process.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. #include <linux/errno.h>
  2. #include <linux/kernel.h>
  3. #include <linux/mm.h>
  4. #include <linux/smp.h>
  5. #include <linux/slab.h>
  6. #include <linux/sched.h>
  7. #include <linux/module.h>
  8. #include <linux/pm.h>
  9. #include <linux/clockchips.h>
  10. #include <asm/system.h>
  11. unsigned long idle_halt;
  12. EXPORT_SYMBOL(idle_halt);
  13. unsigned long idle_nomwait;
  14. EXPORT_SYMBOL(idle_nomwait);
  15. struct kmem_cache *task_xstate_cachep;
  16. static int force_mwait __cpuinitdata;
  17. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  18. {
  19. *dst = *src;
  20. if (src->thread.xstate) {
  21. dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
  22. GFP_KERNEL);
  23. if (!dst->thread.xstate)
  24. return -ENOMEM;
  25. WARN_ON((unsigned long)dst->thread.xstate & 15);
  26. memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
  27. }
  28. return 0;
  29. }
  30. void free_thread_xstate(struct task_struct *tsk)
  31. {
  32. if (tsk->thread.xstate) {
  33. kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
  34. tsk->thread.xstate = NULL;
  35. }
  36. }
  37. void free_thread_info(struct thread_info *ti)
  38. {
  39. free_thread_xstate(ti->task);
  40. free_pages((unsigned long)ti, get_order(THREAD_SIZE));
  41. }
  42. void arch_task_cache_init(void)
  43. {
  44. task_xstate_cachep =
  45. kmem_cache_create("task_xstate", xstate_size,
  46. __alignof__(union thread_xstate),
  47. SLAB_PANIC, NULL);
  48. }
  49. /*
  50. * Idle related variables and functions
  51. */
  52. unsigned long boot_option_idle_override = 0;
  53. EXPORT_SYMBOL(boot_option_idle_override);
  54. /*
  55. * Powermanagement idle function, if any..
  56. */
  57. void (*pm_idle)(void);
  58. EXPORT_SYMBOL(pm_idle);
  59. #ifdef CONFIG_X86_32
  60. /*
  61. * This halt magic was a workaround for ancient floppy DMA
  62. * wreckage. It should be safe to remove.
  63. */
  64. static int hlt_counter;
  65. void disable_hlt(void)
  66. {
  67. hlt_counter++;
  68. }
  69. EXPORT_SYMBOL(disable_hlt);
  70. void enable_hlt(void)
  71. {
  72. hlt_counter--;
  73. }
  74. EXPORT_SYMBOL(enable_hlt);
  75. static inline int hlt_use_halt(void)
  76. {
  77. return (!hlt_counter && boot_cpu_data.hlt_works_ok);
  78. }
  79. #else
  80. static inline int hlt_use_halt(void)
  81. {
  82. return 1;
  83. }
  84. #endif
  85. /*
  86. * We use this if we don't have any better
  87. * idle routine..
  88. */
  89. void default_idle(void)
  90. {
  91. if (hlt_use_halt()) {
  92. current_thread_info()->status &= ~TS_POLLING;
  93. /*
  94. * TS_POLLING-cleared state must be visible before we
  95. * test NEED_RESCHED:
  96. */
  97. smp_mb();
  98. if (!need_resched())
  99. safe_halt(); /* enables interrupts racelessly */
  100. else
  101. local_irq_enable();
  102. current_thread_info()->status |= TS_POLLING;
  103. } else {
  104. local_irq_enable();
  105. /* loop is done by the caller */
  106. cpu_relax();
  107. }
  108. }
  109. #ifdef CONFIG_APM_MODULE
  110. EXPORT_SYMBOL(default_idle);
  111. #endif
  112. static void do_nothing(void *unused)
  113. {
  114. }
  115. /*
  116. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  117. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  118. * handler on SMP systems.
  119. *
  120. * Caller must have changed pm_idle to the new value before the call. Old
  121. * pm_idle value will not be used by any CPU after the return of this function.
  122. */
  123. void cpu_idle_wait(void)
  124. {
  125. smp_mb();
  126. /* kick all the CPUs so that they exit out of pm_idle */
  127. smp_call_function(do_nothing, NULL, 1);
  128. }
  129. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  130. /*
  131. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  132. * which can obviate IPI to trigger checking of need_resched.
  133. * We execute MONITOR against need_resched and enter optimized wait state
  134. * through MWAIT. Whenever someone changes need_resched, we would be woken
  135. * up from MWAIT (without an IPI).
  136. *
  137. * New with Core Duo processors, MWAIT can take some hints based on CPU
  138. * capability.
  139. */
  140. void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
  141. {
  142. if (!need_resched()) {
  143. __monitor((void *)&current_thread_info()->flags, 0, 0);
  144. smp_mb();
  145. if (!need_resched())
  146. __mwait(ax, cx);
  147. }
  148. }
  149. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  150. static void mwait_idle(void)
  151. {
  152. if (!need_resched()) {
  153. __monitor((void *)&current_thread_info()->flags, 0, 0);
  154. smp_mb();
  155. if (!need_resched())
  156. __sti_mwait(0, 0);
  157. else
  158. local_irq_enable();
  159. } else
  160. local_irq_enable();
  161. }
  162. /*
  163. * On SMP it's slightly faster (but much more power-consuming!)
