intel_dp.c 99 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. /**
  39. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  40. * @intel_dp: DP struct
  41. *
  42. * If a CPU or PCH DP output is attached to an eDP panel, this function
  43. * will return true, and false otherwise.
  44. */
  45. static bool is_edp(struct intel_dp *intel_dp)
  46. {
  47. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  48. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  49. }
  50. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  51. {
  52. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  53. return intel_dig_port->base.base.dev;
  54. }
  55. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  56. {
  57. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  58. }
  59. static void intel_dp_link_down(struct intel_dp *intel_dp);
  60. static int
  61. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  62. {
  63. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  64. switch (max_link_bw) {
  65. case DP_LINK_BW_1_62:
  66. case DP_LINK_BW_2_7:
  67. break;
  68. case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
  69. max_link_bw = DP_LINK_BW_2_7;
  70. break;
  71. default:
  72. WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
  73. max_link_bw);
  74. max_link_bw = DP_LINK_BW_1_62;
  75. break;
  76. }
  77. return max_link_bw;
  78. }
  79. /*
  80. * The units on the numbers in the next two are... bizarre. Examples will
  81. * make it clearer; this one parallels an example in the eDP spec.
  82. *
  83. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  84. *
  85. * 270000 * 1 * 8 / 10 == 216000
  86. *
  87. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  88. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  89. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  90. * 119000. At 18bpp that's 2142000 kilobits per second.
  91. *
  92. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  93. * get the result in decakilobits instead of kilobits.
  94. */
  95. static int
  96. intel_dp_link_required(int pixel_clock, int bpp)
  97. {
  98. return (pixel_clock * bpp + 9) / 10;
  99. }
  100. static int
  101. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  102. {
  103. return (max_link_clock * max_lanes * 8) / 10;
  104. }
  105. static int
  106. intel_dp_mode_valid(struct drm_connector *connector,
  107. struct drm_display_mode *mode)
  108. {
  109. struct intel_dp *intel_dp = intel_attached_dp(connector);
  110. struct intel_connector *intel_connector = to_intel_connector(connector);
  111. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  112. int target_clock = mode->clock;
  113. int max_rate, mode_rate, max_lanes, max_link_clock;
  114. if (is_edp(intel_dp) && fixed_mode) {
  115. if (mode->hdisplay > fixed_mode->hdisplay)
  116. return MODE_PANEL;
  117. if (mode->vdisplay > fixed_mode->vdisplay)
  118. return MODE_PANEL;
  119. target_clock = fixed_mode->clock;
  120. }
  121. max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  122. max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
  123. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  124. mode_rate = intel_dp_link_required(target_clock, 18);
  125. if (mode_rate > max_rate)
  126. return MODE_CLOCK_HIGH;
  127. if (mode->clock < 10000)
  128. return MODE_CLOCK_LOW;
  129. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  130. return MODE_H_ILLEGAL;
  131. return MODE_OK;
  132. }
  133. static uint32_t
  134. pack_aux(uint8_t *src, int src_bytes)
  135. {
  136. int i;
  137. uint32_t v = 0;
  138. if (src_bytes > 4)
  139. src_bytes = 4;
  140. for (i = 0; i < src_bytes; i++)
  141. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  142. return v;
  143. }
  144. static void
  145. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  146. {
  147. int i;
  148. if (dst_bytes > 4)
  149. dst_bytes = 4;
  150. for (i = 0; i < dst_bytes; i++)
  151. dst[i] = src >> ((3-i) * 8);
  152. }
  153. /* hrawclock is 1/4 the FSB frequency */
  154. static int
  155. intel_hrawclk(struct drm_device *dev)
  156. {
  157. struct drm_i915_private *dev_priv = dev->dev_private;
  158. uint32_t clkcfg;
  159. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  160. if (IS_VALLEYVIEW(dev))
  161. return 200;
  162. clkcfg = I915_READ(CLKCFG);
  163. switch (clkcfg & CLKCFG_FSB_MASK) {
  164. case CLKCFG_FSB_400:
  165. return 100;
  166. case CLKCFG_FSB_533:
  167. return 133;
  168. case CLKCFG_FSB_667:
  169. return 166;
  170. case CLKCFG_FSB_800:
  171. return 200;
  172. case CLKCFG_FSB_1067:
  173. return 266;
  174. case CLKCFG_FSB_1333:
  175. return 333;
  176. /* these two are just a guess; one of them might be right */
  177. case CLKCFG_FSB_1600:
  178. case CLKCFG_FSB_1600_ALT:
  179. return 400;
  180. default:
  181. return 133;
  182. }
  183. }
  184. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  185. {
  186. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  187. struct drm_i915_private *dev_priv = dev->dev_private;
  188. u32 pp_stat_reg;
  189. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  190. return (I915_READ(pp_stat_reg) & PP_ON) != 0;
  191. }
  192. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  193. {
  194. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  195. struct drm_i915_private *dev_priv = dev->dev_private;
  196. u32 pp_ctrl_reg;
  197. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  198. return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
  199. }
  200. static void
  201. intel_dp_check_edp(struct intel_dp *intel_dp)
  202. {
  203. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  204. struct drm_i915_private *dev_priv = dev->dev_private;
  205. u32 pp_stat_reg, pp_ctrl_reg;
  206. if (!is_edp(intel_dp))
  207. return;
  208. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  209. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  210. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  211. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  212. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  213. I915_READ(pp_stat_reg),
  214. I915_READ(pp_ctrl_reg));
  215. }
  216. }
  217. static uint32_t
  218. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  219. {
  220. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  221. struct drm_device *dev = intel_dig_port->base.base.dev;
  222. struct drm_i915_private *dev_priv = dev->dev_private;
  223. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  224. uint32_t status;
  225. bool done;
  226. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  227. if (has_aux_irq)
  228. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
  229. msecs_to_jiffies_timeout(10));
  230. else
  231. done = wait_for_atomic(C, 10) == 0;
  232. if (!done)
  233. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  234. has_aux_irq);
  235. #undef C
  236. return status;
  237. }
  238. static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
  239. int index)
  240. {
  241. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  242. struct drm_device *dev = intel_dig_port->base.base.dev;
  243. struct drm_i915_private *dev_priv = dev->dev_private;
  244. /* The clock divider is based off the hrawclk,
  245. * and would like to run at 2MHz. So, take the
  246. * hrawclk value and divide by 2 and use that
  247. *
  248. * Note that PCH attached eDP panels should use a 125MHz input
  249. * clock divider.
  250. */
  251. if (IS_VALLEYVIEW(dev)) {
  252. return index ? 0 : 100;
  253. } else if (intel_dig_port->port == PORT_A) {
  254. if (index)
  255. return 0;
  256. if (HAS_DDI(dev))
  257. return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
  258. else if (IS_GEN6(dev) || IS_GEN7(dev))
  259. return 200; /* SNB & IVB eDP input clock at 400Mhz */
  260. else
  261. return 225; /* eDP input clock at 450Mhz */
  262. } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
  263. /* Workaround for non-ULT HSW */
  264. switch (index) {
  265. case 0: return 63;
  266. case 1: return 72;
  267. default: return 0;
  268. }
  269. } else if (HAS_PCH_SPLIT(dev)) {
  270. return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  271. } else {
  272. return index ? 0 :intel_hrawclk(dev) / 2;
  273. }
  274. }
  275. static int
  276. intel_dp_aux_ch(struct intel_dp *intel_dp,
  277. uint8_t *send, int send_bytes,
  278. uint8_t *recv, int recv_size)
  279. {
  280. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  281. struct drm_device *dev = intel_dig_port->base.base.dev;
  282. struct drm_i915_private *dev_priv = dev->dev_private;
  283. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  284. uint32_t ch_data = ch_ctl + 4;
  285. uint32_t aux_clock_divider;
  286. int i, ret, recv_bytes;
  287. uint32_t status;
  288. int try, precharge, clock = 0;
  289. bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
  290. /* dp aux is extremely sensitive to irq latency, hence request the
  291. * lowest possible wakeup latency and so prevent the cpu from going into
  292. * deep sleep states.
  293. */
  294. pm_qos_update_request(&dev_priv->pm_qos, 0);
  295. intel_dp_check_edp(intel_dp);
  296. if (IS_GEN6(dev))
  297. precharge = 3;
  298. else
  299. precharge = 5;
  300. /* Try to wait for any previous AUX channel activity */
  301. for (try = 0; try < 3; try++) {
  302. status = I915_READ_NOTRACE(ch_ctl);
  303. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  304. break;
  305. msleep(1);
  306. }
  307. if (try == 3) {
  308. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  309. I915_READ(ch_ctl));
  310. ret = -EBUSY;
  311. goto out;
  312. }
  313. while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
  314. /* Must try at least 3 times according to DP spec */
  315. for (try = 0; try < 5; try++) {
  316. /* Load the send data into the aux channel data registers */
  317. for (i = 0; i < send_bytes; i += 4)
  318. I915_WRITE(ch_data + i,
  319. pack_aux(send + i, send_bytes - i));
  320. /* Send the command and wait for it to complete */
  321. I915_WRITE(ch_ctl,
  322. DP_AUX_CH_CTL_SEND_BUSY |
  323. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  324. DP_AUX_CH_CTL_TIME_OUT_400us |
  325. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  326. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  327. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  328. DP_AUX_CH_CTL_DONE |
  329. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  330. DP_AUX_CH_CTL_RECEIVE_ERROR);
  331. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  332. /* Clear done status and any errors */
  333. I915_WRITE(ch_ctl,
  334. status |
  335. DP_AUX_CH_CTL_DONE |
  336. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  337. DP_AUX_CH_CTL_RECEIVE_ERROR);
  338. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  339. DP_AUX_CH_CTL_RECEIVE_ERROR))
  340. continue;
  341. if (status & DP_AUX_CH_CTL_DONE)
  342. break;
  343. }
  344. if (status & DP_AUX_CH_CTL_DONE)
  345. break;
  346. }
  347. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  348. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  349. ret = -EBUSY;
  350. goto out;
  351. }
  352. /* Check for timeout or receive error.
  353. * Timeouts occur when the sink is not connected
  354. */
  355. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  356. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  357. ret = -EIO;
  358. goto out;
  359. }
  360. /* Timeouts occur when the device isn't connected, so they're
  361. * "normal" -- don't fill the kernel log with these */
  362. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  363. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  364. ret = -ETIMEDOUT;
  365. goto out;
  366. }
  367. /* Unload any bytes sent back from the other side */
  368. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  369. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  370. if (recv_bytes > recv_size)
  371. recv_bytes = recv_size;
  372. for (i = 0; i < recv_bytes; i += 4)
  373. unpack_aux(I915_READ(ch_data + i),
  374. recv + i, recv_bytes - i);
  375. ret = recv_bytes;
  376. out:
  377. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  378. return ret;
  379. }
  380. /* Write data to the aux channel in native mode */
  381. static int
  382. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  383. uint16_t address, uint8_t *send, int send_bytes)
  384. {
  385. int ret;
  386. uint8_t msg[20];
  387. int msg_bytes;
  388. uint8_t ack;
  389. intel_dp_check_edp(intel_dp);
  390. if (send_bytes > 16)
  391. return -1;
  392. msg[0] = AUX_NATIVE_WRITE << 4;
  393. msg[1] = address >> 8;
  394. msg[2] = address & 0xff;
  395. msg[3] = send_bytes - 1;
  396. memcpy(&msg[4], send, send_bytes);
  397. msg_bytes = send_bytes + 4;
  398. for (;;) {
  399. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  400. if (ret < 0)
  401. return ret;
  402. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  403. break;
  404. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  405. udelay(100);
  406. else
  407. return -EIO;
  408. }
  409. return send_bytes;
  410. }
  411. /* Write a single byte to the aux channel in native mode */
  412. static int
  413. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  414. uint16_t address, uint8_t byte)
  415. {
  416. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  417. }
  418. /* read bytes from a native aux channel */
  419. static int
  420. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  421. uint16_t address, uint8_t *recv, int recv_bytes)
  422. {
  423. uint8_t msg[4];
  424. int msg_bytes;
  425. uint8_t reply[20];
  426. int reply_bytes;
  427. uint8_t ack;
  428. int ret;
  429. intel_dp_check_edp(intel_dp);
  430. msg[0] = AUX_NATIVE_READ << 4;
  431. msg[1] = address >> 8;
  432. msg[2] = address & 0xff;
  433. msg[3] = recv_bytes - 1;
  434. msg_bytes = 4;
  435. reply_bytes = recv_bytes + 1;
  436. for (;;) {
  437. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  438. reply, reply_bytes);
  439. if (ret == 0)
  440. return -EPROTO;
  441. if (ret < 0)
  442. return ret;
  443. ack = reply[0];
  444. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  445. memcpy(recv, reply + 1, ret - 1);
  446. return ret - 1;
  447. }
  448. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  449. udelay(100);
  450. else
  451. return -EIO;
  452. }
  453. }
  454. static int
  455. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  456. uint8_t write_byte, uint8_t *read_byte)
  457. {
  458. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  459. struct intel_dp *intel_dp = container_of(adapter,
  460. struct intel_dp,
  461. adapter);
  462. uint16_t address = algo_data->address;
  463. uint8_t msg[5];
  464. uint8_t reply[2];
  465. unsigned retry;
  466. int msg_bytes;
  467. int reply_bytes;
  468. int ret;
  469. intel_dp_check_edp(intel_dp);
  470. /* Set up the command byte */
  471. if (mode & MODE_I2C_READ)
  472. msg[0] = AUX_I2C_READ << 4;
  473. else
  474. msg[0] = AUX_I2C_WRITE << 4;
  475. if (!(mode & MODE_I2C_STOP))
  476. msg[0] |= AUX_I2C_MOT << 4;
  477. msg[1] = address >> 8;
  478. msg[2] = address;
  479. switch (mode) {
  480. case MODE_I2C_WRITE:
  481. msg[3] = 0;
  482. msg[4] = write_byte;
  483. msg_bytes = 5;
  484. reply_bytes = 1;
  485. break;
  486. case MODE_I2C_READ:
  487. msg[3] = 0;
  488. msg_bytes = 4;
  489. reply_bytes = 2;
  490. break;
  491. default:
  492. msg_bytes = 3;
  493. reply_bytes = 1;
  494. break;
  495. }
  496. for (retry = 0; retry < 5; retry++) {
  497. ret = intel_dp_aux_ch(intel_dp,
  498. msg, msg_bytes,
  499. reply, reply_bytes);
  500. if (ret < 0) {
  501. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  502. return ret;
  503. }
  504. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  505. case AUX_NATIVE_REPLY_ACK:
  506. /* I2C-over-AUX Reply field is only valid
  507. * when paired with AUX ACK.
