bnx2.c 207 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2010 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/kernel.h>
  15. #include <linux/timer.h>
  16. #include <linux/errno.h>
  17. #include <linux/ioport.h>
  18. #include <linux/slab.h>
  19. #include <linux/vmalloc.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pci.h>
  22. #include <linux/init.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/bitops.h>
  28. #include <asm/io.h>
  29. #include <asm/irq.h>
  30. #include <linux/delay.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/page.h>
  33. #include <linux/time.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/mii.h>
  36. #include <linux/if_vlan.h>
  37. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  38. #define BCM_VLAN 1
  39. #endif
  40. #include <net/ip.h>
  41. #include <net/tcp.h>
  42. #include <net/checksum.h>
  43. #include <linux/workqueue.h>
  44. #include <linux/crc32.h>
  45. #include <linux/prefetch.h>
  46. #include <linux/cache.h>
  47. #include <linux/firmware.h>
  48. #include <linux/log2.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define DRV_MODULE_VERSION "2.0.15"
  57. #define DRV_MODULE_RELDATE "May 4, 2010"
  58. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j6.fw"
  59. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
  60. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j15.fw"
  61. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j10.fw"
  62. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j10.fw"
  63. #define RUN_AT(x) (jiffies + (x))
  64. /* Time in jiffies before concluding the transmitter is hung. */
  65. #define TX_TIMEOUT (5*HZ)
  66. static char version[] __devinitdata =
  67. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  68. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  69. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  70. MODULE_LICENSE("GPL");
  71. MODULE_VERSION(DRV_MODULE_VERSION);
  72. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  73. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  74. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  77. static int disable_msi = 0;
  78. module_param(disable_msi, int, 0);
  79. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  80. typedef enum {
  81. BCM5706 = 0,
  82. NC370T,
  83. NC370I,
  84. BCM5706S,
  85. NC370F,
  86. BCM5708,
  87. BCM5708S,
  88. BCM5709,
  89. BCM5709S,
  90. BCM5716,
  91. BCM5716S,
  92. } board_t;
  93. /* indexed by board_t, above */
  94. static struct {
  95. char *name;
  96. } board_info[] __devinitdata = {
  97. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  98. { "HP NC370T Multifunction Gigabit Server Adapter" },
  99. { "HP NC370i Multifunction Gigabit Server Adapter" },
  100. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  101. { "HP NC370F Multifunction Gigabit Server Adapter" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  108. };
  109. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  110. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  111. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  112. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  113. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  114. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  115. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  116. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  117. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  118. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  119. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  120. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  121. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  122. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  123. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  124. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  125. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  126. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  127. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  128. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  129. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  130. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  131. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  132. { 0, }
  133. };
  134. static const struct flash_spec flash_table[] =
  135. {
  136. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  137. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  138. /* Slow EEPROM */
  139. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  140. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  141. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  142. "EEPROM - slow"},
  143. /* Expansion entry 0001 */
  144. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  145. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  146. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  147. "Entry 0001"},
  148. /* Saifun SA25F010 (non-buffered flash) */
  149. /* strap, cfg1, & write1 need updates */
  150. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  151. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  152. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  153. "Non-buffered flash (128kB)"},
  154. /* Saifun SA25F020 (non-buffered flash) */
  155. /* strap, cfg1, & write1 need updates */
  156. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  157. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  158. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  159. "Non-buffered flash (256kB)"},
  160. /* Expansion entry 0100 */
  161. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  162. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  163. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  164. "Entry 0100"},
  165. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  166. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  167. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  168. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  169. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  170. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  171. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  172. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  173. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  174. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  175. /* Saifun SA25F005 (non-buffered flash) */
  176. /* strap, cfg1, & write1 need updates */
  177. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  178. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  179. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  180. "Non-buffered flash (64kB)"},
  181. /* Fast EEPROM */
  182. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  183. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  184. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  185. "EEPROM - fast"},
  186. /* Expansion entry 1001 */
  187. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  188. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  189. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  190. "Entry 1001"},
  191. /* Expansion entry 1010 */
  192. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  193. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  194. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  195. "Entry 1010"},
  196. /* ATMEL AT45DB011B (buffered flash) */
  197. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  198. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  199. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  200. "Buffered flash (128kB)"},
  201. /* Expansion entry 1100 */
  202. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  203. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  204. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  205. "Entry 1100"},
  206. /* Expansion entry 1101 */
  207. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  208. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  209. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  210. "Entry 1101"},
  211. /* Ateml Expansion entry 1110 */
  212. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  213. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  214. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  215. "Entry 1110 (Atmel)"},
  216. /* ATMEL AT45DB021B (buffered flash) */
  217. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  218. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  219. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  220. "Buffered flash (256kB)"},
  221. };
  222. static const struct flash_spec flash_5709 = {
  223. .flags = BNX2_NV_BUFFERED,
  224. .page_bits = BCM5709_FLASH_PAGE_BITS,
  225. .page_size = BCM5709_FLASH_PAGE_SIZE,
  226. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  227. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  228. .name = "5709 Buffered flash (256kB)",
  229. };
  230. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  231. static void bnx2_init_napi(struct bnx2 *bp);
  232. static void bnx2_del_napi(struct bnx2 *bp);
  233. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  234. {
  235. u32 diff;
  236. smp_mb();
  237. /* The ring uses 256 indices for 255 entries, one of them
  238. * needs to be skipped.
  239. */
  240. diff = txr->tx_prod - txr->tx_cons;
  241. if (unlikely(diff >= TX_DESC_CNT)) {
  242. diff &= 0xffff;
  243. if (diff == TX_DESC_CNT)
  244. diff = MAX_TX_DESC_CNT;
  245. }
  246. return (bp->tx_ring_size - diff);
  247. }
  248. static u32
  249. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  250. {
  251. u32 val;
  252. spin_lock_bh(&bp->indirect_lock);
  253. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  254. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  255. spin_unlock_bh(&bp->indirect_lock);
  256. return val;
  257. }
  258. static void
  259. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  260. {
  261. spin_lock_bh(&bp->indirect_lock);
  262. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  263. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  264. spin_unlock_bh(&bp->indirect_lock);
  265. }
  266. static void
  267. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  268. {
  269. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  270. }
  271. static u32
  272. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  273. {
  274. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  275. }
  276. static void
  277. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  278. {
  279. offset += cid_addr;
  280. spin_lock_bh(&bp->indirect_lock);
  281. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  282. int i;
  283. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  284. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  285. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  286. for (i = 0; i < 5; i++) {
  287. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  288. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  289. break;
  290. udelay(5);
  291. }
  292. } else {
  293. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  294. REG_WR(bp, BNX2_CTX_DATA, val);
  295. }
  296. spin_unlock_bh(&bp->indirect_lock);
  297. }
  298. #ifdef BCM_CNIC
  299. static int
  300. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  301. {
  302. struct bnx2 *bp = netdev_priv(dev);
  303. struct drv_ctl_io *io = &info->data.io;
  304. switch (info->cmd) {
  305. case DRV_CTL_IO_WR_CMD:
  306. bnx2_reg_wr_ind(bp, io->offset, io->data);
  307. break;
  308. case DRV_CTL_IO_RD_CMD:
  309. io->data = bnx2_reg_rd_ind(bp, io->offset);
  310. break;
  311. case DRV_CTL_CTX_WR_CMD:
  312. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  313. break;
  314. default:
  315. return -EINVAL;
  316. }
  317. return 0;
  318. }
  319. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  320. {
  321. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  322. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  323. int sb_id;
  324. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  325. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  326. bnapi->cnic_present = 0;
  327. sb_id = bp->irq_nvecs;
  328. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  329. } else {
  330. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  331. bnapi->cnic_tag = bnapi->last_status_idx;
  332. bnapi->cnic_present = 1;
  333. sb_id = 0;
  334. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  335. }
  336. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  337. cp->irq_arr[0].status_blk = (void *)
  338. ((unsigned long) bnapi->status_blk.msi +
  339. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  340. cp->irq_arr[0].status_blk_num = sb_id;
  341. cp->num_irq = 1;
  342. }
  343. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  344. void *data)
  345. {
  346. struct bnx2 *bp = netdev_priv(dev);
  347. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  348. if (ops == NULL)
  349. return -EINVAL;
  350. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  351. return -EBUSY;
  352. bp->cnic_data = data;
  353. rcu_assign_pointer(bp->cnic_ops, ops);
  354. cp->num_irq = 0;
  355. cp->drv_state = CNIC_DRV_STATE_REGD;
  356. bnx2_setup_cnic_irq_info(bp);
  357. return 0;
  358. }
  359. static int bnx2_unregister_cnic(struct net_device *dev)
  360. {
  361. struct bnx2 *bp = netdev_priv(dev);
  362. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  363. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  364. mutex_lock(&bp->cnic_lock);
  365. cp->drv_state = 0;
  366. bnapi->cnic_present = 0;
  367. rcu_assign_pointer(bp->cnic_ops, NULL);
  368. mutex_unlock(&bp->cnic_lock);
  369. synchronize_rcu();
  370. return 0;
  371. }
  372. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  373. {
  374. struct bnx2 *bp = netdev_priv(dev);
  375. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  376. cp->drv_owner = THIS_MODULE;
  377. cp->chip_id = bp->chip_id;
  378. cp->pdev = bp->pdev;
  379. cp->io_base = bp->regview;
  380. cp->drv_ctl = bnx2_drv_ctl;
  381. cp->drv_register_cnic = bnx2_register_cnic;
  382. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  383. return cp;
  384. }
  385. EXPORT_SYMBOL(bnx2_cnic_probe);
  386. static void
  387. bnx2_cnic_stop(struct bnx2 *bp)
  388. {
  389. struct cnic_ops *c_ops;
  390. struct cnic_ctl_info info;
  391. mutex_lock(&bp->cnic_lock);
  392. c_ops = bp->cnic_ops;
  393. if (c_ops) {
  394. info.cmd = CNIC_CTL_STOP_CMD;
  395. c_ops->cnic_ctl(bp->cnic_data, &info);
  396. }
  397. mutex_unlock(&bp->cnic_lock);
  398. }
  399. static void
  400. bnx2_cnic_start(struct bnx2 *bp)
  401. {
  402. struct cnic_ops *c_ops;
  403. struct cnic_ctl_info info;
  404. mutex_lock(&bp->cnic_lock);
  405. c_ops = bp->cnic_ops;
  406. if (c_ops) {
  407. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  408. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  409. bnapi->cnic_tag = bnapi->last_status_idx;
  410. }
  411. info.cmd = CNIC_CTL_START_CMD;
  412. c_ops->cnic_ctl(bp->cnic_data, &info);
  413. }
  414. mutex_unlock(&bp->cnic_lock);
  415. }
  416. #else
  417. static void
  418. bnx2_cnic_stop(struct bnx2 *bp)
  419. {
  420. }
  421. static void
  422. bnx2_cnic_start(struct bnx2 *bp)
  423. {
  424. }
  425. #endif
  426. static int
  427. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  428. {
  429. u32 val1;
  430. int i, ret;
  431. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  432. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  433. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  434. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  435. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  436. udelay(40);
  437. }
  438. val1 = (bp->phy_addr << 21) | (reg << 16) |
  439. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  440. BNX2_EMAC_MDIO_COMM_START_BUSY;
  441. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  442. for (i = 0; i < 50; i++) {
  443. udelay(10);
  444. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  445. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  446. udelay(5);
  447. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  448. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  449. break;
  450. }
  451. }
  452. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  453. *val = 0x0;
  454. ret = -EBUSY;
  455. }
  456. else {
  457. *val = val1;
  458. ret = 0;
  459. }
  460. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  461. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  462. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  463. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  464. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  465. udelay(40);
  466. }
  467. return ret;
  468. }
  469. static int
  470. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  471. {
  472. u32 val1;
  473. int i, ret;
  474. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  475. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  476. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  477. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  478. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  479. udelay(40);
  480. }
  481. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  482. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  483. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  484. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  485. for (i = 0; i < 50; i++) {
  486. udelay(10);
  487. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  488. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  489. udelay(5);
  490. break;
  491. }
  492. }
  493. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  494. ret = -EBUSY;
  495. else
  496. ret = 0;
  497. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  498. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  499. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  500. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  501. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  502. udelay(40);
  503. }
  504. return ret;
  505. }
  506. static void
  507. bnx2_disable_int(struct bnx2 *bp)
  508. {
  509. int i;
  510. struct bnx2_napi *bnapi;
  511. for (i = 0; i < bp->irq_nvecs; i++) {
  512. bnapi = &bp->bnx2_napi[i];
  513. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  514. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  515. }
  516. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  517. }
  518. static void
  519. bnx2_enable_int(struct bnx2 *bp)
  520. {
  521. int i;
  522. struct bnx2_napi *bnapi;
  523. for (i = 0; i < bp->irq_nvecs; i++) {
  524. bnapi = &bp->bnx2_napi[i];
  525. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  526. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  527. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  528. bnapi->last_status_idx);
  529. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  530. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  531. bnapi->last_status_idx);
  532. }
  533. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  534. }
  535. static void
  536. bnx2_disable_int_sync(struct bnx2 *bp)
  537. {
  538. int i;
  539. atomic_inc(&bp->intr_sem);
  540. if (!netif_running(bp->dev))
  541. return;
  542. bnx2_disable_int(bp);
  543. for (i = 0; i < bp->irq_nvecs; i++)
  544. synchronize_irq(bp->irq_tbl[i].vector);
  545. }
  546. static void
  547. bnx2_napi_disable(struct bnx2 *bp)
  548. {
  549. int i;
  550. for (i = 0; i < bp->irq_nvecs; i++)
  551. napi_disable(&bp->bnx2_napi[i].napi);
  552. }
  553. static void
  554. bnx2_napi_enable(struct bnx2 *bp)
  555. {
  556. int i;
  557. for (i = 0; i < bp->irq_nvecs; i++)
  558. napi_enable(&bp->bnx2_napi[i].napi);
  559. }
  560. static void
  561. bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
  562. {
  563. if (stop_cnic)
  564. bnx2_cnic_stop(bp);
  565. if (netif_running(bp->dev)) {
  566. bnx2_napi_disable(bp);
  567. netif_tx_disable(bp->dev);
  568. }
  569. bnx2_disable_int_sync(bp);
  570. netif_carrier_off(bp->dev); /* prevent tx timeout */
  571. }
  572. static void
  573. bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
  574. {
  575. if (atomic_dec_and_test(&bp->intr_sem)) {
  576. if (netif_running(bp->dev)) {
  577. netif_tx_wake_all_queues(bp->dev);
  578. spin_lock_bh(&bp->phy_lock);
  579. if (bp->link_up)
  580. netif_carrier_on(bp->dev);
  581. spin_unlock_bh(&bp->phy_lock);
  582. bnx2_napi_enable(bp);
  583. bnx2_enable_int(bp);
  584. if (start_cnic)
  585. bnx2_cnic_start(bp);
  586. }
  587. }
  588. }
  589. static void
  590. bnx2_free_tx_mem(struct bnx2 *bp)
  591. {
  592. int i;
  593. for (i = 0; i < bp->num_tx_rings; i++) {
  594. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  595. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  596. if (txr->tx_desc_ring) {
  597. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  598. txr->tx_desc_ring,
  599. txr->tx_desc_mapping);
  600. txr->tx_desc_ring = NULL;
  601. }
  602. kfree(txr->tx_buf_ring);
  603. txr->tx_buf_ring = NULL;
  604. }
  605. }
  606. static void
  607. bnx2_free_rx_mem(struct bnx2 *bp)
  608. {
  609. int i;
  610. for (i = 0; i < bp->num_rx_rings; i++) {
  611. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  612. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  613. int j;
  614. for (j = 0; j < bp->rx_max_ring; j++) {
  615. if (rxr->rx_desc_ring[j])
  616. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  617. rxr->rx_desc_ring[j],
  618. rxr->rx_desc_mapping[j]);
  619. rxr->rx_desc_ring[j] = NULL;
  620. }
  621. vfree(rxr->rx_buf_ring);
  622. rxr->rx_buf_ring = NULL;
  623. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  624. if (rxr->rx_pg_desc_ring[j])
  625. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  626. rxr->rx_pg_desc_ring[j],
  627. rxr->rx_pg_desc_mapping[j]);
  628. rxr->rx_pg_desc_ring[j] = NULL;
  629. }
  630. vfree(rxr->rx_pg_ring);
  631. rxr->rx_pg_ring = NULL;
  632. }
  633. }
  634. static int
  635. bnx2_alloc_tx_mem(struct bnx2 *bp)
  636. {
  637. int i;
  638. for (i = 0; i < bp->num_tx_rings; i++) {
  639. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  640. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  641. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  642. if (txr->tx_buf_ring == NULL)
  643. return -ENOMEM;
  644. txr->tx_desc_ring =
  645. pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  646. &txr->tx_desc_mapping);
  647. if (txr->tx_desc_ring == NULL)
  648. return -ENOMEM;
  649. }
  650. return 0;
  651. }
  652. static int
  653. bnx2_alloc_rx_mem(struct bnx2 *bp)
  654. {
  655. int i;
  656. for (i = 0; i < bp->num_rx_rings; i++) {
  657. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  658. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  659. int j;
  660. rxr->rx_buf_ring =
  661. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  662. if (rxr->rx_buf_ring == NULL)
  663. return -ENOMEM;
  664. memset(rxr->rx_buf_ring, 0,
  665. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  666. for (j = 0; j < bp->rx_max_ring; j++) {
  667. rxr->rx_desc_ring[j] =
  668. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  669. &rxr->rx_desc_mapping[j]);
  670. if (rxr->rx_desc_ring[j] == NULL)
  671. return -ENOMEM;
  672. }
  673. if (bp->rx_pg_ring_size) {
  674. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  675. bp->rx_max_pg_ring);
  676. if (rxr->rx_pg_ring == NULL)
  677. return -ENOMEM;
  678. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  679. bp->rx_max_pg_ring);
  680. }
  681. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  682. rxr->rx_pg_desc_ring[j] =
  683. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  684. &rxr->rx_pg_desc_mapping[j]);
  685. if (rxr->rx_pg_desc_ring[j] == NULL)
  686. return -ENOMEM;
  687. }
  688. }
  689. return 0;
  690. }
  691. static void
  692. bnx2_free_mem(struct bnx2 *bp)
  693. {
  694. int i;
  695. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  696. bnx2_free_tx_mem(bp);
  697. bnx2_free_rx_mem(bp);
  698. for (i = 0; i < bp->ctx_pages; i++) {
  699. if (bp->ctx_blk[i]) {
  700. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  701. bp->ctx_blk[i],
  702. bp->ctx_blk_mapping[i]);
  703. bp->ctx_blk[i] = NULL;
  704. }
  705. }
  706. if (bnapi->status_blk.msi) {
  707. pci_free_consistent(bp->pdev, bp->status_stats_size,
  708. bnapi->status_blk.msi,
  709. bp->status_blk_mapping);
  710. bnapi->status_blk.msi = NULL;
  711. bp->stats_blk = NULL;
  712. }
  713. }
  714. static int
  715. bnx2_alloc_mem(struct bnx2 *bp)
  716. {
  717. int i, status_blk_size, err;
  718. struct bnx2_napi *bnapi;
  719. void *status_blk;
  720. /* Combine status and statistics blocks into one allocation. */
  721. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  722. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  723. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  724. BNX2_SBLK_MSIX_ALIGN_SIZE);
  725. bp->status_stats_size = status_blk_size +
  726. sizeof(struct statistics_block);
  727. status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  728. &bp->status_blk_mapping);
  729. if (status_blk == NULL)
  730. goto alloc_mem_err;
  731. memset(status_blk, 0, bp->status_stats_size);
  732. bnapi = &bp->bnx2_napi[0];
  733. bnapi->status_blk.msi = status_blk;
  734. bnapi->hw_tx_cons_ptr =
  735. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  736. bnapi->hw_rx_cons_ptr =
  737. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  738. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  739. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  740. struct status_block_msix *sblk;
  741. bnapi = &bp->bnx2_napi[i];
  742. sblk = (void *) (status_blk +
  743. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  744. bnapi->status_blk.msix = sblk;
  745. bnapi->hw_tx_cons_ptr =
  746. &sblk->status_tx_quick_consumer_index;
  747. bnapi->hw_rx_cons_ptr =
  748. &sblk->status_rx_quick_consumer_index;
  749. bnapi->int_num = i << 24;
  750. }
  751. }
  752. bp->stats_blk = status_blk + status_blk_size;
  753. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  754. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  755. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  756. if (bp->ctx_pages == 0)
  757. bp->ctx_pages = 1;
  758. for (i = 0; i < bp->ctx_pages; i++) {
  759. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  760. BCM_PAGE_SIZE,
  761. &bp->ctx_blk_mapping[i]);
  762. if (bp->ctx_blk[i] == NULL)
  763. goto alloc_mem_err;
  764. }
  765. }
  766. err = bnx2_alloc_rx_mem(bp);
  767. if (err)
  768. goto alloc_mem_err;
  769. err = bnx2_alloc_tx_mem(bp);
  770. if (err)
  771. goto alloc_mem_err;
  772. return 0;
  773. alloc_mem_err:
  774. bnx2_free_mem(bp);
  775. return -ENOMEM;
  776. }
  777. static void
  778. bnx2_report_fw_link(struct bnx2 *bp)
  779. {
  780. u32 fw_link_status = 0;
  781. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  782. return;
  783. if (bp->link_up) {
  784. u32 bmsr;
  785. switch (bp->line_speed) {
  786. case SPEED_10:
  787. if (bp->duplex == DUPLEX_HALF)
  788. fw_link_status = BNX2_LINK_STATUS_10HALF;
  789. else
  790. fw_link_status = BNX2_LINK_STATUS_10FULL;
  791. break;
  792. case SPEED_100:
  793. if (bp->duplex == DUPLEX_HALF)
  794. fw_link_status = BNX2_LINK_STATUS_100HALF;
  795. else
  796. fw_link_status = BNX2_LINK_STATUS_100FULL;
  797. break;
  798. case SPEED_1000:
  799. if (bp->duplex == DUPLEX_HALF)
  800. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  801. else
  802. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  803. break;
  804. case SPEED_2500:
  805. if (bp->duplex == DUPLEX_HALF)
  806. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  807. else
  808. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  809. break;
  810. }
  811. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  812. if (bp->autoneg) {
  813. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  814. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  815. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  816. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  817. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  818. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  819. else
  820. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  821. }
  822. }
  823. else
  824. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  825. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  826. }
  827. static char *
  828. bnx2_xceiver_str(struct bnx2 *bp)
  829. {
  830. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  831. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  832. "Copper"));
  833. }
  834. static void
  835. bnx2_report_link(struct bnx2 *bp)
  836. {
  837. if (bp->link_up) {
  838. netif_carrier_on(bp->dev);
  839. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  840. bnx2_xceiver_str(bp),
  841. bp->line_speed,
  842. bp->duplex == DUPLEX_FULL ? "full" : "half");
  843. if (bp->flow_ctrl) {
  844. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  845. pr_cont(", receive ");
  846. if (bp->flow_ctrl & FLOW_CTRL_TX)
  847. pr_cont("& transmit ");
  848. }
  849. else {
  850. pr_cont(", transmit ");
  851. }
  852. pr_cont("flow control ON");
  853. }
  854. pr_cont("\n");
  855. } else {
  856. netif_carrier_off(bp->dev);
  857. netdev_err(bp->dev, "NIC %s Link is Down\n",
  858. bnx2_xceiver_str(bp));
  859. }
  860. bnx2_report_fw_link(bp);
  861. }
  862. static void
  863. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  864. {
  865. u32 local_adv, remote_adv;
  866. bp->flow_ctrl = 0;
  867. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  868. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  869. if (bp->duplex == DUPLEX_FULL) {
  870. bp->flow_ctrl = bp->req_flow_ctrl;
  871. }
  872. return;
  873. }
  874. if (bp->duplex != DUPLEX_FULL) {
  875. return;
  876. }
  877. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  878. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  879. u32 val;
  880. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  881. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  882. bp->flow_ctrl |= FLOW_CTRL_TX;
  883. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  884. bp->flow_ctrl |= FLOW_CTRL_RX;
  885. return;
  886. }
  887. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  888. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  889. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  890. u32 new_local_adv = 0;
  891. u32 new_remote_adv = 0;
  892. if (local_adv & ADVERTISE_1000XPAUSE)
  893. new_local_adv |= ADVERTISE_PAUSE_CAP;
  894. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  895. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  896. if (remote_adv & ADVERTISE_1000XPAUSE)
  897. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  898. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  899. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  900. local_adv = new_local_adv;
  901. remote_adv = new_remote_adv;
  902. }
  903. /* See Table 28B-3 of 802.3ab-1999 spec. */
  904. if (local_adv & ADVERTISE_PAUSE_CAP) {
  905. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  906. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  907. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  908. }
  909. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  910. bp->flow_ctrl = FLOW_CTRL_RX;
  911. }
  912. }
  913. else {
  914. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  915. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  916. }
  917. }
  918. }
  919. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  920. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  921. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  922. bp->flow_ctrl = FLOW_CTRL_TX;
