siena.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2009 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/pci.h>
  13. #include <linux/module.h>
  14. #include "net_driver.h"
  15. #include "bitfield.h"
  16. #include "efx.h"
  17. #include "nic.h"
  18. #include "mac.h"
  19. #include "spi.h"
  20. #include "regs.h"
  21. #include "io.h"
  22. #include "phy.h"
  23. #include "workarounds.h"
  24. #include "mcdi.h"
  25. #include "mcdi_pcol.h"
  26. /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
  27. static void siena_init_wol(struct efx_nic *efx);
  28. static void siena_push_irq_moderation(struct efx_channel *channel)
  29. {
  30. efx_dword_t timer_cmd;
  31. if (channel->irq_moderation)
  32. EFX_POPULATE_DWORD_2(timer_cmd,
  33. FRF_CZ_TC_TIMER_MODE,
  34. FFE_CZ_TIMER_MODE_INT_HLDOFF,
  35. FRF_CZ_TC_TIMER_VAL,
  36. channel->irq_moderation - 1);
  37. else
  38. EFX_POPULATE_DWORD_2(timer_cmd,
  39. FRF_CZ_TC_TIMER_MODE,
  40. FFE_CZ_TIMER_MODE_DIS,
  41. FRF_CZ_TC_TIMER_VAL, 0);
  42. efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
  43. channel->channel);
  44. }
  45. static void siena_push_multicast_hash(struct efx_nic *efx)
  46. {
  47. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  48. efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
  49. efx->multicast_hash.byte, sizeof(efx->multicast_hash),
  50. NULL, 0, NULL);
  51. }
  52. static int siena_mdio_write(struct net_device *net_dev,
  53. int prtad, int devad, u16 addr, u16 value)
  54. {
  55. struct efx_nic *efx = netdev_priv(net_dev);
  56. uint32_t status;
  57. int rc;
  58. rc = efx_mcdi_mdio_write(efx, efx->mdio_bus, prtad, devad,
  59. addr, value, &status);
  60. if (rc)
  61. return rc;
  62. if (status != MC_CMD_MDIO_STATUS_GOOD)
  63. return -EIO;
  64. return 0;
  65. }
  66. static int siena_mdio_read(struct net_device *net_dev,
  67. int prtad, int devad, u16 addr)
  68. {
  69. struct efx_nic *efx = netdev_priv(net_dev);
  70. uint16_t value;
  71. uint32_t status;
  72. int rc;
  73. rc = efx_mcdi_mdio_read(efx, efx->mdio_bus, prtad, devad,
  74. addr, &value, &status);
  75. if (rc)
  76. return rc;
  77. if (status != MC_CMD_MDIO_STATUS_GOOD)
  78. return -EIO;
  79. return (int)value;
  80. }
  81. /* This call is responsible for hooking in the MAC and PHY operations */
  82. static int siena_probe_port(struct efx_nic *efx)
  83. {
  84. int rc;
  85. /* Hook in PHY operations table */
  86. efx->phy_op = &efx_mcdi_phy_ops;
  87. /* Set up MDIO structure for PHY */
  88. efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
  89. efx->mdio.mdio_read = siena_mdio_read;
  90. efx->mdio.mdio_write = siena_mdio_write;
  91. /* Fill out MDIO structure and loopback modes */
  92. rc = efx->phy_op->probe(efx);
  93. if (rc != 0)
  94. return rc;
  95. /* Initial assumption */
  96. efx->link_state.speed = 10000;
  97. efx->link_state.fd = true;
  98. efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
  99. /* Allocate buffer for stats */
  100. rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
  101. MC_CMD_MAC_NSTATS * sizeof(u64));
  102. if (rc)
  103. return rc;
  104. EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
  105. (u64)efx->stats_buffer.dma_addr,
  106. efx->stats_buffer.addr,
  107. (u64)virt_to_phys(efx->stats_buffer.addr));
  108. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 1);
  109. return 0;
  110. }
  111. void siena_remove_port(struct efx_nic *efx)
  112. {
  113. efx_nic_free_buffer(efx, &efx->stats_buffer);
  114. }
  115. static const struct efx_nic_register_test siena_register_tests[] = {
  116. { FR_AZ_ADR_REGION,
  117. EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
  118. { FR_CZ_USR_EV_CFG,
  119. EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
  120. { FR_AZ_RX_CFG,
  121. EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
  122. { FR_AZ_TX_CFG,
  123. EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
  124. { FR_AZ_TX_RESERVED,
  125. EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
  126. { FR_AZ_SRM_TX_DC_CFG,
