sched.c 220 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/sched.h>
  80. /*
  81. * Convert user-nice values [ -20 ... 0 ... 19 ]
  82. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  83. * and back.
  84. */
  85. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  86. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  87. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  88. /*
  89. * 'User priority' is the nice value converted to something we
  90. * can work with better when scaling various scheduler parameters,
  91. * it's a [ 0 ... 39 ] range.
  92. */
  93. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  94. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  95. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  96. /*
  97. * Helpers for converting nanosecond timing to jiffy resolution
  98. */
  99. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  100. #define NICE_0_LOAD SCHED_LOAD_SCALE
  101. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  102. /*
  103. * These are the 'tuning knobs' of the scheduler:
  104. *
  105. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  106. * Timeslices get refilled after they expire.
  107. */
  108. #define DEF_TIMESLICE (100 * HZ / 1000)
  109. /*
  110. * single value that denotes runtime == period, ie unlimited time.
  111. */
  112. #define RUNTIME_INF ((u64)~0ULL)
  113. static inline int rt_policy(int policy)
  114. {
  115. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  116. return 1;
  117. return 0;
  118. }
  119. static inline int task_has_rt_policy(struct task_struct *p)
  120. {
  121. return rt_policy(p->policy);
  122. }
  123. /*
  124. * This is the priority-queue data structure of the RT scheduling class:
  125. */
  126. struct rt_prio_array {
  127. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  128. struct list_head queue[MAX_RT_PRIO];
  129. };
  130. struct rt_bandwidth {
  131. /* nests inside the rq lock: */
  132. raw_spinlock_t rt_runtime_lock;
  133. ktime_t rt_period;
  134. u64 rt_runtime;
  135. struct hrtimer rt_period_timer;
  136. };
  137. static struct rt_bandwidth def_rt_bandwidth;
  138. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  139. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  140. {
  141. struct rt_bandwidth *rt_b =
  142. container_of(timer, struct rt_bandwidth, rt_period_timer);
  143. ktime_t now;
  144. int overrun;
  145. int idle = 0;
  146. for (;;) {
  147. now = hrtimer_cb_get_time(timer);
  148. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  149. if (!overrun)
  150. break;
  151. idle = do_sched_rt_period_timer(rt_b, overrun);
  152. }
  153. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  154. }
  155. static
  156. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  157. {
  158. rt_b->rt_period = ns_to_ktime(period);
  159. rt_b->rt_runtime = runtime;
  160. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  161. hrtimer_init(&rt_b->rt_period_timer,
  162. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  163. rt_b->rt_period_timer.function = sched_rt_period_timer;
  164. }
  165. static inline int rt_bandwidth_enabled(void)
  166. {
  167. return sysctl_sched_rt_runtime >= 0;
  168. }
  169. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  170. {
  171. ktime_t now;
  172. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  173. return;
  174. if (hrtimer_active(&rt_b->rt_period_timer))
  175. return;
  176. raw_spin_lock(&rt_b->rt_runtime_lock);
  177. for (;;) {
  178. unsigned long delta;
  179. ktime_t soft, hard;
  180. if (hrtimer_active(&rt_b->rt_period_timer))
  181. break;
  182. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  183. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  184. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  185. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  186. delta = ktime_to_ns(ktime_sub(hard, soft));
  187. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  188. HRTIMER_MODE_ABS_PINNED, 0);
  189. }
  190. raw_spin_unlock(&rt_b->rt_runtime_lock);
  191. }
  192. #ifdef CONFIG_RT_GROUP_SCHED
  193. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  194. {
  195. hrtimer_cancel(&rt_b->rt_period_timer);
  196. }
  197. #endif
  198. /*
  199. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  200. * detach_destroy_domains and partition_sched_domains.
  201. */
  202. static DEFINE_MUTEX(sched_domains_mutex);
  203. #ifdef CONFIG_CGROUP_SCHED
  204. #include <linux/cgroup.h>
  205. struct cfs_rq;
  206. static LIST_HEAD(task_groups);
  207. /* task group related information */
  208. struct task_group {
  209. struct cgroup_subsys_state css;
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* schedulable entities of this group on each cpu */
  212. struct sched_entity **se;
  213. /* runqueue "owned" by this group on each cpu */
  214. struct cfs_rq **cfs_rq;
  215. unsigned long shares;
  216. atomic_t load_weight;
  217. #endif
  218. #ifdef CONFIG_RT_GROUP_SCHED
  219. struct sched_rt_entity **rt_se;
  220. struct rt_rq **rt_rq;
  221. struct rt_bandwidth rt_bandwidth;
  222. #endif
  223. struct rcu_head rcu;
  224. struct list_head list;
  225. struct task_group *parent;
  226. struct list_head siblings;
  227. struct list_head children;
  228. };
  229. #define root_task_group init_task_group
  230. /* task_group_lock serializes the addition/removal of task groups */
  231. static DEFINE_SPINLOCK(task_group_lock);
  232. #ifdef CONFIG_FAIR_GROUP_SCHED
  233. #ifdef CONFIG_SMP
  234. static int root_task_group_empty(void)
  235. {
  236. return list_empty(&root_task_group.children);
  237. }
  238. #endif
  239. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  240. /*
  241. * A weight of 0 or 1 can cause arithmetics problems.
  242. * A weight of a cfs_rq is the sum of weights of which entities
  243. * are queued on this cfs_rq, so a weight of a entity should not be
  244. * too large, so as the shares value of a task group.
  245. * (The default weight is 1024 - so there's no practical
  246. * limitation from this.)
  247. */
  248. #define MIN_SHARES 2
  249. #define MAX_SHARES (1UL << 18)
  250. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  251. #endif
  252. /* Default task group.
  253. * Every task in system belong to this group at bootup.
  254. */
  255. struct task_group init_task_group;
  256. #endif /* CONFIG_CGROUP_SCHED */
  257. /* CFS-related fields in a runqueue */
  258. struct cfs_rq {
  259. struct load_weight load;
  260. unsigned long nr_running;
  261. u64 exec_clock;
  262. u64 min_vruntime;
  263. struct rb_root tasks_timeline;
  264. struct rb_node *rb_leftmost;
  265. struct list_head tasks;
  266. struct list_head *balance_iterator;
  267. /*
  268. * 'curr' points to currently running entity on this cfs_rq.
  269. * It is set to NULL otherwise (i.e when none are currently running).
  270. */
  271. struct sched_entity *curr, *next, *last;
  272. unsigned int nr_spread_over;
  273. #ifdef CONFIG_FAIR_GROUP_SCHED
  274. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  275. /*
  276. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  277. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  278. * (like users, containers etc.)
  279. *
  280. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  281. * list is used during load balance.
  282. */
  283. int on_list;
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. u64 load_avg;
  299. u64 load_period;
  300. u64 load_stamp;
  301. unsigned long load_contribution;
  302. #endif
  303. #endif
  304. };
  305. /* Real-Time classes' related field in a runqueue: */
  306. struct rt_rq {
  307. struct rt_prio_array active;
  308. unsigned long rt_nr_running;
  309. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  310. struct {
  311. int curr; /* highest queued rt task prio */
  312. #ifdef CONFIG_SMP
  313. int next; /* next highest */
  314. #endif
  315. } highest_prio;
  316. #endif
  317. #ifdef CONFIG_SMP
  318. unsigned long rt_nr_migratory;
  319. unsigned long rt_nr_total;
  320. int overloaded;
  321. struct plist_head pushable_tasks;
  322. #endif
  323. int rt_throttled;
  324. u64 rt_time;
  325. u64 rt_runtime;
  326. /* Nests inside the rq lock: */
  327. raw_spinlock_t rt_runtime_lock;
  328. #ifdef CONFIG_RT_GROUP_SCHED
  329. unsigned long rt_nr_boosted;
  330. struct rq *rq;
  331. struct list_head leaf_rt_rq_list;
  332. struct task_group *tg;
  333. #endif
  334. };
  335. #ifdef CONFIG_SMP
  336. /*
  337. * We add the notion of a root-domain which will be used to define per-domain
  338. * variables. Each exclusive cpuset essentially defines an island domain by
  339. * fully partitioning the member cpus from any other cpuset. Whenever a new
  340. * exclusive cpuset is created, we also create and attach a new root-domain
  341. * object.
  342. *
  343. */
  344. struct root_domain {
  345. atomic_t refcount;
  346. cpumask_var_t span;
  347. cpumask_var_t online;
  348. /*
  349. * The "RT overload" flag: it gets set if a CPU has more than
  350. * one runnable RT task.
  351. */
  352. cpumask_var_t rto_mask;
  353. atomic_t rto_count;
  354. struct cpupri cpupri;
  355. };
  356. /*
  357. * By default the system creates a single root-domain with all cpus as
  358. * members (mimicking the global state we have today).
  359. */
  360. static struct root_domain def_root_domain;
  361. #endif /* CONFIG_SMP */
  362. /*
  363. * This is the main, per-CPU runqueue data structure.
  364. *
  365. * Locking rule: those places that want to lock multiple runqueues
  366. * (such as the load balancing or the thread migration code), lock
  367. * acquire operations must be ordered by ascending &runqueue.
  368. */
  369. struct rq {
  370. /* runqueue lock: */
  371. raw_spinlock_t lock;
  372. /*
  373. * nr_running and cpu_load should be in the same cacheline because
  374. * remote CPUs use both these fields when doing load calculation.
  375. */
  376. unsigned long nr_running;
  377. #define CPU_LOAD_IDX_MAX 5
  378. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  379. unsigned long last_load_update_tick;
  380. #ifdef CONFIG_NO_HZ
  381. u64 nohz_stamp;
  382. unsigned char nohz_balance_kick;
  383. #endif
  384. unsigned int skip_clock_update;
  385. /* capture load from *all* tasks on this cpu: */
  386. struct load_weight load;
  387. unsigned long nr_load_updates;
  388. u64 nr_switches;
  389. struct cfs_rq cfs;
  390. struct rt_rq rt;
  391. #ifdef CONFIG_FAIR_GROUP_SCHED
  392. /* list of leaf cfs_rq on this cpu: */
  393. struct list_head leaf_cfs_rq_list;
  394. #endif
  395. #ifdef CONFIG_RT_GROUP_SCHED
  396. struct list_head leaf_rt_rq_list;
  397. #endif
  398. /*
  399. * This is part of a global counter where only the total sum
  400. * over all CPUs matters. A task can increase this counter on
  401. * one CPU and if it got migrated afterwards it may decrease
  402. * it on another CPU. Always updated under the runqueue lock:
  403. */
  404. unsigned long nr_uninterruptible;
  405. struct task_struct *curr, *idle, *stop;
  406. unsigned long next_balance;
  407. struct mm_struct *prev_mm;
  408. u64 clock;
  409. u64 clock_task;
  410. atomic_t nr_iowait;
  411. #ifdef CONFIG_SMP
  412. struct root_domain *rd;
  413. struct sched_domain *sd;
  414. unsigned long cpu_power;
  415. unsigned char idle_at_tick;
  416. /* For active balancing */
  417. int post_schedule;
  418. int active_balance;
  419. int push_cpu;
  420. struct cpu_stop_work active_balance_work;
  421. /* cpu of this runqueue: */
  422. int cpu;
  423. int online;
  424. unsigned long avg_load_per_task;
  425. u64 rt_avg;
  426. u64 age_stamp;
  427. u64 idle_stamp;
  428. u64 avg_idle;
  429. #endif
  430. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  431. u64 prev_irq_time;
  432. #endif
  433. /* calc_load related fields */
  434. unsigned long calc_load_update;
  435. long calc_load_active;
  436. #ifdef CONFIG_SCHED_HRTICK
  437. #ifdef CONFIG_SMP
  438. int hrtick_csd_pending;
  439. struct call_single_data hrtick_csd;
  440. #endif
  441. struct hrtimer hrtick_timer;
  442. #endif
  443. #ifdef CONFIG_SCHEDSTATS
  444. /* latency stats */
  445. struct sched_info rq_sched_info;
  446. unsigned long long rq_cpu_time;
  447. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  448. /* sys_sched_yield() stats */
  449. unsigned int yld_count;
  450. /* schedule() stats */
  451. unsigned int sched_switch;
  452. unsigned int sched_count;
  453. unsigned int sched_goidle;
  454. /* try_to_wake_up() stats */
  455. unsigned int ttwu_count;
  456. unsigned int ttwu_local;
  457. /* BKL stats */
  458. unsigned int bkl_count;
  459. #endif
  460. };
  461. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  462. static inline
  463. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  464. {
  465. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  466. /*
  467. * A queue event has occurred, and we're going to schedule. In
  468. * this case, we can save a useless back to back clock update.
