i915_gem.c 115 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include <linux/swap.h>
  32. #include <linux/pci.h>
  33. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  34. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  35. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  37. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  38. int write);
  39. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  40. uint64_t offset,
  41. uint64_t size);
  42. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  43. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  44. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  45. unsigned alignment);
  46. static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
  47. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  48. static int i915_gem_evict_something(struct drm_device *dev);
  49. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  50. struct drm_i915_gem_pwrite *args,
  51. struct drm_file *file_priv);
  52. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  53. unsigned long end)
  54. {
  55. drm_i915_private_t *dev_priv = dev->dev_private;
  56. if (start >= end ||
  57. (start & (PAGE_SIZE - 1)) != 0 ||
  58. (end & (PAGE_SIZE - 1)) != 0) {
  59. return -EINVAL;
  60. }
  61. drm_mm_init(&dev_priv->mm.gtt_space, start,
  62. end - start);
  63. dev->gtt_total = (uint32_t) (end - start);
  64. return 0;
  65. }
  66. int
  67. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  68. struct drm_file *file_priv)
  69. {
  70. struct drm_i915_gem_init *args = data;
  71. int ret;
  72. mutex_lock(&dev->struct_mutex);
  73. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  74. mutex_unlock(&dev->struct_mutex);
  75. return ret;
  76. }
  77. int
  78. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  79. struct drm_file *file_priv)
  80. {
  81. struct drm_i915_gem_get_aperture *args = data;
  82. if (!(dev->driver->driver_features & DRIVER_GEM))
  83. return -ENODEV;
  84. args->aper_size = dev->gtt_total;
  85. args->aper_available_size = (args->aper_size -
  86. atomic_read(&dev->pin_memory));
  87. return 0;
  88. }
  89. /**
  90. * Creates a new mm object and returns a handle to it.
  91. */
  92. int
  93. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  94. struct drm_file *file_priv)
  95. {
  96. struct drm_i915_gem_create *args = data;
  97. struct drm_gem_object *obj;
  98. int handle, ret;
  99. args->size = roundup(args->size, PAGE_SIZE);
  100. /* Allocate the new object */
  101. obj = drm_gem_object_alloc(dev, args->size);
  102. if (obj == NULL)
  103. return -ENOMEM;
  104. ret = drm_gem_handle_create(file_priv, obj, &handle);
  105. mutex_lock(&dev->struct_mutex);
  106. drm_gem_object_handle_unreference(obj);
  107. mutex_unlock(&dev->struct_mutex);
  108. if (ret)
  109. return ret;
  110. args->handle = handle;
  111. return 0;
  112. }
  113. static inline int
  114. fast_shmem_read(struct page **pages,
  115. loff_t page_base, int page_offset,
  116. char __user *data,
  117. int length)
  118. {
  119. char __iomem *vaddr;
  120. int unwritten;
  121. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  122. if (vaddr == NULL)
  123. return -ENOMEM;
  124. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  125. kunmap_atomic(vaddr, KM_USER0);
  126. if (unwritten)
  127. return -EFAULT;
  128. return 0;
  129. }
  130. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  131. {
  132. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  133. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  134. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  135. obj_priv->tiling_mode != I915_TILING_NONE;
  136. }
  137. static inline int
  138. slow_shmem_copy(struct page *dst_page,
  139. int dst_offset,
  140. struct page *src_page,
  141. int src_offset,
  142. int length)
  143. {
  144. char *dst_vaddr, *src_vaddr;
  145. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  146. if (dst_vaddr == NULL)
  147. return -ENOMEM;
  148. src_vaddr = kmap_atomic(src_page, KM_USER1);
  149. if (src_vaddr == NULL) {
  150. kunmap_atomic(dst_vaddr, KM_USER0);
  151. return -ENOMEM;
  152. }
  153. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  154. kunmap_atomic(src_vaddr, KM_USER1);
  155. kunmap_atomic(dst_vaddr, KM_USER0);
  156. return 0;
  157. }
  158. static inline int
  159. slow_shmem_bit17_copy(struct page *gpu_page,
  160. int gpu_offset,
  161. struct page *cpu_page,
  162. int cpu_offset,
  163. int length,
  164. int is_read)
  165. {
  166. char *gpu_vaddr, *cpu_vaddr;
  167. /* Use the unswizzled path if this page isn't affected. */
  168. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  169. if (is_read)
  170. return slow_shmem_copy(cpu_page, cpu_offset,
  171. gpu_page, gpu_offset, length);
  172. else
  173. return slow_shmem_copy(gpu_page, gpu_offset,
  174. cpu_page, cpu_offset, length);
  175. }
  176. gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
  177. if (gpu_vaddr == NULL)
  178. return -ENOMEM;
  179. cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
  180. if (cpu_vaddr == NULL) {
  181. kunmap_atomic(gpu_vaddr, KM_USER0);
  182. return -ENOMEM;
  183. }
  184. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  185. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  186. */
  187. while (length > 0) {
  188. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  189. int this_length = min(cacheline_end - gpu_offset, length);
  190. int swizzled_gpu_offset = gpu_offset ^ 64;
  191. if (is_read) {
  192. memcpy(cpu_vaddr + cpu_offset,
  193. gpu_vaddr + swizzled_gpu_offset,
  194. this_length);
  195. } else {
  196. memcpy(gpu_vaddr + swizzled_gpu_offset,
  197. cpu_vaddr + cpu_offset,
  198. this_length);
  199. }
  200. cpu_offset += this_length;
  201. gpu_offset += this_length;
  202. length -= this_length;
  203. }
  204. kunmap_atomic(cpu_vaddr, KM_USER1);
  205. kunmap_atomic(gpu_vaddr, KM_USER0);
  206. return 0;
  207. }
  208. /**
  209. * This is the fast shmem pread path, which attempts to copy_from_user directly
  210. * from the backing pages of the object to the user's address space. On a
  211. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  212. */
  213. static int
  214. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  215. struct drm_i915_gem_pread *args,
  216. struct drm_file *file_priv)
  217. {
  218. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  219. ssize_t remain;
  220. loff_t offset, page_base;
  221. char __user *user_data;
  222. int page_offset, page_length;
  223. int ret;
  224. user_data = (char __user *) (uintptr_t) args->data_ptr;
  225. remain = args->size;
  226. mutex_lock(&dev->struct_mutex);
  227. ret = i915_gem_object_get_pages(obj);
  228. if (ret != 0)
  229. goto fail_unlock;
  230. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  231. args->size);
  232. if (ret != 0)
  233. goto fail_put_pages;
  234. obj_priv = obj->driver_private;
  235. offset = args->offset;
  236. while (remain > 0) {
  237. /* Operation in this page
  238. *
  239. * page_base = page offset within aperture
  240. * page_offset = offset within page
  241. * page_length = bytes to copy for this page
  242. */
  243. page_base = (offset & ~(PAGE_SIZE-1));
  244. page_offset = offset & (PAGE_SIZE-1);
  245. page_length = remain;
  246. if ((page_offset + remain) > PAGE_SIZE)
  247. page_length = PAGE_SIZE - page_offset;
  248. ret = fast_shmem_read(obj_priv->pages,
  249. page_base, page_offset,
  250. user_data, page_length);
  251. if (ret)
  252. goto fail_put_pages;
  253. remain -= page_length;
  254. user_data += page_length;
  255. offset += page_length;
  256. }
  257. fail_put_pages:
  258. i915_gem_object_put_pages(obj);
  259. fail_unlock:
  260. mutex_unlock(&dev->struct_mutex);
  261. return ret;
  262. }
  263. /**
  264. * This is the fallback shmem pread path, which allocates temporary storage
  265. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  266. * can copy out of the object's backing pages while holding the struct mutex
  267. * and not take page faults.
  268. */
  269. static int
  270. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  271. struct drm_i915_gem_pread *args,
  272. struct drm_file *file_priv)
  273. {
  274. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  275. struct mm_struct *mm = current->mm;
  276. struct page **user_pages;
  277. ssize_t remain;
  278. loff_t offset, pinned_pages, i;
  279. loff_t first_data_page, last_data_page, num_pages;
  280. int shmem_page_index, shmem_page_offset;
  281. int data_page_index, data_page_offset;
  282. int page_length;
  283. int ret;
  284. uint64_t data_ptr = args->data_ptr;
  285. int do_bit17_swizzling;
  286. remain = args->size;
  287. /* Pin the user pages containing the data. We can't fault while
  288. * holding the struct mutex, yet we want to hold it while
  289. * dereferencing the user data.
  290. */
  291. first_data_page = data_ptr / PAGE_SIZE;
  292. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  293. num_pages = last_data_page - first_data_page + 1;
  294. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  295. if (user_pages == NULL)
  296. return -ENOMEM;
  297. down_read(&mm->mmap_sem);
  298. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  299. num_pages, 1, 0, user_pages, NULL);
  300. up_read(&mm->mmap_sem);
  301. if (pinned_pages < num_pages) {
  302. ret = -EFAULT;
  303. goto fail_put_user_pages;
  304. }
  305. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  306. mutex_lock(&dev->struct_mutex);
  307. ret = i915_gem_object_get_pages(obj);
  308. if (ret != 0)
  309. goto fail_unlock;
  310. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  311. args->size);
  312. if (ret != 0)
  313. goto fail_put_pages;
  314. obj_priv = obj->driver_private;
  315. offset = args->offset;
  316. while (remain > 0) {
  317. /* Operation in this page
  318. *
  319. * shmem_page_index = page number within shmem file
  320. * shmem_page_offset = offset within page in shmem file
  321. * data_page_index = page number in get_user_pages return
  322. * data_page_offset = offset with data_page_index page.
  323. * page_length = bytes to copy for this page
  324. */
  325. shmem_page_index = offset / PAGE_SIZE;
  326. shmem_page_offset = offset & ~PAGE_MASK;
  327. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  328. data_page_offset = data_ptr & ~PAGE_MASK;
  329. page_length = remain;
  330. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  331. page_length = PAGE_SIZE - shmem_page_offset;
  332. if ((data_page_offset + page_length) > PAGE_SIZE)
  333. page_length = PAGE_SIZE - data_page_offset;
  334. if (do_bit17_swizzling) {
  335. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  336. shmem_page_offset,
  337. user_pages[data_page_index],
  338. data_page_offset,
  339. page_length,
  340. 1);
  341. } else {
  342. ret = slow_shmem_copy(user_pages[data_page_index],
  343. data_page_offset,
  344. obj_priv->pages[shmem_page_index],
  345. shmem_page_offset,
  346. page_length);
  347. }
  348. if (ret)
  349. goto fail_put_pages;
  350. remain -= page_length;
  351. data_ptr += page_length;
  352. offset += page_length;
  353. }
  354. fail_put_pages:
  355. i915_gem_object_put_pages(obj);
  356. fail_unlock:
  357. mutex_unlock(&dev->struct_mutex);
  358. fail_put_user_pages:
  359. for (i = 0; i < pinned_pages; i++) {
  360. SetPageDirty(user_pages[i]);
  361. page_cache_release(user_pages[i]);
  362. }
  363. drm_free_large(user_pages);
  364. return ret;
  365. }
  366. /**
  367. * Reads data from the object referenced by handle.
  368. *
  369. * On error, the contents of *data are undefined.
  370. */
  371. int
  372. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  373. struct drm_file *file_priv)
  374. {
  375. struct drm_i915_gem_pread *args = data;
  376. struct drm_gem_object *obj;
  377. struct drm_i915_gem_object *obj_priv;
  378. int ret;
  379. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  380. if (obj == NULL)
  381. return -EBADF;
  382. obj_priv = obj->driver_private;
  383. /* Bounds check source.
  384. *
  385. * XXX: This could use review for overflow issues...
  386. */
  387. if (args->offset > obj->size || args->size > obj->size ||
  388. args->offset + args->size > obj->size) {
  389. drm_gem_object_unreference(obj);
  390. return -EINVAL;
  391. }
  392. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  393. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  394. } else {
  395. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  396. if (ret != 0)
  397. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  398. file_priv);
  399. }
  400. drm_gem_object_unreference(obj);
  401. return ret;
  402. }
  403. /* This is the fast write path which cannot handle
  404. * page faults in the source data
  405. */
  406. static inline int
  407. fast_user_write(struct io_mapping *mapping,
  408. loff_t page_base, int page_offset,
  409. char __user *user_data,
  410. int length)
  411. {
  412. char *vaddr_atomic;
  413. unsigned long unwritten;
  414. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  415. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  416. user_data, length);
  417. io_mapping_unmap_atomic(vaddr_atomic);
  418. if (unwritten)
  419. return -EFAULT;
  420. return 0;
  421. }
  422. /* Here's the write path which can sleep for
  423. * page faults
  424. */
  425. static inline int
  426. slow_kernel_write(struct io_mapping *mapping,
  427. loff_t gtt_base, int gtt_offset,
  428. struct page *user_page, int user_offset,
  429. int length)
  430. {
  431. char *src_vaddr, *dst_vaddr;
  432. unsigned long unwritten;
  433. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  434. src_vaddr = kmap_atomic(user_page, KM_USER1);
  435. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  436. src_vaddr + user_offset,
  437. length);
  438. kunmap_atomic(src_vaddr, KM_USER1);
  439. io_mapping_unmap_atomic(dst_vaddr);
  440. if (unwritten)
  441. return -EFAULT;
  442. return 0;
  443. }
  444. static inline int
  445. fast_shmem_write(struct page **pages,
  446. loff_t page_base, int page_offset,
  447. char __user *data,
  448. int length)
  449. {
  450. char __iomem *vaddr;
  451. unsigned long unwritten;
  452. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  453. if (vaddr == NULL)
  454. return -ENOMEM;
  455. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  456. kunmap_atomic(vaddr, KM_USER0);
  457. if (unwritten)
  458. return -EFAULT;
  459. return 0;
  460. }
  461. /**
  462. * This is the fast pwrite path, where we copy the data directly from the
  463. * user into the GTT, uncached.
  464. */
  465. static int
  466. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  467. struct drm_i915_gem_pwrite *args,
  468. struct drm_file *file_priv)
  469. {
  470. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  471. drm_i915_private_t *dev_priv = dev->dev_private;
  472. ssize_t remain;
  473. loff_t offset, page_base;
  474. char __user *user_data;
  475. int page_offset, page_length;
  476. int ret;
  477. user_data = (char __user *) (uintptr_t) args->data_ptr;
  478. remain = args->size;
  479. if (!access_ok(VERIFY_READ, user_data, remain))
  480. return -EFAULT;
  481. mutex_lock(&dev->struct_mutex);
  482. ret = i915_gem_object_pin(obj, 0);
  483. if (ret) {
  484. mutex_unlock(&dev->struct_mutex);
  485. return ret;
  486. }
  487. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  488. if (ret)
  489. goto fail;
  490. obj_priv = obj->driver_private;
  491. offset = obj_priv->gtt_offset + args->offset;
  492. while (remain > 0) {
  493. /* Operation in this page
  494. *
  495. * page_base = page offset within aperture
  496. * page_offset = offset within page
  497. * page_length = bytes to copy for this page
  498. */
  499. page_base = (offset & ~(PAGE_SIZE-1));
  500. page_offset = offset & (PAGE_SIZE-1);
  501. page_length = remain;
  502. if ((page_offset + remain) > PAGE_SIZE)
  503. page_length = PAGE_SIZE - page_offset;
  504. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  505. page_offset, user_data, page_length);
  506. /* If we get a fault while copying data, then (presumably) our
  507. * source page isn't available. Return the error and we'll
  508. * retry in the slow path.
  509. */
  510. if (ret)
  511. goto fail;
  512. remain -= page_length;
  513. user_data += page_length;
  514. offset += page_length;
  515. }
  516. fail:
  517. i915_gem_object_unpin(obj);
  518. mutex_unlock(&dev->struct_mutex);
  519. return ret;
  520. }
  521. /**
  522. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  523. * the memory and maps it using kmap_atomic for copying.
  524. *
  525. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  526. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  527. */
  528. static int
  529. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  530. struct drm_i915_gem_pwrite *args,
  531. struct drm_file *file_priv)
  532. {
  533. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  534. drm_i915_private_t *dev_priv = dev->dev_private;
  535. ssize_t remain;
  536. loff_t gtt_page_base, offset;
  537. loff_t first_data_page, last_data_page, num_pages;
  538. loff_t pinned_pages, i;
  539. struct page **user_pages;
  540. struct mm_struct *mm = current->mm;
  541. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  542. int ret;
  543. uint64_t data_ptr = args->data_ptr;
  544. remain = args->size;
  545. /* Pin the user pages containing the data. We can't fault while
  546. * holding the struct mutex, and all of the pwrite implementations
  547. * want to hold it while dereferencing the user data.
