i915_gem_gtt.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919
  1. /*
  2. * Copyright © 2010 Daniel Vetter
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. */
  24. #include <drm/drmP.h>
  25. #include <drm/i915_drm.h>
  26. #include "i915_drv.h"
  27. #include "i915_trace.h"
  28. #include "intel_drv.h"
  29. #define GEN6_PPGTT_PD_ENTRIES 512
  30. #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
  31. /* PPGTT stuff */
  32. #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
  33. #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
  34. #define GEN6_PDE_VALID (1 << 0)
  35. /* gen6+ has bit 11-4 for physical addr bit 39-32 */
  36. #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  37. #define GEN6_PTE_VALID (1 << 0)
  38. #define GEN6_PTE_UNCACHED (1 << 1)
  39. #define HSW_PTE_UNCACHED (0)
  40. #define GEN6_PTE_CACHE_LLC (2 << 1)
  41. #define GEN6_PTE_CACHE_LLC_MLC (3 << 1)
  42. #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  43. #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
  44. /* Cacheability Control is a 4-bit value. The low three bits are stored in *
  45. * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
  46. */
  47. #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
  48. (((bits) & 0x8) << (11 - 3)))
  49. #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
  50. #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
  51. static gen6_gtt_pte_t gen6_pte_encode(dma_addr_t addr,
  52. enum i915_cache_level level)
  53. {
  54. gen6_gtt_pte_t pte = GEN6_PTE_VALID;
  55. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  56. switch (level) {
  57. case I915_CACHE_LLC_MLC:
  58. pte |= GEN6_PTE_CACHE_LLC_MLC;
  59. break;
  60. case I915_CACHE_LLC:
  61. pte |= GEN6_PTE_CACHE_LLC;
  62. break;
  63. case I915_CACHE_NONE:
  64. pte |= GEN6_PTE_UNCACHED;
  65. break;
  66. default:
  67. BUG();
  68. }
  69. return pte;
  70. }
  71. #define BYT_PTE_WRITEABLE (1 << 1)
  72. #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
  73. static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
  74. enum i915_cache_level level)
  75. {
  76. gen6_gtt_pte_t pte = GEN6_PTE_VALID;
  77. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  78. /* Mark the page as writeable. Other platforms don't have a
  79. * setting for read-only/writable, so this matches that behavior.
  80. */
  81. pte |= BYT_PTE_WRITEABLE;
  82. if (level != I915_CACHE_NONE)
  83. pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
  84. return pte;
  85. }
  86. static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
  87. enum i915_cache_level level)
  88. {
  89. gen6_gtt_pte_t pte = GEN6_PTE_VALID;
  90. pte |= HSW_PTE_ADDR_ENCODE(addr);
  91. if (level != I915_CACHE_NONE)
  92. pte |= HSW_WB_LLC_AGE0;
  93. return pte;
  94. }
  95. static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
  96. enum i915_cache_level level)
  97. {
  98. gen6_gtt_pte_t pte = GEN6_PTE_VALID;
  99. pte |= HSW_PTE_ADDR_ENCODE(addr);
  100. if (level != I915_CACHE_NONE)
  101. pte |= HSW_WB_ELLC_LLC_AGE0;
  102. return pte;
  103. }
  104. static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
  105. {
  106. struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
  107. gen6_gtt_pte_t __iomem *pd_addr;
  108. uint32_t pd_entry;
  109. int i;
  110. WARN_ON(ppgtt->pd_offset & 0x3f);
  111. pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
  112. ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
  113. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  114. dma_addr_t pt_addr;
  115. pt_addr = ppgtt->pt_dma_addr[i];
  116. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  117. pd_entry |= GEN6_PDE_VALID;
  118. writel(pd_entry, pd_addr + i);
  119. }
  120. readl(pd_addr);
  121. }
  122. static int gen6_ppgtt_enable(struct drm_device *dev)
  123. {
  124. drm_i915_private_t *dev_priv = dev->dev_private;
  125. uint32_t pd_offset;
  126. struct intel_ring_buffer *ring;
  127. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  128. int i;
  129. BUG_ON(ppgtt->pd_offset & 0x3f);