  508. */
  509. break;
  510. case AUX_NATIVE_REPLY_NACK:
  511. DRM_DEBUG_KMS("aux_ch native nack\n");
  512. return -EREMOTEIO;
  513. case AUX_NATIVE_REPLY_DEFER:
  514. udelay(100);
  515. continue;
  516. default:
  517. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  518. reply[0]);
  519. return -EREMOTEIO;
  520. }
  521. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  522. case AUX_I2C_REPLY_ACK:
  523. if (mode == MODE_I2C_READ) {
  524. *read_byte = reply[1];
  525. }
  526. return reply_bytes - 1;
  527. case AUX_I2C_REPLY_NACK:
  528. DRM_DEBUG_KMS("aux_i2c nack\n");
  529. return -EREMOTEIO;
  530. case AUX_I2C_REPLY_DEFER:
  531. DRM_DEBUG_KMS("aux_i2c defer\n");
  532. udelay(100);
  533. break;
  534. default:
  535. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  536. return -EREMOTEIO;
  537. }
  538. }
  539. DRM_ERROR("too many retries, giving up\n");
  540. return -EREMOTEIO;
  541. }
  542. static int
  543. intel_dp_i2c_init(struct intel_dp *intel_dp,
  544. struct intel_connector *intel_connector, const char *name)
  545. {
  546. int ret;
  547. DRM_DEBUG_KMS("i2c_init %s\n", name);
  548. intel_dp->algo.running = false;
  549. intel_dp->algo.address = 0;
  550. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  551. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  552. intel_dp->adapter.owner = THIS_MODULE;
  553. intel_dp->adapter.class = I2C_CLASS_DDC;
  554. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  555. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  556. intel_dp->adapter.algo_data = &intel_dp->algo;
  557. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  558. ironlake_edp_panel_vdd_on(intel_dp);
  559. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  560. ironlake_edp_panel_vdd_off(intel_dp, false);
  561. return ret;
  562. }
  563. static void
  564. intel_dp_set_clock(struct intel_encoder *encoder,
  565. struct intel_crtc_config *pipe_config, int link_bw)
  566. {
  567. struct drm_device *dev = encoder->base.dev;
  568. if (IS_G4X(dev)) {
  569. if (link_bw == DP_LINK_BW_1_62) {
  570. pipe_config->dpll.p1 = 2;
  571. pipe_config->dpll.p2 = 10;
  572. pipe_config->dpll.n = 2;
  573. pipe_config->dpll.m1 = 23;
  574. pipe_config->dpll.m2 = 8;
  575. } else {
  576. pipe_config->dpll.p1 = 1;
  577. pipe_config->dpll.p2 = 10;
  578. pipe_config->dpll.n = 1;
  579. pipe_config->dpll.m1 = 14;
  580. pipe_config->dpll.m2 = 2;
  581. }
  582. pipe_config->clock_set = true;
  583. } else if (IS_HASWELL(dev)) {
  584. /* Haswell has special-purpose DP DDI clocks. */
  585. } else if (HAS_PCH_SPLIT(dev)) {
  586. if (link_bw == DP_LINK_BW_1_62) {
  587. pipe_config->dpll.n = 1;
  588. pipe_config->dpll.p1 = 2;
  589. pipe_config->dpll.p2 = 10;
  590. pipe_config->dpll.m1 = 12;
  591. pipe_config->dpll.m2 = 9;
  592. } else {
  593. pipe_config->dpll.n = 2;
  594. pipe_config->dpll.p1 = 1;
  595. pipe_config->dpll.p2 = 10;
  596. pipe_config->dpll.m1 = 14;
  597. pipe_config->dpll.m2 = 8;
  598. }
  599. pipe_config->clock_set = true;
  600. } else if (IS_VALLEYVIEW(dev)) {
  601. /* FIXME: Need to figure out optimized DP clocks for vlv. */
  602. }
  603. }
  604. bool
  605. intel_dp_compute_config(struct intel_encoder *encoder,
  606. struct intel_crtc_config *pipe_config)
  607. {
  608. struct drm_device *dev = encoder->base.dev;
  609. struct drm_i915_private *dev_priv = dev->dev_private;
  610. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  611. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  612. enum port port = dp_to_dig_port(intel_dp)->port;
  613. struct intel_crtc *intel_crtc = encoder->new_crtc;
  614. struct intel_connector *intel_connector = intel_dp->attached_connector;
  615. int lane_count, clock;
  616. int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
  617. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  618. int bpp, mode_rate;
  619. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  620. int link_avail, link_clock;
  621. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
  622. pipe_config->has_pch_encoder = true;
  623. pipe_config->has_dp_encoder = true;
  624. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  625. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  626. adjusted_mode);
  627. if (!HAS_PCH_SPLIT(dev))
  628. intel_gmch_panel_fitting(intel_crtc, pipe_config,
  629. intel_connector->panel.fitting_mode);
  630. else
  631. intel_pch_panel_fitting(intel_crtc, pipe_config,
  632. intel_connector->panel.fitting_mode);
  633. }
  634. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  635. return false;
  636. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  637. "max bw %02x pixel clock %iKHz\n",
  638. max_lane_count, bws[max_clock], adjusted_mode->clock);
  639. /* Walk through all bpp values. Luckily they're all nicely spaced with 2
  640. * bpc in between. */
  641. bpp = pipe_config->pipe_bpp;
  642. if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
  643. DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
  644. dev_priv->vbt.edp_bpp);
  645. bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
  646. }
  647. for (; bpp >= 6*3; bpp -= 2*3) {
  648. mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
  649. for (clock = 0; clock <= max_clock; clock++) {
  650. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  651. link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
  652. link_avail = intel_dp_max_data_rate(link_clock,
  653. lane_count);
  654. if (mode_rate <= link_avail) {
  655. goto found;
  656. }
  657. }
  658. }
  659. }
  660. return false;
  661. found:
  662. if (intel_dp->color_range_auto) {
  663. /*
  664. * See:
  665. * CEA-861-E - 5.1 Default Encoding Parameters
  666. * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
  667. */
  668. if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
  669. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  670. else
  671. intel_dp->color_range = 0;
  672. }
  673. if (intel_dp->color_range)
  674. pipe_config->limited_color_range = true;
  675. intel_dp->link_bw = bws[clock];
  676. intel_dp->lane_count = lane_count;
  677. pipe_config->pipe_bpp = bpp;
  678. pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  679. DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
  680. intel_dp->link_bw, intel_dp->lane_count,
  681. pipe_config->port_clock, bpp);
  682. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  683. mode_rate, link_avail);
  684. intel_link_compute_m_n(bpp, lane_count,
  685. adjusted_mode->clock, pipe_config->port_clock,
  686. &pipe_config->dp_m_n);
  687. intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
  688. return true;
  689. }
  690. void intel_dp_init_link_config(struct intel_dp *intel_dp)
  691. {
  692. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  693. intel_dp->link_configuration[0] = intel_dp->link_bw;
  694. intel_dp->link_configuration[1] = intel_dp->lane_count;
  695. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  696. /*
  697. * Check for DPCD version > 1.1 and enhanced framing support
  698. */
  699. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  700. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  701. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  702. }
  703. }
  704. static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
  705. {
  706. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  707. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  708. struct drm_device *dev = crtc->base.dev;
  709. struct drm_i915_private *dev_priv = dev->dev_private;
  710. u32 dpa_ctl;
  711. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
  712. dpa_ctl = I915_READ(DP_A);
  713. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  714. if (crtc->config.port_clock == 162000) {
  715. /* For a long time we've carried around a ILK-DevA w/a for the
  716. * 160MHz clock. If we're really unlucky, it's still required.
  717. */
  718. DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
  719. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  720. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  721. } else {
  722. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  723. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  724. }
  725. I915_WRITE(DP_A, dpa_ctl);
  726. POSTING_READ(DP_A);
  727. udelay(500);
  728. }
  729. static void
  730. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  731. struct drm_display_mode *adjusted_mode)
  732. {
  733. struct drm_device *dev = encoder->dev;
  734. struct drm_i915_private *dev_priv = dev->dev_private;
  735. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  736. enum port port = dp_to_dig_port(intel_dp)->port;
  737. struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
  738. /*
  739. * There are four kinds of DP registers:
  740. *
  741. * IBX PCH
  742. * SNB CPU
  743. * IVB CPU
  744. * CPT PCH
  745. *
  746. * IBX PCH and CPU are the same for almost everything,
  747. * except that the CPU DP PLL is configured in this
  748. * register
  749. *
  750. * CPT PCH is quite different, having many bits moved
  751. * to the TRANS_DP_CTL register instead. That
  752. * configuration happens (oddly) in ironlake_pch_enable
  753. */
  754. /* Preserve the BIOS-computed detected bit. This is
  755. * supposed to be read-only.