  469. */
  470. if (test_tsk_need_resched(p))
  471. rq->skip_clock_update = 1;
  472. }
  473. static inline int cpu_of(struct rq *rq)
  474. {
  475. #ifdef CONFIG_SMP
  476. return rq->cpu;
  477. #else
  478. return 0;
  479. #endif
  480. }
  481. #define rcu_dereference_check_sched_domain(p) \
  482. rcu_dereference_check((p), \
  483. rcu_read_lock_sched_held() || \
  484. lockdep_is_held(&sched_domains_mutex))
  485. /*
  486. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  487. * See detach_destroy_domains: synchronize_sched for details.
  488. *
  489. * The domain tree of any CPU may only be accessed from within
  490. * preempt-disabled sections.
  491. */
  492. #define for_each_domain(cpu, __sd) \
  493. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  494. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  495. #define this_rq() (&__get_cpu_var(runqueues))
  496. #define task_rq(p) cpu_rq(task_cpu(p))
  497. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  498. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  499. #ifdef CONFIG_CGROUP_SCHED
  500. /*
  501. * Return the group to which this tasks belongs.
  502. *
  503. * We use task_subsys_state_check() and extend the RCU verification
  504. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  505. * holds that lock for each task it moves into the cgroup. Therefore
  506. * by holding that lock, we pin the task to the current cgroup.
  507. */
  508. static inline struct task_group *task_group(struct task_struct *p)
  509. {
  510. struct cgroup_subsys_state *css;
  511. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  512. lockdep_is_held(&task_rq(p)->lock));
  513. return container_of(css, struct task_group, css);
  514. }
  515. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  516. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  517. {
  518. #ifdef CONFIG_FAIR_GROUP_SCHED
  519. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  520. p->se.parent = task_group(p)->se[cpu];
  521. #endif
  522. #ifdef CONFIG_RT_GROUP_SCHED
  523. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  524. p->rt.parent = task_group(p)->rt_se[cpu];
  525. #endif
  526. }
  527. #else /* CONFIG_CGROUP_SCHED */
  528. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  529. static inline struct task_group *task_group(struct task_struct *p)
  530. {
  531. return NULL;
  532. }
  533. #endif /* CONFIG_CGROUP_SCHED */
  534. static u64 irq_time_cpu(int cpu);
  535. static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
  536. inline void update_rq_clock(struct rq *rq)
  537. {
  538. if (!rq->skip_clock_update) {
  539. int cpu = cpu_of(rq);
  540. u64 irq_time;
  541. rq->clock = sched_clock_cpu(cpu);
  542. irq_time = irq_time_cpu(cpu);
  543. if (rq->clock - irq_time > rq->clock_task)
  544. rq->clock_task = rq->clock - irq_time;
  545. sched_irq_time_avg_update(rq, irq_time);
  546. }
  547. }
  548. /*
  549. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  550. */
  551. #ifdef CONFIG_SCHED_DEBUG
  552. # define const_debug __read_mostly
  553. #else
  554. # define const_debug static const
  555. #endif
  556. /**
  557. * runqueue_is_locked
  558. * @cpu: the processor in question.
  559. *
  560. * Returns true if the current cpu runqueue is locked.
  561. * This interface allows printk to be called with the runqueue lock
  562. * held and know whether or not it is OK to wake up the klogd.
  563. */
  564. int runqueue_is_locked(int cpu)
  565. {
  566. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  567. }
  568. /*
  569. * Debugging: various feature bits
  570. */
  571. #define SCHED_FEAT(name, enabled) \
  572. __SCHED_FEAT_##name ,
  573. enum {
  574. #include "sched_features.h"
  575. };
  576. #undef SCHED_FEAT
  577. #define SCHED_FEAT(name, enabled) \
  578. (1UL << __SCHED_FEAT_##name) * enabled |
  579. const_debug unsigned int sysctl_sched_features =
  580. #include "sched_features.h"
  581. 0;
  582. #undef SCHED_FEAT
  583. #ifdef CONFIG_SCHED_DEBUG
  584. #define SCHED_FEAT(name, enabled) \
  585. #name ,
  586. static __read_mostly char *sched_feat_names[] = {
  587. #include "sched_features.h"
  588. NULL
  589. };
  590. #undef SCHED_FEAT
  591. static int sched_feat_show(struct seq_file *m, void *v)
  592. {
  593. int i;
  594. for (i = 0; sched_feat_names[i]; i++) {
  595. if (!(sysctl_sched_features & (1UL << i)))
  596. seq_puts(m, "NO_");
  597. seq_printf(m, "%s ", sched_feat_names[i]);
  598. }
  599. seq_puts(m, "\n");
  600. return 0;
  601. }
  602. static ssize_t
  603. sched_feat_write(struct file *filp, const char __user *ubuf,
  604. size_t cnt, loff_t *ppos)
  605. {
  606. char buf[64];
  607. char *cmp;
  608. int neg = 0;
  609. int i;
  610. if (cnt > 63)
  611. cnt = 63;
  612. if (copy_from_user(&buf, ubuf, cnt))
  613. return -EFAULT;
  614. buf[cnt] = 0;
  615. cmp = strstrip(buf);
  616. if (strncmp(buf, "NO_", 3) == 0) {
  617. neg = 1;
  618. cmp += 3;
  619. }
  620. for (i = 0; sched_feat_names[i]; i++) {
  621. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  622. if (neg)
  623. sysctl_sched_features &= ~(1UL << i);
  624. else
  625. sysctl_sched_features |= (1UL << i);
  626. break;
  627. }
  628. }
  629. if (!sched_feat_names[i])
  630. return -EINVAL;
  631. *ppos += cnt;
  632. return cnt;
  633. }
  634. static int sched_feat_open(struct inode *inode, struct file *filp)
  635. {
  636. return single_open(filp, sched_feat_show, NULL);
  637. }
  638. static const struct file_operations sched_feat_fops = {
  639. .open = sched_feat_open,
  640. .write = sched_feat_write,
  641. .read = seq_read,
  642. .llseek = seq_lseek,
  643. .release = single_release,
  644. };
  645. static __init int sched_init_debug(void)
  646. {
  647. debugfs_create_file("sched_features", 0644, NULL, NULL,
  648. &sched_feat_fops);
  649. return 0;
  650. }
  651. late_initcall(sched_init_debug);
  652. #endif
  653. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  654. /*
  655. * Number of tasks to iterate in a single balance run.
  656. * Limited because this is done with IRQs disabled.
  657. */
  658. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  659. /*
  660. * period over which we average the RT time consumption, measured
  661. * in ms.
  662. *
  663. * default: 1s
  664. */
  665. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  666. /*
  667. * period over which we measure -rt task cpu usage in us.
  668. * default: 1s
  669. */
  670. unsigned int sysctl_sched_rt_period = 1000000;
  671. static __read_mostly int scheduler_running;
  672. /*
  673. * part of the period that we allow rt tasks to run in us.
  674. * default: 0.95s
  675. */
  676. int sysctl_sched_rt_runtime = 950000;
  677. static inline u64 global_rt_period(void)
  678. {
  679. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  680. }
  681. static inline u64 global_rt_runtime(void)
  682. {
  683. if (sysctl_sched_rt_runtime < 0)
  684. return RUNTIME_INF;
  685. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  686. }
  687. #ifndef prepare_arch_switch
  688. # define prepare_arch_switch(next) do { } while (0)
  689. #endif
  690. #ifndef finish_arch_switch
  691. # define finish_arch_switch(prev) do { } while (0)
  692. #endif
  693. static inline int task_current(struct rq *rq, struct task_struct *p)
  694. {
  695. return rq->curr == p;
  696. }
  697. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  698. static inline int task_running(struct rq *rq, struct task_struct *p)
  699. {
  700. return task_current(rq, p);
  701. }
  702. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  703. {
  704. }
  705. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  706. {
  707. #ifdef CONFIG_DEBUG_SPINLOCK
  708. /* this is a valid case when another task releases the spinlock */
  709. rq->lock.owner = current;
  710. #endif
  711. /*
  712. * If we are tracking spinlock dependencies then we have to
  713. * fix up the runqueue lock - which gets 'carried over' from
  714. * prev into current:
  715. */
  716. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  717. raw_spin_unlock_irq(&rq->lock);
  718. }
  719. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  720. static inline int task_running(struct rq *rq, struct task_struct *p)
  721. {
  722. #ifdef CONFIG_SMP
  723. return p->oncpu;
  724. #else
  725. return task_current(rq, p);
  726. #endif
  727. }
  728. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  729. {
  730. #ifdef CONFIG_SMP
  731. /*
  732. * We can optimise this out completely for !SMP, because the
  733. * SMP rebalancing from interrupt is the only thing that cares
  734. * here.
  735. */
  736. next->oncpu = 1;
  737. #endif
  738. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  739. raw_spin_unlock_irq(&rq->lock);
  740. #else
  741. raw_spin_unlock(&rq->lock);
  742. #endif
  743. }
  744. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  745. {
  746. #ifdef CONFIG_SMP
  747. /*
  748. * After ->oncpu is cleared, the task can be moved to a different CPU.
  749. * We must ensure this doesn't happen until the switch is completely
  750. * finished.
  751. */
  752. smp_wmb();
  753. prev->oncpu = 0;
  754. #endif
  755. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  756. local_irq_enable();
  757. #endif
  758. }
  759. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  760. /*
  761. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  762. * against ttwu().
  763. */
  764. static inline int task_is_waking(struct task_struct *p)
  765. {
  766. return unlikely(p->state == TASK_WAKING);
  767. }
  768. /*
  769. * __task_rq_lock - lock the runqueue a given task resides on.
  770. * Must be called interrupts disabled.
  771. */
  772. static inline struct rq *__task_rq_lock(struct task_struct *p)
  773. __acquires(rq->lock)
  774. {
  775. struct rq *rq;
  776. for (;;) {
  777. rq = task_rq(p);
  778. raw_spin_lock(&rq->lock);
  779. if (likely(rq == task_rq(p)))
  780. return rq;
  781. raw_spin_unlock(&rq->lock);
  782. }
  783. }
  784. /*
  785. * task_rq_lock - lock the runqueue a given task resides on and disable
  786. * interrupts. Note the ordering: we can safely lookup the task_rq without
  787. * explicitly disabling preemption.
  788. */
  789. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  790. __acquires(rq->lock)
  791. {
  792. struct rq *rq;
  793. for (;;) {
  794. local_irq_save(*flags);
  795. rq = task_rq(p);
  796. raw_spin_lock(&rq->lock);
  797. if (likely(rq == task_rq(p)))
  798. return rq;
  799. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  800. }
  801. }
  802. static void __task_rq_unlock(struct rq *rq)
  803. __releases(rq->lock)
  804. {
  805. raw_spin_unlock(&rq->lock);
  806. }
  807. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  808. __releases(rq->lock)
  809. {
  810. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  811. }
  812. /*
  813. * this_rq_lock - lock this runqueue and disable interrupts.
  814. */
  815. static struct rq *this_rq_lock(void)
  816. __acquires(rq->lock)
  817. {
  818. struct rq *rq;
  819. local_irq_disable();
  820. rq = this_rq();
  821. raw_spin_lock(&rq->lock);
  822. return rq;
  823. }
  824. #ifdef CONFIG_SCHED_HRTICK
  825. /*
  826. * Use HR-timers to deliver accurate preemption points.
  827. *
  828. * Its all a bit involved since we cannot program an hrt while holding the
  829. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  830. * reschedule event.
  831. *
  832. * When we get rescheduled we reprogram the hrtick_timer outside of the
  833. * rq->lock.
  834. */
  835. /*
  836. * Use hrtick when:
  837. * - enabled by features
  838. * - hrtimer is actually high res
  839. */
  840. static inline int hrtick_enabled(struct rq *rq)
  841. {
  842. if (!sched_feat(HRTICK))
  843. return 0;
  844. if (!cpu_active(cpu_of(rq)))
  845. return 0;
  846. return hrtimer_is_hres_active(&rq->hrtick_timer);
  847. }
  848. static void hrtick_clear(struct rq *rq)
  849. {
  850. if (hrtimer_active(&rq->hrtick_timer))
  851. hrtimer_cancel(&rq->hrtick_timer);
  852. }
  853. /*
  854. * High-resolution timer tick.
  855. * Runs from hardirq context with interrupts disabled.
  856. */
  857. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  858. {
  859. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  860. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  861. raw_spin_lock(&rq->lock);
  862. update_rq_clock(rq);
  863. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  864. raw_spin_unlock(&rq->lock);
  865. return HRTIMER_NORESTART;
  866. }
  867. #ifdef CONFIG_SMP
  868. /*
  869. * called from hardirq (IPI) context
  870. */
  871. static void __hrtick_start(void *arg)
  872. {
  873. struct rq *rq = arg;
  874. raw_spin_lock(&rq->lock);
  875. hrtimer_restart(&rq->hrtick_timer);
  876. rq->hrtick_csd_pending = 0;
  877. raw_spin_unlock(&rq->lock);
  878. }
  879. /*
  880. * Called to set the hrtick timer state.