  130. gen6_write_pdes(ppgtt);
  131. pd_offset = ppgtt->pd_offset;
  132. pd_offset /= 64; /* in cachelines, */
  133. pd_offset <<= 16;
  134. if (INTEL_INFO(dev)->gen == 6) {
  135. uint32_t ecochk, gab_ctl, ecobits;
  136. ecobits = I915_READ(GAC_ECO_BITS);
  137. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
  138. ECOBITS_PPGTT_CACHE64B);
  139. gab_ctl = I915_READ(GAB_CTL);
  140. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  141. ecochk = I915_READ(GAM_ECOCHK);
  142. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  143. ECOCHK_PPGTT_CACHE64B);
  144. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  145. } else if (INTEL_INFO(dev)->gen >= 7) {
  146. uint32_t ecochk, ecobits;
  147. ecobits = I915_READ(GAC_ECO_BITS);
  148. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  149. ecochk = I915_READ(GAM_ECOCHK);
  150. if (IS_HASWELL(dev)) {
  151. ecochk |= ECOCHK_PPGTT_WB_HSW;
  152. } else {
  153. ecochk |= ECOCHK_PPGTT_LLC_IVB;
  154. ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
  155. }
  156. I915_WRITE(GAM_ECOCHK, ecochk);
  157. /* GFX_MODE is per-ring on gen7+ */
  158. }
  159. for_each_ring(ring, dev_priv, i) {
  160. if (INTEL_INFO(dev)->gen >= 7)
  161. I915_WRITE(RING_MODE_GEN7(ring),
  162. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  163. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  164. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  165. }
  166. return 0;
  167. }
  168. /* PPGTT support for Sandybdrige/Gen6 and later */
  169. static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
  170. unsigned first_entry,
  171. unsigned num_entries)
  172. {
  173. struct i915_hw_ppgtt *ppgtt =
  174. container_of(vm, struct i915_hw_ppgtt, base);
  175. gen6_gtt_pte_t *pt_vaddr, scratch_pte;
  176. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  177. unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  178. unsigned last_pte, i;
  179. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC);
  180. while (num_entries) {
  181. last_pte = first_pte + num_entries;
  182. if (last_pte > I915_PPGTT_PT_ENTRIES)
  183. last_pte = I915_PPGTT_PT_ENTRIES;
  184. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  185. for (i = first_pte; i < last_pte; i++)
  186. pt_vaddr[i] = scratch_pte;
  187. kunmap_atomic(pt_vaddr);
  188. num_entries -= last_pte - first_pte;
  189. first_pte = 0;
  190. act_pt++;
  191. }
  192. }
  193. static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
  194. struct sg_table *pages,
  195. unsigned first_entry,
  196. enum i915_cache_level cache_level)
  197. {
  198. struct i915_hw_ppgtt *ppgtt =
  199. container_of(vm, struct i915_hw_ppgtt, base);
  200. gen6_gtt_pte_t *pt_vaddr;
  201. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  202. unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  203. struct sg_page_iter sg_iter;
  204. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  205. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  206. dma_addr_t page_addr;
  207. page_addr = sg_page_iter_dma_address(&sg_iter);
  208. pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level);
  209. if (++act_pte == I915_PPGTT_PT_ENTRIES) {
  210. kunmap_atomic(pt_vaddr);
  211. act_pt++;
  212. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  213. act_pte = 0;
  214. }
  215. }
  216. kunmap_atomic(pt_vaddr);
  217. }
  218. static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
  219. {
  220. struct i915_hw_ppgtt *ppgtt =
  221. container_of(vm, struct i915_hw_ppgtt, base);
  222. int i;
  223. drm_mm_takedown(&ppgtt->base.mm);
  224. if (ppgtt->pt_dma_addr) {
  225. for (i = 0; i < ppgtt->num_pd_entries; i++)
  226. pci_unmap_page(ppgtt->base.dev->pdev,
  227. ppgtt->pt_dma_addr[i],
  228. 4096, PCI_DMA_BIDIRECTIONAL);
  229. }
  230. kfree(ppgtt->pt_dma_addr);
  231. for (i = 0; i < ppgtt->num_pd_entries; i++)
  232. __free_page(ppgtt->pt_pages[i]);
  233. kfree(ppgtt->pt_pages);
  234. kfree(ppgtt);
  235. }
  236. static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
  237. {
  238. struct drm_device *dev = ppgtt->base.dev;