  127. EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
  128. { FR_AZ_RX_DC_CFG,
  129. EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
  130. { FR_AZ_RX_DC_PF_WM,
  131. EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
  132. { FR_BZ_DP_CTRL,
  133. EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
  134. { FR_BZ_RX_RSS_TKEY,
  135. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  136. { FR_CZ_RX_RSS_IPV6_REG1,
  137. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  138. { FR_CZ_RX_RSS_IPV6_REG2,
  139. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  140. { FR_CZ_RX_RSS_IPV6_REG3,
  141. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
  142. };
  143. static int siena_test_registers(struct efx_nic *efx)
  144. {
  145. return efx_nic_test_registers(efx, siena_register_tests,
  146. ARRAY_SIZE(siena_register_tests));
  147. }
  148. /**************************************************************************
  149. *
  150. * Device reset
  151. *
  152. **************************************************************************
  153. */
  154. static int siena_reset_hw(struct efx_nic *efx, enum reset_type method)
  155. {
  156. if (method == RESET_TYPE_WORLD)
  157. return efx_mcdi_reset_mc(efx);
  158. else
  159. return efx_mcdi_reset_port(efx);
  160. }
  161. static int siena_probe_nvconfig(struct efx_nic *efx)
  162. {
  163. int rc;
  164. rc = efx_mcdi_get_board_cfg(efx, efx->mac_address, NULL);
  165. if (rc)
  166. return rc;
  167. return 0;
  168. }
  169. static int siena_probe_nic(struct efx_nic *efx)
  170. {
  171. struct siena_nic_data *nic_data;
  172. bool already_attached = 0;
  173. int rc;
  174. /* Allocate storage for hardware specific data */
  175. nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
  176. if (!nic_data)
  177. return -ENOMEM;
  178. efx->nic_data = nic_data;
  179. if (efx_nic_fpga_ver(efx) != 0) {
  180. EFX_ERR(efx, "Siena FPGA not supported\n");
  181. rc = -ENODEV;
  182. goto fail1;
  183. }
  184. efx_mcdi_init(efx);
  185. /* Recover from a failed assertion before probing */
  186. rc = efx_mcdi_handle_assertion(efx);
  187. if (rc)
  188. goto fail1;
  189. rc = efx_mcdi_fwver(efx, &nic_data->fw_version, &nic_data->fw_build);
  190. if (rc) {
  191. EFX_ERR(efx, "Failed to read MCPU firmware version - "
  192. "rc %d\n", rc);
  193. goto fail1; /* MCPU absent? */
  194. }
  195. /* Let the BMC know that the driver is now in charge of link and
  196. * filter settings. We must do this before we reset the NIC */
  197. rc = efx_mcdi_drv_attach(efx, true, &already_attached);
  198. if (rc) {
  199. EFX_ERR(efx, "Unable to register driver with MCPU\n");
  200. goto fail2;
  201. }
  202. if (already_attached)
  203. /* Not a fatal error */
  204. EFX_ERR(efx, "Host already registered with MCPU\n");
  205. /* Now we can reset the NIC */
  206. rc = siena_reset_hw(efx, RESET_TYPE_ALL);
  207. if (rc) {
  208. EFX_ERR(efx, "failed to reset NIC\n");
  209. goto fail3;
  210. }
  211. siena_init_wol(efx);
  212. /* Allocate memory for INT_KER */
  213. rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
  214. if (rc)
  215. goto fail4;
  216. BUG_ON(efx->irq_status.dma_addr & 0x0f);
  217. EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
  218. (unsigned long long)efx->irq_status.dma_addr,
  219. efx->irq_status.addr,
  220. (unsigned long long)virt_to_phys(efx->irq_status.addr));
  221. /* Read in the non-volatile configuration */
  222. rc = siena_probe_nvconfig(efx);
  223. if (rc == -EINVAL) {
  224. EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
  225. efx->phy_type = PHY_TYPE_NONE;
  226. efx->mdio.prtad = MDIO_PRTAD_NONE;
  227. } else if (rc) {
  228. goto fail5;
  229. }
  230. return 0;
  231. fail5:
  232. efx_nic_free_buffer(efx, &efx->irq_status);
  233. fail4:
  234. fail3:
  235. efx_mcdi_drv_attach(efx, false, NULL);
  236. fail2:
  237. fail1:
  238. kfree(efx->nic_data);
  239. return rc;
  240. }
  241. /* This call performs hardware-specific global initialisation, such as
  242. * defining the descriptor cache sizes and number of RSS channels.