  881. *
  882. * called with rq->lock held and irqs disabled
  883. */
  884. static void hrtick_start(struct rq *rq, u64 delay)
  885. {
  886. struct hrtimer *timer = &rq->hrtick_timer;
  887. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  888. hrtimer_set_expires(timer, time);
  889. if (rq == this_rq()) {
  890. hrtimer_restart(timer);
  891. } else if (!rq->hrtick_csd_pending) {
  892. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  893. rq->hrtick_csd_pending = 1;
  894. }
  895. }
  896. static int
  897. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  898. {
  899. int cpu = (int)(long)hcpu;
  900. switch (action) {
  901. case CPU_UP_CANCELED:
  902. case CPU_UP_CANCELED_FROZEN:
  903. case CPU_DOWN_PREPARE:
  904. case CPU_DOWN_PREPARE_FROZEN:
  905. case CPU_DEAD:
  906. case CPU_DEAD_FROZEN:
  907. hrtick_clear(cpu_rq(cpu));
  908. return NOTIFY_OK;
  909. }
  910. return NOTIFY_DONE;
  911. }
  912. static __init void init_hrtick(void)
  913. {
  914. hotcpu_notifier(hotplug_hrtick, 0);
  915. }
  916. #else
  917. /*
  918. * Called to set the hrtick timer state.
  919. *
  920. * called with rq->lock held and irqs disabled
  921. */
  922. static void hrtick_start(struct rq *rq, u64 delay)
  923. {
  924. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  925. HRTIMER_MODE_REL_PINNED, 0);
  926. }
  927. static inline void init_hrtick(void)
  928. {
  929. }
  930. #endif /* CONFIG_SMP */
  931. static void init_rq_hrtick(struct rq *rq)
  932. {
  933. #ifdef CONFIG_SMP
  934. rq->hrtick_csd_pending = 0;
  935. rq->hrtick_csd.flags = 0;
  936. rq->hrtick_csd.func = __hrtick_start;
  937. rq->hrtick_csd.info = rq;
  938. #endif
  939. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  940. rq->hrtick_timer.function = hrtick;
  941. }
  942. #else /* CONFIG_SCHED_HRTICK */
  943. static inline void hrtick_clear(struct rq *rq)
  944. {
  945. }
  946. static inline void init_rq_hrtick(struct rq *rq)
  947. {
  948. }
  949. static inline void init_hrtick(void)
  950. {
  951. }
  952. #endif /* CONFIG_SCHED_HRTICK */
  953. /*
  954. * resched_task - mark a task 'to be rescheduled now'.
  955. *
  956. * On UP this means the setting of the need_resched flag, on SMP it
  957. * might also involve a cross-CPU call to trigger the scheduler on
  958. * the target CPU.
  959. */
  960. #ifdef CONFIG_SMP
  961. #ifndef tsk_is_polling
  962. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  963. #endif
  964. static void resched_task(struct task_struct *p)
  965. {
  966. int cpu;
  967. assert_raw_spin_locked(&task_rq(p)->lock);
  968. if (test_tsk_need_resched(p))
  969. return;
  970. set_tsk_need_resched(p);
  971. cpu = task_cpu(p);
  972. if (cpu == smp_processor_id())
  973. return;
  974. /* NEED_RESCHED must be visible before we test polling */
  975. smp_mb();
  976. if (!tsk_is_polling(p))
  977. smp_send_reschedule(cpu);
  978. }
  979. static void resched_cpu(int cpu)
  980. {
  981. struct rq *rq = cpu_rq(cpu);
  982. unsigned long flags;
  983. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  984. return;
  985. resched_task(cpu_curr(cpu));
  986. raw_spin_unlock_irqrestore(&rq->lock, flags);
  987. }
  988. #ifdef CONFIG_NO_HZ
  989. /*
  990. * In the semi idle case, use the nearest busy cpu for migrating timers
  991. * from an idle cpu. This is good for power-savings.
  992. *
  993. * We don't do similar optimization for completely idle system, as
  994. * selecting an idle cpu will add more delays to the timers than intended
  995. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  996. */
  997. int get_nohz_timer_target(void)
  998. {
  999. int cpu = smp_processor_id();
  1000. int i;
  1001. struct sched_domain *sd;
  1002. for_each_domain(cpu, sd) {
  1003. for_each_cpu(i, sched_domain_span(sd))
  1004. if (!idle_cpu(i))
  1005. return i;
  1006. }
  1007. return cpu;
  1008. }
  1009. /*
  1010. * When add_timer_on() enqueues a timer into the timer wheel of an
  1011. * idle CPU then this timer might expire before the next timer event
  1012. * which is scheduled to wake up that CPU. In case of a completely
  1013. * idle system the next event might even be infinite time into the
  1014. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1015. * leaves the inner idle loop so the newly added timer is taken into
  1016. * account when the CPU goes back to idle and evaluates the timer
  1017. * wheel for the next timer event.
  1018. */
  1019. void wake_up_idle_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. if (cpu == smp_processor_id())
  1023. return;
  1024. /*
  1025. * This is safe, as this function is called with the timer
  1026. * wheel base lock of (cpu) held. When the CPU is on the way
  1027. * to idle and has not yet set rq->curr to idle then it will
  1028. * be serialized on the timer wheel base lock and take the new
  1029. * timer into account automatically.
  1030. */
  1031. if (rq->curr != rq->idle)
  1032. return;
  1033. /*
  1034. * We can set TIF_RESCHED on the idle task of the other CPU
  1035. * lockless. The worst case is that the other CPU runs the
  1036. * idle task through an additional NOOP schedule()
  1037. */
  1038. set_tsk_need_resched(rq->idle);
  1039. /* NEED_RESCHED must be visible before we test polling */
  1040. smp_mb();
  1041. if (!tsk_is_polling(rq->idle))
  1042. smp_send_reschedule(cpu);
  1043. }
  1044. #endif /* CONFIG_NO_HZ */
  1045. static u64 sched_avg_period(void)
  1046. {
  1047. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1048. }
  1049. static void sched_avg_update(struct rq *rq)
  1050. {
  1051. s64 period = sched_avg_period();
  1052. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1053. /*
  1054. * Inline assembly required to prevent the compiler
  1055. * optimising this loop into a divmod call.
  1056. * See __iter_div_u64_rem() for another example of this.
  1057. */
  1058. asm("" : "+rm" (rq->age_stamp));
  1059. rq->age_stamp += period;
  1060. rq->rt_avg /= 2;
  1061. }
  1062. }
  1063. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1064. {
  1065. rq->rt_avg += rt_delta;
  1066. sched_avg_update(rq);
  1067. }
  1068. #else /* !CONFIG_SMP */
  1069. static void resched_task(struct task_struct *p)
  1070. {
  1071. assert_raw_spin_locked(&task_rq(p)->lock);
  1072. set_tsk_need_resched(p);
  1073. }
  1074. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1075. {
  1076. }
  1077. static void sched_avg_update(struct rq *rq)
  1078. {
  1079. }
  1080. #endif /* CONFIG_SMP */
  1081. #if BITS_PER_LONG == 32
  1082. # define WMULT_CONST (~0UL)
  1083. #else
  1084. # define WMULT_CONST (1UL << 32)
  1085. #endif
  1086. #define WMULT_SHIFT 32
  1087. /*
  1088. * Shift right and round:
  1089. */
  1090. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1091. /*
  1092. * delta *= weight / lw
  1093. */
  1094. static unsigned long
  1095. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1096. struct load_weight *lw)
  1097. {
  1098. u64 tmp;
  1099. if (!lw->inv_weight) {
  1100. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1101. lw->inv_weight = 1;
  1102. else
  1103. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1104. / (lw->weight+1);
  1105. }
  1106. tmp = (u64)delta_exec * weight;
  1107. /*
  1108. * Check whether we'd overflow the 64-bit multiplication:
  1109. */
  1110. if (unlikely(tmp > WMULT_CONST))
  1111. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1112. WMULT_SHIFT/2);
  1113. else
  1114. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1115. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1116. }
  1117. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1118. {
  1119. lw->weight += inc;
  1120. lw->inv_weight = 0;
  1121. }
  1122. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1123. {
  1124. lw->weight -= dec;
  1125. lw->inv_weight = 0;
  1126. }
  1127. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1128. {
  1129. lw->weight = w;
  1130. lw->inv_weight = 0;
  1131. }
  1132. /*
  1133. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1134. * of tasks with abnormal "nice" values across CPUs the contribution that
  1135. * each task makes to its run queue's load is weighted according to its
  1136. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1137. * scaled version of the new time slice allocation that they receive on time
  1138. * slice expiry etc.
  1139. */
  1140. #define WEIGHT_IDLEPRIO 3
  1141. #define WMULT_IDLEPRIO 1431655765
  1142. /*
  1143. * Nice levels are multiplicative, with a gentle 10% change for every
  1144. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1145. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1146. * that remained on nice 0.
  1147. *
  1148. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1149. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1150. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1151. * If a task goes up by ~10% and another task goes down by ~10% then
  1152. * the relative distance between them is ~25%.)
  1153. */
  1154. static const int prio_to_weight[40] = {
  1155. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1156. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1157. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1158. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1159. /* 0 */ 1024, 820, 655, 526, 423,
  1160. /* 5 */ 335, 272, 215, 172, 137,
  1161. /* 10 */ 110, 87, 70, 56, 45,
  1162. /* 15 */ 36, 29, 23, 18, 15,
  1163. };
  1164. /*
  1165. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1166. *
  1167. * In cases where the weight does not change often, we can use the
  1168. * precalculated inverse to speed up arithmetics by turning divisions
  1169. * into multiplications:
  1170. */
  1171. static const u32 prio_to_wmult[40] = {
  1172. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1173. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1174. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1175. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1176. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1177. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1178. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1179. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1180. };
  1181. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1182. enum cpuacct_stat_index {
  1183. CPUACCT_STAT_USER, /* ... user mode */
  1184. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1185. CPUACCT_STAT_NSTATS,
  1186. };
  1187. #ifdef CONFIG_CGROUP_CPUACCT
  1188. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1189. static void cpuacct_update_stats(struct task_struct *tsk,
  1190. enum cpuacct_stat_index idx, cputime_t val);
  1191. #else
  1192. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1193. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1194. enum cpuacct_stat_index idx, cputime_t val) {}
  1195. #endif
  1196. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1197. {
  1198. update_load_add(&rq->load, load);
  1199. }
  1200. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1201. {
  1202. update_load_sub(&rq->load, load);
  1203. }
  1204. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1205. typedef int (*tg_visitor)(struct task_group *, void *);
  1206. /*
  1207. * Iterate the full tree, calling @down when first entering a node and @up when
  1208. * leaving it for the final time.
  1209. */
  1210. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1211. {
  1212. struct task_group *parent, *child;
  1213. int ret;
  1214. rcu_read_lock();
  1215. parent = &root_task_group;
  1216. down:
  1217. ret = (*down)(parent, data);
  1218. if (ret)
  1219. goto out_unlock;
  1220. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1221. parent = child;
  1222. goto down;
  1223. up:
  1224. continue;
  1225. }
  1226. ret = (*up)(parent, data);
  1227. if (ret)
  1228. goto out_unlock;
  1229. child = parent;
  1230. parent = parent->parent;
  1231. if (parent)
  1232. goto up;
  1233. out_unlock:
  1234. rcu_read_unlock();
  1235. return ret;
  1236. }
  1237. static int tg_nop(struct task_group *tg, void *data)
  1238. {
  1239. return 0;
  1240. }
  1241. #endif
  1242. #ifdef CONFIG_SMP
  1243. /* Used instead of source_load when we know the type == 0 */
  1244. static unsigned long weighted_cpuload(const int cpu)
  1245. {
  1246. return cpu_rq(cpu)->load.weight;
  1247. }
  1248. /*
  1249. * Return a low guess at the load of a migration-source cpu weighted
  1250. * according to the scheduling class and "nice" value.
  1251. *
  1252. * We want to under-estimate the load of migration sources, to
  1253. * balance conservatively.
  1254. */
  1255. static unsigned long source_load(int cpu, int type)
  1256. {
  1257. struct rq *rq = cpu_rq(cpu);
  1258. unsigned long total = weighted_cpuload(cpu);
  1259. if (type == 0 || !sched_feat(LB_BIAS))
  1260. return total;
  1261. return min(rq->cpu_load[type-1], total);
  1262. }
  1263. /*
  1264. * Return a high guess at the load of a migration-target cpu weighted
  1265. * according to the scheduling class and "nice" value.