  239. struct drm_i915_private *dev_priv = dev->dev_private;
  240. unsigned first_pd_entry_in_global_pt;
  241. int i;
  242. int ret = -ENOMEM;
  243. /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
  244. * entries. For aliasing ppgtt support we just steal them at the end for
  245. * now. */
  246. first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
  247. if (IS_HASWELL(dev)) {
  248. ppgtt->base.pte_encode = hsw_pte_encode;
  249. } else if (IS_VALLEYVIEW(dev)) {
  250. ppgtt->base.pte_encode = byt_pte_encode;
  251. } else {
  252. ppgtt->base.pte_encode = gen6_pte_encode;
  253. }
  254. ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
  255. ppgtt->enable = gen6_ppgtt_enable;
  256. ppgtt->base.clear_range = gen6_ppgtt_clear_range;
  257. ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
  258. ppgtt->base.cleanup = gen6_ppgtt_cleanup;
  259. ppgtt->base.scratch = dev_priv->gtt.base.scratch;
  260. ppgtt->pt_pages = kzalloc(sizeof(struct page *)*ppgtt->num_pd_entries,
  261. GFP_KERNEL);
  262. if (!ppgtt->pt_pages)
  263. return -ENOMEM;
  264. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  265. ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
  266. if (!ppgtt->pt_pages[i])
  267. goto err_pt_alloc;
  268. }
  269. ppgtt->pt_dma_addr = kzalloc(sizeof(dma_addr_t) *ppgtt->num_pd_entries,
  270. GFP_KERNEL);
  271. if (!ppgtt->pt_dma_addr)
  272. goto err_pt_alloc;
  273. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  274. dma_addr_t pt_addr;
  275. pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
  276. PCI_DMA_BIDIRECTIONAL);
  277. if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
  278. ret = -EIO;
  279. goto err_pd_pin;
  280. }
  281. ppgtt->pt_dma_addr[i] = pt_addr;
  282. }
  283. ppgtt->base.clear_range(&ppgtt->base, 0,
  284. ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES);
  285. ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
  286. return 0;
  287. err_pd_pin:
  288. if (ppgtt->pt_dma_addr) {
  289. for (i--; i >= 0; i--)
  290. pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
  291. 4096, PCI_DMA_BIDIRECTIONAL);
  292. }
  293. err_pt_alloc:
  294. kfree(ppgtt->pt_dma_addr);
  295. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  296. if (ppgtt->pt_pages[i])
  297. __free_page(ppgtt->pt_pages[i]);
  298. }
  299. kfree(ppgtt->pt_pages);
  300. return ret;
  301. }
  302. static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
  303. {
  304. struct drm_i915_private *dev_priv = dev->dev_private;
  305. struct i915_hw_ppgtt *ppgtt;
  306. int ret;
  307. ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
  308. if (!ppgtt)
  309. return -ENOMEM;
  310. ppgtt->base.dev = dev;
  311. if (INTEL_INFO(dev)->gen < 8)
  312. ret = gen6_ppgtt_init(ppgtt);
  313. else
  314. BUG();
  315. if (ret)
  316. kfree(ppgtt);
  317. else {
  318. dev_priv->mm.aliasing_ppgtt = ppgtt;
  319. drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
  320. ppgtt->base.total);
  321. }
  322. return ret;
  323. }
  324. void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
  325. {
  326. struct drm_i915_private *dev_priv = dev->dev_private;
  327. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  328. if (!ppgtt)
  329. return;
  330. ppgtt->base.cleanup(&ppgtt->base);
  331. dev_priv->mm.aliasing_ppgtt = NULL;
  332. }
  333. void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
  334. struct drm_i915_gem_object *obj,
  335. enum i915_cache_level cache_level)
  336. {
  337. ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
  338. i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
  339. cache_level);
  340. }
  341. void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
  342. struct drm_i915_gem_object *obj)
  343. {
  344. ppgtt->base.clear_range(&ppgtt->base,
  345. i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
  346. obj->base.size >> PAGE_SHIFT);
  347. }
  348. extern int intel_iommu_gfx_mapped;
  349. /* Certain Gen5 chipsets require require idling the GPU before
  350. * unmapping anything from the GTT when VT-d is enabled.
