beyond high watermark
  2490. *
  2491. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  2492. * high watermark within all zones.
  2493. */
  2494. unsigned long nr_free_pagecache_pages(void)
  2495. {
  2496. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2497. }
  2498. static inline void show_node(struct zone *zone)
  2499. {
  2500. if (IS_ENABLED(CONFIG_NUMA))
  2501. printk("Node %d ", zone_to_nid(zone));
  2502. }
  2503. void si_meminfo(struct sysinfo *val)
  2504. {
  2505. val->totalram = totalram_pages;
  2506. val->sharedram = 0;
  2507. val->freeram = global_page_state(NR_FREE_PAGES);
  2508. val->bufferram = nr_blockdev_pages();
  2509. val->totalhigh = totalhigh_pages;
  2510. val->freehigh = nr_free_highpages();
  2511. val->mem_unit = PAGE_SIZE;
  2512. }
  2513. EXPORT_SYMBOL(si_meminfo);
  2514. #ifdef CONFIG_NUMA
  2515. void si_meminfo_node(struct sysinfo *val, int nid)
  2516. {
  2517. pg_data_t *pgdat = NODE_DATA(nid);
  2518. val->totalram = pgdat->node_present_pages;
  2519. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2520. #ifdef CONFIG_HIGHMEM
  2521. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  2522. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2523. NR_FREE_PAGES);
  2524. #else
  2525. val->totalhigh = 0;
  2526. val->freehigh = 0;
  2527. #endif
  2528. val->mem_unit = PAGE_SIZE;
  2529. }
  2530. #endif
  2531. /*
  2532. * Determine whether the node should be displayed or not, depending on whether
  2533. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2534. */
  2535. bool skip_free_areas_node(unsigned int flags, int nid)
  2536. {
  2537. bool ret = false;
  2538. unsigned int cpuset_mems_cookie;
  2539. if (!(flags & SHOW_MEM_FILTER_NODES))
  2540. goto out;
  2541. do {
  2542. cpuset_mems_cookie = get_mems_allowed();
  2543. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2544. } while (!put_mems_allowed(cpuset_mems_cookie));
  2545. out:
  2546. return ret;
  2547. }
  2548. #define K(x) ((x) << (PAGE_SHIFT-10))
  2549. static void show_migration_types(unsigned char type)
  2550. {
  2551. static const char types[MIGRATE_TYPES] = {
  2552. [MIGRATE_UNMOVABLE] = 'U',
  2553. [MIGRATE_RECLAIMABLE] = 'E',
  2554. [MIGRATE_MOVABLE] = 'M',
  2555. [MIGRATE_RESERVE] = 'R',
  2556. #ifdef CONFIG_CMA
  2557. [MIGRATE_CMA] = 'C',
  2558. #endif
  2559. #ifdef CONFIG_MEMORY_ISOLATION
  2560. [MIGRATE_ISOLATE] = 'I',
  2561. #endif
  2562. };
  2563. char tmp[MIGRATE_TYPES + 1];
  2564. char *p = tmp;
  2565. int i;
  2566. for (i = 0; i < MIGRATE_TYPES; i++) {
  2567. if (type & (1 << i))
  2568. *p++ = types[i];
  2569. }
  2570. *p = '\0';
  2571. printk("(%s) ", tmp);
  2572. }
  2573. /*
  2574. * Show free area list (used inside shift_scroll-lock stuff)
  2575. * We also calculate the percentage fragmentation. We do this by counting the
  2576. * memory on each free list with the exception of the first item on the list.
  2577. * Suppresses nodes that are not allowed by current's cpuset if
  2578. * SHOW_MEM_FILTER_NODES is passed.
  2579. */
  2580. void show_free_areas(unsigned int filter)
  2581. {
  2582. int cpu;
  2583. struct zone *zone;
  2584. for_each_populated_zone(zone) {
  2585. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2586. continue;
  2587. show_node(zone);
  2588. printk("%s per-cpu:\n", zone->name);
  2589. for_each_online_cpu(cpu) {
  2590. struct per_cpu_pageset *pageset;
  2591. pageset = per_cpu_ptr(zone->pageset, cpu);
  2592. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2593. cpu, pageset->pcp.high,
  2594. pageset->pcp.batch, pageset->pcp.count);
  2595. }
  2596. }
  2597. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2598. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2599. " unevictable:%lu"
  2600. " dirty:%lu writeback:%lu unstable:%lu\n"
  2601. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2602. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2603. " free_cma:%lu\n",
  2604. global_page_state(NR_ACTIVE_ANON),
  2605. global_page_state(NR_INACTIVE_ANON),
  2606. global_page_state(NR_ISOLATED_ANON),
  2607. global_page_state(NR_ACTIVE_FILE),
  2608. global_page_state(NR_INACTIVE_FILE),
  2609. global_page_state(NR_ISOLATED_FILE),
  2610. global_page_state(NR_UNEVICTABLE),
  2611. global_page_state(NR_FILE_DIRTY),
  2612. global_page_state(NR_WRITEBACK),
  2613. global_page_state(NR_UNSTABLE_NFS),
  2614. global_page_state(NR_FREE_PAGES),
  2615. global_page_state(NR_SLAB_RECLAIMABLE),
  2616. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2617. global_page_state(NR_FILE_MAPPED),
  2618. global_page_state(NR_SHMEM),
  2619. global_page_state(NR_PAGETABLE),
  2620. global_page_state(NR_BOUNCE),
  2621. global_page_state(NR_FREE_CMA_PAGES));
  2622. for_each_populated_zone(zone) {
  2623. int i;
  2624. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2625. continue;
  2626. show_node(zone);
  2627. printk("%s"
  2628. " free:%lukB"
  2629. " min:%lukB"
  2630. " low:%lukB"
  2631. " high:%lukB"
  2632. " active_anon:%lukB"
  2633. " inactive_anon:%lukB"
  2634. " active_file:%lukB"
  2635. " inactive_file:%lukB"
  2636. " unevictable:%lukB"
  2637. " isolated(anon):%lukB"
  2638. " isolated(file):%lukB"
  2639. " present:%lukB"
  2640. " managed:%lukB"
  2641. " mlocked:%lukB"
  2642. " dirty:%lukB"
  2643. " writeback:%lukB"
  2644. " mapped:%lukB"
  2645. " shmem:%lukB"
  2646. " slab_reclaimable:%lukB"
  2647. " slab_unreclaimable:%lukB"
  2648. " kernel_stack:%lukB"
  2649. " pagetables:%lukB"
  2650. " unstable:%lukB"
  2651. " bounce:%lukB"
  2652. " free_cma:%lukB"
  2653. " writeback_tmp:%lukB"
  2654. " pages_scanned:%lu"
  2655. " all_unreclaimable? %s"
  2656. "\n",
  2657. zone->name,
  2658. K(zone_page_state(zone, NR_FREE_PAGES)),
  2659. K(min_wmark_pages(zone)),
  2660. K(low_wmark_pages(zone)),
  2661. K(high_wmark_pages(zone)),
  2662. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2663. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2664. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2665. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2666. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2667. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2668. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2669. K(zone->present_pages),
  2670. K(zone->managed_pages),
  2671. K(zone_page_state(zone, NR_MLOCK)),
  2672. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2673. K(zone_page_state(zone, NR_WRITEBACK)),
  2674. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2675. K(zone_page_state(zone, NR_SHMEM)),
  2676. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2677. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2678. zone_page_state(zone, NR_KERNEL_STACK) *
  2679. THREAD_SIZE / 1024,
  2680. K(zone_page_state(zone, NR_PAGETABLE)),
  2681. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2682. K(zone_page_state(zone, NR_BOUNCE)),
  2683. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2684. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2685. zone->pages_scanned,
  2686. (zone->all_unreclaimable ? "yes" : "no")
  2687. );
  2688. printk("lowmem_reserve[]:");
  2689. for (i = 0; i < MAX_NR_ZONES; i++)
  2690. printk(" %lu", zone->lowmem_reserve[i]);
  2691. printk("\n");
  2692. }
  2693. for_each_populated_zone(zone) {
  2694. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2695. unsigned char types[MAX_ORDER];
  2696. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2697. continue;
  2698. show_node(zone);
  2699. printk("%s: ", zone->name);
  2700. spin_lock_irqsave(&zone->lock, flags);
  2701. for (order = 0; order < MAX_ORDER; order++) {
  2702. struct free_area *area = &zone->free_area[order];
  2703. int type;
  2704. nr[order] = area->nr_free;
  2705. total += nr[order] << order;
  2706. types[order] = 0;
  2707. for (type = 0; type < MIGRATE_TYPES; type++) {
  2708. if (!list_empty(&area->free_list[type]))
  2709. types[order] |= 1 << type;
  2710. }
  2711. }
  2712. spin_unlock_irqrestore(&zone->lock, flags);
  2713. for (order = 0; order < MAX_ORDER; order++) {
  2714. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2715. if (nr[order])
  2716. show_migration_types(types[order]);
  2717. }
  2718. printk("= %lukB\n", K(total));
  2719. }
  2720. hugetlb_show_meminfo();
  2721. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2722. show_swap_cache_info();
  2723. }
  2724. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2725. {
  2726. zoneref->zone = zone;
  2727. zoneref->zone_idx = zone_idx(zone);
  2728. }
  2729. /*
  2730. * Builds allocation fallback zone lists.
  2731. *
  2732. * Add all populated zones of a node to the zonelist.
  2733. */
  2734. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2735. int nr_zones, enum zone_type zone_type)
  2736. {
  2737. struct zone *zone;
  2738. BUG_ON(zone_type >= MAX_NR_ZONES);
  2739. zone_type++;
  2740. do {
  2741. zone_type--;
  2742. zone = pgdat->node_zones + zone_type;
  2743. if (populated_zone(zone)) {
  2744. zoneref_set_zone(zone,
  2745. &zonelist->_zonerefs[nr_zones++]);
  2746. check_highest_zone(zone_type);
  2747. }
  2748. } while (zone_type);
  2749. return nr_zones;
  2750. }
  2751. /*
  2752. * zonelist_order:
  2753. * 0 = automatic detection of better ordering.
  2754. * 1 = order by ([node] distance, -zonetype)
  2755. * 2 = order by (-zonetype, [node] distance)
  2756. *
  2757. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2758. * the same zonelist. So only NUMA can configure this param.
  2759. */
  2760. #define ZONELIST_ORDER_DEFAULT 0
  2761. #define ZONELIST_ORDER_NODE 1
  2762. #define ZONELIST_ORDER_ZONE 2
  2763. /* zonelist order in the kernel.
  2764. * set_zonelist_order() will set this to NODE or ZONE.
  2765. */
  2766. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2767. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2768. #ifdef CONFIG_NUMA
  2769. /* The value user specified ....changed by config */
  2770. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2771. /* string for sysctl */
  2772. #define NUMA_ZONELIST_ORDER_LEN 16
  2773. char numa_zonelist_order[16] = "default";
  2774. /*
  2775. * interface for configure zonelist ordering.
  2776. * command line option "numa_zonelist_order"
  2777. * = "[dD]efault - default, automatic configuration.
  2778. * = "[nN]ode - order by node locality, then by zone within node
  2779. * = "[zZ]one - order by zone, then by locality within zone
  2780. */
  2781. static int __parse_numa_zonelist_order(char *s)
  2782. {
  2783. if (*s == 'd' || *s == 'D') {
  2784. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2785. } else if (*s == 'n' || *s == 'N') {
  2786. user_zonelist_order = ZONELIST_ORDER_NODE;
  2787. } else if (*s == 'z' || *s == 'Z') {
  2788. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2789. } else {
  2790. printk(KERN_WARNING
  2791. "Ignoring invalid numa_zonelist_order value: "
  2792. "%s\n", s);
  2793. return -EINVAL;
  2794. }
  2795. return 0;
  2796. }
  2797. static __init int setup_numa_zonelist_order(char *s)
  2798. {
  2799. int ret;
  2800. if (!s)
  2801. return 0;
  2802. ret = __parse_numa_zonelist_order(s);
  2803. if (ret == 0)
  2804. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2805. return ret;
  2806. }
  2807. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2808. /*
  2809. * sysctl handler for numa_zonelist_order
  2810. */
  2811. int numa_zonelist_order_handler(ctl_table *table, int write,
  2812. void __user *buffer, size_t *length,
  2813. loff_t *ppos)
  2814. {
  2815. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2816. int ret;
  2817. static DEFINE_MUTEX(zl_order_mutex);
  2818. mutex_lock(&zl_order_mutex);
  2819. if (write) {
  2820. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  2821. ret = -EINVAL;
  2822. goto out;
  2823. }
  2824. strcpy(saved_string, (char *)table->data);
  2825. }
  2826. ret = proc_dostring(table, write, buffer, length, ppos);
  2827. if (ret)
  2828. goto out;
  2829. if (write) {
  2830. int oldval = user_zonelist_order;
  2831. ret = __parse_numa_zonelist_order((char *)table->data);
  2832. if (ret) {
  2833. /*
  2834. * bogus value. restore saved string
  2835. */
  2836. strncpy((char *)table->data, saved_string,
  2837. NUMA_ZONELIST_ORDER_LEN);
  2838. user_zonelist_order = oldval;
  2839. } else if (oldval != user_zonelist_order) {
  2840. mutex_lock(&zonelists_mutex);
  2841. build_all_zonelists(NULL, NULL);
  2842. mutex_unlock(&zonelists_mutex);
  2843. }
  2844. }
  2845. out:
  2846. mutex_unlock(&zl_order_mutex);
  2847. return ret;
  2848. }
  2849. #define MAX_NODE_LOAD (nr_online_nodes)
  2850. static int node_load[MAX_NUMNODES];
  2851. /**
  2852. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2853. * @node: node whose fallback list we're appending
  2854. * @used_node_mask: nodemask_t of already used nodes
  2855. *
  2856. * We use a number of factors to determine which is the next node that should
  2857. * appear on a given node's fallback list. The node should not have appeared
  2858. * already in @node's fallback list, and it should be the next closest node
  2859. * according to the distance array (which contains arbitrary distance values
  2860. * from each node to each node in the system), and should also prefer nodes
  2861. * with no CPUs, since presumably they'll have very little allocation pressure
  2862. * on them otherwise.
