pxa2xx_spi.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/errno.h>
  29. #include <linux/delay.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/hardware.h>
  33. #include <asm/delay.h>
  34. #include <asm/dma.h>
  35. #include <asm/arch/hardware.h>
  36. #include <asm/arch/pxa-regs.h>
  37. #include <asm/arch/pxa2xx_spi.h>
  38. MODULE_AUTHOR("Stephen Street");
  39. MODULE_DESCRIPTION("PXA2xx SSP SPI Contoller");
  40. MODULE_LICENSE("GPL");
  41. #define MAX_BUSES 3
  42. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  43. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  44. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
  45. #define DEFINE_SSP_REG(reg, off) \
  46. static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
  47. static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
  48. DEFINE_SSP_REG(SSCR0, 0x00)
  49. DEFINE_SSP_REG(SSCR1, 0x04)
  50. DEFINE_SSP_REG(SSSR, 0x08)
  51. DEFINE_SSP_REG(SSITR, 0x0c)
  52. DEFINE_SSP_REG(SSDR, 0x10)
  53. DEFINE_SSP_REG(SSTO, 0x28)
  54. DEFINE_SSP_REG(SSPSP, 0x2c)
  55. #define START_STATE ((void*)0)
  56. #define RUNNING_STATE ((void*)1)
  57. #define DONE_STATE ((void*)2)
  58. #define ERROR_STATE ((void*)-1)
  59. #define QUEUE_RUNNING 0
  60. #define QUEUE_STOPPED 1
  61. struct driver_data {
  62. /* Driver model hookup */
  63. struct platform_device *pdev;
  64. /* SPI framework hookup */
  65. enum pxa_ssp_type ssp_type;
  66. struct spi_master *master;
  67. /* PXA hookup */
  68. struct pxa2xx_spi_master *master_info;
  69. /* DMA setup stuff */
  70. int rx_channel;
  71. int tx_channel;
  72. u32 *null_dma_buf;
  73. /* SSP register addresses */
  74. void *ioaddr;
  75. u32 ssdr_physical;
  76. /* SSP masks*/
  77. u32 dma_cr1;
  78. u32 int_cr1;
  79. u32 clear_sr;
  80. u32 mask_sr;
  81. /* Driver message queue */
  82. struct workqueue_struct *workqueue;
  83. struct work_struct pump_messages;
  84. spinlock_t lock;
  85. struct list_head queue;
  86. int busy;
  87. int run;
  88. /* Message Transfer pump */
  89. struct tasklet_struct pump_transfers;
  90. /* Current message transfer state info */
  91. struct spi_message* cur_msg;
  92. struct spi_transfer* cur_transfer;
  93. struct chip_data *cur_chip;
  94. size_t len;
  95. void *tx;
  96. void *tx_end;
  97. void *rx;
  98. void *rx_end;
  99. int dma_mapped;
  100. dma_addr_t rx_dma;
  101. dma_addr_t tx_dma;
  102. size_t rx_map_len;
  103. size_t tx_map_len;
  104. u8 n_bytes;
  105. u32 dma_width;
  106. int cs_change;
  107. void (*write)(struct driver_data *drv_data);
  108. void (*read)(struct driver_data *drv_data);
  109. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  110. void (*cs_control)(u32 command);
  111. };
  112. struct chip_data {
  113. u32 cr0;
  114. u32 cr1;
  115. u32 to;
  116. u32 psp;
  117. u32 timeout;
  118. u8 n_bytes;
  119. u32 dma_width;
  120. u32 dma_burst_size;
  121. u32 threshold;
  122. u32 dma_threshold;
  123. u8 enable_dma;
  124. u8 bits_per_word;
  125. u32 speed_hz;
  126. void (*write)(struct driver_data *drv_data);
  127. void (*read)(struct driver_data *drv_data);
  128. void (*cs_control)(u32 command);
  129. };
  130. static void pump_messages(void *data);
  131. static int flush(struct driver_data *drv_data)
  132. {
  133. unsigned long limit = loops_per_jiffy << 1;
  134. void *reg = drv_data->ioaddr;
  135. do {
  136. while (read_SSSR(reg) & SSSR_RNE) {
  137. read_SSDR(reg);
  138. }
  139. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  140. write_SSSR(SSSR_ROR, reg);
  141. return limit;
  142. }
  143. static void restore_state(struct driver_data *drv_data)
  144. {
  145. void *reg = drv_data->ioaddr;
  146. /* Clear status and disable clock */
  147. write_SSSR(drv_data->clear_sr, reg);
  148. write_SSCR0(drv_data->cur_chip->cr0 & ~SSCR0_SSE, reg);
  149. /* Load the registers */
  150. write_SSCR1(drv_data->cur_chip->cr1, reg);
  151. write_SSCR0(drv_data->cur_chip->cr0, reg);
  152. if (drv_data->ssp_type != PXA25x_SSP) {
  153. write_SSTO(0, reg);
  154. write_SSPSP(drv_data->cur_chip->psp, reg);
  155. }
  156. }
  157. static void null_cs_control(u32 command)
  158. {
  159. }
  160. static void null_writer(struct driver_data *drv_data)
  161. {
  162. void *reg = drv_data->ioaddr;
  163. u8 n_bytes = drv_data->n_bytes;
  164. while ((read_SSSR(reg) & SSSR_TNF)
  165. && (drv_data->tx < drv_data->tx_end)) {
  166. write_SSDR(0, reg);
  167. drv_data->tx += n_bytes;
  168. }
  169. }
  170. static void null_reader(struct driver_data *drv_data)
  171. {
  172. void *reg = drv_data->ioaddr;
  173. u8 n_bytes = drv_data->n_bytes;
  174. while ((read_SSSR(reg) & SSSR_RNE)
  175. && (drv_data->rx < drv_data->rx_end)) {
  176. read_SSDR(reg);
  177. drv_data->rx += n_bytes;
  178. }
  179. }
  180. static void u8_writer(struct driver_data *drv_data)
  181. {
  182. void *reg = drv_data->ioaddr;
  183. while ((read_SSSR(reg) & SSSR_TNF)
  184. && (drv_data->tx < drv_data->tx_end)) {
  185. write_SSDR(*(u8 *)(drv_data->tx), reg);
  186. ++drv_data->tx;
  187. }
  188. }
  189. static void u8_reader(struct driver_data *drv_data)
  190. {
  191. void *reg = drv_data->ioaddr;
  192. while ((read_SSSR(reg) & SSSR_RNE)
  193. && (drv_data->rx < drv_data->rx_end)) {
  194. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  195. ++drv_data->rx;
  196. }
  197. }