  548. */
  549. first_data_page = data_ptr / PAGE_SIZE;
  550. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  551. num_pages = last_data_page - first_data_page + 1;
  552. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  553. if (user_pages == NULL)
  554. return -ENOMEM;
  555. down_read(&mm->mmap_sem);
  556. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  557. num_pages, 0, 0, user_pages, NULL);
  558. up_read(&mm->mmap_sem);
  559. if (pinned_pages < num_pages) {
  560. ret = -EFAULT;
  561. goto out_unpin_pages;
  562. }
  563. mutex_lock(&dev->struct_mutex);
  564. ret = i915_gem_object_pin(obj, 0);
  565. if (ret)
  566. goto out_unlock;
  567. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  568. if (ret)
  569. goto out_unpin_object;
  570. obj_priv = obj->driver_private;
  571. offset = obj_priv->gtt_offset + args->offset;
  572. while (remain > 0) {
  573. /* Operation in this page
  574. *
  575. * gtt_page_base = page offset within aperture
  576. * gtt_page_offset = offset within page in aperture
  577. * data_page_index = page number in get_user_pages return
  578. * data_page_offset = offset with data_page_index page.
  579. * page_length = bytes to copy for this page
  580. */
  581. gtt_page_base = offset & PAGE_MASK;
  582. gtt_page_offset = offset & ~PAGE_MASK;
  583. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  584. data_page_offset = data_ptr & ~PAGE_MASK;
  585. page_length = remain;
  586. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  587. page_length = PAGE_SIZE - gtt_page_offset;
  588. if ((data_page_offset + page_length) > PAGE_SIZE)
  589. page_length = PAGE_SIZE - data_page_offset;
  590. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  591. gtt_page_base, gtt_page_offset,
  592. user_pages[data_page_index],
  593. data_page_offset,
  594. page_length);
  595. /* If we get a fault while copying data, then (presumably) our
  596. * source page isn't available. Return the error and we'll
  597. * retry in the slow path.
  598. */
  599. if (ret)
  600. goto out_unpin_object;
  601. remain -= page_length;
  602. offset += page_length;
  603. data_ptr += page_length;
  604. }
  605. out_unpin_object:
  606. i915_gem_object_unpin(obj);
  607. out_unlock:
  608. mutex_unlock(&dev->struct_mutex);
  609. out_unpin_pages:
  610. for (i = 0; i < pinned_pages; i++)
  611. page_cache_release(user_pages[i]);
  612. drm_free_large(user_pages);
  613. return ret;
  614. }
  615. /**
  616. * This is the fast shmem pwrite path, which attempts to directly
  617. * copy_from_user into the kmapped pages backing the object.
  618. */
  619. static int
  620. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  621. struct drm_i915_gem_pwrite *args,
  622. struct drm_file *file_priv)
  623. {
  624. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  625. ssize_t remain;
  626. loff_t offset, page_base;
  627. char __user *user_data;
  628. int page_offset, page_length;
  629. int ret;
  630. user_data = (char __user *) (uintptr_t) args->data_ptr;
  631. remain = args->size;
  632. mutex_lock(&dev->struct_mutex);
  633. ret = i915_gem_object_get_pages(obj);
  634. if (ret != 0)
  635. goto fail_unlock;
  636. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  637. if (ret != 0)
  638. goto fail_put_pages;
  639. obj_priv = obj->driver_private;
  640. offset = args->offset;
  641. obj_priv->dirty = 1;
  642. while (remain > 0) {
  643. /* Operation in this page
  644. *
  645. * page_base = page offset within aperture
  646. * page_offset = offset within page
  647. * page_length = bytes to copy for this page
  648. */
  649. page_base = (offset & ~(PAGE_SIZE-1));
  650. page_offset = offset & (PAGE_SIZE-1);
  651. page_length = remain;
  652. if ((page_offset + remain) > PAGE_SIZE)
  653. page_length = PAGE_SIZE - page_offset;
  654. ret = fast_shmem_write(obj_priv->pages,
  655. page_base, page_offset,
  656. user_data, page_length);
  657. if (ret)
  658. goto fail_put_pages;
  659. remain -= page_length;
  660. user_data += page_length;
  661. offset += page_length;
  662. }
  663. fail_put_pages:
  664. i915_gem_object_put_pages(obj);
  665. fail_unlock:
  666. mutex_unlock(&dev->struct_mutex);
  667. return ret;
  668. }
  669. /**
  670. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  671. * the memory and maps it using kmap_atomic for copying.
  672. *
  673. * This avoids taking mmap_sem for faulting on the user's address while the
  674. * struct_mutex is held.
  675. */
  676. static int
  677. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  678. struct drm_i915_gem_pwrite *args,
  679. struct drm_file *file_priv)
  680. {
  681. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  682. struct mm_struct *mm = current->mm;
  683. struct page **user_pages;
  684. ssize_t remain;
  685. loff_t offset, pinned_pages, i;
  686. loff_t first_data_page, last_data_page, num_pages;
  687. int shmem_page_index, shmem_page_offset;
  688. int data_page_index, data_page_offset;
  689. int page_length;
  690. int ret;
  691. uint64_t data_ptr = args->data_ptr;
  692. int do_bit17_swizzling;
  693. remain = args->size;
  694. /* Pin the user pages containing the data. We can't fault while
  695. * holding the struct mutex, and all of the pwrite implementations
  696. * want to hold it while dereferencing the user data.
  697. */
  698. first_data_page = data_ptr / PAGE_SIZE;
  699. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  700. num_pages = last_data_page - first_data_page + 1;
  701. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  702. if (user_pages == NULL)
  703. return -ENOMEM;
  704. down_read(&mm->mmap_sem);
  705. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  706. num_pages, 0, 0, user_pages, NULL);
  707. up_read(&mm->mmap_sem);
  708. if (pinned_pages < num_pages) {
  709. ret = -EFAULT;
  710. goto fail_put_user_pages;
  711. }
  712. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  713. mutex_lock(&dev->struct_mutex);
  714. ret = i915_gem_object_get_pages(obj);
  715. if (ret != 0)
  716. goto fail_unlock;
  717. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  718. if (ret != 0)
  719. goto fail_put_pages;
  720. obj_priv = obj->driver_private;
  721. offset = args->offset;
  722. obj_priv->dirty = 1;
  723. while (remain > 0) {
  724. /* Operation in this page
  725. *
  726. * shmem_page_index = page number within shmem file
  727. * shmem_page_offset = offset within page in shmem file
  728. * data_page_index = page number in get_user_pages return
  729. * data_page_offset = offset with data_page_index page.
  730. * page_length = bytes to copy for this page
  731. */
  732. shmem_page_index = offset / PAGE_SIZE;
  733. shmem_page_offset = offset & ~PAGE_MASK;
  734. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  735. data_page_offset = data_ptr & ~PAGE_MASK;
  736. page_length = remain;
  737. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  738. page_length = PAGE_SIZE - shmem_page_offset;
  739. if ((data_page_offset + page_length) > PAGE_SIZE)
  740. page_length = PAGE_SIZE - data_page_offset;
  741. if (do_bit17_swizzling) {
  742. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  743. shmem_page_offset,
  744. user_pages[data_page_index],
  745. data_page_offset,
  746. page_length,
  747. 0);
  748. } else {
  749. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  750. shmem_page_offset,
  751. user_pages[data_page_index],
  752. data_page_offset,
  753. page_length);
  754. }
  755. if (ret)
  756. goto fail_put_pages;
  757. remain -= page_length;
  758. data_ptr += page_length;
  759. offset += page_length;
  760. }
  761. fail_put_pages:
  762. i915_gem_object_put_pages(obj);
  763. fail_unlock:
  764. mutex_unlock(&dev->struct_mutex);
  765. fail_put_user_pages:
  766. for (i = 0; i < pinned_pages; i++)
  767. page_cache_release(user_pages[i]);
  768. drm_free_large(user_pages);
  769. return ret;
  770. }
  771. /**
  772. * Writes data to the object referenced by handle.
  773. *
  774. * On error, the contents of the buffer that were to be modified are undefined.
  775. */
  776. int
  777. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  778. struct drm_file *file_priv)
  779. {
  780. struct drm_i915_gem_pwrite *args = data;
  781. struct drm_gem_object *obj;
  782. struct drm_i915_gem_object *obj_priv;
  783. int ret = 0;
  784. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  785. if (obj == NULL)
  786. return -EBADF;
  787. obj_priv = obj->driver_private;
  788. /* Bounds check destination.
  789. *
  790. * XXX: This could use review for overflow issues...
  791. */
  792. if (args->offset > obj->size || args->size > obj->size ||
  793. args->offset + args->size > obj->size) {
  794. drm_gem_object_unreference(obj);
  795. return -EINVAL;
  796. }
  797. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  798. * it would end up going through the fenced access, and we'll get
  799. * different detiling behavior between reading and writing.
  800. * pread/pwrite currently are reading and writing from the CPU
  801. * perspective, requiring manual detiling by the client.
  802. */
  803. if (obj_priv->phys_obj)
  804. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  805. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  806. dev->gtt_total != 0) {
  807. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  808. if (ret == -EFAULT) {
  809. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  810. file_priv);
  811. }
  812. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  813. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  814. } else {
  815. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  816. if (ret == -EFAULT) {
  817. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  818. file_priv);
  819. }
  820. }
  821. #if WATCH_PWRITE
  822. if (ret)
  823. DRM_INFO("pwrite failed %d\n", ret);
  824. #endif
  825. drm_gem_object_unreference(obj);
  826. return ret;
  827. }
  828. /**
  829. * Called when user space prepares to use an object with the CPU, either
  830. * through the mmap ioctl's mapping or a GTT mapping.
  831. */
  832. int
  833. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  834. struct drm_file *file_priv)
  835. {
  836. struct drm_i915_gem_set_domain *args = data;
  837. struct drm_gem_object *obj;
  838. uint32_t read_domains = args->read_domains;
  839. uint32_t write_domain = args->write_domain;
  840. int ret;
  841. if (!(dev->driver->driver_features & DRIVER_GEM))
  842. return -ENODEV;
  843. /* Only handle setting domains to types used by the CPU. */
  844. if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  845. return -EINVAL;
  846. if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  847. return -EINVAL;
  848. /* Having something in the write domain implies it's in the read
  849. * domain, and only that read domain. Enforce that in the request.
  850. */
  851. if (write_domain != 0 && read_domains != write_domain)
  852. return -EINVAL;
  853. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  854. if (obj == NULL)
  855. return -EBADF;
  856. mutex_lock(&dev->struct_mutex);
  857. #if WATCH_BUF
  858. DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
  859. obj, obj->size, read_domains, write_domain);
  860. #endif
  861. if (read_domains & I915_GEM_DOMAIN_GTT) {
  862. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  863. /* Silently promote "you're not bound, there was nothing to do"
  864. * to success, since the client was just asking us to
  865. * make sure everything was done.
  866. */
  867. if (ret == -EINVAL)
  868. ret = 0;
  869. } else {
  870. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  871. }
  872. drm_gem_object_unreference(obj);
  873. mutex_unlock(&dev->struct_mutex);
  874. return ret;
  875. }
  876. /**
  877. * Called when user space has done writes to this buffer
  878. */
  879. int
  880. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  881. struct drm_file *file_priv)
  882. {
  883. struct drm_i915_gem_sw_finish *args = data;
  884. struct drm_gem_object *obj;
  885. struct drm_i915_gem_object *obj_priv;
  886. int ret = 0;
  887. if (!(dev->driver->driver_features & DRIVER_GEM))
  888. return -ENODEV;
  889. mutex_lock(&dev->struct_mutex);
  890. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  891. if (obj == NULL) {
  892. mutex_unlock(&dev->struct_mutex);
  893. return -EBADF;
  894. }
  895. #if WATCH_BUF
  896. DRM_INFO("%s: sw_finish %d (%p %d)\n",
  897. __func__, args->handle, obj, obj->size);
  898. #endif
  899. obj_priv = obj->driver_private;
  900. /* Pinned buffers may be scanout, so flush the cache */
  901. if (obj_priv->pin_count)
  902. i915_gem_object_flush_cpu_write_domain(obj);
  903. drm_gem_object_unreference(obj);
  904. mutex_unlock(&dev->struct_mutex);
  905. return ret;
  906. }
  907. /**
  908. * Maps the contents of an object, returning the address it is mapped
  909. * into.
  910. *
  911. * While the mapping holds a reference on the contents of the object, it doesn't
  912. * imply a ref on the object itself.
  913. */
  914. int
  915. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  916. struct drm_file *file_priv)
  917. {
  918. struct drm_i915_gem_mmap *args = data;
  919. struct drm_gem_object *obj;
  920. loff_t offset;
  921. unsigned long addr;
  922. if (!(dev->driver->driver_features & DRIVER_GEM))
  923. return -ENODEV;
  924. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  925. if (obj == NULL)
  926. return -EBADF;
  927. offset = args->offset;
  928. down_write(&current->mm->mmap_sem);
  929. addr = do_mmap(obj->filp, 0, args->size,
  930. PROT_READ | PROT_WRITE, MAP_SHARED,
  931. args->offset);
  932. up_write(&current->mm->mmap_sem);
  933. mutex_lock(&dev->struct_mutex);
  934. drm_gem_object_unreference(obj);
  935. mutex_unlock(&dev->struct_mutex);
  936. if (IS_ERR((void *)addr))
  937. return addr;
  938. args->addr_ptr = (uint64_t) addr;
  939. return 0;
  940. }
  941. /**
  942. * i915_gem_fault - fault a page into the GTT
  943. * vma: VMA in question
  944. * vmf: fault info
  945. *
  946. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  947. * from userspace. The fault handler takes care of binding the object to
  948. * the GTT (if needed), allocating and programming a fence register (again,
  949. * only if needed based on whether the old reg is still valid or the object
  950. * is tiled) and inserting a new PTE into the faulting process.
  951. *
  952. * Note that the faulting process may involve evicting existing objects
  953. * from the GTT and/or fence registers to make room. So performance may
  954. * suffer if the GTT working set is large or there are few fence registers
  955. * left.
  956. */
  957. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  958. {
  959. struct drm_gem_object *obj = vma->vm_private_data;
  960. struct drm_device *dev = obj->dev;
  961. struct drm_i915_private *dev_priv = dev->dev_private;
  962. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  963. pgoff_t page_offset;
  964. unsigned long pfn;
  965. int ret = 0;
  966. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  967. /* We don't use vmf->pgoff since that has the fake offset */
  968. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  969. PAGE_SHIFT;
  970. /* Now bind it into the GTT if needed */
  971. mutex_lock(&dev->struct_mutex);
  972. if (!obj_priv->gtt_space) {
  973. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  974. if (ret) {
  975. mutex_unlock(&dev->struct_mutex);
  976. return VM_FAULT_SIGBUS;
  977. }
  978. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  979. if (ret) {
  980. mutex_unlock(&dev->struct_mutex);
  981. return VM_FAULT_SIGBUS;
  982. }
  983. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  984. }
  985. /* Need a new fence register? */
  986. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  987. obj_priv->tiling_mode != I915_TILING_NONE) {
  988. ret = i915_gem_object_get_fence_reg(obj, write);
  989. if (ret) {
  990. mutex_unlock(&dev->struct_mutex);
  991. return VM_FAULT_SIGBUS;
  992. }
  993. }
  994. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  995. page_offset;
  996. /* Finally, remap it using the new GTT offset */
  997. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  998. mutex_unlock(&dev->struct_mutex);
  999. switch (ret) {
  1000. case -ENOMEM:
  1001. case -EAGAIN:
  1002. return VM_FAULT_OOM;
  1003. case -EFAULT:
  1004. case -EINVAL:
  1005. return VM_FAULT_SIGBUS;
  1006. default:
  1007. return VM_FAULT_NOPAGE;
  1008. }
  1009. }
  1010. /**
  1011. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1012. * @obj: obj in question
  1013. *
  1014. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1015. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1016. * up the object based on the offset and sets up the various memory mapping
  1017. * structures.