  756. */
  757. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  758. /* Handle DP bits in common between all three register formats */
  759. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  760. intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
  761. if (intel_dp->has_audio) {
  762. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  763. pipe_name(crtc->pipe));
  764. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  765. intel_write_eld(encoder, adjusted_mode);
  766. }
  767. intel_dp_init_link_config(intel_dp);
  768. /* Split out the IBX/CPU vs CPT settings */
  769. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  770. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  771. intel_dp->DP |= DP_SYNC_HS_HIGH;
  772. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  773. intel_dp->DP |= DP_SYNC_VS_HIGH;
  774. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  775. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  776. intel_dp->DP |= DP_ENHANCED_FRAMING;
  777. intel_dp->DP |= crtc->pipe << 29;
  778. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  779. if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
  780. intel_dp->DP |= intel_dp->color_range;
  781. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  782. intel_dp->DP |= DP_SYNC_HS_HIGH;
  783. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  784. intel_dp->DP |= DP_SYNC_VS_HIGH;
  785. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  786. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  787. intel_dp->DP |= DP_ENHANCED_FRAMING;
  788. if (crtc->pipe == 1)
  789. intel_dp->DP |= DP_PIPEB_SELECT;
  790. } else {
  791. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  792. }
  793. if (port == PORT_A && !IS_VALLEYVIEW(dev))
  794. ironlake_set_pll_cpu_edp(intel_dp);
  795. }
  796. #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  797. #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  798. #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  799. #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  800. #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  801. #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  802. static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
  803. u32 mask,
  804. u32 value)
  805. {
  806. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  807. struct drm_i915_private *dev_priv = dev->dev_private;
  808. u32 pp_stat_reg, pp_ctrl_reg;
  809. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  810. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  811. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  812. mask, value,
  813. I915_READ(pp_stat_reg),
  814. I915_READ(pp_ctrl_reg));
  815. if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
  816. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  817. I915_READ(pp_stat_reg),
  818. I915_READ(pp_ctrl_reg));
  819. }
  820. }
  821. static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
  822. {
  823. DRM_DEBUG_KMS("Wait for panel power on\n");
  824. ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  825. }
  826. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  827. {
  828. DRM_DEBUG_KMS("Wait for panel power off time\n");
  829. ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  830. }
  831. static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
  832. {
  833. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  834. ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  835. }
  836. /* Read the current pp_control value, unlocking the register if it
  837. * is locked
  838. */
  839. static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
  840. {
  841. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  842. struct drm_i915_private *dev_priv = dev->dev_private;
  843. u32 control;
  844. u32 pp_ctrl_reg;
  845. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  846. control = I915_READ(pp_ctrl_reg);
  847. control &= ~PANEL_UNLOCK_MASK;
  848. control |= PANEL_UNLOCK_REGS;
  849. return control;
  850. }
  851. void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  852. {
  853. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  854. struct drm_i915_private *dev_priv = dev->dev_private;
  855. u32 pp;
  856. u32 pp_stat_reg, pp_ctrl_reg;
  857. if (!is_edp(intel_dp))
  858. return;
  859. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  860. WARN(intel_dp->want_panel_vdd,
  861. "eDP VDD already requested on\n");
  862. intel_dp->want_panel_vdd = true;
  863. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  864. DRM_DEBUG_KMS("eDP VDD already on\n");
  865. return;
  866. }
  867. if (!ironlake_edp_have_panel_power(intel_dp))
  868. ironlake_wait_panel_power_cycle(intel_dp);
  869. pp = ironlake_get_pp_control(intel_dp);
  870. pp |= EDP_FORCE_VDD;
  871. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  872. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  873. I915_WRITE(pp_ctrl_reg, pp);
  874. POSTING_READ(pp_ctrl_reg);
  875. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  876. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  877. /*
  878. * If the panel wasn't on, delay before accessing aux channel
  879. */
  880. if (!ironlake_edp_have_panel_power(intel_dp)) {
  881. DRM_DEBUG_KMS("eDP was not running\n");
  882. msleep(intel_dp->panel_power_up_delay);
  883. }
  884. }
  885. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  886. {
  887. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  888. struct drm_i915_private *dev_priv = dev->dev_private;
  889. u32 pp;
  890. u32 pp_stat_reg, pp_ctrl_reg;
  891. WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
  892. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  893. pp = ironlake_get_pp_control(intel_dp);
  894. pp &= ~EDP_FORCE_VDD;
  895. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  896. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  897. I915_WRITE(pp_ctrl_reg, pp);
  898. POSTING_READ(pp_ctrl_reg);
  899. /* Make sure sequencer is idle before allowing subsequent activity */
  900. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  901. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  902. msleep(intel_dp->panel_power_down_delay);
  903. }
  904. }
  905. static void ironlake_panel_vdd_work(struct work_struct *__work)
  906. {
  907. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  908. struct intel_dp, panel_vdd_work);
  909. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  910. mutex_lock(&dev->mode_config.mutex);
  911. ironlake_panel_vdd_off_sync(intel_dp);
  912. mutex_unlock(&dev->mode_config.mutex);
  913. }
  914. void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  915. {
  916. if (!is_edp(intel_dp))
  917. return;
  918. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  919. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  920. intel_dp->want_panel_vdd = false;
  921. if (sync) {
  922. ironlake_panel_vdd_off_sync(intel_dp);
  923. } else {
  924. /*
  925. * Queue the timer to fire a long
  926. * time from now (relative to the power down delay)
  927. * to keep the panel power up across a sequence of operations
  928. */
  929. schedule_delayed_work(&intel_dp->panel_vdd_work,
  930. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  931. }
  932. }
  933. void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  934. {
  935. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  936. struct drm_i915_private *dev_priv = dev->dev_private;
  937. u32 pp;
  938. u32 pp_ctrl_reg;
  939. if (!is_edp(intel_dp))
  940. return;
  941. DRM_DEBUG_KMS("Turn eDP power on\n");
  942. if (ironlake_edp_have_panel_power(intel_dp)) {
  943. DRM_DEBUG_KMS("eDP power already on\n");
  944. return;
  945. }
  946. ironlake_wait_panel_power_cycle(intel_dp);
  947. pp = ironlake_get_pp_control(intel_dp);
  948. if (IS_GEN5(dev)) {
  949. /* ILK workaround: disable reset around power sequence */
  950. pp &= ~PANEL_POWER_RESET;
  951. I915_WRITE(PCH_PP_CONTROL, pp);
  952. POSTING_READ(PCH_PP_CONTROL);
  953. }
  954. pp |= POWER_TARGET_ON;
  955. if (!IS_GEN5(dev))
  956. pp |= PANEL_POWER_RESET;
  957. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  958. I915_WRITE(pp_ctrl_reg, pp);
  959. POSTING_READ(pp_ctrl_reg);
  960. ironlake_wait_panel_on(intel_dp);
  961. if (IS_GEN5(dev)) {
  962. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  963. I915_WRITE(PCH_PP_CONTROL, pp);
  964. POSTING_READ(PCH_PP_CONTROL);
  965. }
  966. }
  967. void ironlake_edp_panel_off(struct intel_dp *intel_dp)
  968. {
  969. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  970. struct drm_i915_private *dev_priv = dev->dev_private;
  971. u32 pp;
  972. u32 pp_ctrl_reg;
  973. if (!is_edp(intel_dp))
  974. return;
  975. DRM_DEBUG_KMS("Turn eDP power off\n");
  976. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  977. pp = ironlake_get_pp_control(intel_dp);
  978. /* We need to switch off panel power _and_ force vdd, for otherwise some
  979. * panels get very unhappy and cease to work. */
  980. pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
  981. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  982. I915_WRITE(pp_ctrl_reg, pp);
  983. POSTING_READ(pp_ctrl_reg);
  984. intel_dp->want_panel_vdd = false;
  985. ironlake_wait_panel_off(intel_dp);
  986. }
  987. void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  988. {
  989. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  990. struct drm_device *dev = intel_dig_port->base.base.dev;
  991. struct drm_i915_private *dev_priv = dev->dev_private;
  992. int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
  993. u32 pp;
  994. u32 pp_ctrl_reg;
  995. if (!is_edp(intel_dp))
  996. return;
  997. DRM_DEBUG_KMS("\n");
  998. /*
  999. * If we enable the backlight right away following a panel power
  1000. * on, we may see slight flicker as the panel syncs with the eDP
  1001. * link. So delay a bit to make sure the image is solid before
  1002. * allowing it to appear.
  1003. */
  1004. msleep(intel_dp->backlight_on_delay);
  1005. pp = ironlake_get_pp_control(intel_dp);
  1006. pp |= EDP_BLC_ENABLE;
  1007. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  1008. I915_WRITE(pp_ctrl_reg, pp);
  1009. POSTING_READ(pp_ctrl_reg);
  1010. intel_panel_enable_backlight(dev, pipe);
  1011. }
  1012. void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  1013. {
  1014. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1015. struct drm_i915_private *dev_priv = dev->dev_private;
  1016. u32 pp;
  1017. u32 pp_ctrl_reg;
  1018. if (!is_edp(intel_dp))
  1019. return;
  1020. intel_panel_disable_backlight(dev);
  1021. DRM_DEBUG_KMS("\n");
  1022. pp = ironlake_get_pp_control(intel_dp);
  1023. pp &= ~EDP_BLC_ENABLE;
  1024. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  1025. I915_WRITE(pp_ctrl_reg, pp);
  1026. POSTING_READ(pp_ctrl_reg);
  1027. msleep(intel_dp->backlight_off_delay);
  1028. }
  1029. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1030. {
  1031. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1032. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1033. struct drm_device *dev = crtc->dev;
  1034. struct drm_i915_private *dev_priv = dev->dev_private;
  1035. u32 dpa_ctl;
  1036. assert_pipe_disabled(dev_priv,
  1037. to_intel_crtc(crtc)->pipe);
  1038. DRM_DEBUG_KMS("\n");
  1039. dpa_ctl = I915_READ(DP_A);
  1040. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1041. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1042. /* We don't adjust intel_dp->DP while tearing down the link, to
  1043. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1044. * enable bits here to ensure that we don't enable too much. */
  1045. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1046. intel_dp->DP |= DP_PLL_ENABLE;
  1047. I915_WRITE(DP_A, intel_dp->DP);
  1048. POSTING_READ(DP_A);
  1049. udelay(200);
  1050. }
  1051. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1052. {
  1053. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1054. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1055. struct drm_device *dev = crtc->dev;
  1056. struct drm_i915_private *dev_priv = dev->dev_private;
  1057. u32 dpa_ctl;
  1058. assert_pipe_disabled(dev_priv,
  1059. to_intel_crtc(crtc)->pipe);
  1060. dpa_ctl = I915_READ(DP_A);
  1061. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1062. "dp pll off, should be on\n");
  1063. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1064. /* We can't rely on the value tracked for the DP register in
  1065. * intel_dp->DP because link_down must not change that (otherwise link
  1066. * re-training will fail. */
  1067. dpa_ctl &= ~DP_PLL_ENABLE;
  1068. I915_WRITE(DP_A, dpa_ctl);
  1069. POSTING_READ(DP_A);
  1070. udelay(200);
  1071. }
  1072. /* If the sink supports it, try to set the power state appropriately */
  1073. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1074. {
  1075. int ret, i;
  1076. /* Should have a valid DPCD by this point */
  1077. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1078. return;
  1079. if (mode != DRM_MODE_DPMS_ON) {
  1080. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1081. DP_SET_POWER_D3);
  1082. if (ret != 1)
  1083. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1084. } else {
  1085. /*
  1086. * When turning on, we need to retry for 1ms to give the sink
  1087. * time to wake up.
  1088. */
  1089. for (i = 0; i < 3; i++) {
  1090. ret = intel_dp_aux_native_write_1(intel_dp,
  1091. DP_SET_POWER,
  1092. DP_SET_POWER_D0);
  1093. if (ret == 1)
  1094. break;
  1095. msleep(1);
  1096. }
  1097. }
  1098. }
  1099. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1100. enum pipe *pipe)
  1101. {
  1102. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1103. enum port port = dp_to_dig_port(intel_dp)->port;
  1104. struct drm_device *dev = encoder->base.dev;
  1105. struct drm_i915_private *dev_priv = dev->dev_private;
  1106. u32 tmp = I915_READ(intel_dp->output_reg);
  1107. if (!(tmp & DP_PORT_EN))
  1108. return false;
  1109. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  1110. *pipe = PORT_TO_PIPE_CPT(tmp);
  1111. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  1112. *pipe = PORT_TO_PIPE(tmp);
  1113. } else {
  1114. u32 trans_sel;
  1115. u32 trans_dp;
  1116. int i;
  1117. switch (intel_dp->output_reg) {
  1118. case PCH_DP_B:
  1119. trans_sel = TRANS_DP_PORT_SEL_B;
  1120. break;
  1121. case PCH_DP_C:
  1122. trans_sel = TRANS_DP_PORT_SEL_C;
  1123. break;
  1124. case PCH_DP_D:
  1125. trans_sel = TRANS_DP_PORT_SEL_D;
  1126. break;
  1127. default:
  1128. return true;
  1129. }
  1130. for_each_pipe(i) {
  1131. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1132. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1133. *pipe = i;
  1134. return true;
  1135. }
  1136. }
  1137. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1138. intel_dp->output_reg);
  1139. }
  1140. return true;
  1141. }
  1142. static void intel_dp_get_config(struct intel_encoder *encoder,