  351. */
  352. static inline bool needs_idle_maps(struct drm_device *dev)
  353. {
  354. #ifdef CONFIG_INTEL_IOMMU
  355. /* Query intel_iommu to see if we need the workaround. Presumably that
  356. * was loaded first.
  357. */
  358. if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
  359. return true;
  360. #endif
  361. return false;
  362. }
  363. static bool do_idling(struct drm_i915_private *dev_priv)
  364. {
  365. bool ret = dev_priv->mm.interruptible;
  366. if (unlikely(dev_priv->gtt.do_idle_maps)) {
  367. dev_priv->mm.interruptible = false;
  368. if (i915_gpu_idle(dev_priv->dev)) {
  369. DRM_ERROR("Couldn't idle GPU\n");
  370. /* Wait a bit, in hopes it avoids the hang */
  371. udelay(10);
  372. }
  373. }
  374. return ret;
  375. }
  376. static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
  377. {
  378. if (unlikely(dev_priv->gtt.do_idle_maps))
  379. dev_priv->mm.interruptible = interruptible;
  380. }
  381. void i915_gem_restore_gtt_mappings(struct drm_device *dev)
  382. {
  383. struct drm_i915_private *dev_priv = dev->dev_private;
  384. struct drm_i915_gem_object *obj;
  385. /* First fill our portion of the GTT with scratch pages */
  386. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  387. dev_priv->gtt.base.start / PAGE_SIZE,
  388. dev_priv->gtt.base.total / PAGE_SIZE);
  389. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  390. i915_gem_clflush_object(obj);
  391. i915_gem_gtt_bind_object(obj, obj->cache_level);
  392. }
  393. i915_gem_chipset_flush(dev);
  394. }
  395. int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
  396. {
  397. if (obj->has_dma_mapping)
  398. return 0;
  399. if (!dma_map_sg(&obj->base.dev->pdev->dev,
  400. obj->pages->sgl, obj->pages->nents,
  401. PCI_DMA_BIDIRECTIONAL))
  402. return -ENOSPC;
  403. return 0;
  404. }
  405. /*
  406. * Binds an object into the global gtt with the specified cache level. The object
  407. * will be accessible to the GPU via commands whose operands reference offsets
  408. * within the global GTT as well as accessible by the GPU through the GMADR
  409. * mapped BAR (dev_priv->mm.gtt->gtt).
  410. */
  411. static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
  412. struct sg_table *st,
  413. unsigned int first_entry,
  414. enum i915_cache_level level)
  415. {
  416. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  417. gen6_gtt_pte_t __iomem *gtt_entries =
  418. (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  419. int i = 0;
  420. struct sg_page_iter sg_iter;
  421. dma_addr_t addr;
  422. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  423. addr = sg_page_iter_dma_address(&sg_iter);
  424. iowrite32(vm->pte_encode(addr, level), &gtt_entries[i]);
  425. i++;
  426. }
  427. /* XXX: This serves as a posting read to make sure that the PTE has
  428. * actually been updated. There is some concern that even though
  429. * registers and PTEs are within the same BAR that they are potentially
  430. * of NUMA access patterns. Therefore, even with the way we assume
  431. * hardware should work, we must keep this posting read for paranoia.