  1018. *
  1019. * This routine allocates and attaches a fake offset for @obj.
  1020. */
  1021. static int
  1022. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1023. {
  1024. struct drm_device *dev = obj->dev;
  1025. struct drm_gem_mm *mm = dev->mm_private;
  1026. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1027. struct drm_map_list *list;
  1028. struct drm_local_map *map;
  1029. int ret = 0;
  1030. /* Set the object up for mmap'ing */
  1031. list = &obj->map_list;
  1032. list->map = drm_calloc(1, sizeof(struct drm_map_list),
  1033. DRM_MEM_DRIVER);
  1034. if (!list->map)
  1035. return -ENOMEM;
  1036. map = list->map;
  1037. map->type = _DRM_GEM;
  1038. map->size = obj->size;
  1039. map->handle = obj;
  1040. /* Get a DRM GEM mmap offset allocated... */
  1041. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1042. obj->size / PAGE_SIZE, 0, 0);
  1043. if (!list->file_offset_node) {
  1044. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1045. ret = -ENOMEM;
  1046. goto out_free_list;
  1047. }
  1048. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1049. obj->size / PAGE_SIZE, 0);
  1050. if (!list->file_offset_node) {
  1051. ret = -ENOMEM;
  1052. goto out_free_list;
  1053. }
  1054. list->hash.key = list->file_offset_node->start;
  1055. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1056. DRM_ERROR("failed to add to map hash\n");
  1057. goto out_free_mm;
  1058. }
  1059. /* By now we should be all set, any drm_mmap request on the offset
  1060. * below will get to our mmap & fault handler */
  1061. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1062. return 0;
  1063. out_free_mm:
  1064. drm_mm_put_block(list->file_offset_node);
  1065. out_free_list:
  1066. drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
  1067. return ret;
  1068. }
  1069. static void
  1070. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1071. {
  1072. struct drm_device *dev = obj->dev;
  1073. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1074. struct drm_gem_mm *mm = dev->mm_private;
  1075. struct drm_map_list *list;
  1076. list = &obj->map_list;
  1077. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1078. if (list->file_offset_node) {
  1079. drm_mm_put_block(list->file_offset_node);
  1080. list->file_offset_node = NULL;
  1081. }
  1082. if (list->map) {
  1083. drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
  1084. list->map = NULL;
  1085. }
  1086. obj_priv->mmap_offset = 0;
  1087. }
  1088. /**
  1089. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1090. * @obj: object to check
  1091. *
  1092. * Return the required GTT alignment for an object, taking into account
  1093. * potential fence register mapping if needed.
  1094. */
  1095. static uint32_t
  1096. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1097. {
  1098. struct drm_device *dev = obj->dev;
  1099. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1100. int start, i;
  1101. /*
  1102. * Minimum alignment is 4k (GTT page size), but might be greater
  1103. * if a fence register is needed for the object.
  1104. */
  1105. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1106. return 4096;
  1107. /*
  1108. * Previous chips need to be aligned to the size of the smallest
  1109. * fence register that can contain the object.
  1110. */
  1111. if (IS_I9XX(dev))
  1112. start = 1024*1024;
  1113. else
  1114. start = 512*1024;
  1115. for (i = start; i < obj->size; i <<= 1)
  1116. ;
  1117. return i;
  1118. }
  1119. /**
  1120. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1121. * @dev: DRM device
  1122. * @data: GTT mapping ioctl data
  1123. * @file_priv: GEM object info
  1124. *
  1125. * Simply returns the fake offset to userspace so it can mmap it.
  1126. * The mmap call will end up in drm_gem_mmap(), which will set things
  1127. * up so we can get faults in the handler above.
  1128. *
  1129. * The fault handler will take care of binding the object into the GTT
  1130. * (since it may have been evicted to make room for something), allocating
  1131. * a fence register, and mapping the appropriate aperture address into
  1132. * userspace.
  1133. */
  1134. int
  1135. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1136. struct drm_file *file_priv)
  1137. {
  1138. struct drm_i915_gem_mmap_gtt *args = data;
  1139. struct drm_i915_private *dev_priv = dev->dev_private;
  1140. struct drm_gem_object *obj;
  1141. struct drm_i915_gem_object *obj_priv;
  1142. int ret;
  1143. if (!(dev->driver->driver_features & DRIVER_GEM))
  1144. return -ENODEV;
  1145. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1146. if (obj == NULL)
  1147. return -EBADF;
  1148. mutex_lock(&dev->struct_mutex);
  1149. obj_priv = obj->driver_private;
  1150. if (!obj_priv->mmap_offset) {
  1151. ret = i915_gem_create_mmap_offset(obj);
  1152. if (ret) {
  1153. drm_gem_object_unreference(obj);
  1154. mutex_unlock(&dev->struct_mutex);
  1155. return ret;
  1156. }
  1157. }
  1158. args->offset = obj_priv->mmap_offset;
  1159. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1160. /* Make sure the alignment is correct for fence regs etc */
  1161. if (obj_priv->agp_mem &&
  1162. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1163. drm_gem_object_unreference(obj);
  1164. mutex_unlock(&dev->struct_mutex);
  1165. return -EINVAL;
  1166. }
  1167. /*
  1168. * Pull it into the GTT so that we have a page list (makes the
  1169. * initial fault faster and any subsequent flushing possible).
  1170. */
  1171. if (!obj_priv->agp_mem) {
  1172. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1173. if (ret) {
  1174. drm_gem_object_unreference(obj);
  1175. mutex_unlock(&dev->struct_mutex);
  1176. return ret;
  1177. }
  1178. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1179. }
  1180. drm_gem_object_unreference(obj);
  1181. mutex_unlock(&dev->struct_mutex);
  1182. return 0;
  1183. }
  1184. void
  1185. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1186. {
  1187. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1188. int page_count = obj->size / PAGE_SIZE;
  1189. int i;
  1190. BUG_ON(obj_priv->pages_refcount == 0);
  1191. if (--obj_priv->pages_refcount != 0)
  1192. return;
  1193. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1194. i915_gem_object_save_bit_17_swizzle(obj);
  1195. for (i = 0; i < page_count; i++)
  1196. if (obj_priv->pages[i] != NULL) {
  1197. if (obj_priv->dirty)
  1198. set_page_dirty(obj_priv->pages[i]);
  1199. mark_page_accessed(obj_priv->pages[i]);
  1200. page_cache_release(obj_priv->pages[i]);
  1201. }
  1202. obj_priv->dirty = 0;
  1203. drm_free_large(obj_priv->pages);
  1204. obj_priv->pages = NULL;
  1205. }
  1206. static void
  1207. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1208. {
  1209. struct drm_device *dev = obj->dev;
  1210. drm_i915_private_t *dev_priv = dev->dev_private;
  1211. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1212. /* Add a reference if we're newly entering the active list. */
  1213. if (!obj_priv->active) {
  1214. drm_gem_object_reference(obj);
  1215. obj_priv->active = 1;
  1216. }
  1217. /* Move from whatever list we were on to the tail of execution. */
  1218. spin_lock(&dev_priv->mm.active_list_lock);
  1219. list_move_tail(&obj_priv->list,
  1220. &dev_priv->mm.active_list);
  1221. spin_unlock(&dev_priv->mm.active_list_lock);
  1222. obj_priv->last_rendering_seqno = seqno;
  1223. }
  1224. static void
  1225. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1226. {
  1227. struct drm_device *dev = obj->dev;
  1228. drm_i915_private_t *dev_priv = dev->dev_private;
  1229. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1230. BUG_ON(!obj_priv->active);
  1231. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1232. obj_priv->last_rendering_seqno = 0;
  1233. }
  1234. static void
  1235. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1236. {
  1237. struct drm_device *dev = obj->dev;
  1238. drm_i915_private_t *dev_priv = dev->dev_private;
  1239. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1240. i915_verify_inactive(dev, __FILE__, __LINE__);
  1241. if (obj_priv->pin_count != 0)
  1242. list_del_init(&obj_priv->list);
  1243. else
  1244. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1245. obj_priv->last_rendering_seqno = 0;
  1246. if (obj_priv->active) {
  1247. obj_priv->active = 0;
  1248. drm_gem_object_unreference(obj);
  1249. }
  1250. i915_verify_inactive(dev, __FILE__, __LINE__);
  1251. }
  1252. /**
  1253. * Creates a new sequence number, emitting a write of it to the status page
  1254. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1255. *
  1256. * Must be called with struct_lock held.
  1257. *
  1258. * Returned sequence numbers are nonzero on success.
  1259. */
  1260. static uint32_t
  1261. i915_add_request(struct drm_device *dev, uint32_t flush_domains)
  1262. {
  1263. drm_i915_private_t *dev_priv = dev->dev_private;
  1264. struct drm_i915_gem_request *request;
  1265. uint32_t seqno;
  1266. int was_empty;
  1267. RING_LOCALS;
  1268. request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
  1269. if (request == NULL)
  1270. return 0;
  1271. /* Grab the seqno we're going to make this request be, and bump the
  1272. * next (skipping 0 so it can be the reserved no-seqno value).
  1273. */
  1274. seqno = dev_priv->mm.next_gem_seqno;
  1275. dev_priv->mm.next_gem_seqno++;
  1276. if (dev_priv->mm.next_gem_seqno == 0)
  1277. dev_priv->mm.next_gem_seqno++;
  1278. BEGIN_LP_RING(4);
  1279. OUT_RING(MI_STORE_DWORD_INDEX);
  1280. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1281. OUT_RING(seqno);
  1282. OUT_RING(MI_USER_INTERRUPT);
  1283. ADVANCE_LP_RING();
  1284. DRM_DEBUG("%d\n", seqno);
  1285. request->seqno = seqno;
  1286. request->emitted_jiffies = jiffies;
  1287. was_empty = list_empty(&dev_priv->mm.request_list);
  1288. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1289. /* Associate any objects on the flushing list matching the write
  1290. * domain we're flushing with our flush.
  1291. */
  1292. if (flush_domains != 0) {
  1293. struct drm_i915_gem_object *obj_priv, *next;
  1294. list_for_each_entry_safe(obj_priv, next,
  1295. &dev_priv->mm.flushing_list, list) {
  1296. struct drm_gem_object *obj = obj_priv->obj;
  1297. if ((obj->write_domain & flush_domains) ==
  1298. obj->write_domain) {
  1299. obj->write_domain = 0;
  1300. i915_gem_object_move_to_active(obj, seqno);
  1301. }
  1302. }
  1303. }
  1304. if (was_empty && !dev_priv->mm.suspended)
  1305. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1306. return seqno;
  1307. }
  1308. /**
  1309. * Command execution barrier
  1310. *
  1311. * Ensures that all commands in the ring are finished
  1312. * before signalling the CPU
  1313. */
  1314. static uint32_t
  1315. i915_retire_commands(struct drm_device *dev)
  1316. {
  1317. drm_i915_private_t *dev_priv = dev->dev_private;
  1318. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1319. uint32_t flush_domains = 0;
  1320. RING_LOCALS;
  1321. /* The sampler always gets flushed on i965 (sigh) */
  1322. if (IS_I965G(dev))
  1323. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1324. BEGIN_LP_RING(2);
  1325. OUT_RING(cmd);
  1326. OUT_RING(0); /* noop */
  1327. ADVANCE_LP_RING();
  1328. return flush_domains;
  1329. }
  1330. /**
  1331. * Moves buffers associated only with the given active seqno from the active
  1332. * to inactive list, potentially freeing them.
  1333. */
  1334. static void
  1335. i915_gem_retire_request(struct drm_device *dev,
  1336. struct drm_i915_gem_request *request)
  1337. {
  1338. drm_i915_private_t *dev_priv = dev->dev_private;
  1339. /* Move any buffers on the active list that are no longer referenced
  1340. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1341. */
  1342. spin_lock(&dev_priv->mm.active_list_lock);
  1343. while (!list_empty(&dev_priv->mm.active_list)) {
  1344. struct drm_gem_object *obj;
  1345. struct drm_i915_gem_object *obj_priv;
  1346. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1347. struct drm_i915_gem_object,
  1348. list);
  1349. obj = obj_priv->obj;
  1350. /* If the seqno being retired doesn't match the oldest in the
  1351. * list, then the oldest in the list must still be newer than
  1352. * this seqno.
  1353. */
  1354. if (obj_priv->last_rendering_seqno != request->seqno)
  1355. goto out;
  1356. #if WATCH_LRU
  1357. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1358. __func__, request->seqno, obj);
  1359. #endif
  1360. if (obj->write_domain != 0)
  1361. i915_gem_object_move_to_flushing(obj);
  1362. else {
  1363. /* Take a reference on the object so it won't be
  1364. * freed while the spinlock is held. The list
  1365. * protection for this spinlock is safe when breaking
  1366. * the lock like this since the next thing we do
  1367. * is just get the head of the list again.
  1368. */
  1369. drm_gem_object_reference(obj);
  1370. i915_gem_object_move_to_inactive(obj);
  1371. spin_unlock(&dev_priv->mm.active_list_lock);
  1372. drm_gem_object_unreference(obj);
  1373. spin_lock(&dev_priv->mm.active_list_lock);
  1374. }
  1375. }
  1376. out:
  1377. spin_unlock(&dev_priv->mm.active_list_lock);
  1378. }
  1379. /**
  1380. * Returns true if seq1 is later than seq2.
  1381. */
  1382. static int
  1383. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1384. {
  1385. return (int32_t)(seq1 - seq2) >= 0;
  1386. }
  1387. uint32_t
  1388. i915_get_gem_seqno(struct drm_device *dev)
  1389. {
  1390. drm_i915_private_t *dev_priv = dev->dev_private;
  1391. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1392. }
  1393. /**
  1394. * This function clears the request list as sequence numbers are passed.
  1395. */
  1396. void
  1397. i915_gem_retire_requests(struct drm_device *dev)
  1398. {
  1399. drm_i915_private_t *dev_priv = dev->dev_private;
  1400. uint32_t seqno;
  1401. if (!dev_priv->hw_status_page)
  1402. return;
  1403. seqno = i915_get_gem_seqno(dev);
  1404. while (!list_empty(&dev_priv->mm.request_list)) {
  1405. struct drm_i915_gem_request *request;
  1406. uint32_t retiring_seqno;
  1407. request = list_first_entry(&dev_priv->mm.request_list,
  1408. struct drm_i915_gem_request,
  1409. list);
  1410. retiring_seqno = request->seqno;
  1411. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1412. dev_priv->mm.wedged) {
  1413. i915_gem_retire_request(dev, request);
  1414. list_del(&request->list);
  1415. drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
  1416. } else
  1417. break;
  1418. }
  1419. }
  1420. void
  1421. i915_gem_retire_work_handler(struct work_struct *work)
  1422. {
  1423. drm_i915_private_t *dev_priv;
  1424. struct drm_device *dev;
  1425. dev_priv = container_of(work, drm_i915_private_t,
  1426. mm.retire_work.work);
  1427. dev = dev_priv->dev;
  1428. mutex_lock(&dev->struct_mutex);
  1429. i915_gem_retire_requests(dev);
  1430. if (!dev_priv->mm.suspended &&
  1431. !list_empty(&dev_priv->mm.request_list))
  1432. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1433. mutex_unlock(&dev->struct_mutex);
  1434. }
  1435. /**
  1436. * Waits for a sequence number to be signaled, and cleans up the
  1437. * request and object lists appropriately for that event.
  1438. */
  1439. static int
  1440. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1441. {
  1442. drm_i915_private_t *dev_priv = dev->dev_private;
  1443. u32 ier;
  1444. int ret = 0;
  1445. BUG_ON(seqno == 0);
  1446. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1447. ier = I915_READ(IER);
  1448. if (!ier) {
  1449. DRM_ERROR("something (likely vbetool) disabled "
  1450. "interrupts, re-enabling\n");
  1451. i915_driver_irq_preinstall(dev);
  1452. i915_driver_irq_postinstall(dev);
  1453. }
  1454. dev_priv->mm.waiting_gem_seqno = seqno;
  1455. i915_user_irq_get(dev);
  1456. ret = wait_event_interruptible(dev_priv->irq_queue,
  1457. i915_seqno_passed(i915_get_gem_seqno(dev),
  1458. seqno) ||
  1459. dev_priv->mm.wedged);
  1460. i915_user_irq_put(dev);
  1461. dev_priv->mm.waiting_gem_seqno = 0;
  1462. }
  1463. if (dev_priv->mm.wedged)
  1464. ret = -EIO;
  1465. if (ret && ret != -ERESTARTSYS)
  1466. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1467. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1468. /* Directly dispatch request retiring. While we have the work queue
  1469. * to handle this, the waiter on a request often wants an associated
  1470. * buffer to have made it to the inactive list, and we would need
  1471. * a separate wait queue to handle that.