  2863. * It returns -1 if no node is found.
  2864. */
  2865. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2866. {
  2867. int n, val;
  2868. int min_val = INT_MAX;
  2869. int best_node = NUMA_NO_NODE;
  2870. const struct cpumask *tmp = cpumask_of_node(0);
  2871. /* Use the local node if we haven't already */
  2872. if (!node_isset(node, *used_node_mask)) {
  2873. node_set(node, *used_node_mask);
  2874. return node;
  2875. }
  2876. for_each_node_state(n, N_MEMORY) {
  2877. /* Don't want a node to appear more than once */
  2878. if (node_isset(n, *used_node_mask))
  2879. continue;
  2880. /* Use the distance array to find the distance */
  2881. val = node_distance(node, n);
  2882. /* Penalize nodes under us ("prefer the next node") */
  2883. val += (n < node);
  2884. /* Give preference to headless and unused nodes */
  2885. tmp = cpumask_of_node(n);
  2886. if (!cpumask_empty(tmp))
  2887. val += PENALTY_FOR_NODE_WITH_CPUS;
  2888. /* Slight preference for less loaded node */
  2889. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2890. val += node_load[n];
  2891. if (val < min_val) {
  2892. min_val = val;
  2893. best_node = n;
  2894. }
  2895. }
  2896. if (best_node >= 0)
  2897. node_set(best_node, *used_node_mask);
  2898. return best_node;
  2899. }
  2900. /*
  2901. * Build zonelists ordered by node and zones within node.
  2902. * This results in maximum locality--normal zone overflows into local
  2903. * DMA zone, if any--but risks exhausting DMA zone.
  2904. */
  2905. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2906. {
  2907. int j;
  2908. struct zonelist *zonelist;
  2909. zonelist = &pgdat->node_zonelists[0];
  2910. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2911. ;
  2912. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2913. MAX_NR_ZONES - 1);
  2914. zonelist->_zonerefs[j].zone = NULL;
  2915. zonelist->_zonerefs[j].zone_idx = 0;
  2916. }
  2917. /*
  2918. * Build gfp_thisnode zonelists
  2919. */
  2920. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2921. {
  2922. int j;
  2923. struct zonelist *zonelist;
  2924. zonelist = &pgdat->node_zonelists[1];
  2925. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2926. zonelist->_zonerefs[j].zone = NULL;
  2927. zonelist->_zonerefs[j].zone_idx = 0;
  2928. }
  2929. /*
  2930. * Build zonelists ordered by zone and nodes within zones.
  2931. * This results in conserving DMA zone[s] until all Normal memory is
  2932. * exhausted, but results in overflowing to remote node while memory
  2933. * may still exist in local DMA zone.
  2934. */
  2935. static int node_order[MAX_NUMNODES];
  2936. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2937. {
  2938. int pos, j, node;
  2939. int zone_type; /* needs to be signed */
  2940. struct zone *z;
  2941. struct zonelist *zonelist;
  2942. zonelist = &pgdat->node_zonelists[0];
  2943. pos = 0;
  2944. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2945. for (j = 0; j < nr_nodes; j++) {
  2946. node = node_order[j];
  2947. z = &NODE_DATA(node)->node_zones[zone_type];
  2948. if (populated_zone(z)) {
  2949. zoneref_set_zone(z,
  2950. &zonelist->_zonerefs[pos++]);
  2951. check_highest_zone(zone_type);
  2952. }
  2953. }
  2954. }
  2955. zonelist->_zonerefs[pos].zone = NULL;
  2956. zonelist->_zonerefs[pos].zone_idx = 0;
  2957. }
  2958. static int default_zonelist_order(void)
  2959. {
  2960. int nid, zone_type;
  2961. unsigned long low_kmem_size,total_size;
  2962. struct zone *z;
  2963. int average_size;
  2964. /*
  2965. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2966. * If they are really small and used heavily, the system can fall
  2967. * into OOM very easily.
  2968. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2969. */
  2970. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2971. low_kmem_size = 0;
  2972. total_size = 0;
  2973. for_each_online_node(nid) {
  2974. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2975. z = &NODE_DATA(nid)->node_zones[zone_type];
  2976. if (populated_zone(z)) {
  2977. if (zone_type < ZONE_NORMAL)
  2978. low_kmem_size += z->managed_pages;
  2979. total_size += z->managed_pages;
  2980. } else if (zone_type == ZONE_NORMAL) {
  2981. /*
  2982. * If any node has only lowmem, then node order
  2983. * is preferred to allow kernel allocations
  2984. * locally; otherwise, they can easily infringe
  2985. * on other nodes when there is an abundance of
  2986. * lowmem available to allocate from.
  2987. */
  2988. return ZONELIST_ORDER_NODE;
  2989. }
  2990. }
  2991. }
  2992. if (!low_kmem_size || /* there are no DMA area. */
  2993. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2994. return ZONELIST_ORDER_NODE;
  2995. /*
  2996. * look into each node's config.
  2997. * If there is a node whose DMA/DMA32 memory is very big area on
  2998. * local memory, NODE_ORDER may be suitable.
  2999. */
  3000. average_size = total_size /
  3001. (nodes_weight(node_states[N_MEMORY]) + 1);
  3002. for_each_online_node(nid) {
  3003. low_kmem_size = 0;
  3004. total_size = 0;
  3005. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3006. z = &NODE_DATA(nid)->node_zones[zone_type];
  3007. if (populated_zone(z)) {
  3008. if (zone_type < ZONE_NORMAL)
  3009. low_kmem_size += z->present_pages;
  3010. total_size += z->present_pages;
  3011. }
  3012. }
  3013. if (low_kmem_size &&
  3014. total_size > average_size && /* ignore small node */
  3015. low_kmem_size > total_size * 70/100)
  3016. return ZONELIST_ORDER_NODE;
  3017. }
  3018. return ZONELIST_ORDER_ZONE;
  3019. }
  3020. static void set_zonelist_order(void)
  3021. {
  3022. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3023. current_zonelist_order = default_zonelist_order();
  3024. else
  3025. current_zonelist_order = user_zonelist_order;
  3026. }
  3027. static void build_zonelists(pg_data_t *pgdat)
  3028. {
  3029. int j, node, load;
  3030. enum zone_type i;
  3031. nodemask_t used_mask;
  3032. int local_node, prev_node;
  3033. struct zonelist *zonelist;
  3034. int order = current_zonelist_order;
  3035. /* initialize zonelists */
  3036. for (i = 0; i < MAX_ZONELISTS; i++) {
  3037. zonelist = pgdat->node_zonelists + i;
  3038. zonelist->_zonerefs[0].zone = NULL;
  3039. zonelist->_zonerefs[0].zone_idx = 0;
  3040. }
  3041. /* NUMA-aware ordering of nodes */
  3042. local_node = pgdat->node_id;
  3043. load = nr_online_nodes;
  3044. prev_node = local_node;
  3045. nodes_clear(used_mask);
  3046. memset(node_order, 0, sizeof(node_order));
  3047. j = 0;
  3048. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3049. /*
  3050. * We don't want to pressure a particular node.
  3051. * So adding penalty to the first node in same
  3052. * distance group to make it round-robin.
  3053. */
  3054. if (node_distance(local_node, node) !=
  3055. node_distance(local_node, prev_node))
  3056. node_load[node] = load;
  3057. prev_node = node;
  3058. load--;
  3059. if (order == ZONELIST_ORDER_NODE)
  3060. build_zonelists_in_node_order(pgdat, node);
  3061. else
  3062. node_order[j++] = node; /* remember order */
  3063. }
  3064. if (order == ZONELIST_ORDER_ZONE) {
  3065. /* calculate node order -- i.e., DMA last! */
  3066. build_zonelists_in_zone_order(pgdat, j);
  3067. }
  3068. build_thisnode_zonelists(pgdat);
  3069. }
  3070. /* Construct the zonelist performance cache - see further mmzone.h */
  3071. static void build_zonelist_cache(pg_data_t *pgdat)
  3072. {
  3073. struct zonelist *zonelist;
  3074. struct zonelist_cache *zlc;
  3075. struct zoneref *z;
  3076. zonelist = &pgdat->node_zonelists[0];
  3077. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3078. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3079. for (z = zonelist->_zonerefs; z->zone; z++)
  3080. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3081. }
  3082. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3083. /*
  3084. * Return node id of node used for "local" allocations.
  3085. * I.e., first node id of first zone in arg node's generic zonelist.
  3086. * Used for initializing percpu 'numa_mem', which is used primarily
  3087. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3088. */
  3089. int local_memory_node(int node)
  3090. {
  3091. struct zone *zone;
  3092. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3093. gfp_zone(GFP_KERNEL),
  3094. NULL,
  3095. &zone);
  3096. return zone->node;
  3097. }
  3098. #endif
  3099. #else /* CONFIG_NUMA */
  3100. static void set_zonelist_order(void)
  3101. {
  3102. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3103. }
  3104. static void build_zonelists(pg_data_t *pgdat)
  3105. {
  3106. int node, local_node;
  3107. enum zone_type j;
  3108. struct zonelist *zonelist;
  3109. local_node = pgdat->node_id;
  3110. zonelist = &pgdat->node_zonelists[0];
  3111. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  3112. /*
  3113. * Now we build the zonelist so that it contains the zones
  3114. * of all the other nodes.
  3115. * We don't want to pressure a particular node, so when
  3116. * building the zones for node N, we make sure that the
  3117. * zones coming right after the local ones are those from
  3118. * node N+1 (modulo N)
  3119. */
  3120. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3121. if (!node_online(node))
  3122. continue;
  3123. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3124. MAX_NR_ZONES - 1);
  3125. }
  3126. for (node = 0; node < local_node; node++) {
  3127. if (!node_online(node))
  3128. continue;
  3129. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3130. MAX_NR_ZONES - 1);
  3131. }
  3132. zonelist->_zonerefs[j].zone = NULL;
  3133. zonelist->_zonerefs[j].zone_idx = 0;
  3134. }
  3135. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3136. static void build_zonelist_cache(pg_data_t *pgdat)
  3137. {
  3138. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3139. }
  3140. #endif /* CONFIG_NUMA */
  3141. /*
  3142. * Boot pageset table. One per cpu which is going to be used for all
  3143. * zones and all nodes. The parameters will be set in such a way
  3144. * that an item put on a list will immediately be handed over to
  3145. * the buddy list. This is safe since pageset manipulation is done
  3146. * with interrupts disabled.
  3147. *
  3148. * The boot_pagesets must be kept even after bootup is complete for
  3149. * unused processors and/or zones. They do play a role for bootstrapping
  3150. * hotplugged processors.
  3151. *
  3152. * zoneinfo_show() and maybe other functions do
  3153. * not check if the processor is online before following the pageset pointer.
  3154. * Other parts of the kernel may not check if the zone is available.
  3155. */
  3156. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3157. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3158. static void setup_zone_pageset(struct zone *zone);
  3159. /*
  3160. * Global mutex to protect against size modification of zonelists
  3161. * as well as to serialize pageset setup for the new populated zone.
  3162. */
  3163. DEFINE_MUTEX(zonelists_mutex);
  3164. /* return values int ....just for stop_machine() */
  3165. static int __build_all_zonelists(void *data)
  3166. {
  3167. int nid;
  3168. int cpu;
  3169. pg_data_t *self = data;
  3170. #ifdef CONFIG_NUMA
  3171. memset(node_load, 0, sizeof(node_load));
  3172. #endif
  3173. if (self && !node_online(self->node_id)) {
  3174. build_zonelists(self);
  3175. build_zonelist_cache(self);
  3176. }
  3177. for_each_online_node(nid) {
  3178. pg_data_t *pgdat = NODE_DATA(nid);
  3179. build_zonelists(pgdat);
  3180. build_zonelist_cache(pgdat);
  3181. }
  3182. /*
  3183. * Initialize the boot_pagesets that are going to be used
  3184. * for bootstrapping processors. The real pagesets for
  3185. * each zone will be allocated later when the per cpu
  3186. * allocator is available.
  3187. *
  3188. * boot_pagesets are used also for bootstrapping offline
  3189. * cpus if the system is already booted because the pagesets
  3190. * are needed to initialize allocators on a specific cpu too.
  3191. * F.e. the percpu allocator needs the page allocator which
  3192. * needs the percpu allocator in order to allocate its pagesets
  3193. * (a chicken-egg dilemma).
  3194. */
  3195. for_each_possible_cpu(cpu) {
  3196. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3197. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3198. /*
  3199. * We now know the "local memory node" for each node--
  3200. * i.e., the node of the first zone in the generic zonelist.
  3201. * Set up numa_mem percpu variable for on-line cpus. During
  3202. * boot, only the boot cpu should be on-line; we'll init the
  3203. * secondary cpus' numa_mem as they come on-line. During
  3204. * node/memory hotplug, we'll fixup all on-line cpus.
  3205. */
  3206. if (cpu_online(cpu))
  3207. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3208. #endif
  3209. }
  3210. return 0;
  3211. }
  3212. /*
  3213. * Called with zonelists_mutex held always
  3214. * unless system_state == SYSTEM_BOOTING.