  1266. */
  1267. static unsigned long target_load(int cpu, int type)
  1268. {
  1269. struct rq *rq = cpu_rq(cpu);
  1270. unsigned long total = weighted_cpuload(cpu);
  1271. if (type == 0 || !sched_feat(LB_BIAS))
  1272. return total;
  1273. return max(rq->cpu_load[type-1], total);
  1274. }
  1275. static unsigned long power_of(int cpu)
  1276. {
  1277. return cpu_rq(cpu)->cpu_power;
  1278. }
  1279. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1280. static unsigned long cpu_avg_load_per_task(int cpu)
  1281. {
  1282. struct rq *rq = cpu_rq(cpu);
  1283. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1284. if (nr_running)
  1285. rq->avg_load_per_task = rq->load.weight / nr_running;
  1286. else
  1287. rq->avg_load_per_task = 0;
  1288. return rq->avg_load_per_task;
  1289. }
  1290. #ifdef CONFIG_FAIR_GROUP_SCHED
  1291. static void update_cfs_load(struct cfs_rq *cfs_rq, int lb);
  1292. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  1293. /*
  1294. * update tg->load_weight by folding this cpu's load_avg
  1295. */
  1296. static int tg_shares_up(struct task_group *tg, void *data)
  1297. {
  1298. long load_avg;
  1299. struct cfs_rq *cfs_rq;
  1300. unsigned long flags;
  1301. int cpu = (long)data;
  1302. struct rq *rq;
  1303. if (!tg->se[cpu])
  1304. return 0;
  1305. rq = cpu_rq(cpu);
  1306. cfs_rq = tg->cfs_rq[cpu];
  1307. raw_spin_lock_irqsave(&rq->lock, flags);
  1308. update_rq_clock(rq);
  1309. update_cfs_load(cfs_rq, 1);
  1310. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  1311. load_avg -= cfs_rq->load_contribution;
  1312. atomic_add(load_avg, &tg->load_weight);
  1313. cfs_rq->load_contribution += load_avg;
  1314. /*
  1315. * We need to update shares after updating tg->load_weight in
  1316. * order to adjust the weight of groups with long running tasks.
  1317. */
  1318. update_cfs_shares(cfs_rq);
  1319. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1320. return 0;
  1321. }
  1322. /*
  1323. * Compute the cpu's hierarchical load factor for each task group.
  1324. * This needs to be done in a top-down fashion because the load of a child
  1325. * group is a fraction of its parents load.
  1326. */
  1327. static int tg_load_down(struct task_group *tg, void *data)
  1328. {
  1329. unsigned long load;
  1330. long cpu = (long)data;
  1331. if (!tg->parent) {
  1332. load = cpu_rq(cpu)->load.weight;
  1333. } else {
  1334. load = tg->parent->cfs_rq[cpu]->h_load;
  1335. load *= tg->se[cpu]->load.weight;
  1336. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1337. }
  1338. tg->cfs_rq[cpu]->h_load = load;
  1339. return 0;
  1340. }
  1341. static void update_shares(long cpu)
  1342. {
  1343. if (root_task_group_empty())
  1344. return;
  1345. /*
  1346. * XXX: replace with an on-demand list
  1347. */
  1348. walk_tg_tree(tg_nop, tg_shares_up, (void *)cpu);
  1349. }
  1350. static void update_h_load(long cpu)
  1351. {
  1352. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1353. }
  1354. #else
  1355. static inline void update_shares(int cpu)
  1356. {
  1357. }
  1358. #endif
  1359. #ifdef CONFIG_PREEMPT
  1360. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1361. /*
  1362. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1363. * way at the expense of forcing extra atomic operations in all
  1364. * invocations. This assures that the double_lock is acquired using the
  1365. * same underlying policy as the spinlock_t on this architecture, which
  1366. * reduces latency compared to the unfair variant below. However, it
  1367. * also adds more overhead and therefore may reduce throughput.
  1368. */
  1369. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1370. __releases(this_rq->lock)
  1371. __acquires(busiest->lock)
  1372. __acquires(this_rq->lock)
  1373. {
  1374. raw_spin_unlock(&this_rq->lock);
  1375. double_rq_lock(this_rq, busiest);
  1376. return 1;
  1377. }
  1378. #else
  1379. /*
  1380. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1381. * latency by eliminating extra atomic operations when the locks are
  1382. * already in proper order on entry. This favors lower cpu-ids and will
  1383. * grant the double lock to lower cpus over higher ids under contention,
  1384. * regardless of entry order into the function.
  1385. */
  1386. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1387. __releases(this_rq->lock)
  1388. __acquires(busiest->lock)
  1389. __acquires(this_rq->lock)
  1390. {
  1391. int ret = 0;
  1392. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1393. if (busiest < this_rq) {
  1394. raw_spin_unlock(&this_rq->lock);
  1395. raw_spin_lock(&busiest->lock);
  1396. raw_spin_lock_nested(&this_rq->lock,
  1397. SINGLE_DEPTH_NESTING);
  1398. ret = 1;
  1399. } else
  1400. raw_spin_lock_nested(&busiest->lock,
  1401. SINGLE_DEPTH_NESTING);
  1402. }
  1403. return ret;
  1404. }
  1405. #endif /* CONFIG_PREEMPT */
  1406. /*
  1407. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1408. */
  1409. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1410. {
  1411. if (unlikely(!irqs_disabled())) {
  1412. /* printk() doesn't work good under rq->lock */
  1413. raw_spin_unlock(&this_rq->lock);
  1414. BUG_ON(1);
  1415. }
  1416. return _double_lock_balance(this_rq, busiest);
  1417. }
  1418. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1419. __releases(busiest->lock)
  1420. {
  1421. raw_spin_unlock(&busiest->lock);
  1422. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1423. }
  1424. /*
  1425. * double_rq_lock - safely lock two runqueues
  1426. *
  1427. * Note this does not disable interrupts like task_rq_lock,
  1428. * you need to do so manually before calling.
  1429. */
  1430. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1431. __acquires(rq1->lock)
  1432. __acquires(rq2->lock)
  1433. {
  1434. BUG_ON(!irqs_disabled());
  1435. if (rq1 == rq2) {
  1436. raw_spin_lock(&rq1->lock);
  1437. __acquire(rq2->lock); /* Fake it out ;) */
  1438. } else {
  1439. if (rq1 < rq2) {
  1440. raw_spin_lock(&rq1->lock);
  1441. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1442. } else {
  1443. raw_spin_lock(&rq2->lock);
  1444. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1445. }
  1446. }
  1447. }
  1448. /*
  1449. * double_rq_unlock - safely unlock two runqueues
  1450. *
  1451. * Note this does not restore interrupts like task_rq_unlock,
  1452. * you need to do so manually after calling.
  1453. */
  1454. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1455. __releases(rq1->lock)
  1456. __releases(rq2->lock)
  1457. {
  1458. raw_spin_unlock(&rq1->lock);
  1459. if (rq1 != rq2)
  1460. raw_spin_unlock(&rq2->lock);
  1461. else
  1462. __release(rq2->lock);
  1463. }
  1464. #endif
  1465. static void calc_load_account_idle(struct rq *this_rq);
  1466. static void update_sysctl(void);
  1467. static int get_update_sysctl_factor(void);
  1468. static void update_cpu_load(struct rq *this_rq);
  1469. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1470. {
  1471. set_task_rq(p, cpu);
  1472. #ifdef CONFIG_SMP
  1473. /*
  1474. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1475. * successfuly executed on another CPU. We must ensure that updates of
  1476. * per-task data have been completed by this moment.
  1477. */
  1478. smp_wmb();
  1479. task_thread_info(p)->cpu = cpu;
  1480. #endif
  1481. }
  1482. static const struct sched_class rt_sched_class;
  1483. #define sched_class_highest (&stop_sched_class)
  1484. #define for_each_class(class) \
  1485. for (class = sched_class_highest; class; class = class->next)
  1486. #include "sched_stats.h"
  1487. static void inc_nr_running(struct rq *rq)
  1488. {
  1489. rq->nr_running++;
  1490. }
  1491. static void dec_nr_running(struct rq *rq)
  1492. {
  1493. rq->nr_running--;
  1494. }
  1495. static void set_load_weight(struct task_struct *p)
  1496. {
  1497. /*
  1498. * SCHED_IDLE tasks get minimal weight:
  1499. */
  1500. if (p->policy == SCHED_IDLE) {
  1501. p->se.load.weight = WEIGHT_IDLEPRIO;
  1502. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1503. return;
  1504. }
  1505. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1506. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1507. }
  1508. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1509. {
  1510. update_rq_clock(rq);
  1511. sched_info_queued(p);
  1512. p->sched_class->enqueue_task(rq, p, flags);
  1513. p->se.on_rq = 1;
  1514. }
  1515. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1516. {
  1517. update_rq_clock(rq);
  1518. sched_info_dequeued(p);
  1519. p->sched_class->dequeue_task(rq, p, flags);
  1520. p->se.on_rq = 0;
  1521. }
  1522. /*
  1523. * activate_task - move a task to the runqueue.
  1524. */
  1525. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1526. {
  1527. if (task_contributes_to_load(p))
  1528. rq->nr_uninterruptible--;
  1529. enqueue_task(rq, p, flags);
  1530. inc_nr_running(rq);
  1531. }
  1532. /*
  1533. * deactivate_task - remove a task from the runqueue.
  1534. */
  1535. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1536. {
  1537. if (task_contributes_to_load(p))
  1538. rq->nr_uninterruptible++;
  1539. dequeue_task(rq, p, flags);
  1540. dec_nr_running(rq);
  1541. }
  1542. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1543. /*
  1544. * There are no locks covering percpu hardirq/softirq time.
  1545. * They are only modified in account_system_vtime, on corresponding CPU
  1546. * with interrupts disabled. So, writes are safe.
  1547. * They are read and saved off onto struct rq in update_rq_clock().
  1548. * This may result in other CPU reading this CPU's irq time and can
  1549. * race with irq/account_system_vtime on this CPU. We would either get old
  1550. * or new value (or semi updated value on 32 bit) with a side effect of
  1551. * accounting a slice of irq time to wrong task when irq is in progress
  1552. * while we read rq->clock. That is a worthy compromise in place of having
  1553. * locks on each irq in account_system_time.
  1554. */
  1555. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1556. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1557. static DEFINE_PER_CPU(u64, irq_start_time);
  1558. static int sched_clock_irqtime;
  1559. void enable_sched_clock_irqtime(void)
  1560. {
  1561. sched_clock_irqtime = 1;
  1562. }
  1563. void disable_sched_clock_irqtime(void)
  1564. {
  1565. sched_clock_irqtime = 0;
  1566. }
  1567. static u64 irq_time_cpu(int cpu)
  1568. {
  1569. if (!sched_clock_irqtime)
  1570. return 0;
  1571. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1572. }
  1573. void account_system_vtime(struct task_struct *curr)
  1574. {
  1575. unsigned long flags;
  1576. int cpu;
  1577. u64 now, delta;
  1578. if (!sched_clock_irqtime)
  1579. return;
  1580. local_irq_save(flags);
  1581. cpu = smp_processor_id();
  1582. now = sched_clock_cpu(cpu);
  1583. delta = now - per_cpu(irq_start_time, cpu);
  1584. per_cpu(irq_start_time, cpu) = now;
  1585. /*
  1586. * We do not account for softirq time from ksoftirqd here.
  1587. * We want to continue accounting softirq time to ksoftirqd thread
  1588. * in that case, so as not to confuse scheduler with a special task
  1589. * that do not consume any time, but still wants to run.
  1590. */
  1591. if (hardirq_count())
  1592. per_cpu(cpu_hardirq_time, cpu) += delta;
  1593. else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
  1594. per_cpu(cpu_softirq_time, cpu) += delta;
  1595. local_irq_restore(flags);
  1596. }
  1597. EXPORT_SYMBOL_GPL(account_system_vtime);
  1598. static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
  1599. {
  1600. if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
  1601. u64 delta_irq = curr_irq_time - rq->prev_irq_time;
  1602. rq->prev_irq_time = curr_irq_time;
  1603. sched_rt_avg_update(rq, delta_irq);
  1604. }
  1605. }
  1606. #else
  1607. static u64 irq_time_cpu(int cpu)
  1608. {
  1609. return 0;
  1610. }
  1611. static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
  1612. #endif
  1613. #include "sched_idletask.c"
  1614. #include "sched_fair.c"
  1615. #include "sched_rt.c"
  1616. #include "sched_stoptask.c"
  1617. #ifdef CONFIG_SCHED_DEBUG
  1618. # include "sched_debug.c"
  1619. #endif
  1620. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1621. {
  1622. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1623. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1624. if (stop) {
  1625. /*
  1626. * Make it appear like a SCHED_FIFO task, its something
  1627. * userspace knows about and won't get confused about.
  1628. *
  1629. * Also, it will make PI more or less work without too
  1630. * much confusion -- but then, stop work should not
  1631. * rely on PI working anyway.