  1472. */
  1473. if (ret == 0)
  1474. i915_gem_retire_requests(dev);
  1475. return ret;
  1476. }
  1477. static void
  1478. i915_gem_flush(struct drm_device *dev,
  1479. uint32_t invalidate_domains,
  1480. uint32_t flush_domains)
  1481. {
  1482. drm_i915_private_t *dev_priv = dev->dev_private;
  1483. uint32_t cmd;
  1484. RING_LOCALS;
  1485. #if WATCH_EXEC
  1486. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1487. invalidate_domains, flush_domains);
  1488. #endif
  1489. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1490. drm_agp_chipset_flush(dev);
  1491. if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
  1492. I915_GEM_DOMAIN_GTT)) {
  1493. /*
  1494. * read/write caches:
  1495. *
  1496. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1497. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1498. * also flushed at 2d versus 3d pipeline switches.
  1499. *
  1500. * read-only caches:
  1501. *
  1502. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1503. * MI_READ_FLUSH is set, and is always flushed on 965.
  1504. *
  1505. * I915_GEM_DOMAIN_COMMAND may not exist?
  1506. *
  1507. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1508. * invalidated when MI_EXE_FLUSH is set.
  1509. *
  1510. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1511. * invalidated with every MI_FLUSH.
  1512. *
  1513. * TLBs:
  1514. *
  1515. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1516. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1517. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1518. * are flushed at any MI_FLUSH.
  1519. */
  1520. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1521. if ((invalidate_domains|flush_domains) &
  1522. I915_GEM_DOMAIN_RENDER)
  1523. cmd &= ~MI_NO_WRITE_FLUSH;
  1524. if (!IS_I965G(dev)) {
  1525. /*
  1526. * On the 965, the sampler cache always gets flushed
  1527. * and this bit is reserved.
  1528. */
  1529. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1530. cmd |= MI_READ_FLUSH;
  1531. }
  1532. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1533. cmd |= MI_EXE_FLUSH;
  1534. #if WATCH_EXEC
  1535. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1536. #endif
  1537. BEGIN_LP_RING(2);
  1538. OUT_RING(cmd);
  1539. OUT_RING(0); /* noop */
  1540. ADVANCE_LP_RING();
  1541. }
  1542. }
  1543. /**
  1544. * Ensures that all rendering to the object has completed and the object is
  1545. * safe to unbind from the GTT or access from the CPU.
  1546. */
  1547. static int
  1548. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1549. {
  1550. struct drm_device *dev = obj->dev;
  1551. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1552. int ret;
  1553. /* This function only exists to support waiting for existing rendering,
  1554. * not for emitting required flushes.
  1555. */
  1556. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1557. /* If there is rendering queued on the buffer being evicted, wait for
  1558. * it.
  1559. */
  1560. if (obj_priv->active) {
  1561. #if WATCH_BUF
  1562. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1563. __func__, obj, obj_priv->last_rendering_seqno);
  1564. #endif
  1565. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1566. if (ret != 0)
  1567. return ret;
  1568. }
  1569. return 0;
  1570. }
  1571. /**
  1572. * Unbinds an object from the GTT aperture.
  1573. */
  1574. int
  1575. i915_gem_object_unbind(struct drm_gem_object *obj)
  1576. {
  1577. struct drm_device *dev = obj->dev;
  1578. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1579. loff_t offset;
  1580. int ret = 0;
  1581. #if WATCH_BUF
  1582. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1583. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1584. #endif
  1585. if (obj_priv->gtt_space == NULL)
  1586. return 0;
  1587. if (obj_priv->pin_count != 0) {
  1588. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1589. return -EINVAL;
  1590. }
  1591. /* Move the object to the CPU domain to ensure that
  1592. * any possible CPU writes while it's not in the GTT
  1593. * are flushed when we go to remap it. This will
  1594. * also ensure that all pending GPU writes are finished
  1595. * before we unbind.
  1596. */
  1597. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1598. if (ret) {
  1599. if (ret != -ERESTARTSYS)
  1600. DRM_ERROR("set_domain failed: %d\n", ret);
  1601. return ret;
  1602. }
  1603. if (obj_priv->agp_mem != NULL) {
  1604. drm_unbind_agp(obj_priv->agp_mem);
  1605. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1606. obj_priv->agp_mem = NULL;
  1607. }
  1608. BUG_ON(obj_priv->active);
  1609. /* blow away mappings if mapped through GTT */
  1610. offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
  1611. if (dev->dev_mapping)
  1612. unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
  1613. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1614. i915_gem_clear_fence_reg(obj);
  1615. i915_gem_object_put_pages(obj);
  1616. if (obj_priv->gtt_space) {
  1617. atomic_dec(&dev->gtt_count);
  1618. atomic_sub(obj->size, &dev->gtt_memory);
  1619. drm_mm_put_block(obj_priv->gtt_space);
  1620. obj_priv->gtt_space = NULL;
  1621. }
  1622. /* Remove ourselves from the LRU list if present. */
  1623. if (!list_empty(&obj_priv->list))
  1624. list_del_init(&obj_priv->list);
  1625. return 0;
  1626. }
  1627. static int
  1628. i915_gem_evict_something(struct drm_device *dev)
  1629. {
  1630. drm_i915_private_t *dev_priv = dev->dev_private;
  1631. struct drm_gem_object *obj;
  1632. struct drm_i915_gem_object *obj_priv;
  1633. int ret = 0;
  1634. for (;;) {
  1635. /* If there's an inactive buffer available now, grab it
  1636. * and be done.
  1637. */
  1638. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1639. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1640. struct drm_i915_gem_object,
  1641. list);
  1642. obj = obj_priv->obj;
  1643. BUG_ON(obj_priv->pin_count != 0);
  1644. #if WATCH_LRU
  1645. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1646. #endif
  1647. BUG_ON(obj_priv->active);
  1648. /* Wait on the rendering and unbind the buffer. */
  1649. ret = i915_gem_object_unbind(obj);
  1650. break;
  1651. }
  1652. /* If we didn't get anything, but the ring is still processing
  1653. * things, wait for one of those things to finish and hopefully
  1654. * leave us a buffer to evict.
  1655. */
  1656. if (!list_empty(&dev_priv->mm.request_list)) {
  1657. struct drm_i915_gem_request *request;
  1658. request = list_first_entry(&dev_priv->mm.request_list,
  1659. struct drm_i915_gem_request,
  1660. list);
  1661. ret = i915_wait_request(dev, request->seqno);
  1662. if (ret)
  1663. break;
  1664. /* if waiting caused an object to become inactive,
  1665. * then loop around and wait for it. Otherwise, we
  1666. * assume that waiting freed and unbound something,
  1667. * so there should now be some space in the GTT
  1668. */
  1669. if (!list_empty(&dev_priv->mm.inactive_list))
  1670. continue;
  1671. break;
  1672. }
  1673. /* If we didn't have anything on the request list but there
  1674. * are buffers awaiting a flush, emit one and try again.
  1675. * When we wait on it, those buffers waiting for that flush
  1676. * will get moved to inactive.
  1677. */
  1678. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1679. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1680. struct drm_i915_gem_object,
  1681. list);
  1682. obj = obj_priv->obj;
  1683. i915_gem_flush(dev,
  1684. obj->write_domain,
  1685. obj->write_domain);
  1686. i915_add_request(dev, obj->write_domain);
  1687. obj = NULL;
  1688. continue;
  1689. }
  1690. DRM_ERROR("inactive empty %d request empty %d "
  1691. "flushing empty %d\n",
  1692. list_empty(&dev_priv->mm.inactive_list),
  1693. list_empty(&dev_priv->mm.request_list),
  1694. list_empty(&dev_priv->mm.flushing_list));
  1695. /* If we didn't do any of the above, there's nothing to be done
  1696. * and we just can't fit it in.
  1697. */
  1698. return -ENOMEM;
  1699. }
  1700. return ret;
  1701. }
  1702. static int
  1703. i915_gem_evict_everything(struct drm_device *dev)
  1704. {
  1705. int ret;
  1706. for (;;) {
  1707. ret = i915_gem_evict_something(dev);
  1708. if (ret != 0)
  1709. break;
  1710. }
  1711. if (ret == -ENOMEM)
  1712. return 0;
  1713. return ret;
  1714. }
  1715. int
  1716. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1717. {
  1718. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1719. int page_count, i;
  1720. struct address_space *mapping;
  1721. struct inode *inode;
  1722. struct page *page;
  1723. int ret;
  1724. if (obj_priv->pages_refcount++ != 0)
  1725. return 0;
  1726. /* Get the list of pages out of our struct file. They'll be pinned
  1727. * at this point until we release them.
  1728. */
  1729. page_count = obj->size / PAGE_SIZE;
  1730. BUG_ON(obj_priv->pages != NULL);
  1731. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1732. if (obj_priv->pages == NULL) {
  1733. DRM_ERROR("Faled to allocate page list\n");
  1734. obj_priv->pages_refcount--;
  1735. return -ENOMEM;
  1736. }
  1737. inode = obj->filp->f_path.dentry->d_inode;
  1738. mapping = inode->i_mapping;
  1739. for (i = 0; i < page_count; i++) {
  1740. page = read_mapping_page(mapping, i, NULL);
  1741. if (IS_ERR(page)) {
  1742. ret = PTR_ERR(page);
  1743. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1744. i915_gem_object_put_pages(obj);
  1745. return ret;
  1746. }
  1747. obj_priv->pages[i] = page;
  1748. }
  1749. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1750. i915_gem_object_do_bit_17_swizzle(obj);
  1751. return 0;
  1752. }
  1753. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1754. {
  1755. struct drm_gem_object *obj = reg->obj;
  1756. struct drm_device *dev = obj->dev;
  1757. drm_i915_private_t *dev_priv = dev->dev_private;
  1758. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1759. int regnum = obj_priv->fence_reg;
  1760. uint64_t val;
  1761. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1762. 0xfffff000) << 32;
  1763. val |= obj_priv->gtt_offset & 0xfffff000;
  1764. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1765. if (obj_priv->tiling_mode == I915_TILING_Y)
  1766. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1767. val |= I965_FENCE_REG_VALID;
  1768. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1769. }
  1770. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1771. {
  1772. struct drm_gem_object *obj = reg->obj;
  1773. struct drm_device *dev = obj->dev;
  1774. drm_i915_private_t *dev_priv = dev->dev_private;
  1775. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1776. int regnum = obj_priv->fence_reg;
  1777. int tile_width;
  1778. uint32_t fence_reg, val;
  1779. uint32_t pitch_val;
  1780. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1781. (obj_priv->gtt_offset & (obj->size - 1))) {
  1782. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1783. __func__, obj_priv->gtt_offset, obj->size);
  1784. return;
  1785. }
  1786. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1787. HAS_128_BYTE_Y_TILING(dev))
  1788. tile_width = 128;
  1789. else
  1790. tile_width = 512;
  1791. /* Note: pitch better be a power of two tile widths */
  1792. pitch_val = obj_priv->stride / tile_width;
  1793. pitch_val = ffs(pitch_val) - 1;
  1794. val = obj_priv->gtt_offset;
  1795. if (obj_priv->tiling_mode == I915_TILING_Y)
  1796. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1797. val |= I915_FENCE_SIZE_BITS(obj->size);
  1798. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1799. val |= I830_FENCE_REG_VALID;
  1800. if (regnum < 8)
  1801. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1802. else
  1803. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1804. I915_WRITE(fence_reg, val);
  1805. }
  1806. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1807. {
  1808. struct drm_gem_object *obj = reg->obj;
  1809. struct drm_device *dev = obj->dev;
  1810. drm_i915_private_t *dev_priv = dev->dev_private;
  1811. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1812. int regnum = obj_priv->fence_reg;
  1813. uint32_t val;
  1814. uint32_t pitch_val;
  1815. uint32_t fence_size_bits;
  1816. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1817. (obj_priv->gtt_offset & (obj->size - 1))) {
  1818. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1819. __func__, obj_priv->gtt_offset);
  1820. return;
  1821. }
  1822. pitch_val = obj_priv->stride / 128;
  1823. pitch_val = ffs(pitch_val) - 1;
  1824. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1825. val = obj_priv->gtt_offset;
  1826. if (obj_priv->tiling_mode == I915_TILING_Y)
  1827. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1828. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1829. WARN_ON(fence_size_bits & ~0x00000f00);
  1830. val |= fence_size_bits;
  1831. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1832. val |= I830_FENCE_REG_VALID;
  1833. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1834. }
  1835. /**
  1836. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1837. * @obj: object to map through a fence reg
  1838. * @write: object is about to be written
  1839. *
  1840. * When mapping objects through the GTT, userspace wants to be able to write
  1841. * to them without having to worry about swizzling if the object is tiled.
  1842. *
  1843. * This function walks the fence regs looking for a free one for @obj,
  1844. * stealing one if it can't find any.
  1845. *
  1846. * It then sets up the reg based on the object's properties: address, pitch
  1847. * and tiling format.
  1848. */
  1849. static int
  1850. i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
  1851. {
  1852. struct drm_device *dev = obj->dev;
  1853. struct drm_i915_private *dev_priv = dev->dev_private;
  1854. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1855. struct drm_i915_fence_reg *reg = NULL;
  1856. struct drm_i915_gem_object *old_obj_priv = NULL;
  1857. int i, ret, avail;
  1858. switch (obj_priv->tiling_mode) {
  1859. case I915_TILING_NONE:
  1860. WARN(1, "allocating a fence for non-tiled object?\n");
  1861. break;
  1862. case I915_TILING_X:
  1863. if (!obj_priv->stride)
  1864. return -EINVAL;
  1865. WARN((obj_priv->stride & (512 - 1)),
  1866. "object 0x%08x is X tiled but has non-512B pitch\n",
  1867. obj_priv->gtt_offset);
  1868. break;
  1869. case I915_TILING_Y:
  1870. if (!obj_priv->stride)
  1871. return -EINVAL;
  1872. WARN((obj_priv->stride & (128 - 1)),
  1873. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1874. obj_priv->gtt_offset);
  1875. break;
  1876. }
  1877. /* First try to find a free reg */
  1878. try_again:
  1879. avail = 0;
  1880. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1881. reg = &dev_priv->fence_regs[i];
  1882. if (!reg->obj)
  1883. break;
  1884. old_obj_priv = reg->obj->driver_private;
  1885. if (!old_obj_priv->pin_count)
  1886. avail++;
  1887. }
  1888. /* None available, try to steal one or wait for a user to finish */
  1889. if (i == dev_priv->num_fence_regs) {
  1890. uint32_t seqno = dev_priv->mm.next_gem_seqno;
  1891. loff_t offset;
  1892. if (avail == 0)
  1893. return -ENOMEM;
  1894. for (i = dev_priv->fence_reg_start;
  1895. i < dev_priv->num_fence_regs; i++) {
  1896. uint32_t this_seqno;
  1897. reg = &dev_priv->fence_regs[i];
  1898. old_obj_priv = reg->obj->driver_private;
  1899. if (old_obj_priv->pin_count)
  1900. continue;
  1901. /* i915 uses fences for GPU access to tiled buffers */
  1902. if (IS_I965G(dev) || !old_obj_priv->active)
  1903. break;
  1904. /* find the seqno of the first available fence */
  1905. this_seqno = old_obj_priv->last_rendering_seqno;
  1906. if (this_seqno != 0 &&
  1907. reg->obj->write_domain == 0 &&
  1908. i915_seqno_passed(seqno, this_seqno))
  1909. seqno = this_seqno;
  1910. }
  1911. /*
  1912. * Now things get ugly... we have to wait for one of the
  1913. * objects to finish before trying again.
