intel_dp.c 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. /**
  39. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  40. * @intel_dp: DP struct
  41. *
  42. * If a CPU or PCH DP output is attached to an eDP panel, this function
  43. * will return true, and false otherwise.
  44. */
  45. static bool is_edp(struct intel_dp *intel_dp)
  46. {
  47. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  48. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  49. }
  50. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  51. {
  52. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  53. return intel_dig_port->base.base.dev;
  54. }
  55. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  56. {
  57. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  58. }
  59. static void intel_dp_link_down(struct intel_dp *intel_dp);
  60. static int
  61. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  62. {
  63. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  64. switch (max_link_bw) {
  65. case DP_LINK_BW_1_62:
  66. case DP_LINK_BW_2_7:
  67. break;
  68. default:
  69. max_link_bw = DP_LINK_BW_1_62;
  70. break;
  71. }
  72. return max_link_bw;
  73. }
  74. /*
  75. * The units on the numbers in the next two are... bizarre. Examples will
  76. * make it clearer; this one parallels an example in the eDP spec.
  77. *
  78. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  79. *
  80. * 270000 * 1 * 8 / 10 == 216000
  81. *
  82. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  83. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  84. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  85. * 119000. At 18bpp that's 2142000 kilobits per second.
  86. *
  87. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  88. * get the result in decakilobits instead of kilobits.
  89. */
  90. static int
  91. intel_dp_link_required(int pixel_clock, int bpp)
  92. {
  93. return (pixel_clock * bpp + 9) / 10;
  94. }
  95. static int
  96. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  97. {
  98. return (max_link_clock * max_lanes * 8) / 10;
  99. }
  100. static int
  101. intel_dp_mode_valid(struct drm_connector *connector,
  102. struct drm_display_mode *mode)
  103. {
  104. struct intel_dp *intel_dp = intel_attached_dp(connector);
  105. struct intel_connector *intel_connector = to_intel_connector(connector);
  106. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  107. int target_clock = mode->clock;
  108. int max_rate, mode_rate, max_lanes, max_link_clock;
  109. if (is_edp(intel_dp) && fixed_mode) {
  110. if (mode->hdisplay > fixed_mode->hdisplay)
  111. return MODE_PANEL;
  112. if (mode->vdisplay > fixed_mode->vdisplay)
  113. return MODE_PANEL;
  114. target_clock = fixed_mode->clock;
  115. }
  116. max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  117. max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
  118. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  119. mode_rate = intel_dp_link_required(target_clock, 18);
  120. if (mode_rate > max_rate)
  121. return MODE_CLOCK_HIGH;
  122. if (mode->clock < 10000)
  123. return MODE_CLOCK_LOW;
  124. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  125. return MODE_H_ILLEGAL;
  126. return MODE_OK;
  127. }
  128. static uint32_t
  129. pack_aux(uint8_t *src, int src_bytes)
  130. {
  131. int i;
  132. uint32_t v = 0;
  133. if (src_bytes > 4)
  134. src_bytes = 4;
  135. for (i = 0; i < src_bytes; i++)
  136. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  137. return v;
  138. }
  139. static void
  140. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  141. {
  142. int i;
  143. if (dst_bytes > 4)
  144. dst_bytes = 4;
  145. for (i = 0; i < dst_bytes; i++)
  146. dst[i] = src >> ((3-i) * 8);
  147. }
  148. /* hrawclock is 1/4 the FSB frequency */
  149. static int
  150. intel_hrawclk(struct drm_device *dev)
  151. {
  152. struct drm_i915_private *dev_priv = dev->dev_private;
  153. uint32_t clkcfg;
  154. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  155. if (IS_VALLEYVIEW(dev))
  156. return 200;
  157. clkcfg = I915_READ(CLKCFG);
  158. switch (clkcfg & CLKCFG_FSB_MASK) {
  159. case CLKCFG_FSB_400:
  160. return 100;
  161. case CLKCFG_FSB_533:
  162. return 133;
  163. case CLKCFG_FSB_667:
  164. return 166;
  165. case CLKCFG_FSB_800:
  166. return 200;
  167. case CLKCFG_FSB_1067:
  168. return 266;
  169. case CLKCFG_FSB_1333:
  170. return 333;
  171. /* these two are just a guess; one of them might be right */
  172. case CLKCFG_FSB_1600:
  173. case CLKCFG_FSB_1600_ALT:
  174. return 400;
  175. default:
  176. return 133;
  177. }
  178. }
  179. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  180. {
  181. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  182. struct drm_i915_private *dev_priv = dev->dev_private;
  183. u32 pp_stat_reg;
  184. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  185. return (I915_READ(pp_stat_reg) & PP_ON) != 0;
  186. }
  187. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  188. {
  189. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  190. struct drm_i915_private *dev_priv = dev->dev_private;
  191. u32 pp_ctrl_reg;
  192. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  193. return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
  194. }
  195. static void
  196. intel_dp_check_edp(struct intel_dp *intel_dp)
  197. {
  198. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  199. struct drm_i915_private *dev_priv = dev->dev_private;
  200. u32 pp_stat_reg, pp_ctrl_reg;
  201. if (!is_edp(intel_dp))
  202. return;
  203. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  204. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  205. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  206. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  207. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  208. I915_READ(pp_stat_reg),
  209. I915_READ(pp_ctrl_reg));
  210. }
  211. }
  212. static uint32_t
  213. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  214. {
  215. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  216. struct drm_device *dev = intel_dig_port->base.base.dev;
  217. struct drm_i915_private *dev_priv = dev->dev_private;
  218. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  219. uint32_t status;
  220. bool done;
  221. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  222. if (has_aux_irq)
  223. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
  224. msecs_to_jiffies_timeout(10));
  225. else
  226. done = wait_for_atomic(C, 10) == 0;
  227. if (!done)
  228. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  229. has_aux_irq);
  230. #undef C
  231. return status;
  232. }
  233. static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp)
  234. {
  235. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  236. struct drm_device *dev = intel_dig_port->base.base.dev;
  237. struct drm_i915_private *dev_priv = dev->dev_private;
  238. /* The clock divider is based off the hrawclk,
  239. * and would like to run at 2MHz. So, take the
  240. * hrawclk value and divide by 2 and use that
  241. *
  242. * Note that PCH attached eDP panels should use a 125MHz input
  243. * clock divider.
  244. */
  245. if (IS_VALLEYVIEW(dev)) {
  246. return 100;
  247. } else if (intel_dig_port->port == PORT_A) {
  248. if (HAS_DDI(dev))
  249. return DIV_ROUND_CLOSEST(
  250. intel_ddi_get_cdclk_freq(dev_priv), 2000);
  251. else if (IS_GEN6(dev) || IS_GEN7(dev))
  252. return 200; /* SNB & IVB eDP input clock at 400Mhz */
  253. else
  254. return 225; /* eDP input clock at 450Mhz */
  255. } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
  256. /* Workaround for non-ULT HSW */
  257. return 74;
  258. } else if (HAS_PCH_SPLIT(dev)) {
  259. return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  260. } else {
  261. return intel_hrawclk(dev) / 2;
  262. }
  263. }
  264. static int
  265. intel_dp_aux_ch(struct intel_dp *intel_dp,
  266. uint8_t *send, int send_bytes,
  267. uint8_t *recv, int recv_size)
  268. {
  269. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  270. struct drm_device *dev = intel_dig_port->base.base.dev;
  271. struct drm_i915_private *dev_priv = dev->dev_private;
  272. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  273. uint32_t ch_data = ch_ctl + 4;
  274. int i, ret, recv_bytes;
  275. uint32_t status;
  276. uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp);
  277. int try, precharge;
  278. bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
  279. /* dp aux is extremely sensitive to irq latency, hence request the
  280. * lowest possible wakeup latency and so prevent the cpu from going into
  281. * deep sleep states.
  282. */
  283. pm_qos_update_request(&dev_priv->pm_qos, 0);
  284. intel_dp_check_edp(intel_dp);
  285. if (IS_GEN6(dev))
  286. precharge = 3;
  287. else
  288. precharge = 5;
  289. /* Try to wait for any previous AUX channel activity */
  290. for (try = 0; try < 3; try++) {
  291. status = I915_READ_NOTRACE(ch_ctl);
  292. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  293. break;
  294. msleep(1);
  295. }
  296. if (try == 3) {
  297. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  298. I915_READ(ch_ctl));
  299. ret = -EBUSY;
  300. goto out;
  301. }
  302. /* Must try at least 3 times according to DP spec */
  303. for (try = 0; try < 5; try++) {
  304. /* Load the send data into the aux channel data registers */
  305. for (i = 0; i < send_bytes; i += 4)
  306. I915_WRITE(ch_data + i,
  307. pack_aux(send + i, send_bytes - i));
  308. /* Send the command and wait for it to complete */
  309. I915_WRITE(ch_ctl,
  310. DP_AUX_CH_CTL_SEND_BUSY |
  311. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  312. DP_AUX_CH_CTL_TIME_OUT_400us |
  313. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  314. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  315. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  316. DP_AUX_CH_CTL_DONE |
  317. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  318. DP_AUX_CH_CTL_RECEIVE_ERROR);
  319. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  320. /* Clear done status and any errors */
  321. I915_WRITE(ch_ctl,
  322. status |
  323. DP_AUX_CH_CTL_DONE |
  324. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  325. DP_AUX_CH_CTL_RECEIVE_ERROR);
  326. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  327. DP_AUX_CH_CTL_RECEIVE_ERROR))
  328. continue;
  329. if (status & DP_AUX_CH_CTL_DONE)
  330. break;
  331. }
  332. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  333. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  334. ret = -EBUSY;
  335. goto out;
  336. }
  337. /* Check for timeout or receive error.
  338. * Timeouts occur when the sink is not connected
  339. */
  340. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  341. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  342. ret = -EIO;
  343. goto out;
  344. }
  345. /* Timeouts occur when the device isn't connected, so they're
  346. * "normal" -- don't fill the kernel log with these */
  347. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  348. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  349. ret = -ETIMEDOUT;
  350. goto out;
  351. }
  352. /* Unload any bytes sent back from the other side */
  353. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  354. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  355. if (recv_bytes > recv_size)
  356. recv_bytes = recv_size;
  357. for (i = 0; i < recv_bytes; i += 4)
  358. unpack_aux(I915_READ(ch_data + i),
  359. recv + i, recv_bytes - i);
  360. ret = recv_bytes;
  361. out:
  362. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  363. return ret;
  364. }
  365. /* Write data to the aux channel in native mode */
  366. static int
  367. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  368. uint16_t address, uint8_t *send, int send_bytes)
  369. {
  370. int ret;
  371. uint8_t msg[20];
  372. int msg_bytes;
  373. uint8_t ack;
  374. intel_dp_check_edp(intel_dp);
  375. if (send_bytes > 16)
  376. return -1;
  377. msg[0] = AUX_NATIVE_WRITE << 4;
  378. msg[1] = address >> 8;
  379. msg[2] = address & 0xff;
  380. msg[3] = send_bytes - 1;
  381. memcpy(&msg[4], send, send_bytes);
  382. msg_bytes = send_bytes + 4;
  383. for (;;) {
  384. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  385. if (ret < 0)
  386. return ret;
  387. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  388. break;
  389. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  390. udelay(100);
  391. else
  392. return -EIO;
  393. }
  394. return send_bytes;
  395. }
  396. /* Write a single byte to the aux channel in native mode */
  397. static int
  398. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  399. uint16_t address, uint8_t byte)
  400. {
  401. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  402. }
  403. /* read bytes from a native aux channel */
  404. static int
  405. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  406. uint16_t address, uint8_t *recv, int recv_bytes)
  407. {
  408. uint8_t msg[4];
  409. int msg_bytes;
  410. uint8_t reply[20];
  411. int reply_bytes;
  412. uint8_t ack;
  413. int ret;
  414. intel_dp_check_edp(intel_dp);
  415. msg[0] = AUX_NATIVE_READ << 4;
  416. msg[1] = address >> 8;
  417. msg[2] = address & 0xff;
  418. msg[3] = recv_bytes - 1;
  419. msg_bytes = 4;
  420. reply_bytes = recv_bytes + 1;
  421. for (;;) {
  422. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  423. reply, reply_bytes);
  424. if (ret == 0)
  425. return -EPROTO;
  426. if (ret < 0)
  427. return ret;
  428. ack = reply[0];
  429. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  430. memcpy(recv, reply + 1, ret - 1);
  431. return ret - 1;
  432. }
  433. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  434. udelay(100);
  435. else
  436. return -EIO;
  437. }
  438. }
  439. static int
  440. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  441. uint8_t write_byte, uint8_t *read_byte)
  442. {
  443. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  444. struct intel_dp *intel_dp = container_of(adapter,
  445. struct intel_dp,
  446. adapter);
  447. uint16_t address = algo_data->address;
  448. uint8_t msg[5];
  449. uint8_t reply[2];
  450. unsigned retry;
  451. int msg_bytes;
  452. int reply_bytes;
  453. int ret;
  454. intel_dp_check_edp(intel_dp);
  455. /* Set up the command byte */
  456. if (mode & MODE_I2C_READ)
  457. msg[0] = AUX_I2C_READ << 4;
  458. else
  459. msg[0] = AUX_I2C_WRITE << 4;
  460. if (!(mode & MODE_I2C_STOP))
  461. msg[0] |= AUX_I2C_MOT << 4;
  462. msg[1] = address >> 8;
  463. msg[2] = address;
  464. switch (mode) {
  465. case MODE_I2C_WRITE:
  466. msg[3] = 0;
  467. msg[4] = write_byte;
  468. msg_bytes = 5;
  469. reply_bytes = 1;
  470. break;
  471. case MODE_I2C_READ:
  472. msg[3] = 0;
  473. msg_bytes = 4;
  474. reply_bytes = 2;
  475. break;
  476. default:
  477. msg_bytes = 3;
  478. reply_bytes = 1;
  479. break;
  480. }
  481. for (retry = 0; retry < 5; retry++) {
  482. ret = intel_dp_aux_ch(intel_dp,
  483. msg, msg_bytes,
  484. reply, reply_bytes);
  485. if (ret < 0) {
  486. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  487. return ret;
  488. }
  489. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  490. case AUX_NATIVE_REPLY_ACK:
  491. /* I2C-over-AUX Reply field is only valid
  492. * when paired with AUX ACK.