  198. static void u16_writer(struct driver_data *drv_data)
  199. {
  200. void *reg = drv_data->ioaddr;
  201. while ((read_SSSR(reg) & SSSR_TNF)
  202. && (drv_data->tx < drv_data->tx_end)) {
  203. write_SSDR(*(u16 *)(drv_data->tx), reg);
  204. drv_data->tx += 2;
  205. }
  206. }
  207. static void u16_reader(struct driver_data *drv_data)
  208. {
  209. void *reg = drv_data->ioaddr;
  210. while ((read_SSSR(reg) & SSSR_RNE)
  211. && (drv_data->rx < drv_data->rx_end)) {
  212. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  213. drv_data->rx += 2;
  214. }
  215. }
  216. static void u32_writer(struct driver_data *drv_data)
  217. {
  218. void *reg = drv_data->ioaddr;
  219. while ((read_SSSR(reg) & SSSR_TNF)
  220. && (drv_data->tx < drv_data->tx_end)) {
  221. write_SSDR(*(u32 *)(drv_data->tx), reg);
  222. drv_data->tx += 4;
  223. }
  224. }
  225. static void u32_reader(struct driver_data *drv_data)
  226. {
  227. void *reg = drv_data->ioaddr;
  228. while ((read_SSSR(reg) & SSSR_RNE)
  229. && (drv_data->rx < drv_data->rx_end)) {
  230. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  231. drv_data->rx += 4;
  232. }
  233. }
  234. static void *next_transfer(struct driver_data *drv_data)
  235. {
  236. struct spi_message *msg = drv_data->cur_msg;
  237. struct spi_transfer *trans = drv_data->cur_transfer;
  238. /* Move to next transfer */
  239. if (trans->transfer_list.next != &msg->transfers) {
  240. drv_data->cur_transfer =
  241. list_entry(trans->transfer_list.next,
  242. struct spi_transfer,
  243. transfer_list);
  244. return RUNNING_STATE;
  245. } else
  246. return DONE_STATE;
  247. }
  248. static int map_dma_buffers(struct driver_data *drv_data)
  249. {
  250. struct spi_message *msg = drv_data->cur_msg;
  251. struct device *dev = &msg->spi->dev;
  252. if (!drv_data->cur_chip->enable_dma)
  253. return 0;
  254. if (msg->is_dma_mapped)
  255. return drv_data->rx_dma && drv_data->tx_dma;
  256. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  257. return 0;
  258. /* Modify setup if rx buffer is null */
  259. if (drv_data->rx == NULL) {
  260. *drv_data->null_dma_buf = 0;
  261. drv_data->rx = drv_data->null_dma_buf;
  262. drv_data->rx_map_len = 4;
  263. } else
  264. drv_data->rx_map_len = drv_data->len;
  265. /* Modify setup if tx buffer is null */
  266. if (drv_data->tx == NULL) {
  267. *drv_data->null_dma_buf = 0;
  268. drv_data->tx = drv_data->null_dma_buf;
  269. drv_data->tx_map_len = 4;
  270. } else
  271. drv_data->tx_map_len = drv_data->len;
  272. /* Stream map the rx buffer */
  273. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  274. drv_data->rx_map_len,
  275. DMA_FROM_DEVICE);
  276. if (dma_mapping_error(drv_data->rx_dma))
  277. return 0;
  278. /* Stream map the tx buffer */
  279. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  280. drv_data->tx_map_len,
  281. DMA_TO_DEVICE);
  282. if (dma_mapping_error(drv_data->tx_dma)) {
  283. dma_unmap_single(dev, drv_data->rx_dma,
  284. drv_data->rx_map_len, DMA_FROM_DEVICE);
  285. return 0;
  286. }
  287. return 1;
  288. }
  289. static void unmap_dma_buffers(struct driver_data *drv_data)
  290. {
  291. struct device *dev;
  292. if (!drv_data->dma_mapped)
  293. return;
  294. if (!drv_data->cur_msg->is_dma_mapped) {
  295. dev = &drv_data->cur_msg->spi->dev;
  296. dma_unmap_single(dev, drv_data->rx_dma,
  297. drv_data->rx_map_len, DMA_FROM_DEVICE);
  298. dma_unmap_single(dev, drv_data->tx_dma,
  299. drv_data->tx_map_len, DMA_TO_DEVICE);
  300. }
  301. drv_data->dma_mapped = 0;
  302. }
  303. /* caller already set message->status; dma and pio irqs are blocked */
  304. static void giveback(struct spi_message *message, struct driver_data *drv_data)
  305. {
  306. struct spi_transfer* last_transfer;
  307. last_transfer = list_entry(message->transfers.prev,
  308. struct spi_transfer,
  309. transfer_list);
  310. if (!last_transfer->cs_change)
  311. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  312. message->state = NULL;
  313. if (message->complete)
  314. message->complete(message->context);
  315. drv_data->cur_msg = NULL;
  316. drv_data->cur_transfer = NULL;
  317. drv_data->cur_chip = NULL;
  318. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  319. }
  320. static int wait_ssp_rx_stall(void *ioaddr)
  321. {
  322. unsigned long limit = loops_per_jiffy << 1;
  323. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  324. cpu_relax();
  325. return limit;
  326. }
  327. static int wait_dma_channel_stop(int channel)
  328. {
  329. unsigned long limit = loops_per_jiffy << 1;
  330. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  331. cpu_relax();
  332. return limit;
  333. }
  334. static void dma_handler(int channel, void *data, struct pt_regs *regs)
  335. {
  336. struct driver_data *drv_data = data;
  337. struct spi_message *msg = drv_data->cur_msg;
  338. void *reg = drv_data->ioaddr;
  339. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  340. u32 trailing_sssr = 0;
  341. if (irq_status & DCSR_BUSERR) {
  342. /* Disable interrupts, clear status and reset DMA */
  343. if (drv_data->ssp_type != PXA25x_SSP)
  344. write_SSTO(0, reg);
  345. write_SSSR(drv_data->clear_sr, reg);
  346. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  347. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  348. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  349. if (flush(drv_data) == 0)