  1914. */
  1915. if (i == dev_priv->num_fence_regs) {
  1916. if (seqno == dev_priv->mm.next_gem_seqno) {
  1917. i915_gem_flush(dev,
  1918. I915_GEM_GPU_DOMAINS,
  1919. I915_GEM_GPU_DOMAINS);
  1920. seqno = i915_add_request(dev,
  1921. I915_GEM_GPU_DOMAINS);
  1922. if (seqno == 0)
  1923. return -ENOMEM;
  1924. }
  1925. ret = i915_wait_request(dev, seqno);
  1926. if (ret)
  1927. return ret;
  1928. goto try_again;
  1929. }
  1930. BUG_ON(old_obj_priv->active ||
  1931. (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
  1932. /*
  1933. * Zap this virtual mapping so we can set up a fence again
  1934. * for this object next time we need it.
  1935. */
  1936. offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
  1937. if (dev->dev_mapping)
  1938. unmap_mapping_range(dev->dev_mapping, offset,
  1939. reg->obj->size, 1);
  1940. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1941. }
  1942. obj_priv->fence_reg = i;
  1943. reg->obj = obj;
  1944. if (IS_I965G(dev))
  1945. i965_write_fence_reg(reg);
  1946. else if (IS_I9XX(dev))
  1947. i915_write_fence_reg(reg);
  1948. else
  1949. i830_write_fence_reg(reg);
  1950. return 0;
  1951. }
  1952. /**
  1953. * i915_gem_clear_fence_reg - clear out fence register info
  1954. * @obj: object to clear
  1955. *
  1956. * Zeroes out the fence register itself and clears out the associated
  1957. * data structures in dev_priv and obj_priv.
  1958. */
  1959. static void
  1960. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  1961. {
  1962. struct drm_device *dev = obj->dev;
  1963. drm_i915_private_t *dev_priv = dev->dev_private;
  1964. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1965. if (IS_I965G(dev))
  1966. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  1967. else {
  1968. uint32_t fence_reg;
  1969. if (obj_priv->fence_reg < 8)
  1970. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  1971. else
  1972. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  1973. 8) * 4;
  1974. I915_WRITE(fence_reg, 0);
  1975. }
  1976. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  1977. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1978. }
  1979. /**
  1980. * Finds free space in the GTT aperture and binds the object there.
  1981. */
  1982. static int
  1983. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  1984. {
  1985. struct drm_device *dev = obj->dev;
  1986. drm_i915_private_t *dev_priv = dev->dev_private;
  1987. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1988. struct drm_mm_node *free_space;
  1989. int page_count, ret;
  1990. if (dev_priv->mm.suspended)
  1991. return -EBUSY;
  1992. if (alignment == 0)
  1993. alignment = i915_gem_get_gtt_alignment(obj);
  1994. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  1995. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  1996. return -EINVAL;
  1997. }
  1998. search_free:
  1999. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2000. obj->size, alignment, 0);
  2001. if (free_space != NULL) {
  2002. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2003. alignment);
  2004. if (obj_priv->gtt_space != NULL) {
  2005. obj_priv->gtt_space->private = obj;
  2006. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2007. }
  2008. }
  2009. if (obj_priv->gtt_space == NULL) {
  2010. bool lists_empty;
  2011. /* If the gtt is empty and we're still having trouble
  2012. * fitting our object in, we're out of memory.
  2013. */
  2014. #if WATCH_LRU
  2015. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2016. #endif
  2017. spin_lock(&dev_priv->mm.active_list_lock);
  2018. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  2019. list_empty(&dev_priv->mm.flushing_list) &&
  2020. list_empty(&dev_priv->mm.active_list));
  2021. spin_unlock(&dev_priv->mm.active_list_lock);
  2022. if (lists_empty) {
  2023. DRM_ERROR("GTT full, but LRU list empty\n");
  2024. return -ENOMEM;
  2025. }
  2026. ret = i915_gem_evict_something(dev);
  2027. if (ret != 0) {
  2028. if (ret != -ERESTARTSYS)
  2029. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  2030. return ret;
  2031. }
  2032. goto search_free;
  2033. }
  2034. #if WATCH_BUF
  2035. DRM_INFO("Binding object of size %d at 0x%08x\n",
  2036. obj->size, obj_priv->gtt_offset);
  2037. #endif
  2038. ret = i915_gem_object_get_pages(obj);
  2039. if (ret) {
  2040. drm_mm_put_block(obj_priv->gtt_space);
  2041. obj_priv->gtt_space = NULL;
  2042. return ret;
  2043. }
  2044. page_count = obj->size / PAGE_SIZE;
  2045. /* Create an AGP memory structure pointing at our pages, and bind it
  2046. * into the GTT.
  2047. */
  2048. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2049. obj_priv->pages,
  2050. page_count,
  2051. obj_priv->gtt_offset,
  2052. obj_priv->agp_type);
  2053. if (obj_priv->agp_mem == NULL) {
  2054. i915_gem_object_put_pages(obj);
  2055. drm_mm_put_block(obj_priv->gtt_space);
  2056. obj_priv->gtt_space = NULL;
  2057. return -ENOMEM;
  2058. }
  2059. atomic_inc(&dev->gtt_count);
  2060. atomic_add(obj->size, &dev->gtt_memory);
  2061. /* Assert that the object is not currently in any GPU domain. As it
  2062. * wasn't in the GTT, there shouldn't be any way it could have been in
  2063. * a GPU cache
  2064. */
  2065. BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  2066. BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  2067. return 0;
  2068. }
  2069. void
  2070. i915_gem_clflush_object(struct drm_gem_object *obj)
  2071. {
  2072. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2073. /* If we don't have a page list set up, then we're not pinned
  2074. * to GPU, and we can ignore the cache flush because it'll happen
  2075. * again at bind time.
  2076. */
  2077. if (obj_priv->pages == NULL)
  2078. return;
  2079. /* XXX: The 865 in particular appears to be weird in how it handles
  2080. * cache flushing. We haven't figured it out, but the
  2081. * clflush+agp_chipset_flush doesn't appear to successfully get the
  2082. * data visible to the PGU, while wbinvd + agp_chipset_flush does.
  2083. */
  2084. if (IS_I865G(obj->dev)) {
  2085. wbinvd();
  2086. return;
  2087. }
  2088. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2089. }
  2090. /** Flushes any GPU write domain for the object if it's dirty. */
  2091. static void
  2092. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2093. {
  2094. struct drm_device *dev = obj->dev;
  2095. uint32_t seqno;
  2096. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2097. return;
  2098. /* Queue the GPU write cache flushing we need. */
  2099. i915_gem_flush(dev, 0, obj->write_domain);
  2100. seqno = i915_add_request(dev, obj->write_domain);
  2101. obj->write_domain = 0;
  2102. i915_gem_object_move_to_active(obj, seqno);
  2103. }
  2104. /** Flushes the GTT write domain for the object if it's dirty. */
  2105. static void
  2106. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2107. {
  2108. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2109. return;
  2110. /* No actual flushing is required for the GTT write domain. Writes
  2111. * to it immediately go to main memory as far as we know, so there's
  2112. * no chipset flush. It also doesn't land in render cache.
  2113. */
  2114. obj->write_domain = 0;
  2115. }
  2116. /** Flushes the CPU write domain for the object if it's dirty. */
  2117. static void
  2118. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2119. {
  2120. struct drm_device *dev = obj->dev;
  2121. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2122. return;
  2123. i915_gem_clflush_object(obj);
  2124. drm_agp_chipset_flush(dev);
  2125. obj->write_domain = 0;
  2126. }
  2127. /**
  2128. * Moves a single object to the GTT read, and possibly write domain.
  2129. *
  2130. * This function returns when the move is complete, including waiting on
  2131. * flushes to occur.
  2132. */
  2133. int
  2134. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2135. {
  2136. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2137. int ret;
  2138. /* Not valid to be called on unbound objects. */
  2139. if (obj_priv->gtt_space == NULL)
  2140. return -EINVAL;
  2141. i915_gem_object_flush_gpu_write_domain(obj);
  2142. /* Wait on any GPU rendering and flushing to occur. */
  2143. ret = i915_gem_object_wait_rendering(obj);
  2144. if (ret != 0)
  2145. return ret;
  2146. /* If we're writing through the GTT domain, then CPU and GPU caches
  2147. * will need to be invalidated at next use.
  2148. */
  2149. if (write)
  2150. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2151. i915_gem_object_flush_cpu_write_domain(obj);
  2152. /* It should now be out of any other write domains, and we can update
  2153. * the domain values for our changes.
  2154. */
  2155. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2156. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2157. if (write) {
  2158. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2159. obj_priv->dirty = 1;
  2160. }
  2161. return 0;
  2162. }
  2163. /**
  2164. * Moves a single object to the CPU read, and possibly write domain.
  2165. *
  2166. * This function returns when the move is complete, including waiting on
  2167. * flushes to occur.
  2168. */
  2169. static int
  2170. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2171. {
  2172. int ret;
  2173. i915_gem_object_flush_gpu_write_domain(obj);
  2174. /* Wait on any GPU rendering and flushing to occur. */
  2175. ret = i915_gem_object_wait_rendering(obj);
  2176. if (ret != 0)
  2177. return ret;
  2178. i915_gem_object_flush_gtt_write_domain(obj);
  2179. /* If we have a partially-valid cache of the object in the CPU,
  2180. * finish invalidating it and free the per-page flags.
  2181. */
  2182. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2183. /* Flush the CPU cache if it's still invalid. */
  2184. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2185. i915_gem_clflush_object(obj);
  2186. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2187. }
  2188. /* It should now be out of any other write domains, and we can update
  2189. * the domain values for our changes.
  2190. */
  2191. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2192. /* If we're writing through the CPU, then the GPU read domains will
  2193. * need to be invalidated at next use.
  2194. */
  2195. if (write) {
  2196. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2197. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2198. }
  2199. return 0;
  2200. }
  2201. /*
  2202. * Set the next domain for the specified object. This
  2203. * may not actually perform the necessary flushing/invaliding though,
  2204. * as that may want to be batched with other set_domain operations
  2205. *
  2206. * This is (we hope) the only really tricky part of gem. The goal
  2207. * is fairly simple -- track which caches hold bits of the object
  2208. * and make sure they remain coherent. A few concrete examples may
  2209. * help to explain how it works. For shorthand, we use the notation
  2210. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2211. * a pair of read and write domain masks.
  2212. *
  2213. * Case 1: the batch buffer
  2214. *
  2215. * 1. Allocated
  2216. * 2. Written by CPU
  2217. * 3. Mapped to GTT
  2218. * 4. Read by GPU
  2219. * 5. Unmapped from GTT
  2220. * 6. Freed
  2221. *
  2222. * Let's take these a step at a time
  2223. *
  2224. * 1. Allocated
  2225. * Pages allocated from the kernel may still have
  2226. * cache contents, so we set them to (CPU, CPU) always.
  2227. * 2. Written by CPU (using pwrite)
  2228. * The pwrite function calls set_domain (CPU, CPU) and
  2229. * this function does nothing (as nothing changes)
  2230. * 3. Mapped by GTT
  2231. * This function asserts that the object is not
  2232. * currently in any GPU-based read or write domains
  2233. * 4. Read by GPU
  2234. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2235. * As write_domain is zero, this function adds in the
  2236. * current read domains (CPU+COMMAND, 0).
  2237. * flush_domains is set to CPU.
  2238. * invalidate_domains is set to COMMAND
  2239. * clflush is run to get data out of the CPU caches
  2240. * then i915_dev_set_domain calls i915_gem_flush to
  2241. * emit an MI_FLUSH and drm_agp_chipset_flush
  2242. * 5. Unmapped from GTT
  2243. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2244. * flush_domains and invalidate_domains end up both zero
  2245. * so no flushing/invalidating happens
  2246. * 6. Freed
  2247. * yay, done
  2248. *
  2249. * Case 2: The shared render buffer
  2250. *
  2251. * 1. Allocated
  2252. * 2. Mapped to GTT
  2253. * 3. Read/written by GPU
  2254. * 4. set_domain to (CPU,CPU)
  2255. * 5. Read/written by CPU
  2256. * 6. Read/written by GPU
  2257. *
  2258. * 1. Allocated
  2259. * Same as last example, (CPU, CPU)
  2260. * 2. Mapped to GTT
  2261. * Nothing changes (assertions find that it is not in the GPU)
  2262. * 3. Read/written by GPU
  2263. * execbuffer calls set_domain (RENDER, RENDER)
  2264. * flush_domains gets CPU
  2265. * invalidate_domains gets GPU
  2266. * clflush (obj)
  2267. * MI_FLUSH and drm_agp_chipset_flush
  2268. * 4. set_domain (CPU, CPU)
  2269. * flush_domains gets GPU
  2270. * invalidate_domains gets CPU
  2271. * wait_rendering (obj) to make sure all drawing is complete.
  2272. * This will include an MI_FLUSH to get the data from GPU
  2273. * to memory
  2274. * clflush (obj) to invalidate the CPU cache
  2275. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2276. * 5. Read/written by CPU
  2277. * cache lines are loaded and dirtied
  2278. * 6. Read written by GPU
  2279. * Same as last GPU access
  2280. *
  2281. * Case 3: The constant buffer
  2282. *
  2283. * 1. Allocated
  2284. * 2. Written by CPU
  2285. * 3. Read by GPU
  2286. * 4. Updated (written) by CPU again
  2287. * 5. Read by GPU
  2288. *
  2289. * 1. Allocated
  2290. * (CPU, CPU)
  2291. * 2. Written by CPU
  2292. * (CPU, CPU)
  2293. * 3. Read by GPU
  2294. * (CPU+RENDER, 0)
  2295. * flush_domains = CPU
  2296. * invalidate_domains = RENDER
  2297. * clflush (obj)
  2298. * MI_FLUSH
  2299. * drm_agp_chipset_flush
  2300. * 4. Updated (written) by CPU again
  2301. * (CPU, CPU)
  2302. * flush_domains = 0 (no previous write domain)
  2303. * invalidate_domains = 0 (no new read domains)
  2304. * 5. Read by GPU
  2305. * (CPU+RENDER, 0)
  2306. * flush_domains = CPU
  2307. * invalidate_domains = RENDER
  2308. * clflush (obj)
  2309. * MI_FLUSH
  2310. * drm_agp_chipset_flush
  2311. */
  2312. static void
  2313. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2314. {
  2315. struct drm_device *dev = obj->dev;
  2316. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2317. uint32_t invalidate_domains = 0;
  2318. uint32_t flush_domains = 0;
  2319. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2320. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2321. #if WATCH_BUF
  2322. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2323. __func__, obj,
  2324. obj->read_domains, obj->pending_read_domains,
  2325. obj->write_domain, obj->pending_write_domain);
  2326. #endif
  2327. /*
  2328. * If the object isn't moving to a new write domain,
  2329. * let the object stay in multiple read domains
  2330. */
  2331. if (obj->pending_write_domain == 0)
  2332. obj->pending_read_domains |= obj->read_domains;
  2333. else
  2334. obj_priv->dirty = 1;
  2335. /*
  2336. * Flush the current write domain if
  2337. * the new read domains don't match. Invalidate
  2338. * any read domains which differ from the old
  2339. * write domain
  2340. */
  2341. if (obj->write_domain &&
  2342. obj->write_domain != obj->pending_read_domains) {
  2343. flush_domains |= obj->write_domain;
  2344. invalidate_domains |=
  2345. obj->pending_read_domains & ~obj->write_domain;
  2346. }
  2347. /*
  2348. * Invalidate any read caches which may have
  2349. * stale data. That is, any new read domains.
  2350. */
  2351. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2352. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2353. #if WATCH_BUF
  2354. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2355. __func__, flush_domains, invalidate_domains);
  2356. #endif
  2357. i915_gem_clflush_object(obj);
  2358. }
  2359. /* The actual obj->write_domain will be updated with
  2360. * pending_write_domain after we emit the accumulated flush for all
  2361. * of our domain changes in execbuffers (which clears objects'
  2362. * write_domains). So if we have a current write domain that we
  2363. * aren't changing, set pending_write_domain to that.
  2364. */
  2365. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2366. obj->pending_write_domain = obj->write_domain;
  2367. obj->read_domains = obj->pending_read_domains;
  2368. dev->invalidate_domains |= invalidate_domains;
  2369. dev->flush_domains |= flush_domains;
  2370. #if WATCH_BUF
  2371. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2372. __func__,
  2373. obj->read_domains, obj->write_domain,
  2374. dev->invalidate_domains, dev->flush_domains);
  2375. #endif
  2376. }
  2377. /**
  2378. * Moves the object from a partially CPU read to a full one.
  2379. *
  2380. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2381. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2382. */
  2383. static void
  2384. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2385. {
  2386. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2387. if (!obj_priv->page_cpu_valid)
  2388. return;
  2389. /* If we're partially in the CPU read domain, finish moving it in.