  3215. */
  3216. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3217. {
  3218. set_zonelist_order();
  3219. if (system_state == SYSTEM_BOOTING) {
  3220. __build_all_zonelists(NULL);
  3221. mminit_verify_zonelist();
  3222. cpuset_init_current_mems_allowed();
  3223. } else {
  3224. #ifdef CONFIG_MEMORY_HOTPLUG
  3225. if (zone)
  3226. setup_zone_pageset(zone);
  3227. #endif
  3228. /* we have to stop all cpus to guarantee there is no user
  3229. of zonelist */
  3230. stop_machine(__build_all_zonelists, pgdat, NULL);
  3231. /* cpuset refresh routine should be here */
  3232. }
  3233. vm_total_pages = nr_free_pagecache_pages();
  3234. /*
  3235. * Disable grouping by mobility if the number of pages in the
  3236. * system is too low to allow the mechanism to work. It would be
  3237. * more accurate, but expensive to check per-zone. This check is
  3238. * made on memory-hotadd so a system can start with mobility
  3239. * disabled and enable it later
  3240. */
  3241. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3242. page_group_by_mobility_disabled = 1;
  3243. else
  3244. page_group_by_mobility_disabled = 0;
  3245. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3246. "Total pages: %ld\n",
  3247. nr_online_nodes,
  3248. zonelist_order_name[current_zonelist_order],
  3249. page_group_by_mobility_disabled ? "off" : "on",
  3250. vm_total_pages);
  3251. #ifdef CONFIG_NUMA
  3252. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3253. #endif
  3254. }
  3255. /*
  3256. * Helper functions to size the waitqueue hash table.
  3257. * Essentially these want to choose hash table sizes sufficiently
  3258. * large so that collisions trying to wait on pages are rare.
  3259. * But in fact, the number of active page waitqueues on typical
  3260. * systems is ridiculously low, less than 200. So this is even
  3261. * conservative, even though it seems large.
  3262. *
  3263. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3264. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3265. */
  3266. #define PAGES_PER_WAITQUEUE 256
  3267. #ifndef CONFIG_MEMORY_HOTPLUG
  3268. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3269. {
  3270. unsigned long size = 1;
  3271. pages /= PAGES_PER_WAITQUEUE;
  3272. while (size < pages)
  3273. size <<= 1;
  3274. /*
  3275. * Once we have dozens or even hundreds of threads sleeping
  3276. * on IO we've got bigger problems than wait queue collision.
  3277. * Limit the size of the wait table to a reasonable size.
  3278. */
  3279. size = min(size, 4096UL);
  3280. return max(size, 4UL);
  3281. }
  3282. #else
  3283. /*
  3284. * A zone's size might be changed by hot-add, so it is not possible to determine
  3285. * a suitable size for its wait_table. So we use the maximum size now.
  3286. *
  3287. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3288. *
  3289. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3290. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3291. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3292. *
  3293. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3294. * or more by the traditional way. (See above). It equals:
  3295. *
  3296. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3297. * ia64(16K page size) : = ( 8G + 4M)byte.
  3298. * powerpc (64K page size) : = (32G +16M)byte.
  3299. */
  3300. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3301. {
  3302. return 4096UL;
  3303. }
  3304. #endif
  3305. /*
  3306. * This is an integer logarithm so that shifts can be used later
  3307. * to extract the more random high bits from the multiplicative
  3308. * hash function before the remainder is taken.
  3309. */
  3310. static inline unsigned long wait_table_bits(unsigned long size)
  3311. {
  3312. return ffz(~size);
  3313. }
  3314. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  3315. /*
  3316. * Check if a pageblock contains reserved pages
  3317. */
  3318. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3319. {
  3320. unsigned long pfn;
  3321. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3322. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3323. return 1;
  3324. }
  3325. return 0;
  3326. }
  3327. /*
  3328. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3329. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3330. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3331. * higher will lead to a bigger reserve which will get freed as contiguous
  3332. * blocks as reclaim kicks in
  3333. */
  3334. static void setup_zone_migrate_reserve(struct zone *zone)
  3335. {
  3336. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3337. struct page *page;
  3338. unsigned long block_migratetype;
  3339. int reserve;
  3340. /*
  3341. * Get the start pfn, end pfn and the number of blocks to reserve
  3342. * We have to be careful to be aligned to pageblock_nr_pages to
  3343. * make sure that we always check pfn_valid for the first page in
  3344. * the block.
  3345. */
  3346. start_pfn = zone->zone_start_pfn;
  3347. end_pfn = zone_end_pfn(zone);
  3348. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3349. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3350. pageblock_order;
  3351. /*
  3352. * Reserve blocks are generally in place to help high-order atomic
  3353. * allocations that are short-lived. A min_free_kbytes value that
  3354. * would result in more than 2 reserve blocks for atomic allocations
  3355. * is assumed to be in place to help anti-fragmentation for the
  3356. * future allocation of hugepages at runtime.
  3357. */
  3358. reserve = min(2, reserve);
  3359. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3360. if (!pfn_valid(pfn))
  3361. continue;
  3362. page = pfn_to_page(pfn);
  3363. /* Watch out for overlapping nodes */
  3364. if (page_to_nid(page) != zone_to_nid(zone))
  3365. continue;
  3366. block_migratetype = get_pageblock_migratetype(page);
  3367. /* Only test what is necessary when the reserves are not met */
  3368. if (reserve > 0) {
  3369. /*
  3370. * Blocks with reserved pages will never free, skip
  3371. * them.
  3372. */
  3373. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3374. if (pageblock_is_reserved(pfn, block_end_pfn))
  3375. continue;
  3376. /* If this block is reserved, account for it */
  3377. if (block_migratetype == MIGRATE_RESERVE) {
  3378. reserve--;
  3379. continue;
  3380. }
  3381. /* Suitable for reserving if this block is movable */
  3382. if (block_migratetype == MIGRATE_MOVABLE) {
  3383. set_pageblock_migratetype(page,
  3384. MIGRATE_RESERVE);
  3385. move_freepages_block(zone, page,
  3386. MIGRATE_RESERVE);
  3387. reserve--;
  3388. continue;
  3389. }
  3390. }
  3391. /*
  3392. * If the reserve is met and this is a previous reserved block,
  3393. * take it back
  3394. */
  3395. if (block_migratetype == MIGRATE_RESERVE) {
  3396. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3397. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3398. }
  3399. }
  3400. }
  3401. /*
  3402. * Initially all pages are reserved - free ones are freed
  3403. * up by free_all_bootmem() once the early boot process is
  3404. * done. Non-atomic initialization, single-pass.
  3405. */
  3406. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3407. unsigned long start_pfn, enum memmap_context context)
  3408. {
  3409. struct page *page;
  3410. unsigned long end_pfn = start_pfn + size;
  3411. unsigned long pfn;
  3412. struct zone *z;
  3413. if (highest_memmap_pfn < end_pfn - 1)
  3414. highest_memmap_pfn = end_pfn - 1;
  3415. z = &NODE_DATA(nid)->node_zones[zone];
  3416. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3417. /*
  3418. * There can be holes in boot-time mem_map[]s
  3419. * handed to this function. They do not
  3420. * exist on hotplugged memory.
  3421. */
  3422. if (context == MEMMAP_EARLY) {
  3423. if (!early_pfn_valid(pfn))
  3424. continue;
  3425. if (!early_pfn_in_nid(pfn, nid))
  3426. continue;
  3427. }
  3428. page = pfn_to_page(pfn);
  3429. set_page_links(page, zone, nid, pfn);
  3430. mminit_verify_page_links(page, zone, nid, pfn);
  3431. init_page_count(page);
  3432. page_mapcount_reset(page);
  3433. page_nid_reset_last(page);
  3434. SetPageReserved(page);
  3435. /*
  3436. * Mark the block movable so that blocks are reserved for
  3437. * movable at startup. This will force kernel allocations
  3438. * to reserve their blocks rather than leaking throughout
  3439. * the address space during boot when many long-lived
  3440. * kernel allocations are made. Later some blocks near
  3441. * the start are marked MIGRATE_RESERVE by
  3442. * setup_zone_migrate_reserve()
  3443. *
  3444. * bitmap is created for zone's valid pfn range. but memmap
  3445. * can be created for invalid pages (for alignment)
  3446. * check here not to call set_pageblock_migratetype() against
  3447. * pfn out of zone.
  3448. */
  3449. if ((z->zone_start_pfn <= pfn)
  3450. && (pfn < zone_end_pfn(z))
  3451. && !(pfn & (pageblock_nr_pages - 1)))
  3452. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3453. INIT_LIST_HEAD(&page->lru);
  3454. #ifdef WANT_PAGE_VIRTUAL
  3455. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3456. if (!is_highmem_idx(zone))
  3457. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3458. #endif
  3459. }
  3460. }
  3461. static void __meminit zone_init_free_lists(struct zone *zone)
  3462. {
  3463. int order, t;
  3464. for_each_migratetype_order(order, t) {
  3465. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3466. zone->free_area[order].nr_free = 0;
  3467. }
  3468. }
  3469. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3470. #define memmap_init(size, nid, zone, start_pfn) \
  3471. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3472. #endif
  3473. static int __meminit zone_batchsize(struct zone *zone)
  3474. {
  3475. #ifdef CONFIG_MMU
  3476. int batch;
  3477. /*
  3478. * The per-cpu-pages pools are set to around 1000th of the
  3479. * size of the zone. But no more than 1/2 of a meg.
  3480. *
  3481. * OK, so we don't know how big the cache is. So guess.
  3482. */
  3483. batch = zone->managed_pages / 1024;
  3484. if (batch * PAGE_SIZE > 512 * 1024)
  3485. batch = (512 * 1024) / PAGE_SIZE;
  3486. batch /= 4; /* We effectively *= 4 below */
  3487. if (batch < 1)
  3488. batch = 1;
  3489. /*
  3490. * Clamp the batch to a 2^n - 1 value. Having a power
  3491. * of 2 value was found to be more likely to have
  3492. * suboptimal cache aliasing properties in some cases.
  3493. *
  3494. * For example if 2 tasks are alternately allocating
  3495. * batches of pages, one task can end up with a lot
  3496. * of pages of one half of the possible page colors
  3497. * and the other with pages of the other colors.
  3498. */
  3499. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3500. return batch;
  3501. #else
  3502. /* The deferral and batching of frees should be suppressed under NOMMU
  3503. * conditions.
  3504. *
  3505. * The problem is that NOMMU needs to be able to allocate large chunks
  3506. * of contiguous memory as there's no hardware page translation to
  3507. * assemble apparent contiguous memory from discontiguous pages.
  3508. *
  3509. * Queueing large contiguous runs of pages for batching, however,
  3510. * causes the pages to actually be freed in smaller chunks. As there
  3511. * can be a significant delay between the individual batches being
  3512. * recycled, this leads to the once large chunks of space being
  3513. * fragmented and becoming unavailable for high-order allocations.
  3514. */
  3515. return 0;
  3516. #endif
  3517. }
  3518. /*
  3519. * pcp->high and pcp->batch values are related and dependent on one another:
  3520. * ->batch must never be higher then ->high.
  3521. * The following function updates them in a safe manner without read side
  3522. * locking.
  3523. *
  3524. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  3525. * those fields changing asynchronously (acording the the above rule).
  3526. *
  3527. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  3528. * outside of boot time (or some other assurance that no concurrent updaters
  3529. * exist).
  3530. */
  3531. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  3532. unsigned long batch)
  3533. {
  3534. /* start with a fail safe value for batch */
  3535. pcp->batch = 1;
  3536. smp_wmb();
  3537. /* Update high, then batch, in order */
  3538. pcp->high = high;
  3539. smp_wmb();
  3540. pcp->batch = batch;
  3541. }
  3542. /* a companion to pageset_set_high() */
  3543. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  3544. {
  3545. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  3546. }
  3547. static void pageset_init(struct per_cpu_pageset *p)
  3548. {
  3549. struct per_cpu_pages *pcp;
  3550. int migratetype;
  3551. memset(p, 0, sizeof(*p));
  3552. pcp = &p->pcp;
  3553. pcp->count = 0;
  3554. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3555. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3556. }
  3557. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3558. {
  3559. pageset_init(p);
  3560. pageset_set_batch(p, batch);
  3561. }
  3562. /*
  3563. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  3564. * to the value high for the pageset p.
  3565. */
  3566. static void pageset_set_high(struct per_cpu_pageset *p,
  3567. unsigned long high)
  3568. {
  3569. unsigned long batch = max(1UL, high / 4);
  3570. if ((high / 4) > (PAGE_SHIFT * 8))
  3571. batch = PAGE_SHIFT * 8;
  3572. pageset_update(&p->pcp, high, batch);
  3573. }
  3574. static void __meminit pageset_set_high_and_batch(struct zone *zone,
  3575. struct per_cpu_pageset *pcp)
  3576. {
  3577. if (percpu_pagelist_fraction)
  3578. pageset_set_high(pcp,
  3579. (zone->managed_pages /
  3580. percpu_pagelist_fraction));
  3581. else
  3582. pageset_set_batch(pcp, zone_batchsize(zone));
  3583. }
  3584. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  3585. {
  3586. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3587. pageset_init(pcp);
  3588. pageset_set_high_and_batch(zone, pcp);
  3589. }
  3590. static void __meminit setup_zone_pageset(struct zone *zone)
  3591. {
  3592. int cpu;
  3593. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3594. for_each_possible_cpu(cpu)
  3595. zone_pageset_init(zone, cpu);
  3596. }
  3597. /*
  3598. * Allocate per cpu pagesets and initialize them.
  3599. * Before this call only boot pagesets were available.