  350. dev_err(&drv_data->pdev->dev,
  351. "dma_handler: flush fail\n");
  352. unmap_dma_buffers(drv_data);
  353. if (channel == drv_data->tx_channel)
  354. dev_err(&drv_data->pdev->dev,
  355. "dma_handler: bad bus address on "
  356. "tx channel %d, source %x target = %x\n",
  357. channel, DSADR(channel), DTADR(channel));
  358. else
  359. dev_err(&drv_data->pdev->dev,
  360. "dma_handler: bad bus address on "
  361. "rx channel %d, source %x target = %x\n",
  362. channel, DSADR(channel), DTADR(channel));
  363. msg->state = ERROR_STATE;
  364. tasklet_schedule(&drv_data->pump_transfers);
  365. }
  366. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  367. if ((drv_data->ssp_type == PXA25x_SSP)
  368. && (channel == drv_data->tx_channel)
  369. && (irq_status & DCSR_ENDINTR)) {
  370. /* Wait for rx to stall */
  371. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  372. dev_err(&drv_data->pdev->dev,
  373. "dma_handler: ssp rx stall failed\n");
  374. /* Clear and disable interrupts on SSP and DMA channels*/
  375. write_SSSR(drv_data->clear_sr, reg);
  376. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  377. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  378. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  379. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  380. dev_err(&drv_data->pdev->dev,
  381. "dma_handler: dma rx channel stop failed\n");
  382. unmap_dma_buffers(drv_data);
  383. /* Read trailing bytes */
  384. /* Calculate number of trailing bytes, read them */
  385. trailing_sssr = read_SSSR(reg);
  386. if ((trailing_sssr & 0xf008) != 0xf000) {
  387. drv_data->rx = drv_data->rx_end -
  388. (((trailing_sssr >> 12) & 0x0f) + 1);
  389. drv_data->read(drv_data);
  390. }
  391. msg->actual_length += drv_data->len;
  392. /* Release chip select if requested, transfer delays are
  393. * handled in pump_transfers */
  394. if (drv_data->cs_change)
  395. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  396. /* Move to next transfer */
  397. msg->state = next_transfer(drv_data);
  398. /* Schedule transfer tasklet */
  399. tasklet_schedule(&drv_data->pump_transfers);
  400. }
  401. }
  402. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  403. {
  404. u32 irq_status;
  405. u32 trailing_sssr = 0;
  406. struct spi_message *msg = drv_data->cur_msg;
  407. void *reg = drv_data->ioaddr;
  408. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  409. if (irq_status & SSSR_ROR) {
  410. /* Clear and disable interrupts on SSP and DMA channels*/
  411. if (drv_data->ssp_type != PXA25x_SSP)
  412. write_SSTO(0, reg);
  413. write_SSSR(drv_data->clear_sr, reg);
  414. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  415. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  416. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  417. unmap_dma_buffers(drv_data);
  418. if (flush(drv_data) == 0)
  419. dev_err(&drv_data->pdev->dev,
  420. "dma_transfer: flush fail\n");
  421. dev_warn(&drv_data->pdev->dev, "dma_transfer: fifo overun\n");
  422. drv_data->cur_msg->state = ERROR_STATE;
  423. tasklet_schedule(&drv_data->pump_transfers);
  424. return IRQ_HANDLED;
  425. }
  426. /* Check for false positive timeout */
  427. if ((irq_status & SSSR_TINT) && DCSR(drv_data->tx_channel) & DCSR_RUN) {
  428. write_SSSR(SSSR_TINT, reg);
  429. return IRQ_HANDLED;
  430. }
  431. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  432. /* Clear and disable interrupts on SSP and DMA channels*/
  433. if (drv_data->ssp_type != PXA25x_SSP)
  434. write_SSTO(0, reg);
  435. write_SSSR(drv_data->clear_sr, reg);
  436. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  437. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  438. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  439. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  440. dev_err(&drv_data->pdev->dev,
  441. "dma_transfer: dma rx channel stop failed\n");
  442. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  443. dev_err(&drv_data->pdev->dev,
  444. "dma_transfer: ssp rx stall failed\n");
  445. unmap_dma_buffers(drv_data);
  446. /* Calculate number of trailing bytes, read them */
  447. trailing_sssr = read_SSSR(reg);
  448. if ((trailing_sssr & 0xf008) != 0xf000) {
  449. drv_data->rx = drv_data->rx_end -
  450. (((trailing_sssr >> 12) & 0x0f) + 1);
  451. drv_data->read(drv_data);
  452. }
  453. msg->actual_length += drv_data->len;
  454. /* Release chip select if requested, transfer delays are
  455. * handled in pump_transfers */
  456. if (drv_data->cs_change)
  457. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  458. /* Move to next transfer */
  459. msg->state = next_transfer(drv_data);
  460. /* Schedule transfer tasklet */
  461. tasklet_schedule(&drv_data->pump_transfers);
  462. return IRQ_HANDLED;
  463. }
  464. /* Opps problem detected */
  465. return IRQ_NONE;
  466. }
  467. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  468. {
  469. u32 irq_status;
  470. struct spi_message *msg = drv_data->cur_msg;
  471. void *reg = drv_data->ioaddr;
  472. irqreturn_t handled = IRQ_NONE;
  473. unsigned long limit = loops_per_jiffy << 1;
  474. while ((irq_status = (read_SSSR(reg) & drv_data->mask_sr))) {
  475. if (irq_status & SSSR_ROR) {
  476. /* Clear and disable interrupts */
