process_32.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466
  1. /*
  2. * arch/sh/kernel/process.c
  3. *
  4. * This file handles the architecture-dependent parts of process handling..
  5. *
  6. * Copyright (C) 1995 Linus Torvalds
  7. *
  8. * SuperH version: Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
  9. * Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
  10. * Copyright (C) 2002 - 2007 Paul Mundt
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/elfcore.h>
  15. #include <linux/pm.h>
  16. #include <linux/kallsyms.h>
  17. #include <linux/kexec.h>
  18. #include <linux/kdebug.h>
  19. #include <linux/tick.h>
  20. #include <linux/reboot.h>
  21. #include <linux/fs.h>
  22. #include <linux/preempt.h>
  23. #include <asm/uaccess.h>
  24. #include <asm/mmu_context.h>
  25. #include <asm/pgalloc.h>
  26. #include <asm/system.h>
  27. #include <asm/ubc.h>
  28. #include <asm/fpu.h>
  29. #include <asm/syscalls.h>
  30. static int hlt_counter;
  31. int ubc_usercnt = 0;
  32. void (*pm_idle)(void);
  33. void (*pm_power_off)(void);
  34. EXPORT_SYMBOL(pm_power_off);
  35. static int __init nohlt_setup(char *__unused)
  36. {
  37. hlt_counter = 1;
  38. return 1;
  39. }
  40. __setup("nohlt", nohlt_setup);
  41. static int __init hlt_setup(char *__unused)
  42. {
  43. hlt_counter = 0;
  44. return 1;
  45. }
  46. __setup("hlt", hlt_setup);
  47. static void default_idle(void)
  48. {
  49. if (!hlt_counter) {
  50. clear_thread_flag(TIF_POLLING_NRFLAG);
  51. smp_mb__after_clear_bit();
  52. set_bl_bit();
  53. while (!need_resched())
  54. cpu_sleep();
  55. clear_bl_bit();
  56. set_thread_flag(TIF_POLLING_NRFLAG);
  57. } else
  58. while (!need_resched())
  59. cpu_relax();
  60. }
  61. void cpu_idle(void)
  62. {
  63. set_thread_flag(TIF_POLLING_NRFLAG);
  64. /* endless idle loop with no priority at all */
  65. while (1) {
  66. void (*idle)(void) = pm_idle;
  67. if (!idle)
  68. idle = default_idle;
  69. tick_nohz_stop_sched_tick(1);
  70. while (!need_resched())
  71. idle();
  72. tick_nohz_restart_sched_tick();
  73. preempt_enable_no_resched();
  74. schedule();
  75. preempt_disable();
  76. check_pgt_cache();
  77. }
  78. }
  79. void machine_restart(char * __unused)
  80. {
  81. /* SR.BL=1 and invoke address error to let CPU reset (manual reset) */
  82. asm volatile("ldc %0, sr\n\t"
  83. "mov.l @%1, %0" : : "r" (0x10000000), "r" (0x80000001));
  84. }
  85. void machine_halt(void)
  86. {
  87. local_irq_disable();
  88. while (1)
  89. cpu_sleep();
  90. }
  91. void machine_power_off(void)
  92. {
  93. if (pm_power_off)
  94. pm_power_off();
  95. }
  96. void show_regs(struct pt_regs * regs)
  97. {
  98. printk("\n");
  99. printk("Pid : %d, Comm: %20s\n", task_pid_nr(current), current->comm);
  100. printk("CPU : %d %s (%s %.*s)\n",
  101. smp_processor_id(), print_tainted(), init_utsname()->release,
  102. (int)strcspn(init_utsname()->version, " "),
  103. init_utsname()->version);
  104. print_symbol("PC is at %s\n", instruction_pointer(regs));
  105. print_symbol("PR is at %s\n", regs->pr);
  106. printk("PC : %08lx SP : %08lx SR : %08lx ",
  107. regs->pc, regs->regs[15], regs->sr);
  108. #ifdef CONFIG_MMU
  109. printk("TEA : %08x\n", ctrl_inl(MMU_TEA));
  110. #else
  111. printk("\n");
  112. #endif
  113. printk("R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
  114. regs->regs[0],regs->regs[1],
  115. regs->regs[2],regs->regs[3]);
  116. printk("R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
  117. regs->regs[4],regs->regs[5],
  118. regs->regs[6],regs->regs[7]);
  119. printk("R8 : %08lx R9 : %08lx R10 : %08lx R11 : %08lx\n",
  120. regs->regs[8],regs->regs[9],
  121. regs->regs[10],regs->regs[11]);
  122. printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
  123. regs->regs[12],regs->regs[13],
  124. regs->regs[14]);
  125. printk("MACH: %08lx MACL: %08lx GBR : %08lx PR : %08lx\n",
  126. regs->mach, regs->macl, regs->gbr, regs->pr);
  127. show_trace(NULL, (unsigned long *)regs->regs[15], regs);
  128. }
  129. /*
  130. * Create a kernel thread
  131. */
  132. /*
  133. * This is the mechanism for creating a new kernel thread.