  3600. */
  3601. void __init setup_per_cpu_pageset(void)
  3602. {
  3603. struct zone *zone;
  3604. for_each_populated_zone(zone)
  3605. setup_zone_pageset(zone);
  3606. }
  3607. static noinline __init_refok
  3608. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3609. {
  3610. int i;
  3611. struct pglist_data *pgdat = zone->zone_pgdat;
  3612. size_t alloc_size;
  3613. /*
  3614. * The per-page waitqueue mechanism uses hashed waitqueues
  3615. * per zone.
  3616. */
  3617. zone->wait_table_hash_nr_entries =
  3618. wait_table_hash_nr_entries(zone_size_pages);
  3619. zone->wait_table_bits =
  3620. wait_table_bits(zone->wait_table_hash_nr_entries);
  3621. alloc_size = zone->wait_table_hash_nr_entries
  3622. * sizeof(wait_queue_head_t);
  3623. if (!slab_is_available()) {
  3624. zone->wait_table = (wait_queue_head_t *)
  3625. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3626. } else {
  3627. /*
  3628. * This case means that a zone whose size was 0 gets new memory
  3629. * via memory hot-add.
  3630. * But it may be the case that a new node was hot-added. In
  3631. * this case vmalloc() will not be able to use this new node's
  3632. * memory - this wait_table must be initialized to use this new
  3633. * node itself as well.
  3634. * To use this new node's memory, further consideration will be
  3635. * necessary.
  3636. */
  3637. zone->wait_table = vmalloc(alloc_size);
  3638. }
  3639. if (!zone->wait_table)
  3640. return -ENOMEM;
  3641. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3642. init_waitqueue_head(zone->wait_table + i);
  3643. return 0;
  3644. }
  3645. static __meminit void zone_pcp_init(struct zone *zone)
  3646. {
  3647. /*
  3648. * per cpu subsystem is not up at this point. The following code
  3649. * relies on the ability of the linker to provide the
  3650. * offset of a (static) per cpu variable into the per cpu area.
  3651. */
  3652. zone->pageset = &boot_pageset;
  3653. if (zone->present_pages)
  3654. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3655. zone->name, zone->present_pages,
  3656. zone_batchsize(zone));
  3657. }
  3658. int __meminit init_currently_empty_zone(struct zone *zone,
  3659. unsigned long zone_start_pfn,
  3660. unsigned long size,
  3661. enum memmap_context context)
  3662. {
  3663. struct pglist_data *pgdat = zone->zone_pgdat;
  3664. int ret;
  3665. ret = zone_wait_table_init(zone, size);
  3666. if (ret)
  3667. return ret;
  3668. pgdat->nr_zones = zone_idx(zone) + 1;
  3669. zone->zone_start_pfn = zone_start_pfn;
  3670. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3671. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3672. pgdat->node_id,
  3673. (unsigned long)zone_idx(zone),
  3674. zone_start_pfn, (zone_start_pfn + size));
  3675. zone_init_free_lists(zone);
  3676. return 0;
  3677. }
  3678. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3679. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3680. /*
  3681. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3682. * Architectures may implement their own version but if add_active_range()
  3683. * was used and there are no special requirements, this is a convenient
  3684. * alternative
  3685. */
  3686. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3687. {
  3688. unsigned long start_pfn, end_pfn;
  3689. int i, nid;
  3690. /*
  3691. * NOTE: The following SMP-unsafe globals are only used early in boot
  3692. * when the kernel is running single-threaded.
  3693. */
  3694. static unsigned long __meminitdata last_start_pfn, last_end_pfn;
  3695. static int __meminitdata last_nid;
  3696. if (last_start_pfn <= pfn && pfn < last_end_pfn)
  3697. return last_nid;
  3698. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3699. if (start_pfn <= pfn && pfn < end_pfn) {
  3700. last_start_pfn = start_pfn;
  3701. last_end_pfn = end_pfn;
  3702. last_nid = nid;
  3703. return nid;
  3704. }
  3705. /* This is a memory hole */
  3706. return -1;
  3707. }
  3708. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3709. int __meminit early_pfn_to_nid(unsigned long pfn)
  3710. {
  3711. int nid;
  3712. nid = __early_pfn_to_nid(pfn);
  3713. if (nid >= 0)
  3714. return nid;
  3715. /* just returns 0 */
  3716. return 0;
  3717. }
  3718. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3719. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3720. {
  3721. int nid;
  3722. nid = __early_pfn_to_nid(pfn);
  3723. if (nid >= 0 && nid != node)
  3724. return false;
  3725. return true;
  3726. }
  3727. #endif
  3728. /**
  3729. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3730. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3731. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3732. *
  3733. * If an architecture guarantees that all ranges registered with
  3734. * add_active_ranges() contain no holes and may be freed, this
  3735. * this function may be used instead of calling free_bootmem() manually.
  3736. */
  3737. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3738. {
  3739. unsigned long start_pfn, end_pfn;
  3740. int i, this_nid;
  3741. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3742. start_pfn = min(start_pfn, max_low_pfn);
  3743. end_pfn = min(end_pfn, max_low_pfn);
  3744. if (start_pfn < end_pfn)
  3745. free_bootmem_node(NODE_DATA(this_nid),
  3746. PFN_PHYS(start_pfn),
  3747. (end_pfn - start_pfn) << PAGE_SHIFT);
  3748. }
  3749. }
  3750. /**
  3751. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3752. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3753. *
  3754. * If an architecture guarantees that all ranges registered with
  3755. * add_active_ranges() contain no holes and may be freed, this
  3756. * function may be used instead of calling memory_present() manually.
  3757. */
  3758. void __init sparse_memory_present_with_active_regions(int nid)
  3759. {
  3760. unsigned long start_pfn, end_pfn;
  3761. int i, this_nid;
  3762. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3763. memory_present(this_nid, start_pfn, end_pfn);
  3764. }
  3765. /**
  3766. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3767. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3768. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3769. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3770. *
  3771. * It returns the start and end page frame of a node based on information
  3772. * provided by an arch calling add_active_range(). If called for a node
  3773. * with no available memory, a warning is printed and the start and end
  3774. * PFNs will be 0.
  3775. */
  3776. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3777. unsigned long *start_pfn, unsigned long *end_pfn)
  3778. {
  3779. unsigned long this_start_pfn, this_end_pfn;
  3780. int i;
  3781. *start_pfn = -1UL;
  3782. *end_pfn = 0;
  3783. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3784. *start_pfn = min(*start_pfn, this_start_pfn);
  3785. *end_pfn = max(*end_pfn, this_end_pfn);
  3786. }
  3787. if (*start_pfn == -1UL)
  3788. *start_pfn = 0;
  3789. }
  3790. /*
  3791. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3792. * assumption is made that zones within a node are ordered in monotonic
  3793. * increasing memory addresses so that the "highest" populated zone is used
  3794. */
  3795. static void __init find_usable_zone_for_movable(void)
  3796. {
  3797. int zone_index;
  3798. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3799. if (zone_index == ZONE_MOVABLE)
  3800. continue;
  3801. if (arch_zone_highest_possible_pfn[zone_index] >
  3802. arch_zone_lowest_possible_pfn[zone_index])
  3803. break;
  3804. }
  3805. VM_BUG_ON(zone_index == -1);
  3806. movable_zone = zone_index;
  3807. }
  3808. /*
  3809. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3810. * because it is sized independent of architecture. Unlike the other zones,
  3811. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3812. * in each node depending on the size of each node and how evenly kernelcore
  3813. * is distributed. This helper function adjusts the zone ranges
  3814. * provided by the architecture for a given node by using the end of the
  3815. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3816. * zones within a node are in order of monotonic increases memory addresses
  3817. */
  3818. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3819. unsigned long zone_type,
  3820. unsigned long node_start_pfn,
  3821. unsigned long node_end_pfn,
  3822. unsigned long *zone_start_pfn,
  3823. unsigned long *zone_end_pfn)
  3824. {
  3825. /* Only adjust if ZONE_MOVABLE is on this node */
  3826. if (zone_movable_pfn[nid]) {
  3827. /* Size ZONE_MOVABLE */
  3828. if (zone_type == ZONE_MOVABLE) {
  3829. *zone_start_pfn = zone_movable_pfn[nid];
  3830. *zone_end_pfn = min(node_end_pfn,
  3831. arch_zone_highest_possible_pfn[movable_zone]);
  3832. /* Adjust for ZONE_MOVABLE starting within this range */
  3833. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3834. *zone_end_pfn > zone_movable_pfn[nid]) {
  3835. *zone_end_pfn = zone_movable_pfn[nid];
  3836. /* Check if this whole range is within ZONE_MOVABLE */
  3837. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3838. *zone_start_pfn = *zone_end_pfn;
  3839. }
  3840. }
  3841. /*
  3842. * Return the number of pages a zone spans in a node, including holes
  3843. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3844. */
  3845. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3846. unsigned long zone_type,
  3847. unsigned long *ignored)
  3848. {
  3849. unsigned long node_start_pfn, node_end_pfn;
  3850. unsigned long zone_start_pfn, zone_end_pfn;
  3851. /* Get the start and end of the node and zone */
  3852. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3853. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3854. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3855. adjust_zone_range_for_zone_movable(nid, zone_type,
  3856. node_start_pfn, node_end_pfn,
  3857. &zone_start_pfn, &zone_end_pfn);
  3858. /* Check that this node has pages within the zone's required range */
  3859. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3860. return 0;
  3861. /* Move the zone boundaries inside the node if necessary */
  3862. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3863. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3864. /* Return the spanned pages */
  3865. return zone_end_pfn - zone_start_pfn;
  3866. }
  3867. /*
  3868. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3869. * then all holes in the requested range will be accounted for.
  3870. */
  3871. unsigned long __meminit __absent_pages_in_range(int nid,
  3872. unsigned long range_start_pfn,
  3873. unsigned long range_end_pfn)
  3874. {
  3875. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3876. unsigned long start_pfn, end_pfn;
  3877. int i;
  3878. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3879. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3880. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3881. nr_absent -= end_pfn - start_pfn;
  3882. }
  3883. return nr_absent;
  3884. }
  3885. /**
  3886. * absent_pages_in_range - Return number of page frames in holes within a range
  3887. * @start_pfn: The start PFN to start searching for holes
  3888. * @end_pfn: The end PFN to stop searching for holes
  3889. *
  3890. * It returns the number of pages frames in memory holes within a range.
  3891. */
  3892. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3893. unsigned long end_pfn)
  3894. {
  3895. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3896. }
  3897. /* Return the number of page frames in holes in a zone on a node */
  3898. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3899. unsigned long zone_type,
  3900. unsigned long *ignored)
  3901. {
  3902. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3903. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3904. unsigned long node_start_pfn, node_end_pfn;
  3905. unsigned long zone_start_pfn, zone_end_pfn;
  3906. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3907. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3908. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3909. adjust_zone_range_for_zone_movable(nid, zone_type,
  3910. node_start_pfn, node_end_pfn,
  3911. &zone_start_pfn, &zone_end_pfn);
  3912. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3913. }
  3914. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3915. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3916. unsigned long zone_type,
  3917. unsigned long *zones_size)
  3918. {
  3919. return zones_size[zone_type];
  3920. }
  3921. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3922. unsigned long zone_type,
  3923. unsigned long *zholes_size)
  3924. {
  3925. if (!zholes_size)
  3926. return 0;
  3927. return zholes_size[zone_type];
  3928. }
  3929. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3930. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3931. unsigned long *zones_size, unsigned long *zholes_size)
  3932. {
  3933. unsigned long realtotalpages, totalpages = 0;
  3934. enum zone_type i;
  3935. for (i = 0; i < MAX_NR_ZONES; i++)
  3936. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3937. zones_size);
  3938. pgdat->node_spanned_pages = totalpages;
  3939. realtotalpages = totalpages;
  3940. for (i = 0; i < MAX_NR_ZONES; i++)
  3941. realtotalpages -=
  3942. zone_absent_pages_in_node(pgdat->node_id, i,
  3943. zholes_size);
  3944. pgdat->node_present_pages = realtotalpages;
  3945. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3946. realtotalpages);
  3947. }
  3948. #ifndef CONFIG_SPARSEMEM
  3949. /*
  3950. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3951. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3952. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3953. * round what is now in bits to nearest long in bits, then return it in
  3954. * bytes.
  3955. */
  3956. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  3957. {
  3958. unsigned long usemapsize;
  3959. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  3960. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3961. usemapsize = usemapsize >> pageblock_order;
  3962. usemapsize *= NR_PAGEBLOCK_BITS;
  3963. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3964. return usemapsize / 8;
  3965. }
  3966. static void __init setup_usemap(struct pglist_data *pgdat,
  3967. struct zone *zone,
  3968. unsigned long zone_start_pfn,
  3969. unsigned long zonesize)
  3970. {
  3971. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  3972. zone->pageblock_flags = NULL;
  3973. if (usemapsize)
  3974. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  3975. usemapsize);
  3976. }
  3977. #else
  3978. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  3979. unsigned long zone_start_pfn, unsigned long zonesize) {}
  3980. #endif /* CONFIG_SPARSEMEM */
  3981. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3982. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3983. void __init set_pageblock_order(void)
  3984. {
  3985. unsigned int order;
  3986. /* Check that pageblock_nr_pages has not already been setup */
  3987. if (pageblock_order)
  3988. return;
  3989. if (HPAGE_SHIFT > PAGE_SHIFT)
  3990. order = HUGETLB_PAGE_ORDER;
  3991. else
  3992. order = MAX_ORDER - 1;
  3993. /*
  3994. * Assume the largest contiguous order of interest is a huge page.
  3995. * This value may be variable depending on boot parameters on IA64 and
  3996. * powerpc.