  2390. */
  2391. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2392. int i;
  2393. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2394. if (obj_priv->page_cpu_valid[i])
  2395. continue;
  2396. drm_clflush_pages(obj_priv->pages + i, 1);
  2397. }
  2398. }
  2399. /* Free the page_cpu_valid mappings which are now stale, whether
  2400. * or not we've got I915_GEM_DOMAIN_CPU.
  2401. */
  2402. drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
  2403. DRM_MEM_DRIVER);
  2404. obj_priv->page_cpu_valid = NULL;
  2405. }
  2406. /**
  2407. * Set the CPU read domain on a range of the object.
  2408. *
  2409. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2410. * not entirely valid. The page_cpu_valid member of the object flags which
  2411. * pages have been flushed, and will be respected by
  2412. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2413. * of the whole object.
  2414. *
  2415. * This function returns when the move is complete, including waiting on
  2416. * flushes to occur.
  2417. */
  2418. static int
  2419. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2420. uint64_t offset, uint64_t size)
  2421. {
  2422. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2423. int i, ret;
  2424. if (offset == 0 && size == obj->size)
  2425. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2426. i915_gem_object_flush_gpu_write_domain(obj);
  2427. /* Wait on any GPU rendering and flushing to occur. */
  2428. ret = i915_gem_object_wait_rendering(obj);
  2429. if (ret != 0)
  2430. return ret;
  2431. i915_gem_object_flush_gtt_write_domain(obj);
  2432. /* If we're already fully in the CPU read domain, we're done. */
  2433. if (obj_priv->page_cpu_valid == NULL &&
  2434. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2435. return 0;
  2436. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2437. * newly adding I915_GEM_DOMAIN_CPU
  2438. */
  2439. if (obj_priv->page_cpu_valid == NULL) {
  2440. obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
  2441. DRM_MEM_DRIVER);
  2442. if (obj_priv->page_cpu_valid == NULL)
  2443. return -ENOMEM;
  2444. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2445. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2446. /* Flush the cache on any pages that are still invalid from the CPU's
  2447. * perspective.
  2448. */
  2449. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2450. i++) {
  2451. if (obj_priv->page_cpu_valid[i])
  2452. continue;
  2453. drm_clflush_pages(obj_priv->pages + i, 1);
  2454. obj_priv->page_cpu_valid[i] = 1;
  2455. }
  2456. /* It should now be out of any other write domains, and we can update
  2457. * the domain values for our changes.
  2458. */
  2459. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2460. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2461. return 0;
  2462. }
  2463. /**
  2464. * Pin an object to the GTT and evaluate the relocations landing in it.
  2465. */
  2466. static int
  2467. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2468. struct drm_file *file_priv,
  2469. struct drm_i915_gem_exec_object *entry,
  2470. struct drm_i915_gem_relocation_entry *relocs)
  2471. {
  2472. struct drm_device *dev = obj->dev;
  2473. drm_i915_private_t *dev_priv = dev->dev_private;
  2474. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2475. int i, ret;
  2476. void __iomem *reloc_page;
  2477. /* Choose the GTT offset for our buffer and put it there. */
  2478. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2479. if (ret)
  2480. return ret;
  2481. entry->offset = obj_priv->gtt_offset;
  2482. /* Apply the relocations, using the GTT aperture to avoid cache
  2483. * flushing requirements.
  2484. */
  2485. for (i = 0; i < entry->relocation_count; i++) {
  2486. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2487. struct drm_gem_object *target_obj;
  2488. struct drm_i915_gem_object *target_obj_priv;
  2489. uint32_t reloc_val, reloc_offset;
  2490. uint32_t __iomem *reloc_entry;
  2491. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2492. reloc->target_handle);
  2493. if (target_obj == NULL) {
  2494. i915_gem_object_unpin(obj);
  2495. return -EBADF;
  2496. }
  2497. target_obj_priv = target_obj->driver_private;
  2498. /* The target buffer should have appeared before us in the
  2499. * exec_object list, so it should have a GTT space bound by now.
  2500. */
  2501. if (target_obj_priv->gtt_space == NULL) {
  2502. DRM_ERROR("No GTT space found for object %d\n",
  2503. reloc->target_handle);
  2504. drm_gem_object_unreference(target_obj);
  2505. i915_gem_object_unpin(obj);
  2506. return -EINVAL;
  2507. }
  2508. if (reloc->offset > obj->size - 4) {
  2509. DRM_ERROR("Relocation beyond object bounds: "
  2510. "obj %p target %d offset %d size %d.\n",
  2511. obj, reloc->target_handle,
  2512. (int) reloc->offset, (int) obj->size);
  2513. drm_gem_object_unreference(target_obj);
  2514. i915_gem_object_unpin(obj);
  2515. return -EINVAL;
  2516. }
  2517. if (reloc->offset & 3) {
  2518. DRM_ERROR("Relocation not 4-byte aligned: "
  2519. "obj %p target %d offset %d.\n",
  2520. obj, reloc->target_handle,
  2521. (int) reloc->offset);
  2522. drm_gem_object_unreference(target_obj);
  2523. i915_gem_object_unpin(obj);
  2524. return -EINVAL;
  2525. }
  2526. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2527. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2528. DRM_ERROR("reloc with read/write CPU domains: "
  2529. "obj %p target %d offset %d "
  2530. "read %08x write %08x",
  2531. obj, reloc->target_handle,
  2532. (int) reloc->offset,
  2533. reloc->read_domains,
  2534. reloc->write_domain);
  2535. drm_gem_object_unreference(target_obj);
  2536. i915_gem_object_unpin(obj);
  2537. return -EINVAL;
  2538. }
  2539. if (reloc->write_domain && target_obj->pending_write_domain &&
  2540. reloc->write_domain != target_obj->pending_write_domain) {
  2541. DRM_ERROR("Write domain conflict: "
  2542. "obj %p target %d offset %d "
  2543. "new %08x old %08x\n",
  2544. obj, reloc->target_handle,
  2545. (int) reloc->offset,
  2546. reloc->write_domain,
  2547. target_obj->pending_write_domain);
  2548. drm_gem_object_unreference(target_obj);
  2549. i915_gem_object_unpin(obj);
  2550. return -EINVAL;
  2551. }
  2552. #if WATCH_RELOC
  2553. DRM_INFO("%s: obj %p offset %08x target %d "
  2554. "read %08x write %08x gtt %08x "
  2555. "presumed %08x delta %08x\n",
  2556. __func__,
  2557. obj,
  2558. (int) reloc->offset,
  2559. (int) reloc->target_handle,
  2560. (int) reloc->read_domains,
  2561. (int) reloc->write_domain,
  2562. (int) target_obj_priv->gtt_offset,
  2563. (int) reloc->presumed_offset,
  2564. reloc->delta);
  2565. #endif
  2566. target_obj->pending_read_domains |= reloc->read_domains;
  2567. target_obj->pending_write_domain |= reloc->write_domain;
  2568. /* If the relocation already has the right value in it, no
  2569. * more work needs to be done.
  2570. */
  2571. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2572. drm_gem_object_unreference(target_obj);
  2573. continue;
  2574. }
  2575. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2576. if (ret != 0) {
  2577. drm_gem_object_unreference(target_obj);
  2578. i915_gem_object_unpin(obj);
  2579. return -EINVAL;
  2580. }
  2581. /* Map the page containing the relocation we're going to
  2582. * perform.
  2583. */
  2584. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2585. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2586. (reloc_offset &
  2587. ~(PAGE_SIZE - 1)));
  2588. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2589. (reloc_offset & (PAGE_SIZE - 1)));
  2590. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2591. #if WATCH_BUF
  2592. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2593. obj, (unsigned int) reloc->offset,
  2594. readl(reloc_entry), reloc_val);
  2595. #endif
  2596. writel(reloc_val, reloc_entry);
  2597. io_mapping_unmap_atomic(reloc_page);
  2598. /* The updated presumed offset for this entry will be
  2599. * copied back out to the user.
  2600. */
  2601. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2602. drm_gem_object_unreference(target_obj);
  2603. }
  2604. #if WATCH_BUF
  2605. if (0)
  2606. i915_gem_dump_object(obj, 128, __func__, ~0);
  2607. #endif
  2608. return 0;
  2609. }
  2610. /** Dispatch a batchbuffer to the ring
  2611. */
  2612. static int
  2613. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2614. struct drm_i915_gem_execbuffer *exec,
  2615. struct drm_clip_rect *cliprects,
  2616. uint64_t exec_offset)
  2617. {
  2618. drm_i915_private_t *dev_priv = dev->dev_private;
  2619. int nbox = exec->num_cliprects;
  2620. int i = 0, count;
  2621. uint32_t exec_start, exec_len;
  2622. RING_LOCALS;
  2623. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2624. exec_len = (uint32_t) exec->batch_len;
  2625. if ((exec_start | exec_len) & 0x7) {
  2626. DRM_ERROR("alignment\n");
  2627. return -EINVAL;
  2628. }
  2629. if (!exec_start)
  2630. return -EINVAL;
  2631. count = nbox ? nbox : 1;
  2632. for (i = 0; i < count; i++) {
  2633. if (i < nbox) {
  2634. int ret = i915_emit_box(dev, cliprects, i,
  2635. exec->DR1, exec->DR4);
  2636. if (ret)
  2637. return ret;
  2638. }
  2639. if (IS_I830(dev) || IS_845G(dev)) {
  2640. BEGIN_LP_RING(4);
  2641. OUT_RING(MI_BATCH_BUFFER);
  2642. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2643. OUT_RING(exec_start + exec_len - 4);
  2644. OUT_RING(0);
  2645. ADVANCE_LP_RING();
  2646. } else {
  2647. BEGIN_LP_RING(2);
  2648. if (IS_I965G(dev)) {
  2649. OUT_RING(MI_BATCH_BUFFER_START |
  2650. (2 << 6) |
  2651. MI_BATCH_NON_SECURE_I965);
  2652. OUT_RING(exec_start);
  2653. } else {
  2654. OUT_RING(MI_BATCH_BUFFER_START |
  2655. (2 << 6));
  2656. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2657. }
  2658. ADVANCE_LP_RING();
  2659. }
  2660. }
  2661. /* XXX breadcrumb */
  2662. return 0;
  2663. }
  2664. /* Throttle our rendering by waiting until the ring has completed our requests
  2665. * emitted over 20 msec ago.
  2666. *
  2667. * This should get us reasonable parallelism between CPU and GPU but also
  2668. * relatively low latency when blocking on a particular request to finish.
  2669. */
  2670. static int
  2671. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2672. {
  2673. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2674. int ret = 0;
  2675. uint32_t seqno;
  2676. mutex_lock(&dev->struct_mutex);
  2677. seqno = i915_file_priv->mm.last_gem_throttle_seqno;
  2678. i915_file_priv->mm.last_gem_throttle_seqno =
  2679. i915_file_priv->mm.last_gem_seqno;
  2680. if (seqno)
  2681. ret = i915_wait_request(dev, seqno);
  2682. mutex_unlock(&dev->struct_mutex);
  2683. return ret;
  2684. }
  2685. static int
  2686. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2687. uint32_t buffer_count,
  2688. struct drm_i915_gem_relocation_entry **relocs)
  2689. {
  2690. uint32_t reloc_count = 0, reloc_index = 0, i;
  2691. int ret;
  2692. *relocs = NULL;
  2693. for (i = 0; i < buffer_count; i++) {
  2694. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2695. return -EINVAL;
  2696. reloc_count += exec_list[i].relocation_count;
  2697. }
  2698. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2699. if (*relocs == NULL)
  2700. return -ENOMEM;
  2701. for (i = 0; i < buffer_count; i++) {
  2702. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2703. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2704. ret = copy_from_user(&(*relocs)[reloc_index],
  2705. user_relocs,
  2706. exec_list[i].relocation_count *
  2707. sizeof(**relocs));
  2708. if (ret != 0) {
  2709. drm_free_large(*relocs);
  2710. *relocs = NULL;
  2711. return -EFAULT;
  2712. }
  2713. reloc_index += exec_list[i].relocation_count;
  2714. }
  2715. return 0;
  2716. }
  2717. static int
  2718. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2719. uint32_t buffer_count,
  2720. struct drm_i915_gem_relocation_entry *relocs)
  2721. {
  2722. uint32_t reloc_count = 0, i;
  2723. int ret = 0;
  2724. for (i = 0; i < buffer_count; i++) {
  2725. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2726. int unwritten;
  2727. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2728. unwritten = copy_to_user(user_relocs,
  2729. &relocs[reloc_count],
  2730. exec_list[i].relocation_count *
  2731. sizeof(*relocs));
  2732. if (unwritten) {
  2733. ret = -EFAULT;
  2734. goto err;
  2735. }
  2736. reloc_count += exec_list[i].relocation_count;
  2737. }
  2738. err:
  2739. drm_free_large(relocs);
  2740. return ret;
  2741. }
  2742. int
  2743. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2744. struct drm_file *file_priv)
  2745. {
  2746. drm_i915_private_t *dev_priv = dev->dev_private;
  2747. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2748. struct drm_i915_gem_execbuffer *args = data;
  2749. struct drm_i915_gem_exec_object *exec_list = NULL;
  2750. struct drm_gem_object **object_list = NULL;
  2751. struct drm_gem_object *batch_obj;
  2752. struct drm_i915_gem_object *obj_priv;
  2753. struct drm_clip_rect *cliprects = NULL;
  2754. struct drm_i915_gem_relocation_entry *relocs;
  2755. int ret, ret2, i, pinned = 0;
  2756. uint64_t exec_offset;
  2757. uint32_t seqno, flush_domains, reloc_index;
  2758. int pin_tries;
  2759. #if WATCH_EXEC
  2760. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2761. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2762. #endif
  2763. if (args->buffer_count < 1) {
  2764. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2765. return -EINVAL;
  2766. }
  2767. /* Copy in the exec list from userland */
  2768. exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
  2769. object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
  2770. if (exec_list == NULL || object_list == NULL) {
  2771. DRM_ERROR("Failed to allocate exec or object list "
  2772. "for %d buffers\n",
  2773. args->buffer_count);
  2774. ret = -ENOMEM;
  2775. goto pre_mutex_err;
  2776. }
  2777. ret = copy_from_user(exec_list,
  2778. (struct drm_i915_relocation_entry __user *)
  2779. (uintptr_t) args->buffers_ptr,
  2780. sizeof(*exec_list) * args->buffer_count);
  2781. if (ret != 0) {
  2782. DRM_ERROR("copy %d exec entries failed %d\n",
  2783. args->buffer_count, ret);
  2784. goto pre_mutex_err;
  2785. }
  2786. if (args->num_cliprects != 0) {
  2787. cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
  2788. DRM_MEM_DRIVER);
  2789. if (cliprects == NULL)
  2790. goto pre_mutex_err;
  2791. ret = copy_from_user(cliprects,
  2792. (struct drm_clip_rect __user *)
  2793. (uintptr_t) args->cliprects_ptr,
  2794. sizeof(*cliprects) * args->num_cliprects);
  2795. if (ret != 0) {
  2796. DRM_ERROR("copy %d cliprects failed: %d\n",
  2797. args->num_cliprects, ret);
  2798. goto pre_mutex_err;
  2799. }
  2800. }
  2801. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2802. &relocs);
  2803. if (ret != 0)
  2804. goto pre_mutex_err;
  2805. mutex_lock(&dev->struct_mutex);
  2806. i915_verify_inactive(dev, __FILE__, __LINE__);
  2807. if (dev_priv->mm.wedged) {
  2808. DRM_ERROR("Execbuf while wedged\n");
  2809. mutex_unlock(&dev->struct_mutex);
  2810. ret = -EIO;
  2811. goto pre_mutex_err;
  2812. }
  2813. if (dev_priv->mm.suspended) {
  2814. DRM_ERROR("Execbuf while VT-switched.\n");
  2815. mutex_unlock(&dev->struct_mutex);
  2816. ret = -EBUSY;
  2817. goto pre_mutex_err;
  2818. }
  2819. /* Look up object handles */
  2820. for (i = 0; i < args->buffer_count; i++) {
  2821. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2822. exec_list[i].handle);
  2823. if (object_list[i] == NULL) {
  2824. DRM_ERROR("Invalid object handle %d at index %d\n",
  2825. exec_list[i].handle, i);
  2826. ret = -EBADF;
  2827. goto err;
  2828. }
  2829. obj_priv = object_list[i]->driver_private;
  2830. if (obj_priv->in_execbuffer) {
  2831. DRM_ERROR("Object %p appears more than once in object list\n",
  2832. object_list[i]);
  2833. ret = -EBADF;
  2834. goto err;
  2835. }
  2836. obj_priv->in_execbuffer = true;
  2837. }
  2838. /* Pin and relocate */
  2839. for (pin_tries = 0; ; pin_tries++) {
  2840. ret = 0;
  2841. reloc_index = 0;
  2842. for (i = 0; i < args->buffer_count; i++) {
  2843. object_list[i]->pending_read_domains = 0;
  2844. object_list[i]->pending_write_domain = 0;
  2845. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2846. file_priv,
  2847. &exec_list[i],
  2848. &relocs[reloc_index]);
  2849. if (ret)
  2850. break;
  2851. pinned = i + 1;
  2852. reloc_index += exec_list[i].relocation_count;
  2853. }
  2854. /* success */
  2855. if (ret == 0)
  2856. break;
  2857. /* error other than GTT full, or we've already tried again */
  2858. if (ret != -ENOMEM || pin_tries >= 1) {
  2859. if (ret != -ERESTARTSYS)
  2860. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2861. goto err;
  2862. }
  2863. /* unpin all of our buffers */
  2864. for (i = 0; i < pinned; i++)
  2865. i915_gem_object_unpin(object_list[i]);
  2866. pinned = 0;
  2867. /* evict everyone we can from the aperture */
  2868. ret = i915_gem_evict_everything(dev);
  2869. if (ret)
  2870. goto err;
  2871. }
  2872. /* Set the pending read domains for the batch buffer to COMMAND */
  2873. batch_obj = object_list[args->buffer_count-1];
  2874. batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
  2875. batch_obj->pending_write_domain = 0;
  2876. i915_verify_inactive(dev, __FILE__, __LINE__);
  2877. /* Zero the global flush/invalidate flags. These
  2878. * will be modified as new domains are computed
  2879. * for each object
  2880. */
  2881. dev->invalidate_domains = 0;
  2882. dev->flush_domains = 0;
  2883. for (i = 0; i < args->buffer_count; i++) {
  2884. struct drm_gem_object *obj = object_list[i];
  2885. /* Compute new gpu domains and update invalidate/flush */
  2886. i915_gem_object_set_to_gpu_domain(obj);
  2887. }
  2888. i915_verify_inactive(dev, __FILE__, __LINE__);
  2889. if (dev->invalidate_domains | dev->flush_domains) {
  2890. #if WATCH_EXEC
  2891. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2892. __func__,
  2893. dev->invalidate_domains,
  2894. dev->flush_domains);
  2895. #endif
  2896. i915_gem_flush(dev,
  2897. dev->invalidate_domains,
  2898. dev->flush_domains);
  2899. if (dev->flush_domains)
  2900. (void)i915_add_request(dev, dev->flush_domains);
  2901. }
  2902. for (i = 0; i < args->buffer_count; i++) {
  2903. struct drm_gem_object *obj = object_list[i];
  2904. obj->write_domain = obj->pending_write_domain;
  2905. }
  2906. i915_verify_inactive(dev, __FILE__, __LINE__);
  2907. #if WATCH_COHERENCY
  2908. for (i = 0; i < args->buffer_count; i++) {
  2909. i915_gem_object_check_coherency(object_list[i],
  2910. exec_list[i].handle);
  2911. }
  2912. #endif
  2913. exec_offset = exec_list[args->buffer_count - 1].offset;
  2914. #if WATCH_EXEC
  2915. i915_gem_dump_object(batch_obj,
  2916. args->batch_len,
  2917. __func__,
  2918. ~0);
  2919. #endif
  2920. /* Exec the batchbuffer */
  2921. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  2922. if (ret) {
  2923. DRM_ERROR("dispatch failed %d\n", ret);
  2924. goto err;
  2925. }
  2926. /*
  2927. * Ensure that the commands in the batch buffer are
  2928. * finished before the interrupt fires
  2929. */
  2930. flush_domains = i915_retire_commands(dev);
  2931. i915_verify_inactive(dev, __FILE__, __LINE__);
  2932. /*
  2933. * Get a seqno representing the execution of the current buffer,
  2934. * which we can wait on. We would like to mitigate these interrupts,
  2935. * likely by only creating seqnos occasionally (so that we have
  2936. * *some* interrupts representing completion of buffers that we can
  2937. * wait on when trying to clear up gtt space).