  923. }
  924. }
  925. }
  926. static int
  927. bnx2_5709s_linkup(struct bnx2 *bp)
  928. {
  929. u32 val, speed;
  930. bp->link_up = 1;
  931. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  932. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  933. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  934. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  935. bp->line_speed = bp->req_line_speed;
  936. bp->duplex = bp->req_duplex;
  937. return 0;
  938. }
  939. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  940. switch (speed) {
  941. case MII_BNX2_GP_TOP_AN_SPEED_10:
  942. bp->line_speed = SPEED_10;
  943. break;
  944. case MII_BNX2_GP_TOP_AN_SPEED_100:
  945. bp->line_speed = SPEED_100;
  946. break;
  947. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  948. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  949. bp->line_speed = SPEED_1000;
  950. break;
  951. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  952. bp->line_speed = SPEED_2500;
  953. break;
  954. }
  955. if (val & MII_BNX2_GP_TOP_AN_FD)
  956. bp->duplex = DUPLEX_FULL;
  957. else
  958. bp->duplex = DUPLEX_HALF;
  959. return 0;
  960. }
  961. static int
  962. bnx2_5708s_linkup(struct bnx2 *bp)
  963. {
  964. u32 val;
  965. bp->link_up = 1;
  966. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  967. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  968. case BCM5708S_1000X_STAT1_SPEED_10:
  969. bp->line_speed = SPEED_10;
  970. break;
  971. case BCM5708S_1000X_STAT1_SPEED_100:
  972. bp->line_speed = SPEED_100;
  973. break;
  974. case BCM5708S_1000X_STAT1_SPEED_1G:
  975. bp->line_speed = SPEED_1000;
  976. break;
  977. case BCM5708S_1000X_STAT1_SPEED_2G5:
  978. bp->line_speed = SPEED_2500;
  979. break;
  980. }
  981. if (val & BCM5708S_1000X_STAT1_FD)
  982. bp->duplex = DUPLEX_FULL;
  983. else
  984. bp->duplex = DUPLEX_HALF;
  985. return 0;
  986. }
  987. static int
  988. bnx2_5706s_linkup(struct bnx2 *bp)
  989. {
  990. u32 bmcr, local_adv, remote_adv, common;
  991. bp->link_up = 1;
  992. bp->line_speed = SPEED_1000;
  993. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  994. if (bmcr & BMCR_FULLDPLX) {
  995. bp->duplex = DUPLEX_FULL;
  996. }
  997. else {
  998. bp->duplex = DUPLEX_HALF;
  999. }
  1000. if (!(bmcr & BMCR_ANENABLE)) {
  1001. return 0;
  1002. }
  1003. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1004. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1005. common = local_adv & remote_adv;
  1006. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1007. if (common & ADVERTISE_1000XFULL) {
  1008. bp->duplex = DUPLEX_FULL;
  1009. }
  1010. else {
  1011. bp->duplex = DUPLEX_HALF;
  1012. }
  1013. }
  1014. return 0;
  1015. }
  1016. static int
  1017. bnx2_copper_linkup(struct bnx2 *bp)
  1018. {
  1019. u32 bmcr;
  1020. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1021. if (bmcr & BMCR_ANENABLE) {
  1022. u32 local_adv, remote_adv, common;
  1023. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1024. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1025. common = local_adv & (remote_adv >> 2);
  1026. if (common & ADVERTISE_1000FULL) {
  1027. bp->line_speed = SPEED_1000;
  1028. bp->duplex = DUPLEX_FULL;
  1029. }
  1030. else if (common & ADVERTISE_1000HALF) {
  1031. bp->line_speed = SPEED_1000;
  1032. bp->duplex = DUPLEX_HALF;
  1033. }
  1034. else {
  1035. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1036. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1037. common = local_adv & remote_adv;
  1038. if (common & ADVERTISE_100FULL) {
  1039. bp->line_speed = SPEED_100;
  1040. bp->duplex = DUPLEX_FULL;
  1041. }
  1042. else if (common & ADVERTISE_100HALF) {
  1043. bp->line_speed = SPEED_100;
  1044. bp->duplex = DUPLEX_HALF;
  1045. }
  1046. else if (common & ADVERTISE_10FULL) {
  1047. bp->line_speed = SPEED_10;
  1048. bp->duplex = DUPLEX_FULL;
  1049. }
  1050. else if (common & ADVERTISE_10HALF) {
  1051. bp->line_speed = SPEED_10;
  1052. bp->duplex = DUPLEX_HALF;
  1053. }
  1054. else {
  1055. bp->line_speed = 0;
  1056. bp->link_up = 0;
  1057. }
  1058. }
  1059. }
  1060. else {
  1061. if (bmcr & BMCR_SPEED100) {
  1062. bp->line_speed = SPEED_100;
  1063. }
  1064. else {
  1065. bp->line_speed = SPEED_10;
  1066. }
  1067. if (bmcr & BMCR_FULLDPLX) {
  1068. bp->duplex = DUPLEX_FULL;
  1069. }
  1070. else {
  1071. bp->duplex = DUPLEX_HALF;
  1072. }
  1073. }
  1074. return 0;
  1075. }
  1076. static void
  1077. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1078. {
  1079. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1080. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1081. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1082. val |= 0x02 << 8;
  1083. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1084. u32 lo_water, hi_water;
  1085. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1086. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  1087. else
  1088. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  1089. if (lo_water >= bp->rx_ring_size)
  1090. lo_water = 0;
  1091. hi_water = min_t(int, bp->rx_ring_size / 4, lo_water + 16);
  1092. if (hi_water <= lo_water)
  1093. lo_water = 0;
  1094. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  1095. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  1096. if (hi_water > 0xf)
  1097. hi_water = 0xf;
  1098. else if (hi_water == 0)
  1099. lo_water = 0;
  1100. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  1101. }
  1102. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1103. }
  1104. static void
  1105. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1106. {
  1107. int i;
  1108. u32 cid;
  1109. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1110. if (i == 1)
  1111. cid = RX_RSS_CID;
  1112. bnx2_init_rx_context(bp, cid);
  1113. }
  1114. }
  1115. static void
  1116. bnx2_set_mac_link(struct bnx2 *bp)
  1117. {
  1118. u32 val;
  1119. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1120. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1121. (bp->duplex == DUPLEX_HALF)) {
  1122. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1123. }
  1124. /* Configure the EMAC mode register. */
  1125. val = REG_RD(bp, BNX2_EMAC_MODE);
  1126. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1127. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1128. BNX2_EMAC_MODE_25G_MODE);
  1129. if (bp->link_up) {
  1130. switch (bp->line_speed) {
  1131. case SPEED_10:
  1132. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1133. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1134. break;
  1135. }
  1136. /* fall through */
  1137. case SPEED_100:
  1138. val |= BNX2_EMAC_MODE_PORT_MII;
  1139. break;
  1140. case SPEED_2500:
  1141. val |= BNX2_EMAC_MODE_25G_MODE;
  1142. /* fall through */
  1143. case SPEED_1000:
  1144. val |= BNX2_EMAC_MODE_PORT_GMII;
  1145. break;
  1146. }
  1147. }
  1148. else {
  1149. val |= BNX2_EMAC_MODE_PORT_GMII;
  1150. }
  1151. /* Set the MAC to operate in the appropriate duplex mode. */
  1152. if (bp->duplex == DUPLEX_HALF)
  1153. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1154. REG_WR(bp, BNX2_EMAC_MODE, val);
  1155. /* Enable/disable rx PAUSE. */
  1156. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1157. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1158. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1159. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1160. /* Enable/disable tx PAUSE. */
  1161. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1162. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1163. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1164. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1165. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1166. /* Acknowledge the interrupt. */
  1167. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1168. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1169. bnx2_init_all_rx_contexts(bp);
  1170. }
  1171. static void
  1172. bnx2_enable_bmsr1(struct bnx2 *bp)
  1173. {
  1174. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1175. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1176. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1177. MII_BNX2_BLK_ADDR_GP_STATUS);
  1178. }
  1179. static void
  1180. bnx2_disable_bmsr1(struct bnx2 *bp)
  1181. {
  1182. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1183. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1184. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1185. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1186. }
  1187. static int
  1188. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1189. {
  1190. u32 up1;
  1191. int ret = 1;
  1192. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1193. return 0;
  1194. if (bp->autoneg & AUTONEG_SPEED)
  1195. bp->advertising |= ADVERTISED_2500baseX_Full;
  1196. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1197. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1198. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1199. if (!(up1 & BCM5708S_UP1_2G5)) {
  1200. up1 |= BCM5708S_UP1_2G5;
  1201. bnx2_write_phy(bp, bp->mii_up1, up1);
  1202. ret = 0;
  1203. }
  1204. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1205. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1206. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1207. return ret;
  1208. }
  1209. static int
  1210. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1211. {
  1212. u32 up1;
  1213. int ret = 0;
  1214. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1215. return 0;
  1216. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1217. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1218. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1219. if (up1 & BCM5708S_UP1_2G5) {
  1220. up1 &= ~BCM5708S_UP1_2G5;
  1221. bnx2_write_phy(bp, bp->mii_up1, up1);
  1222. ret = 1;
  1223. }
  1224. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1225. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1226. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1227. return ret;
  1228. }
  1229. static void
  1230. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1231. {
  1232. u32 uninitialized_var(bmcr);
  1233. int err;
  1234. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1235. return;
  1236. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1237. u32 val;
  1238. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1239. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1240. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1241. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1242. val |= MII_BNX2_SD_MISC1_FORCE |
  1243. MII_BNX2_SD_MISC1_FORCE_2_5G;
  1244. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1245. }
  1246. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1247. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1248. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1249. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1250. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1251. if (!err)
  1252. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1253. } else {
  1254. return;
  1255. }
  1256. if (err)
  1257. return;
  1258. if (bp->autoneg & AUTONEG_SPEED) {
  1259. bmcr &= ~BMCR_ANENABLE;
  1260. if (bp->req_duplex == DUPLEX_FULL)
  1261. bmcr |= BMCR_FULLDPLX;
  1262. }
  1263. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1264. }
  1265. static void
  1266. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1267. {
  1268. u32 uninitialized_var(bmcr);
  1269. int err;
  1270. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1271. return;
  1272. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1273. u32 val;
  1274. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1275. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1276. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1277. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1278. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1279. }
  1280. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1281. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1282. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1283. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1284. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1285. if (!err)
  1286. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1287. } else {
  1288. return;
  1289. }
  1290. if (err)
  1291. return;
  1292. if (bp->autoneg & AUTONEG_SPEED)
  1293. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1294. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1295. }
  1296. static void
  1297. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1298. {
  1299. u32 val;
  1300. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1301. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1302. if (start)
  1303. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1304. else
  1305. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1306. }
  1307. static int
  1308. bnx2_set_link(struct bnx2 *bp)
  1309. {
  1310. u32 bmsr;
  1311. u8 link_up;
  1312. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1313. bp->link_up = 1;
  1314. return 0;
  1315. }
  1316. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1317. return 0;
  1318. link_up = bp->link_up;
  1319. bnx2_enable_bmsr1(bp);
  1320. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1321. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1322. bnx2_disable_bmsr1(bp);
  1323. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1324. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1325. u32 val, an_dbg;
  1326. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1327. bnx2_5706s_force_link_dn(bp, 0);
  1328. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1329. }
  1330. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1331. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1332. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1333. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1334. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1335. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1336. bmsr |= BMSR_LSTATUS;
  1337. else
  1338. bmsr &= ~BMSR_LSTATUS;
  1339. }
  1340. if (bmsr & BMSR_LSTATUS) {
  1341. bp->link_up = 1;
  1342. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1343. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1344. bnx2_5706s_linkup(bp);
  1345. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1346. bnx2_5708s_linkup(bp);
  1347. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1348. bnx2_5709s_linkup(bp);
  1349. }
  1350. else {
  1351. bnx2_copper_linkup(bp);
  1352. }
  1353. bnx2_resolve_flow_ctrl(bp);
  1354. }
  1355. else {
  1356. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1357. (bp->autoneg & AUTONEG_SPEED))
  1358. bnx2_disable_forced_2g5(bp);
  1359. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1360. u32 bmcr;
  1361. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1362. bmcr |= BMCR_ANENABLE;
  1363. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1364. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1365. }
  1366. bp->link_up = 0;
  1367. }
  1368. if (bp->link_up != link_up) {
  1369. bnx2_report_link(bp);
  1370. }
  1371. bnx2_set_mac_link(bp);
  1372. return 0;
  1373. }
  1374. static int
  1375. bnx2_reset_phy(struct bnx2 *bp)
  1376. {
  1377. int i;
  1378. u32 reg;
  1379. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1380. #define PHY_RESET_MAX_WAIT 100
  1381. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1382. udelay(10);
  1383. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1384. if (!(reg & BMCR_RESET)) {
  1385. udelay(20);
  1386. break;
  1387. }
  1388. }
  1389. if (i == PHY_RESET_MAX_WAIT) {
  1390. return -EBUSY;
  1391. }
  1392. return 0;
  1393. }
  1394. static u32
  1395. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1396. {
  1397. u32 adv = 0;
  1398. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1399. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1400. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1401. adv = ADVERTISE_1000XPAUSE;
  1402. }
  1403. else {
  1404. adv = ADVERTISE_PAUSE_CAP;
  1405. }
  1406. }
  1407. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1408. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1409. adv = ADVERTISE_1000XPSE_ASYM;
  1410. }
  1411. else {
  1412. adv = ADVERTISE_PAUSE_ASYM;
  1413. }
  1414. }
  1415. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1416. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1417. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1418. }
  1419. else {
  1420. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1421. }
  1422. }
  1423. return adv;
  1424. }
  1425. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1426. static int
  1427. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1428. __releases(&bp->phy_lock)
  1429. __acquires(&bp->phy_lock)
  1430. {
  1431. u32 speed_arg = 0, pause_adv;
  1432. pause_adv = bnx2_phy_get_pause_adv(bp);
  1433. if (bp->autoneg & AUTONEG_SPEED) {
  1434. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1435. if (bp->advertising & ADVERTISED_10baseT_Half)
  1436. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1437. if (bp->advertising & ADVERTISED_10baseT_Full)
  1438. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1439. if (bp->advertising & ADVERTISED_100baseT_Half)
  1440. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1441. if (bp->advertising & ADVERTISED_100baseT_Full)
  1442. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1443. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1444. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1445. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1446. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1447. } else {
  1448. if (bp->req_line_speed == SPEED_2500)
  1449. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1450. else if (bp->req_line_speed == SPEED_1000)
  1451. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1452. else if (bp->req_line_speed == SPEED_100) {
  1453. if (bp->req_duplex == DUPLEX_FULL)
  1454. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1455. else
  1456. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1457. } else if (bp->req_line_speed == SPEED_10) {
  1458. if (bp->req_duplex == DUPLEX_FULL)
  1459. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1460. else
  1461. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1462. }
  1463. }
  1464. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1465. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1466. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1467. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1468. if (port == PORT_TP)
  1469. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1470. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1471. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1472. spin_unlock_bh(&bp->phy_lock);
  1473. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1474. spin_lock_bh(&bp->phy_lock);
  1475. return 0;
  1476. }
  1477. static int
  1478. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1479. __releases(&bp->phy_lock)
  1480. __acquires(&bp->phy_lock)
  1481. {
  1482. u32 adv, bmcr;
  1483. u32 new_adv = 0;
  1484. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1485. return (bnx2_setup_remote_phy(bp, port));
  1486. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1487. u32 new_bmcr;
  1488. int force_link_down = 0;
  1489. if (bp->req_line_speed == SPEED_2500) {
  1490. if (!bnx2_test_and_enable_2g5(bp))
  1491. force_link_down = 1;
  1492. } else if (bp->req_line_speed == SPEED_1000) {
  1493. if (bnx2_test_and_disable_2g5(bp))
  1494. force_link_down = 1;
  1495. }
  1496. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1497. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1498. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1499. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1500. new_bmcr |= BMCR_SPEED1000;
  1501. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1502. if (bp->req_line_speed == SPEED_2500)
  1503. bnx2_enable_forced_2g5(bp);
  1504. else if (bp->req_line_speed == SPEED_1000) {
  1505. bnx2_disable_forced_2g5(bp);
  1506. new_bmcr &= ~0x2000;
  1507. }
  1508. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1509. if (bp->req_line_speed == SPEED_2500)
  1510. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1511. else
  1512. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1513. }
  1514. if (bp->req_duplex == DUPLEX_FULL) {
  1515. adv |= ADVERTISE_1000XFULL;
  1516. new_bmcr |= BMCR_FULLDPLX;
  1517. }
  1518. else {
  1519. adv |= ADVERTISE_1000XHALF;
  1520. new_bmcr &= ~BMCR_FULLDPLX;
  1521. }
  1522. if ((new_bmcr != bmcr) || (force_link_down)) {
  1523. /* Force a link down visible on the other side */
  1524. if (bp->link_up) {
  1525. bnx2_write_phy(bp, bp->mii_adv, adv &
  1526. ~(ADVERTISE_1000XFULL |
  1527. ADVERTISE_1000XHALF));
  1528. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1529. BMCR_ANRESTART | BMCR_ANENABLE);
  1530. bp->link_up = 0;
  1531. netif_carrier_off(bp->dev);
  1532. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1533. bnx2_report_link(bp);
  1534. }
  1535. bnx2_write_phy(bp, bp->mii_adv, adv);
  1536. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1537. } else {
  1538. bnx2_resolve_flow_ctrl(bp);
  1539. bnx2_set_mac_link(bp);
  1540. }
  1541. return 0;
  1542. }
  1543. bnx2_test_and_enable_2g5(bp);
  1544. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1545. new_adv |= ADVERTISE_1000XFULL;
  1546. new_adv |= bnx2_phy_get_pause_adv(bp);
  1547. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1548. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1549. bp->serdes_an_pending = 0;
  1550. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1551. /* Force a link down visible on the other side */
  1552. if (bp->link_up) {
  1553. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1554. spin_unlock_bh(&bp->phy_lock);
  1555. msleep(20);
  1556. spin_lock_bh(&bp->phy_lock);
  1557. }
  1558. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1559. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1560. BMCR_ANENABLE);
  1561. /* Speed up link-up time when the link partner
  1562. * does not autonegotiate which is very common
  1563. * in blade servers. Some blade servers use
  1564. * IPMI for kerboard input and it's important
  1565. * to minimize link disruptions. Autoneg. involves
  1566. * exchanging base pages plus 3 next pages and
  1567. * normally completes in about 120 msec.
  1568. */
  1569. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1570. bp->serdes_an_pending = 1;
  1571. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1572. } else {
  1573. bnx2_resolve_flow_ctrl(bp);
  1574. bnx2_set_mac_link(bp);
  1575. }
  1576. return 0;
  1577. }
  1578. #define ETHTOOL_ALL_FIBRE_SPEED \
  1579. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1580. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1581. (ADVERTISED_1000baseT_Full)
  1582. #define ETHTOOL_ALL_COPPER_SPEED \
  1583. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1584. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1585. ADVERTISED_1000baseT_Full)
  1586. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1587. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1588. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1589. static void
  1590. bnx2_set_default_remote_link(struct bnx2 *bp)
  1591. {
  1592. u32 link;
  1593. if (bp->phy_port == PORT_TP)
  1594. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1595. else
  1596. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1597. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1598. bp->req_line_speed = 0;
  1599. bp->autoneg |= AUTONEG_SPEED;
  1600. bp->advertising = ADVERTISED_Autoneg;
  1601. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1602. bp->advertising |= ADVERTISED_10baseT_Half;
  1603. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1604. bp->advertising |= ADVERTISED_10baseT_Full;
  1605. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1606. bp->advertising |= ADVERTISED_100baseT_Half;
  1607. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1608. bp->advertising |= ADVERTISED_100baseT_Full;
  1609. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1610. bp->advertising |= ADVERTISED_1000baseT_Full;
  1611. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1612. bp->advertising |= ADVERTISED_2500baseX_Full;
  1613. } else {
  1614. bp->autoneg = 0;
  1615. bp->advertising = 0;
  1616. bp->req_duplex = DUPLEX_FULL;
  1617. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1618. bp->req_line_speed = SPEED_10;
  1619. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1620. bp->req_duplex = DUPLEX_HALF;
  1621. }
  1622. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1623. bp->req_line_speed = SPEED_100;
  1624. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1625. bp->req_duplex = DUPLEX_HALF;
  1626. }
  1627. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1628. bp->req_line_speed = SPEED_1000;
  1629. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1630. bp->req_line_speed = SPEED_2500;
  1631. }
  1632. }
  1633. static void
  1634. bnx2_set_default_link(struct bnx2 *bp)
  1635. {
  1636. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1637. bnx2_set_default_remote_link(bp);
  1638. return;
  1639. }
  1640. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1641. bp->req_line_speed = 0;
  1642. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1643. u32 reg;
  1644. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1645. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1646. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1647. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1648. bp->autoneg = 0;
  1649. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1650. bp->req_duplex = DUPLEX_FULL;
  1651. }
  1652. } else
  1653. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1654. }
  1655. static void
  1656. bnx2_send_heart_beat(struct bnx2 *bp)
  1657. {
  1658. u32 msg;
  1659. u32 addr;
  1660. spin_lock(&bp->indirect_lock);
  1661. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1662. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1663. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1664. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1665. spin_unlock(&bp->indirect_lock);
  1666. }
  1667. static void
  1668. bnx2_remote_phy_event(struct bnx2 *bp)
  1669. {
  1670. u32 msg;
  1671. u8 link_up = bp->link_up;
  1672. u8 old_port;
  1673. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1674. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1675. bnx2_send_heart_beat(bp);
  1676. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1677. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1678. bp->link_up = 0;
  1679. else {
  1680. u32 speed;
  1681. bp->link_up = 1;
  1682. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1683. bp->duplex = DUPLEX_FULL;
  1684. switch (speed) {
  1685. case BNX2_LINK_STATUS_10HALF:
  1686. bp->duplex = DUPLEX_HALF;
  1687. case BNX2_LINK_STATUS_10FULL:
  1688. bp->line_speed = SPEED_10;
  1689. break;
  1690. case BNX2_LINK_STATUS_100HALF:
  1691. bp->duplex = DUPLEX_HALF;
  1692. case BNX2_LINK_STATUS_100BASE_T4:
  1693. case BNX2_LINK_STATUS_100FULL:
  1694. bp->line_speed = SPEED_100;
  1695. break;
  1696. case BNX2_LINK_STATUS_1000HALF:
  1697. bp->duplex = DUPLEX_HALF;
  1698. case BNX2_LINK_STATUS_1000FULL:
  1699. bp->line_speed = SPEED_1000;
  1700. break;
  1701. case BNX2_LINK_STATUS_2500HALF:
  1702. bp->duplex = DUPLEX_HALF;
  1703. case BNX2_LINK_STATUS_2500FULL:
  1704. bp->line_speed = SPEED_2500;
  1705. break;
  1706. default:
  1707. bp->line_speed = 0;
  1708. break;
  1709. }
  1710. bp->flow_ctrl = 0;
  1711. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1712. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1713. if (bp->duplex == DUPLEX_FULL)
  1714. bp->flow_ctrl = bp->req_flow_ctrl;
  1715. } else {
  1716. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1717. bp->flow_ctrl |= FLOW_CTRL_TX;
  1718. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1719. bp->flow_ctrl |= FLOW_CTRL_RX;
  1720. }
  1721. old_port = bp->phy_port;
  1722. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1723. bp->phy_port = PORT_FIBRE;
  1724. else
  1725. bp->phy_port = PORT_TP;
  1726. if (old_port != bp->phy_port)
  1727. bnx2_set_default_link(bp);
  1728. }
  1729. if (bp->link_up != link_up)
  1730. bnx2_report_link(bp);
  1731. bnx2_set_mac_link(bp);
  1732. }
  1733. static int
  1734. bnx2_set_remote_link(struct bnx2 *bp)
  1735. {
  1736. u32 evt_code;
  1737. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1738. switch (evt_code) {
  1739. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1740. bnx2_remote_phy_event(bp);
  1741. break;
  1742. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1743. default:
  1744. bnx2_send_heart_beat(bp);
  1745. break;
  1746. }
  1747. return 0;
  1748. }
  1749. static int
  1750. bnx2_setup_copper_phy(struct bnx2 *bp)
  1751. __releases(&bp->phy_lock)
  1752. __acquires(&bp->phy_lock)
  1753. {
  1754. u32 bmcr;
  1755. u32 new_bmcr;
  1756. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1757. if (bp->autoneg & AUTONEG_SPEED) {
  1758. u32 adv_reg, adv1000_reg;
  1759. u32 new_adv_reg = 0;
  1760. u32 new_adv1000_reg = 0;
  1761. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1762. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1763. ADVERTISE_PAUSE_ASYM);
  1764. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1765. adv1000_reg &= PHY_ALL_1000_SPEED;
  1766. if (bp->advertising & ADVERTISED_10baseT_Half)
  1767. new_adv_reg |= ADVERTISE_10HALF;
  1768. if (bp->advertising & ADVERTISED_10baseT_Full)
  1769. new_adv_reg |= ADVERTISE_10FULL;
  1770. if (bp->advertising & ADVERTISED_100baseT_Half)
  1771. new_adv_reg |= ADVERTISE_100HALF;
  1772. if (bp->advertising & ADVERTISED_100baseT_Full)
  1773. new_adv_reg |= ADVERTISE_100FULL;
  1774. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1775. new_adv1000_reg |= ADVERTISE_1000FULL;
  1776. new_adv_reg |= ADVERTISE_CSMA;
  1777. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1778. if ((adv1000_reg != new_adv1000_reg) ||
  1779. (adv_reg != new_adv_reg) ||
  1780. ((bmcr & BMCR_ANENABLE) == 0)) {
  1781. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1782. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1783. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1784. BMCR_ANENABLE);
  1785. }
  1786. else if (bp->link_up) {
  1787. /* Flow ctrl may have changed from auto to forced */
  1788. /* or vice-versa. */
  1789. bnx2_resolve_flow_ctrl(bp);
  1790. bnx2_set_mac_link(bp);
  1791. }
  1792. return 0;
  1793. }
  1794. new_bmcr = 0;
  1795. if (bp->req_line_speed == SPEED_100) {
  1796. new_bmcr |= BMCR_SPEED100;
  1797. }
  1798. if (bp->req_duplex == DUPLEX_FULL) {
  1799. new_bmcr |= BMCR_FULLDPLX;
  1800. }
  1801. if (new_bmcr != bmcr) {
  1802. u32 bmsr;
  1803. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1804. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1805. if (bmsr & BMSR_LSTATUS) {
  1806. /* Force link down */
  1807. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1808. spin_unlock_bh(&bp->phy_lock);
  1809. msleep(50);
  1810. spin_lock_bh(&bp->phy_lock);
  1811. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1812. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1813. }
  1814. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1815. /* Normally, the new speed is setup after the link has
  1816. * gone down and up again. In some cases, link will not go
  1817. * down so we need to set up the new speed here.