  477. if (drv_data->ssp_type != PXA25x_SSP)
  478. write_SSTO(0, reg);
  479. write_SSSR(drv_data->clear_sr, reg);
  480. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  481. if (flush(drv_data) == 0)
  482. dev_err(&drv_data->pdev->dev,
  483. "interrupt_transfer: flush fail\n");
  484. dev_warn(&drv_data->pdev->dev,
  485. "interrupt_transfer: fifo overun\n");
  486. msg->state = ERROR_STATE;
  487. tasklet_schedule(&drv_data->pump_transfers);
  488. return IRQ_HANDLED;
  489. }
  490. /* Look for false positive timeout */
  491. if ((irq_status & SSSR_TINT)
  492. && (drv_data->rx < drv_data->rx_end))
  493. write_SSSR(SSSR_TINT, reg);
  494. /* Pump data */
  495. drv_data->read(drv_data);
  496. drv_data->write(drv_data);
  497. if (drv_data->tx == drv_data->tx_end) {
  498. /* Disable tx interrupt */
  499. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  500. /* PXA25x_SSP has no timeout, read trailing bytes */
  501. if (drv_data->ssp_type == PXA25x_SSP) {
  502. while ((read_SSSR(reg) & SSSR_BSY) && limit--)
  503. drv_data->read(drv_data);
  504. if (limit == 0)
  505. dev_err(&drv_data->pdev->dev,
  506. "interrupt_transfer: "
  507. "trailing byte read failed\n");
  508. }
  509. }
  510. if ((irq_status & SSSR_TINT)
  511. || (drv_data->rx == drv_data->rx_end)) {
  512. /* Clear timeout */
  513. if (drv_data->ssp_type != PXA25x_SSP)
  514. write_SSTO(0, reg);
  515. write_SSSR(drv_data->clear_sr, reg);
  516. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  517. /* Update total byte transfered */
  518. msg->actual_length += drv_data->len;
  519. /* Release chip select if requested, transfer delays are
  520. * handled in pump_transfers */
  521. if (drv_data->cs_change)
  522. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  523. /* Move to next transfer */
  524. msg->state = next_transfer(drv_data);
  525. /* Schedule transfer tasklet */
  526. tasklet_schedule(&drv_data->pump_transfers);
  527. return IRQ_HANDLED;
  528. }
  529. /* We did something */
  530. handled = IRQ_HANDLED;
  531. }
  532. return handled;
  533. }
  534. static irqreturn_t ssp_int(int irq, void *dev_id, struct pt_regs *regs)
  535. {
  536. struct driver_data *drv_data = (struct driver_data *)dev_id;
  537. if (!drv_data->cur_msg) {
  538. dev_err(&drv_data->pdev->dev, "bad message state "
  539. "in interrupt handler\n");
  540. /* Never fail */
  541. return IRQ_HANDLED;
  542. }
  543. return drv_data->transfer_handler(drv_data);
  544. }
  545. static void pump_transfers(unsigned long data)
  546. {
  547. struct driver_data *drv_data = (struct driver_data *)data;
  548. struct spi_message *message = NULL;
  549. struct spi_transfer *transfer = NULL;
  550. struct spi_transfer *previous = NULL;
  551. struct chip_data *chip = NULL;
  552. void *reg = drv_data->ioaddr;
  553. u32 clk_div = 0;
  554. u8 bits = 0;
  555. u32 speed = 0;
  556. u32 cr0;
  557. /* Get current state information */
  558. message = drv_data->cur_msg;
  559. transfer = drv_data->cur_transfer;
  560. chip = drv_data->cur_chip;
  561. /* Handle for abort */
  562. if (message->state == ERROR_STATE) {
  563. message->status = -EIO;
  564. giveback(message, drv_data);
  565. return;
  566. }
  567. /* Handle end of message */
  568. if (message->state == DONE_STATE) {
  569. message->status = 0;
  570. giveback(message, drv_data);
  571. return;
  572. }
  573. /* Delay if requested at end of transfer*/
  574. if (message->state == RUNNING_STATE) {
  575. previous = list_entry(transfer->transfer_list.prev,
  576. struct spi_transfer,
  577. transfer_list);
  578. if (previous->delay_usecs)
  579. udelay(previous->delay_usecs);
  580. }
  581. /* Setup the transfer state based on the type of transfer */
  582. if (flush(drv_data) == 0) {
  583. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  584. message->status = -EIO;
  585. giveback(message, drv_data);
  586. return;
  587. }
  588. drv_data->n_bytes = chip->n_bytes;
  589. drv_data->dma_width = chip->dma_width;
  590. drv_data->cs_control = chip->cs_control;
  591. drv_data->tx = (void *)transfer->tx_buf;
  592. drv_data->tx_end = drv_data->tx + transfer->len;
  593. drv_data->rx = transfer->rx_buf;
  594. drv_data->rx_end = drv_data->rx + transfer->len;
  595. drv_data->rx_dma = transfer->rx_dma;
  596. drv_data->tx_dma = transfer->tx_dma;
  597. drv_data->len = transfer->len;
  598. drv_data->write = drv_data->tx ? chip->write : null_writer;
  599. drv_data->read = drv_data->rx ? chip->read : null_reader;
  600. drv_data->cs_change = transfer->cs_change;
  601. /* Change speed and bit per word on a per transfer */
  602. if (transfer->speed_hz || transfer->bits_per_word) {
  603. /* Disable clock */
  604. write_SSCR0(chip->cr0 & ~SSCR0_SSE, reg);
  605. cr0 = chip->cr0;
  606. bits = chip->bits_per_word;
  607. speed = chip->speed_hz;
  608. if (transfer->speed_hz)
  609. speed = transfer->speed_hz;
  610. if (transfer->bits_per_word)
  611. bits = transfer->bits_per_word;
  612. if (reg == SSP1_VIRT)
  613. clk_div = SSP1_SerClkDiv(speed);
  614. else if (reg == SSP2_VIRT)
  615. clk_div = SSP2_SerClkDiv(speed);
  616. else if (reg == SSP3_VIRT)
  617. clk_div = SSP3_SerClkDiv(speed);
  618. if (bits <= 8) {
  619. drv_data->n_bytes = 1;
  620. drv_data->dma_width = DCMD_WIDTH1;
  621. drv_data->read = drv_data->read != null_reader ?