  134. *
  135. */
  136. extern void kernel_thread_helper(void);
  137. __asm__(".align 5\n"
  138. "kernel_thread_helper:\n\t"
  139. "jsr @r5\n\t"
  140. " nop\n\t"
  141. "mov.l 1f, r1\n\t"
  142. "jsr @r1\n\t"
  143. " mov r0, r4\n\t"
  144. ".align 2\n\t"
  145. "1:.long do_exit");
  146. /* Don't use this in BL=1(cli). Or else, CPU resets! */
  147. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  148. {
  149. struct pt_regs regs;
  150. int pid;
  151. memset(&regs, 0, sizeof(regs));
  152. regs.regs[4] = (unsigned long)arg;
  153. regs.regs[5] = (unsigned long)fn;
  154. regs.pc = (unsigned long)kernel_thread_helper;
  155. regs.sr = (1 << 30);
  156. /* Ok, create the new process.. */
  157. pid = do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
  158. &regs, 0, NULL, NULL);
  159. trace_mark(kernel_arch_kthread_create, "pid %d fn %p", pid, fn);
  160. return pid;
  161. }
  162. /*
  163. * Free current thread data structures etc..
  164. */
  165. void exit_thread(void)
  166. {
  167. if (current->thread.ubc_pc) {
  168. current->thread.ubc_pc = 0;
  169. ubc_usercnt -= 1;
  170. }
  171. }
  172. void flush_thread(void)
  173. {
  174. #if defined(CONFIG_SH_FPU)
  175. struct task_struct *tsk = current;
  176. /* Forget lazy FPU state */
  177. clear_fpu(tsk, task_pt_regs(tsk));
  178. clear_used_math();
  179. #endif
  180. }
  181. void release_thread(struct task_struct *dead_task)
  182. {
  183. /* do nothing */
  184. }
  185. /* Fill in the fpu structure for a core dump.. */
  186. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
  187. {
  188. int fpvalid = 0;
  189. #if defined(CONFIG_SH_FPU)
  190. struct task_struct *tsk = current;
  191. fpvalid = !!tsk_used_math(tsk);
  192. if (fpvalid) {
  193. unlazy_fpu(tsk, regs);
  194. memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
  195. }
  196. #endif
  197. return fpvalid;
  198. }
  199. asmlinkage void ret_from_fork(void);
  200. int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
  201. unsigned long unused,
  202. struct task_struct *p, struct pt_regs *regs)
  203. {
  204. struct thread_info *ti = task_thread_info(p);
  205. struct pt_regs *childregs;
  206. #if defined(CONFIG_SH_FPU)
  207. struct task_struct *tsk = current;
  208. unlazy_fpu(tsk, regs);
  209. p->thread.fpu = tsk->thread.fpu;
  210. copy_to_stopped_child_used_math(p);
  211. #endif
  212. childregs = task_pt_regs(p);
  213. *childregs = *regs;
  214. if (user_mode(regs)) {
  215. childregs->regs[15] = usp;
  216. ti->addr_limit = USER_DS;
  217. } else {
  218. childregs->regs[15] = (unsigned long)childregs;
  219. ti->addr_limit = KERNEL_DS;
  220. }
  221. if (clone_flags & CLONE_SETTLS)
  222. childregs->gbr = childregs->regs[0];
  223. childregs->regs[0] = 0; /* Set return value for child */
  224. p->thread.sp = (unsigned long) childregs;
  225. p->thread.pc = (unsigned long) ret_from_fork;
  226. p->thread.ubc_pc = 0;
  227. return 0;
  228. }
  229. /* Tracing by user break controller. */
  230. static void ubc_set_tracing(int asid, unsigned long pc)
  231. {
  232. #if defined(CONFIG_CPU_SH4A)
  233. unsigned long val;
  234. val = (UBC_CBR_ID_INST | UBC_CBR_RW_READ | UBC_CBR_CE);
  235. val |= (UBC_CBR_AIE | UBC_CBR_AIV_SET(asid));
  236. ctrl_outl(val, UBC_CBR0);
  237. ctrl_outl(pc, UBC_CAR0);
  238. ctrl_outl(0x0, UBC_CAMR0);
  239. ctrl_outl(0x0, UBC_CBCR);
  240. val = (UBC_CRR_RES | UBC_CRR_PCB | UBC_CRR_BIE);
  241. ctrl_outl(val, UBC_CRR0);
  242. /* Read UBC register that we wrote last, for checking update */
  243. val = ctrl_inl(UBC_CRR0);
  244. #else /* CONFIG_CPU_SH4A */
  245. ctrl_outl(pc, UBC_BARA);
  246. #ifdef CONFIG_MMU
  247. ctrl_outb(asid, UBC_BASRA);
  248. #endif
  249. ctrl_outl(0, UBC_BAMRA);
  250. if (current_cpu_data.type == CPU_SH7729 ||
  251. current_cpu_data.type == CPU_SH7710 ||
  252. current_cpu_data.type == CPU_SH7712) {
  253. ctrl_outw(BBR_INST | BBR_READ | BBR_CPU, UBC_BBRA);
  254. ctrl_outl(BRCR_PCBA | BRCR_PCTE, UBC_BRCR);
  255. } else {
  256. ctrl_outw(BBR_INST | BBR_READ, UBC_BBRA);
  257. ctrl_outw(BRCR_PCBA, UBC_BRCR);
  258. }
  259. #endif /* CONFIG_CPU_SH4A */
  260. }
  261. /*
  262. * switch_to(x,y) should switch tasks from x to y.