  1818. */
  1819. if (bmsr & BMSR_LSTATUS) {
  1820. bp->line_speed = bp->req_line_speed;
  1821. bp->duplex = bp->req_duplex;
  1822. bnx2_resolve_flow_ctrl(bp);
  1823. bnx2_set_mac_link(bp);
  1824. }
  1825. } else {
  1826. bnx2_resolve_flow_ctrl(bp);
  1827. bnx2_set_mac_link(bp);
  1828. }
  1829. return 0;
  1830. }
  1831. static int
  1832. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1833. __releases(&bp->phy_lock)
  1834. __acquires(&bp->phy_lock)
  1835. {
  1836. if (bp->loopback == MAC_LOOPBACK)
  1837. return 0;
  1838. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1839. return (bnx2_setup_serdes_phy(bp, port));
  1840. }
  1841. else {
  1842. return (bnx2_setup_copper_phy(bp));
  1843. }
  1844. }
  1845. static int
  1846. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1847. {
  1848. u32 val;
  1849. bp->mii_bmcr = MII_BMCR + 0x10;
  1850. bp->mii_bmsr = MII_BMSR + 0x10;
  1851. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1852. bp->mii_adv = MII_ADVERTISE + 0x10;
  1853. bp->mii_lpa = MII_LPA + 0x10;
  1854. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1855. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1856. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1857. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1858. if (reset_phy)
  1859. bnx2_reset_phy(bp);
  1860. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1861. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1862. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1863. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1864. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1865. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1866. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1867. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1868. val |= BCM5708S_UP1_2G5;
  1869. else
  1870. val &= ~BCM5708S_UP1_2G5;
  1871. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1872. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1873. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1874. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1875. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1876. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1877. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1878. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1879. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1880. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1881. return 0;
  1882. }
  1883. static int
  1884. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1885. {
  1886. u32 val;
  1887. if (reset_phy)
  1888. bnx2_reset_phy(bp);
  1889. bp->mii_up1 = BCM5708S_UP1;
  1890. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1891. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1892. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1893. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1894. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1895. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1896. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1897. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1898. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1899. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1900. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1901. val |= BCM5708S_UP1_2G5;
  1902. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1903. }
  1904. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1905. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1906. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1907. /* increase tx signal amplitude */
  1908. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1909. BCM5708S_BLK_ADDR_TX_MISC);
  1910. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1911. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1912. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1913. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1914. }
  1915. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1916. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1917. if (val) {
  1918. u32 is_backplane;
  1919. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1920. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1921. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1922. BCM5708S_BLK_ADDR_TX_MISC);
  1923. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1924. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1925. BCM5708S_BLK_ADDR_DIG);
  1926. }
  1927. }
  1928. return 0;
  1929. }
  1930. static int
  1931. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1932. {
  1933. if (reset_phy)
  1934. bnx2_reset_phy(bp);
  1935. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1936. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1937. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1938. if (bp->dev->mtu > 1500) {
  1939. u32 val;
  1940. /* Set extended packet length bit */
  1941. bnx2_write_phy(bp, 0x18, 0x7);
  1942. bnx2_read_phy(bp, 0x18, &val);
  1943. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1944. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1945. bnx2_read_phy(bp, 0x1c, &val);
  1946. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1947. }
  1948. else {
  1949. u32 val;
  1950. bnx2_write_phy(bp, 0x18, 0x7);
  1951. bnx2_read_phy(bp, 0x18, &val);
  1952. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1953. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1954. bnx2_read_phy(bp, 0x1c, &val);
  1955. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1956. }
  1957. return 0;
  1958. }
  1959. static int
  1960. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1961. {
  1962. u32 val;
  1963. if (reset_phy)
  1964. bnx2_reset_phy(bp);
  1965. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1966. bnx2_write_phy(bp, 0x18, 0x0c00);
  1967. bnx2_write_phy(bp, 0x17, 0x000a);
  1968. bnx2_write_phy(bp, 0x15, 0x310b);
  1969. bnx2_write_phy(bp, 0x17, 0x201f);
  1970. bnx2_write_phy(bp, 0x15, 0x9506);
  1971. bnx2_write_phy(bp, 0x17, 0x401f);
  1972. bnx2_write_phy(bp, 0x15, 0x14e2);
  1973. bnx2_write_phy(bp, 0x18, 0x0400);
  1974. }
  1975. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1976. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1977. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1978. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1979. val &= ~(1 << 8);
  1980. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1981. }
  1982. if (bp->dev->mtu > 1500) {
  1983. /* Set extended packet length bit */
  1984. bnx2_write_phy(bp, 0x18, 0x7);
  1985. bnx2_read_phy(bp, 0x18, &val);
  1986. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1987. bnx2_read_phy(bp, 0x10, &val);
  1988. bnx2_write_phy(bp, 0x10, val | 0x1);
  1989. }
  1990. else {
  1991. bnx2_write_phy(bp, 0x18, 0x7);
  1992. bnx2_read_phy(bp, 0x18, &val);
  1993. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1994. bnx2_read_phy(bp, 0x10, &val);
  1995. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1996. }
  1997. /* ethernet@wirespeed */
  1998. bnx2_write_phy(bp, 0x18, 0x7007);
  1999. bnx2_read_phy(bp, 0x18, &val);
  2000. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  2001. return 0;
  2002. }
  2003. static int
  2004. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  2005. __releases(&bp->phy_lock)
  2006. __acquires(&bp->phy_lock)
  2007. {
  2008. u32 val;
  2009. int rc = 0;
  2010. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  2011. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  2012. bp->mii_bmcr = MII_BMCR;
  2013. bp->mii_bmsr = MII_BMSR;
  2014. bp->mii_bmsr1 = MII_BMSR;
  2015. bp->mii_adv = MII_ADVERTISE;
  2016. bp->mii_lpa = MII_LPA;
  2017. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2018. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2019. goto setup_phy;
  2020. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2021. bp->phy_id = val << 16;
  2022. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2023. bp->phy_id |= val & 0xffff;
  2024. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2025. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2026. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2027. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2028. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2029. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2030. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2031. }
  2032. else {
  2033. rc = bnx2_init_copper_phy(bp, reset_phy);
  2034. }
  2035. setup_phy:
  2036. if (!rc)
  2037. rc = bnx2_setup_phy(bp, bp->phy_port);
  2038. return rc;
  2039. }
  2040. static int
  2041. bnx2_set_mac_loopback(struct bnx2 *bp)
  2042. {
  2043. u32 mac_mode;
  2044. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2045. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2046. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2047. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2048. bp->link_up = 1;
  2049. return 0;
  2050. }
  2051. static int bnx2_test_link(struct bnx2 *);
  2052. static int
  2053. bnx2_set_phy_loopback(struct bnx2 *bp)
  2054. {
  2055. u32 mac_mode;
  2056. int rc, i;
  2057. spin_lock_bh(&bp->phy_lock);
  2058. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2059. BMCR_SPEED1000);
  2060. spin_unlock_bh(&bp->phy_lock);
  2061. if (rc)
  2062. return rc;
  2063. for (i = 0; i < 10; i++) {
  2064. if (bnx2_test_link(bp) == 0)
  2065. break;
  2066. msleep(100);
  2067. }
  2068. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2069. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2070. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2071. BNX2_EMAC_MODE_25G_MODE);
  2072. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2073. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2074. bp->link_up = 1;
  2075. return 0;
  2076. }
  2077. static int
  2078. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2079. {
  2080. int i;
  2081. u32 val;
  2082. bp->fw_wr_seq++;
  2083. msg_data |= bp->fw_wr_seq;
  2084. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2085. if (!ack)
  2086. return 0;
  2087. /* wait for an acknowledgement. */
  2088. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2089. msleep(10);
  2090. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2091. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2092. break;
  2093. }
  2094. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2095. return 0;
  2096. /* If we timed out, inform the firmware that this is the case. */
  2097. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2098. if (!silent)
  2099. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2100. msg_data &= ~BNX2_DRV_MSG_CODE;
  2101. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2102. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2103. return -EBUSY;
  2104. }
  2105. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2106. return -EIO;
  2107. return 0;
  2108. }
  2109. static int
  2110. bnx2_init_5709_context(struct bnx2 *bp)
  2111. {
  2112. int i, ret = 0;
  2113. u32 val;
  2114. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2115. val |= (BCM_PAGE_BITS - 8) << 16;
  2116. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2117. for (i = 0; i < 10; i++) {
  2118. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2119. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2120. break;
  2121. udelay(2);
  2122. }
  2123. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2124. return -EBUSY;
  2125. for (i = 0; i < bp->ctx_pages; i++) {
  2126. int j;
  2127. if (bp->ctx_blk[i])
  2128. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2129. else
  2130. return -ENOMEM;
  2131. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2132. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2133. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2134. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2135. (u64) bp->ctx_blk_mapping[i] >> 32);
  2136. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2137. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2138. for (j = 0; j < 10; j++) {
  2139. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2140. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2141. break;
  2142. udelay(5);
  2143. }
  2144. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2145. ret = -EBUSY;
  2146. break;
  2147. }
  2148. }
  2149. return ret;
  2150. }
  2151. static void
  2152. bnx2_init_context(struct bnx2 *bp)
  2153. {
  2154. u32 vcid;
  2155. vcid = 96;
  2156. while (vcid) {
  2157. u32 vcid_addr, pcid_addr, offset;
  2158. int i;
  2159. vcid--;
  2160. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2161. u32 new_vcid;
  2162. vcid_addr = GET_PCID_ADDR(vcid);
  2163. if (vcid & 0x8) {
  2164. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2165. }
  2166. else {
  2167. new_vcid = vcid;
  2168. }
  2169. pcid_addr = GET_PCID_ADDR(new_vcid);
  2170. }
  2171. else {
  2172. vcid_addr = GET_CID_ADDR(vcid);
  2173. pcid_addr = vcid_addr;
  2174. }
  2175. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2176. vcid_addr += (i << PHY_CTX_SHIFT);
  2177. pcid_addr += (i << PHY_CTX_SHIFT);
  2178. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2179. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2180. /* Zero out the context. */
  2181. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2182. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2183. }
  2184. }
  2185. }
  2186. static int
  2187. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2188. {
  2189. u16 *good_mbuf;
  2190. u32 good_mbuf_cnt;
  2191. u32 val;
  2192. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2193. if (good_mbuf == NULL) {
  2194. pr_err("Failed to allocate memory in %s\n", __func__);
  2195. return -ENOMEM;
  2196. }
  2197. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2198. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2199. good_mbuf_cnt = 0;
  2200. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2201. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2202. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2203. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2204. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2205. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2206. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2207. /* The addresses with Bit 9 set are bad memory blocks. */
  2208. if (!(val & (1 << 9))) {
  2209. good_mbuf[good_mbuf_cnt] = (u16) val;
  2210. good_mbuf_cnt++;
  2211. }
  2212. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2213. }
  2214. /* Free the good ones back to the mbuf pool thus discarding
  2215. * all the bad ones. */
  2216. while (good_mbuf_cnt) {
  2217. good_mbuf_cnt--;
  2218. val = good_mbuf[good_mbuf_cnt];
  2219. val = (val << 9) | val | 1;
  2220. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2221. }
  2222. kfree(good_mbuf);
  2223. return 0;
  2224. }
  2225. static void
  2226. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2227. {
  2228. u32 val;
  2229. val = (mac_addr[0] << 8) | mac_addr[1];
  2230. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2231. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2232. (mac_addr[4] << 8) | mac_addr[5];
  2233. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2234. }
  2235. static inline int
  2236. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2237. {
  2238. dma_addr_t mapping;
  2239. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2240. struct rx_bd *rxbd =
  2241. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2242. struct page *page = alloc_page(GFP_ATOMIC);
  2243. if (!page)
  2244. return -ENOMEM;
  2245. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2246. PCI_DMA_FROMDEVICE);
  2247. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2248. __free_page(page);
  2249. return -EIO;
  2250. }
  2251. rx_pg->page = page;
  2252. dma_unmap_addr_set(rx_pg, mapping, mapping);
  2253. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2254. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2255. return 0;
  2256. }
  2257. static void
  2258. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2259. {
  2260. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2261. struct page *page = rx_pg->page;
  2262. if (!page)
  2263. return;
  2264. pci_unmap_page(bp->pdev, dma_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  2265. PCI_DMA_FROMDEVICE);
  2266. __free_page(page);
  2267. rx_pg->page = NULL;
  2268. }
  2269. static inline int
  2270. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2271. {
  2272. struct sk_buff *skb;
  2273. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2274. dma_addr_t mapping;
  2275. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2276. unsigned long align;
  2277. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2278. if (skb == NULL) {
  2279. return -ENOMEM;
  2280. }
  2281. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2282. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2283. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2284. PCI_DMA_FROMDEVICE);
  2285. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2286. dev_kfree_skb(skb);
  2287. return -EIO;
  2288. }
  2289. rx_buf->skb = skb;
  2290. rx_buf->desc = (struct l2_fhdr *) skb->data;
  2291. dma_unmap_addr_set(rx_buf, mapping, mapping);
  2292. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2293. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2294. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2295. return 0;
  2296. }
  2297. static int
  2298. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2299. {
  2300. struct status_block *sblk = bnapi->status_blk.msi;
  2301. u32 new_link_state, old_link_state;
  2302. int is_set = 1;
  2303. new_link_state = sblk->status_attn_bits & event;
  2304. old_link_state = sblk->status_attn_bits_ack & event;
  2305. if (new_link_state != old_link_state) {
  2306. if (new_link_state)
  2307. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2308. else
  2309. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2310. } else
  2311. is_set = 0;
  2312. return is_set;
  2313. }
  2314. static void
  2315. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2316. {
  2317. spin_lock(&bp->phy_lock);
  2318. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2319. bnx2_set_link(bp);
  2320. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2321. bnx2_set_remote_link(bp);
  2322. spin_unlock(&bp->phy_lock);
  2323. }
  2324. static inline u16
  2325. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2326. {
  2327. u16 cons;
  2328. /* Tell compiler that status block fields can change. */
  2329. barrier();
  2330. cons = *bnapi->hw_tx_cons_ptr;
  2331. barrier();
  2332. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2333. cons++;
  2334. return cons;
  2335. }
  2336. static int
  2337. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2338. {
  2339. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2340. u16 hw_cons, sw_cons, sw_ring_cons;
  2341. int tx_pkt = 0, index;
  2342. struct netdev_queue *txq;
  2343. index = (bnapi - bp->bnx2_napi);
  2344. txq = netdev_get_tx_queue(bp->dev, index);
  2345. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2346. sw_cons = txr->tx_cons;
  2347. while (sw_cons != hw_cons) {
  2348. struct sw_tx_bd *tx_buf;
  2349. struct sk_buff *skb;
  2350. int i, last;
  2351. sw_ring_cons = TX_RING_IDX(sw_cons);
  2352. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2353. skb = tx_buf->skb;
  2354. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2355. prefetch(&skb->end);
  2356. /* partial BD completions possible with TSO packets */
  2357. if (tx_buf->is_gso) {
  2358. u16 last_idx, last_ring_idx;
  2359. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2360. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2361. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2362. last_idx++;
  2363. }
  2364. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2365. break;
  2366. }
  2367. }
  2368. pci_unmap_single(bp->pdev, dma_unmap_addr(tx_buf, mapping),
  2369. skb_headlen(skb), PCI_DMA_TODEVICE);
  2370. tx_buf->skb = NULL;
  2371. last = tx_buf->nr_frags;
  2372. for (i = 0; i < last; i++) {
  2373. sw_cons = NEXT_TX_BD(sw_cons);
  2374. pci_unmap_page(bp->pdev,
  2375. dma_unmap_addr(
  2376. &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
  2377. mapping),
  2378. skb_shinfo(skb)->frags[i].size,
  2379. PCI_DMA_TODEVICE);
  2380. }
  2381. sw_cons = NEXT_TX_BD(sw_cons);
  2382. dev_kfree_skb(skb);
  2383. tx_pkt++;
  2384. if (tx_pkt == budget)
  2385. break;
  2386. if (hw_cons == sw_cons)
  2387. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2388. }
  2389. txr->hw_tx_cons = hw_cons;
  2390. txr->tx_cons = sw_cons;
  2391. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2392. * before checking for netif_tx_queue_stopped(). Without the
  2393. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2394. * will miss it and cause the queue to be stopped forever.
  2395. */
  2396. smp_mb();
  2397. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2398. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2399. __netif_tx_lock(txq, smp_processor_id());
  2400. if ((netif_tx_queue_stopped(txq)) &&
  2401. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2402. netif_tx_wake_queue(txq);
  2403. __netif_tx_unlock(txq);
  2404. }
  2405. return tx_pkt;
  2406. }
  2407. static void
  2408. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2409. struct sk_buff *skb, int count)
  2410. {
  2411. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2412. struct rx_bd *cons_bd, *prod_bd;
  2413. int i;
  2414. u16 hw_prod, prod;
  2415. u16 cons = rxr->rx_pg_cons;
  2416. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2417. /* The caller was unable to allocate a new page to replace the
  2418. * last one in the frags array, so we need to recycle that page
  2419. * and then free the skb.
  2420. */
  2421. if (skb) {
  2422. struct page *page;
  2423. struct skb_shared_info *shinfo;
  2424. shinfo = skb_shinfo(skb);
  2425. shinfo->nr_frags--;
  2426. page = shinfo->frags[shinfo->nr_frags].page;
  2427. shinfo->frags[shinfo->nr_frags].page = NULL;
  2428. cons_rx_pg->page = page;
  2429. dev_kfree_skb(skb);
  2430. }
  2431. hw_prod = rxr->rx_pg_prod;
  2432. for (i = 0; i < count; i++) {
  2433. prod = RX_PG_RING_IDX(hw_prod);
  2434. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2435. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2436. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2437. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2438. if (prod != cons) {
  2439. prod_rx_pg->page = cons_rx_pg->page;
  2440. cons_rx_pg->page = NULL;
  2441. dma_unmap_addr_set(prod_rx_pg, mapping,
  2442. dma_unmap_addr(cons_rx_pg, mapping));
  2443. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2444. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2445. }
  2446. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2447. hw_prod = NEXT_RX_BD(hw_prod);
  2448. }
  2449. rxr->rx_pg_prod = hw_prod;
  2450. rxr->rx_pg_cons = cons;
  2451. }
  2452. static inline void
  2453. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2454. struct sk_buff *skb, u16 cons, u16 prod)
  2455. {
  2456. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2457. struct rx_bd *cons_bd, *prod_bd;
  2458. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2459. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2460. pci_dma_sync_single_for_device(bp->pdev,
  2461. dma_unmap_addr(cons_rx_buf, mapping),
  2462. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2463. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2464. prod_rx_buf->skb = skb;
  2465. prod_rx_buf->desc = (struct l2_fhdr *) skb->data;
  2466. if (cons == prod)
  2467. return;
  2468. dma_unmap_addr_set(prod_rx_buf, mapping,
  2469. dma_unmap_addr(cons_rx_buf, mapping));
  2470. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2471. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2472. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2473. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2474. }
  2475. static int
  2476. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2477. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2478. u32 ring_idx)
  2479. {
  2480. int err;
  2481. u16 prod = ring_idx & 0xffff;
  2482. err = bnx2_alloc_rx_skb(bp, rxr, prod);
  2483. if (unlikely(err)) {
  2484. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2485. if (hdr_len) {
  2486. unsigned int raw_len = len + 4;
  2487. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2488. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2489. }
  2490. return err;
  2491. }
  2492. skb_reserve(skb, BNX2_RX_OFFSET);
  2493. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2494. PCI_DMA_FROMDEVICE);
  2495. if (hdr_len == 0) {
  2496. skb_put(skb, len);
  2497. return 0;
  2498. } else {
  2499. unsigned int i, frag_len, frag_size, pages;
  2500. struct sw_pg *rx_pg;
  2501. u16 pg_cons = rxr->rx_pg_cons;
  2502. u16 pg_prod = rxr->rx_pg_prod;
  2503. frag_size = len + 4 - hdr_len;
  2504. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2505. skb_put(skb, hdr_len);
  2506. for (i = 0; i < pages; i++) {
  2507. dma_addr_t mapping_old;
  2508. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2509. if (unlikely(frag_len <= 4)) {
  2510. unsigned int tail = 4 - frag_len;
  2511. rxr->rx_pg_cons = pg_cons;
  2512. rxr->rx_pg_prod = pg_prod;
  2513. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2514. pages - i);
  2515. skb->len -= tail;
  2516. if (i == 0) {
  2517. skb->tail -= tail;
  2518. } else {
  2519. skb_frag_t *frag =
  2520. &skb_shinfo(skb)->frags[i - 1];
  2521. frag->size -= tail;
  2522. skb->data_len -= tail;
  2523. skb->truesize -= tail;
  2524. }
  2525. return 0;
  2526. }
  2527. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2528. /* Don't unmap yet. If we're unable to allocate a new
  2529. * page, we need to recycle the page and the DMA addr.
  2530. */
  2531. mapping_old = dma_unmap_addr(rx_pg, mapping);
  2532. if (i == pages - 1)
  2533. frag_len -= 4;
  2534. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2535. rx_pg->page = NULL;
  2536. err = bnx2_alloc_rx_page(bp, rxr,
  2537. RX_PG_RING_IDX(pg_prod));
  2538. if (unlikely(err)) {
  2539. rxr->rx_pg_cons = pg_cons;
  2540. rxr->rx_pg_prod = pg_prod;
  2541. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2542. pages - i);
  2543. return err;
  2544. }
  2545. pci_unmap_page(bp->pdev, mapping_old,
  2546. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2547. frag_size -= frag_len;
  2548. skb->data_len += frag_len;
  2549. skb->truesize += frag_len;
  2550. skb->len += frag_len;
  2551. pg_prod = NEXT_RX_BD(pg_prod);
  2552. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2553. }
  2554. rxr->rx_pg_prod = pg_prod;
  2555. rxr->rx_pg_cons = pg_cons;
  2556. }
  2557. return 0;
  2558. }
  2559. static inline u16
  2560. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2561. {
  2562. u16 cons;
  2563. /* Tell compiler that status block fields can change. */
  2564. barrier();
  2565. cons = *bnapi->hw_rx_cons_ptr;
  2566. barrier();
  2567. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2568. cons++;
  2569. return cons;
  2570. }
  2571. static int
  2572. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2573. {
  2574. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2575. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2576. struct l2_fhdr *rx_hdr;
  2577. int rx_pkt = 0, pg_ring_used = 0;
  2578. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2579. sw_cons = rxr->rx_cons;
  2580. sw_prod = rxr->rx_prod;
  2581. /* Memory barrier necessary as speculative reads of the rx
  2582. * buffer can be ahead of the index in the status block
  2583. */
  2584. rmb();
  2585. while (sw_cons != hw_cons) {
  2586. unsigned int len, hdr_len;
  2587. u32 status;
  2588. struct sw_bd *rx_buf, *next_rx_buf;
  2589. struct sk_buff *skb;
  2590. dma_addr_t dma_addr;
  2591. u16 vtag = 0;
  2592. int hw_vlan __maybe_unused = 0;
  2593. sw_ring_cons = RX_RING_IDX(sw_cons);
  2594. sw_ring_prod = RX_RING_IDX(sw_prod);
  2595. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2596. skb = rx_buf->skb;
  2597. prefetchw(skb);
  2598. next_rx_buf =
  2599. &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))];
  2600. prefetch(next_rx_buf->desc);
  2601. rx_buf->skb = NULL;
  2602. dma_addr = dma_unmap_addr(rx_buf, mapping);
  2603. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2604. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2605. PCI_DMA_FROMDEVICE);
  2606. rx_hdr = rx_buf->desc;
  2607. len = rx_hdr->l2_fhdr_pkt_len;
  2608. status = rx_hdr->l2_fhdr_status;
  2609. hdr_len = 0;
  2610. if (status & L2_FHDR_STATUS_SPLIT) {
  2611. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2612. pg_ring_used = 1;
  2613. } else if (len > bp->rx_jumbo_thresh) {
  2614. hdr_len = bp->rx_jumbo_thresh;
  2615. pg_ring_used = 1;
  2616. }
  2617. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2618. L2_FHDR_ERRORS_PHY_DECODE |
  2619. L2_FHDR_ERRORS_ALIGNMENT |
  2620. L2_FHDR_ERRORS_TOO_SHORT |
  2621. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2622. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2623. sw_ring_prod);
  2624. if (pg_ring_used) {
  2625. int pages;
  2626. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2627. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2628. }
  2629. goto next_rx;
  2630. }
  2631. len -= 4;
  2632. if (len <= bp->rx_copy_thresh) {
  2633. struct sk_buff *new_skb;
  2634. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2635. if (new_skb == NULL) {
  2636. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2637. sw_ring_prod);
  2638. goto next_rx;
  2639. }
  2640. /* aligned copy */
  2641. skb_copy_from_linear_data_offset(skb,
  2642. BNX2_RX_OFFSET - 6,
  2643. new_skb->data, len + 6);
  2644. skb_reserve(new_skb, 6);
  2645. skb_put(new_skb, len);
  2646. bnx2_reuse_rx_skb(bp, rxr, skb,
  2647. sw_ring_cons, sw_ring_prod);
  2648. skb = new_skb;
  2649. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2650. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2651. goto next_rx;
  2652. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2653. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2654. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2655. #ifdef BCM_VLAN
  2656. if (bp->vlgrp)
  2657. hw_vlan = 1;
  2658. else
  2659. #endif
  2660. {
  2661. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2662. __skb_push(skb, 4);
  2663. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2664. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2665. ve->h_vlan_TCI = htons(vtag);
  2666. len += 4;
  2667. }
  2668. }
  2669. skb->protocol = eth_type_trans(skb, bp->dev);
  2670. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2671. (ntohs(skb->protocol) != 0x8100)) {
  2672. dev_kfree_skb(skb);
  2673. goto next_rx;
  2674. }
  2675. skb->ip_summed = CHECKSUM_NONE;
  2676. if (bp->rx_csum &&
  2677. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2678. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2679. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2680. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2681. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2682. }
  2683. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2684. #ifdef BCM_VLAN
  2685. if (hw_vlan)
  2686. vlan_gro_receive(&bnapi->napi, bp->vlgrp, vtag, skb);
  2687. else
  2688. #endif
  2689. napi_gro_receive(&bnapi->napi, skb);
  2690. rx_pkt++;
  2691. next_rx:
  2692. sw_cons = NEXT_RX_BD(sw_cons);
  2693. sw_prod = NEXT_RX_BD(sw_prod);
  2694. if ((rx_pkt == budget))
  2695. break;
  2696. /* Refresh hw_cons to see if there is new work */
  2697. if (sw_cons == hw_cons) {
  2698. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2699. rmb();
  2700. }
  2701. }
  2702. rxr->rx_cons = sw_cons;
  2703. rxr->rx_prod = sw_prod;
  2704. if (pg_ring_used)
  2705. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2706. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2707. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2708. mmiowb();
  2709. return rx_pkt;
  2710. }
  2711. /* MSI ISR - The only difference between this and the INTx ISR
  2712. * is that the MSI interrupt is always serviced.