  1632. */
  1633. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1634. stop->sched_class = &stop_sched_class;
  1635. }
  1636. cpu_rq(cpu)->stop = stop;
  1637. if (old_stop) {
  1638. /*
  1639. * Reset it back to a normal scheduling class so that
  1640. * it can die in pieces.
  1641. */
  1642. old_stop->sched_class = &rt_sched_class;
  1643. }
  1644. }
  1645. /*
  1646. * __normal_prio - return the priority that is based on the static prio
  1647. */
  1648. static inline int __normal_prio(struct task_struct *p)
  1649. {
  1650. return p->static_prio;
  1651. }
  1652. /*
  1653. * Calculate the expected normal priority: i.e. priority
  1654. * without taking RT-inheritance into account. Might be
  1655. * boosted by interactivity modifiers. Changes upon fork,
  1656. * setprio syscalls, and whenever the interactivity
  1657. * estimator recalculates.
  1658. */
  1659. static inline int normal_prio(struct task_struct *p)
  1660. {
  1661. int prio;
  1662. if (task_has_rt_policy(p))
  1663. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1664. else
  1665. prio = __normal_prio(p);
  1666. return prio;
  1667. }
  1668. /*
  1669. * Calculate the current priority, i.e. the priority
  1670. * taken into account by the scheduler. This value might
  1671. * be boosted by RT tasks, or might be boosted by
  1672. * interactivity modifiers. Will be RT if the task got
  1673. * RT-boosted. If not then it returns p->normal_prio.
  1674. */
  1675. static int effective_prio(struct task_struct *p)
  1676. {
  1677. p->normal_prio = normal_prio(p);
  1678. /*
  1679. * If we are RT tasks or we were boosted to RT priority,
  1680. * keep the priority unchanged. Otherwise, update priority
  1681. * to the normal priority:
  1682. */
  1683. if (!rt_prio(p->prio))
  1684. return p->normal_prio;
  1685. return p->prio;
  1686. }
  1687. /**
  1688. * task_curr - is this task currently executing on a CPU?
  1689. * @p: the task in question.
  1690. */
  1691. inline int task_curr(const struct task_struct *p)
  1692. {
  1693. return cpu_curr(task_cpu(p)) == p;
  1694. }
  1695. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1696. const struct sched_class *prev_class,
  1697. int oldprio, int running)
  1698. {
  1699. if (prev_class != p->sched_class) {
  1700. if (prev_class->switched_from)
  1701. prev_class->switched_from(rq, p, running);
  1702. p->sched_class->switched_to(rq, p, running);
  1703. } else
  1704. p->sched_class->prio_changed(rq, p, oldprio, running);
  1705. }
  1706. #ifdef CONFIG_SMP
  1707. /*
  1708. * Is this task likely cache-hot:
  1709. */
  1710. static int
  1711. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1712. {
  1713. s64 delta;
  1714. if (p->sched_class != &fair_sched_class)
  1715. return 0;
  1716. if (unlikely(p->policy == SCHED_IDLE))
  1717. return 0;
  1718. /*
  1719. * Buddy candidates are cache hot:
  1720. */
  1721. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1722. (&p->se == cfs_rq_of(&p->se)->next ||
  1723. &p->se == cfs_rq_of(&p->se)->last))
  1724. return 1;
  1725. if (sysctl_sched_migration_cost == -1)
  1726. return 1;
  1727. if (sysctl_sched_migration_cost == 0)
  1728. return 0;
  1729. delta = now - p->se.exec_start;
  1730. return delta < (s64)sysctl_sched_migration_cost;
  1731. }
  1732. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1733. {
  1734. #ifdef CONFIG_SCHED_DEBUG
  1735. /*
  1736. * We should never call set_task_cpu() on a blocked task,
  1737. * ttwu() will sort out the placement.
  1738. */
  1739. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1740. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1741. #endif
  1742. trace_sched_migrate_task(p, new_cpu);
  1743. if (task_cpu(p) != new_cpu) {
  1744. p->se.nr_migrations++;
  1745. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1746. }
  1747. __set_task_cpu(p, new_cpu);
  1748. }
  1749. struct migration_arg {
  1750. struct task_struct *task;
  1751. int dest_cpu;
  1752. };
  1753. static int migration_cpu_stop(void *data);
  1754. /*
  1755. * The task's runqueue lock must be held.
  1756. * Returns true if you have to wait for migration thread.
  1757. */
  1758. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1759. {
  1760. struct rq *rq = task_rq(p);
  1761. /*
  1762. * If the task is not on a runqueue (and not running), then
  1763. * the next wake-up will properly place the task.
  1764. */
  1765. return p->se.on_rq || task_running(rq, p);
  1766. }
  1767. /*
  1768. * wait_task_inactive - wait for a thread to unschedule.
  1769. *
  1770. * If @match_state is nonzero, it's the @p->state value just checked and
  1771. * not expected to change. If it changes, i.e. @p might have woken up,
  1772. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1773. * we return a positive number (its total switch count). If a second call
  1774. * a short while later returns the same number, the caller can be sure that
  1775. * @p has remained unscheduled the whole time.
  1776. *
  1777. * The caller must ensure that the task *will* unschedule sometime soon,
  1778. * else this function might spin for a *long* time. This function can't
  1779. * be called with interrupts off, or it may introduce deadlock with
  1780. * smp_call_function() if an IPI is sent by the same process we are
  1781. * waiting to become inactive.
  1782. */
  1783. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1784. {
  1785. unsigned long flags;
  1786. int running, on_rq;
  1787. unsigned long ncsw;
  1788. struct rq *rq;
  1789. for (;;) {
  1790. /*
  1791. * We do the initial early heuristics without holding
  1792. * any task-queue locks at all. We'll only try to get
  1793. * the runqueue lock when things look like they will
  1794. * work out!
  1795. */
  1796. rq = task_rq(p);
  1797. /*
  1798. * If the task is actively running on another CPU
  1799. * still, just relax and busy-wait without holding
  1800. * any locks.
  1801. *
  1802. * NOTE! Since we don't hold any locks, it's not
  1803. * even sure that "rq" stays as the right runqueue!
  1804. * But we don't care, since "task_running()" will
  1805. * return false if the runqueue has changed and p
  1806. * is actually now running somewhere else!
  1807. */
  1808. while (task_running(rq, p)) {
  1809. if (match_state && unlikely(p->state != match_state))
  1810. return 0;
  1811. cpu_relax();
  1812. }
  1813. /*
  1814. * Ok, time to look more closely! We need the rq
  1815. * lock now, to be *sure*. If we're wrong, we'll
  1816. * just go back and repeat.
  1817. */
  1818. rq = task_rq_lock(p, &flags);
  1819. trace_sched_wait_task(p);
  1820. running = task_running(rq, p);
  1821. on_rq = p->se.on_rq;
  1822. ncsw = 0;
  1823. if (!match_state || p->state == match_state)
  1824. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1825. task_rq_unlock(rq, &flags);
  1826. /*
  1827. * If it changed from the expected state, bail out now.
  1828. */
  1829. if (unlikely(!ncsw))
  1830. break;
  1831. /*
  1832. * Was it really running after all now that we
  1833. * checked with the proper locks actually held?
  1834. *
  1835. * Oops. Go back and try again..
  1836. */
  1837. if (unlikely(running)) {
  1838. cpu_relax();
  1839. continue;
  1840. }
  1841. /*
  1842. * It's not enough that it's not actively running,
  1843. * it must be off the runqueue _entirely_, and not
  1844. * preempted!
  1845. *
  1846. * So if it was still runnable (but just not actively
  1847. * running right now), it's preempted, and we should
  1848. * yield - it could be a while.
  1849. */
  1850. if (unlikely(on_rq)) {
  1851. schedule_timeout_uninterruptible(1);
  1852. continue;
  1853. }
  1854. /*
  1855. * Ahh, all good. It wasn't running, and it wasn't
  1856. * runnable, which means that it will never become
  1857. * running in the future either. We're all done!
  1858. */
  1859. break;
  1860. }
  1861. return ncsw;
  1862. }
  1863. /***
  1864. * kick_process - kick a running thread to enter/exit the kernel
  1865. * @p: the to-be-kicked thread
  1866. *
  1867. * Cause a process which is running on another CPU to enter
  1868. * kernel-mode, without any delay. (to get signals handled.)
  1869. *
  1870. * NOTE: this function doesnt have to take the runqueue lock,
  1871. * because all it wants to ensure is that the remote task enters
  1872. * the kernel. If the IPI races and the task has been migrated
  1873. * to another CPU then no harm is done and the purpose has been
  1874. * achieved as well.
  1875. */
  1876. void kick_process(struct task_struct *p)
  1877. {
  1878. int cpu;
  1879. preempt_disable();
  1880. cpu = task_cpu(p);
  1881. if ((cpu != smp_processor_id()) && task_curr(p))
  1882. smp_send_reschedule(cpu);
  1883. preempt_enable();
  1884. }
  1885. EXPORT_SYMBOL_GPL(kick_process);
  1886. #endif /* CONFIG_SMP */
  1887. /**
  1888. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1889. * @p: the task to evaluate
  1890. * @func: the function to be called
  1891. * @info: the function call argument
  1892. *
  1893. * Calls the function @func when the task is currently running. This might
  1894. * be on the current CPU, which just calls the function directly
  1895. */
  1896. void task_oncpu_function_call(struct task_struct *p,
  1897. void (*func) (void *info), void *info)
  1898. {
  1899. int cpu;
  1900. preempt_disable();
  1901. cpu = task_cpu(p);
  1902. if (task_curr(p))
  1903. smp_call_function_single(cpu, func, info, 1);
  1904. preempt_enable();
  1905. }
  1906. #ifdef CONFIG_SMP
  1907. /*
  1908. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1909. */
  1910. static int select_fallback_rq(int cpu, struct task_struct *p)
  1911. {
  1912. int dest_cpu;
  1913. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1914. /* Look for allowed, online CPU in same node. */
  1915. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1916. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1917. return dest_cpu;
  1918. /* Any allowed, online CPU? */
  1919. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1920. if (dest_cpu < nr_cpu_ids)
  1921. return dest_cpu;
  1922. /* No more Mr. Nice Guy. */
  1923. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1924. /*
  1925. * Don't tell them about moving exiting tasks or
  1926. * kernel threads (both mm NULL), since they never
  1927. * leave kernel.
  1928. */
  1929. if (p->mm && printk_ratelimit()) {
  1930. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1931. task_pid_nr(p), p->comm, cpu);
  1932. }
  1933. return dest_cpu;
  1934. }
  1935. /*
  1936. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1937. */
  1938. static inline
  1939. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1940. {
  1941. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1942. /*
  1943. * In order not to call set_task_cpu() on a blocking task we need
  1944. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1945. * cpu.
  1946. *
  1947. * Since this is common to all placement strategies, this lives here.
  1948. *
  1949. * [ this allows ->select_task() to simply return task_cpu(p) and
  1950. * not worry about this generic constraint ]
  1951. */
  1952. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1953. !cpu_online(cpu)))
  1954. cpu = select_fallback_rq(task_cpu(p), p);
  1955. return cpu;
  1956. }
  1957. static void update_avg(u64 *avg, u64 sample)
  1958. {
  1959. s64 diff = sample - *avg;
  1960. *avg += diff >> 3;
  1961. }
  1962. #endif
  1963. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  1964. bool is_sync, bool is_migrate, bool is_local,
  1965. unsigned long en_flags)
  1966. {
  1967. schedstat_inc(p, se.statistics.nr_wakeups);
  1968. if (is_sync)
  1969. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1970. if (is_migrate)
  1971. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1972. if (is_local)
  1973. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1974. else
  1975. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1976. activate_task(rq, p, en_flags);
  1977. }
  1978. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  1979. int wake_flags, bool success)
  1980. {
  1981. trace_sched_wakeup(p, success);
  1982. check_preempt_curr(rq, p, wake_flags);
  1983. p->state = TASK_RUNNING;
  1984. #ifdef CONFIG_SMP
  1985. if (p->sched_class->task_woken)
  1986. p->sched_class->task_woken(rq, p);
  1987. if (unlikely(rq->idle_stamp)) {
  1988. u64 delta = rq->clock - rq->idle_stamp;
  1989. u64 max = 2*sysctl_sched_migration_cost;
  1990. if (delta > max)
  1991. rq->avg_idle = max;
  1992. else
  1993. update_avg(&rq->avg_idle, delta);
  1994. rq->idle_stamp = 0;
  1995. }
  1996. #endif
  1997. /* if a worker is waking up, notify workqueue */
  1998. if ((p->flags & PF_WQ_WORKER) && success)
  1999. wq_worker_waking_up(p, cpu_of(rq));
  2000. }
  2001. /**
  2002. * try_to_wake_up - wake up a thread
  2003. * @p: the thread to be awakened
  2004. * @state: the mask of task states that can be woken
  2005. * @wake_flags: wake modifier flags (WF_*)
  2006. *
  2007. * Put it on the run-queue if it's not already there. The "current"
  2008. * thread is always on the run-queue (except when the actual
  2009. * re-schedule is in progress), and as such you're allowed to do
  2010. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2011. * runnable without the overhead of this.