  622. u8_reader : null_reader;
  623. drv_data->write = drv_data->write != null_writer ?
  624. u8_writer : null_writer;
  625. } else if (bits <= 16) {
  626. drv_data->n_bytes = 2;
  627. drv_data->dma_width = DCMD_WIDTH2;
  628. drv_data->read = drv_data->read != null_reader ?
  629. u16_reader : null_reader;
  630. drv_data->write = drv_data->write != null_writer ?
  631. u16_writer : null_writer;
  632. } else if (bits <= 32) {
  633. drv_data->n_bytes = 4;
  634. drv_data->dma_width = DCMD_WIDTH4;
  635. drv_data->read = drv_data->read != null_reader ?
  636. u32_reader : null_reader;
  637. drv_data->write = drv_data->write != null_writer ?
  638. u32_writer : null_writer;
  639. }
  640. cr0 = clk_div
  641. | SSCR0_Motorola
  642. | SSCR0_DataSize(bits & 0x0f)
  643. | SSCR0_SSE
  644. | (bits > 16 ? SSCR0_EDSS : 0);
  645. /* Start it back up */
  646. write_SSCR0(cr0, reg);
  647. }
  648. message->state = RUNNING_STATE;
  649. /* Try to map dma buffer and do a dma transfer if successful */
  650. if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) {
  651. /* Ensure we have the correct interrupt handler */
  652. drv_data->transfer_handler = dma_transfer;
  653. /* Setup rx DMA Channel */
  654. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  655. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  656. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  657. if (drv_data->rx == drv_data->null_dma_buf)
  658. /* No target address increment */
  659. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  660. | drv_data->dma_width
  661. | chip->dma_burst_size
  662. | drv_data->len;
  663. else
  664. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  665. | DCMD_FLOWSRC
  666. | drv_data->dma_width
  667. | chip->dma_burst_size
  668. | drv_data->len;
  669. /* Setup tx DMA Channel */
  670. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  671. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  672. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  673. if (drv_data->tx == drv_data->null_dma_buf)
  674. /* No source address increment */
  675. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  676. | drv_data->dma_width
  677. | chip->dma_burst_size
  678. | drv_data->len;
  679. else
  680. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  681. | DCMD_FLOWTRG
  682. | drv_data->dma_width
  683. | chip->dma_burst_size
  684. | drv_data->len;
  685. /* Enable dma end irqs on SSP to detect end of transfer */
  686. if (drv_data->ssp_type == PXA25x_SSP)
  687. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  688. /* Fix me, need to handle cs polarity */
  689. drv_data->cs_control(PXA2XX_CS_ASSERT);
  690. /* Go baby, go */
  691. write_SSSR(drv_data->clear_sr, reg);
  692. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  693. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  694. if (drv_data->ssp_type != PXA25x_SSP)
  695. write_SSTO(chip->timeout, reg);
  696. write_SSCR1(chip->cr1
  697. | chip->dma_threshold
  698. | drv_data->dma_cr1,
  699. reg);
  700. } else {
  701. /* Ensure we have the correct interrupt handler */
  702. drv_data->transfer_handler = interrupt_transfer;
  703. /* Fix me, need to handle cs polarity */
  704. drv_data->cs_control(PXA2XX_CS_ASSERT);
  705. /* Go baby, go */
  706. write_SSSR(drv_data->clear_sr, reg);
  707. if (drv_data->ssp_type != PXA25x_SSP)
  708. write_SSTO(chip->timeout, reg);
  709. write_SSCR1(chip->cr1
  710. | chip->threshold
  711. | drv_data->int_cr1,
  712. reg);
  713. }
  714. }
  715. static void pump_messages(void *data)
  716. {
  717. struct driver_data *drv_data = data;
  718. unsigned long flags;
  719. /* Lock queue and check for queue work */
  720. spin_lock_irqsave(&drv_data->lock, flags);
  721. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  722. drv_data->busy = 0;
  723. spin_unlock_irqrestore(&drv_data->lock, flags);
  724. return;
  725. }
  726. /* Make sure we are not already running a message */
  727. if (drv_data->cur_msg) {
  728. spin_unlock_irqrestore(&drv_data->lock, flags);
  729. return;
  730. }
  731. /* Extract head of queue */
  732. drv_data->cur_msg = list_entry(drv_data->queue.next,
  733. struct spi_message, queue);
  734. list_del_init(&drv_data->cur_msg->queue);
  735. drv_data->busy = 1;
  736. spin_unlock_irqrestore(&drv_data->lock, flags);
  737. /* Initial message state*/
  738. drv_data->cur_msg->state = START_STATE;
  739. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  740. struct spi_transfer,
  741. transfer_list);
  742. /* Setup the SSP using the per chip configuration */
  743. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  744. restore_state(drv_data);
  745. /* Mark as busy and launch transfers */
  746. tasklet_schedule(&drv_data->pump_transfers);
  747. }
  748. static int transfer(struct spi_device *spi, struct spi_message *msg)
  749. {
  750. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  751. unsigned long flags;
  752. spin_lock_irqsave(&drv_data->lock, flags);
  753. if (drv_data->run == QUEUE_STOPPED) {
  754. spin_unlock_irqrestore(&drv_data->lock, flags);
  755. return -ESHUTDOWN;
  756. }
  757. msg->actual_length = 0;
  758. msg->status = -EINPROGRESS;
  759. msg->state = START_STATE;
  760. list_add_tail(&msg->queue, &drv_data->queue);
  761. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  762. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  763. spin_unlock_irqrestore(&drv_data->lock, flags);
  764. return 0;
  765. }
  766. static int setup(struct spi_device *spi)