  3997. */
  3998. pageblock_order = order;
  3999. }
  4000. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4001. /*
  4002. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4003. * is unused as pageblock_order is set at compile-time. See
  4004. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4005. * the kernel config
  4006. */
  4007. void __init set_pageblock_order(void)
  4008. {
  4009. }
  4010. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4011. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4012. unsigned long present_pages)
  4013. {
  4014. unsigned long pages = spanned_pages;
  4015. /*
  4016. * Provide a more accurate estimation if there are holes within
  4017. * the zone and SPARSEMEM is in use. If there are holes within the
  4018. * zone, each populated memory region may cost us one or two extra
  4019. * memmap pages due to alignment because memmap pages for each
  4020. * populated regions may not naturally algined on page boundary.
  4021. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4022. */
  4023. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4024. IS_ENABLED(CONFIG_SPARSEMEM))
  4025. pages = present_pages;
  4026. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4027. }
  4028. /*
  4029. * Set up the zone data structures:
  4030. * - mark all pages reserved
  4031. * - mark all memory queues empty
  4032. * - clear the memory bitmaps
  4033. *
  4034. * NOTE: pgdat should get zeroed by caller.
  4035. */
  4036. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  4037. unsigned long *zones_size, unsigned long *zholes_size)
  4038. {
  4039. enum zone_type j;
  4040. int nid = pgdat->node_id;
  4041. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4042. int ret;
  4043. pgdat_resize_init(pgdat);
  4044. #ifdef CONFIG_NUMA_BALANCING
  4045. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4046. pgdat->numabalancing_migrate_nr_pages = 0;
  4047. pgdat->numabalancing_migrate_next_window = jiffies;
  4048. #endif
  4049. init_waitqueue_head(&pgdat->kswapd_wait);
  4050. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4051. pgdat_page_cgroup_init(pgdat);
  4052. for (j = 0; j < MAX_NR_ZONES; j++) {
  4053. struct zone *zone = pgdat->node_zones + j;
  4054. unsigned long size, realsize, freesize, memmap_pages;
  4055. size = zone_spanned_pages_in_node(nid, j, zones_size);
  4056. realsize = freesize = size - zone_absent_pages_in_node(nid, j,
  4057. zholes_size);
  4058. /*
  4059. * Adjust freesize so that it accounts for how much memory
  4060. * is used by this zone for memmap. This affects the watermark
  4061. * and per-cpu initialisations
  4062. */
  4063. memmap_pages = calc_memmap_size(size, realsize);
  4064. if (freesize >= memmap_pages) {
  4065. freesize -= memmap_pages;
  4066. if (memmap_pages)
  4067. printk(KERN_DEBUG
  4068. " %s zone: %lu pages used for memmap\n",
  4069. zone_names[j], memmap_pages);
  4070. } else
  4071. printk(KERN_WARNING
  4072. " %s zone: %lu pages exceeds freesize %lu\n",
  4073. zone_names[j], memmap_pages, freesize);
  4074. /* Account for reserved pages */
  4075. if (j == 0 && freesize > dma_reserve) {
  4076. freesize -= dma_reserve;
  4077. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4078. zone_names[0], dma_reserve);
  4079. }
  4080. if (!is_highmem_idx(j))
  4081. nr_kernel_pages += freesize;
  4082. /* Charge for highmem memmap if there are enough kernel pages */
  4083. else if (nr_kernel_pages > memmap_pages * 2)
  4084. nr_kernel_pages -= memmap_pages;
  4085. nr_all_pages += freesize;
  4086. zone->spanned_pages = size;
  4087. zone->present_pages = realsize;
  4088. /*
  4089. * Set an approximate value for lowmem here, it will be adjusted
  4090. * when the bootmem allocator frees pages into the buddy system.
  4091. * And all highmem pages will be managed by the buddy system.
  4092. */
  4093. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4094. #ifdef CONFIG_NUMA
  4095. zone->node = nid;
  4096. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4097. / 100;
  4098. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4099. #endif
  4100. zone->name = zone_names[j];
  4101. spin_lock_init(&zone->lock);
  4102. spin_lock_init(&zone->lru_lock);
  4103. zone_seqlock_init(zone);
  4104. zone->zone_pgdat = pgdat;
  4105. zone_pcp_init(zone);
  4106. lruvec_init(&zone->lruvec);
  4107. if (!size)
  4108. continue;
  4109. set_pageblock_order();
  4110. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4111. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4112. size, MEMMAP_EARLY);
  4113. BUG_ON(ret);
  4114. memmap_init(size, nid, j, zone_start_pfn);
  4115. zone_start_pfn += size;
  4116. }
  4117. }
  4118. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4119. {
  4120. /* Skip empty nodes */
  4121. if (!pgdat->node_spanned_pages)
  4122. return;
  4123. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4124. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4125. if (!pgdat->node_mem_map) {
  4126. unsigned long size, start, end;
  4127. struct page *map;
  4128. /*
  4129. * The zone's endpoints aren't required to be MAX_ORDER
  4130. * aligned but the node_mem_map endpoints must be in order
  4131. * for the buddy allocator to function correctly.
  4132. */
  4133. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4134. end = pgdat_end_pfn(pgdat);
  4135. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4136. size = (end - start) * sizeof(struct page);
  4137. map = alloc_remap(pgdat->node_id, size);
  4138. if (!map)
  4139. map = alloc_bootmem_node_nopanic(pgdat, size);
  4140. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4141. }
  4142. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4143. /*
  4144. * With no DISCONTIG, the global mem_map is just set as node 0's
  4145. */
  4146. if (pgdat == NODE_DATA(0)) {
  4147. mem_map = NODE_DATA(0)->node_mem_map;
  4148. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4149. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4150. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4151. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4152. }
  4153. #endif
  4154. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4155. }
  4156. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4157. unsigned long node_start_pfn, unsigned long *zholes_size)
  4158. {
  4159. pg_data_t *pgdat = NODE_DATA(nid);
  4160. /* pg_data_t should be reset to zero when it's allocated */
  4161. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4162. pgdat->node_id = nid;
  4163. pgdat->node_start_pfn = node_start_pfn;
  4164. init_zone_allows_reclaim(nid);
  4165. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  4166. alloc_node_mem_map(pgdat);
  4167. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4168. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4169. nid, (unsigned long)pgdat,
  4170. (unsigned long)pgdat->node_mem_map);
  4171. #endif
  4172. free_area_init_core(pgdat, zones_size, zholes_size);
  4173. }
  4174. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4175. #if MAX_NUMNODES > 1
  4176. /*
  4177. * Figure out the number of possible node ids.
  4178. */
  4179. void __init setup_nr_node_ids(void)
  4180. {
  4181. unsigned int node;
  4182. unsigned int highest = 0;
  4183. for_each_node_mask(node, node_possible_map)
  4184. highest = node;
  4185. nr_node_ids = highest + 1;
  4186. }
  4187. #endif
  4188. /**
  4189. * node_map_pfn_alignment - determine the maximum internode alignment
  4190. *
  4191. * This function should be called after node map is populated and sorted.
  4192. * It calculates the maximum power of two alignment which can distinguish
  4193. * all the nodes.
  4194. *
  4195. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4196. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4197. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4198. * shifted, 1GiB is enough and this function will indicate so.
  4199. *
  4200. * This is used to test whether pfn -> nid mapping of the chosen memory
  4201. * model has fine enough granularity to avoid incorrect mapping for the
  4202. * populated node map.
  4203. *
  4204. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4205. * requirement (single node).
  4206. */
  4207. unsigned long __init node_map_pfn_alignment(void)
  4208. {
  4209. unsigned long accl_mask = 0, last_end = 0;
  4210. unsigned long start, end, mask;
  4211. int last_nid = -1;
  4212. int i, nid;
  4213. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4214. if (!start || last_nid < 0 || last_nid == nid) {
  4215. last_nid = nid;
  4216. last_end = end;
  4217. continue;
  4218. }
  4219. /*
  4220. * Start with a mask granular enough to pin-point to the
  4221. * start pfn and tick off bits one-by-one until it becomes
  4222. * too coarse to separate the current node from the last.
  4223. */
  4224. mask = ~((1 << __ffs(start)) - 1);
  4225. while (mask && last_end <= (start & (mask << 1)))
  4226. mask <<= 1;
  4227. /* accumulate all internode masks */
  4228. accl_mask |= mask;
  4229. }
  4230. /* convert mask to number of pages */
  4231. return ~accl_mask + 1;
  4232. }
  4233. /* Find the lowest pfn for a node */
  4234. static unsigned long __init find_min_pfn_for_node(int nid)
  4235. {
  4236. unsigned long min_pfn = ULONG_MAX;
  4237. unsigned long start_pfn;
  4238. int i;
  4239. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4240. min_pfn = min(min_pfn, start_pfn);
  4241. if (min_pfn == ULONG_MAX) {
  4242. printk(KERN_WARNING
  4243. "Could not find start_pfn for node %d\n", nid);
  4244. return 0;
  4245. }
  4246. return min_pfn;
  4247. }
  4248. /**
  4249. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4250. *
  4251. * It returns the minimum PFN based on information provided via
  4252. * add_active_range().
  4253. */
  4254. unsigned long __init find_min_pfn_with_active_regions(void)
  4255. {
  4256. return find_min_pfn_for_node(MAX_NUMNODES);
  4257. }
  4258. /*
  4259. * early_calculate_totalpages()
  4260. * Sum pages in active regions for movable zone.
  4261. * Populate N_MEMORY for calculating usable_nodes.
  4262. */
  4263. static unsigned long __init early_calculate_totalpages(void)
  4264. {
  4265. unsigned long totalpages = 0;
  4266. unsigned long start_pfn, end_pfn;
  4267. int i, nid;
  4268. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4269. unsigned long pages = end_pfn - start_pfn;
  4270. totalpages += pages;
  4271. if (pages)
  4272. node_set_state(nid, N_MEMORY);
  4273. }
  4274. return totalpages;
  4275. }
  4276. /*
  4277. * Find the PFN the Movable zone begins in each node. Kernel memory
  4278. * is spread evenly between nodes as long as the nodes have enough
  4279. * memory. When they don't, some nodes will have more kernelcore than
  4280. * others
  4281. */
  4282. static void __init find_zone_movable_pfns_for_nodes(void)
  4283. {
  4284. int i, nid;
  4285. unsigned long usable_startpfn;
  4286. unsigned long kernelcore_node, kernelcore_remaining;
  4287. /* save the state before borrow the nodemask */
  4288. nodemask_t saved_node_state = node_states[N_MEMORY];
  4289. unsigned long totalpages = early_calculate_totalpages();
  4290. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4291. /*
  4292. * If movablecore was specified, calculate what size of
  4293. * kernelcore that corresponds so that memory usable for
  4294. * any allocation type is evenly spread. If both kernelcore
  4295. * and movablecore are specified, then the value of kernelcore
  4296. * will be used for required_kernelcore if it's greater than
  4297. * what movablecore would have allowed.
  4298. */
  4299. if (required_movablecore) {
  4300. unsigned long corepages;
  4301. /*
  4302. * Round-up so that ZONE_MOVABLE is at least as large as what
  4303. * was requested by the user
  4304. */
  4305. required_movablecore =
  4306. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4307. corepages = totalpages - required_movablecore;
  4308. required_kernelcore = max(required_kernelcore, corepages);
  4309. }
  4310. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4311. if (!required_kernelcore)
  4312. goto out;
  4313. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4314. find_usable_zone_for_movable();
  4315. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4316. restart:
  4317. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4318. kernelcore_node = required_kernelcore / usable_nodes;
  4319. for_each_node_state(nid, N_MEMORY) {
  4320. unsigned long start_pfn, end_pfn;
  4321. /*
  4322. * Recalculate kernelcore_node if the division per node
  4323. * now exceeds what is necessary to satisfy the requested
  4324. * amount of memory for the kernel
  4325. */
  4326. if (required_kernelcore < kernelcore_node)
  4327. kernelcore_node = required_kernelcore / usable_nodes;
  4328. /*
  4329. * As the map is walked, we track how much memory is usable
  4330. * by the kernel using kernelcore_remaining. When it is
  4331. * 0, the rest of the node is usable by ZONE_MOVABLE
  4332. */
  4333. kernelcore_remaining = kernelcore_node;
  4334. /* Go through each range of PFNs within this node */
  4335. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4336. unsigned long size_pages;
  4337. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4338. if (start_pfn >= end_pfn)
  4339. continue;
  4340. /* Account for what is only usable for kernelcore */
  4341. if (start_pfn < usable_startpfn) {
  4342. unsigned long kernel_pages;
  4343. kernel_pages = min(end_pfn, usable_startpfn)
  4344. - start_pfn;
  4345. kernelcore_remaining -= min(kernel_pages,
  4346. kernelcore_remaining);
  4347. required_kernelcore -= min(kernel_pages,
  4348. required_kernelcore);
  4349. /* Continue if range is now fully accounted */
  4350. if (end_pfn <= usable_startpfn) {
  4351. /*
  4352. * Push zone_movable_pfn to the end so
  4353. * that if we have to rebalance
  4354. * kernelcore across nodes, we will
  4355. * not double account here
  4356. */
  4357. zone_movable_pfn[nid] = end_pfn;
  4358. continue;
  4359. }
  4360. start_pfn = usable_startpfn;
  4361. }
  4362. /*
  4363. * The usable PFN range for ZONE_MOVABLE is from
  4364. * start_pfn->end_pfn. Calculate size_pages as the
  4365. * number of pages used as kernelcore
  4366. */
  4367. size_pages = end_pfn - start_pfn;
  4368. if (size_pages > kernelcore_remaining)
  4369. size_pages = kernelcore_remaining;
  4370. zone_movable_pfn[nid] = start_pfn + size_pages;
  4371. /*
  4372. * Some kernelcore has been met, update counts and
  4373. * break if the kernelcore for this node has been
  4374. * satisified
  4375. */
  4376. required_kernelcore -= min(required_kernelcore,
  4377. size_pages);
  4378. kernelcore_remaining -= size_pages;
  4379. if (!kernelcore_remaining)
  4380. break;
  4381. }
  4382. }
  4383. /*
  4384. * If there is still required_kernelcore, we do another pass with one
  4385. * less node in the count. This will push zone_movable_pfn[nid] further
  4386. * along on the nodes that still have memory until kernelcore is
  4387. * satisified
  4388. */
  4389. usable_nodes--;
  4390. if (usable_nodes && required_kernelcore > usable_nodes)
  4391. goto restart;
  4392. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4393. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4394. zone_movable_pfn[nid] =
  4395. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4396. out:
  4397. /* restore the node_state */
  4398. node_states[N_MEMORY] = saved_node_state;
  4399. }
  4400. /* Any regular or high memory on that node ? */
  4401. static void check_for_memory(pg_data_t *pgdat, int nid)
  4402. {
  4403. enum zone_type zone_type;
  4404. if (N_MEMORY == N_NORMAL_MEMORY)
  4405. return;
  4406. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4407. struct zone *zone = &pgdat->node_zones[zone_type];
  4408. if (zone->present_pages) {
  4409. node_set_state(nid, N_HIGH_MEMORY);
  4410. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4411. zone_type <= ZONE_NORMAL)
  4412. node_set_state(nid, N_NORMAL_MEMORY);
  4413. break;
  4414. }
  4415. }
  4416. }
  4417. /**
  4418. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4419. * @max_zone_pfn: an array of max PFNs for each zone
  4420. *
  4421. * This will call free_area_init_node() for each active node in the system.