  493. */
  494. break;
  495. case AUX_NATIVE_REPLY_NACK:
  496. DRM_DEBUG_KMS("aux_ch native nack\n");
  497. return -EREMOTEIO;
  498. case AUX_NATIVE_REPLY_DEFER:
  499. udelay(100);
  500. continue;
  501. default:
  502. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  503. reply[0]);
  504. return -EREMOTEIO;
  505. }
  506. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  507. case AUX_I2C_REPLY_ACK:
  508. if (mode == MODE_I2C_READ) {
  509. *read_byte = reply[1];
  510. }
  511. return reply_bytes - 1;
  512. case AUX_I2C_REPLY_NACK:
  513. DRM_DEBUG_KMS("aux_i2c nack\n");
  514. return -EREMOTEIO;
  515. case AUX_I2C_REPLY_DEFER:
  516. DRM_DEBUG_KMS("aux_i2c defer\n");
  517. udelay(100);
  518. break;
  519. default:
  520. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  521. return -EREMOTEIO;
  522. }
  523. }
  524. DRM_ERROR("too many retries, giving up\n");
  525. return -EREMOTEIO;
  526. }
  527. static int
  528. intel_dp_i2c_init(struct intel_dp *intel_dp,
  529. struct intel_connector *intel_connector, const char *name)
  530. {
  531. int ret;
  532. DRM_DEBUG_KMS("i2c_init %s\n", name);
  533. intel_dp->algo.running = false;
  534. intel_dp->algo.address = 0;
  535. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  536. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  537. intel_dp->adapter.owner = THIS_MODULE;
  538. intel_dp->adapter.class = I2C_CLASS_DDC;
  539. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  540. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  541. intel_dp->adapter.algo_data = &intel_dp->algo;
  542. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  543. ironlake_edp_panel_vdd_on(intel_dp);
  544. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  545. ironlake_edp_panel_vdd_off(intel_dp, false);
  546. return ret;
  547. }
  548. static void
  549. intel_dp_set_clock(struct intel_encoder *encoder,
  550. struct intel_crtc_config *pipe_config, int link_bw)
  551. {
  552. struct drm_device *dev = encoder->base.dev;
  553. if (IS_G4X(dev)) {
  554. if (link_bw == DP_LINK_BW_1_62) {
  555. pipe_config->dpll.p1 = 2;
  556. pipe_config->dpll.p2 = 10;
  557. pipe_config->dpll.n = 2;
  558. pipe_config->dpll.m1 = 23;
  559. pipe_config->dpll.m2 = 8;
  560. } else {
  561. pipe_config->dpll.p1 = 1;
  562. pipe_config->dpll.p2 = 10;
  563. pipe_config->dpll.n = 1;
  564. pipe_config->dpll.m1 = 14;
  565. pipe_config->dpll.m2 = 2;
  566. }
  567. pipe_config->clock_set = true;
  568. } else if (IS_HASWELL(dev)) {
  569. /* Haswell has special-purpose DP DDI clocks. */
  570. } else if (HAS_PCH_SPLIT(dev)) {
  571. if (link_bw == DP_LINK_BW_1_62) {
  572. pipe_config->dpll.n = 1;
  573. pipe_config->dpll.p1 = 2;
  574. pipe_config->dpll.p2 = 10;
  575. pipe_config->dpll.m1 = 12;
  576. pipe_config->dpll.m2 = 9;
  577. } else {
  578. pipe_config->dpll.n = 2;
  579. pipe_config->dpll.p1 = 1;
  580. pipe_config->dpll.p2 = 10;
  581. pipe_config->dpll.m1 = 14;
  582. pipe_config->dpll.m2 = 8;
  583. }
  584. pipe_config->clock_set = true;
  585. } else if (IS_VALLEYVIEW(dev)) {
  586. /* FIXME: Need to figure out optimized DP clocks for vlv. */
  587. }
  588. }
  589. bool
  590. intel_dp_compute_config(struct intel_encoder *encoder,
  591. struct intel_crtc_config *pipe_config)
  592. {
  593. struct drm_device *dev = encoder->base.dev;
  594. struct drm_i915_private *dev_priv = dev->dev_private;
  595. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  596. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  597. enum port port = dp_to_dig_port(intel_dp)->port;
  598. struct intel_crtc *intel_crtc = encoder->new_crtc;
  599. struct intel_connector *intel_connector = intel_dp->attached_connector;
  600. int lane_count, clock;
  601. int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
  602. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  603. int bpp, mode_rate;
  604. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  605. int link_avail, link_clock;
  606. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
  607. pipe_config->has_pch_encoder = true;
  608. pipe_config->has_dp_encoder = true;
  609. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  610. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  611. adjusted_mode);
  612. if (!HAS_PCH_SPLIT(dev))
  613. intel_gmch_panel_fitting(intel_crtc, pipe_config,
  614. intel_connector->panel.fitting_mode);
  615. else
  616. intel_pch_panel_fitting(intel_crtc, pipe_config,
  617. intel_connector->panel.fitting_mode);
  618. }
  619. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  620. return false;
  621. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  622. "max bw %02x pixel clock %iKHz\n",
  623. max_lane_count, bws[max_clock], adjusted_mode->clock);
  624. /* Walk through all bpp values. Luckily they're all nicely spaced with 2
  625. * bpc in between. */
  626. bpp = pipe_config->pipe_bpp;
  627. if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp)
  628. bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
  629. for (; bpp >= 6*3; bpp -= 2*3) {
  630. mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
  631. for (clock = 0; clock <= max_clock; clock++) {
  632. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  633. link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
  634. link_avail = intel_dp_max_data_rate(link_clock,
  635. lane_count);
  636. if (mode_rate <= link_avail) {
  637. goto found;
  638. }
  639. }
  640. }
  641. }
  642. return false;
  643. found:
  644. if (intel_dp->color_range_auto) {
  645. /*
  646. * See:
  647. * CEA-861-E - 5.1 Default Encoding Parameters
  648. * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
  649. */
  650. if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
  651. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  652. else
  653. intel_dp->color_range = 0;
  654. }
  655. if (intel_dp->color_range)
  656. pipe_config->limited_color_range = true;
  657. intel_dp->link_bw = bws[clock];
  658. intel_dp->lane_count = lane_count;
  659. pipe_config->pipe_bpp = bpp;
  660. pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  661. DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
  662. intel_dp->link_bw, intel_dp->lane_count,
  663. pipe_config->port_clock, bpp);
  664. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  665. mode_rate, link_avail);
  666. intel_link_compute_m_n(bpp, lane_count,
  667. adjusted_mode->clock, pipe_config->port_clock,
  668. &pipe_config->dp_m_n);
  669. intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
  670. return true;
  671. }
  672. void intel_dp_init_link_config(struct intel_dp *intel_dp)
  673. {
  674. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  675. intel_dp->link_configuration[0] = intel_dp->link_bw;
  676. intel_dp->link_configuration[1] = intel_dp->lane_count;
  677. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  678. /*
  679. * Check for DPCD version > 1.1 and enhanced framing support
  680. */
  681. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  682. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  683. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  684. }
  685. }
  686. static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
  687. {
  688. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  689. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  690. struct drm_device *dev = crtc->base.dev;
  691. struct drm_i915_private *dev_priv = dev->dev_private;
  692. u32 dpa_ctl;
  693. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
  694. dpa_ctl = I915_READ(DP_A);
  695. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  696. if (crtc->config.port_clock == 162000) {
  697. /* For a long time we've carried around a ILK-DevA w/a for the
  698. * 160MHz clock. If we're really unlucky, it's still required.
  699. */
  700. DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
  701. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  702. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  703. } else {
  704. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  705. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  706. }
  707. I915_WRITE(DP_A, dpa_ctl);
  708. POSTING_READ(DP_A);
  709. udelay(500);
  710. }
  711. static void
  712. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  713. struct drm_display_mode *adjusted_mode)
  714. {
  715. struct drm_device *dev = encoder->dev;
  716. struct drm_i915_private *dev_priv = dev->dev_private;
  717. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  718. enum port port = dp_to_dig_port(intel_dp)->port;
  719. struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
  720. /*
  721. * There are four kinds of DP registers:
  722. *
  723. * IBX PCH
  724. * SNB CPU
  725. * IVB CPU
  726. * CPT PCH
  727. *
  728. * IBX PCH and CPU are the same for almost everything,
  729. * except that the CPU DP PLL is configured in this
  730. * register
  731. *
  732. * CPT PCH is quite different, having many bits moved
  733. * to the TRANS_DP_CTL register instead. That
  734. * configuration happens (oddly) in ironlake_pch_enable
  735. */
  736. /* Preserve the BIOS-computed detected bit. This is
  737. * supposed to be read-only.