  1143. struct intel_crtc_config *pipe_config)
  1144. {
  1145. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1146. u32 tmp, flags = 0;
  1147. struct drm_device *dev = encoder->base.dev;
  1148. struct drm_i915_private *dev_priv = dev->dev_private;
  1149. enum port port = dp_to_dig_port(intel_dp)->port;
  1150. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  1151. if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
  1152. tmp = I915_READ(intel_dp->output_reg);
  1153. if (tmp & DP_SYNC_HS_HIGH)
  1154. flags |= DRM_MODE_FLAG_PHSYNC;
  1155. else
  1156. flags |= DRM_MODE_FLAG_NHSYNC;
  1157. if (tmp & DP_SYNC_VS_HIGH)
  1158. flags |= DRM_MODE_FLAG_PVSYNC;
  1159. else
  1160. flags |= DRM_MODE_FLAG_NVSYNC;
  1161. } else {
  1162. tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
  1163. if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
  1164. flags |= DRM_MODE_FLAG_PHSYNC;
  1165. else
  1166. flags |= DRM_MODE_FLAG_NHSYNC;
  1167. if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
  1168. flags |= DRM_MODE_FLAG_PVSYNC;
  1169. else
  1170. flags |= DRM_MODE_FLAG_NVSYNC;
  1171. }
  1172. pipe_config->adjusted_mode.flags |= flags;
  1173. if (dp_to_dig_port(intel_dp)->port == PORT_A) {
  1174. if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
  1175. pipe_config->port_clock = 162000;
  1176. else
  1177. pipe_config->port_clock = 270000;
  1178. }
  1179. }
  1180. static bool is_edp_psr(struct intel_dp *intel_dp)
  1181. {
  1182. return is_edp(intel_dp) &&
  1183. intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
  1184. }
  1185. static bool intel_edp_is_psr_enabled(struct drm_device *dev)
  1186. {
  1187. struct drm_i915_private *dev_priv = dev->dev_private;
  1188. if (!IS_HASWELL(dev))
  1189. return false;
  1190. return I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  1191. }
  1192. static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
  1193. struct edp_vsc_psr *vsc_psr)
  1194. {
  1195. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1196. struct drm_device *dev = dig_port->base.base.dev;
  1197. struct drm_i915_private *dev_priv = dev->dev_private;
  1198. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  1199. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
  1200. u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
  1201. uint32_t *data = (uint32_t *) vsc_psr;
  1202. unsigned int i;
  1203. /* As per BSPec (Pipe Video Data Island Packet), we need to disable
  1204. the video DIP being updated before program video DIP data buffer
  1205. registers for DIP being updated. */
  1206. I915_WRITE(ctl_reg, 0);
  1207. POSTING_READ(ctl_reg);
  1208. for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
  1209. if (i < sizeof(struct edp_vsc_psr))
  1210. I915_WRITE(data_reg + i, *data++);
  1211. else
  1212. I915_WRITE(data_reg + i, 0);
  1213. }
  1214. I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
  1215. POSTING_READ(ctl_reg);
  1216. }
  1217. static void intel_edp_psr_setup(struct intel_dp *intel_dp)
  1218. {
  1219. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1220. struct drm_i915_private *dev_priv = dev->dev_private;
  1221. struct edp_vsc_psr psr_vsc;
  1222. if (intel_dp->psr_setup_done)
  1223. return;
  1224. /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
  1225. memset(&psr_vsc, 0, sizeof(psr_vsc));
  1226. psr_vsc.sdp_header.HB0 = 0;
  1227. psr_vsc.sdp_header.HB1 = 0x7;
  1228. psr_vsc.sdp_header.HB2 = 0x2;
  1229. psr_vsc.sdp_header.HB3 = 0x8;
  1230. intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
  1231. /* Avoid continuous PSR exit by masking memup and hpd */
  1232. I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
  1233. EDP_PSR_DEBUG_MASK_HPD);
  1234. intel_dp->psr_setup_done = true;
  1235. }
  1236. static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
  1237. {
  1238. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1239. struct drm_i915_private *dev_priv = dev->dev_private;
  1240. uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
  1241. int precharge = 0x3;
  1242. int msg_size = 5; /* Header(4) + Message(1) */
  1243. /* Enable PSR in sink */
  1244. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
  1245. intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
  1246. DP_PSR_ENABLE &
  1247. ~DP_PSR_MAIN_LINK_ACTIVE);
  1248. else
  1249. intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
  1250. DP_PSR_ENABLE |
  1251. DP_PSR_MAIN_LINK_ACTIVE);
  1252. /* Setup AUX registers */
  1253. I915_WRITE(EDP_PSR_AUX_DATA1, EDP_PSR_DPCD_COMMAND);
  1254. I915_WRITE(EDP_PSR_AUX_DATA2, EDP_PSR_DPCD_NORMAL_OPERATION);
  1255. I915_WRITE(EDP_PSR_AUX_CTL,
  1256. DP_AUX_CH_CTL_TIME_OUT_400us |
  1257. (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  1258. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  1259. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
  1260. }
  1261. static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
  1262. {
  1263. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1264. struct drm_i915_private *dev_priv = dev->dev_private;
  1265. uint32_t max_sleep_time = 0x1f;
  1266. uint32_t idle_frames = 1;
  1267. uint32_t val = 0x0;
  1268. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
  1269. val |= EDP_PSR_LINK_STANDBY;
  1270. val |= EDP_PSR_TP2_TP3_TIME_0us;
  1271. val |= EDP_PSR_TP1_TIME_0us;
  1272. val |= EDP_PSR_SKIP_AUX_EXIT;
  1273. } else
  1274. val |= EDP_PSR_LINK_DISABLE;
  1275. I915_WRITE(EDP_PSR_CTL, val |
  1276. EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
  1277. max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
  1278. idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
  1279. EDP_PSR_ENABLE);
  1280. }
  1281. static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
  1282. {
  1283. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1284. struct drm_device *dev = dig_port->base.base.dev;
  1285. struct drm_i915_private *dev_priv = dev->dev_private;
  1286. struct drm_crtc *crtc = dig_port->base.base.crtc;
  1287. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1288. struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
  1289. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1290. if (!IS_HASWELL(dev)) {
  1291. DRM_DEBUG_KMS("PSR not supported on this platform\n");
  1292. dev_priv->no_psr_reason = PSR_NO_SOURCE;
  1293. return false;
  1294. }
  1295. if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
  1296. (dig_port->port != PORT_A)) {
  1297. DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
  1298. dev_priv->no_psr_reason = PSR_HSW_NOT_DDIA;
  1299. return false;
  1300. }
  1301. if (!is_edp_psr(intel_dp)) {
  1302. DRM_DEBUG_KMS("PSR not supported by this panel\n");
  1303. dev_priv->no_psr_reason = PSR_NO_SINK;
  1304. return false;
  1305. }
  1306. if (!i915_enable_psr) {
  1307. DRM_DEBUG_KMS("PSR disable by flag\n");
  1308. dev_priv->no_psr_reason = PSR_MODULE_PARAM;
  1309. return false;
  1310. }
  1311. crtc = dig_port->base.base.crtc;
  1312. if (crtc == NULL) {
  1313. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1314. dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
  1315. return false;
  1316. }
  1317. intel_crtc = to_intel_crtc(crtc);
  1318. if (!intel_crtc->active || !crtc->fb || !crtc->mode.clock) {
  1319. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1320. dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
  1321. return false;
  1322. }
  1323. obj = to_intel_framebuffer(crtc->fb)->obj;
  1324. if (obj->tiling_mode != I915_TILING_X ||
  1325. obj->fence_reg == I915_FENCE_REG_NONE) {
  1326. DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
  1327. dev_priv->no_psr_reason = PSR_NOT_TILED;
  1328. return false;
  1329. }
  1330. if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
  1331. DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
  1332. dev_priv->no_psr_reason = PSR_SPRITE_ENABLED;
  1333. return false;
  1334. }
  1335. if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
  1336. S3D_ENABLE) {
  1337. DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
  1338. dev_priv->no_psr_reason = PSR_S3D_ENABLED;
  1339. return false;
  1340. }
  1341. if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) {
  1342. DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
  1343. dev_priv->no_psr_reason = PSR_INTERLACED_ENABLED;
  1344. return false;
  1345. }
  1346. return true;
  1347. }
  1348. static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
  1349. {
  1350. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1351. if (!intel_edp_psr_match_conditions(intel_dp) ||
  1352. intel_edp_is_psr_enabled(dev))
  1353. return;
  1354. /* Setup PSR once */
  1355. intel_edp_psr_setup(intel_dp);
  1356. /* Enable PSR on the panel */
  1357. intel_edp_psr_enable_sink(intel_dp);
  1358. /* Enable PSR on the host */
  1359. intel_edp_psr_enable_source(intel_dp);
  1360. }
  1361. void intel_edp_psr_enable(struct intel_dp *intel_dp)
  1362. {
  1363. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1364. if (intel_edp_psr_match_conditions(intel_dp) &&
  1365. !intel_edp_is_psr_enabled(dev))
  1366. intel_edp_psr_do_enable(intel_dp);
  1367. }
  1368. void intel_edp_psr_disable(struct intel_dp *intel_dp)
  1369. {
  1370. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1371. struct drm_i915_private *dev_priv = dev->dev_private;
  1372. if (!intel_edp_is_psr_enabled(dev))
  1373. return;
  1374. I915_WRITE(EDP_PSR_CTL, I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
  1375. /* Wait till PSR is idle */
  1376. if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
  1377. EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
  1378. DRM_ERROR("Timed out waiting for PSR Idle State\n");
  1379. }
  1380. void intel_edp_psr_update(struct drm_device *dev)
  1381. {
  1382. struct intel_encoder *encoder;
  1383. struct intel_dp *intel_dp = NULL;
  1384. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
  1385. if (encoder->type == INTEL_OUTPUT_EDP) {
  1386. intel_dp = enc_to_intel_dp(&encoder->base);
  1387. if (!is_edp_psr(intel_dp))
  1388. return;
  1389. if (!intel_edp_psr_match_conditions(intel_dp))
  1390. intel_edp_psr_disable(intel_dp);
  1391. else
  1392. if (!intel_edp_is_psr_enabled(dev))
  1393. intel_edp_psr_do_enable(intel_dp);
  1394. }
  1395. }
  1396. static void intel_disable_dp(struct intel_encoder *encoder)
  1397. {
  1398. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1399. enum port port = dp_to_dig_port(intel_dp)->port;
  1400. struct drm_device *dev = encoder->base.dev;
  1401. /* Make sure the panel is off before trying to change the mode. But also
  1402. * ensure that we have vdd while we switch off the panel. */
  1403. ironlake_edp_panel_vdd_on(intel_dp);
  1404. ironlake_edp_backlight_off(intel_dp);
  1405. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1406. ironlake_edp_panel_off(intel_dp);
  1407. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1408. if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
  1409. intel_dp_link_down(intel_dp);
  1410. }
  1411. static void intel_post_disable_dp(struct intel_encoder *encoder)
  1412. {
  1413. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1414. enum port port = dp_to_dig_port(intel_dp)->port;
  1415. struct drm_device *dev = encoder->base.dev;
  1416. if (port == PORT_A || IS_VALLEYVIEW(dev)) {
  1417. intel_dp_link_down(intel_dp);
  1418. if (!IS_VALLEYVIEW(dev))
  1419. ironlake_edp_pll_off(intel_dp);
  1420. }
  1421. }
  1422. static void intel_enable_dp(struct intel_encoder *encoder)
  1423. {
  1424. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1425. struct drm_device *dev = encoder->base.dev;
  1426. struct drm_i915_private *dev_priv = dev->dev_private;
  1427. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1428. if (WARN_ON(dp_reg & DP_PORT_EN))
  1429. return;
  1430. ironlake_edp_panel_vdd_on(intel_dp);
  1431. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1432. intel_dp_start_link_train(intel_dp);
  1433. ironlake_edp_panel_on(intel_dp);
  1434. ironlake_edp_panel_vdd_off(intel_dp, true);
  1435. intel_dp_complete_link_train(intel_dp);
  1436. intel_dp_stop_link_train(intel_dp);
  1437. ironlake_edp_backlight_on(intel_dp);
  1438. if (IS_VALLEYVIEW(dev)) {
  1439. struct intel_digital_port *dport =
  1440. enc_to_dig_port(&encoder->base);
  1441. int channel = vlv_dport_to_channel(dport);
  1442. vlv_wait_port_ready(dev_priv, channel);
  1443. }
  1444. }
  1445. static void intel_pre_enable_dp(struct intel_encoder *encoder)
  1446. {
  1447. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1448. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1449. struct drm_device *dev = encoder->base.dev;
  1450. struct drm_i915_private *dev_priv = dev->dev_private;
  1451. if (dport->port == PORT_A && !IS_VALLEYVIEW(dev))
  1452. ironlake_edp_pll_on(intel_dp);
  1453. if (IS_VALLEYVIEW(dev)) {
  1454. struct intel_crtc *intel_crtc =
  1455. to_intel_crtc(encoder->base.crtc);
  1456. int port = vlv_dport_to_channel(dport);
  1457. int pipe = intel_crtc->pipe;
  1458. u32 val;
  1459. val = vlv_dpio_read(dev_priv, DPIO_DATA_LANE_A(port));
  1460. val = 0;
  1461. if (pipe)
  1462. val |= (1<<21);
  1463. else
  1464. val &= ~(1<<21);
  1465. val |= 0x001000c4;
  1466. vlv_dpio_write(dev_priv, DPIO_DATA_CHANNEL(port), val);
  1467. vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF0(port),
  1468. 0x00760018);
  1469. vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF8(port),
  1470. 0x00400888);
  1471. }
  1472. }
  1473. static void intel_dp_pre_pll_enable(struct intel_encoder *encoder)
  1474. {
  1475. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1476. struct drm_device *dev = encoder->base.dev;
  1477. struct drm_i915_private *dev_priv = dev->dev_private;
  1478. int port = vlv_dport_to_channel(dport);
  1479. if (!IS_VALLEYVIEW(dev))
  1480. return;
  1481. /* Program Tx lane resets to default */
  1482. vlv_dpio_write(dev_priv, DPIO_PCS_TX(port),
  1483. DPIO_PCS_TX_LANE2_RESET |
  1484. DPIO_PCS_TX_LANE1_RESET);
  1485. vlv_dpio_write(dev_priv, DPIO_PCS_CLK(port),
  1486. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1487. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1488. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1489. DPIO_PCS_CLK_SOFT_RESET);
  1490. /* Fix up inter-pair skew failure */
  1491. vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER1(port), 0x00750f00);
  1492. vlv_dpio_write(dev_priv, DPIO_TX_CTL(port), 0x00001500);
  1493. vlv_dpio_write(dev_priv, DPIO_TX_LANE(port), 0x40400000);
  1494. }
  1495. /*
  1496. * Native read with retry for link status and receiver capability reads for
  1497. * cases where the sink may still be asleep.
  1498. */
  1499. static bool
  1500. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1501. uint8_t *recv, int recv_bytes)
  1502. {
  1503. int ret, i;
  1504. /*
  1505. * Sinks are *supposed* to come up within 1ms from an off state,
  1506. * but we're also supposed to retry 3 times per the spec.