  767. {
  768. struct pxa2xx_spi_chip *chip_info = NULL;
  769. struct chip_data *chip;
  770. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  771. unsigned int clk_div;
  772. if (!spi->bits_per_word)
  773. spi->bits_per_word = 8;
  774. if (drv_data->ssp_type != PXA25x_SSP
  775. && (spi->bits_per_word < 4 || spi->bits_per_word > 32))
  776. return -EINVAL;
  777. else if (spi->bits_per_word < 4 || spi->bits_per_word > 16)
  778. return -EINVAL;
  779. /* Only alloc (or use chip_info) on first setup */
  780. chip = spi_get_ctldata(spi);
  781. if (chip == NULL) {
  782. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  783. if (!chip)
  784. return -ENOMEM;
  785. chip->cs_control = null_cs_control;
  786. chip->enable_dma = 0;
  787. chip->timeout = 5;
  788. chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
  789. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  790. DCMD_BURST8 : 0;
  791. chip_info = spi->controller_data;
  792. }
  793. /* chip_info isn't always needed */
  794. if (chip_info) {
  795. if (chip_info->cs_control)
  796. chip->cs_control = chip_info->cs_control;
  797. chip->timeout = (chip_info->timeout_microsecs * 10000) / 2712;
  798. chip->threshold = SSCR1_RxTresh(chip_info->rx_threshold)
  799. | SSCR1_TxTresh(chip_info->tx_threshold);
  800. chip->enable_dma = chip_info->dma_burst_size != 0
  801. && drv_data->master_info->enable_dma;
  802. chip->dma_threshold = 0;
  803. if (chip->enable_dma) {
  804. if (chip_info->dma_burst_size <= 8) {
  805. chip->dma_threshold = SSCR1_RxTresh(8)
  806. | SSCR1_TxTresh(8);
  807. chip->dma_burst_size = DCMD_BURST8;
  808. } else if (chip_info->dma_burst_size <= 16) {
  809. chip->dma_threshold = SSCR1_RxTresh(16)
  810. | SSCR1_TxTresh(16);
  811. chip->dma_burst_size = DCMD_BURST16;
  812. } else {
  813. chip->dma_threshold = SSCR1_RxTresh(32)
  814. | SSCR1_TxTresh(32);
  815. chip->dma_burst_size = DCMD_BURST32;
  816. }
  817. }
  818. if (chip_info->enable_loopback)
  819. chip->cr1 = SSCR1_LBM;
  820. }
  821. if (drv_data->ioaddr == SSP1_VIRT)
  822. clk_div = SSP1_SerClkDiv(spi->max_speed_hz);
  823. else if (drv_data->ioaddr == SSP2_VIRT)
  824. clk_div = SSP2_SerClkDiv(spi->max_speed_hz);
  825. else if (drv_data->ioaddr == SSP3_VIRT)
  826. clk_div = SSP3_SerClkDiv(spi->max_speed_hz);
  827. else
  828. return -ENODEV;
  829. chip->speed_hz = spi->max_speed_hz;
  830. chip->cr0 = clk_div
  831. | SSCR0_Motorola
  832. | SSCR0_DataSize(spi->bits_per_word & 0x0f)
  833. | SSCR0_SSE
  834. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  835. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) << 4)
  836. | (((spi->mode & SPI_CPOL) != 0) << 3);
  837. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  838. if (drv_data->ssp_type != PXA25x_SSP)
  839. dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n",
  840. spi->bits_per_word,
  841. (CLOCK_SPEED_HZ)
  842. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  843. spi->mode & 0x3);
  844. else
  845. dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n",
  846. spi->bits_per_word,
  847. (CLOCK_SPEED_HZ/2)
  848. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  849. spi->mode & 0x3);
  850. if (spi->bits_per_word <= 8) {
  851. chip->n_bytes = 1;
  852. chip->dma_width = DCMD_WIDTH1;
  853. chip->read = u8_reader;
  854. chip->write = u8_writer;
  855. } else if (spi->bits_per_word <= 16) {
  856. chip->n_bytes = 2;
  857. chip->dma_width = DCMD_WIDTH2;
  858. chip->read = u16_reader;
  859. chip->write = u16_writer;
  860. } else if (spi->bits_per_word <= 32) {
  861. chip->cr0 |= SSCR0_EDSS;
  862. chip->n_bytes = 4;
  863. chip->dma_width = DCMD_WIDTH4;
  864. chip->read = u32_reader;
  865. chip->write = u32_writer;
  866. } else {
  867. dev_err(&spi->dev, "invalid wordsize\n");
  868. kfree(chip);
  869. return -ENODEV;
  870. }
  871. chip->bits_per_word = spi->bits_per_word;
  872. spi_set_ctldata(spi, chip);
  873. return 0;
  874. }
  875. static void cleanup(const struct spi_device *spi)
  876. {
  877. struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
  878. kfree(chip);
  879. }
  880. static int init_queue(struct driver_data *drv_data)
  881. {
  882. INIT_LIST_HEAD(&drv_data->queue);
  883. spin_lock_init(&drv_data->lock);
  884. drv_data->run = QUEUE_STOPPED;
  885. drv_data->busy = 0;
  886. tasklet_init(&drv_data->pump_transfers,
  887. pump_transfers, (unsigned long)drv_data);
  888. INIT_WORK(&drv_data->pump_messages, pump_messages, drv_data);
  889. drv_data->workqueue = create_singlethread_workqueue(
  890. drv_data->master->cdev.dev->bus_id);
  891. if (drv_data->workqueue == NULL)
  892. return -EBUSY;
  893. return 0;
  894. }
  895. static int start_queue(struct driver_data *drv_data)
  896. {
  897. unsigned long flags;
  898. spin_lock_irqsave(&drv_data->lock, flags);
  899. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  900. spin_unlock_irqrestore(&drv_data->lock, flags);
  901. return -EBUSY;
  902. }
  903. drv_data->run = QUEUE_RUNNING;
  904. drv_data->cur_msg = NULL;
  905. drv_data->cur_transfer = NULL;
  906. drv_data->cur_chip = NULL;
  907. spin_unlock_irqrestore(&drv_data->lock, flags);
  908. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  909. return 0;
  910. }
  911. static int stop_queue(struct driver_data *drv_data)
  912. {
  913. unsigned long flags;
  914. unsigned limit = 500;
  915. int status = 0;
  916. spin_lock_irqsave(&drv_data->lock, flags);
  917. /* This is a bit lame, but is optimized for the common execution path.