  738. */
  739. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  740. /* Handle DP bits in common between all three register formats */
  741. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  742. intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
  743. if (intel_dp->has_audio) {
  744. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  745. pipe_name(crtc->pipe));
  746. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  747. intel_write_eld(encoder, adjusted_mode);
  748. }
  749. intel_dp_init_link_config(intel_dp);
  750. /* Split out the IBX/CPU vs CPT settings */
  751. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  752. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  753. intel_dp->DP |= DP_SYNC_HS_HIGH;
  754. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  755. intel_dp->DP |= DP_SYNC_VS_HIGH;
  756. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  757. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  758. intel_dp->DP |= DP_ENHANCED_FRAMING;
  759. intel_dp->DP |= crtc->pipe << 29;
  760. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  761. if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
  762. intel_dp->DP |= intel_dp->color_range;
  763. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  764. intel_dp->DP |= DP_SYNC_HS_HIGH;
  765. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  766. intel_dp->DP |= DP_SYNC_VS_HIGH;
  767. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  768. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  769. intel_dp->DP |= DP_ENHANCED_FRAMING;
  770. if (crtc->pipe == 1)
  771. intel_dp->DP |= DP_PIPEB_SELECT;
  772. } else {
  773. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  774. }
  775. if (port == PORT_A && !IS_VALLEYVIEW(dev))
  776. ironlake_set_pll_cpu_edp(intel_dp);
  777. }
  778. #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  779. #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  780. #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  781. #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  782. #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  783. #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  784. static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
  785. u32 mask,
  786. u32 value)
  787. {
  788. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  789. struct drm_i915_private *dev_priv = dev->dev_private;
  790. u32 pp_stat_reg, pp_ctrl_reg;
  791. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  792. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  793. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  794. mask, value,
  795. I915_READ(pp_stat_reg),
  796. I915_READ(pp_ctrl_reg));
  797. if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
  798. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  799. I915_READ(pp_stat_reg),
  800. I915_READ(pp_ctrl_reg));
  801. }
  802. }
  803. static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
  804. {
  805. DRM_DEBUG_KMS("Wait for panel power on\n");
  806. ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  807. }
  808. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  809. {
  810. DRM_DEBUG_KMS("Wait for panel power off time\n");
  811. ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  812. }
  813. static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
  814. {
  815. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  816. ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  817. }
  818. /* Read the current pp_control value, unlocking the register if it
  819. * is locked
  820. */
  821. static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
  822. {
  823. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  824. struct drm_i915_private *dev_priv = dev->dev_private;
  825. u32 control;
  826. u32 pp_ctrl_reg;
  827. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  828. control = I915_READ(pp_ctrl_reg);
  829. control &= ~PANEL_UNLOCK_MASK;
  830. control |= PANEL_UNLOCK_REGS;
  831. return control;
  832. }
  833. void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  834. {
  835. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  836. struct drm_i915_private *dev_priv = dev->dev_private;
  837. u32 pp;
  838. u32 pp_stat_reg, pp_ctrl_reg;
  839. if (!is_edp(intel_dp))
  840. return;
  841. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  842. WARN(intel_dp->want_panel_vdd,
  843. "eDP VDD already requested on\n");
  844. intel_dp->want_panel_vdd = true;
  845. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  846. DRM_DEBUG_KMS("eDP VDD already on\n");
  847. return;
  848. }
  849. if (!ironlake_edp_have_panel_power(intel_dp))
  850. ironlake_wait_panel_power_cycle(intel_dp);
  851. pp = ironlake_get_pp_control(intel_dp);
  852. pp |= EDP_FORCE_VDD;
  853. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  854. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  855. I915_WRITE(pp_ctrl_reg, pp);
  856. POSTING_READ(pp_ctrl_reg);
  857. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  858. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  859. /*
  860. * If the panel wasn't on, delay before accessing aux channel
  861. */
  862. if (!ironlake_edp_have_panel_power(intel_dp)) {
  863. DRM_DEBUG_KMS("eDP was not running\n");
  864. msleep(intel_dp->panel_power_up_delay);
  865. }
  866. }
  867. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  868. {
  869. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  870. struct drm_i915_private *dev_priv = dev->dev_private;
  871. u32 pp;
  872. u32 pp_stat_reg, pp_ctrl_reg;
  873. WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
  874. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  875. pp = ironlake_get_pp_control(intel_dp);
  876. pp &= ~EDP_FORCE_VDD;
  877. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  878. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  879. I915_WRITE(pp_ctrl_reg, pp);
  880. POSTING_READ(pp_ctrl_reg);
  881. /* Make sure sequencer is idle before allowing subsequent activity */
  882. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  883. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  884. msleep(intel_dp->panel_power_down_delay);
  885. }
  886. }
  887. static void ironlake_panel_vdd_work(struct work_struct *__work)
  888. {
  889. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  890. struct intel_dp, panel_vdd_work);
  891. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  892. mutex_lock(&dev->mode_config.mutex);
  893. ironlake_panel_vdd_off_sync(intel_dp);
  894. mutex_unlock(&dev->mode_config.mutex);
  895. }
  896. void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  897. {
  898. if (!is_edp(intel_dp))
  899. return;
  900. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  901. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  902. intel_dp->want_panel_vdd = false;
  903. if (sync) {
  904. ironlake_panel_vdd_off_sync(intel_dp);
  905. } else {
  906. /*
  907. * Queue the timer to fire a long
  908. * time from now (relative to the power down delay)
  909. * to keep the panel power up across a sequence of operations
  910. */
  911. schedule_delayed_work(&intel_dp->panel_vdd_work,
  912. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  913. }
  914. }
  915. void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  916. {
  917. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  918. struct drm_i915_private *dev_priv = dev->dev_private;
  919. u32 pp;
  920. u32 pp_ctrl_reg;
  921. if (!is_edp(intel_dp))
  922. return;
  923. DRM_DEBUG_KMS("Turn eDP power on\n");
  924. if (ironlake_edp_have_panel_power(intel_dp)) {
  925. DRM_DEBUG_KMS("eDP power already on\n");
  926. return;
  927. }
  928. ironlake_wait_panel_power_cycle(intel_dp);
  929. pp = ironlake_get_pp_control(intel_dp);
  930. if (IS_GEN5(dev)) {
  931. /* ILK workaround: disable reset around power sequence */
  932. pp &= ~PANEL_POWER_RESET;
  933. I915_WRITE(PCH_PP_CONTROL, pp);
  934. POSTING_READ(PCH_PP_CONTROL);
  935. }
  936. pp |= POWER_TARGET_ON;
  937. if (!IS_GEN5(dev))
  938. pp |= PANEL_POWER_RESET;
  939. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  940. I915_WRITE(pp_ctrl_reg, pp);
  941. POSTING_READ(pp_ctrl_reg);
  942. ironlake_wait_panel_on(intel_dp);
  943. if (IS_GEN5(dev)) {
  944. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  945. I915_WRITE(PCH_PP_CONTROL, pp);
  946. POSTING_READ(PCH_PP_CONTROL);
  947. }
  948. }
  949. void ironlake_edp_panel_off(struct intel_dp *intel_dp)
  950. {
  951. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  952. struct drm_i915_private *dev_priv = dev->dev_private;
  953. u32 pp;
  954. u32 pp_ctrl_reg;
  955. if (!is_edp(intel_dp))
  956. return;
  957. DRM_DEBUG_KMS("Turn eDP power off\n");
  958. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  959. pp = ironlake_get_pp_control(intel_dp);
  960. /* We need to switch off panel power _and_ force vdd, for otherwise some
  961. * panels get very unhappy and cease to work. */
  962. pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
  963. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  964. I915_WRITE(pp_ctrl_reg, pp);
  965. POSTING_READ(pp_ctrl_reg);
  966. intel_dp->want_panel_vdd = false;
  967. ironlake_wait_panel_off(intel_dp);
  968. }
  969. void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  970. {
  971. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  972. struct drm_device *dev = intel_dig_port->base.base.dev;
  973. struct drm_i915_private *dev_priv = dev->dev_private;
  974. int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
  975. u32 pp;
  976. u32 pp_ctrl_reg;
  977. if (!is_edp(intel_dp))
  978. return;
  979. DRM_DEBUG_KMS("\n");
  980. /*
  981. * If we enable the backlight right away following a panel power
  982. * on, we may see slight flicker as the panel syncs with the eDP
  983. * link. So delay a bit to make sure the image is solid before
  984. * allowing it to appear.
  985. */
  986. msleep(intel_dp->backlight_on_delay);
  987. pp = ironlake_get_pp_control(intel_dp);
  988. pp |= EDP_BLC_ENABLE;
  989. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  990. I915_WRITE(pp_ctrl_reg, pp);
  991. POSTING_READ(pp_ctrl_reg);
  992. intel_panel_enable_backlight(dev, pipe);
  993. }
  994. void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  995. {
  996. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  997. struct drm_i915_private *dev_priv = dev->dev_private;
  998. u32 pp;
  999. u32 pp_ctrl_reg;
  1000. if (!is_edp(intel_dp))
  1001. return;
  1002. intel_panel_disable_backlight(dev);
  1003. DRM_DEBUG_KMS("\n");
  1004. pp = ironlake_get_pp_control(intel_dp);
  1005. pp &= ~EDP_BLC_ENABLE;
  1006. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  1007. I915_WRITE(pp_ctrl_reg, pp);
  1008. POSTING_READ(pp_ctrl_reg);
  1009. msleep(intel_dp->backlight_off_delay);
  1010. }
  1011. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1012. {
  1013. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1014. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1015. struct drm_device *dev = crtc->dev;
  1016. struct drm_i915_private *dev_priv = dev->dev_private;
  1017. u32 dpa_ctl;
  1018. assert_pipe_disabled(dev_priv,
  1019. to_intel_crtc(crtc)->pipe);
  1020. DRM_DEBUG_KMS("\n");
  1021. dpa_ctl = I915_READ(DP_A);
  1022. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1023. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1024. /* We don't adjust intel_dp->DP while tearing down the link, to
  1025. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1026. * enable bits here to ensure that we don't enable too much. */
  1027. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1028. intel_dp->DP |= DP_PLL_ENABLE;
  1029. I915_WRITE(DP_A, intel_dp->DP);
  1030. POSTING_READ(DP_A);
  1031. udelay(200);
  1032. }
  1033. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1034. {
  1035. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1036. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1037. struct drm_device *dev = crtc->dev;
  1038. struct drm_i915_private *dev_priv = dev->dev_private;
  1039. u32 dpa_ctl;
  1040. assert_pipe_disabled(dev_priv,
  1041. to_intel_crtc(crtc)->pipe);
  1042. dpa_ctl = I915_READ(DP_A);
  1043. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1044. "dp pll off, should be on\n");
  1045. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1046. /* We can't rely on the value tracked for the DP register in
  1047. * intel_dp->DP because link_down must not change that (otherwise link
  1048. * re-training will fail. */
  1049. dpa_ctl &= ~DP_PLL_ENABLE;
  1050. I915_WRITE(DP_A, dpa_ctl);
  1051. POSTING_READ(DP_A);
  1052. udelay(200);
  1053. }
  1054. /* If the sink supports it, try to set the power state appropriately */
  1055. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1056. {
  1057. int ret, i;
  1058. /* Should have a valid DPCD by this point */
  1059. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1060. return;
  1061. if (mode != DRM_MODE_DPMS_ON) {
  1062. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1063. DP_SET_POWER_D3);
  1064. if (ret != 1)
  1065. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1066. } else {
  1067. /*
  1068. * When turning on, we need to retry for 1ms to give the sink
  1069. * time to wake up.
  1070. */
  1071. for (i = 0; i < 3; i++) {
  1072. ret = intel_dp_aux_native_write_1(intel_dp,
  1073. DP_SET_POWER,
  1074. DP_SET_POWER_D0);
  1075. if (ret == 1)
  1076. break;
  1077. msleep(1);
  1078. }
  1079. }
  1080. }
  1081. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1082. enum pipe *pipe)
  1083. {
  1084. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1085. enum port port = dp_to_dig_port(intel_dp)->port;
  1086. struct drm_device *dev = encoder->base.dev;
  1087. struct drm_i915_private *dev_priv = dev->dev_private;
  1088. u32 tmp = I915_READ(intel_dp->output_reg);
  1089. if (!(tmp & DP_PORT_EN))
  1090. return false;
  1091. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  1092. *pipe = PORT_TO_PIPE_CPT(tmp);
  1093. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  1094. *pipe = PORT_TO_PIPE(tmp);
  1095. } else {
  1096. u32 trans_sel;
  1097. u32 trans_dp;
  1098. int i;
  1099. switch (intel_dp->output_reg) {
  1100. case PCH_DP_B:
  1101. trans_sel = TRANS_DP_PORT_SEL_B;
  1102. break;
  1103. case PCH_DP_C:
  1104. trans_sel = TRANS_DP_PORT_SEL_C;
  1105. break;
  1106. case PCH_DP_D:
  1107. trans_sel = TRANS_DP_PORT_SEL_D;
  1108. break;
  1109. default:
  1110. return true;
  1111. }
  1112. for_each_pipe(i) {
  1113. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1114. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1115. *pipe = i;
  1116. return true;
  1117. }
  1118. }
  1119. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1120. intel_dp->output_reg);