  1507. */
  1508. for (i = 0; i < 3; i++) {
  1509. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1510. recv_bytes);
  1511. if (ret == recv_bytes)
  1512. return true;
  1513. msleep(1);
  1514. }
  1515. return false;
  1516. }
  1517. /*
  1518. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1519. * link status information
  1520. */
  1521. static bool
  1522. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1523. {
  1524. return intel_dp_aux_native_read_retry(intel_dp,
  1525. DP_LANE0_1_STATUS,
  1526. link_status,
  1527. DP_LINK_STATUS_SIZE);
  1528. }
  1529. #if 0
  1530. static char *voltage_names[] = {
  1531. "0.4V", "0.6V", "0.8V", "1.2V"
  1532. };
  1533. static char *pre_emph_names[] = {
  1534. "0dB", "3.5dB", "6dB", "9.5dB"
  1535. };
  1536. static char *link_train_names[] = {
  1537. "pattern 1", "pattern 2", "idle", "off"
  1538. };
  1539. #endif
  1540. /*
  1541. * These are source-specific values; current Intel hardware supports
  1542. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1543. */
  1544. static uint8_t
  1545. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1546. {
  1547. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1548. enum port port = dp_to_dig_port(intel_dp)->port;
  1549. if (IS_VALLEYVIEW(dev))
  1550. return DP_TRAIN_VOLTAGE_SWING_1200;
  1551. else if (IS_GEN7(dev) && port == PORT_A)
  1552. return DP_TRAIN_VOLTAGE_SWING_800;
  1553. else if (HAS_PCH_CPT(dev) && port != PORT_A)
  1554. return DP_TRAIN_VOLTAGE_SWING_1200;
  1555. else
  1556. return DP_TRAIN_VOLTAGE_SWING_800;
  1557. }
  1558. static uint8_t
  1559. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1560. {
  1561. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1562. enum port port = dp_to_dig_port(intel_dp)->port;
  1563. if (HAS_DDI(dev)) {
  1564. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1565. case DP_TRAIN_VOLTAGE_SWING_400:
  1566. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1567. case DP_TRAIN_VOLTAGE_SWING_600:
  1568. return DP_TRAIN_PRE_EMPHASIS_6;
  1569. case DP_TRAIN_VOLTAGE_SWING_800:
  1570. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1571. case DP_TRAIN_VOLTAGE_SWING_1200:
  1572. default:
  1573. return DP_TRAIN_PRE_EMPHASIS_0;
  1574. }
  1575. } else if (IS_VALLEYVIEW(dev)) {
  1576. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1577. case DP_TRAIN_VOLTAGE_SWING_400:
  1578. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1579. case DP_TRAIN_VOLTAGE_SWING_600:
  1580. return DP_TRAIN_PRE_EMPHASIS_6;
  1581. case DP_TRAIN_VOLTAGE_SWING_800:
  1582. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1583. case DP_TRAIN_VOLTAGE_SWING_1200:
  1584. default:
  1585. return DP_TRAIN_PRE_EMPHASIS_0;
  1586. }
  1587. } else if (IS_GEN7(dev) && port == PORT_A) {
  1588. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1589. case DP_TRAIN_VOLTAGE_SWING_400:
  1590. return DP_TRAIN_PRE_EMPHASIS_6;
  1591. case DP_TRAIN_VOLTAGE_SWING_600:
  1592. case DP_TRAIN_VOLTAGE_SWING_800:
  1593. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1594. default:
  1595. return DP_TRAIN_PRE_EMPHASIS_0;
  1596. }
  1597. } else {
  1598. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1599. case DP_TRAIN_VOLTAGE_SWING_400:
  1600. return DP_TRAIN_PRE_EMPHASIS_6;
  1601. case DP_TRAIN_VOLTAGE_SWING_600:
  1602. return DP_TRAIN_PRE_EMPHASIS_6;
  1603. case DP_TRAIN_VOLTAGE_SWING_800:
  1604. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1605. case DP_TRAIN_VOLTAGE_SWING_1200:
  1606. default:
  1607. return DP_TRAIN_PRE_EMPHASIS_0;
  1608. }
  1609. }
  1610. }
  1611. static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
  1612. {
  1613. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1614. struct drm_i915_private *dev_priv = dev->dev_private;
  1615. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1616. unsigned long demph_reg_value, preemph_reg_value,
  1617. uniqtranscale_reg_value;
  1618. uint8_t train_set = intel_dp->train_set[0];
  1619. int port = vlv_dport_to_channel(dport);
  1620. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1621. case DP_TRAIN_PRE_EMPHASIS_0:
  1622. preemph_reg_value = 0x0004000;
  1623. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1624. case DP_TRAIN_VOLTAGE_SWING_400:
  1625. demph_reg_value = 0x2B405555;
  1626. uniqtranscale_reg_value = 0x552AB83A;
  1627. break;
  1628. case DP_TRAIN_VOLTAGE_SWING_600:
  1629. demph_reg_value = 0x2B404040;
  1630. uniqtranscale_reg_value = 0x5548B83A;
  1631. break;
  1632. case DP_TRAIN_VOLTAGE_SWING_800:
  1633. demph_reg_value = 0x2B245555;
  1634. uniqtranscale_reg_value = 0x5560B83A;
  1635. break;
  1636. case DP_TRAIN_VOLTAGE_SWING_1200:
  1637. demph_reg_value = 0x2B405555;
  1638. uniqtranscale_reg_value = 0x5598DA3A;
  1639. break;
  1640. default:
  1641. return 0;
  1642. }
  1643. break;
  1644. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1645. preemph_reg_value = 0x0002000;
  1646. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1647. case DP_TRAIN_VOLTAGE_SWING_400:
  1648. demph_reg_value = 0x2B404040;
  1649. uniqtranscale_reg_value = 0x5552B83A;
  1650. break;
  1651. case DP_TRAIN_VOLTAGE_SWING_600:
  1652. demph_reg_value = 0x2B404848;
  1653. uniqtranscale_reg_value = 0x5580B83A;
  1654. break;
  1655. case DP_TRAIN_VOLTAGE_SWING_800:
  1656. demph_reg_value = 0x2B404040;
  1657. uniqtranscale_reg_value = 0x55ADDA3A;
  1658. break;
  1659. default:
  1660. return 0;
  1661. }
  1662. break;
  1663. case DP_TRAIN_PRE_EMPHASIS_6:
  1664. preemph_reg_value = 0x0000000;
  1665. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1666. case DP_TRAIN_VOLTAGE_SWING_400:
  1667. demph_reg_value = 0x2B305555;
  1668. uniqtranscale_reg_value = 0x5570B83A;
  1669. break;
  1670. case DP_TRAIN_VOLTAGE_SWING_600:
  1671. demph_reg_value = 0x2B2B4040;
  1672. uniqtranscale_reg_value = 0x55ADDA3A;
  1673. break;
  1674. default:
  1675. return 0;
  1676. }
  1677. break;
  1678. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1679. preemph_reg_value = 0x0006000;
  1680. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1681. case DP_TRAIN_VOLTAGE_SWING_400:
  1682. demph_reg_value = 0x1B405555;
  1683. uniqtranscale_reg_value = 0x55ADDA3A;
  1684. break;
  1685. default:
  1686. return 0;
  1687. }
  1688. break;
  1689. default:
  1690. return 0;
  1691. }
  1692. vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x00000000);
  1693. vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL4(port), demph_reg_value);
  1694. vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL2(port),
  1695. uniqtranscale_reg_value);
  1696. vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL3(port), 0x0C782040);
  1697. vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER0(port), 0x00030000);
  1698. vlv_dpio_write(dev_priv, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
  1699. vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x80000000);
  1700. return 0;
  1701. }
  1702. static void
  1703. intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1704. {
  1705. uint8_t v = 0;
  1706. uint8_t p = 0;
  1707. int lane;
  1708. uint8_t voltage_max;
  1709. uint8_t preemph_max;
  1710. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1711. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  1712. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  1713. if (this_v > v)
  1714. v = this_v;
  1715. if (this_p > p)
  1716. p = this_p;
  1717. }
  1718. voltage_max = intel_dp_voltage_max(intel_dp);
  1719. if (v >= voltage_max)
  1720. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1721. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1722. if (p >= preemph_max)
  1723. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1724. for (lane = 0; lane < 4; lane++)
  1725. intel_dp->train_set[lane] = v | p;
  1726. }
  1727. static uint32_t
  1728. intel_gen4_signal_levels(uint8_t train_set)
  1729. {
  1730. uint32_t signal_levels = 0;
  1731. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1732. case DP_TRAIN_VOLTAGE_SWING_400:
  1733. default:
  1734. signal_levels |= DP_VOLTAGE_0_4;
  1735. break;
  1736. case DP_TRAIN_VOLTAGE_SWING_600:
  1737. signal_levels |= DP_VOLTAGE_0_6;
  1738. break;
  1739. case DP_TRAIN_VOLTAGE_SWING_800:
  1740. signal_levels |= DP_VOLTAGE_0_8;
  1741. break;
  1742. case DP_TRAIN_VOLTAGE_SWING_1200:
  1743. signal_levels |= DP_VOLTAGE_1_2;
  1744. break;
  1745. }
  1746. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1747. case DP_TRAIN_PRE_EMPHASIS_0:
  1748. default:
  1749. signal_levels |= DP_PRE_EMPHASIS_0;
  1750. break;
  1751. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1752. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1753. break;
  1754. case DP_TRAIN_PRE_EMPHASIS_6:
  1755. signal_levels |= DP_PRE_EMPHASIS_6;
  1756. break;
  1757. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1758. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1759. break;
  1760. }
  1761. return signal_levels;
  1762. }
  1763. /* Gen6's DP voltage swing and pre-emphasis control */
  1764. static uint32_t
  1765. intel_gen6_edp_signal_levels(uint8_t train_set)
  1766. {
  1767. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1768. DP_TRAIN_PRE_EMPHASIS_MASK);
  1769. switch (signal_levels) {
  1770. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1771. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1772. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1773. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1774. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1775. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1776. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1777. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1778. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1779. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1780. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1781. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1782. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1783. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1784. default:
  1785. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1786. "0x%x\n", signal_levels);
  1787. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1788. }
  1789. }
  1790. /* Gen7's DP voltage swing and pre-emphasis control */
  1791. static uint32_t
  1792. intel_gen7_edp_signal_levels(uint8_t train_set)
  1793. {
  1794. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1795. DP_TRAIN_PRE_EMPHASIS_MASK);
  1796. switch (signal_levels) {
  1797. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1798. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1799. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1800. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1801. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1802. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1803. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1804. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1805. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1806. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1807. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1808. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1809. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1810. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1811. default:
  1812. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1813. "0x%x\n", signal_levels);
  1814. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1815. }
  1816. }
  1817. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  1818. static uint32_t
  1819. intel_hsw_signal_levels(uint8_t train_set)
  1820. {
  1821. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1822. DP_TRAIN_PRE_EMPHASIS_MASK);
  1823. switch (signal_levels) {
  1824. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1825. return DDI_BUF_EMP_400MV_0DB_HSW;
  1826. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1827. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  1828. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1829. return DDI_BUF_EMP_400MV_6DB_HSW;
  1830. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  1831. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  1832. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1833. return DDI_BUF_EMP_600MV_0DB_HSW;
  1834. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1835. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  1836. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1837. return DDI_BUF_EMP_600MV_6DB_HSW;
  1838. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1839. return DDI_BUF_EMP_800MV_0DB_HSW;
  1840. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1841. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  1842. default:
  1843. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1844. "0x%x\n", signal_levels);
  1845. return DDI_BUF_EMP_400MV_0DB_HSW;
  1846. }
  1847. }
  1848. /* Properly updates "DP" with the correct signal levels. */
  1849. static void
  1850. intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
  1851. {
  1852. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1853. enum port port = intel_dig_port->port;
  1854. struct drm_device *dev = intel_dig_port->base.base.dev;
  1855. uint32_t signal_levels, mask;
  1856. uint8_t train_set = intel_dp->train_set[0];
  1857. if (HAS_DDI(dev)) {
  1858. signal_levels = intel_hsw_signal_levels(train_set);
  1859. mask = DDI_BUF_EMP_MASK;
  1860. } else if (IS_VALLEYVIEW(dev)) {
  1861. signal_levels = intel_vlv_signal_levels(intel_dp);
  1862. mask = 0;
  1863. } else if (IS_GEN7(dev) && port == PORT_A) {
  1864. signal_levels = intel_gen7_edp_signal_levels(train_set);
  1865. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
  1866. } else if (IS_GEN6(dev) && port == PORT_A) {
  1867. signal_levels = intel_gen6_edp_signal_levels(train_set);
  1868. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
  1869. } else {
  1870. signal_levels = intel_gen4_signal_levels(train_set);
  1871. mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
  1872. }
  1873. DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
  1874. *DP = (*DP & ~mask) | signal_levels;
  1875. }
  1876. static bool
  1877. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1878. uint32_t dp_reg_value,
  1879. uint8_t dp_train_pat)
  1880. {
  1881. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1882. struct drm_device *dev = intel_dig_port->base.base.dev;
  1883. struct drm_i915_private *dev_priv = dev->dev_private;
  1884. enum port port = intel_dig_port->port;
  1885. int ret;
  1886. if (HAS_DDI(dev)) {
  1887. uint32_t temp = I915_READ(DP_TP_CTL(port));
  1888. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  1889. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  1890. else
  1891. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  1892. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1893. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1894. case DP_TRAINING_PATTERN_DISABLE:
  1895. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  1896. break;
  1897. case DP_TRAINING_PATTERN_1:
  1898. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1899. break;
  1900. case DP_TRAINING_PATTERN_2:
  1901. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  1902. break;
  1903. case DP_TRAINING_PATTERN_3:
  1904. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  1905. break;
  1906. }
  1907. I915_WRITE(DP_TP_CTL(port), temp);
  1908. } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  1909. dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
  1910. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1911. case DP_TRAINING_PATTERN_DISABLE:
  1912. dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
  1913. break;
  1914. case DP_TRAINING_PATTERN_1:
  1915. dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
  1916. break;
  1917. case DP_TRAINING_PATTERN_2:
  1918. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1919. break;
  1920. case DP_TRAINING_PATTERN_3:
  1921. DRM_ERROR("DP training pattern 3 not supported\n");
  1922. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1923. break;
  1924. }
  1925. } else {
  1926. dp_reg_value &= ~DP_LINK_TRAIN_MASK;
  1927. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1928. case DP_TRAINING_PATTERN_DISABLE:
  1929. dp_reg_value |= DP_LINK_TRAIN_OFF;
  1930. break;
  1931. case DP_TRAINING_PATTERN_1:
  1932. dp_reg_value |= DP_LINK_TRAIN_PAT_1;
  1933. break;
  1934. case DP_TRAINING_PATTERN_2:
  1935. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1936. break;
  1937. case DP_TRAINING_PATTERN_3:
  1938. DRM_ERROR("DP training pattern 3 not supported\n");
  1939. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1940. break;
  1941. }
  1942. }
  1943. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1944. POSTING_READ(intel_dp->output_reg);
  1945. intel_dp_aux_native_write_1(intel_dp,
  1946. DP_TRAINING_PATTERN_SET,
  1947. dp_train_pat);
  1948. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
  1949. DP_TRAINING_PATTERN_DISABLE) {
  1950. ret = intel_dp_aux_native_write(intel_dp,
  1951. DP_TRAINING_LANE0_SET,
  1952. intel_dp->train_set,
  1953. intel_dp->lane_count);
  1954. if (ret != intel_dp->lane_count)
  1955. return false;
  1956. }
  1957. return true;
  1958. }
  1959. static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
  1960. {
  1961. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1962. struct drm_device *dev = intel_dig_port->base.base.dev;
  1963. struct drm_i915_private *dev_priv = dev->dev_private;
  1964. enum port port = intel_dig_port->port;
  1965. uint32_t val;
  1966. if (!HAS_DDI(dev))
  1967. return;
  1968. val = I915_READ(DP_TP_CTL(port));
  1969. val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1970. val |= DP_TP_CTL_LINK_TRAIN_IDLE;
  1971. I915_WRITE(DP_TP_CTL(port), val);
  1972. /*
  1973. * On PORT_A we can have only eDP in SST mode. There the only reason
  1974. * we need to set idle transmission mode is to work around a HW issue
  1975. * where we enable the pipe while not in idle link-training mode.