  2713. */
  2714. static irqreturn_t
  2715. bnx2_msi(int irq, void *dev_instance)
  2716. {
  2717. struct bnx2_napi *bnapi = dev_instance;
  2718. struct bnx2 *bp = bnapi->bp;
  2719. prefetch(bnapi->status_blk.msi);
  2720. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2721. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2722. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2723. /* Return here if interrupt is disabled. */
  2724. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2725. return IRQ_HANDLED;
  2726. napi_schedule(&bnapi->napi);
  2727. return IRQ_HANDLED;
  2728. }
  2729. static irqreturn_t
  2730. bnx2_msi_1shot(int irq, void *dev_instance)
  2731. {
  2732. struct bnx2_napi *bnapi = dev_instance;
  2733. struct bnx2 *bp = bnapi->bp;
  2734. prefetch(bnapi->status_blk.msi);
  2735. /* Return here if interrupt is disabled. */
  2736. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2737. return IRQ_HANDLED;
  2738. napi_schedule(&bnapi->napi);
  2739. return IRQ_HANDLED;
  2740. }
  2741. static irqreturn_t
  2742. bnx2_interrupt(int irq, void *dev_instance)
  2743. {
  2744. struct bnx2_napi *bnapi = dev_instance;
  2745. struct bnx2 *bp = bnapi->bp;
  2746. struct status_block *sblk = bnapi->status_blk.msi;
  2747. /* When using INTx, it is possible for the interrupt to arrive
  2748. * at the CPU before the status block posted prior to the
  2749. * interrupt. Reading a register will flush the status block.
  2750. * When using MSI, the MSI message will always complete after
  2751. * the status block write.
  2752. */
  2753. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2754. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2755. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2756. return IRQ_NONE;
  2757. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2758. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2759. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2760. /* Read back to deassert IRQ immediately to avoid too many
  2761. * spurious interrupts.
  2762. */
  2763. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2764. /* Return here if interrupt is shared and is disabled. */
  2765. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2766. return IRQ_HANDLED;
  2767. if (napi_schedule_prep(&bnapi->napi)) {
  2768. bnapi->last_status_idx = sblk->status_idx;
  2769. __napi_schedule(&bnapi->napi);
  2770. }
  2771. return IRQ_HANDLED;
  2772. }
  2773. static inline int
  2774. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2775. {
  2776. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2777. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2778. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2779. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2780. return 1;
  2781. return 0;
  2782. }
  2783. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2784. STATUS_ATTN_BITS_TIMER_ABORT)
  2785. static inline int
  2786. bnx2_has_work(struct bnx2_napi *bnapi)
  2787. {
  2788. struct status_block *sblk = bnapi->status_blk.msi;
  2789. if (bnx2_has_fast_work(bnapi))
  2790. return 1;
  2791. #ifdef BCM_CNIC
  2792. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2793. return 1;
  2794. #endif
  2795. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2796. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2797. return 1;
  2798. return 0;
  2799. }
  2800. static void
  2801. bnx2_chk_missed_msi(struct bnx2 *bp)
  2802. {
  2803. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2804. u32 msi_ctrl;
  2805. if (bnx2_has_work(bnapi)) {
  2806. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2807. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2808. return;
  2809. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2810. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2811. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2812. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2813. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2814. }
  2815. }
  2816. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2817. }
  2818. #ifdef BCM_CNIC
  2819. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2820. {
  2821. struct cnic_ops *c_ops;
  2822. if (!bnapi->cnic_present)
  2823. return;
  2824. rcu_read_lock();
  2825. c_ops = rcu_dereference(bp->cnic_ops);
  2826. if (c_ops)
  2827. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2828. bnapi->status_blk.msi);
  2829. rcu_read_unlock();
  2830. }
  2831. #endif
  2832. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2833. {
  2834. struct status_block *sblk = bnapi->status_blk.msi;
  2835. u32 status_attn_bits = sblk->status_attn_bits;
  2836. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2837. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2838. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2839. bnx2_phy_int(bp, bnapi);
  2840. /* This is needed to take care of transient status
  2841. * during link changes.
  2842. */
  2843. REG_WR(bp, BNX2_HC_COMMAND,
  2844. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2845. REG_RD(bp, BNX2_HC_COMMAND);
  2846. }
  2847. }
  2848. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2849. int work_done, int budget)
  2850. {
  2851. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2852. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2853. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2854. bnx2_tx_int(bp, bnapi, 0);
  2855. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2856. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2857. return work_done;
  2858. }
  2859. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2860. {
  2861. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2862. struct bnx2 *bp = bnapi->bp;
  2863. int work_done = 0;
  2864. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2865. while (1) {
  2866. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2867. if (unlikely(work_done >= budget))
  2868. break;
  2869. bnapi->last_status_idx = sblk->status_idx;
  2870. /* status idx must be read before checking for more work. */
  2871. rmb();
  2872. if (likely(!bnx2_has_fast_work(bnapi))) {
  2873. napi_complete(napi);
  2874. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2875. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2876. bnapi->last_status_idx);
  2877. break;
  2878. }
  2879. }
  2880. return work_done;
  2881. }
  2882. static int bnx2_poll(struct napi_struct *napi, int budget)
  2883. {
  2884. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2885. struct bnx2 *bp = bnapi->bp;
  2886. int work_done = 0;
  2887. struct status_block *sblk = bnapi->status_blk.msi;
  2888. while (1) {
  2889. bnx2_poll_link(bp, bnapi);
  2890. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2891. #ifdef BCM_CNIC
  2892. bnx2_poll_cnic(bp, bnapi);
  2893. #endif
  2894. /* bnapi->last_status_idx is used below to tell the hw how
  2895. * much work has been processed, so we must read it before
  2896. * checking for more work.
  2897. */
  2898. bnapi->last_status_idx = sblk->status_idx;
  2899. if (unlikely(work_done >= budget))
  2900. break;
  2901. rmb();
  2902. if (likely(!bnx2_has_work(bnapi))) {
  2903. napi_complete(napi);
  2904. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2905. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2906. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2907. bnapi->last_status_idx);
  2908. break;
  2909. }
  2910. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2911. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2912. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2913. bnapi->last_status_idx);
  2914. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2915. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2916. bnapi->last_status_idx);
  2917. break;
  2918. }
  2919. }
  2920. return work_done;
  2921. }
  2922. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2923. * from set_multicast.
  2924. */
  2925. static void
  2926. bnx2_set_rx_mode(struct net_device *dev)
  2927. {
  2928. struct bnx2 *bp = netdev_priv(dev);
  2929. u32 rx_mode, sort_mode;
  2930. struct netdev_hw_addr *ha;
  2931. int i;
  2932. if (!netif_running(dev))
  2933. return;
  2934. spin_lock_bh(&bp->phy_lock);
  2935. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2936. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2937. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2938. #ifdef BCM_VLAN
  2939. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2940. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2941. #else
  2942. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2943. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2944. #endif
  2945. if (dev->flags & IFF_PROMISC) {
  2946. /* Promiscuous mode. */
  2947. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2948. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2949. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2950. }
  2951. else if (dev->flags & IFF_ALLMULTI) {
  2952. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2953. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2954. 0xffffffff);
  2955. }
  2956. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2957. }
  2958. else {
  2959. /* Accept one or more multicast(s). */
  2960. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2961. u32 regidx;
  2962. u32 bit;
  2963. u32 crc;
  2964. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2965. netdev_for_each_mc_addr(ha, dev) {
  2966. crc = ether_crc_le(ETH_ALEN, ha->addr);
  2967. bit = crc & 0xff;
  2968. regidx = (bit & 0xe0) >> 5;
  2969. bit &= 0x1f;
  2970. mc_filter[regidx] |= (1 << bit);
  2971. }
  2972. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2973. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2974. mc_filter[i]);
  2975. }
  2976. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2977. }
  2978. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  2979. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2980. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2981. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2982. } else if (!(dev->flags & IFF_PROMISC)) {
  2983. /* Add all entries into to the match filter list */
  2984. i = 0;
  2985. netdev_for_each_uc_addr(ha, dev) {
  2986. bnx2_set_mac_addr(bp, ha->addr,
  2987. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2988. sort_mode |= (1 <<
  2989. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2990. i++;
  2991. }
  2992. }
  2993. if (rx_mode != bp->rx_mode) {
  2994. bp->rx_mode = rx_mode;
  2995. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2996. }
  2997. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2998. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2999. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  3000. spin_unlock_bh(&bp->phy_lock);
  3001. }
  3002. static int __devinit
  3003. check_fw_section(const struct firmware *fw,
  3004. const struct bnx2_fw_file_section *section,
  3005. u32 alignment, bool non_empty)
  3006. {
  3007. u32 offset = be32_to_cpu(section->offset);
  3008. u32 len = be32_to_cpu(section->len);
  3009. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  3010. return -EINVAL;
  3011. if ((non_empty && len == 0) || len > fw->size - offset ||
  3012. len & (alignment - 1))
  3013. return -EINVAL;
  3014. return 0;
  3015. }
  3016. static int __devinit
  3017. check_mips_fw_entry(const struct firmware *fw,
  3018. const struct bnx2_mips_fw_file_entry *entry)
  3019. {
  3020. if (check_fw_section(fw, &entry->text, 4, true) ||
  3021. check_fw_section(fw, &entry->data, 4, false) ||
  3022. check_fw_section(fw, &entry->rodata, 4, false))
  3023. return -EINVAL;
  3024. return 0;
  3025. }
  3026. static int __devinit
  3027. bnx2_request_firmware(struct bnx2 *bp)
  3028. {
  3029. const char *mips_fw_file, *rv2p_fw_file;
  3030. const struct bnx2_mips_fw_file *mips_fw;
  3031. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3032. int rc;
  3033. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3034. mips_fw_file = FW_MIPS_FILE_09;
  3035. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3036. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3037. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3038. else
  3039. rv2p_fw_file = FW_RV2P_FILE_09;
  3040. } else {
  3041. mips_fw_file = FW_MIPS_FILE_06;
  3042. rv2p_fw_file = FW_RV2P_FILE_06;
  3043. }
  3044. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3045. if (rc) {
  3046. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3047. return rc;
  3048. }
  3049. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3050. if (rc) {
  3051. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3052. return rc;
  3053. }
  3054. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3055. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3056. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3057. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3058. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3059. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3060. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3061. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3062. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3063. return -EINVAL;
  3064. }
  3065. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3066. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3067. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3068. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3069. return -EINVAL;
  3070. }
  3071. return 0;
  3072. }
  3073. static u32
  3074. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3075. {
  3076. switch (idx) {
  3077. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3078. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3079. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3080. break;
  3081. }
  3082. return rv2p_code;
  3083. }
  3084. static int
  3085. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3086. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3087. {
  3088. u32 rv2p_code_len, file_offset;
  3089. __be32 *rv2p_code;
  3090. int i;
  3091. u32 val, cmd, addr;
  3092. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3093. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3094. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3095. if (rv2p_proc == RV2P_PROC1) {
  3096. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3097. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3098. } else {
  3099. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3100. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3101. }
  3102. for (i = 0; i < rv2p_code_len; i += 8) {
  3103. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3104. rv2p_code++;
  3105. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3106. rv2p_code++;
  3107. val = (i / 8) | cmd;
  3108. REG_WR(bp, addr, val);
  3109. }
  3110. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3111. for (i = 0; i < 8; i++) {
  3112. u32 loc, code;
  3113. loc = be32_to_cpu(fw_entry->fixup[i]);
  3114. if (loc && ((loc * 4) < rv2p_code_len)) {
  3115. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3116. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3117. code = be32_to_cpu(*(rv2p_code + loc));
  3118. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3119. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3120. val = (loc / 2) | cmd;
  3121. REG_WR(bp, addr, val);
  3122. }
  3123. }
  3124. /* Reset the processor, un-stall is done later. */
  3125. if (rv2p_proc == RV2P_PROC1) {
  3126. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3127. }
  3128. else {
  3129. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3130. }
  3131. return 0;
  3132. }
  3133. static int
  3134. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3135. const struct bnx2_mips_fw_file_entry *fw_entry)
  3136. {
  3137. u32 addr, len, file_offset;
  3138. __be32 *data;
  3139. u32 offset;
  3140. u32 val;
  3141. /* Halt the CPU. */
  3142. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3143. val |= cpu_reg->mode_value_halt;
  3144. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3145. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3146. /* Load the Text area. */
  3147. addr = be32_to_cpu(fw_entry->text.addr);
  3148. len = be32_to_cpu(fw_entry->text.len);
  3149. file_offset = be32_to_cpu(fw_entry->text.offset);
  3150. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3151. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3152. if (len) {
  3153. int j;
  3154. for (j = 0; j < (len / 4); j++, offset += 4)
  3155. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3156. }
  3157. /* Load the Data area. */
  3158. addr = be32_to_cpu(fw_entry->data.addr);
  3159. len = be32_to_cpu(fw_entry->data.len);
  3160. file_offset = be32_to_cpu(fw_entry->data.offset);
  3161. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3162. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3163. if (len) {
  3164. int j;
  3165. for (j = 0; j < (len / 4); j++, offset += 4)
  3166. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3167. }
  3168. /* Load the Read-Only area. */
  3169. addr = be32_to_cpu(fw_entry->rodata.addr);
  3170. len = be32_to_cpu(fw_entry->rodata.len);
  3171. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3172. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3173. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3174. if (len) {
  3175. int j;
  3176. for (j = 0; j < (len / 4); j++, offset += 4)
  3177. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3178. }
  3179. /* Clear the pre-fetch instruction. */
  3180. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3181. val = be32_to_cpu(fw_entry->start_addr);
  3182. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3183. /* Start the CPU. */
  3184. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3185. val &= ~cpu_reg->mode_value_halt;
  3186. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3187. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3188. return 0;
  3189. }
  3190. static int
  3191. bnx2_init_cpus(struct bnx2 *bp)
  3192. {
  3193. const struct bnx2_mips_fw_file *mips_fw =
  3194. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3195. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3196. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3197. int rc;
  3198. /* Initialize the RV2P processor. */
  3199. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3200. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3201. /* Initialize the RX Processor. */
  3202. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3203. if (rc)
  3204. goto init_cpu_err;
  3205. /* Initialize the TX Processor. */
  3206. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3207. if (rc)
  3208. goto init_cpu_err;
  3209. /* Initialize the TX Patch-up Processor. */
  3210. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3211. if (rc)
  3212. goto init_cpu_err;
  3213. /* Initialize the Completion Processor. */
  3214. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3215. if (rc)
  3216. goto init_cpu_err;
  3217. /* Initialize the Command Processor. */
  3218. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3219. init_cpu_err:
  3220. return rc;
  3221. }
  3222. static int
  3223. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3224. {
  3225. u16 pmcsr;
  3226. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3227. switch (state) {
  3228. case PCI_D0: {
  3229. u32 val;
  3230. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3231. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3232. PCI_PM_CTRL_PME_STATUS);
  3233. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3234. /* delay required during transition out of D3hot */
  3235. msleep(20);
  3236. val = REG_RD(bp, BNX2_EMAC_MODE);
  3237. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3238. val &= ~BNX2_EMAC_MODE_MPKT;
  3239. REG_WR(bp, BNX2_EMAC_MODE, val);
  3240. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3241. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3242. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3243. break;
  3244. }
  3245. case PCI_D3hot: {
  3246. int i;
  3247. u32 val, wol_msg;
  3248. if (bp->wol) {
  3249. u32 advertising;
  3250. u8 autoneg;
  3251. autoneg = bp->autoneg;
  3252. advertising = bp->advertising;
  3253. if (bp->phy_port == PORT_TP) {
  3254. bp->autoneg = AUTONEG_SPEED;
  3255. bp->advertising = ADVERTISED_10baseT_Half |
  3256. ADVERTISED_10baseT_Full |
  3257. ADVERTISED_100baseT_Half |
  3258. ADVERTISED_100baseT_Full |
  3259. ADVERTISED_Autoneg;
  3260. }
  3261. spin_lock_bh(&bp->phy_lock);
  3262. bnx2_setup_phy(bp, bp->phy_port);
  3263. spin_unlock_bh(&bp->phy_lock);
  3264. bp->autoneg = autoneg;
  3265. bp->advertising = advertising;
  3266. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3267. val = REG_RD(bp, BNX2_EMAC_MODE);
  3268. /* Enable port mode. */
  3269. val &= ~BNX2_EMAC_MODE_PORT;
  3270. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3271. BNX2_EMAC_MODE_ACPI_RCVD |
  3272. BNX2_EMAC_MODE_MPKT;
  3273. if (bp->phy_port == PORT_TP)
  3274. val |= BNX2_EMAC_MODE_PORT_MII;
  3275. else {
  3276. val |= BNX2_EMAC_MODE_PORT_GMII;
  3277. if (bp->line_speed == SPEED_2500)
  3278. val |= BNX2_EMAC_MODE_25G_MODE;
  3279. }
  3280. REG_WR(bp, BNX2_EMAC_MODE, val);
  3281. /* receive all multicast */
  3282. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3283. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3284. 0xffffffff);
  3285. }
  3286. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3287. BNX2_EMAC_RX_MODE_SORT_MODE);
  3288. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3289. BNX2_RPM_SORT_USER0_MC_EN;
  3290. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3291. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3292. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3293. BNX2_RPM_SORT_USER0_ENA);
  3294. /* Need to enable EMAC and RPM for WOL. */
  3295. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3296. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3297. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3298. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3299. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3300. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3301. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3302. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3303. }
  3304. else {
  3305. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3306. }
  3307. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3308. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3309. 1, 0);
  3310. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3311. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3312. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3313. if (bp->wol)
  3314. pmcsr |= 3;
  3315. }
  3316. else {
  3317. pmcsr |= 3;
  3318. }
  3319. if (bp->wol) {
  3320. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3321. }
  3322. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3323. pmcsr);
  3324. /* No more memory access after this point until
  3325. * device is brought back to D0.
  3326. */
  3327. udelay(50);
  3328. break;
  3329. }
  3330. default:
  3331. return -EINVAL;
  3332. }
  3333. return 0;
  3334. }
  3335. static int
  3336. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3337. {
  3338. u32 val;
  3339. int j;
  3340. /* Request access to the flash interface. */
  3341. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3342. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3343. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3344. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3345. break;
  3346. udelay(5);
  3347. }
  3348. if (j >= NVRAM_TIMEOUT_COUNT)
  3349. return -EBUSY;
  3350. return 0;
  3351. }
  3352. static int
  3353. bnx2_release_nvram_lock(struct bnx2 *bp)
  3354. {
  3355. int j;
  3356. u32 val;
  3357. /* Relinquish nvram interface. */
  3358. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3359. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3360. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3361. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3362. break;
  3363. udelay(5);
  3364. }
  3365. if (j >= NVRAM_TIMEOUT_COUNT)
  3366. return -EBUSY;
  3367. return 0;
  3368. }
  3369. static int
  3370. bnx2_enable_nvram_write(struct bnx2 *bp)
  3371. {
  3372. u32 val;
  3373. val = REG_RD(bp, BNX2_MISC_CFG);
  3374. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3375. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3376. int j;
  3377. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3378. REG_WR(bp, BNX2_NVM_COMMAND,
  3379. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3380. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3381. udelay(5);
  3382. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3383. if (val & BNX2_NVM_COMMAND_DONE)
  3384. break;
  3385. }
  3386. if (j >= NVRAM_TIMEOUT_COUNT)
  3387. return -EBUSY;
  3388. }
  3389. return 0;
  3390. }
  3391. static void
  3392. bnx2_disable_nvram_write(struct bnx2 *bp)
  3393. {
  3394. u32 val;
  3395. val = REG_RD(bp, BNX2_MISC_CFG);
  3396. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3397. }
  3398. static void
  3399. bnx2_enable_nvram_access(struct bnx2 *bp)
  3400. {
  3401. u32 val;
  3402. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3403. /* Enable both bits, even on read. */
  3404. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3405. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3406. }
  3407. static void
  3408. bnx2_disable_nvram_access(struct bnx2 *bp)
  3409. {
  3410. u32 val;
  3411. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3412. /* Disable both bits, even after read. */
  3413. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3414. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3415. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3416. }
  3417. static int
  3418. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3419. {
  3420. u32 cmd;
  3421. int j;
  3422. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3423. /* Buffered flash, no erase needed */
  3424. return 0;
  3425. /* Build an erase command */
  3426. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3427. BNX2_NVM_COMMAND_DOIT;
  3428. /* Need to clear DONE bit separately. */
  3429. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3430. /* Address of the NVRAM to read from. */
  3431. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3432. /* Issue an erase command. */
  3433. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3434. /* Wait for completion. */
  3435. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3436. u32 val;
  3437. udelay(5);
  3438. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3439. if (val & BNX2_NVM_COMMAND_DONE)
  3440. break;
  3441. }
  3442. if (j >= NVRAM_TIMEOUT_COUNT)
  3443. return -EBUSY;
  3444. return 0;
  3445. }
  3446. static int
  3447. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3448. {
  3449. u32 cmd;
  3450. int j;
  3451. /* Build the command word. */
  3452. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3453. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3454. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3455. offset = ((offset / bp->flash_info->page_size) <<
  3456. bp->flash_info->page_bits) +
  3457. (offset % bp->flash_info->page_size);
  3458. }
  3459. /* Need to clear DONE bit separately. */
  3460. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3461. /* Address of the NVRAM to read from. */
  3462. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3463. /* Issue a read command. */
  3464. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3465. /* Wait for completion. */
  3466. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3467. u32 val;
  3468. udelay(5);
  3469. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3470. if (val & BNX2_NVM_COMMAND_DONE) {
  3471. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3472. memcpy(ret_val, &v, 4);
  3473. break;
  3474. }
  3475. }
  3476. if (j >= NVRAM_TIMEOUT_COUNT)
  3477. return -EBUSY;
  3478. return 0;
  3479. }
  3480. static int
  3481. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3482. {
  3483. u32 cmd;
  3484. __be32 val32;
  3485. int j;
  3486. /* Build the command word. */
  3487. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3488. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3489. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3490. offset = ((offset / bp->flash_info->page_size) <<
  3491. bp->flash_info->page_bits) +
  3492. (offset % bp->flash_info->page_size);
  3493. }
  3494. /* Need to clear DONE bit separately. */
  3495. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3496. memcpy(&val32, val, 4);
  3497. /* Write the data. */
  3498. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3499. /* Address of the NVRAM to write to. */
  3500. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3501. /* Issue the write command. */
  3502. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3503. /* Wait for completion. */
  3504. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3505. udelay(5);
  3506. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3507. break;
  3508. }
  3509. if (j >= NVRAM_TIMEOUT_COUNT)
  3510. return -EBUSY;
  3511. return 0;
  3512. }
  3513. static int
  3514. bnx2_init_nvram(struct bnx2 *bp)
  3515. {
  3516. u32 val;
  3517. int j, entry_count, rc = 0;
  3518. const struct flash_spec *flash;
  3519. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3520. bp->flash_info = &flash_5709;
  3521. goto get_flash_size;
  3522. }
  3523. /* Determine the selected interface. */
  3524. val = REG_RD(bp, BNX2_NVM_CFG1);
  3525. entry_count = ARRAY_SIZE(flash_table);
  3526. if (val & 0x40000000) {
  3527. /* Flash interface has been reconfigured */
  3528. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3529. j++, flash++) {
  3530. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3531. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3532. bp->flash_info = flash;
  3533. break;
  3534. }
  3535. }
  3536. }
  3537. else {
  3538. u32 mask;
  3539. /* Not yet been reconfigured */
  3540. if (val & (1 << 23))
  3541. mask = FLASH_BACKUP_STRAP_MASK;
  3542. else
  3543. mask = FLASH_STRAP_MASK;
  3544. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3545. j++, flash++) {
  3546. if ((val & mask) == (flash->strapping & mask)) {
  3547. bp->flash_info = flash;
  3548. /* Request access to the flash interface. */
  3549. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3550. return rc;
  3551. /* Enable access to flash interface */
  3552. bnx2_enable_nvram_access(bp);
  3553. /* Reconfigure the flash interface */
  3554. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3555. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3556. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3557. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3558. /* Disable access to flash interface */
  3559. bnx2_disable_nvram_access(bp);
  3560. bnx2_release_nvram_lock(bp);
  3561. break;
  3562. }
  3563. }
  3564. } /* if (val & 0x40000000) */
  3565. if (j == entry_count) {
  3566. bp->flash_info = NULL;
  3567. pr_alert("Unknown flash/EEPROM type\n");
  3568. return -ENODEV;
  3569. }
  3570. get_flash_size:
  3571. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3572. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3573. if (val)
  3574. bp->flash_size = val;
  3575. else
  3576. bp->flash_size = bp->flash_info->total_size;
  3577. return rc;
  3578. }
  3579. static int
  3580. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3581. int buf_size)
  3582. {
  3583. int rc = 0;
  3584. u32 cmd_flags, offset32, len32, extra;
  3585. if (buf_size == 0)
  3586. return 0;
  3587. /* Request access to the flash interface. */
  3588. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3589. return rc;
  3590. /* Enable access to flash interface */
  3591. bnx2_enable_nvram_access(bp);
  3592. len32 = buf_size;
  3593. offset32 = offset;
  3594. extra = 0;
  3595. cmd_flags = 0;
  3596. if (offset32 & 3) {
  3597. u8 buf[4];
  3598. u32 pre_len;
  3599. offset32 &= ~3;
  3600. pre_len = 4 - (offset & 3);
  3601. if (pre_len >= len32) {
  3602. pre_len = len32;
  3603. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3604. BNX2_NVM_COMMAND_LAST;
  3605. }
  3606. else {
  3607. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3608. }
  3609. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3610. if (rc)
  3611. return rc;
  3612. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3613. offset32 += 4;
  3614. ret_buf += pre_len;
  3615. len32 -= pre_len;
  3616. }
  3617. if (len32 & 3) {
  3618. extra = 4 - (len32 & 3);
  3619. len32 = (len32 + 4) & ~3;
  3620. }
  3621. if (len32 == 4) {
  3622. u8 buf[4];
  3623. if (cmd_flags)
  3624. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3625. else
  3626. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3627. BNX2_NVM_COMMAND_LAST;
  3628. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3629. memcpy(ret_buf, buf, 4 - extra);
  3630. }
  3631. else if (len32 > 0) {
  3632. u8 buf[4];
  3633. /* Read the first word. */
  3634. if (cmd_flags)
  3635. cmd_flags = 0;
  3636. else
  3637. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3638. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3639. /* Advance to the next dword. */
  3640. offset32 += 4;
  3641. ret_buf += 4;
  3642. len32 -= 4;
  3643. while (len32 > 4 && rc == 0) {
  3644. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3645. /* Advance to the next dword. */
  3646. offset32 += 4;
  3647. ret_buf += 4;
  3648. len32 -= 4;
  3649. }
  3650. if (rc)
  3651. return rc;
  3652. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3653. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3654. memcpy(ret_buf, buf, 4 - extra);
  3655. }
  3656. /* Disable access to flash interface */
  3657. bnx2_disable_nvram_access(bp);
  3658. bnx2_release_nvram_lock(bp);
  3659. return rc;
  3660. }
  3661. static int
  3662. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3663. int buf_size)
  3664. {
  3665. u32 written, offset32, len32;
  3666. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3667. int rc = 0;
  3668. int align_start, align_end;
  3669. buf = data_buf;
  3670. offset32 = offset;
  3671. len32 = buf_size;
  3672. align_start = align_end = 0;
  3673. if ((align_start = (offset32 & 3))) {
  3674. offset32 &= ~3;
  3675. len32 += align_start;
  3676. if (len32 < 4)
  3677. len32 = 4;
  3678. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3679. return rc;
  3680. }
  3681. if (len32 & 3) {
  3682. align_end = 4 - (len32 & 3);
  3683. len32 += align_end;
  3684. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3685. return rc;
  3686. }
  3687. if (align_start || align_end) {
  3688. align_buf = kmalloc(len32, GFP_KERNEL);
  3689. if (align_buf == NULL)
  3690. return -ENOMEM;
  3691. if (align_start) {
  3692. memcpy(align_buf, start, 4);
  3693. }
  3694. if (align_end) {
  3695. memcpy(align_buf + len32 - 4, end, 4);
  3696. }
  3697. memcpy(align_buf + align_start, data_buf, buf_size);
  3698. buf = align_buf;
  3699. }
  3700. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3701. flash_buffer = kmalloc(264, GFP_KERNEL);
  3702. if (flash_buffer == NULL) {
  3703. rc = -ENOMEM;
  3704. goto nvram_write_end;
  3705. }
  3706. }
  3707. written = 0;
  3708. while ((written < len32) && (rc == 0)) {
  3709. u32 page_start, page_end, data_start, data_end;
  3710. u32 addr, cmd_flags;
  3711. int i;
  3712. /* Find the page_start addr */
  3713. page_start = offset32 + written;
  3714. page_start -= (page_start % bp->flash_info->page_size);
  3715. /* Find the page_end addr */
  3716. page_end = page_start + bp->flash_info->page_size;
  3717. /* Find the data_start addr */
  3718. data_start = (written == 0) ? offset32 : page_start;
  3719. /* Find the data_end addr */
  3720. data_end = (page_end > offset32 + len32) ?