  2012. *
  2013. * Returns %true if @p was woken up, %false if it was already running
  2014. * or @state didn't match @p's state.
  2015. */
  2016. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2017. int wake_flags)
  2018. {
  2019. int cpu, orig_cpu, this_cpu, success = 0;
  2020. unsigned long flags;
  2021. unsigned long en_flags = ENQUEUE_WAKEUP;
  2022. struct rq *rq;
  2023. this_cpu = get_cpu();
  2024. smp_wmb();
  2025. rq = task_rq_lock(p, &flags);
  2026. if (!(p->state & state))
  2027. goto out;
  2028. if (p->se.on_rq)
  2029. goto out_running;
  2030. cpu = task_cpu(p);
  2031. orig_cpu = cpu;
  2032. #ifdef CONFIG_SMP
  2033. if (unlikely(task_running(rq, p)))
  2034. goto out_activate;
  2035. /*
  2036. * In order to handle concurrent wakeups and release the rq->lock
  2037. * we put the task in TASK_WAKING state.
  2038. *
  2039. * First fix up the nr_uninterruptible count:
  2040. */
  2041. if (task_contributes_to_load(p)) {
  2042. if (likely(cpu_online(orig_cpu)))
  2043. rq->nr_uninterruptible--;
  2044. else
  2045. this_rq()->nr_uninterruptible--;
  2046. }
  2047. p->state = TASK_WAKING;
  2048. if (p->sched_class->task_waking) {
  2049. p->sched_class->task_waking(rq, p);
  2050. en_flags |= ENQUEUE_WAKING;
  2051. }
  2052. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2053. if (cpu != orig_cpu)
  2054. set_task_cpu(p, cpu);
  2055. __task_rq_unlock(rq);
  2056. rq = cpu_rq(cpu);
  2057. raw_spin_lock(&rq->lock);
  2058. /*
  2059. * We migrated the task without holding either rq->lock, however
  2060. * since the task is not on the task list itself, nobody else
  2061. * will try and migrate the task, hence the rq should match the
  2062. * cpu we just moved it to.
  2063. */
  2064. WARN_ON(task_cpu(p) != cpu);
  2065. WARN_ON(p->state != TASK_WAKING);
  2066. #ifdef CONFIG_SCHEDSTATS
  2067. schedstat_inc(rq, ttwu_count);
  2068. if (cpu == this_cpu)
  2069. schedstat_inc(rq, ttwu_local);
  2070. else {
  2071. struct sched_domain *sd;
  2072. for_each_domain(this_cpu, sd) {
  2073. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2074. schedstat_inc(sd, ttwu_wake_remote);
  2075. break;
  2076. }
  2077. }
  2078. }
  2079. #endif /* CONFIG_SCHEDSTATS */
  2080. out_activate:
  2081. #endif /* CONFIG_SMP */
  2082. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2083. cpu == this_cpu, en_flags);
  2084. success = 1;
  2085. out_running:
  2086. ttwu_post_activation(p, rq, wake_flags, success);
  2087. out:
  2088. task_rq_unlock(rq, &flags);
  2089. put_cpu();
  2090. return success;
  2091. }
  2092. /**
  2093. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2094. * @p: the thread to be awakened
  2095. *
  2096. * Put @p on the run-queue if it's not alredy there. The caller must
  2097. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2098. * the current task. this_rq() stays locked over invocation.
  2099. */
  2100. static void try_to_wake_up_local(struct task_struct *p)
  2101. {
  2102. struct rq *rq = task_rq(p);
  2103. bool success = false;
  2104. BUG_ON(rq != this_rq());
  2105. BUG_ON(p == current);
  2106. lockdep_assert_held(&rq->lock);
  2107. if (!(p->state & TASK_NORMAL))
  2108. return;
  2109. if (!p->se.on_rq) {
  2110. if (likely(!task_running(rq, p))) {
  2111. schedstat_inc(rq, ttwu_count);
  2112. schedstat_inc(rq, ttwu_local);
  2113. }
  2114. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2115. success = true;
  2116. }
  2117. ttwu_post_activation(p, rq, 0, success);
  2118. }
  2119. /**
  2120. * wake_up_process - Wake up a specific process
  2121. * @p: The process to be woken up.
  2122. *
  2123. * Attempt to wake up the nominated process and move it to the set of runnable
  2124. * processes. Returns 1 if the process was woken up, 0 if it was already
  2125. * running.
  2126. *
  2127. * It may be assumed that this function implies a write memory barrier before
  2128. * changing the task state if and only if any tasks are woken up.
  2129. */
  2130. int wake_up_process(struct task_struct *p)
  2131. {
  2132. return try_to_wake_up(p, TASK_ALL, 0);
  2133. }
  2134. EXPORT_SYMBOL(wake_up_process);
  2135. int wake_up_state(struct task_struct *p, unsigned int state)
  2136. {
  2137. return try_to_wake_up(p, state, 0);
  2138. }
  2139. /*
  2140. * Perform scheduler related setup for a newly forked process p.
  2141. * p is forked by current.
  2142. *
  2143. * __sched_fork() is basic setup used by init_idle() too:
  2144. */
  2145. static void __sched_fork(struct task_struct *p)
  2146. {
  2147. p->se.exec_start = 0;
  2148. p->se.sum_exec_runtime = 0;
  2149. p->se.prev_sum_exec_runtime = 0;
  2150. p->se.nr_migrations = 0;
  2151. #ifdef CONFIG_SCHEDSTATS
  2152. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2153. #endif
  2154. INIT_LIST_HEAD(&p->rt.run_list);
  2155. p->se.on_rq = 0;
  2156. INIT_LIST_HEAD(&p->se.group_node);
  2157. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2158. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2159. #endif
  2160. }
  2161. /*
  2162. * fork()/clone()-time setup:
  2163. */
  2164. void sched_fork(struct task_struct *p, int clone_flags)
  2165. {
  2166. int cpu = get_cpu();
  2167. __sched_fork(p);
  2168. /*
  2169. * We mark the process as running here. This guarantees that
  2170. * nobody will actually run it, and a signal or other external
  2171. * event cannot wake it up and insert it on the runqueue either.
  2172. */
  2173. p->state = TASK_RUNNING;
  2174. /*
  2175. * Revert to default priority/policy on fork if requested.
  2176. */
  2177. if (unlikely(p->sched_reset_on_fork)) {
  2178. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2179. p->policy = SCHED_NORMAL;
  2180. p->normal_prio = p->static_prio;
  2181. }
  2182. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2183. p->static_prio = NICE_TO_PRIO(0);
  2184. p->normal_prio = p->static_prio;
  2185. set_load_weight(p);
  2186. }
  2187. /*
  2188. * We don't need the reset flag anymore after the fork. It has
  2189. * fulfilled its duty:
  2190. */
  2191. p->sched_reset_on_fork = 0;
  2192. }
  2193. /*
  2194. * Make sure we do not leak PI boosting priority to the child.
  2195. */
  2196. p->prio = current->normal_prio;
  2197. if (!rt_prio(p->prio))
  2198. p->sched_class = &fair_sched_class;
  2199. if (p->sched_class->task_fork)
  2200. p->sched_class->task_fork(p);
  2201. /*
  2202. * The child is not yet in the pid-hash so no cgroup attach races,
  2203. * and the cgroup is pinned to this child due to cgroup_fork()
  2204. * is ran before sched_fork().
  2205. *
  2206. * Silence PROVE_RCU.
  2207. */
  2208. rcu_read_lock();
  2209. set_task_cpu(p, cpu);
  2210. rcu_read_unlock();
  2211. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2212. if (likely(sched_info_on()))
  2213. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2214. #endif
  2215. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2216. p->oncpu = 0;
  2217. #endif
  2218. #ifdef CONFIG_PREEMPT
  2219. /* Want to start with kernel preemption disabled. */
  2220. task_thread_info(p)->preempt_count = 1;
  2221. #endif
  2222. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2223. put_cpu();
  2224. }
  2225. /*
  2226. * wake_up_new_task - wake up a newly created task for the first time.
  2227. *
  2228. * This function will do some initial scheduler statistics housekeeping
  2229. * that must be done for every newly created context, then puts the task
  2230. * on the runqueue and wakes it.
  2231. */
  2232. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2233. {
  2234. unsigned long flags;
  2235. struct rq *rq;
  2236. int cpu __maybe_unused = get_cpu();
  2237. #ifdef CONFIG_SMP
  2238. rq = task_rq_lock(p, &flags);
  2239. p->state = TASK_WAKING;
  2240. /*
  2241. * Fork balancing, do it here and not earlier because:
  2242. * - cpus_allowed can change in the fork path
  2243. * - any previously selected cpu might disappear through hotplug
  2244. *
  2245. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2246. * without people poking at ->cpus_allowed.
  2247. */
  2248. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2249. set_task_cpu(p, cpu);
  2250. p->state = TASK_RUNNING;
  2251. task_rq_unlock(rq, &flags);
  2252. #endif
  2253. rq = task_rq_lock(p, &flags);
  2254. activate_task(rq, p, 0);
  2255. trace_sched_wakeup_new(p, 1);
  2256. check_preempt_curr(rq, p, WF_FORK);
  2257. #ifdef CONFIG_SMP
  2258. if (p->sched_class->task_woken)
  2259. p->sched_class->task_woken(rq, p);
  2260. #endif
  2261. task_rq_unlock(rq, &flags);
  2262. put_cpu();
  2263. }
  2264. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2265. /**
  2266. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2267. * @notifier: notifier struct to register
  2268. */
  2269. void preempt_notifier_register(struct preempt_notifier *notifier)
  2270. {
  2271. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2272. }
  2273. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2274. /**
  2275. * preempt_notifier_unregister - no longer interested in preemption notifications
  2276. * @notifier: notifier struct to unregister
  2277. *
  2278. * This is safe to call from within a preemption notifier.
  2279. */
  2280. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2281. {
  2282. hlist_del(&notifier->link);
  2283. }
  2284. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2285. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2286. {
  2287. struct preempt_notifier *notifier;
  2288. struct hlist_node *node;
  2289. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2290. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2291. }
  2292. static void
  2293. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2294. struct task_struct *next)
  2295. {
  2296. struct preempt_notifier *notifier;
  2297. struct hlist_node *node;
  2298. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2299. notifier->ops->sched_out(notifier, next);
  2300. }
  2301. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2302. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2303. {
  2304. }
  2305. static void
  2306. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2307. struct task_struct *next)
  2308. {
  2309. }
  2310. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2311. /**
  2312. * prepare_task_switch - prepare to switch tasks
  2313. * @rq: the runqueue preparing to switch
  2314. * @prev: the current task that is being switched out
  2315. * @next: the task we are going to switch to.
  2316. *
  2317. * This is called with the rq lock held and interrupts off. It must
  2318. * be paired with a subsequent finish_task_switch after the context
  2319. * switch.
  2320. *
  2321. * prepare_task_switch sets up locking and calls architecture specific
  2322. * hooks.
  2323. */
  2324. static inline void
  2325. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2326. struct task_struct *next)
  2327. {
  2328. fire_sched_out_preempt_notifiers(prev, next);
  2329. prepare_lock_switch(rq, next);
  2330. prepare_arch_switch(next);
  2331. }
  2332. /**
  2333. * finish_task_switch - clean up after a task-switch
  2334. * @rq: runqueue associated with task-switch
  2335. * @prev: the thread we just switched away from.
  2336. *
  2337. * finish_task_switch must be called after the context switch, paired
  2338. * with a prepare_task_switch call before the context switch.
  2339. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2340. * and do any other architecture-specific cleanup actions.
  2341. *
  2342. * Note that we may have delayed dropping an mm in context_switch(). If
  2343. * so, we finish that here outside of the runqueue lock. (Doing it
  2344. * with the lock held can cause deadlocks; see schedule() for
  2345. * details.)
  2346. */
  2347. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2348. __releases(rq->lock)
  2349. {
  2350. struct mm_struct *mm = rq->prev_mm;
  2351. long prev_state;
  2352. rq->prev_mm = NULL;
  2353. /*
  2354. * A task struct has one reference for the use as "current".
  2355. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2356. * schedule one last time. The schedule call will never return, and
  2357. * the scheduled task must drop that reference.
  2358. * The test for TASK_DEAD must occur while the runqueue locks are
  2359. * still held, otherwise prev could be scheduled on another cpu, die
  2360. * there before we look at prev->state, and then the reference would
  2361. * be dropped twice.