  1976. * In this case there is requirement to wait for a minimum number of
  1977. * idle patterns to be sent.
  1978. */
  1979. if (port == PORT_A)
  1980. return;
  1981. if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
  1982. 1))
  1983. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  1984. }
  1985. /* Enable corresponding port and start training pattern 1 */
  1986. void
  1987. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1988. {
  1989. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  1990. struct drm_device *dev = encoder->dev;
  1991. int i;
  1992. uint8_t voltage;
  1993. bool clock_recovery = false;
  1994. int voltage_tries, loop_tries;
  1995. uint32_t DP = intel_dp->DP;
  1996. if (HAS_DDI(dev))
  1997. intel_ddi_prepare_link_retrain(encoder);
  1998. /* Write the link configuration data */
  1999. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  2000. intel_dp->link_configuration,
  2001. DP_LINK_CONFIGURATION_SIZE);
  2002. DP |= DP_PORT_EN;
  2003. memset(intel_dp->train_set, 0, 4);
  2004. voltage = 0xff;
  2005. voltage_tries = 0;
  2006. loop_tries = 0;
  2007. clock_recovery = false;
  2008. for (;;) {
  2009. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  2010. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2011. intel_dp_set_signal_levels(intel_dp, &DP);
  2012. /* Set training pattern 1 */
  2013. if (!intel_dp_set_link_train(intel_dp, DP,
  2014. DP_TRAINING_PATTERN_1 |
  2015. DP_LINK_SCRAMBLING_DISABLE))
  2016. break;
  2017. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  2018. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2019. DRM_ERROR("failed to get link status\n");
  2020. break;
  2021. }
  2022. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2023. DRM_DEBUG_KMS("clock recovery OK\n");
  2024. clock_recovery = true;
  2025. break;
  2026. }
  2027. /* Check to see if we've tried the max voltage */
  2028. for (i = 0; i < intel_dp->lane_count; i++)
  2029. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  2030. break;
  2031. if (i == intel_dp->lane_count) {
  2032. ++loop_tries;
  2033. if (loop_tries == 5) {
  2034. DRM_DEBUG_KMS("too many full retries, give up\n");
  2035. break;
  2036. }
  2037. memset(intel_dp->train_set, 0, 4);
  2038. voltage_tries = 0;
  2039. continue;
  2040. }
  2041. /* Check to see if we've tried the same voltage 5 times */
  2042. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  2043. ++voltage_tries;
  2044. if (voltage_tries == 5) {
  2045. DRM_DEBUG_KMS("too many voltage retries, give up\n");
  2046. break;
  2047. }
  2048. } else
  2049. voltage_tries = 0;
  2050. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  2051. /* Compute new intel_dp->train_set as requested by target */
  2052. intel_get_adjust_train(intel_dp, link_status);
  2053. }
  2054. intel_dp->DP = DP;
  2055. }
  2056. void
  2057. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  2058. {
  2059. bool channel_eq = false;
  2060. int tries, cr_tries;
  2061. uint32_t DP = intel_dp->DP;
  2062. /* channel equalization */
  2063. tries = 0;
  2064. cr_tries = 0;
  2065. channel_eq = false;
  2066. for (;;) {
  2067. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2068. if (cr_tries > 5) {
  2069. DRM_ERROR("failed to train DP, aborting\n");
  2070. intel_dp_link_down(intel_dp);
  2071. break;
  2072. }
  2073. intel_dp_set_signal_levels(intel_dp, &DP);
  2074. /* channel eq pattern */
  2075. if (!intel_dp_set_link_train(intel_dp, DP,
  2076. DP_TRAINING_PATTERN_2 |
  2077. DP_LINK_SCRAMBLING_DISABLE))
  2078. break;
  2079. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  2080. if (!intel_dp_get_link_status(intel_dp, link_status))
  2081. break;
  2082. /* Make sure clock is still ok */
  2083. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2084. intel_dp_start_link_train(intel_dp);
  2085. cr_tries++;
  2086. continue;
  2087. }
  2088. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2089. channel_eq = true;
  2090. break;
  2091. }
  2092. /* Try 5 times, then try clock recovery if that fails */
  2093. if (tries > 5) {
  2094. intel_dp_link_down(intel_dp);
  2095. intel_dp_start_link_train(intel_dp);
  2096. tries = 0;
  2097. cr_tries++;
  2098. continue;
  2099. }
  2100. /* Compute new intel_dp->train_set as requested by target */
  2101. intel_get_adjust_train(intel_dp, link_status);
  2102. ++tries;
  2103. }
  2104. intel_dp_set_idle_link_train(intel_dp);
  2105. intel_dp->DP = DP;
  2106. if (channel_eq)
  2107. DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
  2108. }
  2109. void intel_dp_stop_link_train(struct intel_dp *intel_dp)
  2110. {
  2111. intel_dp_set_link_train(intel_dp, intel_dp->DP,
  2112. DP_TRAINING_PATTERN_DISABLE);
  2113. }
  2114. static void
  2115. intel_dp_link_down(struct intel_dp *intel_dp)
  2116. {
  2117. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2118. enum port port = intel_dig_port->port;
  2119. struct drm_device *dev = intel_dig_port->base.base.dev;
  2120. struct drm_i915_private *dev_priv = dev->dev_private;
  2121. struct intel_crtc *intel_crtc =
  2122. to_intel_crtc(intel_dig_port->base.base.crtc);
  2123. uint32_t DP = intel_dp->DP;
  2124. /*
  2125. * DDI code has a strict mode set sequence and we should try to respect
  2126. * it, otherwise we might hang the machine in many different ways. So we
  2127. * really should be disabling the port only on a complete crtc_disable
  2128. * sequence. This function is just called under two conditions on DDI
  2129. * code:
  2130. * - Link train failed while doing crtc_enable, and on this case we
  2131. * really should respect the mode set sequence and wait for a
  2132. * crtc_disable.
  2133. * - Someone turned the monitor off and intel_dp_check_link_status
  2134. * called us. We don't need to disable the whole port on this case, so
  2135. * when someone turns the monitor on again,
  2136. * intel_ddi_prepare_link_retrain will take care of redoing the link
  2137. * train.
  2138. */
  2139. if (HAS_DDI(dev))
  2140. return;
  2141. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  2142. return;
  2143. DRM_DEBUG_KMS("\n");
  2144. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2145. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  2146. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  2147. } else {
  2148. DP &= ~DP_LINK_TRAIN_MASK;
  2149. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  2150. }
  2151. POSTING_READ(intel_dp->output_reg);
  2152. /* We don't really know why we're doing this */
  2153. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2154. if (HAS_PCH_IBX(dev) &&
  2155. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  2156. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  2157. /* Hardware workaround: leaving our transcoder select
  2158. * set to transcoder B while it's off will prevent the
  2159. * corresponding HDMI output on transcoder A.
  2160. *
  2161. * Combine this with another hardware workaround:
  2162. * transcoder select bit can only be cleared while the
  2163. * port is enabled.
  2164. */
  2165. DP &= ~DP_PIPEB_SELECT;
  2166. I915_WRITE(intel_dp->output_reg, DP);
  2167. /* Changes to enable or select take place the vblank
  2168. * after being written.