  263. *
  264. */
  265. struct task_struct *__switch_to(struct task_struct *prev,
  266. struct task_struct *next)
  267. {
  268. #if defined(CONFIG_SH_FPU)
  269. unlazy_fpu(prev, task_pt_regs(prev));
  270. #endif
  271. #ifdef CONFIG_MMU
  272. /*
  273. * Restore the kernel mode register
  274. * k7 (r7_bank1)
  275. */
  276. asm volatile("ldc %0, r7_bank"
  277. : /* no output */
  278. : "r" (task_thread_info(next)));
  279. #endif
  280. /* If no tasks are using the UBC, we're done */
  281. if (ubc_usercnt == 0)
  282. /* If no tasks are using the UBC, we're done */;
  283. else if (next->thread.ubc_pc && next->mm) {
  284. int asid = 0;
  285. #ifdef CONFIG_MMU
  286. asid |= cpu_asid(smp_processor_id(), next->mm);
  287. #endif
  288. ubc_set_tracing(asid, next->thread.ubc_pc);
  289. } else {
  290. #if defined(CONFIG_CPU_SH4A)
  291. ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
  292. ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
  293. #else
  294. ctrl_outw(0, UBC_BBRA);
  295. ctrl_outw(0, UBC_BBRB);
  296. #endif
  297. }
  298. return prev;
  299. }
  300. asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
  301. unsigned long r6, unsigned long r7,
  302. struct pt_regs __regs)
  303. {
  304. #ifdef CONFIG_MMU
  305. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  306. return do_fork(SIGCHLD, regs->regs[15], regs, 0, NULL, NULL);
  307. #else
  308. /* fork almost works, enough to trick you into looking elsewhere :-( */
  309. return -EINVAL;
  310. #endif
  311. }
  312. asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
  313. unsigned long parent_tidptr,
  314. unsigned long child_tidptr,
  315. struct pt_regs __regs)
  316. {
  317. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  318. if (!newsp)
  319. newsp = regs->regs[15];
  320. return do_fork(clone_flags, newsp, regs, 0,
  321. (int __user *)parent_tidptr,
  322. (int __user *)child_tidptr);
  323. }
  324. /*
  325. * This is trivial, and on the face of it looks like it
  326. * could equally well be done in user mode.
  327. *
  328. * Not so, for quite unobvious reasons - register pressure.
  329. * In user mode vfork() cannot have a stack frame, and if
  330. * done by calling the "clone()" system call directly, you
  331. * do not have enough call-clobbered registers to hold all
  332. * the information you need.
  333. */
  334. asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
  335. unsigned long r6, unsigned long r7,
  336. struct pt_regs __regs)
  337. {
  338. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  339. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->regs[15], regs,
  340. 0, NULL, NULL);
  341. }
  342. /*
  343. * sys_execve() executes a new program.
  344. */
  345. asmlinkage int sys_execve(char __user *ufilename, char __user * __user *uargv,
  346. char __user * __user *uenvp, unsigned long r7,
  347. struct pt_regs __regs)
  348. {
  349. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  350. int error;
  351. char *filename;
  352. filename = getname(ufilename);
  353. error = PTR_ERR(filename);
  354. if (IS_ERR(filename))
  355. goto out;
  356. error = do_execve(filename, uargv, uenvp, regs);
  357. if (error == 0) {
  358. task_lock(current);
  359. current->ptrace &= ~PT_DTRACE;
  360. task_unlock(current);
  361. }
  362. putname(filename);
  363. out:
  364. return error;
  365. }
  366. unsigned long get_wchan(struct task_struct *p)
  367. {
  368. unsigned long pc;
  369. if (!p || p == current || p->state == TASK_RUNNING)
  370. return 0;
  371. /*
  372. * The same comment as on the Alpha applies here, too ...
  373. */
  374. pc = thread_saved_pc(p);
  375. #ifdef CONFIG_FRAME_POINTER
  376. if (in_sched_functions(pc)) {
  377. unsigned long schedule_frame = (unsigned long)p->thread.sp;
  378. return ((unsigned long *)schedule_frame)[21];
  379. }
  380. #endif
  381. return pc;
  382. }
  383. asmlinkage void break_point_trap(void)
  384. {
  385. /* Clear tracing. */
  386. #if defined(CONFIG_CPU_SH4A)
  387. ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
  388. ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
  389. #else
  390. ctrl_outw(0, UBC_BBRA);
  391. ctrl_outw(0, UBC_BBRB);
  392. #endif
  393. current->thread.ubc_pc = 0;
  394. ubc_usercnt -= 1;
  395. force_sig(SIGTRAP, current);
  396. }