  243. * It does not set up any buffers, descriptor rings or event queues.
  244. */
  245. static int siena_init_nic(struct efx_nic *efx)
  246. {
  247. efx_oword_t temp;
  248. int rc;
  249. /* Recover from a failed assertion post-reset */
  250. rc = efx_mcdi_handle_assertion(efx);
  251. if (rc)
  252. return rc;
  253. /* Squash TX of packets of 16 bytes or less */
  254. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  255. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  256. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  257. /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
  258. * descriptors (which is bad).
  259. */
  260. efx_reado(efx, &temp, FR_AZ_TX_CFG);
  261. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
  262. EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
  263. efx_writeo(efx, &temp, FR_AZ_TX_CFG);
  264. efx_reado(efx, &temp, FR_AZ_RX_CFG);
  265. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
  266. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
  267. efx_writeo(efx, &temp, FR_AZ_RX_CFG);
  268. if (efx_nic_rx_xoff_thresh >= 0 || efx_nic_rx_xon_thresh >= 0)
  269. /* No MCDI operation has been defined to set thresholds */
  270. EFX_ERR(efx, "ignoring RX flow control thresholds\n");
  271. /* Enable event logging */
  272. rc = efx_mcdi_log_ctrl(efx, true, false, 0);
  273. if (rc)
  274. return rc;
  275. /* Set destination of both TX and RX Flush events */
  276. EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
  277. efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
  278. EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
  279. efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
  280. efx_nic_init_common(efx);
  281. return 0;
  282. }
  283. static void siena_remove_nic(struct efx_nic *efx)
  284. {
  285. efx_nic_free_buffer(efx, &efx->irq_status);
  286. siena_reset_hw(efx, RESET_TYPE_ALL);
  287. /* Relinquish the device back to the BMC */
  288. if (efx_nic_has_mc(efx))
  289. efx_mcdi_drv_attach(efx, false, NULL);
  290. /* Tear down the private nic state */
  291. kfree(efx->nic_data);
  292. efx->nic_data = NULL;
  293. }
  294. #define STATS_GENERATION_INVALID ((u64)(-1))
  295. static int siena_try_update_nic_stats(struct efx_nic *efx)
  296. {
  297. u64 *dma_stats;
  298. struct efx_mac_stats *mac_stats;
  299. u64 generation_start;
  300. u64 generation_end;
  301. mac_stats = &efx->mac_stats;
  302. dma_stats = (u64 *)efx->stats_buffer.addr;
  303. generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
  304. if (generation_end == STATS_GENERATION_INVALID)
  305. return 0;
  306. rmb();
  307. #define MAC_STAT(M, D) \
  308. mac_stats->M = dma_stats[MC_CMD_MAC_ ## D]
  309. MAC_STAT(tx_bytes, TX_BYTES);
  310. MAC_STAT(tx_bad_bytes, TX_BAD_BYTES);
  311. mac_stats->tx_good_bytes = (mac_stats->tx_bytes -
  312. mac_stats->tx_bad_bytes);
  313. MAC_STAT(tx_packets, TX_PKTS);
  314. MAC_STAT(tx_bad, TX_BAD_FCS_PKTS);
  315. MAC_STAT(tx_pause, TX_PAUSE_PKTS);
  316. MAC_STAT(tx_control, TX_CONTROL_PKTS);
  317. MAC_STAT(tx_unicast, TX_UNICAST_PKTS);
  318. MAC_STAT(tx_multicast, TX_MULTICAST_PKTS);
  319. MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS);
  320. MAC_STAT(tx_lt64, TX_LT64_PKTS);
  321. MAC_STAT(tx_64, TX_64_PKTS);
  322. MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS);
  323. MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS);
  324. MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS);
  325. MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS);
  326. MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS);
  327. MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS);
  328. MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS);
  329. mac_stats->tx_collision = 0;
  330. MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS);