  2169. */
  2170. if (WARN_ON(crtc == NULL)) {
  2171. /* We should never try to disable a port without a crtc
  2172. * attached. For paranoia keep the code around for a
  2173. * bit. */
  2174. POSTING_READ(intel_dp->output_reg);
  2175. msleep(50);
  2176. } else
  2177. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2178. }
  2179. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  2180. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  2181. POSTING_READ(intel_dp->output_reg);
  2182. msleep(intel_dp->panel_power_down_delay);
  2183. }
  2184. static bool
  2185. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  2186. {
  2187. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  2188. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  2189. sizeof(intel_dp->dpcd)) == 0)
  2190. return false; /* aux transfer failed */
  2191. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  2192. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  2193. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  2194. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  2195. return false; /* DPCD not present */
  2196. /* Check if the panel supports PSR */
  2197. memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
  2198. intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
  2199. intel_dp->psr_dpcd,
  2200. sizeof(intel_dp->psr_dpcd));
  2201. if (is_edp_psr(intel_dp))
  2202. DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
  2203. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  2204. DP_DWN_STRM_PORT_PRESENT))
  2205. return true; /* native DP sink */
  2206. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  2207. return true; /* no per-port downstream info */
  2208. if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
  2209. intel_dp->downstream_ports,
  2210. DP_MAX_DOWNSTREAM_PORTS) == 0)
  2211. return false; /* downstream port status fetch failed */
  2212. return true;
  2213. }
  2214. static void
  2215. intel_dp_probe_oui(struct intel_dp *intel_dp)
  2216. {
  2217. u8 buf[3];
  2218. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  2219. return;
  2220. ironlake_edp_panel_vdd_on(intel_dp);
  2221. if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
  2222. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  2223. buf[0], buf[1], buf[2]);
  2224. if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
  2225. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  2226. buf[0], buf[1], buf[2]);
  2227. ironlake_edp_panel_vdd_off(intel_dp, false);
  2228. }
  2229. static bool
  2230. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  2231. {
  2232. int ret;
  2233. ret = intel_dp_aux_native_read_retry(intel_dp,
  2234. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2235. sink_irq_vector, 1);
  2236. if (!ret)
  2237. return false;
  2238. return true;
  2239. }
  2240. static void
  2241. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  2242. {
  2243. /* NAK by default */
  2244. intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
  2245. }
  2246. /*
  2247. * According to DP spec
  2248. * 5.1.2:
  2249. * 1. Read DPCD
  2250. * 2. Configure link according to Receiver Capabilities
  2251. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  2252. * 4. Check link status on receipt of hot-plug interrupt
  2253. */
  2254. void
  2255. intel_dp_check_link_status(struct intel_dp *intel_dp)
  2256. {
  2257. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  2258. u8 sink_irq_vector;
  2259. u8 link_status[DP_LINK_STATUS_SIZE];
  2260. if (!intel_encoder->connectors_active)
  2261. return;
  2262. if (WARN_ON(!intel_encoder->base.crtc))
  2263. return;
  2264. /* Try to read receiver status if the link appears to be up */
  2265. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2266. intel_dp_link_down(intel_dp);
  2267. return;
  2268. }
  2269. /* Now read the DPCD to see if it's actually running */
  2270. if (!intel_dp_get_dpcd(intel_dp)) {
  2271. intel_dp_link_down(intel_dp);
  2272. return;
  2273. }
  2274. /* Try to read the source of the interrupt */
  2275. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2276. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  2277. /* Clear interrupt source */
  2278. intel_dp_aux_native_write_1(intel_dp,
  2279. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2280. sink_irq_vector);
  2281. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  2282. intel_dp_handle_test_request(intel_dp);
  2283. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  2284. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  2285. }
  2286. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2287. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  2288. drm_get_encoder_name(&intel_encoder->base));
  2289. intel_dp_start_link_train(intel_dp);
  2290. intel_dp_complete_link_train(intel_dp);
  2291. intel_dp_stop_link_train(intel_dp);
  2292. }
  2293. }
  2294. /* XXX this is probably wrong for multiple downstream ports */
  2295. static enum drm_connector_status
  2296. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  2297. {
  2298. uint8_t *dpcd = intel_dp->dpcd;
  2299. bool hpd;
  2300. uint8_t type;
  2301. if (!intel_dp_get_dpcd(intel_dp))
  2302. return connector_status_disconnected;
  2303. /* if there's no downstream port, we're done */
  2304. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  2305. return connector_status_connected;
  2306. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  2307. hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
  2308. if (hpd) {
  2309. uint8_t reg;
  2310. if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
  2311. &reg, 1))
  2312. return connector_status_unknown;
  2313. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  2314. : connector_status_disconnected;
  2315. }
  2316. /* If no HPD, poke DDC gently */
  2317. if (drm_probe_ddc(&intel_dp->adapter))
  2318. return connector_status_connected;
  2319. /* Well we tried, say unknown for unreliable port types */
  2320. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  2321. if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
  2322. return connector_status_unknown;
  2323. /* Anything else is out of spec, warn and ignore */
  2324. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  2325. return connector_status_disconnected;
  2326. }
  2327. static enum drm_connector_status
  2328. ironlake_dp_detect(struct intel_dp *intel_dp)
  2329. {
  2330. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2331. struct drm_i915_private *dev_priv = dev->dev_private;
  2332. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2333. enum drm_connector_status status;
  2334. /* Can't disconnect eDP, but you can close the lid... */
  2335. if (is_edp(intel_dp)) {
  2336. status = intel_panel_detect(dev);
  2337. if (status == connector_status_unknown)
  2338. status = connector_status_connected;
  2339. return status;
  2340. }
  2341. if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
  2342. return connector_status_disconnected;
  2343. return intel_dp_detect_dpcd(intel_dp);
  2344. }
  2345. static enum drm_connector_status
  2346. g4x_dp_detect(struct intel_dp *intel_dp)
  2347. {
  2348. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2349. struct drm_i915_private *dev_priv = dev->dev_private;
  2350. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2351. uint32_t bit;
  2352. /* Can't disconnect eDP, but you can close the lid... */
  2353. if (is_edp(intel_dp)) {
  2354. enum drm_connector_status status;
  2355. status = intel_panel_detect(dev);
  2356. if (status == connector_status_unknown)
  2357. status = connector_status_connected;
  2358. return status;
  2359. }
  2360. switch (intel_dig_port->port) {
  2361. case PORT_B:
  2362. bit = PORTB_HOTPLUG_LIVE_STATUS;
  2363. break;
  2364. case PORT_C:
  2365. bit = PORTC_HOTPLUG_LIVE_STATUS;
  2366. break;
  2367. case PORT_D:
  2368. bit = PORTD_HOTPLUG_LIVE_STATUS;
  2369. break;
  2370. default:
  2371. return connector_status_unknown;
  2372. }
  2373. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  2374. return connector_status_disconnected;
  2375. return intel_dp_detect_dpcd(intel_dp);
  2376. }
  2377. static struct edid *
  2378. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  2379. {
  2380. struct intel_connector *intel_connector = to_intel_connector(connector);
  2381. /* use cached edid if we have one */
  2382. if (intel_connector->edid) {
  2383. struct edid *edid;
  2384. int size;
  2385. /* invalid edid */
  2386. if (IS_ERR(intel_connector->edid))
  2387. return NULL;
  2388. size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
  2389. edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
  2390. if (!edid)
  2391. return NULL;
  2392. return edid;
  2393. }
  2394. return drm_get_edid(connector, adapter);
  2395. }
  2396. static int
  2397. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  2398. {
  2399. struct intel_connector *intel_connector = to_intel_connector(connector);
  2400. /* use cached edid if we have one */
  2401. if (intel_connector->edid) {
  2402. /* invalid edid */
  2403. if (IS_ERR(intel_connector->edid))
  2404. return 0;
  2405. return intel_connector_update_modes(connector,
  2406. intel_connector->edid);
  2407. }
  2408. return intel_ddc_get_modes(connector, adapter);
  2409. }
  2410. static enum drm_connector_status
  2411. intel_dp_detect(struct drm_connector *connector, bool force)
  2412. {
  2413. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2414. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2415. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2416. struct drm_device *dev = connector->dev;
  2417. enum drm_connector_status status;
  2418. struct edid *edid = NULL;
  2419. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  2420. connector->base.id, drm_get_connector_name(connector));
  2421. intel_dp->has_audio = false;
  2422. if (HAS_PCH_SPLIT(dev))
  2423. status = ironlake_dp_detect(intel_dp);
  2424. else
  2425. status = g4x_dp_detect(intel_dp);
  2426. if (status != connector_status_connected)
  2427. return status;
  2428. intel_dp_probe_oui(intel_dp);
  2429. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  2430. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  2431. } else {
  2432. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2433. if (edid) {
  2434. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  2435. kfree(edid);
  2436. }
  2437. }
  2438. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  2439. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2440. return connector_status_connected;
  2441. }
  2442. static int intel_dp_get_modes(struct drm_connector *connector)
  2443. {
  2444. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2445. struct intel_connector *intel_connector = to_intel_connector(connector);
  2446. struct drm_device *dev = connector->dev;
  2447. int ret;
  2448. /* We should parse the EDID data and find out if it has an audio sink
  2449. */
  2450. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  2451. if (ret)
  2452. return ret;
  2453. /* if eDP has no EDID, fall back to fixed mode */
  2454. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  2455. struct drm_display_mode *mode;
  2456. mode = drm_mode_duplicate(dev,
  2457. intel_connector->panel.fixed_mode);
  2458. if (mode) {
  2459. drm_mode_probed_add(connector, mode);
  2460. return 1;
  2461. }
  2462. }
  2463. return 0;
  2464. }
  2465. static bool
  2466. intel_dp_detect_audio(struct drm_connector *connector)
  2467. {
  2468. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2469. struct edid *edid;
  2470. bool has_audio = false;
  2471. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2472. if (edid) {
  2473. has_audio = drm_detect_monitor_audio(edid);
  2474. kfree(edid);
  2475. }
  2476. return has_audio;
  2477. }
  2478. static int
  2479. intel_dp_set_property(struct drm_connector *connector,
  2480. struct drm_property *property,
  2481. uint64_t val)
  2482. {
  2483. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  2484. struct intel_connector *intel_connector = to_intel_connector(connector);
  2485. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  2486. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2487. int ret;
  2488. ret = drm_object_property_set_value(&connector->base, property, val);
  2489. if (ret)
  2490. return ret;
  2491. if (property == dev_priv->force_audio_property) {
  2492. int i = val;
  2493. bool has_audio;
  2494. if (i == intel_dp->force_audio)
  2495. return 0;
  2496. intel_dp->force_audio = i;
  2497. if (i == HDMI_AUDIO_AUTO)
  2498. has_audio = intel_dp_detect_audio(connector);
  2499. else
  2500. has_audio = (i == HDMI_AUDIO_ON);
  2501. if (has_audio == intel_dp->has_audio)
  2502. return 0;
  2503. intel_dp->has_audio = has_audio;
  2504. goto done;
  2505. }
  2506. if (property == dev_priv->broadcast_rgb_property) {
  2507. bool old_auto = intel_dp->color_range_auto;
  2508. uint32_t old_range = intel_dp->color_range;
  2509. switch (val) {
  2510. case INTEL_BROADCAST_RGB_AUTO:
  2511. intel_dp->color_range_auto = true;
  2512. break;
  2513. case INTEL_BROADCAST_RGB_FULL:
  2514. intel_dp->color_range_auto = false;
  2515. intel_dp->color_range = 0;
  2516. break;
  2517. case INTEL_BROADCAST_RGB_LIMITED:
  2518. intel_dp->color_range_auto = false;
  2519. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  2520. break;
  2521. default:
  2522. return -EINVAL;
  2523. }
  2524. if (old_auto == intel_dp->color_range_auto &&
  2525. old_range == intel_dp->color_range)
  2526. return 0;
  2527. goto done;
  2528. }
  2529. if (is_edp(intel_dp) &&
  2530. property == connector->dev->mode_config.scaling_mode_property) {
  2531. if (val == DRM_MODE_SCALE_NONE) {
  2532. DRM_DEBUG_KMS("no scaling not supported\n");
  2533. return -EINVAL;
  2534. }
  2535. if (intel_connector->panel.fitting_mode == val) {
  2536. /* the eDP scaling property is not changed */
  2537. return 0;
  2538. }
  2539. intel_connector->panel.fitting_mode = val;
  2540. goto done;
  2541. }
  2542. return -EINVAL;
  2543. done:
  2544. if (intel_encoder->base.crtc)
  2545. intel_crtc_restore_mode(intel_encoder->base.crtc);
  2546. return 0;
  2547. }
  2548. static void
  2549. intel_dp_connector_destroy(struct drm_connector *connector)
  2550. {
  2551. struct intel_connector *intel_connector = to_intel_connector(connector);
  2552. if (!IS_ERR_OR_NULL(intel_connector->edid))
  2553. kfree(intel_connector->edid);
  2554. /* Can't call is_edp() since the encoder may have been destroyed
  2555. * already. */
  2556. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  2557. intel_panel_fini(&intel_connector->panel);
  2558. drm_sysfs_connector_remove(connector);
  2559. drm_connector_cleanup(connector);
  2560. kfree(connector);
  2561. }
  2562. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  2563. {
  2564. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  2565. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2566. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2567. i2c_del_adapter(&intel_dp->adapter);
  2568. drm_encoder_cleanup(encoder);
  2569. if (is_edp(intel_dp)) {
  2570. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2571. mutex_lock(&dev->mode_config.mutex);
  2572. ironlake_panel_vdd_off_sync(intel_dp);
  2573. mutex_unlock(&dev->mode_config.mutex);
  2574. }
  2575. kfree(intel_dig_port);
  2576. }
  2577. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  2578. .mode_set = intel_dp_mode_set,
  2579. };
  2580. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  2581. .dpms = intel_connector_dpms,
  2582. .detect = intel_dp_detect,
  2583. .fill_modes = drm_helper_probe_single_connector_modes,
  2584. .set_property = intel_dp_set_property,
  2585. .destroy = intel_dp_connector_destroy,
  2586. };
  2587. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  2588. .get_modes = intel_dp_get_modes,
  2589. .mode_valid = intel_dp_mode_valid,
  2590. .best_encoder = intel_best_encoder,
  2591. };
  2592. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  2593. .destroy = intel_dp_encoder_destroy,
  2594. };
  2595. static void
  2596. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  2597. {
  2598. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2599. intel_dp_check_link_status(intel_dp);