  1121. }
  1122. return true;
  1123. }
  1124. static void intel_dp_get_config(struct intel_encoder *encoder,
  1125. struct intel_crtc_config *pipe_config)
  1126. {
  1127. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1128. u32 tmp, flags = 0;
  1129. struct drm_device *dev = encoder->base.dev;
  1130. struct drm_i915_private *dev_priv = dev->dev_private;
  1131. enum port port = dp_to_dig_port(intel_dp)->port;
  1132. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  1133. if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
  1134. tmp = I915_READ(intel_dp->output_reg);
  1135. if (tmp & DP_SYNC_HS_HIGH)
  1136. flags |= DRM_MODE_FLAG_PHSYNC;
  1137. else
  1138. flags |= DRM_MODE_FLAG_NHSYNC;
  1139. if (tmp & DP_SYNC_VS_HIGH)
  1140. flags |= DRM_MODE_FLAG_PVSYNC;
  1141. else
  1142. flags |= DRM_MODE_FLAG_NVSYNC;
  1143. } else {
  1144. tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
  1145. if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
  1146. flags |= DRM_MODE_FLAG_PHSYNC;
  1147. else
  1148. flags |= DRM_MODE_FLAG_NHSYNC;
  1149. if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
  1150. flags |= DRM_MODE_FLAG_PVSYNC;
  1151. else
  1152. flags |= DRM_MODE_FLAG_NVSYNC;
  1153. }
  1154. pipe_config->adjusted_mode.flags |= flags;
  1155. if (dp_to_dig_port(intel_dp)->port == PORT_A) {
  1156. if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
  1157. pipe_config->port_clock = 162000;
  1158. else
  1159. pipe_config->port_clock = 270000;
  1160. }
  1161. }
  1162. static bool is_edp_psr(struct intel_dp *intel_dp)
  1163. {
  1164. return is_edp(intel_dp) &&
  1165. intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
  1166. }
  1167. static bool intel_edp_is_psr_enabled(struct drm_device *dev)
  1168. {
  1169. struct drm_i915_private *dev_priv = dev->dev_private;
  1170. if (!IS_HASWELL(dev))
  1171. return false;
  1172. return I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  1173. }
  1174. static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
  1175. struct edp_vsc_psr *vsc_psr)
  1176. {
  1177. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1178. struct drm_device *dev = dig_port->base.base.dev;
  1179. struct drm_i915_private *dev_priv = dev->dev_private;
  1180. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  1181. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
  1182. u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
  1183. uint32_t *data = (uint32_t *) vsc_psr;
  1184. unsigned int i;
  1185. /* As per BSPec (Pipe Video Data Island Packet), we need to disable
  1186. the video DIP being updated before program video DIP data buffer
  1187. registers for DIP being updated. */
  1188. I915_WRITE(ctl_reg, 0);
  1189. POSTING_READ(ctl_reg);
  1190. for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
  1191. if (i < sizeof(struct edp_vsc_psr))
  1192. I915_WRITE(data_reg + i, *data++);
  1193. else
  1194. I915_WRITE(data_reg + i, 0);
  1195. }
  1196. I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
  1197. POSTING_READ(ctl_reg);
  1198. }
  1199. static void intel_edp_psr_setup(struct intel_dp *intel_dp)
  1200. {
  1201. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1202. struct drm_i915_private *dev_priv = dev->dev_private;
  1203. struct edp_vsc_psr psr_vsc;
  1204. if (intel_dp->psr_setup_done)
  1205. return;
  1206. /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
  1207. memset(&psr_vsc, 0, sizeof(psr_vsc));
  1208. psr_vsc.sdp_header.HB0 = 0;
  1209. psr_vsc.sdp_header.HB1 = 0x7;
  1210. psr_vsc.sdp_header.HB2 = 0x2;
  1211. psr_vsc.sdp_header.HB3 = 0x8;
  1212. intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
  1213. /* Avoid continuous PSR exit by masking memup and hpd */
  1214. I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
  1215. EDP_PSR_DEBUG_MASK_HPD);
  1216. intel_dp->psr_setup_done = true;
  1217. }
  1218. static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
  1219. {
  1220. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1221. struct drm_i915_private *dev_priv = dev->dev_private;
  1222. uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp);
  1223. int precharge = 0x3;
  1224. int msg_size = 5; /* Header(4) + Message(1) */
  1225. /* Enable PSR in sink */
  1226. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
  1227. intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
  1228. DP_PSR_ENABLE &
  1229. ~DP_PSR_MAIN_LINK_ACTIVE);
  1230. else
  1231. intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
  1232. DP_PSR_ENABLE |
  1233. DP_PSR_MAIN_LINK_ACTIVE);
  1234. /* Setup AUX registers */
  1235. I915_WRITE(EDP_PSR_AUX_DATA1, EDP_PSR_DPCD_COMMAND);
  1236. I915_WRITE(EDP_PSR_AUX_DATA2, EDP_PSR_DPCD_NORMAL_OPERATION);
  1237. I915_WRITE(EDP_PSR_AUX_CTL,
  1238. DP_AUX_CH_CTL_TIME_OUT_400us |
  1239. (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  1240. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  1241. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
  1242. }
  1243. static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
  1244. {
  1245. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1246. struct drm_i915_private *dev_priv = dev->dev_private;
  1247. uint32_t max_sleep_time = 0x1f;
  1248. uint32_t idle_frames = 1;
  1249. uint32_t val = 0x0;
  1250. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
  1251. val |= EDP_PSR_LINK_STANDBY;
  1252. val |= EDP_PSR_TP2_TP3_TIME_0us;
  1253. val |= EDP_PSR_TP1_TIME_0us;
  1254. val |= EDP_PSR_SKIP_AUX_EXIT;
  1255. } else
  1256. val |= EDP_PSR_LINK_DISABLE;
  1257. I915_WRITE(EDP_PSR_CTL, val |
  1258. EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
  1259. max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
  1260. idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
  1261. EDP_PSR_ENABLE);
  1262. }
  1263. static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
  1264. {
  1265. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1266. struct drm_device *dev = dig_port->base.base.dev;
  1267. struct drm_i915_private *dev_priv = dev->dev_private;
  1268. struct drm_crtc *crtc = dig_port->base.base.crtc;
  1269. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1270. struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
  1271. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1272. if (!IS_HASWELL(dev)) {
  1273. DRM_DEBUG_KMS("PSR not supported on this platform\n");
  1274. dev_priv->no_psr_reason = PSR_NO_SOURCE;
  1275. return false;
  1276. }
  1277. if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
  1278. (dig_port->port != PORT_A)) {
  1279. DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
  1280. dev_priv->no_psr_reason = PSR_HSW_NOT_DDIA;
  1281. return false;
  1282. }
  1283. if (!is_edp_psr(intel_dp)) {
  1284. DRM_DEBUG_KMS("PSR not supported by this panel\n");
  1285. dev_priv->no_psr_reason = PSR_NO_SINK;
  1286. return false;
  1287. }
  1288. if (!i915_enable_psr) {
  1289. DRM_DEBUG_KMS("PSR disable by flag\n");
  1290. dev_priv->no_psr_reason = PSR_MODULE_PARAM;
  1291. return false;
  1292. }
  1293. if (!intel_crtc->active || !crtc->fb || !crtc->mode.clock) {
  1294. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1295. dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
  1296. return false;
  1297. }
  1298. if (obj->tiling_mode != I915_TILING_X ||
  1299. obj->fence_reg == I915_FENCE_REG_NONE) {
  1300. DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
  1301. dev_priv->no_psr_reason = PSR_NOT_TILED;
  1302. return false;
  1303. }
  1304. if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
  1305. DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
  1306. dev_priv->no_psr_reason = PSR_SPRITE_ENABLED;
  1307. return false;
  1308. }
  1309. if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
  1310. S3D_ENABLE) {
  1311. DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
  1312. dev_priv->no_psr_reason = PSR_S3D_ENABLED;
  1313. return false;
  1314. }
  1315. if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) {
  1316. DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
  1317. dev_priv->no_psr_reason = PSR_INTERLACED_ENABLED;
  1318. return false;
  1319. }
  1320. return true;
  1321. }
  1322. static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
  1323. {
  1324. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1325. if (!intel_edp_psr_match_conditions(intel_dp) ||
  1326. intel_edp_is_psr_enabled(dev))
  1327. return;
  1328. /* Setup PSR once */
  1329. intel_edp_psr_setup(intel_dp);
  1330. /* Enable PSR on the panel */
  1331. intel_edp_psr_enable_sink(intel_dp);
  1332. /* Enable PSR on the host */
  1333. intel_edp_psr_enable_source(intel_dp);
  1334. }
  1335. void intel_edp_psr_enable(struct intel_dp *intel_dp)
  1336. {
  1337. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1338. if (intel_edp_psr_match_conditions(intel_dp) &&
  1339. !intel_edp_is_psr_enabled(dev))
  1340. intel_edp_psr_do_enable(intel_dp);
  1341. }
  1342. void intel_edp_psr_disable(struct intel_dp *intel_dp)
  1343. {
  1344. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1345. struct drm_i915_private *dev_priv = dev->dev_private;
  1346. if (!intel_edp_is_psr_enabled(dev))
  1347. return;
  1348. I915_WRITE(EDP_PSR_CTL, I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
  1349. /* Wait till PSR is idle */
  1350. if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
  1351. EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
  1352. DRM_ERROR("Timed out waiting for PSR Idle State\n");
  1353. }
  1354. void intel_edp_psr_update(struct drm_device *dev)
  1355. {
  1356. struct intel_encoder *encoder;
  1357. struct intel_dp *intel_dp = NULL;
  1358. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
  1359. if (encoder->type == INTEL_OUTPUT_EDP) {
  1360. intel_dp = enc_to_intel_dp(&encoder->base);
  1361. if (!is_edp_psr(intel_dp))
  1362. return;
  1363. if (!intel_edp_psr_match_conditions(intel_dp))
  1364. intel_edp_psr_disable(intel_dp);
  1365. else
  1366. if (!intel_edp_is_psr_enabled(dev))
  1367. intel_edp_psr_do_enable(intel_dp);
  1368. }
  1369. }
  1370. static void intel_disable_dp(struct intel_encoder *encoder)
  1371. {
  1372. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1373. enum port port = dp_to_dig_port(intel_dp)->port;
  1374. struct drm_device *dev = encoder->base.dev;
  1375. /* Make sure the panel is off before trying to change the mode. But also
  1376. * ensure that we have vdd while we switch off the panel. */
  1377. ironlake_edp_panel_vdd_on(intel_dp);
  1378. ironlake_edp_backlight_off(intel_dp);
  1379. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1380. ironlake_edp_panel_off(intel_dp);
  1381. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1382. if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
  1383. intel_dp_link_down(intel_dp);
  1384. }
  1385. static void intel_post_disable_dp(struct intel_encoder *encoder)
  1386. {
  1387. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1388. enum port port = dp_to_dig_port(intel_dp)->port;
  1389. struct drm_device *dev = encoder->base.dev;
  1390. if (port == PORT_A || IS_VALLEYVIEW(dev)) {
  1391. intel_dp_link_down(intel_dp);
  1392. if (!IS_VALLEYVIEW(dev))
  1393. ironlake_edp_pll_off(intel_dp);
  1394. }
  1395. }
  1396. static void intel_enable_dp(struct intel_encoder *encoder)
  1397. {
  1398. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1399. struct drm_device *dev = encoder->base.dev;
  1400. struct drm_i915_private *dev_priv = dev->dev_private;
  1401. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1402. if (WARN_ON(dp_reg & DP_PORT_EN))
  1403. return;
  1404. ironlake_edp_panel_vdd_on(intel_dp);
  1405. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1406. intel_dp_start_link_train(intel_dp);
  1407. ironlake_edp_panel_on(intel_dp);
  1408. ironlake_edp_panel_vdd_off(intel_dp, true);
  1409. intel_dp_complete_link_train(intel_dp);
  1410. intel_dp_stop_link_train(intel_dp);
  1411. ironlake_edp_backlight_on(intel_dp);
  1412. if (IS_VALLEYVIEW(dev)) {
  1413. struct intel_digital_port *dport =
  1414. enc_to_dig_port(&encoder->base);
  1415. int channel = vlv_dport_to_channel(dport);
  1416. vlv_wait_port_ready(dev_priv, channel);
  1417. }
  1418. }
  1419. static void intel_pre_enable_dp(struct intel_encoder *encoder)
  1420. {
  1421. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1422. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1423. struct drm_device *dev = encoder->base.dev;
  1424. struct drm_i915_private *dev_priv = dev->dev_private;
  1425. if (dport->port == PORT_A && !IS_VALLEYVIEW(dev))
  1426. ironlake_edp_pll_on(intel_dp);
  1427. if (IS_VALLEYVIEW(dev)) {
  1428. struct intel_crtc *intel_crtc =
  1429. to_intel_crtc(encoder->base.crtc);
  1430. int port = vlv_dport_to_channel(dport);
  1431. int pipe = intel_crtc->pipe;
  1432. u32 val;
  1433. val = vlv_dpio_read(dev_priv, DPIO_DATA_LANE_A(port));
  1434. val = 0;
  1435. if (pipe)
  1436. val |= (1<<21);
  1437. else
  1438. val &= ~(1<<21);
  1439. val |= 0x001000c4;
  1440. vlv_dpio_write(dev_priv, DPIO_DATA_CHANNEL(port), val);
  1441. vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF0(port),
  1442. 0x00760018);
  1443. vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF8(port),
  1444. 0x00400888);
  1445. }
  1446. }
  1447. static void intel_dp_pre_pll_enable(struct intel_encoder *encoder)
  1448. {
  1449. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1450. struct drm_device *dev = encoder->base.dev;
  1451. struct drm_i915_private *dev_priv = dev->dev_private;
  1452. int port = vlv_dport_to_channel(dport);
  1453. if (!IS_VALLEYVIEW(dev))
  1454. return;
  1455. /* Program Tx lane resets to default */
  1456. vlv_dpio_write(dev_priv, DPIO_PCS_TX(port),
  1457. DPIO_PCS_TX_LANE2_RESET |
  1458. DPIO_PCS_TX_LANE1_RESET);
  1459. vlv_dpio_write(dev_priv, DPIO_PCS_CLK(port),
  1460. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1461. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1462. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1463. DPIO_PCS_CLK_SOFT_RESET);
  1464. /* Fix up inter-pair skew failure */
  1465. vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER1(port), 0x00750f00);
  1466. vlv_dpio_write(dev_priv, DPIO_TX_CTL(port), 0x00001500);
  1467. vlv_dpio_write(dev_priv, DPIO_TX_LANE(port), 0x40400000);
  1468. }
  1469. /*
  1470. * Native read with retry for link status and receiver capability reads for
  1471. * cases where the sink may still be asleep.
  1472. */
  1473. static bool
  1474. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1475. uint8_t *recv, int recv_bytes)
  1476. {
  1477. int ret, i;
  1478. /*
  1479. * Sinks are *supposed* to come up within 1ms from an off state,
  1480. * but we're also supposed to retry 3 times per the spec.