  3721. (offset32 + len32) : page_end;
  3722. /* Request access to the flash interface. */
  3723. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3724. goto nvram_write_end;
  3725. /* Enable access to flash interface */
  3726. bnx2_enable_nvram_access(bp);
  3727. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3728. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3729. int j;
  3730. /* Read the whole page into the buffer
  3731. * (non-buffer flash only) */
  3732. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3733. if (j == (bp->flash_info->page_size - 4)) {
  3734. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3735. }
  3736. rc = bnx2_nvram_read_dword(bp,
  3737. page_start + j,
  3738. &flash_buffer[j],
  3739. cmd_flags);
  3740. if (rc)
  3741. goto nvram_write_end;
  3742. cmd_flags = 0;
  3743. }
  3744. }
  3745. /* Enable writes to flash interface (unlock write-protect) */
  3746. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3747. goto nvram_write_end;
  3748. /* Loop to write back the buffer data from page_start to
  3749. * data_start */
  3750. i = 0;
  3751. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3752. /* Erase the page */
  3753. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3754. goto nvram_write_end;
  3755. /* Re-enable the write again for the actual write */
  3756. bnx2_enable_nvram_write(bp);
  3757. for (addr = page_start; addr < data_start;
  3758. addr += 4, i += 4) {
  3759. rc = bnx2_nvram_write_dword(bp, addr,
  3760. &flash_buffer[i], cmd_flags);
  3761. if (rc != 0)
  3762. goto nvram_write_end;
  3763. cmd_flags = 0;
  3764. }
  3765. }
  3766. /* Loop to write the new data from data_start to data_end */
  3767. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3768. if ((addr == page_end - 4) ||
  3769. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3770. (addr == data_end - 4))) {
  3771. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3772. }
  3773. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3774. cmd_flags);
  3775. if (rc != 0)
  3776. goto nvram_write_end;
  3777. cmd_flags = 0;
  3778. buf += 4;
  3779. }
  3780. /* Loop to write back the buffer data from data_end
  3781. * to page_end */
  3782. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3783. for (addr = data_end; addr < page_end;
  3784. addr += 4, i += 4) {
  3785. if (addr == page_end-4) {
  3786. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3787. }
  3788. rc = bnx2_nvram_write_dword(bp, addr,
  3789. &flash_buffer[i], cmd_flags);
  3790. if (rc != 0)
  3791. goto nvram_write_end;
  3792. cmd_flags = 0;
  3793. }
  3794. }
  3795. /* Disable writes to flash interface (lock write-protect) */
  3796. bnx2_disable_nvram_write(bp);
  3797. /* Disable access to flash interface */
  3798. bnx2_disable_nvram_access(bp);
  3799. bnx2_release_nvram_lock(bp);
  3800. /* Increment written */
  3801. written += data_end - data_start;
  3802. }
  3803. nvram_write_end:
  3804. kfree(flash_buffer);
  3805. kfree(align_buf);
  3806. return rc;
  3807. }
  3808. static void
  3809. bnx2_init_fw_cap(struct bnx2 *bp)
  3810. {
  3811. u32 val, sig = 0;
  3812. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3813. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3814. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3815. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3816. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3817. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3818. return;
  3819. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3820. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3821. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3822. }
  3823. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3824. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3825. u32 link;
  3826. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3827. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3828. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3829. bp->phy_port = PORT_FIBRE;
  3830. else
  3831. bp->phy_port = PORT_TP;
  3832. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3833. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3834. }
  3835. if (netif_running(bp->dev) && sig)
  3836. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3837. }
  3838. static void
  3839. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3840. {
  3841. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3842. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3843. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3844. }
  3845. static int
  3846. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3847. {
  3848. u32 val;
  3849. int i, rc = 0;
  3850. u8 old_port;
  3851. /* Wait for the current PCI transaction to complete before
  3852. * issuing a reset. */
  3853. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3854. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3855. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3856. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3857. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3858. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3859. udelay(5);
  3860. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3861. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3862. /* Deposit a driver reset signature so the firmware knows that
  3863. * this is a soft reset. */
  3864. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3865. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3866. /* Do a dummy read to force the chip to complete all current transaction
  3867. * before we issue a reset. */
  3868. val = REG_RD(bp, BNX2_MISC_ID);
  3869. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3870. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3871. REG_RD(bp, BNX2_MISC_COMMAND);
  3872. udelay(5);
  3873. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3874. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3875. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3876. } else {
  3877. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3878. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3879. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3880. /* Chip reset. */
  3881. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3882. /* Reading back any register after chip reset will hang the
  3883. * bus on 5706 A0 and A1. The msleep below provides plenty
  3884. * of margin for write posting.
  3885. */
  3886. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3887. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3888. msleep(20);
  3889. /* Reset takes approximate 30 usec */
  3890. for (i = 0; i < 10; i++) {
  3891. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3892. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3893. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3894. break;
  3895. udelay(10);
  3896. }
  3897. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3898. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3899. pr_err("Chip reset did not complete\n");
  3900. return -EBUSY;
  3901. }
  3902. }
  3903. /* Make sure byte swapping is properly configured. */
  3904. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3905. if (val != 0x01020304) {
  3906. pr_err("Chip not in correct endian mode\n");
  3907. return -ENODEV;
  3908. }
  3909. /* Wait for the firmware to finish its initialization. */
  3910. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3911. if (rc)
  3912. return rc;
  3913. spin_lock_bh(&bp->phy_lock);
  3914. old_port = bp->phy_port;
  3915. bnx2_init_fw_cap(bp);
  3916. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3917. old_port != bp->phy_port)
  3918. bnx2_set_default_remote_link(bp);
  3919. spin_unlock_bh(&bp->phy_lock);
  3920. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3921. /* Adjust the voltage regular to two steps lower. The default
  3922. * of this register is 0x0000000e. */
  3923. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3924. /* Remove bad rbuf memory from the free pool. */
  3925. rc = bnx2_alloc_bad_rbuf(bp);
  3926. }
  3927. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  3928. bnx2_setup_msix_tbl(bp);
  3929. /* Prevent MSIX table reads and write from timing out */
  3930. REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
  3931. BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
  3932. }
  3933. return rc;
  3934. }
  3935. static int
  3936. bnx2_init_chip(struct bnx2 *bp)
  3937. {
  3938. u32 val, mtu;
  3939. int rc, i;
  3940. /* Make sure the interrupt is not active. */
  3941. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3942. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3943. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3944. #ifdef __BIG_ENDIAN
  3945. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3946. #endif
  3947. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3948. DMA_READ_CHANS << 12 |
  3949. DMA_WRITE_CHANS << 16;
  3950. val |= (0x2 << 20) | (1 << 11);
  3951. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3952. val |= (1 << 23);
  3953. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3954. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3955. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3956. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3957. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3958. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3959. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3960. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3961. }
  3962. if (bp->flags & BNX2_FLAG_PCIX) {
  3963. u16 val16;
  3964. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3965. &val16);
  3966. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3967. val16 & ~PCI_X_CMD_ERO);
  3968. }
  3969. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3970. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3971. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3972. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3973. /* Initialize context mapping and zero out the quick contexts. The
  3974. * context block must have already been enabled. */
  3975. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3976. rc = bnx2_init_5709_context(bp);
  3977. if (rc)
  3978. return rc;
  3979. } else
  3980. bnx2_init_context(bp);
  3981. if ((rc = bnx2_init_cpus(bp)) != 0)
  3982. return rc;
  3983. bnx2_init_nvram(bp);
  3984. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3985. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3986. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3987. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3988. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3989. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3990. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3991. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3992. }
  3993. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3994. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3995. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3996. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3997. val = (BCM_PAGE_BITS - 8) << 24;
  3998. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3999. /* Configure page size. */
  4000. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  4001. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  4002. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  4003. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  4004. val = bp->mac_addr[0] +
  4005. (bp->mac_addr[1] << 8) +
  4006. (bp->mac_addr[2] << 16) +
  4007. bp->mac_addr[3] +
  4008. (bp->mac_addr[4] << 8) +
  4009. (bp->mac_addr[5] << 16);
  4010. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  4011. /* Program the MTU. Also include 4 bytes for CRC32. */
  4012. mtu = bp->dev->mtu;
  4013. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  4014. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  4015. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  4016. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  4017. if (mtu < 1500)
  4018. mtu = 1500;
  4019. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  4020. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4021. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4022. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4023. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4024. bp->bnx2_napi[i].last_status_idx = 0;
  4025. bp->idle_chk_status_idx = 0xffff;
  4026. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4027. /* Set up how to generate a link change interrupt. */
  4028. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4029. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4030. (u64) bp->status_blk_mapping & 0xffffffff);
  4031. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4032. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4033. (u64) bp->stats_blk_mapping & 0xffffffff);
  4034. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4035. (u64) bp->stats_blk_mapping >> 32);
  4036. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4037. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4038. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4039. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4040. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4041. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4042. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4043. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4044. REG_WR(bp, BNX2_HC_COM_TICKS,
  4045. (bp->com_ticks_int << 16) | bp->com_ticks);
  4046. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4047. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4048. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4049. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4050. else
  4051. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4052. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4053. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4054. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4055. else {
  4056. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4057. BNX2_HC_CONFIG_COLLECT_STATS;
  4058. }
  4059. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4060. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4061. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4062. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4063. }
  4064. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4065. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4066. REG_WR(bp, BNX2_HC_CONFIG, val);
  4067. for (i = 1; i < bp->irq_nvecs; i++) {
  4068. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4069. BNX2_HC_SB_CONFIG_1;
  4070. REG_WR(bp, base,
  4071. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4072. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4073. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4074. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4075. (bp->tx_quick_cons_trip_int << 16) |
  4076. bp->tx_quick_cons_trip);
  4077. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4078. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4079. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4080. (bp->rx_quick_cons_trip_int << 16) |
  4081. bp->rx_quick_cons_trip);
  4082. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4083. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4084. }
  4085. /* Clear internal stats counters. */
  4086. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4087. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4088. /* Initialize the receive filter. */
  4089. bnx2_set_rx_mode(bp->dev);
  4090. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4091. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4092. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4093. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4094. }
  4095. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4096. 1, 0);
  4097. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4098. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4099. udelay(20);
  4100. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4101. return rc;
  4102. }
  4103. static void
  4104. bnx2_clear_ring_states(struct bnx2 *bp)
  4105. {
  4106. struct bnx2_napi *bnapi;
  4107. struct bnx2_tx_ring_info *txr;
  4108. struct bnx2_rx_ring_info *rxr;
  4109. int i;
  4110. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4111. bnapi = &bp->bnx2_napi[i];
  4112. txr = &bnapi->tx_ring;
  4113. rxr = &bnapi->rx_ring;
  4114. txr->tx_cons = 0;
  4115. txr->hw_tx_cons = 0;
  4116. rxr->rx_prod_bseq = 0;
  4117. rxr->rx_prod = 0;
  4118. rxr->rx_cons = 0;
  4119. rxr->rx_pg_prod = 0;
  4120. rxr->rx_pg_cons = 0;
  4121. }
  4122. }
  4123. static void
  4124. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4125. {
  4126. u32 val, offset0, offset1, offset2, offset3;
  4127. u32 cid_addr = GET_CID_ADDR(cid);
  4128. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4129. offset0 = BNX2_L2CTX_TYPE_XI;
  4130. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4131. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4132. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4133. } else {
  4134. offset0 = BNX2_L2CTX_TYPE;
  4135. offset1 = BNX2_L2CTX_CMD_TYPE;
  4136. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4137. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4138. }
  4139. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4140. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4141. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4142. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4143. val = (u64) txr->tx_desc_mapping >> 32;
  4144. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4145. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4146. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4147. }
  4148. static void
  4149. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4150. {
  4151. struct tx_bd *txbd;
  4152. u32 cid = TX_CID;
  4153. struct bnx2_napi *bnapi;
  4154. struct bnx2_tx_ring_info *txr;
  4155. bnapi = &bp->bnx2_napi[ring_num];
  4156. txr = &bnapi->tx_ring;
  4157. if (ring_num == 0)
  4158. cid = TX_CID;
  4159. else
  4160. cid = TX_TSS_CID + ring_num - 1;
  4161. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4162. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4163. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4164. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4165. txr->tx_prod = 0;
  4166. txr->tx_prod_bseq = 0;
  4167. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4168. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4169. bnx2_init_tx_context(bp, cid, txr);
  4170. }
  4171. static void
  4172. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4173. int num_rings)
  4174. {
  4175. int i;
  4176. struct rx_bd *rxbd;
  4177. for (i = 0; i < num_rings; i++) {
  4178. int j;
  4179. rxbd = &rx_ring[i][0];
  4180. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4181. rxbd->rx_bd_len = buf_size;
  4182. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4183. }
  4184. if (i == (num_rings - 1))
  4185. j = 0;
  4186. else
  4187. j = i + 1;
  4188. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4189. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4190. }
  4191. }
  4192. static void
  4193. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4194. {
  4195. int i;
  4196. u16 prod, ring_prod;
  4197. u32 cid, rx_cid_addr, val;
  4198. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4199. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4200. if (ring_num == 0)
  4201. cid = RX_CID;
  4202. else
  4203. cid = RX_RSS_CID + ring_num - 1;
  4204. rx_cid_addr = GET_CID_ADDR(cid);
  4205. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4206. bp->rx_buf_use_size, bp->rx_max_ring);
  4207. bnx2_init_rx_context(bp, cid);
  4208. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4209. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4210. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4211. }
  4212. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4213. if (bp->rx_pg_ring_size) {
  4214. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4215. rxr->rx_pg_desc_mapping,
  4216. PAGE_SIZE, bp->rx_max_pg_ring);
  4217. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4218. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4219. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4220. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4221. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4222. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4223. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4224. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4225. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4226. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4227. }
  4228. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4229. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4230. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4231. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4232. ring_prod = prod = rxr->rx_pg_prod;
  4233. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4234. if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0) {
  4235. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4236. ring_num, i, bp->rx_pg_ring_size);
  4237. break;
  4238. }
  4239. prod = NEXT_RX_BD(prod);
  4240. ring_prod = RX_PG_RING_IDX(prod);
  4241. }
  4242. rxr->rx_pg_prod = prod;
  4243. ring_prod = prod = rxr->rx_prod;
  4244. for (i = 0; i < bp->rx_ring_size; i++) {
  4245. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0) {
  4246. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4247. ring_num, i, bp->rx_ring_size);
  4248. break;
  4249. }
  4250. prod = NEXT_RX_BD(prod);
  4251. ring_prod = RX_RING_IDX(prod);
  4252. }
  4253. rxr->rx_prod = prod;
  4254. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4255. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4256. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4257. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4258. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4259. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4260. }
  4261. static void
  4262. bnx2_init_all_rings(struct bnx2 *bp)
  4263. {
  4264. int i;
  4265. u32 val;
  4266. bnx2_clear_ring_states(bp);
  4267. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4268. for (i = 0; i < bp->num_tx_rings; i++)
  4269. bnx2_init_tx_ring(bp, i);
  4270. if (bp->num_tx_rings > 1)
  4271. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4272. (TX_TSS_CID << 7));
  4273. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4274. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4275. for (i = 0; i < bp->num_rx_rings; i++)
  4276. bnx2_init_rx_ring(bp, i);
  4277. if (bp->num_rx_rings > 1) {
  4278. u32 tbl_32;
  4279. u8 *tbl = (u8 *) &tbl_32;
  4280. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4281. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4282. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4283. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4284. if ((i % 4) == 3)
  4285. bnx2_reg_wr_ind(bp,
  4286. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4287. cpu_to_be32(tbl_32));
  4288. }
  4289. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4290. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4291. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4292. }
  4293. }
  4294. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4295. {
  4296. u32 max, num_rings = 1;
  4297. while (ring_size > MAX_RX_DESC_CNT) {
  4298. ring_size -= MAX_RX_DESC_CNT;
  4299. num_rings++;
  4300. }
  4301. /* round to next power of 2 */
  4302. max = max_size;
  4303. while ((max & num_rings) == 0)
  4304. max >>= 1;
  4305. if (num_rings != max)
  4306. max <<= 1;
  4307. return max;
  4308. }
  4309. static void
  4310. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4311. {
  4312. u32 rx_size, rx_space, jumbo_size;
  4313. /* 8 for CRC and VLAN */
  4314. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4315. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4316. sizeof(struct skb_shared_info);
  4317. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4318. bp->rx_pg_ring_size = 0;
  4319. bp->rx_max_pg_ring = 0;
  4320. bp->rx_max_pg_ring_idx = 0;
  4321. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4322. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4323. jumbo_size = size * pages;
  4324. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4325. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4326. bp->rx_pg_ring_size = jumbo_size;
  4327. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4328. MAX_RX_PG_RINGS);
  4329. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4330. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4331. bp->rx_copy_thresh = 0;
  4332. }
  4333. bp->rx_buf_use_size = rx_size;
  4334. /* hw alignment */
  4335. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4336. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4337. bp->rx_ring_size = size;
  4338. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4339. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4340. }
  4341. static void
  4342. bnx2_free_tx_skbs(struct bnx2 *bp)
  4343. {
  4344. int i;
  4345. for (i = 0; i < bp->num_tx_rings; i++) {
  4346. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4347. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4348. int j;
  4349. if (txr->tx_buf_ring == NULL)
  4350. continue;
  4351. for (j = 0; j < TX_DESC_CNT; ) {
  4352. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4353. struct sk_buff *skb = tx_buf->skb;
  4354. int k, last;
  4355. if (skb == NULL) {
  4356. j++;
  4357. continue;
  4358. }
  4359. pci_unmap_single(bp->pdev,
  4360. dma_unmap_addr(tx_buf, mapping),
  4361. skb_headlen(skb),
  4362. PCI_DMA_TODEVICE);
  4363. tx_buf->skb = NULL;
  4364. last = tx_buf->nr_frags;
  4365. j++;
  4366. for (k = 0; k < last; k++, j++) {
  4367. tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
  4368. pci_unmap_page(bp->pdev,
  4369. dma_unmap_addr(tx_buf, mapping),
  4370. skb_shinfo(skb)->frags[k].size,
  4371. PCI_DMA_TODEVICE);
  4372. }
  4373. dev_kfree_skb(skb);
  4374. }
  4375. }
  4376. }
  4377. static void
  4378. bnx2_free_rx_skbs(struct bnx2 *bp)
  4379. {
  4380. int i;
  4381. for (i = 0; i < bp->num_rx_rings; i++) {
  4382. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4383. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4384. int j;
  4385. if (rxr->rx_buf_ring == NULL)
  4386. return;
  4387. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4388. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4389. struct sk_buff *skb = rx_buf->skb;
  4390. if (skb == NULL)
  4391. continue;
  4392. pci_unmap_single(bp->pdev,
  4393. dma_unmap_addr(rx_buf, mapping),
  4394. bp->rx_buf_use_size,
  4395. PCI_DMA_FROMDEVICE);
  4396. rx_buf->skb = NULL;
  4397. dev_kfree_skb(skb);
  4398. }
  4399. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4400. bnx2_free_rx_page(bp, rxr, j);
  4401. }
  4402. }
  4403. static void
  4404. bnx2_free_skbs(struct bnx2 *bp)
  4405. {
  4406. bnx2_free_tx_skbs(bp);
  4407. bnx2_free_rx_skbs(bp);
  4408. }
  4409. static int
  4410. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4411. {
  4412. int rc;
  4413. rc = bnx2_reset_chip(bp, reset_code);
  4414. bnx2_free_skbs(bp);
  4415. if (rc)
  4416. return rc;
  4417. if ((rc = bnx2_init_chip(bp)) != 0)
  4418. return rc;
  4419. bnx2_init_all_rings(bp);
  4420. return 0;
  4421. }
  4422. static int
  4423. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4424. {
  4425. int rc;
  4426. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4427. return rc;
  4428. spin_lock_bh(&bp->phy_lock);
  4429. bnx2_init_phy(bp, reset_phy);
  4430. bnx2_set_link(bp);
  4431. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4432. bnx2_remote_phy_event(bp);
  4433. spin_unlock_bh(&bp->phy_lock);
  4434. return 0;
  4435. }
  4436. static int
  4437. bnx2_shutdown_chip(struct bnx2 *bp)
  4438. {
  4439. u32 reset_code;
  4440. if (bp->flags & BNX2_FLAG_NO_WOL)
  4441. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4442. else if (bp->wol)
  4443. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4444. else
  4445. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4446. return bnx2_reset_chip(bp, reset_code);
  4447. }
  4448. static int
  4449. bnx2_test_registers(struct bnx2 *bp)
  4450. {
  4451. int ret;
  4452. int i, is_5709;
  4453. static const struct {
  4454. u16 offset;
  4455. u16 flags;
  4456. #define BNX2_FL_NOT_5709 1
  4457. u32 rw_mask;
  4458. u32 ro_mask;
  4459. } reg_tbl[] = {
  4460. { 0x006c, 0, 0x00000000, 0x0000003f },
  4461. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4462. { 0x0094, 0, 0x00000000, 0x00000000 },
  4463. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4464. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4465. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4466. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4467. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4468. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4469. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4470. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4471. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4472. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4473. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4474. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4475. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4476. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4477. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4478. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4479. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4480. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4481. { 0x1000, 0, 0x00000000, 0x00000001 },
  4482. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4483. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4484. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4485. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4486. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4487. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4488. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4489. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4490. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4491. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4492. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4493. { 0x1800, 0, 0x00000000, 0x00000001 },
  4494. { 0x1804, 0, 0x00000000, 0x00000003 },
  4495. { 0x2800, 0, 0x00000000, 0x00000001 },
  4496. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4497. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4498. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4499. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4500. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4501. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4502. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4503. { 0x2840, 0, 0x00000000, 0xffffffff },
  4504. { 0x2844, 0, 0x00000000, 0xffffffff },
  4505. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4506. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4507. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4508. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4509. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4510. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4511. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4512. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4513. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4514. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4515. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4516. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4517. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4518. { 0x5004, 0, 0x00000000, 0x0000007f },
  4519. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4520. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4521. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4522. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4523. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4524. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4525. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4526. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4527. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4528. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4529. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4530. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4531. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4532. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4533. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4534. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4535. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4536. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4537. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4538. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4539. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4540. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4541. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4542. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4543. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4544. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4545. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4546. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4547. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4548. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4549. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4550. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4551. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4552. { 0xffff, 0, 0x00000000, 0x00000000 },