  2600. }
  2601. /* Return which DP Port should be selected for Transcoder DP control */
  2602. int
  2603. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  2604. {
  2605. struct drm_device *dev = crtc->dev;
  2606. struct intel_encoder *intel_encoder;
  2607. struct intel_dp *intel_dp;
  2608. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2609. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2610. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2611. intel_encoder->type == INTEL_OUTPUT_EDP)
  2612. return intel_dp->output_reg;
  2613. }
  2614. return -1;
  2615. }
  2616. /* check the VBT to see whether the eDP is on DP-D port */
  2617. bool intel_dpd_is_edp(struct drm_device *dev)
  2618. {
  2619. struct drm_i915_private *dev_priv = dev->dev_private;
  2620. struct child_device_config *p_child;
  2621. int i;
  2622. if (!dev_priv->vbt.child_dev_num)
  2623. return false;
  2624. for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
  2625. p_child = dev_priv->vbt.child_dev + i;
  2626. if (p_child->dvo_port == PORT_IDPD &&
  2627. p_child->device_type == DEVICE_TYPE_eDP)
  2628. return true;
  2629. }
  2630. return false;
  2631. }
  2632. static void
  2633. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2634. {
  2635. struct intel_connector *intel_connector = to_intel_connector(connector);
  2636. intel_attach_force_audio_property(connector);
  2637. intel_attach_broadcast_rgb_property(connector);
  2638. intel_dp->color_range_auto = true;
  2639. if (is_edp(intel_dp)) {
  2640. drm_mode_create_scaling_mode_property(connector->dev);
  2641. drm_object_attach_property(
  2642. &connector->base,
  2643. connector->dev->mode_config.scaling_mode_property,
  2644. DRM_MODE_SCALE_ASPECT);
  2645. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  2646. }
  2647. }
  2648. static void
  2649. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  2650. struct intel_dp *intel_dp,
  2651. struct edp_power_seq *out)
  2652. {
  2653. struct drm_i915_private *dev_priv = dev->dev_private;
  2654. struct edp_power_seq cur, vbt, spec, final;
  2655. u32 pp_on, pp_off, pp_div, pp;
  2656. int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
  2657. if (HAS_PCH_SPLIT(dev)) {
  2658. pp_control_reg = PCH_PP_CONTROL;
  2659. pp_on_reg = PCH_PP_ON_DELAYS;
  2660. pp_off_reg = PCH_PP_OFF_DELAYS;
  2661. pp_div_reg = PCH_PP_DIVISOR;
  2662. } else {
  2663. pp_control_reg = PIPEA_PP_CONTROL;
  2664. pp_on_reg = PIPEA_PP_ON_DELAYS;
  2665. pp_off_reg = PIPEA_PP_OFF_DELAYS;
  2666. pp_div_reg = PIPEA_PP_DIVISOR;
  2667. }
  2668. /* Workaround: Need to write PP_CONTROL with the unlock key as
  2669. * the very first thing. */
  2670. pp = ironlake_get_pp_control(intel_dp);
  2671. I915_WRITE(pp_control_reg, pp);
  2672. pp_on = I915_READ(pp_on_reg);
  2673. pp_off = I915_READ(pp_off_reg);
  2674. pp_div = I915_READ(pp_div_reg);
  2675. /* Pull timing values out of registers */
  2676. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2677. PANEL_POWER_UP_DELAY_SHIFT;
  2678. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2679. PANEL_LIGHT_ON_DELAY_SHIFT;
  2680. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2681. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2682. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2683. PANEL_POWER_DOWN_DELAY_SHIFT;
  2684. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2685. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2686. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2687. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2688. vbt = dev_priv->vbt.edp_pps;
  2689. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  2690. * our hw here, which are all in 100usec. */
  2691. spec.t1_t3 = 210 * 10;
  2692. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  2693. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  2694. spec.t10 = 500 * 10;
  2695. /* This one is special and actually in units of 100ms, but zero
  2696. * based in the hw (so we need to add 100 ms). But the sw vbt
  2697. * table multiplies it with 1000 to make it in units of 100usec,
  2698. * too. */
  2699. spec.t11_t12 = (510 + 100) * 10;
  2700. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2701. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2702. /* Use the max of the register settings and vbt. If both are
  2703. * unset, fall back to the spec limits. */
  2704. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  2705. spec.field : \
  2706. max(cur.field, vbt.field))
  2707. assign_final(t1_t3);
  2708. assign_final(t8);
  2709. assign_final(t9);
  2710. assign_final(t10);
  2711. assign_final(t11_t12);
  2712. #undef assign_final
  2713. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  2714. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2715. intel_dp->backlight_on_delay = get_delay(t8);
  2716. intel_dp->backlight_off_delay = get_delay(t9);
  2717. intel_dp->panel_power_down_delay = get_delay(t10);
  2718. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  2719. #undef get_delay
  2720. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  2721. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  2722. intel_dp->panel_power_cycle_delay);
  2723. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  2724. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  2725. if (out)
  2726. *out = final;
  2727. }
  2728. static void
  2729. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  2730. struct intel_dp *intel_dp,
  2731. struct edp_power_seq *seq)
  2732. {
  2733. struct drm_i915_private *dev_priv = dev->dev_private;
  2734. u32 pp_on, pp_off, pp_div, port_sel = 0;
  2735. int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
  2736. int pp_on_reg, pp_off_reg, pp_div_reg;
  2737. if (HAS_PCH_SPLIT(dev)) {
  2738. pp_on_reg = PCH_PP_ON_DELAYS;
  2739. pp_off_reg = PCH_PP_OFF_DELAYS;
  2740. pp_div_reg = PCH_PP_DIVISOR;
  2741. } else {
  2742. pp_on_reg = PIPEA_PP_ON_DELAYS;
  2743. pp_off_reg = PIPEA_PP_OFF_DELAYS;
  2744. pp_div_reg = PIPEA_PP_DIVISOR;
  2745. }
  2746. /* And finally store the new values in the power sequencer. */
  2747. pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  2748. (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
  2749. pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  2750. (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  2751. /* Compute the divisor for the pp clock, simply match the Bspec
  2752. * formula. */
  2753. pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
  2754. pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
  2755. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  2756. /* Haswell doesn't have any port selection bits for the panel
  2757. * power sequencer any more. */
  2758. if (IS_VALLEYVIEW(dev)) {
  2759. port_sel = I915_READ(pp_on_reg) & 0xc0000000;
  2760. } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  2761. if (dp_to_dig_port(intel_dp)->port == PORT_A)
  2762. port_sel = PANEL_POWER_PORT_DP_A;
  2763. else
  2764. port_sel = PANEL_POWER_PORT_DP_D;
  2765. }
  2766. pp_on |= port_sel;
  2767. I915_WRITE(pp_on_reg, pp_on);
  2768. I915_WRITE(pp_off_reg, pp_off);
  2769. I915_WRITE(pp_div_reg, pp_div);
  2770. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  2771. I915_READ(pp_on_reg),
  2772. I915_READ(pp_off_reg),
  2773. I915_READ(pp_div_reg));
  2774. }
  2775. static bool intel_edp_init_connector(struct intel_dp *intel_dp,
  2776. struct intel_connector *intel_connector)
  2777. {
  2778. struct drm_connector *connector = &intel_connector->base;
  2779. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2780. struct drm_device *dev = intel_dig_port->base.base.dev;
  2781. struct drm_i915_private *dev_priv = dev->dev_private;
  2782. struct drm_display_mode *fixed_mode = NULL;
  2783. struct edp_power_seq power_seq = { 0 };
  2784. bool has_dpcd;
  2785. struct drm_display_mode *scan;
  2786. struct edid *edid;
  2787. if (!is_edp(intel_dp))
  2788. return true;
  2789. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  2790. /* Cache DPCD and EDID for edp. */
  2791. ironlake_edp_panel_vdd_on(intel_dp);
  2792. has_dpcd = intel_dp_get_dpcd(intel_dp);
  2793. ironlake_edp_panel_vdd_off(intel_dp, false);
  2794. if (has_dpcd) {
  2795. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  2796. dev_priv->no_aux_handshake =
  2797. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  2798. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  2799. } else {
  2800. /* if this fails, presume the device is a ghost */
  2801. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  2802. return false;
  2803. }
  2804. /* We now know it's not a ghost, init power sequence regs. */
  2805. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  2806. &power_seq);
  2807. ironlake_edp_panel_vdd_on(intel_dp);
  2808. edid = drm_get_edid(connector, &intel_dp->adapter);
  2809. if (edid) {
  2810. if (drm_add_edid_modes(connector, edid)) {
  2811. drm_mode_connector_update_edid_property(connector,
  2812. edid);
  2813. drm_edid_to_eld(connector, edid);
  2814. } else {
  2815. kfree(edid);
  2816. edid = ERR_PTR(-EINVAL);
  2817. }
  2818. } else {
  2819. edid = ERR_PTR(-ENOENT);
  2820. }
  2821. intel_connector->edid = edid;
  2822. /* prefer fixed mode from EDID if available */
  2823. list_for_each_entry(scan, &connector->probed_modes, head) {
  2824. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  2825. fixed_mode = drm_mode_duplicate(dev, scan);
  2826. break;
  2827. }
  2828. }
  2829. /* fallback to VBT if available for eDP */
  2830. if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
  2831. fixed_mode = drm_mode_duplicate(dev,
  2832. dev_priv->vbt.lfp_lvds_vbt_mode);
  2833. if (fixed_mode)
  2834. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  2835. }
  2836. ironlake_edp_panel_vdd_off(intel_dp, false);
  2837. intel_panel_init(&intel_connector->panel, fixed_mode);
  2838. intel_panel_setup_backlight(connector);
  2839. return true;
  2840. }
  2841. bool
  2842. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  2843. struct intel_connector *intel_connector)
  2844. {
  2845. struct drm_connector *connector = &intel_connector->base;
  2846. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2847. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2848. struct drm_device *dev = intel_encoder->base.dev;
  2849. struct drm_i915_private *dev_priv = dev->dev_private;
  2850. enum port port = intel_dig_port->port;
  2851. const char *name = NULL;
  2852. int type, error;
  2853. /* Preserve the current hw state. */
  2854. intel_dp->DP = I915_READ(intel_dp->output_reg);
  2855. intel_dp->attached_connector = intel_connector;
  2856. type = DRM_MODE_CONNECTOR_DisplayPort;
  2857. /*
  2858. * FIXME : We need to initialize built-in panels before external panels.
  2859. * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
  2860. */
  2861. switch (port) {
  2862. case PORT_A:
  2863. type = DRM_MODE_CONNECTOR_eDP;
  2864. break;
  2865. case PORT_C:
  2866. if (IS_VALLEYVIEW(dev))
  2867. type = DRM_MODE_CONNECTOR_eDP;
  2868. break;
  2869. case PORT_D:
  2870. if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
  2871. type = DRM_MODE_CONNECTOR_eDP;
  2872. break;
  2873. default: /* silence GCC warning */
  2874. break;
  2875. }
  2876. /*
  2877. * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
  2878. * for DP the encoder type can be set by the caller to
  2879. * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
  2880. */
  2881. if (type == DRM_MODE_CONNECTOR_eDP)
  2882. intel_encoder->type = INTEL_OUTPUT_EDP;
  2883. DRM_DEBUG_KMS("Adding %s connector on port %c\n",
  2884. type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
  2885. port_name(port));
  2886. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  2887. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  2888. connector->interlace_allowed = true;
  2889. connector->doublescan_allowed = 0;
  2890. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  2891. ironlake_panel_vdd_work);
  2892. intel_connector_attach_encoder(intel_connector, intel_encoder);
  2893. drm_sysfs_connector_add(connector);
  2894. if (HAS_DDI(dev))
  2895. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  2896. else
  2897. intel_connector->get_hw_state = intel_connector_get_hw_state;
  2898. intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
  2899. if (HAS_DDI(dev)) {
  2900. switch (intel_dig_port->port) {
  2901. case PORT_A:
  2902. intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
  2903. break;
  2904. case PORT_B:
  2905. intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
  2906. break;
  2907. case PORT_C:
  2908. intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
  2909. break;
  2910. case PORT_D:
  2911. intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
  2912. break;
  2913. default:
  2914. BUG();
  2915. }
  2916. }
  2917. /* Set up the DDC bus. */
  2918. switch (port) {
  2919. case PORT_A:
  2920. intel_encoder->hpd_pin = HPD_PORT_A;
  2921. name = "DPDDC-A";
  2922. break;
  2923. case PORT_B:
  2924. intel_encoder->hpd_pin = HPD_PORT_B;
  2925. name = "DPDDC-B";
  2926. break;
  2927. case PORT_C:
  2928. intel_encoder->hpd_pin = HPD_PORT_C;
  2929. name = "DPDDC-C";
  2930. break;
  2931. case PORT_D:
  2932. intel_encoder->hpd_pin = HPD_PORT_D;
  2933. name = "DPDDC-D";
  2934. break;
  2935. default:
  2936. BUG();
  2937. }
  2938. error = intel_dp_i2c_init(intel_dp, intel_connector, name);
  2939. WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
  2940. error, port_name(port));
  2941. intel_dp->psr_setup_done = false;
  2942. if (!intel_edp_init_connector(intel_dp, intel_connector)) {
  2943. i2c_del_adapter(&intel_dp->adapter);
  2944. if (is_edp(intel_dp)) {
  2945. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2946. mutex_lock(&dev->mode_config.mutex);
  2947. ironlake_panel_vdd_off_sync(intel_dp);
  2948. mutex_unlock(&dev->mode_config.mutex);
  2949. }
  2950. drm_sysfs_connector_remove(connector);
  2951. drm_connector_cleanup(connector);
  2952. return false;
  2953. }
  2954. intel_dp_add_properties(intel_dp, connector);
  2955. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  2956. * 0xd. Failure to do so will result in spurious interrupts being
  2957. * generated on the port when a cable is not attached.
  2958. */
  2959. if (IS_G4X(dev) && !IS_GM45(dev)) {
  2960. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  2961. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  2962. }
  2963. return true;
  2964. }
  2965. void
  2966. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  2967. {
  2968. struct intel_digital_port *intel_dig_port;
  2969. struct intel_encoder *intel_encoder;
  2970. struct drm_encoder *encoder;
  2971. struct intel_connector *intel_connector;
  2972. intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
  2973. if (!intel_dig_port)
  2974. return;
  2975. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  2976. if (!intel_connector) {
  2977. kfree(intel_dig_port);
  2978. return;
  2979. }
  2980. intel_encoder = &intel_dig_port->base;
  2981. encoder = &intel_encoder->base;
  2982. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  2983. DRM_MODE_ENCODER_TMDS);
  2984. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  2985. intel_encoder->compute_config = intel_dp_compute_config;
  2986. intel_encoder->enable = intel_enable_dp;
  2987. intel_encoder->pre_enable = intel_pre_enable_dp;
  2988. intel_encoder->disable = intel_disable_dp;
  2989. intel_encoder->post_disable = intel_post_disable_dp;
  2990. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  2991. intel_encoder->get_config = intel_dp_get_config;
  2992. if (IS_VALLEYVIEW(dev))
  2993. intel_encoder->pre_pll_enable = intel_dp_pre_pll_enable;
  2994. intel_dig_port->port = port;
  2995. intel_dig_port->dp.output_reg = output_reg;
  2996. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2997. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2998. intel_encoder->cloneable = false;
  2999. intel_encoder->hot_plug = intel_dp_hot_plug;
  3000. if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
  3001. drm_encoder_cleanup(encoder);
  3002. kfree(intel_dig_port);
  3003. kfree(intel_connector);
  3004. }
  3005. }