  2938. */
  2939. seqno = i915_add_request(dev, flush_domains);
  2940. BUG_ON(seqno == 0);
  2941. i915_file_priv->mm.last_gem_seqno = seqno;
  2942. for (i = 0; i < args->buffer_count; i++) {
  2943. struct drm_gem_object *obj = object_list[i];
  2944. i915_gem_object_move_to_active(obj, seqno);
  2945. #if WATCH_LRU
  2946. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  2947. #endif
  2948. }
  2949. #if WATCH_LRU
  2950. i915_dump_lru(dev, __func__);
  2951. #endif
  2952. i915_verify_inactive(dev, __FILE__, __LINE__);
  2953. err:
  2954. for (i = 0; i < pinned; i++)
  2955. i915_gem_object_unpin(object_list[i]);
  2956. for (i = 0; i < args->buffer_count; i++) {
  2957. if (object_list[i]) {
  2958. obj_priv = object_list[i]->driver_private;
  2959. obj_priv->in_execbuffer = false;
  2960. }
  2961. drm_gem_object_unreference(object_list[i]);
  2962. }
  2963. mutex_unlock(&dev->struct_mutex);
  2964. if (!ret) {
  2965. /* Copy the new buffer offsets back to the user's exec list. */
  2966. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  2967. (uintptr_t) args->buffers_ptr,
  2968. exec_list,
  2969. sizeof(*exec_list) * args->buffer_count);
  2970. if (ret) {
  2971. ret = -EFAULT;
  2972. DRM_ERROR("failed to copy %d exec entries "
  2973. "back to user (%d)\n",
  2974. args->buffer_count, ret);
  2975. }
  2976. }
  2977. /* Copy the updated relocations out regardless of current error
  2978. * state. Failure to update the relocs would mean that the next
  2979. * time userland calls execbuf, it would do so with presumed offset
  2980. * state that didn't match the actual object state.
  2981. */
  2982. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  2983. relocs);
  2984. if (ret2 != 0) {
  2985. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  2986. if (ret == 0)
  2987. ret = ret2;
  2988. }
  2989. pre_mutex_err:
  2990. drm_free_large(object_list);
  2991. drm_free_large(exec_list);
  2992. drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
  2993. DRM_MEM_DRIVER);
  2994. return ret;
  2995. }
  2996. int
  2997. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  2998. {
  2999. struct drm_device *dev = obj->dev;
  3000. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3001. int ret;
  3002. i915_verify_inactive(dev, __FILE__, __LINE__);
  3003. if (obj_priv->gtt_space == NULL) {
  3004. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3005. if (ret != 0) {
  3006. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3007. DRM_ERROR("Failure to bind: %d\n", ret);
  3008. return ret;
  3009. }
  3010. }
  3011. /*
  3012. * Pre-965 chips need a fence register set up in order to
  3013. * properly handle tiled surfaces.
  3014. */
  3015. if (!IS_I965G(dev) &&
  3016. obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  3017. obj_priv->tiling_mode != I915_TILING_NONE) {
  3018. ret = i915_gem_object_get_fence_reg(obj, true);
  3019. if (ret != 0) {
  3020. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3021. DRM_ERROR("Failure to install fence: %d\n",
  3022. ret);
  3023. return ret;
  3024. }
  3025. }
  3026. obj_priv->pin_count++;
  3027. /* If the object is not active and not pending a flush,
  3028. * remove it from the inactive list
  3029. */
  3030. if (obj_priv->pin_count == 1) {
  3031. atomic_inc(&dev->pin_count);
  3032. atomic_add(obj->size, &dev->pin_memory);
  3033. if (!obj_priv->active &&
  3034. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  3035. I915_GEM_DOMAIN_GTT)) == 0 &&
  3036. !list_empty(&obj_priv->list))
  3037. list_del_init(&obj_priv->list);
  3038. }
  3039. i915_verify_inactive(dev, __FILE__, __LINE__);
  3040. return 0;
  3041. }
  3042. void
  3043. i915_gem_object_unpin(struct drm_gem_object *obj)
  3044. {
  3045. struct drm_device *dev = obj->dev;
  3046. drm_i915_private_t *dev_priv = dev->dev_private;
  3047. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3048. i915_verify_inactive(dev, __FILE__, __LINE__);
  3049. obj_priv->pin_count--;
  3050. BUG_ON(obj_priv->pin_count < 0);
  3051. BUG_ON(obj_priv->gtt_space == NULL);
  3052. /* If the object is no longer pinned, and is
  3053. * neither active nor being flushed, then stick it on
  3054. * the inactive list
  3055. */
  3056. if (obj_priv->pin_count == 0) {
  3057. if (!obj_priv->active &&
  3058. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  3059. I915_GEM_DOMAIN_GTT)) == 0)
  3060. list_move_tail(&obj_priv->list,
  3061. &dev_priv->mm.inactive_list);
  3062. atomic_dec(&dev->pin_count);
  3063. atomic_sub(obj->size, &dev->pin_memory);
  3064. }
  3065. i915_verify_inactive(dev, __FILE__, __LINE__);
  3066. }
  3067. int
  3068. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3069. struct drm_file *file_priv)
  3070. {
  3071. struct drm_i915_gem_pin *args = data;
  3072. struct drm_gem_object *obj;
  3073. struct drm_i915_gem_object *obj_priv;
  3074. int ret;
  3075. mutex_lock(&dev->struct_mutex);
  3076. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3077. if (obj == NULL) {
  3078. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3079. args->handle);
  3080. mutex_unlock(&dev->struct_mutex);
  3081. return -EBADF;
  3082. }
  3083. obj_priv = obj->driver_private;
  3084. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3085. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3086. args->handle);
  3087. drm_gem_object_unreference(obj);
  3088. mutex_unlock(&dev->struct_mutex);
  3089. return -EINVAL;
  3090. }
  3091. obj_priv->user_pin_count++;
  3092. obj_priv->pin_filp = file_priv;
  3093. if (obj_priv->user_pin_count == 1) {
  3094. ret = i915_gem_object_pin(obj, args->alignment);
  3095. if (ret != 0) {
  3096. drm_gem_object_unreference(obj);
  3097. mutex_unlock(&dev->struct_mutex);
  3098. return ret;
  3099. }
  3100. }
  3101. /* XXX - flush the CPU caches for pinned objects
  3102. * as the X server doesn't manage domains yet
  3103. */
  3104. i915_gem_object_flush_cpu_write_domain(obj);
  3105. args->offset = obj_priv->gtt_offset;
  3106. drm_gem_object_unreference(obj);
  3107. mutex_unlock(&dev->struct_mutex);
  3108. return 0;
  3109. }
  3110. int
  3111. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3112. struct drm_file *file_priv)
  3113. {
  3114. struct drm_i915_gem_pin *args = data;
  3115. struct drm_gem_object *obj;
  3116. struct drm_i915_gem_object *obj_priv;
  3117. mutex_lock(&dev->struct_mutex);
  3118. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3119. if (obj == NULL) {
  3120. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3121. args->handle);
  3122. mutex_unlock(&dev->struct_mutex);
  3123. return -EBADF;
  3124. }
  3125. obj_priv = obj->driver_private;
  3126. if (obj_priv->pin_filp != file_priv) {
  3127. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3128. args->handle);
  3129. drm_gem_object_unreference(obj);
  3130. mutex_unlock(&dev->struct_mutex);
  3131. return -EINVAL;
  3132. }
  3133. obj_priv->user_pin_count--;
  3134. if (obj_priv->user_pin_count == 0) {
  3135. obj_priv->pin_filp = NULL;
  3136. i915_gem_object_unpin(obj);
  3137. }
  3138. drm_gem_object_unreference(obj);
  3139. mutex_unlock(&dev->struct_mutex);
  3140. return 0;
  3141. }
  3142. int
  3143. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3144. struct drm_file *file_priv)
  3145. {
  3146. struct drm_i915_gem_busy *args = data;
  3147. struct drm_gem_object *obj;
  3148. struct drm_i915_gem_object *obj_priv;
  3149. mutex_lock(&dev->struct_mutex);
  3150. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3151. if (obj == NULL) {
  3152. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3153. args->handle);
  3154. mutex_unlock(&dev->struct_mutex);
  3155. return -EBADF;
  3156. }
  3157. /* Update the active list for the hardware's current position.
  3158. * Otherwise this only updates on a delayed timer or when irqs are
  3159. * actually unmasked, and our working set ends up being larger than
  3160. * required.
  3161. */
  3162. i915_gem_retire_requests(dev);
  3163. obj_priv = obj->driver_private;
  3164. /* Don't count being on the flushing list against the object being
  3165. * done. Otherwise, a buffer left on the flushing list but not getting
  3166. * flushed (because nobody's flushing that domain) won't ever return
  3167. * unbusy and get reused by libdrm's bo cache. The other expected
  3168. * consumer of this interface, OpenGL's occlusion queries, also specs
  3169. * that the objects get unbusy "eventually" without any interference.
  3170. */
  3171. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3172. drm_gem_object_unreference(obj);
  3173. mutex_unlock(&dev->struct_mutex);
  3174. return 0;
  3175. }
  3176. int
  3177. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3178. struct drm_file *file_priv)
  3179. {
  3180. return i915_gem_ring_throttle(dev, file_priv);
  3181. }
  3182. int i915_gem_init_object(struct drm_gem_object *obj)
  3183. {
  3184. struct drm_i915_gem_object *obj_priv;
  3185. obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
  3186. if (obj_priv == NULL)
  3187. return -ENOMEM;
  3188. /*
  3189. * We've just allocated pages from the kernel,
  3190. * so they've just been written by the CPU with
  3191. * zeros. They'll need to be clflushed before we
  3192. * use them with the GPU.
  3193. */
  3194. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3195. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3196. obj_priv->agp_type = AGP_USER_MEMORY;
  3197. obj->driver_private = obj_priv;
  3198. obj_priv->obj = obj;
  3199. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3200. INIT_LIST_HEAD(&obj_priv->list);
  3201. return 0;
  3202. }
  3203. void i915_gem_free_object(struct drm_gem_object *obj)
  3204. {
  3205. struct drm_device *dev = obj->dev;
  3206. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3207. while (obj_priv->pin_count > 0)
  3208. i915_gem_object_unpin(obj);
  3209. if (obj_priv->phys_obj)
  3210. i915_gem_detach_phys_object(dev, obj);
  3211. i915_gem_object_unbind(obj);
  3212. i915_gem_free_mmap_offset(obj);
  3213. drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
  3214. kfree(obj_priv->bit_17);
  3215. drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
  3216. }
  3217. /** Unbinds all objects that are on the given buffer list. */
  3218. static int
  3219. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3220. {
  3221. struct drm_gem_object *obj;
  3222. struct drm_i915_gem_object *obj_priv;
  3223. int ret;
  3224. while (!list_empty(head)) {
  3225. obj_priv = list_first_entry(head,
  3226. struct drm_i915_gem_object,
  3227. list);
  3228. obj = obj_priv->obj;
  3229. if (obj_priv->pin_count != 0) {
  3230. DRM_ERROR("Pinned object in unbind list\n");
  3231. mutex_unlock(&dev->struct_mutex);
  3232. return -EINVAL;
  3233. }
  3234. ret = i915_gem_object_unbind(obj);
  3235. if (ret != 0) {
  3236. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3237. ret);
  3238. mutex_unlock(&dev->struct_mutex);
  3239. return ret;
  3240. }
  3241. }
  3242. return 0;
  3243. }
  3244. int
  3245. i915_gem_idle(struct drm_device *dev)
  3246. {
  3247. drm_i915_private_t *dev_priv = dev->dev_private;
  3248. uint32_t seqno, cur_seqno, last_seqno;
  3249. int stuck, ret;
  3250. mutex_lock(&dev->struct_mutex);
  3251. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3252. mutex_unlock(&dev->struct_mutex);
  3253. return 0;
  3254. }
  3255. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3256. * We need to replace this with a semaphore, or something.