  4553. };
  4554. ret = 0;
  4555. is_5709 = 0;
  4556. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4557. is_5709 = 1;
  4558. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4559. u32 offset, rw_mask, ro_mask, save_val, val;
  4560. u16 flags = reg_tbl[i].flags;
  4561. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4562. continue;
  4563. offset = (u32) reg_tbl[i].offset;
  4564. rw_mask = reg_tbl[i].rw_mask;
  4565. ro_mask = reg_tbl[i].ro_mask;
  4566. save_val = readl(bp->regview + offset);
  4567. writel(0, bp->regview + offset);
  4568. val = readl(bp->regview + offset);
  4569. if ((val & rw_mask) != 0) {
  4570. goto reg_test_err;
  4571. }
  4572. if ((val & ro_mask) != (save_val & ro_mask)) {
  4573. goto reg_test_err;
  4574. }
  4575. writel(0xffffffff, bp->regview + offset);
  4576. val = readl(bp->regview + offset);
  4577. if ((val & rw_mask) != rw_mask) {
  4578. goto reg_test_err;
  4579. }
  4580. if ((val & ro_mask) != (save_val & ro_mask)) {
  4581. goto reg_test_err;
  4582. }
  4583. writel(save_val, bp->regview + offset);
  4584. continue;
  4585. reg_test_err:
  4586. writel(save_val, bp->regview + offset);
  4587. ret = -ENODEV;
  4588. break;
  4589. }
  4590. return ret;
  4591. }
  4592. static int
  4593. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4594. {
  4595. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4596. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4597. int i;
  4598. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4599. u32 offset;
  4600. for (offset = 0; offset < size; offset += 4) {
  4601. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4602. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4603. test_pattern[i]) {
  4604. return -ENODEV;
  4605. }
  4606. }
  4607. }
  4608. return 0;
  4609. }
  4610. static int
  4611. bnx2_test_memory(struct bnx2 *bp)
  4612. {
  4613. int ret = 0;
  4614. int i;
  4615. static struct mem_entry {
  4616. u32 offset;
  4617. u32 len;
  4618. } mem_tbl_5706[] = {
  4619. { 0x60000, 0x4000 },
  4620. { 0xa0000, 0x3000 },
  4621. { 0xe0000, 0x4000 },
  4622. { 0x120000, 0x4000 },
  4623. { 0x1a0000, 0x4000 },
  4624. { 0x160000, 0x4000 },
  4625. { 0xffffffff, 0 },
  4626. },
  4627. mem_tbl_5709[] = {
  4628. { 0x60000, 0x4000 },
  4629. { 0xa0000, 0x3000 },
  4630. { 0xe0000, 0x4000 },
  4631. { 0x120000, 0x4000 },
  4632. { 0x1a0000, 0x4000 },
  4633. { 0xffffffff, 0 },
  4634. };
  4635. struct mem_entry *mem_tbl;
  4636. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4637. mem_tbl = mem_tbl_5709;
  4638. else
  4639. mem_tbl = mem_tbl_5706;
  4640. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4641. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4642. mem_tbl[i].len)) != 0) {
  4643. return ret;
  4644. }
  4645. }
  4646. return ret;
  4647. }
  4648. #define BNX2_MAC_LOOPBACK 0
  4649. #define BNX2_PHY_LOOPBACK 1
  4650. static int
  4651. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4652. {
  4653. unsigned int pkt_size, num_pkts, i;
  4654. struct sk_buff *skb, *rx_skb;
  4655. unsigned char *packet;
  4656. u16 rx_start_idx, rx_idx;
  4657. dma_addr_t map;
  4658. struct tx_bd *txbd;
  4659. struct sw_bd *rx_buf;
  4660. struct l2_fhdr *rx_hdr;
  4661. int ret = -ENODEV;
  4662. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4663. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4664. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4665. tx_napi = bnapi;
  4666. txr = &tx_napi->tx_ring;
  4667. rxr = &bnapi->rx_ring;
  4668. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4669. bp->loopback = MAC_LOOPBACK;
  4670. bnx2_set_mac_loopback(bp);
  4671. }
  4672. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4673. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4674. return 0;
  4675. bp->loopback = PHY_LOOPBACK;
  4676. bnx2_set_phy_loopback(bp);
  4677. }
  4678. else
  4679. return -EINVAL;
  4680. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4681. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4682. if (!skb)
  4683. return -ENOMEM;
  4684. packet = skb_put(skb, pkt_size);
  4685. memcpy(packet, bp->dev->dev_addr, 6);
  4686. memset(packet + 6, 0x0, 8);
  4687. for (i = 14; i < pkt_size; i++)
  4688. packet[i] = (unsigned char) (i & 0xff);
  4689. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  4690. PCI_DMA_TODEVICE);
  4691. if (pci_dma_mapping_error(bp->pdev, map)) {
  4692. dev_kfree_skb(skb);
  4693. return -EIO;
  4694. }
  4695. REG_WR(bp, BNX2_HC_COMMAND,
  4696. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4697. REG_RD(bp, BNX2_HC_COMMAND);
  4698. udelay(5);
  4699. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4700. num_pkts = 0;
  4701. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4702. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4703. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4704. txbd->tx_bd_mss_nbytes = pkt_size;
  4705. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4706. num_pkts++;
  4707. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4708. txr->tx_prod_bseq += pkt_size;
  4709. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4710. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4711. udelay(100);
  4712. REG_WR(bp, BNX2_HC_COMMAND,
  4713. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4714. REG_RD(bp, BNX2_HC_COMMAND);
  4715. udelay(5);
  4716. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  4717. dev_kfree_skb(skb);
  4718. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4719. goto loopback_test_done;
  4720. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4721. if (rx_idx != rx_start_idx + num_pkts) {
  4722. goto loopback_test_done;
  4723. }
  4724. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4725. rx_skb = rx_buf->skb;
  4726. rx_hdr = rx_buf->desc;
  4727. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4728. pci_dma_sync_single_for_cpu(bp->pdev,
  4729. dma_unmap_addr(rx_buf, mapping),
  4730. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4731. if (rx_hdr->l2_fhdr_status &
  4732. (L2_FHDR_ERRORS_BAD_CRC |
  4733. L2_FHDR_ERRORS_PHY_DECODE |
  4734. L2_FHDR_ERRORS_ALIGNMENT |
  4735. L2_FHDR_ERRORS_TOO_SHORT |
  4736. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4737. goto loopback_test_done;
  4738. }
  4739. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4740. goto loopback_test_done;
  4741. }
  4742. for (i = 14; i < pkt_size; i++) {
  4743. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4744. goto loopback_test_done;
  4745. }
  4746. }
  4747. ret = 0;
  4748. loopback_test_done:
  4749. bp->loopback = 0;
  4750. return ret;
  4751. }
  4752. #define BNX2_MAC_LOOPBACK_FAILED 1
  4753. #define BNX2_PHY_LOOPBACK_FAILED 2
  4754. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4755. BNX2_PHY_LOOPBACK_FAILED)
  4756. static int
  4757. bnx2_test_loopback(struct bnx2 *bp)
  4758. {
  4759. int rc = 0;
  4760. if (!netif_running(bp->dev))
  4761. return BNX2_LOOPBACK_FAILED;
  4762. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4763. spin_lock_bh(&bp->phy_lock);
  4764. bnx2_init_phy(bp, 1);
  4765. spin_unlock_bh(&bp->phy_lock);
  4766. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4767. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4768. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4769. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4770. return rc;
  4771. }
  4772. #define NVRAM_SIZE 0x200
  4773. #define CRC32_RESIDUAL 0xdebb20e3
  4774. static int
  4775. bnx2_test_nvram(struct bnx2 *bp)
  4776. {
  4777. __be32 buf[NVRAM_SIZE / 4];
  4778. u8 *data = (u8 *) buf;
  4779. int rc = 0;
  4780. u32 magic, csum;
  4781. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4782. goto test_nvram_done;
  4783. magic = be32_to_cpu(buf[0]);
  4784. if (magic != 0x669955aa) {
  4785. rc = -ENODEV;
  4786. goto test_nvram_done;
  4787. }
  4788. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4789. goto test_nvram_done;
  4790. csum = ether_crc_le(0x100, data);
  4791. if (csum != CRC32_RESIDUAL) {
  4792. rc = -ENODEV;
  4793. goto test_nvram_done;
  4794. }
  4795. csum = ether_crc_le(0x100, data + 0x100);
  4796. if (csum != CRC32_RESIDUAL) {
  4797. rc = -ENODEV;
  4798. }
  4799. test_nvram_done:
  4800. return rc;
  4801. }
  4802. static int
  4803. bnx2_test_link(struct bnx2 *bp)
  4804. {
  4805. u32 bmsr;
  4806. if (!netif_running(bp->dev))
  4807. return -ENODEV;
  4808. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4809. if (bp->link_up)
  4810. return 0;
  4811. return -ENODEV;
  4812. }
  4813. spin_lock_bh(&bp->phy_lock);
  4814. bnx2_enable_bmsr1(bp);
  4815. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4816. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4817. bnx2_disable_bmsr1(bp);
  4818. spin_unlock_bh(&bp->phy_lock);
  4819. if (bmsr & BMSR_LSTATUS) {
  4820. return 0;
  4821. }
  4822. return -ENODEV;
  4823. }
  4824. static int
  4825. bnx2_test_intr(struct bnx2 *bp)
  4826. {
  4827. int i;
  4828. u16 status_idx;
  4829. if (!netif_running(bp->dev))
  4830. return -ENODEV;
  4831. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4832. /* This register is not touched during run-time. */
  4833. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4834. REG_RD(bp, BNX2_HC_COMMAND);
  4835. for (i = 0; i < 10; i++) {
  4836. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4837. status_idx) {
  4838. break;
  4839. }
  4840. msleep_interruptible(10);
  4841. }
  4842. if (i < 10)
  4843. return 0;
  4844. return -ENODEV;
  4845. }
  4846. /* Determining link for parallel detection. */
  4847. static int
  4848. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4849. {
  4850. u32 mode_ctl, an_dbg, exp;
  4851. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4852. return 0;
  4853. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4854. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4855. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4856. return 0;
  4857. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4858. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4859. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4860. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4861. return 0;
  4862. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4863. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4864. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4865. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4866. return 0;
  4867. return 1;
  4868. }
  4869. static void
  4870. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4871. {
  4872. int check_link = 1;
  4873. spin_lock(&bp->phy_lock);
  4874. if (bp->serdes_an_pending) {
  4875. bp->serdes_an_pending--;
  4876. check_link = 0;
  4877. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4878. u32 bmcr;
  4879. bp->current_interval = BNX2_TIMER_INTERVAL;
  4880. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4881. if (bmcr & BMCR_ANENABLE) {
  4882. if (bnx2_5706_serdes_has_link(bp)) {
  4883. bmcr &= ~BMCR_ANENABLE;
  4884. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4885. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4886. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4887. }
  4888. }
  4889. }
  4890. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4891. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4892. u32 phy2;
  4893. bnx2_write_phy(bp, 0x17, 0x0f01);
  4894. bnx2_read_phy(bp, 0x15, &phy2);
  4895. if (phy2 & 0x20) {
  4896. u32 bmcr;
  4897. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4898. bmcr |= BMCR_ANENABLE;
  4899. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4900. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4901. }
  4902. } else
  4903. bp->current_interval = BNX2_TIMER_INTERVAL;
  4904. if (check_link) {
  4905. u32 val;
  4906. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4907. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4908. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4909. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4910. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4911. bnx2_5706s_force_link_dn(bp, 1);
  4912. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4913. } else
  4914. bnx2_set_link(bp);
  4915. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4916. bnx2_set_link(bp);
  4917. }
  4918. spin_unlock(&bp->phy_lock);
  4919. }
  4920. static void
  4921. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4922. {
  4923. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4924. return;
  4925. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4926. bp->serdes_an_pending = 0;
  4927. return;
  4928. }
  4929. spin_lock(&bp->phy_lock);
  4930. if (bp->serdes_an_pending)
  4931. bp->serdes_an_pending--;
  4932. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4933. u32 bmcr;
  4934. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4935. if (bmcr & BMCR_ANENABLE) {
  4936. bnx2_enable_forced_2g5(bp);
  4937. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4938. } else {
  4939. bnx2_disable_forced_2g5(bp);
  4940. bp->serdes_an_pending = 2;
  4941. bp->current_interval = BNX2_TIMER_INTERVAL;
  4942. }
  4943. } else
  4944. bp->current_interval = BNX2_TIMER_INTERVAL;
  4945. spin_unlock(&bp->phy_lock);
  4946. }
  4947. static void
  4948. bnx2_timer(unsigned long data)
  4949. {
  4950. struct bnx2 *bp = (struct bnx2 *) data;
  4951. if (!netif_running(bp->dev))
  4952. return;
  4953. if (atomic_read(&bp->intr_sem) != 0)
  4954. goto bnx2_restart_timer;
  4955. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4956. BNX2_FLAG_USING_MSI)
  4957. bnx2_chk_missed_msi(bp);
  4958. bnx2_send_heart_beat(bp);
  4959. bp->stats_blk->stat_FwRxDrop =
  4960. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4961. /* workaround occasional corrupted counters */
  4962. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  4963. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4964. BNX2_HC_COMMAND_STATS_NOW);
  4965. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4966. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4967. bnx2_5706_serdes_timer(bp);
  4968. else
  4969. bnx2_5708_serdes_timer(bp);
  4970. }
  4971. bnx2_restart_timer:
  4972. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4973. }
  4974. static int
  4975. bnx2_request_irq(struct bnx2 *bp)
  4976. {
  4977. unsigned long flags;
  4978. struct bnx2_irq *irq;
  4979. int rc = 0, i;
  4980. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4981. flags = 0;
  4982. else
  4983. flags = IRQF_SHARED;
  4984. for (i = 0; i < bp->irq_nvecs; i++) {
  4985. irq = &bp->irq_tbl[i];
  4986. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4987. &bp->bnx2_napi[i]);
  4988. if (rc)
  4989. break;
  4990. irq->requested = 1;
  4991. }
  4992. return rc;
  4993. }
  4994. static void
  4995. bnx2_free_irq(struct bnx2 *bp)
  4996. {
  4997. struct bnx2_irq *irq;
  4998. int i;
  4999. for (i = 0; i < bp->irq_nvecs; i++) {
  5000. irq = &bp->irq_tbl[i];
  5001. if (irq->requested)
  5002. free_irq(irq->vector, &bp->bnx2_napi[i]);
  5003. irq->requested = 0;
  5004. }
  5005. if (bp->flags & BNX2_FLAG_USING_MSI)
  5006. pci_disable_msi(bp->pdev);
  5007. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5008. pci_disable_msix(bp->pdev);
  5009. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  5010. }
  5011. static void
  5012. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5013. {
  5014. int i, rc;
  5015. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5016. struct net_device *dev = bp->dev;
  5017. const int len = sizeof(bp->irq_tbl[0].name);
  5018. bnx2_setup_msix_tbl(bp);
  5019. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5020. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5021. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5022. /* Need to flush the previous three writes to ensure MSI-X
  5023. * is setup properly */
  5024. REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5025. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5026. msix_ent[i].entry = i;
  5027. msix_ent[i].vector = 0;
  5028. }
  5029. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  5030. if (rc != 0)
  5031. return;
  5032. bp->irq_nvecs = msix_vecs;
  5033. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5034. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5035. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5036. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5037. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5038. }
  5039. }
  5040. static void
  5041. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5042. {
  5043. int cpus = num_online_cpus();
  5044. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  5045. bp->irq_tbl[0].handler = bnx2_interrupt;
  5046. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5047. bp->irq_nvecs = 1;
  5048. bp->irq_tbl[0].vector = bp->pdev->irq;
  5049. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
  5050. bnx2_enable_msix(bp, msix_vecs);
  5051. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5052. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5053. if (pci_enable_msi(bp->pdev) == 0) {
  5054. bp->flags |= BNX2_FLAG_USING_MSI;
  5055. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5056. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5057. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5058. } else
  5059. bp->irq_tbl[0].handler = bnx2_msi;
  5060. bp->irq_tbl[0].vector = bp->pdev->irq;
  5061. }
  5062. }
  5063. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5064. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  5065. bp->num_rx_rings = bp->irq_nvecs;
  5066. }
  5067. /* Called with rtnl_lock */
  5068. static int
  5069. bnx2_open(struct net_device *dev)
  5070. {
  5071. struct bnx2 *bp = netdev_priv(dev);
  5072. int rc;
  5073. netif_carrier_off(dev);
  5074. bnx2_set_power_state(bp, PCI_D0);
  5075. bnx2_disable_int(bp);
  5076. bnx2_setup_int_mode(bp, disable_msi);
  5077. bnx2_init_napi(bp);
  5078. bnx2_napi_enable(bp);
  5079. rc = bnx2_alloc_mem(bp);
  5080. if (rc)
  5081. goto open_err;
  5082. rc = bnx2_request_irq(bp);
  5083. if (rc)
  5084. goto open_err;
  5085. rc = bnx2_init_nic(bp, 1);
  5086. if (rc)
  5087. goto open_err;
  5088. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5089. atomic_set(&bp->intr_sem, 0);
  5090. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5091. bnx2_enable_int(bp);
  5092. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5093. /* Test MSI to make sure it is working
  5094. * If MSI test fails, go back to INTx mode
  5095. */
  5096. if (bnx2_test_intr(bp) != 0) {
  5097. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5098. bnx2_disable_int(bp);
  5099. bnx2_free_irq(bp);
  5100. bnx2_setup_int_mode(bp, 1);
  5101. rc = bnx2_init_nic(bp, 0);
  5102. if (!rc)
  5103. rc = bnx2_request_irq(bp);
  5104. if (rc) {
  5105. del_timer_sync(&bp->timer);
  5106. goto open_err;
  5107. }
  5108. bnx2_enable_int(bp);
  5109. }
  5110. }
  5111. if (bp->flags & BNX2_FLAG_USING_MSI)
  5112. netdev_info(dev, "using MSI\n");
  5113. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5114. netdev_info(dev, "using MSIX\n");
  5115. netif_tx_start_all_queues(dev);
  5116. return 0;
  5117. open_err:
  5118. bnx2_napi_disable(bp);
  5119. bnx2_free_skbs(bp);
  5120. bnx2_free_irq(bp);
  5121. bnx2_free_mem(bp);
  5122. bnx2_del_napi(bp);
  5123. return rc;
  5124. }
  5125. static void
  5126. bnx2_reset_task(struct work_struct *work)
  5127. {
  5128. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5129. rtnl_lock();
  5130. if (!netif_running(bp->dev)) {
  5131. rtnl_unlock();
  5132. return;
  5133. }
  5134. bnx2_netif_stop(bp, true);
  5135. bnx2_init_nic(bp, 1);
  5136. atomic_set(&bp->intr_sem, 1);
  5137. bnx2_netif_start(bp, true);
  5138. rtnl_unlock();
  5139. }
  5140. static void
  5141. bnx2_dump_state(struct bnx2 *bp)
  5142. {
  5143. struct net_device *dev = bp->dev;
  5144. u32 mcp_p0, mcp_p1;
  5145. netdev_err(dev, "DEBUG: intr_sem[%x]\n", atomic_read(&bp->intr_sem));
  5146. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
  5147. REG_RD(bp, BNX2_EMAC_TX_STATUS),
  5148. REG_RD(bp, BNX2_EMAC_RX_STATUS));
  5149. netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
  5150. REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5151. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5152. mcp_p0 = BNX2_MCP_STATE_P0;
  5153. mcp_p1 = BNX2_MCP_STATE_P1;
  5154. } else {
  5155. mcp_p0 = BNX2_MCP_STATE_P0_5708;
  5156. mcp_p1 = BNX2_MCP_STATE_P1_5708;
  5157. }
  5158. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  5159. bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
  5160. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5161. REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5162. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5163. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5164. REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5165. }
  5166. static void
  5167. bnx2_tx_timeout(struct net_device *dev)
  5168. {
  5169. struct bnx2 *bp = netdev_priv(dev);
  5170. bnx2_dump_state(bp);
  5171. /* This allows the netif to be shutdown gracefully before resetting */
  5172. schedule_work(&bp->reset_task);
  5173. }
  5174. #ifdef BCM_VLAN
  5175. /* Called with rtnl_lock */
  5176. static void
  5177. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5178. {
  5179. struct bnx2 *bp = netdev_priv(dev);
  5180. if (netif_running(dev))
  5181. bnx2_netif_stop(bp, false);
  5182. bp->vlgrp = vlgrp;
  5183. if (!netif_running(dev))
  5184. return;
  5185. bnx2_set_rx_mode(dev);
  5186. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5187. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5188. bnx2_netif_start(bp, false);
  5189. }
  5190. #endif
  5191. /* Called with netif_tx_lock.
  5192. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5193. * netif_wake_queue().
  5194. */
  5195. static netdev_tx_t
  5196. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5197. {
  5198. struct bnx2 *bp = netdev_priv(dev);
  5199. dma_addr_t mapping;
  5200. struct tx_bd *txbd;
  5201. struct sw_tx_bd *tx_buf;
  5202. u32 len, vlan_tag_flags, last_frag, mss;
  5203. u16 prod, ring_prod;
  5204. int i;
  5205. struct bnx2_napi *bnapi;
  5206. struct bnx2_tx_ring_info *txr;
  5207. struct netdev_queue *txq;
  5208. /* Determine which tx ring we will be placed on */
  5209. i = skb_get_queue_mapping(skb);
  5210. bnapi = &bp->bnx2_napi[i];
  5211. txr = &bnapi->tx_ring;
  5212. txq = netdev_get_tx_queue(dev, i);
  5213. if (unlikely(bnx2_tx_avail(bp, txr) <
  5214. (skb_shinfo(skb)->nr_frags + 1))) {
  5215. netif_tx_stop_queue(txq);
  5216. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5217. return NETDEV_TX_BUSY;
  5218. }
  5219. len = skb_headlen(skb);
  5220. prod = txr->tx_prod;
  5221. ring_prod = TX_RING_IDX(prod);
  5222. vlan_tag_flags = 0;
  5223. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5224. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5225. }
  5226. #ifdef BCM_VLAN
  5227. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5228. vlan_tag_flags |=
  5229. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5230. }
  5231. #endif
  5232. if ((mss = skb_shinfo(skb)->gso_size)) {
  5233. u32 tcp_opt_len;
  5234. struct iphdr *iph;
  5235. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5236. tcp_opt_len = tcp_optlen(skb);
  5237. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5238. u32 tcp_off = skb_transport_offset(skb) -
  5239. sizeof(struct ipv6hdr) - ETH_HLEN;
  5240. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5241. TX_BD_FLAGS_SW_FLAGS;
  5242. if (likely(tcp_off == 0))
  5243. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5244. else {
  5245. tcp_off >>= 3;
  5246. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5247. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5248. ((tcp_off & 0x10) <<
  5249. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5250. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5251. }
  5252. } else {
  5253. iph = ip_hdr(skb);
  5254. if (tcp_opt_len || (iph->ihl > 5)) {
  5255. vlan_tag_flags |= ((iph->ihl - 5) +
  5256. (tcp_opt_len >> 2)) << 8;
  5257. }
  5258. }
  5259. } else
  5260. mss = 0;
  5261. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  5262. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  5263. dev_kfree_skb(skb);
  5264. return NETDEV_TX_OK;
  5265. }
  5266. tx_buf = &txr->tx_buf_ring[ring_prod];
  5267. tx_buf->skb = skb;
  5268. dma_unmap_addr_set(tx_buf, mapping, mapping);
  5269. txbd = &txr->tx_desc_ring[ring_prod];
  5270. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5271. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5272. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5273. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5274. last_frag = skb_shinfo(skb)->nr_frags;
  5275. tx_buf->nr_frags = last_frag;
  5276. tx_buf->is_gso = skb_is_gso(skb);
  5277. for (i = 0; i < last_frag; i++) {
  5278. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5279. prod = NEXT_TX_BD(prod);
  5280. ring_prod = TX_RING_IDX(prod);
  5281. txbd = &txr->tx_desc_ring[ring_prod];
  5282. len = frag->size;
  5283. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  5284. len, PCI_DMA_TODEVICE);
  5285. if (pci_dma_mapping_error(bp->pdev, mapping))
  5286. goto dma_error;
  5287. dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5288. mapping);
  5289. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5290. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5291. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5292. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5293. }
  5294. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5295. prod = NEXT_TX_BD(prod);
  5296. txr->tx_prod_bseq += skb->len;
  5297. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5298. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5299. mmiowb();
  5300. txr->tx_prod = prod;
  5301. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5302. netif_tx_stop_queue(txq);
  5303. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5304. netif_tx_wake_queue(txq);
  5305. }
  5306. return NETDEV_TX_OK;
  5307. dma_error:
  5308. /* save value of frag that failed */
  5309. last_frag = i;
  5310. /* start back at beginning and unmap skb */
  5311. prod = txr->tx_prod;
  5312. ring_prod = TX_RING_IDX(prod);
  5313. tx_buf = &txr->tx_buf_ring[ring_prod];
  5314. tx_buf->skb = NULL;
  5315. pci_unmap_single(bp->pdev, dma_unmap_addr(tx_buf, mapping),
  5316. skb_headlen(skb), PCI_DMA_TODEVICE);
  5317. /* unmap remaining mapped pages */
  5318. for (i = 0; i < last_frag; i++) {
  5319. prod = NEXT_TX_BD(prod);
  5320. ring_prod = TX_RING_IDX(prod);
  5321. tx_buf = &txr->tx_buf_ring[ring_prod];
  5322. pci_unmap_page(bp->pdev, dma_unmap_addr(tx_buf, mapping),
  5323. skb_shinfo(skb)->frags[i].size,
  5324. PCI_DMA_TODEVICE);
  5325. }
  5326. dev_kfree_skb(skb);
  5327. return NETDEV_TX_OK;
  5328. }
  5329. /* Called with rtnl_lock */
  5330. static int
  5331. bnx2_close(struct net_device *dev)
  5332. {
  5333. struct bnx2 *bp = netdev_priv(dev);
  5334. cancel_work_sync(&bp->reset_task);
  5335. bnx2_disable_int_sync(bp);
  5336. bnx2_napi_disable(bp);
  5337. del_timer_sync(&bp->timer);
  5338. bnx2_shutdown_chip(bp);
  5339. bnx2_free_irq(bp);
  5340. bnx2_free_skbs(bp);
  5341. bnx2_free_mem(bp);
  5342. bnx2_del_napi(bp);
  5343. bp->link_up = 0;
  5344. netif_carrier_off(bp->dev);
  5345. bnx2_set_power_state(bp, PCI_D3hot);
  5346. return 0;
  5347. }
  5348. static void
  5349. bnx2_save_stats(struct bnx2 *bp)
  5350. {
  5351. u32 *hw_stats = (u32 *) bp->stats_blk;
  5352. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5353. int i;
  5354. /* The 1st 10 counters are 64-bit counters */
  5355. for (i = 0; i < 20; i += 2) {
  5356. u32 hi;
  5357. u64 lo;
  5358. hi = temp_stats[i] + hw_stats[i];
  5359. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5360. if (lo > 0xffffffff)
  5361. hi++;
  5362. temp_stats[i] = hi;
  5363. temp_stats[i + 1] = lo & 0xffffffff;
  5364. }
  5365. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5366. temp_stats[i] += hw_stats[i];
  5367. }
  5368. #define GET_64BIT_NET_STATS64(ctr) \
  5369. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  5370. (unsigned long) (ctr##_lo)
  5371. #define GET_64BIT_NET_STATS32(ctr) \
  5372. (ctr##_lo)
  5373. #if (BITS_PER_LONG == 64)
  5374. #define GET_64BIT_NET_STATS(ctr) \
  5375. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5376. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5377. #else
  5378. #define GET_64BIT_NET_STATS(ctr) \
  5379. GET_64BIT_NET_STATS32(bp->stats_blk->ctr) + \
  5380. GET_64BIT_NET_STATS32(bp->temp_stats_blk->ctr)
  5381. #endif
  5382. #define GET_32BIT_NET_STATS(ctr) \
  5383. (unsigned long) (bp->stats_blk->ctr + \
  5384. bp->temp_stats_blk->ctr)
  5385. static struct net_device_stats *
  5386. bnx2_get_stats(struct net_device *dev)
  5387. {
  5388. struct bnx2 *bp = netdev_priv(dev);
  5389. struct net_device_stats *net_stats = &dev->stats;
  5390. if (bp->stats_blk == NULL) {
  5391. return net_stats;
  5392. }
  5393. net_stats->rx_packets =
  5394. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5395. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5396. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5397. net_stats->tx_packets =
  5398. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5399. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5400. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5401. net_stats->rx_bytes =
  5402. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5403. net_stats->tx_bytes =
  5404. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5405. net_stats->multicast =
  5406. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts);
  5407. net_stats->collisions =
  5408. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5409. net_stats->rx_length_errors =
  5410. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5411. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5412. net_stats->rx_over_errors =
  5413. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5414. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5415. net_stats->rx_frame_errors =
  5416. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5417. net_stats->rx_crc_errors =
  5418. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5419. net_stats->rx_errors = net_stats->rx_length_errors +
  5420. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5421. net_stats->rx_crc_errors;
  5422. net_stats->tx_aborted_errors =
  5423. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5424. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5425. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5426. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5427. net_stats->tx_carrier_errors = 0;
  5428. else {
  5429. net_stats->tx_carrier_errors =
  5430. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5431. }
  5432. net_stats->tx_errors =
  5433. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5434. net_stats->tx_aborted_errors +
  5435. net_stats->tx_carrier_errors;
  5436. net_stats->rx_missed_errors =
  5437. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5438. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5439. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5440. return net_stats;
  5441. }
  5442. /* All ethtool functions called with rtnl_lock */
  5443. static int
  5444. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5445. {
  5446. struct bnx2 *bp = netdev_priv(dev);
  5447. int support_serdes = 0, support_copper = 0;
  5448. cmd->supported = SUPPORTED_Autoneg;
  5449. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5450. support_serdes = 1;
  5451. support_copper = 1;
  5452. } else if (bp->phy_port == PORT_FIBRE)
  5453. support_serdes = 1;
  5454. else
  5455. support_copper = 1;
  5456. if (support_serdes) {
  5457. cmd->supported |= SUPPORTED_1000baseT_Full |
  5458. SUPPORTED_FIBRE;
  5459. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5460. cmd->supported |= SUPPORTED_2500baseX_Full;
  5461. }
  5462. if (support_copper) {
  5463. cmd->supported |= SUPPORTED_10baseT_Half |
  5464. SUPPORTED_10baseT_Full |
  5465. SUPPORTED_100baseT_Half |
  5466. SUPPORTED_100baseT_Full |
  5467. SUPPORTED_1000baseT_Full |
  5468. SUPPORTED_TP;
  5469. }
  5470. spin_lock_bh(&bp->phy_lock);
  5471. cmd->port = bp->phy_port;
  5472. cmd->advertising = bp->advertising;
  5473. if (bp->autoneg & AUTONEG_SPEED) {
  5474. cmd->autoneg = AUTONEG_ENABLE;
  5475. }
  5476. else {
  5477. cmd->autoneg = AUTONEG_DISABLE;
  5478. }
  5479. if (netif_carrier_ok(dev)) {
  5480. cmd->speed = bp->line_speed;
  5481. cmd->duplex = bp->duplex;
  5482. }
  5483. else {
  5484. cmd->speed = -1;
  5485. cmd->duplex = -1;
  5486. }
  5487. spin_unlock_bh(&bp->phy_lock);
  5488. cmd->transceiver = XCVR_INTERNAL;
  5489. cmd->phy_address = bp->phy_addr;
  5490. return 0;
  5491. }
  5492. static int
  5493. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5494. {
  5495. struct bnx2 *bp = netdev_priv(dev);
  5496. u8 autoneg = bp->autoneg;
  5497. u8 req_duplex = bp->req_duplex;
  5498. u16 req_line_speed = bp->req_line_speed;
  5499. u32 advertising = bp->advertising;
  5500. int err = -EINVAL;
  5501. spin_lock_bh(&bp->phy_lock);
  5502. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5503. goto err_out_unlock;
  5504. if (cmd->port != bp->phy_port &&
  5505. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5506. goto err_out_unlock;
  5507. /* If device is down, we can store the settings only if the user
  5508. * is setting the currently active port.