  1481. */
  1482. for (i = 0; i < 3; i++) {
  1483. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1484. recv_bytes);
  1485. if (ret == recv_bytes)
  1486. return true;
  1487. msleep(1);
  1488. }
  1489. return false;
  1490. }
  1491. /*
  1492. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1493. * link status information
  1494. */
  1495. static bool
  1496. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1497. {
  1498. return intel_dp_aux_native_read_retry(intel_dp,
  1499. DP_LANE0_1_STATUS,
  1500. link_status,
  1501. DP_LINK_STATUS_SIZE);
  1502. }
  1503. #if 0
  1504. static char *voltage_names[] = {
  1505. "0.4V", "0.6V", "0.8V", "1.2V"
  1506. };
  1507. static char *pre_emph_names[] = {
  1508. "0dB", "3.5dB", "6dB", "9.5dB"
  1509. };
  1510. static char *link_train_names[] = {
  1511. "pattern 1", "pattern 2", "idle", "off"
  1512. };
  1513. #endif
  1514. /*
  1515. * These are source-specific values; current Intel hardware supports
  1516. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1517. */
  1518. static uint8_t
  1519. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1520. {
  1521. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1522. enum port port = dp_to_dig_port(intel_dp)->port;
  1523. if (IS_VALLEYVIEW(dev))
  1524. return DP_TRAIN_VOLTAGE_SWING_1200;
  1525. else if (IS_GEN7(dev) && port == PORT_A)
  1526. return DP_TRAIN_VOLTAGE_SWING_800;
  1527. else if (HAS_PCH_CPT(dev) && port != PORT_A)
  1528. return DP_TRAIN_VOLTAGE_SWING_1200;
  1529. else
  1530. return DP_TRAIN_VOLTAGE_SWING_800;
  1531. }
  1532. static uint8_t
  1533. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1534. {
  1535. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1536. enum port port = dp_to_dig_port(intel_dp)->port;
  1537. if (HAS_DDI(dev)) {
  1538. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1539. case DP_TRAIN_VOLTAGE_SWING_400:
  1540. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1541. case DP_TRAIN_VOLTAGE_SWING_600:
  1542. return DP_TRAIN_PRE_EMPHASIS_6;
  1543. case DP_TRAIN_VOLTAGE_SWING_800:
  1544. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1545. case DP_TRAIN_VOLTAGE_SWING_1200:
  1546. default:
  1547. return DP_TRAIN_PRE_EMPHASIS_0;
  1548. }
  1549. } else if (IS_VALLEYVIEW(dev)) {
  1550. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1551. case DP_TRAIN_VOLTAGE_SWING_400:
  1552. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1553. case DP_TRAIN_VOLTAGE_SWING_600:
  1554. return DP_TRAIN_PRE_EMPHASIS_6;
  1555. case DP_TRAIN_VOLTAGE_SWING_800:
  1556. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1557. case DP_TRAIN_VOLTAGE_SWING_1200:
  1558. default:
  1559. return DP_TRAIN_PRE_EMPHASIS_0;
  1560. }
  1561. } else if (IS_GEN7(dev) && port == PORT_A) {
  1562. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1563. case DP_TRAIN_VOLTAGE_SWING_400:
  1564. return DP_TRAIN_PRE_EMPHASIS_6;
  1565. case DP_TRAIN_VOLTAGE_SWING_600:
  1566. case DP_TRAIN_VOLTAGE_SWING_800:
  1567. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1568. default:
  1569. return DP_TRAIN_PRE_EMPHASIS_0;
  1570. }
  1571. } else {
  1572. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1573. case DP_TRAIN_VOLTAGE_SWING_400:
  1574. return DP_TRAIN_PRE_EMPHASIS_6;
  1575. case DP_TRAIN_VOLTAGE_SWING_600:
  1576. return DP_TRAIN_PRE_EMPHASIS_6;
  1577. case DP_TRAIN_VOLTAGE_SWING_800:
  1578. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1579. case DP_TRAIN_VOLTAGE_SWING_1200:
  1580. default:
  1581. return DP_TRAIN_PRE_EMPHASIS_0;
  1582. }
  1583. }
  1584. }
  1585. static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
  1586. {
  1587. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1588. struct drm_i915_private *dev_priv = dev->dev_private;
  1589. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1590. unsigned long demph_reg_value, preemph_reg_value,
  1591. uniqtranscale_reg_value;
  1592. uint8_t train_set = intel_dp->train_set[0];
  1593. int port = vlv_dport_to_channel(dport);
  1594. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1595. case DP_TRAIN_PRE_EMPHASIS_0:
  1596. preemph_reg_value = 0x0004000;
  1597. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1598. case DP_TRAIN_VOLTAGE_SWING_400:
  1599. demph_reg_value = 0x2B405555;
  1600. uniqtranscale_reg_value = 0x552AB83A;
  1601. break;
  1602. case DP_TRAIN_VOLTAGE_SWING_600:
  1603. demph_reg_value = 0x2B404040;
  1604. uniqtranscale_reg_value = 0x5548B83A;
  1605. break;
  1606. case DP_TRAIN_VOLTAGE_SWING_800:
  1607. demph_reg_value = 0x2B245555;
  1608. uniqtranscale_reg_value = 0x5560B83A;
  1609. break;
  1610. case DP_TRAIN_VOLTAGE_SWING_1200:
  1611. demph_reg_value = 0x2B405555;
  1612. uniqtranscale_reg_value = 0x5598DA3A;
  1613. break;
  1614. default:
  1615. return 0;
  1616. }
  1617. break;
  1618. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1619. preemph_reg_value = 0x0002000;
  1620. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1621. case DP_TRAIN_VOLTAGE_SWING_400:
  1622. demph_reg_value = 0x2B404040;
  1623. uniqtranscale_reg_value = 0x5552B83A;
  1624. break;
  1625. case DP_TRAIN_VOLTAGE_SWING_600:
  1626. demph_reg_value = 0x2B404848;
  1627. uniqtranscale_reg_value = 0x5580B83A;
  1628. break;
  1629. case DP_TRAIN_VOLTAGE_SWING_800:
  1630. demph_reg_value = 0x2B404040;
  1631. uniqtranscale_reg_value = 0x55ADDA3A;
  1632. break;
  1633. default:
  1634. return 0;
  1635. }
  1636. break;
  1637. case DP_TRAIN_PRE_EMPHASIS_6:
  1638. preemph_reg_value = 0x0000000;
  1639. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1640. case DP_TRAIN_VOLTAGE_SWING_400:
  1641. demph_reg_value = 0x2B305555;
  1642. uniqtranscale_reg_value = 0x5570B83A;
  1643. break;
  1644. case DP_TRAIN_VOLTAGE_SWING_600:
  1645. demph_reg_value = 0x2B2B4040;
  1646. uniqtranscale_reg_value = 0x55ADDA3A;
  1647. break;
  1648. default:
  1649. return 0;
  1650. }
  1651. break;
  1652. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1653. preemph_reg_value = 0x0006000;
  1654. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1655. case DP_TRAIN_VOLTAGE_SWING_400:
  1656. demph_reg_value = 0x1B405555;
  1657. uniqtranscale_reg_value = 0x55ADDA3A;
  1658. break;
  1659. default:
  1660. return 0;
  1661. }
  1662. break;
  1663. default:
  1664. return 0;
  1665. }
  1666. vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x00000000);
  1667. vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL4(port), demph_reg_value);
  1668. vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL2(port),
  1669. uniqtranscale_reg_value);
  1670. vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL3(port), 0x0C782040);
  1671. vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER0(port), 0x00030000);
  1672. vlv_dpio_write(dev_priv, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
  1673. vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x80000000);
  1674. return 0;
  1675. }
  1676. static void
  1677. intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1678. {
  1679. uint8_t v = 0;
  1680. uint8_t p = 0;
  1681. int lane;
  1682. uint8_t voltage_max;
  1683. uint8_t preemph_max;
  1684. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1685. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  1686. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  1687. if (this_v > v)
  1688. v = this_v;
  1689. if (this_p > p)
  1690. p = this_p;
  1691. }
  1692. voltage_max = intel_dp_voltage_max(intel_dp);
  1693. if (v >= voltage_max)
  1694. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1695. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1696. if (p >= preemph_max)
  1697. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1698. for (lane = 0; lane < 4; lane++)
  1699. intel_dp->train_set[lane] = v | p;
  1700. }
  1701. static uint32_t
  1702. intel_gen4_signal_levels(uint8_t train_set)
  1703. {
  1704. uint32_t signal_levels = 0;
  1705. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1706. case DP_TRAIN_VOLTAGE_SWING_400:
  1707. default:
  1708. signal_levels |= DP_VOLTAGE_0_4;
  1709. break;
  1710. case DP_TRAIN_VOLTAGE_SWING_600:
  1711. signal_levels |= DP_VOLTAGE_0_6;
  1712. break;
  1713. case DP_TRAIN_VOLTAGE_SWING_800:
  1714. signal_levels |= DP_VOLTAGE_0_8;
  1715. break;
  1716. case DP_TRAIN_VOLTAGE_SWING_1200:
  1717. signal_levels |= DP_VOLTAGE_1_2;
  1718. break;
  1719. }
  1720. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1721. case DP_TRAIN_PRE_EMPHASIS_0:
  1722. default:
  1723. signal_levels |= DP_PRE_EMPHASIS_0;
  1724. break;
  1725. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1726. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1727. break;
  1728. case DP_TRAIN_PRE_EMPHASIS_6:
  1729. signal_levels |= DP_PRE_EMPHASIS_6;
  1730. break;
  1731. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1732. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1733. break;
  1734. }
  1735. return signal_levels;
  1736. }
  1737. /* Gen6's DP voltage swing and pre-emphasis control */
  1738. static uint32_t
  1739. intel_gen6_edp_signal_levels(uint8_t train_set)
  1740. {
  1741. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1742. DP_TRAIN_PRE_EMPHASIS_MASK);
  1743. switch (signal_levels) {
  1744. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1745. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1746. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1747. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1748. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1749. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1750. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1751. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1752. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1753. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1754. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1755. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1756. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1757. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1758. default:
  1759. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1760. "0x%x\n", signal_levels);
  1761. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1762. }
  1763. }
  1764. /* Gen7's DP voltage swing and pre-emphasis control */
  1765. static uint32_t
  1766. intel_gen7_edp_signal_levels(uint8_t train_set)
  1767. {
  1768. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1769. DP_TRAIN_PRE_EMPHASIS_MASK);
  1770. switch (signal_levels) {
  1771. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1772. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1773. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1774. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1775. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1776. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1777. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1778. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1779. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1780. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1781. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1782. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1783. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1784. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1785. default:
  1786. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1787. "0x%x\n", signal_levels);
  1788. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1789. }
  1790. }
  1791. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  1792. static uint32_t
  1793. intel_hsw_signal_levels(uint8_t train_set)
  1794. {
  1795. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1796. DP_TRAIN_PRE_EMPHASIS_MASK);
  1797. switch (signal_levels) {
  1798. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1799. return DDI_BUF_EMP_400MV_0DB_HSW;
  1800. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1801. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  1802. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1803. return DDI_BUF_EMP_400MV_6DB_HSW;
  1804. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  1805. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  1806. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1807. return DDI_BUF_EMP_600MV_0DB_HSW;
  1808. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1809. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  1810. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1811. return DDI_BUF_EMP_600MV_6DB_HSW;
  1812. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1813. return DDI_BUF_EMP_800MV_0DB_HSW;
  1814. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1815. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  1816. default:
  1817. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1818. "0x%x\n", signal_levels);
  1819. return DDI_BUF_EMP_400MV_0DB_HSW;
  1820. }
  1821. }
  1822. /* Properly updates "DP" with the correct signal levels. */
  1823. static void
  1824. intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
  1825. {
  1826. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1827. enum port port = intel_dig_port->port;
  1828. struct drm_device *dev = intel_dig_port->base.base.dev;
  1829. uint32_t signal_levels, mask;
  1830. uint8_t train_set = intel_dp->train_set[0];
  1831. if (HAS_DDI(dev)) {
  1832. signal_levels = intel_hsw_signal_levels(train_set);
  1833. mask = DDI_BUF_EMP_MASK;
  1834. } else if (IS_VALLEYVIEW(dev)) {
  1835. signal_levels = intel_vlv_signal_levels(intel_dp);
  1836. mask = 0;
  1837. } else if (IS_GEN7(dev) && port == PORT_A) {
  1838. signal_levels = intel_gen7_edp_signal_levels(train_set);
  1839. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
  1840. } else if (IS_GEN6(dev) && port == PORT_A) {
  1841. signal_levels = intel_gen6_edp_signal_levels(train_set);
  1842. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
  1843. } else {
  1844. signal_levels = intel_gen4_signal_levels(train_set);
  1845. mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
  1846. }
  1847. DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
  1848. *DP = (*DP & ~mask) | signal_levels;
  1849. }
  1850. static bool
  1851. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1852. uint32_t dp_reg_value,
  1853. uint8_t dp_train_pat)
  1854. {
  1855. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1856. struct drm_device *dev = intel_dig_port->base.base.dev;
  1857. struct drm_i915_private *dev_priv = dev->dev_private;
  1858. enum port port = intel_dig_port->port;
  1859. int ret;
  1860. if (HAS_DDI(dev)) {
  1861. uint32_t temp = I915_READ(DP_TP_CTL(port));
  1862. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  1863. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  1864. else
  1865. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  1866. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1867. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1868. case DP_TRAINING_PATTERN_DISABLE:
  1869. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  1870. break;
  1871. case DP_TRAINING_PATTERN_1:
  1872. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1873. break;
  1874. case DP_TRAINING_PATTERN_2:
  1875. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  1876. break;
  1877. case DP_TRAINING_PATTERN_3:
  1878. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  1879. break;
  1880. }
  1881. I915_WRITE(DP_TP_CTL(port), temp);
  1882. } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  1883. dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
  1884. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1885. case DP_TRAINING_PATTERN_DISABLE:
  1886. dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
  1887. break;
  1888. case DP_TRAINING_PATTERN_1:
  1889. dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
  1890. break;
  1891. case DP_TRAINING_PATTERN_2:
  1892. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1893. break;
  1894. case DP_TRAINING_PATTERN_3:
  1895. DRM_ERROR("DP training pattern 3 not supported\n");
  1896. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1897. break;
  1898. }
  1899. } else {
  1900. dp_reg_value &= ~DP_LINK_TRAIN_MASK;
  1901. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1902. case DP_TRAINING_PATTERN_DISABLE:
  1903. dp_reg_value |= DP_LINK_TRAIN_OFF;
  1904. break;
  1905. case DP_TRAINING_PATTERN_1:
  1906. dp_reg_value |= DP_LINK_TRAIN_PAT_1;
  1907. break;
  1908. case DP_TRAINING_PATTERN_2:
  1909. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1910. break;
  1911. case DP_TRAINING_PATTERN_3:
  1912. DRM_ERROR("DP training pattern 3 not supported\n");
  1913. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1914. break;
  1915. }
  1916. }
  1917. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1918. POSTING_READ(intel_dp->output_reg);
  1919. intel_dp_aux_native_write_1(intel_dp,
  1920. DP_TRAINING_PATTERN_SET,
  1921. dp_train_pat);
  1922. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
  1923. DP_TRAINING_PATTERN_DISABLE) {
  1924. ret = intel_dp_aux_native_write(intel_dp,
  1925. DP_TRAINING_LANE0_SET,
  1926. intel_dp->train_set,
  1927. intel_dp->lane_count);
  1928. if (ret != intel_dp->lane_count)
  1929. return false;
  1930. }
  1931. return true;
  1932. }
  1933. static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
  1934. {
  1935. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1936. struct drm_device *dev = intel_dig_port->base.base.dev;
  1937. struct drm_i915_private *dev_priv = dev->dev_private;
  1938. enum port port = intel_dig_port->port;
  1939. uint32_t val;
  1940. if (!HAS_DDI(dev))
  1941. return;
  1942. val = I915_READ(DP_TP_CTL(port));
  1943. val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1944. val |= DP_TP_CTL_LINK_TRAIN_IDLE;
  1945. I915_WRITE(DP_TP_CTL(port), val);
  1946. /*
  1947. * On PORT_A we can have only eDP in SST mode. There the only reason
  1948. * we need to set idle transmission mode is to work around a HW issue
  1949. * where we enable the pipe while not in idle link-training mode.