  4422. * Using the page ranges provided by add_active_range(), the size of each
  4423. * zone in each node and their holes is calculated. If the maximum PFN
  4424. * between two adjacent zones match, it is assumed that the zone is empty.
  4425. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4426. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4427. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4428. * at arch_max_dma_pfn.
  4429. */
  4430. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4431. {
  4432. unsigned long start_pfn, end_pfn;
  4433. int i, nid;
  4434. /* Record where the zone boundaries are */
  4435. memset(arch_zone_lowest_possible_pfn, 0,
  4436. sizeof(arch_zone_lowest_possible_pfn));
  4437. memset(arch_zone_highest_possible_pfn, 0,
  4438. sizeof(arch_zone_highest_possible_pfn));
  4439. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4440. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4441. for (i = 1; i < MAX_NR_ZONES; i++) {
  4442. if (i == ZONE_MOVABLE)
  4443. continue;
  4444. arch_zone_lowest_possible_pfn[i] =
  4445. arch_zone_highest_possible_pfn[i-1];
  4446. arch_zone_highest_possible_pfn[i] =
  4447. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4448. }
  4449. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4450. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4451. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4452. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4453. find_zone_movable_pfns_for_nodes();
  4454. /* Print out the zone ranges */
  4455. printk("Zone ranges:\n");
  4456. for (i = 0; i < MAX_NR_ZONES; i++) {
  4457. if (i == ZONE_MOVABLE)
  4458. continue;
  4459. printk(KERN_CONT " %-8s ", zone_names[i]);
  4460. if (arch_zone_lowest_possible_pfn[i] ==
  4461. arch_zone_highest_possible_pfn[i])
  4462. printk(KERN_CONT "empty\n");
  4463. else
  4464. printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
  4465. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4466. (arch_zone_highest_possible_pfn[i]
  4467. << PAGE_SHIFT) - 1);
  4468. }
  4469. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4470. printk("Movable zone start for each node\n");
  4471. for (i = 0; i < MAX_NUMNODES; i++) {
  4472. if (zone_movable_pfn[i])
  4473. printk(" Node %d: %#010lx\n", i,
  4474. zone_movable_pfn[i] << PAGE_SHIFT);
  4475. }
  4476. /* Print out the early node map */
  4477. printk("Early memory node ranges\n");
  4478. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4479. printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4480. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4481. /* Initialise every node */
  4482. mminit_verify_pageflags_layout();
  4483. setup_nr_node_ids();
  4484. for_each_online_node(nid) {
  4485. pg_data_t *pgdat = NODE_DATA(nid);
  4486. free_area_init_node(nid, NULL,
  4487. find_min_pfn_for_node(nid), NULL);
  4488. /* Any memory on that node */
  4489. if (pgdat->node_present_pages)
  4490. node_set_state(nid, N_MEMORY);
  4491. check_for_memory(pgdat, nid);
  4492. }
  4493. }
  4494. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4495. {
  4496. unsigned long long coremem;
  4497. if (!p)
  4498. return -EINVAL;
  4499. coremem = memparse(p, &p);
  4500. *core = coremem >> PAGE_SHIFT;
  4501. /* Paranoid check that UL is enough for the coremem value */
  4502. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4503. return 0;
  4504. }
  4505. /*
  4506. * kernelcore=size sets the amount of memory for use for allocations that
  4507. * cannot be reclaimed or migrated.
  4508. */
  4509. static int __init cmdline_parse_kernelcore(char *p)
  4510. {
  4511. return cmdline_parse_core(p, &required_kernelcore);
  4512. }
  4513. /*
  4514. * movablecore=size sets the amount of memory for use for allocations that
  4515. * can be reclaimed or migrated.
  4516. */
  4517. static int __init cmdline_parse_movablecore(char *p)
  4518. {
  4519. return cmdline_parse_core(p, &required_movablecore);
  4520. }
  4521. early_param("kernelcore", cmdline_parse_kernelcore);
  4522. early_param("movablecore", cmdline_parse_movablecore);
  4523. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4524. void adjust_managed_page_count(struct page *page, long count)
  4525. {
  4526. spin_lock(&managed_page_count_lock);
  4527. page_zone(page)->managed_pages += count;
  4528. totalram_pages += count;
  4529. #ifdef CONFIG_HIGHMEM
  4530. if (PageHighMem(page))
  4531. totalhigh_pages += count;
  4532. #endif
  4533. spin_unlock(&managed_page_count_lock);
  4534. }
  4535. EXPORT_SYMBOL(adjust_managed_page_count);
  4536. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  4537. {
  4538. void *pos;
  4539. unsigned long pages = 0;
  4540. start = (void *)PAGE_ALIGN((unsigned long)start);
  4541. end = (void *)((unsigned long)end & PAGE_MASK);
  4542. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  4543. if ((unsigned int)poison <= 0xFF)
  4544. memset(pos, poison, PAGE_SIZE);
  4545. free_reserved_page(virt_to_page(pos));
  4546. }
  4547. if (pages && s)
  4548. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  4549. s, pages << (PAGE_SHIFT - 10), start, end);
  4550. return pages;
  4551. }
  4552. EXPORT_SYMBOL(free_reserved_area);
  4553. #ifdef CONFIG_HIGHMEM
  4554. void free_highmem_page(struct page *page)
  4555. {
  4556. __free_reserved_page(page);
  4557. totalram_pages++;
  4558. page_zone(page)->managed_pages++;
  4559. totalhigh_pages++;
  4560. }
  4561. #endif
  4562. /**
  4563. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4564. * @new_dma_reserve: The number of pages to mark reserved
  4565. *
  4566. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4567. * In the DMA zone, a significant percentage may be consumed by kernel image
  4568. * and other unfreeable allocations which can skew the watermarks badly. This
  4569. * function may optionally be used to account for unfreeable pages in the
  4570. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4571. * smaller per-cpu batchsize.
  4572. */
  4573. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4574. {
  4575. dma_reserve = new_dma_reserve;
  4576. }
  4577. void __init free_area_init(unsigned long *zones_size)
  4578. {
  4579. free_area_init_node(0, zones_size,
  4580. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4581. }
  4582. static int page_alloc_cpu_notify(struct notifier_block *self,
  4583. unsigned long action, void *hcpu)
  4584. {
  4585. int cpu = (unsigned long)hcpu;
  4586. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4587. lru_add_drain_cpu(cpu);
  4588. drain_pages(cpu);
  4589. /*
  4590. * Spill the event counters of the dead processor
  4591. * into the current processors event counters.
  4592. * This artificially elevates the count of the current
  4593. * processor.
  4594. */
  4595. vm_events_fold_cpu(cpu);
  4596. /*
  4597. * Zero the differential counters of the dead processor
  4598. * so that the vm statistics are consistent.
  4599. *
  4600. * This is only okay since the processor is dead and cannot
  4601. * race with what we are doing.
  4602. */
  4603. refresh_cpu_vm_stats(cpu);
  4604. }
  4605. return NOTIFY_OK;
  4606. }
  4607. void __init page_alloc_init(void)
  4608. {
  4609. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4610. }
  4611. /*
  4612. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4613. * or min_free_kbytes changes.
  4614. */
  4615. static void calculate_totalreserve_pages(void)
  4616. {
  4617. struct pglist_data *pgdat;
  4618. unsigned long reserve_pages = 0;
  4619. enum zone_type i, j;
  4620. for_each_online_pgdat(pgdat) {
  4621. for (i = 0; i < MAX_NR_ZONES; i++) {
  4622. struct zone *zone = pgdat->node_zones + i;
  4623. unsigned long max = 0;
  4624. /* Find valid and maximum lowmem_reserve in the zone */
  4625. for (j = i; j < MAX_NR_ZONES; j++) {
  4626. if (zone->lowmem_reserve[j] > max)
  4627. max = zone->lowmem_reserve[j];
  4628. }
  4629. /* we treat the high watermark as reserved pages. */
  4630. max += high_wmark_pages(zone);
  4631. if (max > zone->managed_pages)
  4632. max = zone->managed_pages;
  4633. reserve_pages += max;
  4634. /*
  4635. * Lowmem reserves are not available to
  4636. * GFP_HIGHUSER page cache allocations and
  4637. * kswapd tries to balance zones to their high
  4638. * watermark. As a result, neither should be
  4639. * regarded as dirtyable memory, to prevent a
  4640. * situation where reclaim has to clean pages
  4641. * in order to balance the zones.
  4642. */
  4643. zone->dirty_balance_reserve = max;
  4644. }
  4645. }
  4646. dirty_balance_reserve = reserve_pages;
  4647. totalreserve_pages = reserve_pages;
  4648. }
  4649. /*
  4650. * setup_per_zone_lowmem_reserve - called whenever
  4651. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4652. * has a correct pages reserved value, so an adequate number of
  4653. * pages are left in the zone after a successful __alloc_pages().
  4654. */
  4655. static void setup_per_zone_lowmem_reserve(void)
  4656. {
  4657. struct pglist_data *pgdat;
  4658. enum zone_type j, idx;
  4659. for_each_online_pgdat(pgdat) {
  4660. for (j = 0; j < MAX_NR_ZONES; j++) {
  4661. struct zone *zone = pgdat->node_zones + j;
  4662. unsigned long managed_pages = zone->managed_pages;
  4663. zone->lowmem_reserve[j] = 0;
  4664. idx = j;
  4665. while (idx) {
  4666. struct zone *lower_zone;
  4667. idx--;
  4668. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4669. sysctl_lowmem_reserve_ratio[idx] = 1;
  4670. lower_zone = pgdat->node_zones + idx;
  4671. lower_zone->lowmem_reserve[j] = managed_pages /
  4672. sysctl_lowmem_reserve_ratio[idx];
  4673. managed_pages += lower_zone->managed_pages;
  4674. }
  4675. }
  4676. }
  4677. /* update totalreserve_pages */
  4678. calculate_totalreserve_pages();
  4679. }
  4680. static void __setup_per_zone_wmarks(void)
  4681. {
  4682. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4683. unsigned long lowmem_pages = 0;
  4684. struct zone *zone;
  4685. unsigned long flags;
  4686. /* Calculate total number of !ZONE_HIGHMEM pages */
  4687. for_each_zone(zone) {
  4688. if (!is_highmem(zone))
  4689. lowmem_pages += zone->managed_pages;
  4690. }
  4691. for_each_zone(zone) {
  4692. u64 tmp;
  4693. spin_lock_irqsave(&zone->lock, flags);
  4694. tmp = (u64)pages_min * zone->managed_pages;
  4695. do_div(tmp, lowmem_pages);
  4696. if (is_highmem(zone)) {
  4697. /*
  4698. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4699. * need highmem pages, so cap pages_min to a small
  4700. * value here.
  4701. *
  4702. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4703. * deltas controls asynch page reclaim, and so should
  4704. * not be capped for highmem.
  4705. */
  4706. unsigned long min_pages;
  4707. min_pages = zone->managed_pages / 1024;
  4708. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  4709. zone->watermark[WMARK_MIN] = min_pages;
  4710. } else {
  4711. /*
  4712. * If it's a lowmem zone, reserve a number of pages
  4713. * proportionate to the zone's size.
  4714. */
  4715. zone->watermark[WMARK_MIN] = tmp;
  4716. }
  4717. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4718. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4719. setup_zone_migrate_reserve(zone);
  4720. spin_unlock_irqrestore(&zone->lock, flags);
  4721. }
  4722. /* update totalreserve_pages */
  4723. calculate_totalreserve_pages();
  4724. }
  4725. /**
  4726. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4727. * or when memory is hot-{added|removed}
  4728. *
  4729. * Ensures that the watermark[min,low,high] values for each zone are set
  4730. * correctly with respect to min_free_kbytes.
  4731. */
  4732. void setup_per_zone_wmarks(void)
  4733. {
  4734. mutex_lock(&zonelists_mutex);
  4735. __setup_per_zone_wmarks();
  4736. mutex_unlock(&zonelists_mutex);
  4737. }
  4738. /*
  4739. * The inactive anon list should be small enough that the VM never has to
  4740. * do too much work, but large enough that each inactive page has a chance
  4741. * to be referenced again before it is swapped out.