  3257. */
  3258. dev_priv->mm.suspended = 1;
  3259. /* Cancel the retire work handler, wait for it to finish if running
  3260. */
  3261. mutex_unlock(&dev->struct_mutex);
  3262. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3263. mutex_lock(&dev->struct_mutex);
  3264. i915_kernel_lost_context(dev);
  3265. /* Flush the GPU along with all non-CPU write domains
  3266. */
  3267. i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
  3268. ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  3269. seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
  3270. if (seqno == 0) {
  3271. mutex_unlock(&dev->struct_mutex);
  3272. return -ENOMEM;
  3273. }
  3274. dev_priv->mm.waiting_gem_seqno = seqno;
  3275. last_seqno = 0;
  3276. stuck = 0;
  3277. for (;;) {
  3278. cur_seqno = i915_get_gem_seqno(dev);
  3279. if (i915_seqno_passed(cur_seqno, seqno))
  3280. break;
  3281. if (last_seqno == cur_seqno) {
  3282. if (stuck++ > 100) {
  3283. DRM_ERROR("hardware wedged\n");
  3284. dev_priv->mm.wedged = 1;
  3285. DRM_WAKEUP(&dev_priv->irq_queue);
  3286. break;
  3287. }
  3288. }
  3289. msleep(10);
  3290. last_seqno = cur_seqno;
  3291. }
  3292. dev_priv->mm.waiting_gem_seqno = 0;
  3293. i915_gem_retire_requests(dev);
  3294. spin_lock(&dev_priv->mm.active_list_lock);
  3295. if (!dev_priv->mm.wedged) {
  3296. /* Active and flushing should now be empty as we've
  3297. * waited for a sequence higher than any pending execbuffer
  3298. */
  3299. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3300. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3301. /* Request should now be empty as we've also waited
  3302. * for the last request in the list
  3303. */
  3304. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3305. }
  3306. /* Empty the active and flushing lists to inactive. If there's
  3307. * anything left at this point, it means that we're wedged and
  3308. * nothing good's going to happen by leaving them there. So strip
  3309. * the GPU domains and just stuff them onto inactive.
  3310. */
  3311. while (!list_empty(&dev_priv->mm.active_list)) {
  3312. struct drm_i915_gem_object *obj_priv;
  3313. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3314. struct drm_i915_gem_object,
  3315. list);
  3316. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3317. i915_gem_object_move_to_inactive(obj_priv->obj);
  3318. }
  3319. spin_unlock(&dev_priv->mm.active_list_lock);
  3320. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3321. struct drm_i915_gem_object *obj_priv;
  3322. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3323. struct drm_i915_gem_object,
  3324. list);
  3325. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3326. i915_gem_object_move_to_inactive(obj_priv->obj);
  3327. }
  3328. /* Move all inactive buffers out of the GTT. */
  3329. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3330. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3331. if (ret) {
  3332. mutex_unlock(&dev->struct_mutex);
  3333. return ret;
  3334. }
  3335. i915_gem_cleanup_ringbuffer(dev);
  3336. mutex_unlock(&dev->struct_mutex);
  3337. return 0;
  3338. }
  3339. static int
  3340. i915_gem_init_hws(struct drm_device *dev)
  3341. {
  3342. drm_i915_private_t *dev_priv = dev->dev_private;
  3343. struct drm_gem_object *obj;
  3344. struct drm_i915_gem_object *obj_priv;
  3345. int ret;
  3346. /* If we need a physical address for the status page, it's already
  3347. * initialized at driver load time.
  3348. */
  3349. if (!I915_NEED_GFX_HWS(dev))
  3350. return 0;
  3351. obj = drm_gem_object_alloc(dev, 4096);
  3352. if (obj == NULL) {
  3353. DRM_ERROR("Failed to allocate status page\n");
  3354. return -ENOMEM;
  3355. }
  3356. obj_priv = obj->driver_private;
  3357. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3358. ret = i915_gem_object_pin(obj, 4096);
  3359. if (ret != 0) {
  3360. drm_gem_object_unreference(obj);
  3361. return ret;
  3362. }
  3363. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3364. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3365. if (dev_priv->hw_status_page == NULL) {
  3366. DRM_ERROR("Failed to map status page.\n");
  3367. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3368. i915_gem_object_unpin(obj);
  3369. drm_gem_object_unreference(obj);
  3370. return -EINVAL;
  3371. }
  3372. dev_priv->hws_obj = obj;
  3373. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3374. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3375. I915_READ(HWS_PGA); /* posting read */
  3376. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3377. return 0;
  3378. }
  3379. static void
  3380. i915_gem_cleanup_hws(struct drm_device *dev)
  3381. {
  3382. drm_i915_private_t *dev_priv = dev->dev_private;
  3383. struct drm_gem_object *obj;
  3384. struct drm_i915_gem_object *obj_priv;
  3385. if (dev_priv->hws_obj == NULL)
  3386. return;
  3387. obj = dev_priv->hws_obj;
  3388. obj_priv = obj->driver_private;
  3389. kunmap(obj_priv->pages[0]);
  3390. i915_gem_object_unpin(obj);
  3391. drm_gem_object_unreference(obj);
  3392. dev_priv->hws_obj = NULL;
  3393. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3394. dev_priv->hw_status_page = NULL;
  3395. /* Write high address into HWS_PGA when disabling. */
  3396. I915_WRITE(HWS_PGA, 0x1ffff000);
  3397. }
  3398. int
  3399. i915_gem_init_ringbuffer(struct drm_device *dev)
  3400. {
  3401. drm_i915_private_t *dev_priv = dev->dev_private;
  3402. struct drm_gem_object *obj;
  3403. struct drm_i915_gem_object *obj_priv;
  3404. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3405. int ret;
  3406. u32 head;
  3407. ret = i915_gem_init_hws(dev);
  3408. if (ret != 0)
  3409. return ret;
  3410. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3411. if (obj == NULL) {
  3412. DRM_ERROR("Failed to allocate ringbuffer\n");
  3413. i915_gem_cleanup_hws(dev);
  3414. return -ENOMEM;
  3415. }
  3416. obj_priv = obj->driver_private;
  3417. ret = i915_gem_object_pin(obj, 4096);
  3418. if (ret != 0) {
  3419. drm_gem_object_unreference(obj);
  3420. i915_gem_cleanup_hws(dev);
  3421. return ret;
  3422. }
  3423. /* Set up the kernel mapping for the ring. */
  3424. ring->Size = obj->size;
  3425. ring->tail_mask = obj->size - 1;
  3426. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3427. ring->map.size = obj->size;
  3428. ring->map.type = 0;
  3429. ring->map.flags = 0;
  3430. ring->map.mtrr = 0;
  3431. drm_core_ioremap_wc(&ring->map, dev);
  3432. if (ring->map.handle == NULL) {
  3433. DRM_ERROR("Failed to map ringbuffer.\n");
  3434. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3435. i915_gem_object_unpin(obj);
  3436. drm_gem_object_unreference(obj);
  3437. i915_gem_cleanup_hws(dev);
  3438. return -EINVAL;
  3439. }
  3440. ring->ring_obj = obj;
  3441. ring->virtual_start = ring->map.handle;
  3442. /* Stop the ring if it's running. */
  3443. I915_WRITE(PRB0_CTL, 0);
  3444. I915_WRITE(PRB0_TAIL, 0);
  3445. I915_WRITE(PRB0_HEAD, 0);
  3446. /* Initialize the ring. */
  3447. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3448. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3449. /* G45 ring initialization fails to reset head to zero */
  3450. if (head != 0) {
  3451. DRM_ERROR("Ring head not reset to zero "
  3452. "ctl %08x head %08x tail %08x start %08x\n",
  3453. I915_READ(PRB0_CTL),
  3454. I915_READ(PRB0_HEAD),
  3455. I915_READ(PRB0_TAIL),
  3456. I915_READ(PRB0_START));
  3457. I915_WRITE(PRB0_HEAD, 0);
  3458. DRM_ERROR("Ring head forced to zero "
  3459. "ctl %08x head %08x tail %08x start %08x\n",
  3460. I915_READ(PRB0_CTL),
  3461. I915_READ(PRB0_HEAD),
  3462. I915_READ(PRB0_TAIL),
  3463. I915_READ(PRB0_START));
  3464. }
  3465. I915_WRITE(PRB0_CTL,
  3466. ((obj->size - 4096) & RING_NR_PAGES) |
  3467. RING_NO_REPORT |
  3468. RING_VALID);
  3469. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3470. /* If the head is still not zero, the ring is dead */
  3471. if (head != 0) {
  3472. DRM_ERROR("Ring initialization failed "
  3473. "ctl %08x head %08x tail %08x start %08x\n",
  3474. I915_READ(PRB0_CTL),
  3475. I915_READ(PRB0_HEAD),
  3476. I915_READ(PRB0_TAIL),
  3477. I915_READ(PRB0_START));
  3478. return -EIO;
  3479. }
  3480. /* Update our cache of the ring state */
  3481. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3482. i915_kernel_lost_context(dev);
  3483. else {
  3484. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3485. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3486. ring->space = ring->head - (ring->tail + 8);
  3487. if (ring->space < 0)
  3488. ring->space += ring->Size;
  3489. }
  3490. return 0;
  3491. }
  3492. void
  3493. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3494. {
  3495. drm_i915_private_t *dev_priv = dev->dev_private;
  3496. if (dev_priv->ring.ring_obj == NULL)
  3497. return;
  3498. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3499. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3500. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3501. dev_priv->ring.ring_obj = NULL;
  3502. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3503. i915_gem_cleanup_hws(dev);
  3504. }
  3505. int
  3506. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3507. struct drm_file *file_priv)
  3508. {
  3509. drm_i915_private_t *dev_priv = dev->dev_private;
  3510. int ret;
  3511. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3512. return 0;
  3513. if (dev_priv->mm.wedged) {
  3514. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3515. dev_priv->mm.wedged = 0;
  3516. }
  3517. mutex_lock(&dev->struct_mutex);
  3518. dev_priv->mm.suspended = 0;
  3519. ret = i915_gem_init_ringbuffer(dev);
  3520. if (ret != 0) {
  3521. mutex_unlock(&dev->struct_mutex);
  3522. return ret;
  3523. }
  3524. spin_lock(&dev_priv->mm.active_list_lock);
  3525. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3526. spin_unlock(&dev_priv->mm.active_list_lock);
  3527. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3528. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3529. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3530. mutex_unlock(&dev->struct_mutex);
  3531. drm_irq_install(dev);
  3532. return 0;
  3533. }
  3534. int
  3535. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3536. struct drm_file *file_priv)
  3537. {
  3538. int ret;
  3539. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3540. return 0;
  3541. ret = i915_gem_idle(dev);
  3542. drm_irq_uninstall(dev);
  3543. return ret;
  3544. }
  3545. void
  3546. i915_gem_lastclose(struct drm_device *dev)
  3547. {
  3548. int ret;
  3549. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3550. return;
  3551. ret = i915_gem_idle(dev);
  3552. if (ret)
  3553. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3554. }
  3555. void
  3556. i915_gem_load(struct drm_device *dev)
  3557. {
  3558. drm_i915_private_t *dev_priv = dev->dev_private;
  3559. spin_lock_init(&dev_priv->mm.active_list_lock);
  3560. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3561. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3562. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3563. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3564. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3565. i915_gem_retire_work_handler);
  3566. dev_priv->mm.next_gem_seqno = 1;
  3567. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3568. dev_priv->fence_reg_start = 3;
  3569. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3570. dev_priv->num_fence_regs = 16;
  3571. else
  3572. dev_priv->num_fence_regs = 8;
  3573. i915_gem_detect_bit_6_swizzle(dev);
  3574. }
  3575. /*
  3576. * Create a physically contiguous memory object for this object
  3577. * e.g. for cursor + overlay regs
  3578. */
  3579. int i915_gem_init_phys_object(struct drm_device *dev,
  3580. int id, int size)
  3581. {
  3582. drm_i915_private_t *dev_priv = dev->dev_private;
  3583. struct drm_i915_gem_phys_object *phys_obj;
  3584. int ret;
  3585. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3586. return 0;
  3587. phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3588. if (!phys_obj)
  3589. return -ENOMEM;
  3590. phys_obj->id = id;
  3591. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3592. if (!phys_obj->handle) {
  3593. ret = -ENOMEM;
  3594. goto kfree_obj;
  3595. }
  3596. #ifdef CONFIG_X86
  3597. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3598. #endif
  3599. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3600. return 0;
  3601. kfree_obj:
  3602. drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3603. return ret;
  3604. }
  3605. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3606. {
  3607. drm_i915_private_t *dev_priv = dev->dev_private;
  3608. struct drm_i915_gem_phys_object *phys_obj;
  3609. if (!dev_priv->mm.phys_objs[id - 1])
  3610. return;
  3611. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3612. if (phys_obj->cur_obj) {
  3613. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3614. }
  3615. #ifdef CONFIG_X86
  3616. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3617. #endif
  3618. drm_pci_free(dev, phys_obj->handle);
  3619. kfree(phys_obj);
  3620. dev_priv->mm.phys_objs[id - 1] = NULL;
  3621. }
  3622. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3623. {
  3624. int i;
  3625. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3626. i915_gem_free_phys_object(dev, i);
  3627. }
  3628. void i915_gem_detach_phys_object(struct drm_device *dev,
  3629. struct drm_gem_object *obj)
  3630. {
  3631. struct drm_i915_gem_object *obj_priv;
  3632. int i;
  3633. int ret;
  3634. int page_count;
  3635. obj_priv = obj->driver_private;
  3636. if (!obj_priv->phys_obj)
  3637. return;
  3638. ret = i915_gem_object_get_pages(obj);
  3639. if (ret)
  3640. goto out;
  3641. page_count = obj->size / PAGE_SIZE;
  3642. for (i = 0; i < page_count; i++) {
  3643. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3644. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3645. memcpy(dst, src, PAGE_SIZE);
  3646. kunmap_atomic(dst, KM_USER0);
  3647. }
  3648. drm_clflush_pages(obj_priv->pages, page_count);
  3649. drm_agp_chipset_flush(dev);
  3650. out:
  3651. obj_priv->phys_obj->cur_obj = NULL;
  3652. obj_priv->phys_obj = NULL;
  3653. }
  3654. int
  3655. i915_gem_attach_phys_object(struct drm_device *dev,
  3656. struct drm_gem_object *obj, int id)
  3657. {
  3658. drm_i915_private_t *dev_priv = dev->dev_private;
  3659. struct drm_i915_gem_object *obj_priv;
  3660. int ret = 0;
  3661. int page_count;
  3662. int i;
  3663. if (id > I915_MAX_PHYS_OBJECT)
  3664. return -EINVAL;
  3665. obj_priv = obj->driver_private;
  3666. if (obj_priv->phys_obj) {
  3667. if (obj_priv->phys_obj->id == id)
  3668. return 0;
  3669. i915_gem_detach_phys_object(dev, obj);
  3670. }
  3671. /* create a new object */
  3672. if (!dev_priv->mm.phys_objs[id - 1]) {
  3673. ret = i915_gem_init_phys_object(dev, id,
  3674. obj->size);
  3675. if (ret) {
  3676. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3677. goto out;
  3678. }
  3679. }
  3680. /* bind to the object */
  3681. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3682. obj_priv->phys_obj->cur_obj = obj;
  3683. ret = i915_gem_object_get_pages(obj);
  3684. if (ret) {
  3685. DRM_ERROR("failed to get page list\n");
  3686. goto out;
  3687. }
  3688. page_count = obj->size / PAGE_SIZE;
  3689. for (i = 0; i < page_count; i++) {
  3690. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3691. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3692. memcpy(dst, src, PAGE_SIZE);
  3693. kunmap_atomic(src, KM_USER0);
  3694. }
  3695. return 0;
  3696. out:
  3697. return ret;
  3698. }
  3699. static int
  3700. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3701. struct drm_i915_gem_pwrite *args,
  3702. struct drm_file *file_priv)
  3703. {
  3704. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3705. void *obj_addr;
  3706. int ret;
  3707. char __user *user_data;
  3708. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3709. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3710. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3711. ret = copy_from_user(obj_addr, user_data, args->size);
  3712. if (ret)
  3713. return -EFAULT;
  3714. drm_agp_chipset_flush(dev);
  3715. return 0;
  3716. }