  5509. */
  5510. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5511. goto err_out_unlock;
  5512. if (cmd->autoneg == AUTONEG_ENABLE) {
  5513. autoneg |= AUTONEG_SPEED;
  5514. advertising = cmd->advertising;
  5515. if (cmd->port == PORT_TP) {
  5516. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5517. if (!advertising)
  5518. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5519. } else {
  5520. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5521. if (!advertising)
  5522. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5523. }
  5524. advertising |= ADVERTISED_Autoneg;
  5525. }
  5526. else {
  5527. if (cmd->port == PORT_FIBRE) {
  5528. if ((cmd->speed != SPEED_1000 &&
  5529. cmd->speed != SPEED_2500) ||
  5530. (cmd->duplex != DUPLEX_FULL))
  5531. goto err_out_unlock;
  5532. if (cmd->speed == SPEED_2500 &&
  5533. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5534. goto err_out_unlock;
  5535. }
  5536. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5537. goto err_out_unlock;
  5538. autoneg &= ~AUTONEG_SPEED;
  5539. req_line_speed = cmd->speed;
  5540. req_duplex = cmd->duplex;
  5541. advertising = 0;
  5542. }
  5543. bp->autoneg = autoneg;
  5544. bp->advertising = advertising;
  5545. bp->req_line_speed = req_line_speed;
  5546. bp->req_duplex = req_duplex;
  5547. err = 0;
  5548. /* If device is down, the new settings will be picked up when it is
  5549. * brought up.
  5550. */
  5551. if (netif_running(dev))
  5552. err = bnx2_setup_phy(bp, cmd->port);
  5553. err_out_unlock:
  5554. spin_unlock_bh(&bp->phy_lock);
  5555. return err;
  5556. }
  5557. static void
  5558. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5559. {
  5560. struct bnx2 *bp = netdev_priv(dev);
  5561. strcpy(info->driver, DRV_MODULE_NAME);
  5562. strcpy(info->version, DRV_MODULE_VERSION);
  5563. strcpy(info->bus_info, pci_name(bp->pdev));
  5564. strcpy(info->fw_version, bp->fw_version);
  5565. }
  5566. #define BNX2_REGDUMP_LEN (32 * 1024)
  5567. static int
  5568. bnx2_get_regs_len(struct net_device *dev)
  5569. {
  5570. return BNX2_REGDUMP_LEN;
  5571. }
  5572. static void
  5573. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5574. {
  5575. u32 *p = _p, i, offset;
  5576. u8 *orig_p = _p;
  5577. struct bnx2 *bp = netdev_priv(dev);
  5578. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5579. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5580. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5581. 0x1040, 0x1048, 0x1080, 0x10a4,
  5582. 0x1400, 0x1490, 0x1498, 0x14f0,
  5583. 0x1500, 0x155c, 0x1580, 0x15dc,
  5584. 0x1600, 0x1658, 0x1680, 0x16d8,
  5585. 0x1800, 0x1820, 0x1840, 0x1854,
  5586. 0x1880, 0x1894, 0x1900, 0x1984,
  5587. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5588. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5589. 0x2000, 0x2030, 0x23c0, 0x2400,
  5590. 0x2800, 0x2820, 0x2830, 0x2850,
  5591. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5592. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5593. 0x4080, 0x4090, 0x43c0, 0x4458,
  5594. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5595. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5596. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5597. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5598. 0x6800, 0x6848, 0x684c, 0x6860,
  5599. 0x6888, 0x6910, 0x8000 };
  5600. regs->version = 0;
  5601. memset(p, 0, BNX2_REGDUMP_LEN);
  5602. if (!netif_running(bp->dev))
  5603. return;
  5604. i = 0;
  5605. offset = reg_boundaries[0];
  5606. p += offset;
  5607. while (offset < BNX2_REGDUMP_LEN) {
  5608. *p++ = REG_RD(bp, offset);
  5609. offset += 4;
  5610. if (offset == reg_boundaries[i + 1]) {
  5611. offset = reg_boundaries[i + 2];
  5612. p = (u32 *) (orig_p + offset);
  5613. i += 2;
  5614. }
  5615. }
  5616. }
  5617. static void
  5618. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5619. {
  5620. struct bnx2 *bp = netdev_priv(dev);
  5621. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5622. wol->supported = 0;
  5623. wol->wolopts = 0;
  5624. }
  5625. else {
  5626. wol->supported = WAKE_MAGIC;
  5627. if (bp->wol)
  5628. wol->wolopts = WAKE_MAGIC;
  5629. else
  5630. wol->wolopts = 0;
  5631. }
  5632. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5633. }
  5634. static int
  5635. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5636. {
  5637. struct bnx2 *bp = netdev_priv(dev);
  5638. if (wol->wolopts & ~WAKE_MAGIC)
  5639. return -EINVAL;
  5640. if (wol->wolopts & WAKE_MAGIC) {
  5641. if (bp->flags & BNX2_FLAG_NO_WOL)
  5642. return -EINVAL;
  5643. bp->wol = 1;
  5644. }
  5645. else {
  5646. bp->wol = 0;
  5647. }
  5648. return 0;
  5649. }
  5650. static int
  5651. bnx2_nway_reset(struct net_device *dev)
  5652. {
  5653. struct bnx2 *bp = netdev_priv(dev);
  5654. u32 bmcr;
  5655. if (!netif_running(dev))
  5656. return -EAGAIN;
  5657. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5658. return -EINVAL;
  5659. }
  5660. spin_lock_bh(&bp->phy_lock);
  5661. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5662. int rc;
  5663. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5664. spin_unlock_bh(&bp->phy_lock);
  5665. return rc;
  5666. }
  5667. /* Force a link down visible on the other side */
  5668. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5669. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5670. spin_unlock_bh(&bp->phy_lock);
  5671. msleep(20);
  5672. spin_lock_bh(&bp->phy_lock);
  5673. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5674. bp->serdes_an_pending = 1;
  5675. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5676. }
  5677. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5678. bmcr &= ~BMCR_LOOPBACK;
  5679. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5680. spin_unlock_bh(&bp->phy_lock);
  5681. return 0;
  5682. }
  5683. static u32
  5684. bnx2_get_link(struct net_device *dev)
  5685. {
  5686. struct bnx2 *bp = netdev_priv(dev);
  5687. return bp->link_up;
  5688. }
  5689. static int
  5690. bnx2_get_eeprom_len(struct net_device *dev)
  5691. {
  5692. struct bnx2 *bp = netdev_priv(dev);
  5693. if (bp->flash_info == NULL)
  5694. return 0;
  5695. return (int) bp->flash_size;
  5696. }
  5697. static int
  5698. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5699. u8 *eebuf)
  5700. {
  5701. struct bnx2 *bp = netdev_priv(dev);
  5702. int rc;
  5703. if (!netif_running(dev))
  5704. return -EAGAIN;
  5705. /* parameters already validated in ethtool_get_eeprom */
  5706. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5707. return rc;
  5708. }
  5709. static int
  5710. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5711. u8 *eebuf)
  5712. {
  5713. struct bnx2 *bp = netdev_priv(dev);
  5714. int rc;
  5715. if (!netif_running(dev))
  5716. return -EAGAIN;
  5717. /* parameters already validated in ethtool_set_eeprom */
  5718. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5719. return rc;
  5720. }
  5721. static int
  5722. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5723. {
  5724. struct bnx2 *bp = netdev_priv(dev);
  5725. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5726. coal->rx_coalesce_usecs = bp->rx_ticks;
  5727. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5728. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5729. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5730. coal->tx_coalesce_usecs = bp->tx_ticks;
  5731. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5732. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5733. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5734. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5735. return 0;
  5736. }
  5737. static int
  5738. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5739. {
  5740. struct bnx2 *bp = netdev_priv(dev);
  5741. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5742. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5743. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5744. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5745. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5746. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5747. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5748. if (bp->rx_quick_cons_trip_int > 0xff)
  5749. bp->rx_quick_cons_trip_int = 0xff;
  5750. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5751. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5752. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5753. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5754. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5755. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5756. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5757. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5758. 0xff;
  5759. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5760. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5761. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5762. bp->stats_ticks = USEC_PER_SEC;
  5763. }
  5764. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5765. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5766. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5767. if (netif_running(bp->dev)) {
  5768. bnx2_netif_stop(bp, true);
  5769. bnx2_init_nic(bp, 0);
  5770. bnx2_netif_start(bp, true);
  5771. }
  5772. return 0;
  5773. }
  5774. static void
  5775. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5776. {
  5777. struct bnx2 *bp = netdev_priv(dev);
  5778. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5779. ering->rx_mini_max_pending = 0;
  5780. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5781. ering->rx_pending = bp->rx_ring_size;
  5782. ering->rx_mini_pending = 0;
  5783. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5784. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5785. ering->tx_pending = bp->tx_ring_size;
  5786. }
  5787. static int
  5788. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5789. {
  5790. if (netif_running(bp->dev)) {
  5791. /* Reset will erase chipset stats; save them */
  5792. bnx2_save_stats(bp);
  5793. bnx2_netif_stop(bp, true);
  5794. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5795. bnx2_free_skbs(bp);
  5796. bnx2_free_mem(bp);
  5797. }
  5798. bnx2_set_rx_ring_size(bp, rx);
  5799. bp->tx_ring_size = tx;
  5800. if (netif_running(bp->dev)) {
  5801. int rc;
  5802. rc = bnx2_alloc_mem(bp);
  5803. if (!rc)
  5804. rc = bnx2_init_nic(bp, 0);
  5805. if (rc) {
  5806. bnx2_napi_enable(bp);
  5807. dev_close(bp->dev);
  5808. return rc;
  5809. }
  5810. #ifdef BCM_CNIC
  5811. mutex_lock(&bp->cnic_lock);
  5812. /* Let cnic know about the new status block. */
  5813. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  5814. bnx2_setup_cnic_irq_info(bp);
  5815. mutex_unlock(&bp->cnic_lock);
  5816. #endif
  5817. bnx2_netif_start(bp, true);
  5818. }
  5819. return 0;
  5820. }
  5821. static int
  5822. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5823. {
  5824. struct bnx2 *bp = netdev_priv(dev);
  5825. int rc;
  5826. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5827. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5828. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5829. return -EINVAL;
  5830. }
  5831. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5832. return rc;
  5833. }
  5834. static void
  5835. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5836. {
  5837. struct bnx2 *bp = netdev_priv(dev);
  5838. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5839. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5840. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5841. }
  5842. static int
  5843. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5844. {
  5845. struct bnx2 *bp = netdev_priv(dev);
  5846. bp->req_flow_ctrl = 0;
  5847. if (epause->rx_pause)
  5848. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5849. if (epause->tx_pause)
  5850. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5851. if (epause->autoneg) {
  5852. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5853. }
  5854. else {
  5855. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5856. }
  5857. if (netif_running(dev)) {
  5858. spin_lock_bh(&bp->phy_lock);
  5859. bnx2_setup_phy(bp, bp->phy_port);
  5860. spin_unlock_bh(&bp->phy_lock);
  5861. }
  5862. return 0;
  5863. }
  5864. static u32
  5865. bnx2_get_rx_csum(struct net_device *dev)
  5866. {
  5867. struct bnx2 *bp = netdev_priv(dev);
  5868. return bp->rx_csum;
  5869. }
  5870. static int
  5871. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5872. {
  5873. struct bnx2 *bp = netdev_priv(dev);
  5874. bp->rx_csum = data;
  5875. return 0;
  5876. }
  5877. static int
  5878. bnx2_set_tso(struct net_device *dev, u32 data)
  5879. {
  5880. struct bnx2 *bp = netdev_priv(dev);
  5881. if (data) {
  5882. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5883. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5884. dev->features |= NETIF_F_TSO6;
  5885. } else
  5886. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5887. NETIF_F_TSO_ECN);
  5888. return 0;
  5889. }
  5890. static struct {
  5891. char string[ETH_GSTRING_LEN];
  5892. } bnx2_stats_str_arr[] = {
  5893. { "rx_bytes" },
  5894. { "rx_error_bytes" },
  5895. { "tx_bytes" },
  5896. { "tx_error_bytes" },
  5897. { "rx_ucast_packets" },
  5898. { "rx_mcast_packets" },
  5899. { "rx_bcast_packets" },
  5900. { "tx_ucast_packets" },
  5901. { "tx_mcast_packets" },
  5902. { "tx_bcast_packets" },
  5903. { "tx_mac_errors" },
  5904. { "tx_carrier_errors" },
  5905. { "rx_crc_errors" },
  5906. { "rx_align_errors" },
  5907. { "tx_single_collisions" },
  5908. { "tx_multi_collisions" },
  5909. { "tx_deferred" },
  5910. { "tx_excess_collisions" },
  5911. { "tx_late_collisions" },
  5912. { "tx_total_collisions" },
  5913. { "rx_fragments" },
  5914. { "rx_jabbers" },
  5915. { "rx_undersize_packets" },
  5916. { "rx_oversize_packets" },
  5917. { "rx_64_byte_packets" },
  5918. { "rx_65_to_127_byte_packets" },
  5919. { "rx_128_to_255_byte_packets" },
  5920. { "rx_256_to_511_byte_packets" },
  5921. { "rx_512_to_1023_byte_packets" },
  5922. { "rx_1024_to_1522_byte_packets" },
  5923. { "rx_1523_to_9022_byte_packets" },
  5924. { "tx_64_byte_packets" },
  5925. { "tx_65_to_127_byte_packets" },
  5926. { "tx_128_to_255_byte_packets" },
  5927. { "tx_256_to_511_byte_packets" },
  5928. { "tx_512_to_1023_byte_packets" },
  5929. { "tx_1024_to_1522_byte_packets" },
  5930. { "tx_1523_to_9022_byte_packets" },
  5931. { "rx_xon_frames" },
  5932. { "rx_xoff_frames" },
  5933. { "tx_xon_frames" },
  5934. { "tx_xoff_frames" },
  5935. { "rx_mac_ctrl_frames" },
  5936. { "rx_filtered_packets" },
  5937. { "rx_ftq_discards" },
  5938. { "rx_discards" },
  5939. { "rx_fw_discards" },
  5940. };
  5941. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5942. sizeof(bnx2_stats_str_arr[0]))
  5943. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5944. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5945. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5946. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5947. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5948. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5949. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5950. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5951. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5952. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5953. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5954. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5955. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5956. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5957. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5958. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5959. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5960. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5961. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5962. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5963. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5964. STATS_OFFSET32(stat_EtherStatsCollisions),
  5965. STATS_OFFSET32(stat_EtherStatsFragments),
  5966. STATS_OFFSET32(stat_EtherStatsJabbers),
  5967. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5968. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5969. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5970. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5971. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5972. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5973. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5974. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5975. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5976. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5977. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5978. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5979. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5980. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5981. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5982. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5983. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5984. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5985. STATS_OFFSET32(stat_OutXonSent),
  5986. STATS_OFFSET32(stat_OutXoffSent),
  5987. STATS_OFFSET32(stat_MacControlFramesReceived),
  5988. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5989. STATS_OFFSET32(stat_IfInFTQDiscards),
  5990. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5991. STATS_OFFSET32(stat_FwRxDrop),
  5992. };
  5993. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5994. * skipped because of errata.