  1950. * In this case there is requirement to wait for a minimum number of
  1951. * idle patterns to be sent.
  1952. */
  1953. if (port == PORT_A)
  1954. return;
  1955. if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
  1956. 1))
  1957. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  1958. }
  1959. /* Enable corresponding port and start training pattern 1 */
  1960. void
  1961. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1962. {
  1963. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  1964. struct drm_device *dev = encoder->dev;
  1965. int i;
  1966. uint8_t voltage;
  1967. bool clock_recovery = false;
  1968. int voltage_tries, loop_tries;
  1969. uint32_t DP = intel_dp->DP;
  1970. if (HAS_DDI(dev))
  1971. intel_ddi_prepare_link_retrain(encoder);
  1972. /* Write the link configuration data */
  1973. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1974. intel_dp->link_configuration,
  1975. DP_LINK_CONFIGURATION_SIZE);
  1976. DP |= DP_PORT_EN;
  1977. memset(intel_dp->train_set, 0, 4);
  1978. voltage = 0xff;
  1979. voltage_tries = 0;
  1980. loop_tries = 0;
  1981. clock_recovery = false;
  1982. for (;;) {
  1983. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1984. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1985. intel_dp_set_signal_levels(intel_dp, &DP);
  1986. /* Set training pattern 1 */
  1987. if (!intel_dp_set_link_train(intel_dp, DP,
  1988. DP_TRAINING_PATTERN_1 |
  1989. DP_LINK_SCRAMBLING_DISABLE))
  1990. break;
  1991. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  1992. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1993. DRM_ERROR("failed to get link status\n");
  1994. break;
  1995. }
  1996. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1997. DRM_DEBUG_KMS("clock recovery OK\n");
  1998. clock_recovery = true;
  1999. break;
  2000. }
  2001. /* Check to see if we've tried the max voltage */
  2002. for (i = 0; i < intel_dp->lane_count; i++)
  2003. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  2004. break;
  2005. if (i == intel_dp->lane_count) {
  2006. ++loop_tries;
  2007. if (loop_tries == 5) {
  2008. DRM_DEBUG_KMS("too many full retries, give up\n");
  2009. break;
  2010. }
  2011. memset(intel_dp->train_set, 0, 4);
  2012. voltage_tries = 0;
  2013. continue;
  2014. }
  2015. /* Check to see if we've tried the same voltage 5 times */
  2016. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  2017. ++voltage_tries;
  2018. if (voltage_tries == 5) {
  2019. DRM_DEBUG_KMS("too many voltage retries, give up\n");
  2020. break;
  2021. }
  2022. } else
  2023. voltage_tries = 0;
  2024. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  2025. /* Compute new intel_dp->train_set as requested by target */
  2026. intel_get_adjust_train(intel_dp, link_status);
  2027. }
  2028. intel_dp->DP = DP;
  2029. }
  2030. void
  2031. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  2032. {
  2033. bool channel_eq = false;
  2034. int tries, cr_tries;
  2035. uint32_t DP = intel_dp->DP;
  2036. /* channel equalization */
  2037. tries = 0;
  2038. cr_tries = 0;
  2039. channel_eq = false;
  2040. for (;;) {
  2041. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2042. if (cr_tries > 5) {
  2043. DRM_ERROR("failed to train DP, aborting\n");
  2044. intel_dp_link_down(intel_dp);
  2045. break;
  2046. }
  2047. intel_dp_set_signal_levels(intel_dp, &DP);
  2048. /* channel eq pattern */
  2049. if (!intel_dp_set_link_train(intel_dp, DP,
  2050. DP_TRAINING_PATTERN_2 |
  2051. DP_LINK_SCRAMBLING_DISABLE))
  2052. break;
  2053. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  2054. if (!intel_dp_get_link_status(intel_dp, link_status))
  2055. break;
  2056. /* Make sure clock is still ok */
  2057. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2058. intel_dp_start_link_train(intel_dp);
  2059. cr_tries++;
  2060. continue;
  2061. }
  2062. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2063. channel_eq = true;
  2064. break;
  2065. }
  2066. /* Try 5 times, then try clock recovery if that fails */
  2067. if (tries > 5) {
  2068. intel_dp_link_down(intel_dp);
  2069. intel_dp_start_link_train(intel_dp);
  2070. tries = 0;
  2071. cr_tries++;
  2072. continue;
  2073. }
  2074. /* Compute new intel_dp->train_set as requested by target */
  2075. intel_get_adjust_train(intel_dp, link_status);
  2076. ++tries;
  2077. }
  2078. intel_dp_set_idle_link_train(intel_dp);
  2079. intel_dp->DP = DP;
  2080. if (channel_eq)
  2081. DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
  2082. }
  2083. void intel_dp_stop_link_train(struct intel_dp *intel_dp)
  2084. {
  2085. intel_dp_set_link_train(intel_dp, intel_dp->DP,
  2086. DP_TRAINING_PATTERN_DISABLE);
  2087. }
  2088. static void
  2089. intel_dp_link_down(struct intel_dp *intel_dp)
  2090. {
  2091. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2092. enum port port = intel_dig_port->port;
  2093. struct drm_device *dev = intel_dig_port->base.base.dev;
  2094. struct drm_i915_private *dev_priv = dev->dev_private;
  2095. struct intel_crtc *intel_crtc =
  2096. to_intel_crtc(intel_dig_port->base.base.crtc);
  2097. uint32_t DP = intel_dp->DP;
  2098. /*
  2099. * DDI code has a strict mode set sequence and we should try to respect
  2100. * it, otherwise we might hang the machine in many different ways. So we
  2101. * really should be disabling the port only on a complete crtc_disable
  2102. * sequence. This function is just called under two conditions on DDI
  2103. * code:
  2104. * - Link train failed while doing crtc_enable, and on this case we
  2105. * really should respect the mode set sequence and wait for a
  2106. * crtc_disable.
  2107. * - Someone turned the monitor off and intel_dp_check_link_status
  2108. * called us. We don't need to disable the whole port on this case, so
  2109. * when someone turns the monitor on again,
  2110. * intel_ddi_prepare_link_retrain will take care of redoing the link
  2111. * train.
  2112. */
  2113. if (HAS_DDI(dev))
  2114. return;
  2115. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  2116. return;
  2117. DRM_DEBUG_KMS("\n");
  2118. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2119. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  2120. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  2121. } else {
  2122. DP &= ~DP_LINK_TRAIN_MASK;
  2123. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  2124. }
  2125. POSTING_READ(intel_dp->output_reg);
  2126. /* We don't really know why we're doing this */
  2127. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2128. if (HAS_PCH_IBX(dev) &&
  2129. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  2130. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  2131. /* Hardware workaround: leaving our transcoder select
  2132. * set to transcoder B while it's off will prevent the
  2133. * corresponding HDMI output on transcoder A.
  2134. *
  2135. * Combine this with another hardware workaround:
  2136. * transcoder select bit can only be cleared while the
  2137. * port is enabled.
  2138. */
  2139. DP &= ~DP_PIPEB_SELECT;
  2140. I915_WRITE(intel_dp->output_reg, DP);
  2141. /* Changes to enable or select take place the vblank
  2142. * after being written.