  2362. * Manfred Spraul <manfred@colorfullife.com>
  2363. */
  2364. prev_state = prev->state;
  2365. finish_arch_switch(prev);
  2366. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2367. local_irq_disable();
  2368. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2369. perf_event_task_sched_in(current);
  2370. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2371. local_irq_enable();
  2372. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2373. finish_lock_switch(rq, prev);
  2374. fire_sched_in_preempt_notifiers(current);
  2375. if (mm)
  2376. mmdrop(mm);
  2377. if (unlikely(prev_state == TASK_DEAD)) {
  2378. /*
  2379. * Remove function-return probe instances associated with this
  2380. * task and put them back on the free list.
  2381. */
  2382. kprobe_flush_task(prev);
  2383. put_task_struct(prev);
  2384. }
  2385. }
  2386. #ifdef CONFIG_SMP
  2387. /* assumes rq->lock is held */
  2388. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2389. {
  2390. if (prev->sched_class->pre_schedule)
  2391. prev->sched_class->pre_schedule(rq, prev);
  2392. }
  2393. /* rq->lock is NOT held, but preemption is disabled */
  2394. static inline void post_schedule(struct rq *rq)
  2395. {
  2396. if (rq->post_schedule) {
  2397. unsigned long flags;
  2398. raw_spin_lock_irqsave(&rq->lock, flags);
  2399. if (rq->curr->sched_class->post_schedule)
  2400. rq->curr->sched_class->post_schedule(rq);
  2401. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2402. rq->post_schedule = 0;
  2403. }
  2404. }
  2405. #else
  2406. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2407. {
  2408. }
  2409. static inline void post_schedule(struct rq *rq)
  2410. {
  2411. }
  2412. #endif
  2413. /**
  2414. * schedule_tail - first thing a freshly forked thread must call.
  2415. * @prev: the thread we just switched away from.
  2416. */
  2417. asmlinkage void schedule_tail(struct task_struct *prev)
  2418. __releases(rq->lock)
  2419. {
  2420. struct rq *rq = this_rq();
  2421. finish_task_switch(rq, prev);
  2422. /*
  2423. * FIXME: do we need to worry about rq being invalidated by the
  2424. * task_switch?
  2425. */
  2426. post_schedule(rq);
  2427. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2428. /* In this case, finish_task_switch does not reenable preemption */
  2429. preempt_enable();
  2430. #endif
  2431. if (current->set_child_tid)
  2432. put_user(task_pid_vnr(current), current->set_child_tid);
  2433. }
  2434. /*
  2435. * context_switch - switch to the new MM and the new
  2436. * thread's register state.
  2437. */
  2438. static inline void
  2439. context_switch(struct rq *rq, struct task_struct *prev,
  2440. struct task_struct *next)
  2441. {
  2442. struct mm_struct *mm, *oldmm;
  2443. prepare_task_switch(rq, prev, next);
  2444. trace_sched_switch(prev, next);
  2445. mm = next->mm;
  2446. oldmm = prev->active_mm;
  2447. /*
  2448. * For paravirt, this is coupled with an exit in switch_to to
  2449. * combine the page table reload and the switch backend into
  2450. * one hypercall.
  2451. */
  2452. arch_start_context_switch(prev);
  2453. if (!mm) {
  2454. next->active_mm = oldmm;
  2455. atomic_inc(&oldmm->mm_count);
  2456. enter_lazy_tlb(oldmm, next);
  2457. } else
  2458. switch_mm(oldmm, mm, next);
  2459. if (!prev->mm) {
  2460. prev->active_mm = NULL;
  2461. rq->prev_mm = oldmm;
  2462. }
  2463. /*
  2464. * Since the runqueue lock will be released by the next
  2465. * task (which is an invalid locking op but in the case
  2466. * of the scheduler it's an obvious special-case), so we
  2467. * do an early lockdep release here:
  2468. */
  2469. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2470. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2471. #endif
  2472. /* Here we just switch the register state and the stack. */
  2473. switch_to(prev, next, prev);
  2474. barrier();
  2475. /*
  2476. * this_rq must be evaluated again because prev may have moved
  2477. * CPUs since it called schedule(), thus the 'rq' on its stack
  2478. * frame will be invalid.
  2479. */
  2480. finish_task_switch(this_rq(), prev);
  2481. }
  2482. /*
  2483. * nr_running, nr_uninterruptible and nr_context_switches:
  2484. *
  2485. * externally visible scheduler statistics: current number of runnable
  2486. * threads, current number of uninterruptible-sleeping threads, total
  2487. * number of context switches performed since bootup.
  2488. */
  2489. unsigned long nr_running(void)
  2490. {
  2491. unsigned long i, sum = 0;
  2492. for_each_online_cpu(i)
  2493. sum += cpu_rq(i)->nr_running;
  2494. return sum;
  2495. }
  2496. unsigned long nr_uninterruptible(void)
  2497. {
  2498. unsigned long i, sum = 0;
  2499. for_each_possible_cpu(i)
  2500. sum += cpu_rq(i)->nr_uninterruptible;
  2501. /*
  2502. * Since we read the counters lockless, it might be slightly
  2503. * inaccurate. Do not allow it to go below zero though:
  2504. */
  2505. if (unlikely((long)sum < 0))
  2506. sum = 0;
  2507. return sum;
  2508. }
  2509. unsigned long long nr_context_switches(void)
  2510. {
  2511. int i;
  2512. unsigned long long sum = 0;
  2513. for_each_possible_cpu(i)
  2514. sum += cpu_rq(i)->nr_switches;
  2515. return sum;
  2516. }
  2517. unsigned long nr_iowait(void)
  2518. {
  2519. unsigned long i, sum = 0;
  2520. for_each_possible_cpu(i)
  2521. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2522. return sum;
  2523. }
  2524. unsigned long nr_iowait_cpu(int cpu)
  2525. {
  2526. struct rq *this = cpu_rq(cpu);
  2527. return atomic_read(&this->nr_iowait);
  2528. }
  2529. unsigned long this_cpu_load(void)
  2530. {
  2531. struct rq *this = this_rq();
  2532. return this->cpu_load[0];
  2533. }
  2534. /* Variables and functions for calc_load */
  2535. static atomic_long_t calc_load_tasks;
  2536. static unsigned long calc_load_update;
  2537. unsigned long avenrun[3];
  2538. EXPORT_SYMBOL(avenrun);
  2539. static long calc_load_fold_active(struct rq *this_rq)
  2540. {
  2541. long nr_active, delta = 0;
  2542. nr_active = this_rq->nr_running;
  2543. nr_active += (long) this_rq->nr_uninterruptible;
  2544. if (nr_active != this_rq->calc_load_active) {
  2545. delta = nr_active - this_rq->calc_load_active;
  2546. this_rq->calc_load_active = nr_active;
  2547. }
  2548. return delta;
  2549. }
  2550. #ifdef CONFIG_NO_HZ
  2551. /*
  2552. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2553. *
  2554. * When making the ILB scale, we should try to pull this in as well.
  2555. */
  2556. static atomic_long_t calc_load_tasks_idle;
  2557. static void calc_load_account_idle(struct rq *this_rq)
  2558. {
  2559. long delta;
  2560. delta = calc_load_fold_active(this_rq);
  2561. if (delta)
  2562. atomic_long_add(delta, &calc_load_tasks_idle);
  2563. }
  2564. static long calc_load_fold_idle(void)
  2565. {
  2566. long delta = 0;
  2567. /*
  2568. * Its got a race, we don't care...
  2569. */
  2570. if (atomic_long_read(&calc_load_tasks_idle))
  2571. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2572. return delta;
  2573. }
  2574. #else
  2575. static void calc_load_account_idle(struct rq *this_rq)
  2576. {
  2577. }
  2578. static inline long calc_load_fold_idle(void)
  2579. {
  2580. return 0;
  2581. }
  2582. #endif
  2583. /**
  2584. * get_avenrun - get the load average array
  2585. * @loads: pointer to dest load array
  2586. * @offset: offset to add
  2587. * @shift: shift count to shift the result left
  2588. *
  2589. * These values are estimates at best, so no need for locking.
  2590. */
  2591. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2592. {
  2593. loads[0] = (avenrun[0] + offset) << shift;
  2594. loads[1] = (avenrun[1] + offset) << shift;
  2595. loads[2] = (avenrun[2] + offset) << shift;
  2596. }
  2597. static unsigned long
  2598. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2599. {
  2600. load *= exp;
  2601. load += active * (FIXED_1 - exp);
  2602. return load >> FSHIFT;
  2603. }
  2604. /*
  2605. * calc_load - update the avenrun load estimates 10 ticks after the
  2606. * CPUs have updated calc_load_tasks.
  2607. */
  2608. void calc_global_load(void)
  2609. {
  2610. unsigned long upd = calc_load_update + 10;
  2611. long active;
  2612. if (time_before(jiffies, upd))
  2613. return;
  2614. active = atomic_long_read(&calc_load_tasks);
  2615. active = active > 0 ? active * FIXED_1 : 0;
  2616. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2617. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2618. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2619. calc_load_update += LOAD_FREQ;
  2620. }
  2621. /*
  2622. * Called from update_cpu_load() to periodically update this CPU's
  2623. * active count.
  2624. */
  2625. static void calc_load_account_active(struct rq *this_rq)
  2626. {
  2627. long delta;
  2628. if (time_before(jiffies, this_rq->calc_load_update))
  2629. return;
  2630. delta = calc_load_fold_active(this_rq);
  2631. delta += calc_load_fold_idle();
  2632. if (delta)
  2633. atomic_long_add(delta, &calc_load_tasks);
  2634. this_rq->calc_load_update += LOAD_FREQ;
  2635. }
  2636. /*
  2637. * The exact cpuload at various idx values, calculated at every tick would be
  2638. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2639. *
  2640. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2641. * on nth tick when cpu may be busy, then we have:
  2642. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2643. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2644. *
  2645. * decay_load_missed() below does efficient calculation of
  2646. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2647. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2648. *
  2649. * The calculation is approximated on a 128 point scale.
  2650. * degrade_zero_ticks is the number of ticks after which load at any
  2651. * particular idx is approximated to be zero.
  2652. * degrade_factor is a precomputed table, a row for each load idx.
  2653. * Each column corresponds to degradation factor for a power of two ticks,
  2654. * based on 128 point scale.
  2655. * Example:
  2656. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2657. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2658. *
  2659. * With this power of 2 load factors, we can degrade the load n times
  2660. * by looking at 1 bits in n and doing as many mult/shift instead of
  2661. * n mult/shifts needed by the exact degradation.
  2662. */
  2663. #define DEGRADE_SHIFT 7
  2664. static const unsigned char
  2665. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2666. static const unsigned char
  2667. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2668. {0, 0, 0, 0, 0, 0, 0, 0},
  2669. {64, 32, 8, 0, 0, 0, 0, 0},
  2670. {96, 72, 40, 12, 1, 0, 0},
  2671. {112, 98, 75, 43, 15, 1, 0},
  2672. {120, 112, 98, 76, 45, 16, 2} };
  2673. /*
  2674. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2675. * would be when CPU is idle and so we just decay the old load without
  2676. * adding any new load.
  2677. */
  2678. static unsigned long
  2679. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2680. {
  2681. int j = 0;
  2682. if (!missed_updates)
  2683. return load;
  2684. if (missed_updates >= degrade_zero_ticks[idx])
  2685. return 0;
  2686. if (idx == 1)
  2687. return load >> missed_updates;
  2688. while (missed_updates) {
  2689. if (missed_updates % 2)
  2690. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2691. missed_updates >>= 1;
  2692. j++;
  2693. }
  2694. return load;
  2695. }
  2696. /*
  2697. * Update rq->cpu_load[] statistics. This function is usually called every
  2698. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2699. * every tick. We fix it up based on jiffies.
  2700. */
  2701. static void update_cpu_load(struct rq *this_rq)
  2702. {
  2703. unsigned long this_load = this_rq->load.weight;
  2704. unsigned long curr_jiffies = jiffies;
  2705. unsigned long pending_updates;
  2706. int i, scale;
  2707. this_rq->nr_load_updates++;
  2708. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2709. if (curr_jiffies == this_rq->last_load_update_tick)
  2710. return;
  2711. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2712. this_rq->last_load_update_tick = curr_jiffies;
  2713. /* Update our load: */
  2714. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2715. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2716. unsigned long old_load, new_load;
  2717. /* scale is effectively 1 << i now, and >> i divides by scale */
  2718. old_load = this_rq->cpu_load[i];
  2719. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2720. new_load = this_load;
  2721. /*
  2722. * Round up the averaging division if load is increasing. This
  2723. * prevents us from getting stuck on 9 if the load is 10, for
  2724. * example.