  5995. */
  5996. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5997. 8,0,8,8,8,8,8,8,8,8,
  5998. 4,0,4,4,4,4,4,4,4,4,
  5999. 4,4,4,4,4,4,4,4,4,4,
  6000. 4,4,4,4,4,4,4,4,4,4,
  6001. 4,4,4,4,4,4,4,
  6002. };
  6003. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  6004. 8,0,8,8,8,8,8,8,8,8,
  6005. 4,4,4,4,4,4,4,4,4,4,
  6006. 4,4,4,4,4,4,4,4,4,4,
  6007. 4,4,4,4,4,4,4,4,4,4,
  6008. 4,4,4,4,4,4,4,
  6009. };
  6010. #define BNX2_NUM_TESTS 6
  6011. static struct {
  6012. char string[ETH_GSTRING_LEN];
  6013. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  6014. { "register_test (offline)" },
  6015. { "memory_test (offline)" },
  6016. { "loopback_test (offline)" },
  6017. { "nvram_test (online)" },
  6018. { "interrupt_test (online)" },
  6019. { "link_test (online)" },
  6020. };
  6021. static int
  6022. bnx2_get_sset_count(struct net_device *dev, int sset)
  6023. {
  6024. switch (sset) {
  6025. case ETH_SS_TEST:
  6026. return BNX2_NUM_TESTS;
  6027. case ETH_SS_STATS:
  6028. return BNX2_NUM_STATS;
  6029. default:
  6030. return -EOPNOTSUPP;
  6031. }
  6032. }
  6033. static void
  6034. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6035. {
  6036. struct bnx2 *bp = netdev_priv(dev);
  6037. bnx2_set_power_state(bp, PCI_D0);
  6038. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6039. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6040. int i;
  6041. bnx2_netif_stop(bp, true);
  6042. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6043. bnx2_free_skbs(bp);
  6044. if (bnx2_test_registers(bp) != 0) {
  6045. buf[0] = 1;
  6046. etest->flags |= ETH_TEST_FL_FAILED;
  6047. }
  6048. if (bnx2_test_memory(bp) != 0) {
  6049. buf[1] = 1;
  6050. etest->flags |= ETH_TEST_FL_FAILED;
  6051. }
  6052. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6053. etest->flags |= ETH_TEST_FL_FAILED;
  6054. if (!netif_running(bp->dev))
  6055. bnx2_shutdown_chip(bp);
  6056. else {
  6057. bnx2_init_nic(bp, 1);
  6058. bnx2_netif_start(bp, true);
  6059. }
  6060. /* wait for link up */
  6061. for (i = 0; i < 7; i++) {
  6062. if (bp->link_up)
  6063. break;
  6064. msleep_interruptible(1000);
  6065. }
  6066. }
  6067. if (bnx2_test_nvram(bp) != 0) {
  6068. buf[3] = 1;
  6069. etest->flags |= ETH_TEST_FL_FAILED;
  6070. }
  6071. if (bnx2_test_intr(bp) != 0) {
  6072. buf[4] = 1;
  6073. etest->flags |= ETH_TEST_FL_FAILED;
  6074. }
  6075. if (bnx2_test_link(bp) != 0) {
  6076. buf[5] = 1;
  6077. etest->flags |= ETH_TEST_FL_FAILED;
  6078. }
  6079. if (!netif_running(bp->dev))
  6080. bnx2_set_power_state(bp, PCI_D3hot);
  6081. }
  6082. static void
  6083. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6084. {
  6085. switch (stringset) {
  6086. case ETH_SS_STATS:
  6087. memcpy(buf, bnx2_stats_str_arr,
  6088. sizeof(bnx2_stats_str_arr));
  6089. break;
  6090. case ETH_SS_TEST:
  6091. memcpy(buf, bnx2_tests_str_arr,
  6092. sizeof(bnx2_tests_str_arr));
  6093. break;
  6094. }
  6095. }
  6096. static void
  6097. bnx2_get_ethtool_stats(struct net_device *dev,
  6098. struct ethtool_stats *stats, u64 *buf)
  6099. {
  6100. struct bnx2 *bp = netdev_priv(dev);
  6101. int i;
  6102. u32 *hw_stats = (u32 *) bp->stats_blk;
  6103. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6104. u8 *stats_len_arr = NULL;
  6105. if (hw_stats == NULL) {
  6106. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6107. return;
  6108. }
  6109. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  6110. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  6111. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  6112. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  6113. stats_len_arr = bnx2_5706_stats_len_arr;
  6114. else
  6115. stats_len_arr = bnx2_5708_stats_len_arr;
  6116. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6117. unsigned long offset;
  6118. if (stats_len_arr[i] == 0) {
  6119. /* skip this counter */
  6120. buf[i] = 0;
  6121. continue;
  6122. }
  6123. offset = bnx2_stats_offset_arr[i];
  6124. if (stats_len_arr[i] == 4) {
  6125. /* 4-byte counter */
  6126. buf[i] = (u64) *(hw_stats + offset) +
  6127. *(temp_stats + offset);
  6128. continue;
  6129. }
  6130. /* 8-byte counter */
  6131. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6132. *(hw_stats + offset + 1) +
  6133. (((u64) *(temp_stats + offset)) << 32) +
  6134. *(temp_stats + offset + 1);
  6135. }
  6136. }
  6137. static int
  6138. bnx2_phys_id(struct net_device *dev, u32 data)
  6139. {
  6140. struct bnx2 *bp = netdev_priv(dev);
  6141. int i;
  6142. u32 save;
  6143. bnx2_set_power_state(bp, PCI_D0);
  6144. if (data == 0)
  6145. data = 2;
  6146. save = REG_RD(bp, BNX2_MISC_CFG);
  6147. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6148. for (i = 0; i < (data * 2); i++) {
  6149. if ((i % 2) == 0) {
  6150. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6151. }
  6152. else {
  6153. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6154. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6155. BNX2_EMAC_LED_100MB_OVERRIDE |
  6156. BNX2_EMAC_LED_10MB_OVERRIDE |
  6157. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6158. BNX2_EMAC_LED_TRAFFIC);
  6159. }
  6160. msleep_interruptible(500);
  6161. if (signal_pending(current))
  6162. break;
  6163. }
  6164. REG_WR(bp, BNX2_EMAC_LED, 0);
  6165. REG_WR(bp, BNX2_MISC_CFG, save);
  6166. if (!netif_running(dev))
  6167. bnx2_set_power_state(bp, PCI_D3hot);
  6168. return 0;
  6169. }
  6170. static int
  6171. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6172. {
  6173. struct bnx2 *bp = netdev_priv(dev);
  6174. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6175. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  6176. else
  6177. return (ethtool_op_set_tx_csum(dev, data));
  6178. }
  6179. static const struct ethtool_ops bnx2_ethtool_ops = {
  6180. .get_settings = bnx2_get_settings,
  6181. .set_settings = bnx2_set_settings,
  6182. .get_drvinfo = bnx2_get_drvinfo,
  6183. .get_regs_len = bnx2_get_regs_len,
  6184. .get_regs = bnx2_get_regs,
  6185. .get_wol = bnx2_get_wol,
  6186. .set_wol = bnx2_set_wol,
  6187. .nway_reset = bnx2_nway_reset,
  6188. .get_link = bnx2_get_link,
  6189. .get_eeprom_len = bnx2_get_eeprom_len,
  6190. .get_eeprom = bnx2_get_eeprom,
  6191. .set_eeprom = bnx2_set_eeprom,
  6192. .get_coalesce = bnx2_get_coalesce,
  6193. .set_coalesce = bnx2_set_coalesce,
  6194. .get_ringparam = bnx2_get_ringparam,
  6195. .set_ringparam = bnx2_set_ringparam,
  6196. .get_pauseparam = bnx2_get_pauseparam,
  6197. .set_pauseparam = bnx2_set_pauseparam,
  6198. .get_rx_csum = bnx2_get_rx_csum,
  6199. .set_rx_csum = bnx2_set_rx_csum,
  6200. .set_tx_csum = bnx2_set_tx_csum,
  6201. .set_sg = ethtool_op_set_sg,
  6202. .set_tso = bnx2_set_tso,
  6203. .self_test = bnx2_self_test,
  6204. .get_strings = bnx2_get_strings,
  6205. .phys_id = bnx2_phys_id,
  6206. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6207. .get_sset_count = bnx2_get_sset_count,
  6208. };
  6209. /* Called with rtnl_lock */
  6210. static int
  6211. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6212. {
  6213. struct mii_ioctl_data *data = if_mii(ifr);
  6214. struct bnx2 *bp = netdev_priv(dev);
  6215. int err;
  6216. switch(cmd) {
  6217. case SIOCGMIIPHY:
  6218. data->phy_id = bp->phy_addr;
  6219. /* fallthru */
  6220. case SIOCGMIIREG: {
  6221. u32 mii_regval;
  6222. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6223. return -EOPNOTSUPP;
  6224. if (!netif_running(dev))
  6225. return -EAGAIN;
  6226. spin_lock_bh(&bp->phy_lock);
  6227. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6228. spin_unlock_bh(&bp->phy_lock);
  6229. data->val_out = mii_regval;
  6230. return err;
  6231. }
  6232. case SIOCSMIIREG:
  6233. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6234. return -EOPNOTSUPP;
  6235. if (!netif_running(dev))
  6236. return -EAGAIN;
  6237. spin_lock_bh(&bp->phy_lock);
  6238. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6239. spin_unlock_bh(&bp->phy_lock);
  6240. return err;
  6241. default:
  6242. /* do nothing */
  6243. break;
  6244. }
  6245. return -EOPNOTSUPP;
  6246. }
  6247. /* Called with rtnl_lock */
  6248. static int
  6249. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6250. {
  6251. struct sockaddr *addr = p;
  6252. struct bnx2 *bp = netdev_priv(dev);
  6253. if (!is_valid_ether_addr(addr->sa_data))
  6254. return -EINVAL;
  6255. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6256. if (netif_running(dev))
  6257. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6258. return 0;
  6259. }
  6260. /* Called with rtnl_lock */
  6261. static int
  6262. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6263. {
  6264. struct bnx2 *bp = netdev_priv(dev);
  6265. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6266. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6267. return -EINVAL;
  6268. dev->mtu = new_mtu;
  6269. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  6270. }
  6271. #ifdef CONFIG_NET_POLL_CONTROLLER
  6272. static void
  6273. poll_bnx2(struct net_device *dev)
  6274. {
  6275. struct bnx2 *bp = netdev_priv(dev);
  6276. int i;
  6277. for (i = 0; i < bp->irq_nvecs; i++) {
  6278. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6279. disable_irq(irq->vector);
  6280. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6281. enable_irq(irq->vector);
  6282. }
  6283. }
  6284. #endif
  6285. static void __devinit
  6286. bnx2_get_5709_media(struct bnx2 *bp)
  6287. {
  6288. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6289. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6290. u32 strap;
  6291. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6292. return;
  6293. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6294. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6295. return;
  6296. }
  6297. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6298. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6299. else
  6300. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6301. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6302. switch (strap) {
  6303. case 0x4:
  6304. case 0x5:
  6305. case 0x6:
  6306. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6307. return;
  6308. }
  6309. } else {
  6310. switch (strap) {
  6311. case 0x1:
  6312. case 0x2:
  6313. case 0x4:
  6314. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6315. return;
  6316. }
  6317. }
  6318. }
  6319. static void __devinit
  6320. bnx2_get_pci_speed(struct bnx2 *bp)
  6321. {
  6322. u32 reg;
  6323. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6324. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6325. u32 clkreg;
  6326. bp->flags |= BNX2_FLAG_PCIX;
  6327. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6328. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6329. switch (clkreg) {
  6330. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6331. bp->bus_speed_mhz = 133;
  6332. break;
  6333. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6334. bp->bus_speed_mhz = 100;
  6335. break;
  6336. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6337. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6338. bp->bus_speed_mhz = 66;
  6339. break;
  6340. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6341. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6342. bp->bus_speed_mhz = 50;
  6343. break;
  6344. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6345. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6346. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6347. bp->bus_speed_mhz = 33;
  6348. break;
  6349. }
  6350. }
  6351. else {
  6352. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6353. bp->bus_speed_mhz = 66;
  6354. else
  6355. bp->bus_speed_mhz = 33;
  6356. }
  6357. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6358. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6359. }
  6360. static void __devinit
  6361. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6362. {
  6363. int rc, i, j;
  6364. u8 *data;
  6365. unsigned int block_end, rosize, len;
  6366. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6367. #define BNX2_VPD_LEN 128
  6368. #define BNX2_MAX_VER_SLEN 30
  6369. data = kmalloc(256, GFP_KERNEL);
  6370. if (!data)
  6371. return;
  6372. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6373. BNX2_VPD_LEN);
  6374. if (rc)
  6375. goto vpd_done;
  6376. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6377. data[i] = data[i + BNX2_VPD_LEN + 3];
  6378. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6379. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6380. data[i + 3] = data[i + BNX2_VPD_LEN];
  6381. }
  6382. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6383. if (i < 0)
  6384. goto vpd_done;
  6385. rosize = pci_vpd_lrdt_size(&data[i]);
  6386. i += PCI_VPD_LRDT_TAG_SIZE;
  6387. block_end = i + rosize;
  6388. if (block_end > BNX2_VPD_LEN)
  6389. goto vpd_done;
  6390. j = pci_vpd_find_info_keyword(data, i, rosize,
  6391. PCI_VPD_RO_KEYWORD_MFR_ID);
  6392. if (j < 0)
  6393. goto vpd_done;
  6394. len = pci_vpd_info_field_size(&data[j]);
  6395. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6396. if (j + len > block_end || len != 4 ||
  6397. memcmp(&data[j], "1028", 4))
  6398. goto vpd_done;
  6399. j = pci_vpd_find_info_keyword(data, i, rosize,
  6400. PCI_VPD_RO_KEYWORD_VENDOR0);
  6401. if (j < 0)
  6402. goto vpd_done;
  6403. len = pci_vpd_info_field_size(&data[j]);
  6404. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6405. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6406. goto vpd_done;
  6407. memcpy(bp->fw_version, &data[j], len);
  6408. bp->fw_version[len] = ' ';
  6409. vpd_done:
  6410. kfree(data);
  6411. }
  6412. static int __devinit
  6413. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6414. {
  6415. struct bnx2 *bp;
  6416. unsigned long mem_len;
  6417. int rc, i, j;
  6418. u32 reg;
  6419. u64 dma_mask, persist_dma_mask;
  6420. SET_NETDEV_DEV(dev, &pdev->dev);
  6421. bp = netdev_priv(dev);
  6422. bp->flags = 0;
  6423. bp->phy_flags = 0;
  6424. bp->temp_stats_blk =
  6425. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6426. if (bp->temp_stats_blk == NULL) {
  6427. rc = -ENOMEM;
  6428. goto err_out;
  6429. }
  6430. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6431. rc = pci_enable_device(pdev);
  6432. if (rc) {
  6433. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6434. goto err_out;
  6435. }
  6436. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6437. dev_err(&pdev->dev,
  6438. "Cannot find PCI device base address, aborting\n");
  6439. rc = -ENODEV;
  6440. goto err_out_disable;
  6441. }
  6442. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6443. if (rc) {
  6444. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6445. goto err_out_disable;
  6446. }
  6447. pci_set_master(pdev);
  6448. pci_save_state(pdev);
  6449. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6450. if (bp->pm_cap == 0) {
  6451. dev_err(&pdev->dev,
  6452. "Cannot find power management capability, aborting\n");
  6453. rc = -EIO;
  6454. goto err_out_release;
  6455. }
  6456. bp->dev = dev;
  6457. bp->pdev = pdev;
  6458. spin_lock_init(&bp->phy_lock);
  6459. spin_lock_init(&bp->indirect_lock);
  6460. #ifdef BCM_CNIC
  6461. mutex_init(&bp->cnic_lock);
  6462. #endif
  6463. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6464. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6465. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6466. dev->mem_end = dev->mem_start + mem_len;
  6467. dev->irq = pdev->irq;
  6468. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6469. if (!bp->regview) {
  6470. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6471. rc = -ENOMEM;
  6472. goto err_out_release;
  6473. }
  6474. /* Configure byte swap and enable write to the reg_window registers.
  6475. * Rely on CPU to do target byte swapping on big endian systems
  6476. * The chip's target access swapping will not swap all accesses
  6477. */
  6478. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6479. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6480. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6481. bnx2_set_power_state(bp, PCI_D0);
  6482. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6483. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6484. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6485. dev_err(&pdev->dev,
  6486. "Cannot find PCIE capability, aborting\n");
  6487. rc = -EIO;
  6488. goto err_out_unmap;
  6489. }
  6490. bp->flags |= BNX2_FLAG_PCIE;
  6491. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6492. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6493. } else {
  6494. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6495. if (bp->pcix_cap == 0) {
  6496. dev_err(&pdev->dev,
  6497. "Cannot find PCIX capability, aborting\n");
  6498. rc = -EIO;
  6499. goto err_out_unmap;
  6500. }
  6501. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6502. }
  6503. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6504. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6505. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6506. }
  6507. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6508. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6509. bp->flags |= BNX2_FLAG_MSI_CAP;
  6510. }
  6511. /* 5708 cannot support DMA addresses > 40-bit. */
  6512. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6513. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6514. else
  6515. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6516. /* Configure DMA attributes. */
  6517. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6518. dev->features |= NETIF_F_HIGHDMA;
  6519. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6520. if (rc) {
  6521. dev_err(&pdev->dev,
  6522. "pci_set_consistent_dma_mask failed, aborting\n");
  6523. goto err_out_unmap;
  6524. }
  6525. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6526. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6527. goto err_out_unmap;
  6528. }
  6529. if (!(bp->flags & BNX2_FLAG_PCIE))
  6530. bnx2_get_pci_speed(bp);
  6531. /* 5706A0 may falsely detect SERR and PERR. */
  6532. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6533. reg = REG_RD(bp, PCI_COMMAND);
  6534. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6535. REG_WR(bp, PCI_COMMAND, reg);
  6536. }
  6537. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6538. !(bp->flags & BNX2_FLAG_PCIX)) {
  6539. dev_err(&pdev->dev,
  6540. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6541. goto err_out_unmap;
  6542. }
  6543. bnx2_init_nvram(bp);
  6544. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6545. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6546. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6547. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6548. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6549. } else
  6550. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6551. /* Get the permanent MAC address. First we need to make sure the
  6552. * firmware is actually running.
  6553. */
  6554. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6555. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6556. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6557. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6558. rc = -ENODEV;
  6559. goto err_out_unmap;
  6560. }
  6561. bnx2_read_vpd_fw_ver(bp);
  6562. j = strlen(bp->fw_version);
  6563. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6564. for (i = 0; i < 3 && j < 24; i++) {
  6565. u8 num, k, skip0;
  6566. if (i == 0) {
  6567. bp->fw_version[j++] = 'b';
  6568. bp->fw_version[j++] = 'c';
  6569. bp->fw_version[j++] = ' ';
  6570. }
  6571. num = (u8) (reg >> (24 - (i * 8)));
  6572. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6573. if (num >= k || !skip0 || k == 1) {
  6574. bp->fw_version[j++] = (num / k) + '0';
  6575. skip0 = 0;
  6576. }
  6577. }
  6578. if (i != 2)
  6579. bp->fw_version[j++] = '.';
  6580. }
  6581. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6582. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6583. bp->wol = 1;
  6584. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6585. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6586. for (i = 0; i < 30; i++) {
  6587. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6588. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6589. break;
  6590. msleep(10);
  6591. }
  6592. }
  6593. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6594. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6595. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6596. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6597. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6598. if (j < 32)
  6599. bp->fw_version[j++] = ' ';
  6600. for (i = 0; i < 3 && j < 28; i++) {
  6601. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6602. reg = swab32(reg);
  6603. memcpy(&bp->fw_version[j], &reg, 4);
  6604. j += 4;
  6605. }
  6606. }
  6607. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6608. bp->mac_addr[0] = (u8) (reg >> 8);
  6609. bp->mac_addr[1] = (u8) reg;
  6610. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6611. bp->mac_addr[2] = (u8) (reg >> 24);
  6612. bp->mac_addr[3] = (u8) (reg >> 16);
  6613. bp->mac_addr[4] = (u8) (reg >> 8);
  6614. bp->mac_addr[5] = (u8) reg;
  6615. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6616. bnx2_set_rx_ring_size(bp, 255);
  6617. bp->rx_csum = 1;
  6618. bp->tx_quick_cons_trip_int = 2;
  6619. bp->tx_quick_cons_trip = 20;
  6620. bp->tx_ticks_int = 18;
  6621. bp->tx_ticks = 80;
  6622. bp->rx_quick_cons_trip_int = 2;
  6623. bp->rx_quick_cons_trip = 12;
  6624. bp->rx_ticks_int = 18;
  6625. bp->rx_ticks = 18;
  6626. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6627. bp->current_interval = BNX2_TIMER_INTERVAL;
  6628. bp->phy_addr = 1;
  6629. /* Disable WOL support if we are running on a SERDES chip. */
  6630. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6631. bnx2_get_5709_media(bp);
  6632. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6633. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6634. bp->phy_port = PORT_TP;
  6635. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6636. bp->phy_port = PORT_FIBRE;
  6637. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6638. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6639. bp->flags |= BNX2_FLAG_NO_WOL;
  6640. bp->wol = 0;
  6641. }
  6642. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6643. /* Don't do parallel detect on this board because of
  6644. * some board problems. The link will not go down
  6645. * if we do parallel detect.
  6646. */
  6647. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6648. pdev->subsystem_device == 0x310c)
  6649. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6650. } else {
  6651. bp->phy_addr = 2;
  6652. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6653. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6654. }
  6655. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6656. CHIP_NUM(bp) == CHIP_NUM_5708)
  6657. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6658. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6659. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6660. CHIP_REV(bp) == CHIP_REV_Bx))
  6661. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6662. bnx2_init_fw_cap(bp);
  6663. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6664. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6665. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6666. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6667. bp->flags |= BNX2_FLAG_NO_WOL;
  6668. bp->wol = 0;
  6669. }
  6670. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6671. bp->tx_quick_cons_trip_int =
  6672. bp->tx_quick_cons_trip;
  6673. bp->tx_ticks_int = bp->tx_ticks;
  6674. bp->rx_quick_cons_trip_int =
  6675. bp->rx_quick_cons_trip;
  6676. bp->rx_ticks_int = bp->rx_ticks;
  6677. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6678. bp->com_ticks_int = bp->com_ticks;
  6679. bp->cmd_ticks_int = bp->cmd_ticks;
  6680. }
  6681. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6682. *
  6683. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6684. * with byte enables disabled on the unused 32-bit word. This is legal
  6685. * but causes problems on the AMD 8132 which will eventually stop
  6686. * responding after a while.
  6687. *
  6688. * AMD believes this incompatibility is unique to the 5706, and
  6689. * prefers to locally disable MSI rather than globally disabling it.
  6690. */
  6691. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6692. struct pci_dev *amd_8132 = NULL;
  6693. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6694. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6695. amd_8132))) {
  6696. if (amd_8132->revision >= 0x10 &&
  6697. amd_8132->revision <= 0x13) {
  6698. disable_msi = 1;
  6699. pci_dev_put(amd_8132);
  6700. break;
  6701. }
  6702. }
  6703. }
  6704. bnx2_set_default_link(bp);
  6705. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6706. init_timer(&bp->timer);
  6707. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6708. bp->timer.data = (unsigned long) bp;
  6709. bp->timer.function = bnx2_timer;
  6710. return 0;
  6711. err_out_unmap:
  6712. if (bp->regview) {
  6713. iounmap(bp->regview);
  6714. bp->regview = NULL;
  6715. }
  6716. err_out_release:
  6717. pci_release_regions(pdev);
  6718. err_out_disable:
  6719. pci_disable_device(pdev);
  6720. pci_set_drvdata(pdev, NULL);
  6721. err_out:
  6722. return rc;
  6723. }
  6724. static char * __devinit
  6725. bnx2_bus_string(struct bnx2 *bp, char *str)
  6726. {
  6727. char *s = str;
  6728. if (bp->flags & BNX2_FLAG_PCIE) {
  6729. s += sprintf(s, "PCI Express");
  6730. } else {
  6731. s += sprintf(s, "PCI");
  6732. if (bp->flags & BNX2_FLAG_PCIX)
  6733. s += sprintf(s, "-X");
  6734. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6735. s += sprintf(s, " 32-bit");
  6736. else
  6737. s += sprintf(s, " 64-bit");
  6738. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6739. }
  6740. return str;
  6741. }
  6742. static void
  6743. bnx2_del_napi(struct bnx2 *bp)
  6744. {
  6745. int i;
  6746. for (i = 0; i < bp->irq_nvecs; i++)
  6747. netif_napi_del(&bp->bnx2_napi[i].napi);
  6748. }
  6749. static void
  6750. bnx2_init_napi(struct bnx2 *bp)
  6751. {
  6752. int i;
  6753. for (i = 0; i < bp->irq_nvecs; i++) {
  6754. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6755. int (*poll)(struct napi_struct *, int);
  6756. if (i == 0)
  6757. poll = bnx2_poll;
  6758. else
  6759. poll = bnx2_poll_msix;
  6760. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6761. bnapi->bp = bp;
  6762. }
  6763. }
  6764. static const struct net_device_ops bnx2_netdev_ops = {
  6765. .ndo_open = bnx2_open,
  6766. .ndo_start_xmit = bnx2_start_xmit,
  6767. .ndo_stop = bnx2_close,
  6768. .ndo_get_stats = bnx2_get_stats,
  6769. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6770. .ndo_do_ioctl = bnx2_ioctl,
  6771. .ndo_validate_addr = eth_validate_addr,
  6772. .ndo_set_mac_address = bnx2_change_mac_addr,
  6773. .ndo_change_mtu = bnx2_change_mtu,
  6774. .ndo_tx_timeout = bnx2_tx_timeout,
  6775. #ifdef BCM_VLAN
  6776. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6777. #endif
  6778. #ifdef CONFIG_NET_POLL_CONTROLLER
  6779. .ndo_poll_controller = poll_bnx2,
  6780. #endif
  6781. };
  6782. static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
  6783. {
  6784. #ifdef BCM_VLAN
  6785. dev->vlan_features |= flags;
  6786. #endif
  6787. }
  6788. static int __devinit
  6789. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6790. {
  6791. static int version_printed = 0;
  6792. struct net_device *dev = NULL;
  6793. struct bnx2 *bp;
  6794. int rc;
  6795. char str[40];
  6796. if (version_printed++ == 0)
  6797. pr_info("%s", version);
  6798. /* dev zeroed in init_etherdev */
  6799. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6800. if (!dev)
  6801. return -ENOMEM;
  6802. rc = bnx2_init_board(pdev, dev);
  6803. if (rc < 0) {
  6804. free_netdev(dev);
  6805. return rc;
  6806. }
  6807. dev->netdev_ops = &bnx2_netdev_ops;
  6808. dev->watchdog_timeo = TX_TIMEOUT;
  6809. dev->ethtool_ops = &bnx2_ethtool_ops;
  6810. bp = netdev_priv(dev);
  6811. pci_set_drvdata(pdev, dev);
  6812. rc = bnx2_request_firmware(bp);
  6813. if (rc)
  6814. goto error;
  6815. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6816. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6817. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_GRO;
  6818. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6819. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6820. dev->features |= NETIF_F_IPV6_CSUM;
  6821. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6822. }
  6823. #ifdef BCM_VLAN
  6824. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6825. #endif
  6826. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6827. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6828. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6829. dev->features |= NETIF_F_TSO6;
  6830. vlan_features_add(dev, NETIF_F_TSO6);
  6831. }
  6832. if ((rc = register_netdev(dev))) {
  6833. dev_err(&pdev->dev, "Cannot register net device\n");
  6834. goto error;
  6835. }
  6836. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
  6837. board_info[ent->driver_data].name,
  6838. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6839. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6840. bnx2_bus_string(bp, str),
  6841. dev->base_addr,
  6842. bp->pdev->irq, dev->dev_addr);
  6843. return 0;
  6844. error:
  6845. if (bp->mips_firmware)
  6846. release_firmware(bp->mips_firmware);
  6847. if (bp->rv2p_firmware)
  6848. release_firmware(bp->rv2p_firmware);
  6849. if (bp->regview)
  6850. iounmap(bp->regview);
  6851. pci_release_regions(pdev);
  6852. pci_disable_device(pdev);
  6853. pci_set_drvdata(pdev, NULL);
  6854. free_netdev(dev);
  6855. return rc;
  6856. }
  6857. static void __devexit
  6858. bnx2_remove_one(struct pci_dev *pdev)
  6859. {
  6860. struct net_device *dev = pci_get_drvdata(pdev);
  6861. struct bnx2 *bp = netdev_priv(dev);
  6862. flush_scheduled_work();
  6863. unregister_netdev(dev);
  6864. if (bp->mips_firmware)
  6865. release_firmware(bp->mips_firmware);
  6866. if (bp->rv2p_firmware)
  6867. release_firmware(bp->rv2p_firmware);
  6868. if (bp->regview)
  6869. iounmap(bp->regview);
  6870. kfree(bp->temp_stats_blk);
  6871. free_netdev(dev);
  6872. pci_release_regions(pdev);
  6873. pci_disable_device(pdev);
  6874. pci_set_drvdata(pdev, NULL);
  6875. }
  6876. static int
  6877. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6878. {
  6879. struct net_device *dev = pci_get_drvdata(pdev);
  6880. struct bnx2 *bp = netdev_priv(dev);
  6881. /* PCI register 4 needs to be saved whether netif_running() or not.
  6882. * MSI address and data need to be saved if using MSI and
  6883. * netif_running().
  6884. */
  6885. pci_save_state(pdev);
  6886. if (!netif_running(dev))
  6887. return 0;
  6888. flush_scheduled_work();
  6889. bnx2_netif_stop(bp, true);
  6890. netif_device_detach(dev);
  6891. del_timer_sync(&bp->timer);
  6892. bnx2_shutdown_chip(bp);
  6893. bnx2_free_skbs(bp);
  6894. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6895. return 0;
  6896. }
  6897. static int
  6898. bnx2_resume(struct pci_dev *pdev)
  6899. {
  6900. struct net_device *dev = pci_get_drvdata(pdev);
  6901. struct bnx2 *bp = netdev_priv(dev);
  6902. pci_restore_state(pdev);
  6903. if (!netif_running(dev))
  6904. return 0;
  6905. bnx2_set_power_state(bp, PCI_D0);
  6906. netif_device_attach(dev);
  6907. bnx2_init_nic(bp, 1);
  6908. bnx2_netif_start(bp, true);
  6909. return 0;
  6910. }
  6911. /**
  6912. * bnx2_io_error_detected - called when PCI error is detected
  6913. * @pdev: Pointer to PCI device
  6914. * @state: The current pci connection state
  6915. *
  6916. * This function is called after a PCI bus error affecting
  6917. * this device has been detected.
  6918. */
  6919. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6920. pci_channel_state_t state)
  6921. {
  6922. struct net_device *dev = pci_get_drvdata(pdev);
  6923. struct bnx2 *bp = netdev_priv(dev);
  6924. rtnl_lock();
  6925. netif_device_detach(dev);
  6926. if (state == pci_channel_io_perm_failure) {
  6927. rtnl_unlock();
  6928. return PCI_ERS_RESULT_DISCONNECT;
  6929. }
  6930. if (netif_running(dev)) {
  6931. bnx2_netif_stop(bp, true);
  6932. del_timer_sync(&bp->timer);
  6933. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6934. }
  6935. pci_disable_device(pdev);
  6936. rtnl_unlock();
  6937. /* Request a slot slot reset. */
  6938. return PCI_ERS_RESULT_NEED_RESET;
  6939. }
  6940. /**
  6941. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6942. * @pdev: Pointer to PCI device
  6943. *
  6944. * Restart the card from scratch, as if from a cold-boot.
  6945. */
  6946. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6947. {
  6948. struct net_device *dev = pci_get_drvdata(pdev);
  6949. struct bnx2 *bp = netdev_priv(dev);
  6950. rtnl_lock();
  6951. if (pci_enable_device(pdev)) {
  6952. dev_err(&pdev->dev,
  6953. "Cannot re-enable PCI device after reset\n");
  6954. rtnl_unlock();
  6955. return PCI_ERS_RESULT_DISCONNECT;
  6956. }
  6957. pci_set_master(pdev);
  6958. pci_restore_state(pdev);
  6959. pci_save_state(pdev);
  6960. if (netif_running(dev)) {
  6961. bnx2_set_power_state(bp, PCI_D0);
  6962. bnx2_init_nic(bp, 1);
  6963. }
  6964. rtnl_unlock();
  6965. return PCI_ERS_RESULT_RECOVERED;
  6966. }
  6967. /**
  6968. * bnx2_io_resume - called when traffic can start flowing again.
  6969. * @pdev: Pointer to PCI device
  6970. *
  6971. * This callback is called when the error recovery driver tells us that
  6972. * its OK to resume normal operation.
  6973. */
  6974. static void bnx2_io_resume(struct pci_dev *pdev)
  6975. {
  6976. struct net_device *dev = pci_get_drvdata(pdev);
  6977. struct bnx2 *bp = netdev_priv(dev);
  6978. rtnl_lock();
  6979. if (netif_running(dev))
  6980. bnx2_netif_start(bp, true);
  6981. netif_device_attach(dev);
  6982. rtnl_unlock();
  6983. }
  6984. static struct pci_error_handlers bnx2_err_handler = {
  6985. .error_detected = bnx2_io_error_detected,
  6986. .slot_reset = bnx2_io_slot_reset,
  6987. .resume = bnx2_io_resume,
  6988. };
  6989. static struct pci_driver bnx2_pci_driver = {
  6990. .name = DRV_MODULE_NAME,
  6991. .id_table = bnx2_pci_tbl,
  6992. .probe = bnx2_init_one,
  6993. .remove = __devexit_p(bnx2_remove_one),
  6994. .suspend = bnx2_suspend,
  6995. .resume = bnx2_resume,
  6996. .err_handler = &bnx2_err_handler,
  6997. };
  6998. static int __init bnx2_init(void)
  6999. {
  7000. return pci_register_driver(&bnx2_pci_driver);
  7001. }
  7002. static void __exit bnx2_cleanup(void)
  7003. {
  7004. pci_unregister_driver(&bnx2_pci_driver);
  7005. }
  7006. module_init(bnx2_init);
  7007. module_exit(bnx2_cleanup);