  432. */
  433. if (i != 0)
  434. WARN_ON(readl(&gtt_entries[i-1]) !=
  435. vm->pte_encode(addr, level));
  436. /* This next bit makes the above posting read even more important. We
  437. * want to flush the TLBs only after we're certain all the PTE updates
  438. * have finished.
  439. */
  440. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  441. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  442. }
  443. static void gen6_ggtt_clear_range(struct i915_address_space *vm,
  444. unsigned int first_entry,
  445. unsigned int num_entries)
  446. {
  447. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  448. gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
  449. (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  450. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  451. int i;
  452. if (WARN(num_entries > max_entries,
  453. "First entry = %d; Num entries = %d (max=%d)\n",
  454. first_entry, num_entries, max_entries))
  455. num_entries = max_entries;
  456. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC);
  457. for (i = 0; i < num_entries; i++)
  458. iowrite32(scratch_pte, &gtt_base[i]);
  459. readl(gtt_base);
  460. }
  461. static void i915_ggtt_insert_entries(struct i915_address_space *vm,
  462. struct sg_table *st,
  463. unsigned int pg_start,
  464. enum i915_cache_level cache_level)
  465. {
  466. unsigned int flags = (cache_level == I915_CACHE_NONE) ?
  467. AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
  468. intel_gtt_insert_sg_entries(st, pg_start, flags);
  469. }
  470. static void i915_ggtt_clear_range(struct i915_address_space *vm,
  471. unsigned int first_entry,
  472. unsigned int num_entries)
  473. {
  474. intel_gtt_clear_range(first_entry, num_entries);
  475. }
  476. void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
  477. enum i915_cache_level cache_level)
  478. {
  479. struct drm_device *dev = obj->base.dev;
  480. struct drm_i915_private *dev_priv = dev->dev_private;
  481. const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
  482. dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
  483. entry,
  484. cache_level);
  485. obj->has_global_gtt_mapping = 1;
  486. }
  487. void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
  488. {
  489. struct drm_device *dev = obj->base.dev;
  490. struct drm_i915_private *dev_priv = dev->dev_private;
  491. const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
  492. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  493. entry,
  494. obj->base.size >> PAGE_SHIFT);
  495. obj->has_global_gtt_mapping = 0;
  496. }
  497. void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
  498. {
  499. struct drm_device *dev = obj->base.dev;
  500. struct drm_i915_private *dev_priv = dev->dev_private;
  501. bool interruptible;
  502. interruptible = do_idling(dev_priv);
  503. if (!obj->has_dma_mapping)
  504. dma_unmap_sg(&dev->pdev->dev,
  505. obj->pages->sgl, obj->pages->nents,
  506. PCI_DMA_BIDIRECTIONAL);
  507. undo_idling(dev_priv, interruptible);
  508. }
  509. static void i915_gtt_color_adjust(struct drm_mm_node *node,
  510. unsigned long color,
  511. unsigned long *start,
  512. unsigned long *end)
  513. {
  514. if (node->color != color)
  515. *start += 4096;
  516. if (!list_empty(&node->node_list)) {
  517. node = list_entry(node->node_list.next,
  518. struct drm_mm_node,
  519. node_list);
  520. if (node->allocated && node->color != color)
  521. *end -= 4096;
  522. }
  523. }
  524. void i915_gem_setup_global_gtt(struct drm_device *dev,
  525. unsigned long start,
  526. unsigned long mappable_end,
  527. unsigned long end)
  528. {
  529. /* Let GEM Manage all of the aperture.
  530. *
  531. * However, leave one page at the end still bound to the scratch page.
  532. * There are a number of places where the hardware apparently prefetches
  533. * past the end of the object, and we've seen multiple hangs with the
  534. * GPU head pointer stuck in a batchbuffer bound at the last page of the
  535. * aperture. One page should be enough to keep any prefetching inside
  536. * of the aperture.