  4742. *
  4743. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4744. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4745. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4746. * the anonymous pages are kept on the inactive list.
  4747. *
  4748. * total target max
  4749. * memory ratio inactive anon
  4750. * -------------------------------------
  4751. * 10MB 1 5MB
  4752. * 100MB 1 50MB
  4753. * 1GB 3 250MB
  4754. * 10GB 10 0.9GB
  4755. * 100GB 31 3GB
  4756. * 1TB 101 10GB
  4757. * 10TB 320 32GB
  4758. */
  4759. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4760. {
  4761. unsigned int gb, ratio;
  4762. /* Zone size in gigabytes */
  4763. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  4764. if (gb)
  4765. ratio = int_sqrt(10 * gb);
  4766. else
  4767. ratio = 1;
  4768. zone->inactive_ratio = ratio;
  4769. }
  4770. static void __meminit setup_per_zone_inactive_ratio(void)
  4771. {
  4772. struct zone *zone;
  4773. for_each_zone(zone)
  4774. calculate_zone_inactive_ratio(zone);
  4775. }
  4776. /*
  4777. * Initialise min_free_kbytes.
  4778. *
  4779. * For small machines we want it small (128k min). For large machines
  4780. * we want it large (64MB max). But it is not linear, because network
  4781. * bandwidth does not increase linearly with machine size. We use
  4782. *
  4783. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4784. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4785. *
  4786. * which yields
  4787. *
  4788. * 16MB: 512k
  4789. * 32MB: 724k
  4790. * 64MB: 1024k
  4791. * 128MB: 1448k
  4792. * 256MB: 2048k
  4793. * 512MB: 2896k
  4794. * 1024MB: 4096k
  4795. * 2048MB: 5792k
  4796. * 4096MB: 8192k
  4797. * 8192MB: 11584k
  4798. * 16384MB: 16384k
  4799. */
  4800. int __meminit init_per_zone_wmark_min(void)
  4801. {
  4802. unsigned long lowmem_kbytes;
  4803. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4804. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4805. if (min_free_kbytes < 128)
  4806. min_free_kbytes = 128;
  4807. if (min_free_kbytes > 65536)
  4808. min_free_kbytes = 65536;
  4809. setup_per_zone_wmarks();
  4810. refresh_zone_stat_thresholds();
  4811. setup_per_zone_lowmem_reserve();
  4812. setup_per_zone_inactive_ratio();
  4813. return 0;
  4814. }
  4815. module_init(init_per_zone_wmark_min)
  4816. /*
  4817. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4818. * that we can call two helper functions whenever min_free_kbytes
  4819. * changes.
  4820. */
  4821. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4822. void __user *buffer, size_t *length, loff_t *ppos)
  4823. {
  4824. proc_dointvec(table, write, buffer, length, ppos);
  4825. if (write)
  4826. setup_per_zone_wmarks();
  4827. return 0;
  4828. }
  4829. #ifdef CONFIG_NUMA
  4830. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4831. void __user *buffer, size_t *length, loff_t *ppos)
  4832. {
  4833. struct zone *zone;
  4834. int rc;
  4835. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4836. if (rc)
  4837. return rc;
  4838. for_each_zone(zone)
  4839. zone->min_unmapped_pages = (zone->managed_pages *
  4840. sysctl_min_unmapped_ratio) / 100;
  4841. return 0;
  4842. }
  4843. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4844. void __user *buffer, size_t *length, loff_t *ppos)
  4845. {
  4846. struct zone *zone;
  4847. int rc;
  4848. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4849. if (rc)
  4850. return rc;
  4851. for_each_zone(zone)
  4852. zone->min_slab_pages = (zone->managed_pages *
  4853. sysctl_min_slab_ratio) / 100;
  4854. return 0;
  4855. }
  4856. #endif
  4857. /*
  4858. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4859. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4860. * whenever sysctl_lowmem_reserve_ratio changes.
  4861. *
  4862. * The reserve ratio obviously has absolutely no relation with the
  4863. * minimum watermarks. The lowmem reserve ratio can only make sense
  4864. * if in function of the boot time zone sizes.
  4865. */
  4866. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4867. void __user *buffer, size_t *length, loff_t *ppos)
  4868. {
  4869. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4870. setup_per_zone_lowmem_reserve();
  4871. return 0;
  4872. }
  4873. /*
  4874. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4875. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4876. * can have before it gets flushed back to buddy allocator.
  4877. */
  4878. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4879. void __user *buffer, size_t *length, loff_t *ppos)
  4880. {
  4881. struct zone *zone;
  4882. unsigned int cpu;
  4883. int ret;
  4884. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4885. if (!write || (ret < 0))
  4886. return ret;
  4887. mutex_lock(&pcp_batch_high_lock);
  4888. for_each_populated_zone(zone) {
  4889. unsigned long high;
  4890. high = zone->managed_pages / percpu_pagelist_fraction;
  4891. for_each_possible_cpu(cpu)
  4892. pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
  4893. high);
  4894. }
  4895. mutex_unlock(&pcp_batch_high_lock);
  4896. return 0;
  4897. }
  4898. int hashdist = HASHDIST_DEFAULT;
  4899. #ifdef CONFIG_NUMA
  4900. static int __init set_hashdist(char *str)
  4901. {
  4902. if (!str)
  4903. return 0;
  4904. hashdist = simple_strtoul(str, &str, 0);
  4905. return 1;
  4906. }
  4907. __setup("hashdist=", set_hashdist);
  4908. #endif
  4909. /*
  4910. * allocate a large system hash table from bootmem
  4911. * - it is assumed that the hash table must contain an exact power-of-2
  4912. * quantity of entries
  4913. * - limit is the number of hash buckets, not the total allocation size
  4914. */
  4915. void *__init alloc_large_system_hash(const char *tablename,
  4916. unsigned long bucketsize,
  4917. unsigned long numentries,
  4918. int scale,
  4919. int flags,
  4920. unsigned int *_hash_shift,
  4921. unsigned int *_hash_mask,
  4922. unsigned long low_limit,
  4923. unsigned long high_limit)
  4924. {
  4925. unsigned long long max = high_limit;
  4926. unsigned long log2qty, size;
  4927. void *table = NULL;
  4928. /* allow the kernel cmdline to have a say */
  4929. if (!numentries) {
  4930. /* round applicable memory size up to nearest megabyte */
  4931. numentries = nr_kernel_pages;
  4932. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4933. numentries >>= 20 - PAGE_SHIFT;
  4934. numentries <<= 20 - PAGE_SHIFT;
  4935. /* limit to 1 bucket per 2^scale bytes of low memory */
  4936. if (scale > PAGE_SHIFT)
  4937. numentries >>= (scale - PAGE_SHIFT);
  4938. else
  4939. numentries <<= (PAGE_SHIFT - scale);
  4940. /* Make sure we've got at least a 0-order allocation.. */
  4941. if (unlikely(flags & HASH_SMALL)) {
  4942. /* Makes no sense without HASH_EARLY */
  4943. WARN_ON(!(flags & HASH_EARLY));
  4944. if (!(numentries >> *_hash_shift)) {
  4945. numentries = 1UL << *_hash_shift;
  4946. BUG_ON(!numentries);
  4947. }
  4948. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4949. numentries = PAGE_SIZE / bucketsize;
  4950. }
  4951. numentries = roundup_pow_of_two(numentries);
  4952. /* limit allocation size to 1/16 total memory by default */
  4953. if (max == 0) {
  4954. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4955. do_div(max, bucketsize);
  4956. }
  4957. max = min(max, 0x80000000ULL);
  4958. if (numentries < low_limit)
  4959. numentries = low_limit;
  4960. if (numentries > max)
  4961. numentries = max;
  4962. log2qty = ilog2(numentries);
  4963. do {
  4964. size = bucketsize << log2qty;
  4965. if (flags & HASH_EARLY)
  4966. table = alloc_bootmem_nopanic(size);
  4967. else if (hashdist)
  4968. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4969. else {
  4970. /*
  4971. * If bucketsize is not a power-of-two, we may free
  4972. * some pages at the end of hash table which
  4973. * alloc_pages_exact() automatically does
  4974. */
  4975. if (get_order(size) < MAX_ORDER) {
  4976. table = alloc_pages_exact(size, GFP_ATOMIC);
  4977. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4978. }
  4979. }
  4980. } while (!table && size > PAGE_SIZE && --log2qty);
  4981. if (!table)
  4982. panic("Failed to allocate %s hash table\n", tablename);
  4983. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4984. tablename,
  4985. (1UL << log2qty),
  4986. ilog2(size) - PAGE_SHIFT,
  4987. size);
  4988. if (_hash_shift)
  4989. *_hash_shift = log2qty;
  4990. if (_hash_mask)
  4991. *_hash_mask = (1 << log2qty) - 1;
  4992. return table;
  4993. }
  4994. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4995. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4996. unsigned long pfn)
  4997. {
  4998. #ifdef CONFIG_SPARSEMEM
  4999. return __pfn_to_section(pfn)->pageblock_flags;
  5000. #else
  5001. return zone->pageblock_flags;
  5002. #endif /* CONFIG_SPARSEMEM */
  5003. }
  5004. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5005. {
  5006. #ifdef CONFIG_SPARSEMEM
  5007. pfn &= (PAGES_PER_SECTION-1);
  5008. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5009. #else
  5010. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5011. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5012. #endif /* CONFIG_SPARSEMEM */
  5013. }
  5014. /**
  5015. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  5016. * @page: The page within the block of interest
  5017. * @start_bitidx: The first bit of interest to retrieve
  5018. * @end_bitidx: The last bit of interest
  5019. * returns pageblock_bits flags
  5020. */
  5021. unsigned long get_pageblock_flags_group(struct page *page,
  5022. int start_bitidx, int end_bitidx)
  5023. {
  5024. struct zone *zone;
  5025. unsigned long *bitmap;
  5026. unsigned long pfn, bitidx;
  5027. unsigned long flags = 0;
  5028. unsigned long value = 1;
  5029. zone = page_zone(page);
  5030. pfn = page_to_pfn(page);
  5031. bitmap = get_pageblock_bitmap(zone, pfn);
  5032. bitidx = pfn_to_bitidx(zone, pfn);
  5033. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  5034. if (test_bit(bitidx + start_bitidx, bitmap))
  5035. flags |= value;
  5036. return flags;
  5037. }
  5038. /**
  5039. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  5040. * @page: The page within the block of interest
  5041. * @start_bitidx: The first bit of interest
  5042. * @end_bitidx: The last bit of interest
  5043. * @flags: The flags to set
  5044. */
  5045. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  5046. int start_bitidx, int end_bitidx)
  5047. {
  5048. struct zone *zone;
  5049. unsigned long *bitmap;
  5050. unsigned long pfn, bitidx;
  5051. unsigned long value = 1;
  5052. zone = page_zone(page);
  5053. pfn = page_to_pfn(page);
  5054. bitmap = get_pageblock_bitmap(zone, pfn);
  5055. bitidx = pfn_to_bitidx(zone, pfn);
  5056. VM_BUG_ON(!zone_spans_pfn(zone, pfn));
  5057. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  5058. if (flags & value)
  5059. __set_bit(bitidx + start_bitidx, bitmap);
  5060. else
  5061. __clear_bit(bitidx + start_bitidx, bitmap);
  5062. }
  5063. /*
  5064. * This function checks whether pageblock includes unmovable pages or not.
  5065. * If @count is not zero, it is okay to include less @count unmovable pages
  5066. *
  5067. * PageLRU check wihtout isolation or lru_lock could race so that
  5068. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5069. * expect this function should be exact.
  5070. */
  5071. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5072. bool skip_hwpoisoned_pages)
  5073. {
  5074. unsigned long pfn, iter, found;
  5075. int mt;
  5076. /*
  5077. * For avoiding noise data, lru_add_drain_all() should be called
  5078. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5079. */
  5080. if (zone_idx(zone) == ZONE_MOVABLE)
  5081. return false;
  5082. mt = get_pageblock_migratetype(page);
  5083. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5084. return false;
  5085. pfn = page_to_pfn(page);
  5086. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5087. unsigned long check = pfn + iter;
  5088. if (!pfn_valid_within(check))
  5089. continue;
  5090. page = pfn_to_page(check);
  5091. /*
  5092. * We can't use page_count without pin a page
  5093. * because another CPU can free compound page.
  5094. * This check already skips compound tails of THP
  5095. * because their page->_count is zero at all time.
  5096. */
  5097. if (!atomic_read(&page->_count)) {
  5098. if (PageBuddy(page))
  5099. iter += (1 << page_order(page)) - 1;
  5100. continue;
  5101. }
  5102. /*
  5103. * The HWPoisoned page may be not in buddy system, and
  5104. * page_count() is not 0.
  5105. */
  5106. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5107. continue;
  5108. if (!PageLRU(page))
  5109. found++;
  5110. /*
  5111. * If there are RECLAIMABLE pages, we need to check it.
  5112. * But now, memory offline itself doesn't call shrink_slab()
  5113. * and it still to be fixed.
  5114. */
  5115. /*
  5116. * If the page is not RAM, page_count()should be 0.
  5117. * we don't need more check. This is an _used_ not-movable page.
  5118. *
  5119. * The problematic thing here is PG_reserved pages. PG_reserved
  5120. * is set to both of a memory hole page and a _used_ kernel
  5121. * page at boot.
  5122. */
  5123. if (found > count)
  5124. return true;
  5125. }
  5126. return false;
  5127. }
  5128. bool is_pageblock_removable_nolock(struct page *page)
  5129. {
  5130. struct zone *zone;
  5131. unsigned long pfn;
  5132. /*
  5133. * We have to be careful here because we are iterating over memory
  5134. * sections which are not zone aware so we might end up outside of
  5135. * the zone but still within the section.