  918. * A wait_queue on the drv_data->busy could be used, but then the common
  919. * execution path (pump_messages) would be required to call wake_up or
  920. * friends on every SPI message. Do this instead */
  921. drv_data->run = QUEUE_STOPPED;
  922. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  923. spin_unlock_irqrestore(&drv_data->lock, flags);
  924. msleep(10);
  925. spin_lock_irqsave(&drv_data->lock, flags);
  926. }
  927. if (!list_empty(&drv_data->queue) || drv_data->busy)
  928. status = -EBUSY;
  929. spin_unlock_irqrestore(&drv_data->lock, flags);
  930. return status;
  931. }
  932. static int destroy_queue(struct driver_data *drv_data)
  933. {
  934. int status;
  935. status = stop_queue(drv_data);
  936. if (status != 0)
  937. return status;
  938. destroy_workqueue(drv_data->workqueue);
  939. return 0;
  940. }
  941. static int pxa2xx_spi_probe(struct platform_device *pdev)
  942. {
  943. struct device *dev = &pdev->dev;
  944. struct pxa2xx_spi_master *platform_info;
  945. struct spi_master *master;
  946. struct driver_data *drv_data = 0;
  947. struct resource *memory_resource;
  948. int irq;
  949. int status = 0;
  950. platform_info = dev->platform_data;
  951. if (platform_info->ssp_type == SSP_UNDEFINED) {
  952. dev_err(&pdev->dev, "undefined SSP\n");
  953. return -ENODEV;
  954. }
  955. /* Allocate master with space for drv_data and null dma buffer */
  956. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  957. if (!master) {
  958. dev_err(&pdev->dev, "can not alloc spi_master\n");
  959. return -ENOMEM;
  960. }
  961. drv_data = spi_master_get_devdata(master);
  962. drv_data->master = master;
  963. drv_data->master_info = platform_info;
  964. drv_data->pdev = pdev;
  965. master->bus_num = pdev->id;
  966. master->num_chipselect = platform_info->num_chipselect;
  967. master->cleanup = cleanup;
  968. master->setup = setup;
  969. master->transfer = transfer;
  970. drv_data->ssp_type = platform_info->ssp_type;
  971. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  972. sizeof(struct driver_data)), 8);
  973. /* Setup register addresses */
  974. memory_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  975. if (!memory_resource) {
  976. dev_err(&pdev->dev, "memory resources not defined\n");
  977. status = -ENODEV;
  978. goto out_error_master_alloc;
  979. }
  980. drv_data->ioaddr = (void *)io_p2v(memory_resource->start);
  981. drv_data->ssdr_physical = memory_resource->start + 0x00000010;
  982. if (platform_info->ssp_type == PXA25x_SSP) {
  983. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  984. drv_data->dma_cr1 = 0;
  985. drv_data->clear_sr = SSSR_ROR;
  986. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  987. } else {
  988. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  989. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  990. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  991. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  992. }
  993. /* Attach to IRQ */
  994. irq = platform_get_irq(pdev, 0);
  995. if (irq < 0) {
  996. dev_err(&pdev->dev, "irq resource not defined\n");
  997. status = -ENODEV;
  998. goto out_error_master_alloc;
  999. }
  1000. status = request_irq(irq, ssp_int, SA_INTERRUPT, dev->bus_id, drv_data);
  1001. if (status < 0) {
  1002. dev_err(&pdev->dev, "can not get IRQ\n");
  1003. goto out_error_master_alloc;
  1004. }
  1005. /* Setup DMA if requested */
  1006. drv_data->tx_channel = -1;
  1007. drv_data->rx_channel = -1;
  1008. if (platform_info->enable_dma) {
  1009. /* Get two DMA channels (rx and tx) */
  1010. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1011. DMA_PRIO_HIGH,
  1012. dma_handler,
  1013. drv_data);
  1014. if (drv_data->rx_channel < 0) {
  1015. dev_err(dev, "problem (%d) requesting rx channel\n",
  1016. drv_data->rx_channel);
  1017. status = -ENODEV;
  1018. goto out_error_irq_alloc;
  1019. }
  1020. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1021. DMA_PRIO_MEDIUM,
  1022. dma_handler,
  1023. drv_data);
  1024. if (drv_data->tx_channel < 0) {
  1025. dev_err(dev, "problem (%d) requesting tx channel\n",
  1026. drv_data->tx_channel);
  1027. status = -ENODEV;
  1028. goto out_error_dma_alloc;
  1029. }
  1030. if (drv_data->ioaddr == SSP1_VIRT) {
  1031. DRCMRRXSSDR = DRCMR_MAPVLD
  1032. | drv_data->rx_channel;
  1033. DRCMRTXSSDR = DRCMR_MAPVLD
  1034. | drv_data->tx_channel;
  1035. } else if (drv_data->ioaddr == SSP2_VIRT) {
  1036. DRCMRRXSS2DR = DRCMR_MAPVLD
  1037. | drv_data->rx_channel;
  1038. DRCMRTXSS2DR = DRCMR_MAPVLD
  1039. | drv_data->tx_channel;
  1040. } else if (drv_data->ioaddr == SSP3_VIRT) {
  1041. DRCMRRXSS3DR = DRCMR_MAPVLD
  1042. | drv_data->rx_channel;
  1043. DRCMRTXSS3DR = DRCMR_MAPVLD
  1044. | drv_data->tx_channel;
  1045. } else {
  1046. dev_err(dev, "bad SSP type\n");
  1047. goto out_error_dma_alloc;
  1048. }
  1049. }
  1050. /* Enable SOC clock */
  1051. pxa_set_cken(platform_info->clock_enable, 1);
  1052. /* Load default SSP configuration */
  1053. write_SSCR0(0, drv_data->ioaddr);
  1054. write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