  331. MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS);
  332. MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS);
  333. MAC_STAT(tx_deferred, TX_DEFERRED_PKTS);
  334. MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS);
  335. mac_stats->tx_collision = (mac_stats->tx_single_collision +
  336. mac_stats->tx_multiple_collision +
  337. mac_stats->tx_excessive_collision +
  338. mac_stats->tx_late_collision);
  339. MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS);
  340. MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS);
  341. MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS);
  342. MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS);
  343. MAC_STAT(rx_bytes, RX_BYTES);
  344. MAC_STAT(rx_bad_bytes, RX_BAD_BYTES);
  345. mac_stats->rx_good_bytes = (mac_stats->rx_bytes -
  346. mac_stats->rx_bad_bytes);
  347. MAC_STAT(rx_packets, RX_PKTS);
  348. MAC_STAT(rx_good, RX_GOOD_PKTS);
  349. mac_stats->rx_bad = mac_stats->rx_packets - mac_stats->rx_good;
  350. MAC_STAT(rx_pause, RX_PAUSE_PKTS);
  351. MAC_STAT(rx_control, RX_CONTROL_PKTS);
  352. MAC_STAT(rx_unicast, RX_UNICAST_PKTS);
  353. MAC_STAT(rx_multicast, RX_MULTICAST_PKTS);
  354. MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS);
  355. MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS);
  356. MAC_STAT(rx_64, RX_64_PKTS);
  357. MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS);
  358. MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS);
  359. MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS);
  360. MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS);
  361. MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS);
  362. MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS);
  363. MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS);
  364. mac_stats->rx_bad_lt64 = 0;
  365. mac_stats->rx_bad_64_to_15xx = 0;
  366. mac_stats->rx_bad_15xx_to_jumbo = 0;
  367. MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS);
  368. MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS);
  369. mac_stats->rx_missed = 0;
  370. MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS);
  371. MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS);
  372. MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS);
  373. MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS);
  374. MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS);
  375. mac_stats->rx_good_lt64 = 0;
  376. efx->n_rx_nodesc_drop_cnt = dma_stats[MC_CMD_MAC_RX_NODESC_DROPS];
  377. #undef MAC_STAT
  378. rmb();
  379. generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
  380. if (generation_end != generation_start)
  381. return -EAGAIN;
  382. return 0;
  383. }
  384. static void siena_update_nic_stats(struct efx_nic *efx)
  385. {
  386. while (siena_try_update_nic_stats(efx) == -EAGAIN)
  387. cpu_relax();
  388. }
  389. static void siena_start_nic_stats(struct efx_nic *efx)
  390. {
  391. u64 *dma_stats = (u64 *)efx->stats_buffer.addr;
  392. dma_stats[MC_CMD_MAC_GENERATION_END] = STATS_GENERATION_INVALID;
  393. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr,
  394. MC_CMD_MAC_NSTATS * sizeof(u64), 1, 0);
  395. }
  396. static void siena_stop_nic_stats(struct efx_nic *efx)
  397. {
  398. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 0);
  399. }
  400. void siena_print_fwver(struct efx_nic *efx, char *buf, size_t len)
  401. {
  402. struct siena_nic_data *nic_data = efx->nic_data;
  403. snprintf(buf, len, "%u.%u.%u.%u",
  404. (unsigned int)(nic_data->fw_version >> 48),
  405. (unsigned int)(nic_data->fw_version >> 32 & 0xffff),
  406. (unsigned int)(nic_data->fw_version >> 16 & 0xffff),
  407. (unsigned int)(nic_data->fw_version & 0xffff));
  408. }
  409. /**************************************************************************
  410. *
  411. * Wake on LAN
  412. *