  5136. * We have to take care about the node as well. If the node is offline
  5137. * its NODE_DATA will be NULL - see page_zone.
  5138. */
  5139. if (!node_online(page_to_nid(page)))
  5140. return false;
  5141. zone = page_zone(page);
  5142. pfn = page_to_pfn(page);
  5143. if (!zone_spans_pfn(zone, pfn))
  5144. return false;
  5145. return !has_unmovable_pages(zone, page, 0, true);
  5146. }
  5147. #ifdef CONFIG_CMA
  5148. static unsigned long pfn_max_align_down(unsigned long pfn)
  5149. {
  5150. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5151. pageblock_nr_pages) - 1);
  5152. }
  5153. static unsigned long pfn_max_align_up(unsigned long pfn)
  5154. {
  5155. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5156. pageblock_nr_pages));
  5157. }
  5158. /* [start, end) must belong to a single zone. */
  5159. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5160. unsigned long start, unsigned long end)
  5161. {
  5162. /* This function is based on compact_zone() from compaction.c. */
  5163. unsigned long nr_reclaimed;
  5164. unsigned long pfn = start;
  5165. unsigned int tries = 0;
  5166. int ret = 0;
  5167. migrate_prep();
  5168. while (pfn < end || !list_empty(&cc->migratepages)) {
  5169. if (fatal_signal_pending(current)) {
  5170. ret = -EINTR;
  5171. break;
  5172. }
  5173. if (list_empty(&cc->migratepages)) {
  5174. cc->nr_migratepages = 0;
  5175. pfn = isolate_migratepages_range(cc->zone, cc,
  5176. pfn, end, true);
  5177. if (!pfn) {
  5178. ret = -EINTR;
  5179. break;
  5180. }
  5181. tries = 0;
  5182. } else if (++tries == 5) {
  5183. ret = ret < 0 ? ret : -EBUSY;
  5184. break;
  5185. }
  5186. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5187. &cc->migratepages);
  5188. cc->nr_migratepages -= nr_reclaimed;
  5189. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5190. 0, MIGRATE_SYNC, MR_CMA);
  5191. }
  5192. if (ret < 0) {
  5193. putback_movable_pages(&cc->migratepages);
  5194. return ret;
  5195. }
  5196. return 0;
  5197. }
  5198. /**
  5199. * alloc_contig_range() -- tries to allocate given range of pages
  5200. * @start: start PFN to allocate
  5201. * @end: one-past-the-last PFN to allocate
  5202. * @migratetype: migratetype of the underlaying pageblocks (either
  5203. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5204. * in range must have the same migratetype and it must
  5205. * be either of the two.
  5206. *
  5207. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5208. * aligned, however it's the caller's responsibility to guarantee that
  5209. * we are the only thread that changes migrate type of pageblocks the
  5210. * pages fall in.
  5211. *
  5212. * The PFN range must belong to a single zone.
  5213. *
  5214. * Returns zero on success or negative error code. On success all
  5215. * pages which PFN is in [start, end) are allocated for the caller and
  5216. * need to be freed with free_contig_range().
  5217. */
  5218. int alloc_contig_range(unsigned long start, unsigned long end,
  5219. unsigned migratetype)
  5220. {
  5221. unsigned long outer_start, outer_end;
  5222. int ret = 0, order;
  5223. struct compact_control cc = {
  5224. .nr_migratepages = 0,
  5225. .order = -1,
  5226. .zone = page_zone(pfn_to_page(start)),
  5227. .sync = true,
  5228. .ignore_skip_hint = true,
  5229. };
  5230. INIT_LIST_HEAD(&cc.migratepages);
  5231. /*
  5232. * What we do here is we mark all pageblocks in range as
  5233. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5234. * have different sizes, and due to the way page allocator
  5235. * work, we align the range to biggest of the two pages so
  5236. * that page allocator won't try to merge buddies from
  5237. * different pageblocks and change MIGRATE_ISOLATE to some
  5238. * other migration type.
  5239. *
  5240. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5241. * migrate the pages from an unaligned range (ie. pages that
  5242. * we are interested in). This will put all the pages in
  5243. * range back to page allocator as MIGRATE_ISOLATE.
  5244. *
  5245. * When this is done, we take the pages in range from page
  5246. * allocator removing them from the buddy system. This way
  5247. * page allocator will never consider using them.
  5248. *
  5249. * This lets us mark the pageblocks back as
  5250. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5251. * aligned range but not in the unaligned, original range are
  5252. * put back to page allocator so that buddy can use them.
  5253. */
  5254. ret = start_isolate_page_range(pfn_max_align_down(start),
  5255. pfn_max_align_up(end), migratetype,
  5256. false);
  5257. if (ret)
  5258. return ret;
  5259. ret = __alloc_contig_migrate_range(&cc, start, end);
  5260. if (ret)
  5261. goto done;
  5262. /*
  5263. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5264. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5265. * more, all pages in [start, end) are free in page allocator.
  5266. * What we are going to do is to allocate all pages from
  5267. * [start, end) (that is remove them from page allocator).
  5268. *
  5269. * The only problem is that pages at the beginning and at the
  5270. * end of interesting range may be not aligned with pages that
  5271. * page allocator holds, ie. they can be part of higher order
  5272. * pages. Because of this, we reserve the bigger range and
  5273. * once this is done free the pages we are not interested in.
  5274. *
  5275. * We don't have to hold zone->lock here because the pages are
  5276. * isolated thus they won't get removed from buddy.
  5277. */
  5278. lru_add_drain_all();
  5279. drain_all_pages();
  5280. order = 0;
  5281. outer_start = start;
  5282. while (!PageBuddy(pfn_to_page(outer_start))) {
  5283. if (++order >= MAX_ORDER) {
  5284. ret = -EBUSY;
  5285. goto done;
  5286. }
  5287. outer_start &= ~0UL << order;
  5288. }
  5289. /* Make sure the range is really isolated. */
  5290. if (test_pages_isolated(outer_start, end, false)) {
  5291. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5292. outer_start, end);
  5293. ret = -EBUSY;
  5294. goto done;
  5295. }
  5296. /* Grab isolated pages from freelists. */
  5297. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5298. if (!outer_end) {
  5299. ret = -EBUSY;
  5300. goto done;
  5301. }
  5302. /* Free head and tail (if any) */
  5303. if (start != outer_start)
  5304. free_contig_range(outer_start, start - outer_start);
  5305. if (end != outer_end)
  5306. free_contig_range(end, outer_end - end);
  5307. done:
  5308. undo_isolate_page_range(pfn_max_align_down(start),
  5309. pfn_max_align_up(end), migratetype);
  5310. return ret;
  5311. }
  5312. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5313. {
  5314. unsigned int count = 0;
  5315. for (; nr_pages--; pfn++) {
  5316. struct page *page = pfn_to_page(pfn);
  5317. count += page_count(page) != 1;
  5318. __free_page(page);
  5319. }
  5320. WARN(count != 0, "%d pages are still in use!\n", count);
  5321. }
  5322. #endif
  5323. #ifdef CONFIG_MEMORY_HOTPLUG
  5324. /*
  5325. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  5326. * page high values need to be recalulated.
  5327. */
  5328. void __meminit zone_pcp_update(struct zone *zone)
  5329. {
  5330. unsigned cpu;
  5331. mutex_lock(&pcp_batch_high_lock);
  5332. for_each_possible_cpu(cpu)
  5333. pageset_set_high_and_batch(zone,
  5334. per_cpu_ptr(zone->pageset, cpu));
  5335. mutex_unlock(&pcp_batch_high_lock);
  5336. }
  5337. #endif
  5338. void zone_pcp_reset(struct zone *zone)
  5339. {
  5340. unsigned long flags;
  5341. int cpu;
  5342. struct per_cpu_pageset *pset;
  5343. /* avoid races with drain_pages() */
  5344. local_irq_save(flags);
  5345. if (zone->pageset != &boot_pageset) {
  5346. for_each_online_cpu(cpu) {
  5347. pset = per_cpu_ptr(zone->pageset, cpu);
  5348. drain_zonestat(zone, pset);
  5349. }
  5350. free_percpu(zone->pageset);
  5351. zone->pageset = &boot_pageset;
  5352. }
  5353. local_irq_restore(flags);
  5354. }
  5355. #ifdef CONFIG_MEMORY_HOTREMOVE
  5356. /*
  5357. * All pages in the range must be isolated before calling this.
  5358. */
  5359. void
  5360. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5361. {
  5362. struct page *page;
  5363. struct zone *zone;
  5364. int order, i;
  5365. unsigned long pfn;
  5366. unsigned long flags;
  5367. /* find the first valid pfn */
  5368. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5369. if (pfn_valid(pfn))
  5370. break;
  5371. if (pfn == end_pfn)
  5372. return;
  5373. zone = page_zone(pfn_to_page(pfn));
  5374. spin_lock_irqsave(&zone->lock, flags);
  5375. pfn = start_pfn;
  5376. while (pfn < end_pfn) {
  5377. if (!pfn_valid(pfn)) {
  5378. pfn++;
  5379. continue;
  5380. }
  5381. page = pfn_to_page(pfn);
  5382. /*
  5383. * The HWPoisoned page may be not in buddy system, and
  5384. * page_count() is not 0.
  5385. */
  5386. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5387. pfn++;
  5388. SetPageReserved(page);
  5389. continue;
  5390. }
  5391. BUG_ON(page_count(page));
  5392. BUG_ON(!PageBuddy(page));
  5393. order = page_order(page);
  5394. #ifdef CONFIG_DEBUG_VM
  5395. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5396. pfn, 1 << order, end_pfn);
  5397. #endif
  5398. list_del(&page->lru);
  5399. rmv_page_order(page);
  5400. zone->free_area[order].nr_free--;
  5401. #ifdef CONFIG_HIGHMEM
  5402. if (PageHighMem(page))
  5403. totalhigh_pages -= 1 << order;
  5404. #endif
  5405. for (i = 0; i < (1 << order); i++)
  5406. SetPageReserved((page+i));
  5407. pfn += (1 << order);
  5408. }
  5409. spin_unlock_irqrestore(&zone->lock, flags);
  5410. }
  5411. #endif
  5412. #ifdef CONFIG_MEMORY_FAILURE
  5413. bool is_free_buddy_page(struct page *page)
  5414. {
  5415. struct zone *zone = page_zone(page);
  5416. unsigned long pfn = page_to_pfn(page);
  5417. unsigned long flags;
  5418. int order;
  5419. spin_lock_irqsave(&zone->lock, flags);
  5420. for (order = 0; order < MAX_ORDER; order++) {
  5421. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5422. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5423. break;
  5424. }
  5425. spin_unlock_irqrestore(&zone->lock, flags);
  5426. return order < MAX_ORDER;
  5427. }
  5428. #endif
  5429. static const struct trace_print_flags pageflag_names[] = {
  5430. {1UL << PG_locked, "locked" },
  5431. {1UL << PG_error, "error" },
  5432. {1UL << PG_referenced, "referenced" },
  5433. {1UL << PG_uptodate, "uptodate" },
  5434. {1UL << PG_dirty, "dirty" },
  5435. {1UL << PG_lru, "lru" },
  5436. {1UL << PG_active, "active" },
  5437. {1UL << PG_slab, "slab" },
  5438. {1UL << PG_owner_priv_1, "owner_priv_1" },
  5439. {1UL << PG_arch_1, "arch_1" },
  5440. {1UL << PG_reserved, "reserved" },
  5441. {1UL << PG_private, "private" },
  5442. {1UL << PG_private_2, "private_2" },
  5443. {1UL << PG_writeback, "writeback" },
  5444. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  5445. {1UL << PG_head, "head" },
  5446. {1UL << PG_tail, "tail" },
  5447. #else
  5448. {1UL << PG_compound, "compound" },
  5449. #endif
  5450. {1UL << PG_swapcache, "swapcache" },
  5451. {1UL << PG_mappedtodisk, "mappedtodisk" },
  5452. {1UL << PG_reclaim, "reclaim" },
  5453. {1UL << PG_swapbacked, "swapbacked" },
  5454. {1UL << PG_unevictable, "unevictable" },
  5455. #ifdef CONFIG_MMU
  5456. {1UL << PG_mlocked, "mlocked" },
  5457. #endif
  5458. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5459. {1UL << PG_uncached, "uncached" },
  5460. #endif
  5461. #ifdef CONFIG_MEMORY_FAILURE
  5462. {1UL << PG_hwpoison, "hwpoison" },
  5463. #endif
  5464. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5465. {1UL << PG_compound_lock, "compound_lock" },
  5466. #endif
  5467. };
  5468. static void dump_page_flags(unsigned long flags)
  5469. {
  5470. const char *delim = "";
  5471. unsigned long mask;
  5472. int i;
  5473. BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
  5474. printk(KERN_ALERT "page flags: %#lx(", flags);
  5475. /* remove zone id */
  5476. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5477. for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
  5478. mask = pageflag_names[i].mask;
  5479. if ((flags & mask) != mask)
  5480. continue;
  5481. flags &= ~mask;
  5482. printk("%s%s", delim, pageflag_names[i].name);
  5483. delim = "|";
  5484. }
  5485. /* check for left over flags */
  5486. if (flags)
  5487. printk("%s%#lx", delim, flags);
  5488. printk(")\n");
  5489. }
  5490. void dump_page(struct page *page)
  5491. {
  5492. printk(KERN_ALERT
  5493. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5494. page, atomic_read(&page->_count), page_mapcount(page),
  5495. page->mapping, page->index);
  5496. dump_page_flags(page->flags);
  5497. mem_cgroup_print_bad_page(page);
  5498. }