  164. * to poll the ->work.need_resched flag instead of waiting for the
  165. * cross-CPU IPI to arrive. Use this option with caution.
  166. */
  167. static void poll_idle(void)
  168. {
  169. local_irq_enable();
  170. cpu_relax();
  171. }
  172. /*
  173. * mwait selection logic:
  174. *
  175. * It depends on the CPU. For AMD CPUs that support MWAIT this is
  176. * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
  177. * then depend on a clock divisor and current Pstate of the core. If
  178. * all cores of a processor are in halt state (C1) the processor can
  179. * enter the C1E (C1 enhanced) state. If mwait is used this will never
  180. * happen.
  181. *
  182. * idle=mwait overrides this decision and forces the usage of mwait.
  183. */
  184. static int __cpuinitdata force_mwait;
  185. #define MWAIT_INFO 0x05
  186. #define MWAIT_ECX_EXTENDED_INFO 0x01
  187. #define MWAIT_EDX_C1 0xf0
  188. static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
  189. {
  190. u32 eax, ebx, ecx, edx;
  191. if (force_mwait)
  192. return 1;
  193. if (c->cpuid_level < MWAIT_INFO)
  194. return 0;
  195. cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
  196. /* Check, whether EDX has extended info about MWAIT */
  197. if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
  198. return 1;
  199. /*
  200. * edx enumeratios MONITOR/MWAIT extensions. Check, whether
  201. * C1 supports MWAIT
  202. */
  203. return (edx & MWAIT_EDX_C1);
  204. }
  205. /*
  206. * Check for AMD CPUs, which have potentially C1E support
  207. */
  208. static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
  209. {
  210. if (c->x86_vendor != X86_VENDOR_AMD)
  211. return 0;
  212. if (c->x86 < 0x0F)
  213. return 0;
  214. /* Family 0x0f models < rev F do not have C1E */
  215. if (c->x86 == 0x0f && c->x86_model < 0x40)
  216. return 0;
  217. return 1;
  218. }
  219. /*
  220. * C1E aware idle routine. We check for C1E active in the interrupt
  221. * pending message MSR. If we detect C1E, then we handle it the same
  222. * way as C3 power states (local apic timer and TSC stop)
  223. */
  224. static void c1e_idle(void)
  225. {
  226. static cpumask_t c1e_mask = CPU_MASK_NONE;
  227. static int c1e_detected;
  228. if (need_resched())
  229. return;
  230. if (!c1e_detected) {
  231. u32 lo, hi;
  232. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  233. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  234. c1e_detected = 1;
  235. mark_tsc_unstable("TSC halt in C1E");
  236. printk(KERN_INFO "System has C1E enabled\n");
  237. }
  238. }
  239. if (c1e_detected) {
  240. int cpu = smp_processor_id();
  241. if (!cpu_isset(cpu, c1e_mask)) {
  242. cpu_set(cpu, c1e_mask);
  243. /*
  244. * Force broadcast so ACPI can not interfere. Needs
  245. * to run with interrupts enabled as it uses
  246. * smp_function_call.
  247. */
  248. local_irq_enable();
  249. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  250. &cpu);
  251. printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
  252. cpu);
  253. local_irq_disable();
  254. }
  255. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  256. default_idle();
  257. /*
  258. * The switch back from broadcast mode needs to be
  259. * called with interrupts disabled.
  260. */
  261. local_irq_disable();
  262. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  263. local_irq_enable();
  264. } else
  265. default_idle();
  266. }
  267. void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
  268. {
  269. #ifdef CONFIG_X86_SMP
  270. if (pm_idle == poll_idle && smp_num_siblings > 1) {
  271. printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
  272. " performance may degrade.\n");
  273. }
  274. #endif
  275. if (pm_idle)
  276. return;
  277. if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
  278. /*
  279. * One CPU supports mwait => All CPUs supports mwait
  280. */
  281. printk(KERN_INFO "using mwait in idle threads.\n");
  282. pm_idle = mwait_idle;
  283. } else if (check_c1e_idle(c)) {
  284. printk(KERN_INFO "using C1E aware idle routine\n");
  285. pm_idle = c1e_idle;
  286. } else
  287. pm_idle = default_idle;
  288. }
  289. static int __init idle_setup(char *str)
  290. {
  291. if (!str)
  292. return -EINVAL;
  293. if (!strcmp(str, "poll")) {
  294. printk("using polling idle threads.\n");
  295. pm_idle = poll_idle;
  296. } else if (!strcmp(str, "mwait"))
  297. force_mwait = 1;
  298. else if (!strcmp(str, "halt")) {
  299. /*
  300. * When the boot option of idle=halt is added, halt is
  301. * forced to be used for CPU idle. In such case CPU C2/C3
  302. * won't be used again.
  303. * To continue to load the CPU idle driver, don't touch
  304. * the boot_option_idle_override.
  305. */
  306. pm_idle = default_idle;
  307. idle_halt = 1;
  308. return 0;
  309. } else if (!strcmp(str, "nomwait")) {
  310. /*
  311. * If the boot option of "idle=nomwait" is added,
  312. * it means that mwait will be disabled for CPU C2/C3
  313. * states. In such case it won't touch the variable
  314. * of boot_option_idle_override.
  315. */
  316. idle_nomwait = 1;
  317. return 0;
  318. } else
  319. return -1;
  320. boot_option_idle_override = 1;
  321. return 0;
  322. }
  323. early_param("idle", idle_setup);