  413. **************************************************************************
  414. */
  415. static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
  416. {
  417. struct siena_nic_data *nic_data = efx->nic_data;
  418. wol->supported = WAKE_MAGIC;
  419. if (nic_data->wol_filter_id != -1)
  420. wol->wolopts = WAKE_MAGIC;
  421. else
  422. wol->wolopts = 0;
  423. memset(&wol->sopass, 0, sizeof(wol->sopass));
  424. }
  425. static int siena_set_wol(struct efx_nic *efx, u32 type)
  426. {
  427. struct siena_nic_data *nic_data = efx->nic_data;
  428. int rc;
  429. if (type & ~WAKE_MAGIC)
  430. return -EINVAL;
  431. if (type & WAKE_MAGIC) {
  432. if (nic_data->wol_filter_id != -1)
  433. efx_mcdi_wol_filter_remove(efx,
  434. nic_data->wol_filter_id);
  435. rc = efx_mcdi_wol_filter_set_magic(efx, efx->mac_address,
  436. &nic_data->wol_filter_id);
  437. if (rc)
  438. goto fail;
  439. pci_wake_from_d3(efx->pci_dev, true);
  440. } else {
  441. rc = efx_mcdi_wol_filter_reset(efx);
  442. nic_data->wol_filter_id = -1;
  443. pci_wake_from_d3(efx->pci_dev, false);
  444. if (rc)
  445. goto fail;
  446. }
  447. return 0;
  448. fail:
  449. EFX_ERR(efx, "%s failed: type=%d rc=%d\n", __func__, type, rc);
  450. return rc;
  451. }
  452. static void siena_init_wol(struct efx_nic *efx)
  453. {
  454. struct siena_nic_data *nic_data = efx->nic_data;
  455. int rc;
  456. rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
  457. if (rc != 0) {
  458. /* If it failed, attempt to get into a synchronised
  459. * state with MC by resetting any set WoL filters */
  460. efx_mcdi_wol_filter_reset(efx);
  461. nic_data->wol_filter_id = -1;
  462. } else if (nic_data->wol_filter_id != -1) {
  463. pci_wake_from_d3(efx->pci_dev, true);
  464. }
  465. }
  466. /**************************************************************************
  467. *
  468. * Revision-dependent attributes used by efx.c and nic.c
  469. *
  470. **************************************************************************
  471. */
  472. struct efx_nic_type siena_a0_nic_type = {
  473. .probe = siena_probe_nic,
  474. .remove = siena_remove_nic,
  475. .init = siena_init_nic,
  476. .fini = efx_port_dummy_op_void,
  477. .monitor = NULL,
  478. .reset = siena_reset_hw,
  479. .probe_port = siena_probe_port,
  480. .remove_port = siena_remove_port,
  481. .prepare_flush = efx_port_dummy_op_void,
  482. .update_stats = siena_update_nic_stats,
  483. .start_stats = siena_start_nic_stats,
  484. .stop_stats = siena_stop_nic_stats,
  485. .set_id_led = efx_mcdi_set_id_led,
  486. .push_irq_moderation = siena_push_irq_moderation,
  487. .push_multicast_hash = siena_push_multicast_hash,
  488. .reconfigure_port = efx_mcdi_phy_reconfigure,
  489. .get_wol = siena_get_wol,
  490. .set_wol = siena_set_wol,
  491. .resume_wol = siena_init_wol,
  492. .test_registers = siena_test_registers,
  493. .default_mac_ops = &efx_mcdi_mac_operations,
  494. .revision = EFX_REV_SIENA_A0,
  495. .mem_map_size = (FR_CZ_MC_TREG_SMEM +
  496. FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS),
  497. .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
  498. .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
  499. .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
  500. .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
  501. .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
  502. .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
  503. .rx_buffer_padding = 0,
  504. .max_interrupt_mode = EFX_INT_MODE_MSIX,
  505. .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
  506. * interrupt handler only supports 32
  507. * channels */
  508. .tx_dc_base = 0x88000,
  509. .rx_dc_base = 0x68000,
  510. .offload_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM,
  511. .reset_world_flags = ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT,
  512. };