  537. */
  538. drm_i915_private_t *dev_priv = dev->dev_private;
  539. struct drm_mm_node *entry;
  540. struct drm_i915_gem_object *obj;
  541. unsigned long hole_start, hole_end;
  542. BUG_ON(mappable_end > end);
  543. /* Subtract the guard page ... */
  544. drm_mm_init(&dev_priv->gtt.base.mm, start, end - start - PAGE_SIZE);
  545. if (!HAS_LLC(dev))
  546. dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
  547. /* Mark any preallocated objects as occupied */
  548. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  549. struct i915_vma *vma = __i915_gem_obj_to_vma(obj);
  550. int ret;
  551. DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
  552. i915_gem_obj_ggtt_offset(obj), obj->base.size);
  553. WARN_ON(i915_gem_obj_ggtt_bound(obj));
  554. ret = drm_mm_reserve_node(&dev_priv->gtt.base.mm, &vma->node);
  555. if (ret)
  556. DRM_DEBUG_KMS("Reservation failed\n");
  557. obj->has_global_gtt_mapping = 1;
  558. list_add(&vma->vma_link, &obj->vma_list);
  559. }
  560. dev_priv->gtt.base.start = start;
  561. dev_priv->gtt.base.total = end - start;
  562. /* Clear any non-preallocated blocks */
  563. drm_mm_for_each_hole(entry, &dev_priv->gtt.base.mm,
  564. hole_start, hole_end) {
  565. const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
  566. DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
  567. hole_start, hole_end);
  568. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  569. hole_start / PAGE_SIZE,
  570. count);
  571. }
  572. /* And finally clear the reserved guard page */
  573. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  574. end / PAGE_SIZE - 1, 1);
  575. }
  576. static bool
  577. intel_enable_ppgtt(struct drm_device *dev)
  578. {
  579. if (i915_enable_ppgtt >= 0)
  580. return i915_enable_ppgtt;
  581. #ifdef CONFIG_INTEL_IOMMU
  582. /* Disable ppgtt on SNB if VT-d is on. */
  583. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  584. return false;
  585. #endif
  586. return true;
  587. }
  588. void i915_gem_init_global_gtt(struct drm_device *dev)
  589. {
  590. struct drm_i915_private *dev_priv = dev->dev_private;
  591. unsigned long gtt_size, mappable_size;
  592. gtt_size = dev_priv->gtt.base.total;
  593. mappable_size = dev_priv->gtt.mappable_end;
  594. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  595. int ret;
  596. if (INTEL_INFO(dev)->gen <= 7) {
  597. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  598. * aperture accordingly when using aliasing ppgtt. */
  599. gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
  600. }
  601. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  602. ret = i915_gem_init_aliasing_ppgtt(dev);
  603. if (!ret)
  604. return;
  605. DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
  606. drm_mm_takedown(&dev_priv->gtt.base.mm);
  607. gtt_size += GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
  608. }
  609. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  610. }
  611. static int setup_scratch_page(struct drm_device *dev)
  612. {
  613. struct drm_i915_private *dev_priv = dev->dev_private;
  614. struct page *page;
  615. dma_addr_t dma_addr;
  616. page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
  617. if (page == NULL)
  618. return -ENOMEM;
  619. get_page(page);
  620. set_pages_uc(page, 1);
  621. #ifdef CONFIG_INTEL_IOMMU
  622. dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
  623. PCI_DMA_BIDIRECTIONAL);
  624. if (pci_dma_mapping_error(dev->pdev, dma_addr))
  625. return -EINVAL;
  626. #else
  627. dma_addr = page_to_phys(page);
  628. #endif
  629. dev_priv->gtt.base.scratch.page = page;
  630. dev_priv->gtt.base.scratch.addr = dma_addr;
  631. return 0;
  632. }
  633. static void teardown_scratch_page(struct drm_device *dev)
  634. {
  635. struct drm_i915_private *dev_priv = dev->dev_private;
  636. struct page *page = dev_priv->gtt.base.scratch.page;
  637. set_pages_wb(page, 1);
  638. pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
  639. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  640. put_page(page);
  641. __free_page(page);
  642. }
  643. static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
  644. {
  645. snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
  646. snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
  647. return snb_gmch_ctl << 20;
  648. }
  649. static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
  650. {
  651. snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
  652. snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
  653. return snb_gmch_ctl << 25; /* 32 MB units */
  654. }
  655. static int gen6_gmch_probe(struct drm_device *dev,
  656. size_t *gtt_total,
  657. size_t *stolen,
  658. phys_addr_t *mappable_base,
  659. unsigned long *mappable_end)
  660. {
  661. struct drm_i915_private *dev_priv = dev->dev_private;
  662. phys_addr_t gtt_bus_addr;
  663. unsigned int gtt_size;
  664. u16 snb_gmch_ctl;
  665. int ret;
  666. *mappable_base = pci_resource_start(dev->pdev, 2);
  667. *mappable_end = pci_resource_len(dev->pdev, 2);
  668. /* 64/512MB is the current min/max we actually know of, but this is just
  669. * a coarse sanity check.