  1055. write_SSCR0(SSCR0_SerClkDiv(2)
  1056. | SSCR0_Motorola
  1057. | SSCR0_DataSize(8),
  1058. drv_data->ioaddr);
  1059. if (drv_data->ssp_type != PXA25x_SSP)
  1060. write_SSTO(0, drv_data->ioaddr);
  1061. write_SSPSP(0, drv_data->ioaddr);
  1062. /* Initial and start queue */
  1063. status = init_queue(drv_data);
  1064. if (status != 0) {
  1065. dev_err(&pdev->dev, "problem initializing queue\n");
  1066. goto out_error_clock_enabled;
  1067. }
  1068. status = start_queue(drv_data);
  1069. if (status != 0) {
  1070. dev_err(&pdev->dev, "problem starting queue\n");
  1071. goto out_error_clock_enabled;
  1072. }
  1073. /* Register with the SPI framework */
  1074. platform_set_drvdata(pdev, drv_data);
  1075. status = spi_register_master(master);
  1076. if (status != 0) {
  1077. dev_err(&pdev->dev, "problem registering spi master\n");
  1078. goto out_error_queue_alloc;
  1079. }
  1080. return status;
  1081. out_error_queue_alloc:
  1082. destroy_queue(drv_data);
  1083. out_error_clock_enabled:
  1084. pxa_set_cken(platform_info->clock_enable, 0);
  1085. out_error_dma_alloc:
  1086. if (drv_data->tx_channel != -1)
  1087. pxa_free_dma(drv_data->tx_channel);
  1088. if (drv_data->rx_channel != -1)
  1089. pxa_free_dma(drv_data->rx_channel);
  1090. out_error_irq_alloc:
  1091. free_irq(irq, drv_data);
  1092. out_error_master_alloc:
  1093. spi_master_put(master);
  1094. return status;
  1095. }
  1096. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1097. {
  1098. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1099. int irq;
  1100. int status = 0;
  1101. if (!drv_data)
  1102. return 0;
  1103. /* Remove the queue */
  1104. status = destroy_queue(drv_data);
  1105. if (status != 0)
  1106. return status;
  1107. /* Disable the SSP at the peripheral and SOC level */
  1108. write_SSCR0(0, drv_data->ioaddr);
  1109. pxa_set_cken(drv_data->master_info->clock_enable, 0);
  1110. /* Release DMA */
  1111. if (drv_data->master_info->enable_dma) {
  1112. if (drv_data->ioaddr == SSP1_VIRT) {
  1113. DRCMRRXSSDR = 0;
  1114. DRCMRTXSSDR = 0;
  1115. } else if (drv_data->ioaddr == SSP2_VIRT) {
  1116. DRCMRRXSS2DR = 0;
  1117. DRCMRTXSS2DR = 0;
  1118. } else if (drv_data->ioaddr == SSP3_VIRT) {
  1119. DRCMRRXSS3DR = 0;
  1120. DRCMRTXSS3DR = 0;
  1121. }
  1122. pxa_free_dma(drv_data->tx_channel);
  1123. pxa_free_dma(drv_data->rx_channel);
  1124. }
  1125. /* Release IRQ */
  1126. irq = platform_get_irq(pdev, 0);
  1127. if (irq >= 0)
  1128. free_irq(irq, drv_data);
  1129. /* Disconnect from the SPI framework */
  1130. spi_unregister_master(drv_data->master);
  1131. /* Prevent double remove */
  1132. platform_set_drvdata(pdev, NULL);
  1133. return 0;
  1134. }
  1135. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1136. {
  1137. int status = 0;
  1138. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1139. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1140. }
  1141. #ifdef CONFIG_PM
  1142. static int suspend_devices(struct device *dev, void *pm_message)
  1143. {
  1144. pm_message_t *state = pm_message;
  1145. if (dev->power.power_state.event != state->event) {
  1146. dev_warn(dev, "pm state does not match request\n");
  1147. return -1;
  1148. }
  1149. return 0;
  1150. }
  1151. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1152. {
  1153. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1154. int status = 0;
  1155. /* Check all childern for current power state */
  1156. if (device_for_each_child(&pdev->dev, &state, suspend_devices) != 0) {
  1157. dev_warn(&pdev->dev, "suspend aborted\n");
  1158. return -1;
  1159. }
  1160. status = stop_queue(drv_data);
  1161. if (status != 0)
  1162. return status;
  1163. write_SSCR0(0, drv_data->ioaddr);
  1164. pxa_set_cken(drv_data->master_info->clock_enable, 0);
  1165. return 0;
  1166. }
  1167. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1168. {
  1169. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1170. int status = 0;
  1171. /* Enable the SSP clock */
  1172. pxa_set_cken(drv_data->master_info->clock_enable, 1);
  1173. /* Start the queue running */
  1174. status = start_queue(drv_data);
  1175. if (status != 0) {
  1176. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1177. return status;
  1178. }
  1179. return 0;
  1180. }
  1181. #else
  1182. #define pxa2xx_spi_suspend NULL
  1183. #define pxa2xx_spi_resume NULL
  1184. #endif /* CONFIG_PM */
  1185. static struct platform_driver driver = {
  1186. .driver = {
  1187. .name = "pxa2xx-spi",
  1188. .bus = &platform_bus_type,
  1189. .owner = THIS_MODULE,
  1190. },
  1191. .probe = pxa2xx_spi_probe,
  1192. .remove = __devexit_p(pxa2xx_spi_remove),
  1193. .shutdown = pxa2xx_spi_shutdown,
  1194. .suspend = pxa2xx_spi_suspend,
  1195. .resume = pxa2xx_spi_resume,
  1196. };
  1197. static int __init pxa2xx_spi_init(void)
  1198. {
  1199. platform_driver_register(&driver);
  1200. return 0;
  1201. }
  1202. module_init(pxa2xx_spi_init);
  1203. static void __exit pxa2xx_spi_exit(void)
  1204. {
  1205. platform_driver_unregister(&driver);
  1206. }
  1207. module_exit(pxa2xx_spi_exit);