  2143. */
  2144. if (WARN_ON(crtc == NULL)) {
  2145. /* We should never try to disable a port without a crtc
  2146. * attached. For paranoia keep the code around for a
  2147. * bit. */
  2148. POSTING_READ(intel_dp->output_reg);
  2149. msleep(50);
  2150. } else
  2151. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2152. }
  2153. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  2154. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  2155. POSTING_READ(intel_dp->output_reg);
  2156. msleep(intel_dp->panel_power_down_delay);
  2157. }
  2158. static bool
  2159. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  2160. {
  2161. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  2162. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  2163. sizeof(intel_dp->dpcd)) == 0)
  2164. return false; /* aux transfer failed */
  2165. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  2166. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  2167. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  2168. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  2169. return false; /* DPCD not present */
  2170. /* Check if the panel supports PSR */
  2171. memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
  2172. intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
  2173. intel_dp->psr_dpcd,
  2174. sizeof(intel_dp->psr_dpcd));
  2175. if (is_edp_psr(intel_dp))
  2176. DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
  2177. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  2178. DP_DWN_STRM_PORT_PRESENT))
  2179. return true; /* native DP sink */
  2180. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  2181. return true; /* no per-port downstream info */
  2182. if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
  2183. intel_dp->downstream_ports,
  2184. DP_MAX_DOWNSTREAM_PORTS) == 0)
  2185. return false; /* downstream port status fetch failed */
  2186. return true;
  2187. }
  2188. static void
  2189. intel_dp_probe_oui(struct intel_dp *intel_dp)
  2190. {
  2191. u8 buf[3];
  2192. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  2193. return;
  2194. ironlake_edp_panel_vdd_on(intel_dp);
  2195. if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
  2196. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  2197. buf[0], buf[1], buf[2]);
  2198. if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
  2199. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  2200. buf[0], buf[1], buf[2]);
  2201. ironlake_edp_panel_vdd_off(intel_dp, false);
  2202. }
  2203. static bool
  2204. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  2205. {
  2206. int ret;
  2207. ret = intel_dp_aux_native_read_retry(intel_dp,
  2208. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2209. sink_irq_vector, 1);
  2210. if (!ret)
  2211. return false;
  2212. return true;
  2213. }
  2214. static void
  2215. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  2216. {
  2217. /* NAK by default */
  2218. intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
  2219. }
  2220. /*
  2221. * According to DP spec
  2222. * 5.1.2:
  2223. * 1. Read DPCD
  2224. * 2. Configure link according to Receiver Capabilities
  2225. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  2226. * 4. Check link status on receipt of hot-plug interrupt
  2227. */
  2228. void
  2229. intel_dp_check_link_status(struct intel_dp *intel_dp)
  2230. {
  2231. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  2232. u8 sink_irq_vector;
  2233. u8 link_status[DP_LINK_STATUS_SIZE];
  2234. if (!intel_encoder->connectors_active)
  2235. return;
  2236. if (WARN_ON(!intel_encoder->base.crtc))
  2237. return;
  2238. /* Try to read receiver status if the link appears to be up */
  2239. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2240. intel_dp_link_down(intel_dp);
  2241. return;
  2242. }
  2243. /* Now read the DPCD to see if it's actually running */
  2244. if (!intel_dp_get_dpcd(intel_dp)) {
  2245. intel_dp_link_down(intel_dp);
  2246. return;
  2247. }
  2248. /* Try to read the source of the interrupt */
  2249. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2250. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  2251. /* Clear interrupt source */
  2252. intel_dp_aux_native_write_1(intel_dp,
  2253. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2254. sink_irq_vector);
  2255. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  2256. intel_dp_handle_test_request(intel_dp);
  2257. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  2258. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  2259. }
  2260. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2261. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  2262. drm_get_encoder_name(&intel_encoder->base));
  2263. intel_dp_start_link_train(intel_dp);
  2264. intel_dp_complete_link_train(intel_dp);
  2265. intel_dp_stop_link_train(intel_dp);
  2266. }
  2267. }
  2268. /* XXX this is probably wrong for multiple downstream ports */
  2269. static enum drm_connector_status
  2270. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  2271. {
  2272. uint8_t *dpcd = intel_dp->dpcd;
  2273. bool hpd;
  2274. uint8_t type;
  2275. if (!intel_dp_get_dpcd(intel_dp))
  2276. return connector_status_disconnected;
  2277. /* if there's no downstream port, we're done */
  2278. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  2279. return connector_status_connected;
  2280. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  2281. hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
  2282. if (hpd) {
  2283. uint8_t reg;
  2284. if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
  2285. &reg, 1))
  2286. return connector_status_unknown;
  2287. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  2288. : connector_status_disconnected;
  2289. }
  2290. /* If no HPD, poke DDC gently */
  2291. if (drm_probe_ddc(&intel_dp->adapter))
  2292. return connector_status_connected;
  2293. /* Well we tried, say unknown for unreliable port types */
  2294. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  2295. if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
  2296. return connector_status_unknown;
  2297. /* Anything else is out of spec, warn and ignore */
  2298. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  2299. return connector_status_disconnected;
  2300. }
  2301. static enum drm_connector_status
  2302. ironlake_dp_detect(struct intel_dp *intel_dp)
  2303. {
  2304. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2305. struct drm_i915_private *dev_priv = dev->dev_private;
  2306. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2307. enum drm_connector_status status;
  2308. /* Can't disconnect eDP, but you can close the lid... */
  2309. if (is_edp(intel_dp)) {
  2310. status = intel_panel_detect(dev);
  2311. if (status == connector_status_unknown)
  2312. status = connector_status_connected;
  2313. return status;
  2314. }
  2315. if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
  2316. return connector_status_disconnected;
  2317. return intel_dp_detect_dpcd(intel_dp);
  2318. }
  2319. static enum drm_connector_status
  2320. g4x_dp_detect(struct intel_dp *intel_dp)
  2321. {
  2322. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2323. struct drm_i915_private *dev_priv = dev->dev_private;
  2324. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2325. uint32_t bit;
  2326. /* Can't disconnect eDP, but you can close the lid... */
  2327. if (is_edp(intel_dp)) {
  2328. enum drm_connector_status status;
  2329. status = intel_panel_detect(dev);
  2330. if (status == connector_status_unknown)
  2331. status = connector_status_connected;
  2332. return status;
  2333. }
  2334. switch (intel_dig_port->port) {
  2335. case PORT_B:
  2336. bit = PORTB_HOTPLUG_LIVE_STATUS;
  2337. break;
  2338. case PORT_C:
  2339. bit = PORTC_HOTPLUG_LIVE_STATUS;
  2340. break;
  2341. case PORT_D:
  2342. bit = PORTD_HOTPLUG_LIVE_STATUS;
  2343. break;
  2344. default:
  2345. return connector_status_unknown;
  2346. }
  2347. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  2348. return connector_status_disconnected;
  2349. return intel_dp_detect_dpcd(intel_dp);
  2350. }
  2351. static struct edid *
  2352. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  2353. {
  2354. struct intel_connector *intel_connector = to_intel_connector(connector);
  2355. /* use cached edid if we have one */
  2356. if (intel_connector->edid) {
  2357. struct edid *edid;
  2358. int size;
  2359. /* invalid edid */
  2360. if (IS_ERR(intel_connector->edid))
  2361. return NULL;
  2362. size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
  2363. edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
  2364. if (!edid)
  2365. return NULL;
  2366. return edid;
  2367. }
  2368. return drm_get_edid(connector, adapter);
  2369. }
  2370. static int
  2371. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  2372. {
  2373. struct intel_connector *intel_connector = to_intel_connector(connector);
  2374. /* use cached edid if we have one */
  2375. if (intel_connector->edid) {
  2376. /* invalid edid */
  2377. if (IS_ERR(intel_connector->edid))
  2378. return 0;
  2379. return intel_connector_update_modes(connector,
  2380. intel_connector->edid);
  2381. }
  2382. return intel_ddc_get_modes(connector, adapter);
  2383. }
  2384. static enum drm_connector_status
  2385. intel_dp_detect(struct drm_connector *connector, bool force)
  2386. {
  2387. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2388. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2389. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2390. struct drm_device *dev = connector->dev;
  2391. enum drm_connector_status status;
  2392. struct edid *edid = NULL;
  2393. intel_dp->has_audio = false;
  2394. if (HAS_PCH_SPLIT(dev))
  2395. status = ironlake_dp_detect(intel_dp);
  2396. else
  2397. status = g4x_dp_detect(intel_dp);
  2398. if (status != connector_status_connected)
  2399. return status;
  2400. intel_dp_probe_oui(intel_dp);
  2401. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  2402. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  2403. } else {
  2404. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2405. if (edid) {
  2406. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  2407. kfree(edid);
  2408. }
  2409. }
  2410. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  2411. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2412. return connector_status_connected;
  2413. }
  2414. static int intel_dp_get_modes(struct drm_connector *connector)
  2415. {
  2416. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2417. struct intel_connector *intel_connector = to_intel_connector(connector);
  2418. struct drm_device *dev = connector->dev;
  2419. int ret;
  2420. /* We should parse the EDID data and find out if it has an audio sink
  2421. */
  2422. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  2423. if (ret)
  2424. return ret;
  2425. /* if eDP has no EDID, fall back to fixed mode */
  2426. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  2427. struct drm_display_mode *mode;
  2428. mode = drm_mode_duplicate(dev,
  2429. intel_connector->panel.fixed_mode);
  2430. if (mode) {
  2431. drm_mode_probed_add(connector, mode);
  2432. return 1;
  2433. }
  2434. }
  2435. return 0;
  2436. }
  2437. static bool
  2438. intel_dp_detect_audio(struct drm_connector *connector)
  2439. {
  2440. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2441. struct edid *edid;
  2442. bool has_audio = false;
  2443. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2444. if (edid) {
  2445. has_audio = drm_detect_monitor_audio(edid);
  2446. kfree(edid);
  2447. }
  2448. return has_audio;
  2449. }
  2450. static int
  2451. intel_dp_set_property(struct drm_connector *connector,
  2452. struct drm_property *property,
  2453. uint64_t val)
  2454. {
  2455. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  2456. struct intel_connector *intel_connector = to_intel_connector(connector);
  2457. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  2458. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2459. int ret;
  2460. ret = drm_object_property_set_value(&connector->base, property, val);
  2461. if (ret)
  2462. return ret;
  2463. if (property == dev_priv->force_audio_property) {
  2464. int i = val;
  2465. bool has_audio;
  2466. if (i == intel_dp->force_audio)
  2467. return 0;
  2468. intel_dp->force_audio = i;
  2469. if (i == HDMI_AUDIO_AUTO)
  2470. has_audio = intel_dp_detect_audio(connector);
  2471. else
  2472. has_audio = (i == HDMI_AUDIO_ON);
  2473. if (has_audio == intel_dp->has_audio)
  2474. return 0;
  2475. intel_dp->has_audio = has_audio;
  2476. goto done;
  2477. }
  2478. if (property == dev_priv->broadcast_rgb_property) {
  2479. bool old_auto = intel_dp->color_range_auto;
  2480. uint32_t old_range = intel_dp->color_range;
  2481. switch (val) {
  2482. case INTEL_BROADCAST_RGB_AUTO:
  2483. intel_dp->color_range_auto = true;
  2484. break;
  2485. case INTEL_BROADCAST_RGB_FULL:
  2486. intel_dp->color_range_auto = false;
  2487. intel_dp->color_range = 0;
  2488. break;
  2489. case INTEL_BROADCAST_RGB_LIMITED:
  2490. intel_dp->color_range_auto = false;
  2491. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  2492. break;
  2493. default:
  2494. return -EINVAL;
  2495. }
  2496. if (old_auto == intel_dp->color_range_auto &&
  2497. old_range == intel_dp->color_range)
  2498. return 0;
  2499. goto done;
  2500. }
  2501. if (is_edp(intel_dp) &&
  2502. property == connector->dev->mode_config.scaling_mode_property) {
  2503. if (val == DRM_MODE_SCALE_NONE) {
  2504. DRM_DEBUG_KMS("no scaling not supported\n");
  2505. return -EINVAL;
  2506. }
  2507. if (intel_connector->panel.fitting_mode == val) {
  2508. /* the eDP scaling property is not changed */
  2509. return 0;
  2510. }
  2511. intel_connector->panel.fitting_mode = val;
  2512. goto done;
  2513. }
  2514. return -EINVAL;
  2515. done:
  2516. if (intel_encoder->base.crtc)
  2517. intel_crtc_restore_mode(intel_encoder->base.crtc);
  2518. return 0;
  2519. }
  2520. static void
  2521. intel_dp_connector_destroy(struct drm_connector *connector)
  2522. {
  2523. struct intel_connector *intel_connector = to_intel_connector(connector);
  2524. if (!IS_ERR_OR_NULL(intel_connector->edid))
  2525. kfree(intel_connector->edid);
  2526. /* Can't call is_edp() since the encoder may have been destroyed
  2527. * already. */
  2528. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  2529. intel_panel_fini(&intel_connector->panel);
  2530. drm_sysfs_connector_remove(connector);
  2531. drm_connector_cleanup(connector);
  2532. kfree(connector);
  2533. }
  2534. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  2535. {
  2536. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  2537. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2538. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2539. i2c_del_adapter(&intel_dp->adapter);
  2540. drm_encoder_cleanup(encoder);
  2541. if (is_edp(intel_dp)) {
  2542. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2543. mutex_lock(&dev->mode_config.mutex);
  2544. ironlake_panel_vdd_off_sync(intel_dp);
  2545. mutex_unlock(&dev->mode_config.mutex);
  2546. }
  2547. kfree(intel_dig_port);
  2548. }
  2549. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  2550. .mode_set = intel_dp_mode_set,
  2551. };
  2552. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  2553. .dpms = intel_connector_dpms,
  2554. .detect = intel_dp_detect,
  2555. .fill_modes = drm_helper_probe_single_connector_modes,
  2556. .set_property = intel_dp_set_property,
  2557. .destroy = intel_dp_connector_destroy,
  2558. };
  2559. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  2560. .get_modes = intel_dp_get_modes,
  2561. .mode_valid = intel_dp_mode_valid,
  2562. .best_encoder = intel_best_encoder,
  2563. };
  2564. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  2565. .destroy = intel_dp_encoder_destroy,
  2566. };
  2567. static void
  2568. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  2569. {
  2570. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2571. intel_dp_check_link_status(intel_dp);
  2572. }