  670. */
  671. if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
  672. DRM_ERROR("Unknown GMADR size (%lx)\n",
  673. dev_priv->gtt.mappable_end);
  674. return -ENXIO;
  675. }
  676. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
  677. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
  678. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  679. gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
  680. *stolen = gen6_get_stolen_size(snb_gmch_ctl);
  681. *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
  682. /* For Modern GENs the PTEs and register space are split in the BAR */
  683. gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
  684. (pci_resource_len(dev->pdev, 0) / 2);
  685. dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
  686. if (!dev_priv->gtt.gsm) {
  687. DRM_ERROR("Failed to map the gtt page table\n");
  688. return -ENOMEM;
  689. }
  690. ret = setup_scratch_page(dev);
  691. if (ret)
  692. DRM_ERROR("Scratch setup failed\n");
  693. dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
  694. dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
  695. return ret;
  696. }
  697. static void gen6_gmch_remove(struct i915_address_space *vm)
  698. {
  699. struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
  700. iounmap(gtt->gsm);
  701. teardown_scratch_page(vm->dev);
  702. }
  703. static int i915_gmch_probe(struct drm_device *dev,
  704. size_t *gtt_total,
  705. size_t *stolen,
  706. phys_addr_t *mappable_base,
  707. unsigned long *mappable_end)
  708. {
  709. struct drm_i915_private *dev_priv = dev->dev_private;
  710. int ret;
  711. ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
  712. if (!ret) {
  713. DRM_ERROR("failed to set up gmch\n");
  714. return -EIO;
  715. }
  716. intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
  717. dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
  718. dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
  719. dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
  720. return 0;
  721. }
  722. static void i915_gmch_remove(struct i915_address_space *vm)
  723. {
  724. intel_gmch_remove();
  725. }
  726. int i915_gem_gtt_init(struct drm_device *dev)
  727. {
  728. struct drm_i915_private *dev_priv = dev->dev_private;
  729. struct i915_gtt *gtt = &dev_priv->gtt;
  730. int ret;
  731. if (INTEL_INFO(dev)->gen <= 5) {
  732. gtt->gtt_probe = i915_gmch_probe;
  733. gtt->base.cleanup = i915_gmch_remove;
  734. } else {
  735. gtt->gtt_probe = gen6_gmch_probe;
  736. gtt->base.cleanup = gen6_gmch_remove;
  737. if (IS_HASWELL(dev) && dev_priv->ellc_size)
  738. gtt->base.pte_encode = iris_pte_encode;
  739. else if (IS_HASWELL(dev))
  740. gtt->base.pte_encode = hsw_pte_encode;
  741. else if (IS_VALLEYVIEW(dev))
  742. gtt->base.pte_encode = byt_pte_encode;
  743. else
  744. gtt->base.pte_encode = gen6_pte_encode;
  745. }
  746. ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
  747. &gtt->mappable_base, &gtt->mappable_end);
  748. if (ret)
  749. return ret;
  750. gtt->base.dev = dev;
  751. /* GMADR is the PCI mmio aperture into the global GTT. */
  752. DRM_INFO("Memory usable by graphics device = %zdM\n",
  753. gtt->base.total >> 20);
  754. DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
  755. DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
  756. return 0;
  757. }