  2573. /* Return which DP Port should be selected for Transcoder DP control */
  2574. int
  2575. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  2576. {
  2577. struct drm_device *dev = crtc->dev;
  2578. struct intel_encoder *intel_encoder;
  2579. struct intel_dp *intel_dp;
  2580. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2581. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2582. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2583. intel_encoder->type == INTEL_OUTPUT_EDP)
  2584. return intel_dp->output_reg;
  2585. }
  2586. return -1;
  2587. }
  2588. /* check the VBT to see whether the eDP is on DP-D port */
  2589. bool intel_dpd_is_edp(struct drm_device *dev)
  2590. {
  2591. struct drm_i915_private *dev_priv = dev->dev_private;
  2592. struct child_device_config *p_child;
  2593. int i;
  2594. if (!dev_priv->vbt.child_dev_num)
  2595. return false;
  2596. for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
  2597. p_child = dev_priv->vbt.child_dev + i;
  2598. if (p_child->dvo_port == PORT_IDPD &&
  2599. p_child->device_type == DEVICE_TYPE_eDP)
  2600. return true;
  2601. }
  2602. return false;
  2603. }
  2604. static void
  2605. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2606. {
  2607. struct intel_connector *intel_connector = to_intel_connector(connector);
  2608. intel_attach_force_audio_property(connector);
  2609. intel_attach_broadcast_rgb_property(connector);
  2610. intel_dp->color_range_auto = true;
  2611. if (is_edp(intel_dp)) {
  2612. drm_mode_create_scaling_mode_property(connector->dev);
  2613. drm_object_attach_property(
  2614. &connector->base,
  2615. connector->dev->mode_config.scaling_mode_property,
  2616. DRM_MODE_SCALE_ASPECT);
  2617. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  2618. }
  2619. }
  2620. static void
  2621. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  2622. struct intel_dp *intel_dp,
  2623. struct edp_power_seq *out)
  2624. {
  2625. struct drm_i915_private *dev_priv = dev->dev_private;
  2626. struct edp_power_seq cur, vbt, spec, final;
  2627. u32 pp_on, pp_off, pp_div, pp;
  2628. int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
  2629. if (HAS_PCH_SPLIT(dev)) {
  2630. pp_control_reg = PCH_PP_CONTROL;
  2631. pp_on_reg = PCH_PP_ON_DELAYS;
  2632. pp_off_reg = PCH_PP_OFF_DELAYS;
  2633. pp_div_reg = PCH_PP_DIVISOR;
  2634. } else {
  2635. pp_control_reg = PIPEA_PP_CONTROL;
  2636. pp_on_reg = PIPEA_PP_ON_DELAYS;
  2637. pp_off_reg = PIPEA_PP_OFF_DELAYS;
  2638. pp_div_reg = PIPEA_PP_DIVISOR;
  2639. }
  2640. /* Workaround: Need to write PP_CONTROL with the unlock key as
  2641. * the very first thing. */
  2642. pp = ironlake_get_pp_control(intel_dp);
  2643. I915_WRITE(pp_control_reg, pp);
  2644. pp_on = I915_READ(pp_on_reg);
  2645. pp_off = I915_READ(pp_off_reg);
  2646. pp_div = I915_READ(pp_div_reg);
  2647. /* Pull timing values out of registers */
  2648. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2649. PANEL_POWER_UP_DELAY_SHIFT;
  2650. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2651. PANEL_LIGHT_ON_DELAY_SHIFT;
  2652. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2653. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2654. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2655. PANEL_POWER_DOWN_DELAY_SHIFT;
  2656. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2657. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2658. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2659. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2660. vbt = dev_priv->vbt.edp_pps;
  2661. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  2662. * our hw here, which are all in 100usec. */
  2663. spec.t1_t3 = 210 * 10;
  2664. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  2665. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  2666. spec.t10 = 500 * 10;
  2667. /* This one is special and actually in units of 100ms, but zero
  2668. * based in the hw (so we need to add 100 ms). But the sw vbt
  2669. * table multiplies it with 1000 to make it in units of 100usec,
  2670. * too. */
  2671. spec.t11_t12 = (510 + 100) * 10;
  2672. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2673. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2674. /* Use the max of the register settings and vbt. If both are
  2675. * unset, fall back to the spec limits. */
  2676. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  2677. spec.field : \
  2678. max(cur.field, vbt.field))
  2679. assign_final(t1_t3);
  2680. assign_final(t8);
  2681. assign_final(t9);
  2682. assign_final(t10);
  2683. assign_final(t11_t12);
  2684. #undef assign_final
  2685. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  2686. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2687. intel_dp->backlight_on_delay = get_delay(t8);
  2688. intel_dp->backlight_off_delay = get_delay(t9);
  2689. intel_dp->panel_power_down_delay = get_delay(t10);
  2690. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  2691. #undef get_delay
  2692. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  2693. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  2694. intel_dp->panel_power_cycle_delay);
  2695. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  2696. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  2697. if (out)
  2698. *out = final;
  2699. }
  2700. static void
  2701. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  2702. struct intel_dp *intel_dp,
  2703. struct edp_power_seq *seq)
  2704. {
  2705. struct drm_i915_private *dev_priv = dev->dev_private;
  2706. u32 pp_on, pp_off, pp_div, port_sel = 0;
  2707. int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
  2708. int pp_on_reg, pp_off_reg, pp_div_reg;
  2709. if (HAS_PCH_SPLIT(dev)) {
  2710. pp_on_reg = PCH_PP_ON_DELAYS;
  2711. pp_off_reg = PCH_PP_OFF_DELAYS;
  2712. pp_div_reg = PCH_PP_DIVISOR;
  2713. } else {
  2714. pp_on_reg = PIPEA_PP_ON_DELAYS;
  2715. pp_off_reg = PIPEA_PP_OFF_DELAYS;
  2716. pp_div_reg = PIPEA_PP_DIVISOR;
  2717. }
  2718. /* And finally store the new values in the power sequencer. */
  2719. pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  2720. (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
  2721. pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  2722. (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  2723. /* Compute the divisor for the pp clock, simply match the Bspec
  2724. * formula. */
  2725. pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
  2726. pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
  2727. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  2728. /* Haswell doesn't have any port selection bits for the panel
  2729. * power sequencer any more. */
  2730. if (IS_VALLEYVIEW(dev)) {
  2731. port_sel = I915_READ(pp_on_reg) & 0xc0000000;
  2732. } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  2733. if (dp_to_dig_port(intel_dp)->port == PORT_A)
  2734. port_sel = PANEL_POWER_PORT_DP_A;
  2735. else
  2736. port_sel = PANEL_POWER_PORT_DP_D;
  2737. }
  2738. pp_on |= port_sel;
  2739. I915_WRITE(pp_on_reg, pp_on);
  2740. I915_WRITE(pp_off_reg, pp_off);
  2741. I915_WRITE(pp_div_reg, pp_div);
  2742. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  2743. I915_READ(pp_on_reg),
  2744. I915_READ(pp_off_reg),
  2745. I915_READ(pp_div_reg));
  2746. }
  2747. static bool intel_edp_init_connector(struct intel_dp *intel_dp,
  2748. struct intel_connector *intel_connector)
  2749. {
  2750. struct drm_connector *connector = &intel_connector->base;
  2751. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2752. struct drm_device *dev = intel_dig_port->base.base.dev;
  2753. struct drm_i915_private *dev_priv = dev->dev_private;
  2754. struct drm_display_mode *fixed_mode = NULL;
  2755. struct edp_power_seq power_seq = { 0 };
  2756. bool has_dpcd;
  2757. struct drm_display_mode *scan;
  2758. struct edid *edid;
  2759. if (!is_edp(intel_dp))
  2760. return true;
  2761. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  2762. /* Cache DPCD and EDID for edp. */
  2763. ironlake_edp_panel_vdd_on(intel_dp);
  2764. has_dpcd = intel_dp_get_dpcd(intel_dp);
  2765. ironlake_edp_panel_vdd_off(intel_dp, false);
  2766. if (has_dpcd) {
  2767. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  2768. dev_priv->no_aux_handshake =
  2769. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  2770. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  2771. } else {
  2772. /* if this fails, presume the device is a ghost */
  2773. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  2774. return false;
  2775. }
  2776. /* We now know it's not a ghost, init power sequence regs. */
  2777. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  2778. &power_seq);
  2779. ironlake_edp_panel_vdd_on(intel_dp);
  2780. edid = drm_get_edid(connector, &intel_dp->adapter);
  2781. if (edid) {
  2782. if (drm_add_edid_modes(connector, edid)) {
  2783. drm_mode_connector_update_edid_property(connector,
  2784. edid);
  2785. drm_edid_to_eld(connector, edid);
  2786. } else {
  2787. kfree(edid);
  2788. edid = ERR_PTR(-EINVAL);
  2789. }
  2790. } else {
  2791. edid = ERR_PTR(-ENOENT);
  2792. }
  2793. intel_connector->edid = edid;
  2794. /* prefer fixed mode from EDID if available */
  2795. list_for_each_entry(scan, &connector->probed_modes, head) {
  2796. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  2797. fixed_mode = drm_mode_duplicate(dev, scan);
  2798. break;
  2799. }
  2800. }
  2801. /* fallback to VBT if available for eDP */
  2802. if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
  2803. fixed_mode = drm_mode_duplicate(dev,
  2804. dev_priv->vbt.lfp_lvds_vbt_mode);
  2805. if (fixed_mode)
  2806. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  2807. }
  2808. ironlake_edp_panel_vdd_off(intel_dp, false);
  2809. intel_panel_init(&intel_connector->panel, fixed_mode);
  2810. intel_panel_setup_backlight(connector);
  2811. return true;
  2812. }
  2813. bool
  2814. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  2815. struct intel_connector *intel_connector)
  2816. {
  2817. struct drm_connector *connector = &intel_connector->base;
  2818. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2819. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2820. struct drm_device *dev = intel_encoder->base.dev;
  2821. struct drm_i915_private *dev_priv = dev->dev_private;
  2822. enum port port = intel_dig_port->port;
  2823. const char *name = NULL;
  2824. int type, error;
  2825. /* Preserve the current hw state. */
  2826. intel_dp->DP = I915_READ(intel_dp->output_reg);
  2827. intel_dp->attached_connector = intel_connector;
  2828. type = DRM_MODE_CONNECTOR_DisplayPort;
  2829. /*
  2830. * FIXME : We need to initialize built-in panels before external panels.
  2831. * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
  2832. */
  2833. switch (port) {
  2834. case PORT_A:
  2835. type = DRM_MODE_CONNECTOR_eDP;
  2836. break;
  2837. case PORT_C:
  2838. if (IS_VALLEYVIEW(dev))
  2839. type = DRM_MODE_CONNECTOR_eDP;
  2840. break;
  2841. case PORT_D:
  2842. if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
  2843. type = DRM_MODE_CONNECTOR_eDP;
  2844. break;
  2845. default: /* silence GCC warning */
  2846. break;
  2847. }
  2848. /*
  2849. * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
  2850. * for DP the encoder type can be set by the caller to
  2851. * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
  2852. */
  2853. if (type == DRM_MODE_CONNECTOR_eDP)
  2854. intel_encoder->type = INTEL_OUTPUT_EDP;
  2855. DRM_DEBUG_KMS("Adding %s connector on port %c\n",
  2856. type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
  2857. port_name(port));
  2858. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  2859. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  2860. connector->interlace_allowed = true;
  2861. connector->doublescan_allowed = 0;
  2862. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  2863. ironlake_panel_vdd_work);
  2864. intel_connector_attach_encoder(intel_connector, intel_encoder);
  2865. drm_sysfs_connector_add(connector);
  2866. if (HAS_DDI(dev))
  2867. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  2868. else
  2869. intel_connector->get_hw_state = intel_connector_get_hw_state;
  2870. intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
  2871. if (HAS_DDI(dev)) {
  2872. switch (intel_dig_port->port) {
  2873. case PORT_A:
  2874. intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
  2875. break;
  2876. case PORT_B:
  2877. intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
  2878. break;
  2879. case PORT_C:
  2880. intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
  2881. break;
  2882. case PORT_D:
  2883. intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
  2884. break;
  2885. default:
  2886. BUG();
  2887. }
  2888. }
  2889. /* Set up the DDC bus. */
  2890. switch (port) {
  2891. case PORT_A:
  2892. intel_encoder->hpd_pin = HPD_PORT_A;
  2893. name = "DPDDC-A";
  2894. break;
  2895. case PORT_B:
  2896. intel_encoder->hpd_pin = HPD_PORT_B;
  2897. name = "DPDDC-B";
  2898. break;
  2899. case PORT_C:
  2900. intel_encoder->hpd_pin = HPD_PORT_C;
  2901. name = "DPDDC-C";
  2902. break;
  2903. case PORT_D:
  2904. intel_encoder->hpd_pin = HPD_PORT_D;
  2905. name = "DPDDC-D";
  2906. break;
  2907. default:
  2908. BUG();
  2909. }
  2910. error = intel_dp_i2c_init(intel_dp, intel_connector, name);
  2911. WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
  2912. error, port_name(port));
  2913. intel_dp->psr_setup_done = false;
  2914. if (!intel_edp_init_connector(intel_dp, intel_connector)) {
  2915. i2c_del_adapter(&intel_dp->adapter);
  2916. if (is_edp(intel_dp)) {
  2917. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2918. mutex_lock(&dev->mode_config.mutex);
  2919. ironlake_panel_vdd_off_sync(intel_dp);
  2920. mutex_unlock(&dev->mode_config.mutex);
  2921. }
  2922. drm_sysfs_connector_remove(connector);
  2923. drm_connector_cleanup(connector);
  2924. return false;
  2925. }
  2926. intel_dp_add_properties(intel_dp, connector);
  2927. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  2928. * 0xd. Failure to do so will result in spurious interrupts being
  2929. * generated on the port when a cable is not attached.
  2930. */
  2931. if (IS_G4X(dev) && !IS_GM45(dev)) {
  2932. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  2933. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  2934. }
  2935. return true;
  2936. }
  2937. void
  2938. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  2939. {
  2940. struct intel_digital_port *intel_dig_port;
  2941. struct intel_encoder *intel_encoder;
  2942. struct drm_encoder *encoder;
  2943. struct intel_connector *intel_connector;
  2944. intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
  2945. if (!intel_dig_port)
  2946. return;
  2947. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  2948. if (!intel_connector) {
  2949. kfree(intel_dig_port);
  2950. return;
  2951. }
  2952. intel_encoder = &intel_dig_port->base;
  2953. encoder = &intel_encoder->base;
  2954. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  2955. DRM_MODE_ENCODER_TMDS);
  2956. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  2957. intel_encoder->compute_config = intel_dp_compute_config;
  2958. intel_encoder->enable = intel_enable_dp;
  2959. intel_encoder->pre_enable = intel_pre_enable_dp;
  2960. intel_encoder->disable = intel_disable_dp;
  2961. intel_encoder->post_disable = intel_post_disable_dp;
  2962. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  2963. intel_encoder->get_config = intel_dp_get_config;
  2964. if (IS_VALLEYVIEW(dev))
  2965. intel_encoder->pre_pll_enable = intel_dp_pre_pll_enable;
  2966. intel_dig_port->port = port;
  2967. intel_dig_port->dp.output_reg = output_reg;
  2968. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2969. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2970. intel_encoder->cloneable = false;
  2971. intel_encoder->hot_plug = intel_dp_hot_plug;
  2972. if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
  2973. drm_encoder_cleanup(encoder);
  2974. kfree(intel_dig_port);
  2975. kfree(intel_connector);
  2976. }
  2977. }