  2725. */
  2726. if (new_load > old_load)
  2727. new_load += scale - 1;
  2728. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2729. }
  2730. sched_avg_update(this_rq);
  2731. }
  2732. static void update_cpu_load_active(struct rq *this_rq)
  2733. {
  2734. update_cpu_load(this_rq);
  2735. calc_load_account_active(this_rq);
  2736. }
  2737. #ifdef CONFIG_SMP
  2738. /*
  2739. * sched_exec - execve() is a valuable balancing opportunity, because at
  2740. * this point the task has the smallest effective memory and cache footprint.
  2741. */
  2742. void sched_exec(void)
  2743. {
  2744. struct task_struct *p = current;
  2745. unsigned long flags;
  2746. struct rq *rq;
  2747. int dest_cpu;
  2748. rq = task_rq_lock(p, &flags);
  2749. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2750. if (dest_cpu == smp_processor_id())
  2751. goto unlock;
  2752. /*
  2753. * select_task_rq() can race against ->cpus_allowed
  2754. */
  2755. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2756. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2757. struct migration_arg arg = { p, dest_cpu };
  2758. task_rq_unlock(rq, &flags);
  2759. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2760. return;
  2761. }
  2762. unlock:
  2763. task_rq_unlock(rq, &flags);
  2764. }
  2765. #endif
  2766. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2767. EXPORT_PER_CPU_SYMBOL(kstat);
  2768. /*
  2769. * Return any ns on the sched_clock that have not yet been accounted in
  2770. * @p in case that task is currently running.
  2771. *
  2772. * Called with task_rq_lock() held on @rq.
  2773. */
  2774. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2775. {
  2776. u64 ns = 0;
  2777. if (task_current(rq, p)) {
  2778. update_rq_clock(rq);
  2779. ns = rq->clock_task - p->se.exec_start;
  2780. if ((s64)ns < 0)
  2781. ns = 0;
  2782. }
  2783. return ns;
  2784. }
  2785. unsigned long long task_delta_exec(struct task_struct *p)
  2786. {
  2787. unsigned long flags;
  2788. struct rq *rq;
  2789. u64 ns = 0;
  2790. rq = task_rq_lock(p, &flags);
  2791. ns = do_task_delta_exec(p, rq);
  2792. task_rq_unlock(rq, &flags);
  2793. return ns;
  2794. }
  2795. /*
  2796. * Return accounted runtime for the task.
  2797. * In case the task is currently running, return the runtime plus current's
  2798. * pending runtime that have not been accounted yet.
  2799. */
  2800. unsigned long long task_sched_runtime(struct task_struct *p)
  2801. {
  2802. unsigned long flags;
  2803. struct rq *rq;
  2804. u64 ns = 0;
  2805. rq = task_rq_lock(p, &flags);
  2806. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2807. task_rq_unlock(rq, &flags);
  2808. return ns;
  2809. }
  2810. /*
  2811. * Return sum_exec_runtime for the thread group.
  2812. * In case the task is currently running, return the sum plus current's
  2813. * pending runtime that have not been accounted yet.
  2814. *
  2815. * Note that the thread group might have other running tasks as well,
  2816. * so the return value not includes other pending runtime that other
  2817. * running tasks might have.
  2818. */
  2819. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2820. {
  2821. struct task_cputime totals;
  2822. unsigned long flags;
  2823. struct rq *rq;
  2824. u64 ns;
  2825. rq = task_rq_lock(p, &flags);
  2826. thread_group_cputime(p, &totals);
  2827. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2828. task_rq_unlock(rq, &flags);
  2829. return ns;
  2830. }
  2831. /*
  2832. * Account user cpu time to a process.
  2833. * @p: the process that the cpu time gets accounted to
  2834. * @cputime: the cpu time spent in user space since the last update
  2835. * @cputime_scaled: cputime scaled by cpu frequency
  2836. */
  2837. void account_user_time(struct task_struct *p, cputime_t cputime,
  2838. cputime_t cputime_scaled)
  2839. {
  2840. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2841. cputime64_t tmp;
  2842. /* Add user time to process. */
  2843. p->utime = cputime_add(p->utime, cputime);
  2844. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2845. account_group_user_time(p, cputime);
  2846. /* Add user time to cpustat. */
  2847. tmp = cputime_to_cputime64(cputime);
  2848. if (TASK_NICE(p) > 0)
  2849. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2850. else
  2851. cpustat->user = cputime64_add(cpustat->user, tmp);
  2852. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2853. /* Account for user time used */
  2854. acct_update_integrals(p);
  2855. }
  2856. /*
  2857. * Account guest cpu time to a process.
  2858. * @p: the process that the cpu time gets accounted to
  2859. * @cputime: the cpu time spent in virtual machine since the last update
  2860. * @cputime_scaled: cputime scaled by cpu frequency
  2861. */
  2862. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2863. cputime_t cputime_scaled)
  2864. {
  2865. cputime64_t tmp;
  2866. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2867. tmp = cputime_to_cputime64(cputime);
  2868. /* Add guest time to process. */
  2869. p->utime = cputime_add(p->utime, cputime);
  2870. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2871. account_group_user_time(p, cputime);
  2872. p->gtime = cputime_add(p->gtime, cputime);
  2873. /* Add guest time to cpustat. */
  2874. if (TASK_NICE(p) > 0) {
  2875. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2876. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2877. } else {
  2878. cpustat->user = cputime64_add(cpustat->user, tmp);
  2879. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2880. }
  2881. }
  2882. /*
  2883. * Account system cpu time to a process.
  2884. * @p: the process that the cpu time gets accounted to
  2885. * @hardirq_offset: the offset to subtract from hardirq_count()
  2886. * @cputime: the cpu time spent in kernel space since the last update
  2887. * @cputime_scaled: cputime scaled by cpu frequency
  2888. */
  2889. void account_system_time(struct task_struct *p, int hardirq_offset,
  2890. cputime_t cputime, cputime_t cputime_scaled)
  2891. {
  2892. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2893. cputime64_t tmp;
  2894. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2895. account_guest_time(p, cputime, cputime_scaled);
  2896. return;
  2897. }
  2898. /* Add system time to process. */
  2899. p->stime = cputime_add(p->stime, cputime);
  2900. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2901. account_group_system_time(p, cputime);
  2902. /* Add system time to cpustat. */
  2903. tmp = cputime_to_cputime64(cputime);
  2904. if (hardirq_count() - hardirq_offset)
  2905. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2906. else if (in_serving_softirq())
  2907. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2908. else
  2909. cpustat->system = cputime64_add(cpustat->system, tmp);
  2910. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2911. /* Account for system time used */
  2912. acct_update_integrals(p);
  2913. }
  2914. /*
  2915. * Account for involuntary wait time.
  2916. * @steal: the cpu time spent in involuntary wait
  2917. */
  2918. void account_steal_time(cputime_t cputime)
  2919. {
  2920. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2921. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2922. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2923. }
  2924. /*
  2925. * Account for idle time.
  2926. * @cputime: the cpu time spent in idle wait
  2927. */
  2928. void account_idle_time(cputime_t cputime)
  2929. {
  2930. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2931. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2932. struct rq *rq = this_rq();
  2933. if (atomic_read(&rq->nr_iowait) > 0)
  2934. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2935. else
  2936. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2937. }
  2938. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2939. /*
  2940. * Account a single tick of cpu time.
  2941. * @p: the process that the cpu time gets accounted to
  2942. * @user_tick: indicates if the tick is a user or a system tick
  2943. */
  2944. void account_process_tick(struct task_struct *p, int user_tick)
  2945. {
  2946. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2947. struct rq *rq = this_rq();
  2948. if (user_tick)
  2949. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2950. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2951. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2952. one_jiffy_scaled);
  2953. else
  2954. account_idle_time(cputime_one_jiffy);
  2955. }
  2956. /*
  2957. * Account multiple ticks of steal time.
  2958. * @p: the process from which the cpu time has been stolen
  2959. * @ticks: number of stolen ticks
  2960. */
  2961. void account_steal_ticks(unsigned long ticks)
  2962. {
  2963. account_steal_time(jiffies_to_cputime(ticks));
  2964. }
  2965. /*
  2966. * Account multiple ticks of idle time.
  2967. * @ticks: number of stolen ticks
  2968. */
  2969. void account_idle_ticks(unsigned long ticks)
  2970. {
  2971. account_idle_time(jiffies_to_cputime(ticks));
  2972. }
  2973. #endif
  2974. /*
  2975. * Use precise platform statistics if available:
  2976. */
  2977. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2978. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2979. {
  2980. *ut = p->utime;
  2981. *st = p->stime;
  2982. }
  2983. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2984. {
  2985. struct task_cputime cputime;
  2986. thread_group_cputime(p, &cputime);
  2987. *ut = cputime.utime;
  2988. *st = cputime.stime;
  2989. }
  2990. #else
  2991. #ifndef nsecs_to_cputime
  2992. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2993. #endif
  2994. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2995. {
  2996. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2997. /*
  2998. * Use CFS's precise accounting:
  2999. */
  3000. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3001. if (total) {
  3002. u64 temp = rtime;
  3003. temp *= utime;
  3004. do_div(temp, total);
  3005. utime = (cputime_t)temp;
  3006. } else
  3007. utime = rtime;
  3008. /*
  3009. * Compare with previous values, to keep monotonicity:
  3010. */
  3011. p->prev_utime = max(p->prev_utime, utime);
  3012. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3013. *ut = p->prev_utime;
  3014. *st = p->prev_stime;
  3015. }
  3016. /*
  3017. * Must be called with siglock held.
  3018. */
  3019. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3020. {
  3021. struct signal_struct *sig = p->signal;
  3022. struct task_cputime cputime;
  3023. cputime_t rtime, utime, total;
  3024. thread_group_cputime(p, &cputime);
  3025. total = cputime_add(cputime.utime, cputime.stime);
  3026. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3027. if (total) {
  3028. u64 temp = rtime;
  3029. temp *= cputime.utime;
  3030. do_div(temp, total);
  3031. utime = (cputime_t)temp;
  3032. } else
  3033. utime = rtime;
  3034. sig->prev_utime = max(sig->prev_utime, utime);
  3035. sig->prev_stime = max(sig->prev_stime,
  3036. cputime_sub(rtime, sig->prev_utime));
  3037. *ut = sig->prev_utime;
  3038. *st = sig->prev_stime;
  3039. }
  3040. #endif
  3041. /*
  3042. * This function gets called by the timer code, with HZ frequency.
  3043. * We call it with interrupts disabled.
  3044. *
  3045. * It also gets called by the fork code, when changing the parent's
  3046. * timeslices.
  3047. */
  3048. void scheduler_tick(void)
  3049. {
  3050. int cpu = smp_processor_id();
  3051. struct rq *rq = cpu_rq(cpu);
  3052. struct task_struct *curr = rq->curr;
  3053. sched_clock_tick();
  3054. raw_spin_lock(&rq->lock);
  3055. update_rq_clock(rq);
  3056. update_cpu_load_active(rq);
  3057. curr->sched_class->task_tick(rq, curr, 0);
  3058. raw_spin_unlock(&rq->lock);
  3059. perf_event_task_tick();
  3060. #ifdef CONFIG_SMP
  3061. rq->idle_at_tick = idle_cpu(cpu);
  3062. trigger_load_balance(rq, cpu);
  3063. #endif
  3064. }
  3065. notrace unsigned long get_parent_ip(unsigned long addr)
  3066. {
  3067. if (in_lock_functions(addr)) {
  3068. addr = CALLER_ADDR2;
  3069. if (in_lock_functions(addr))
  3070. addr = CALLER_ADDR3;
  3071. }
  3072. return addr;
  3073. }
  3074. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3075. defined(CONFIG_PREEMPT_TRACER))
  3076. void __kprobes add_preempt_count(int val)
  3077. {
  3078. #ifdef CONFIG_DEBUG_PREEMPT
  3079. /*
  3080. * Underflow?
  3081. */
  3082. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3083. return;
  3084. #endif
  3085. preempt_count() += val;
  3086. #ifdef CONFIG_DEBUG_PREEMPT
  3087. /*
  3088. * Spinlock count overflowing soon?
  3089. */
  3090. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3091. PREEMPT_MASK - 10);
  3092. #endif
  3093. if (preempt_count() == val)
  3094. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3095. }
  3096. EXPORT_SYMBOL(add_preempt_count);
  3097. void __kprobes sub_preempt_count(int val)
  3098. {
  3099. #ifdef CONFIG_DEBUG_PREEMPT
  3100. /*
  3101. * Underflow?
  3102. */
  3103. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3104. return;
  3105. /*
  3106. * Is the spinlock portion underflowing?
  3107. */
  3108. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3109. !(preempt_count() & PREEMPT_MASK)))
  3110. return;
  3111. #endif
  3112. if (preempt_count() == val)
  3113. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3114. preempt_count() -= val;
  3115. }
  3116. EXPORT_SYMBOL(sub_preempt_count);
  3117. #endif
  3118. /*
  3119. * Print scheduling while atomic bug:
  3120. */
  3121. static noinline void __schedule_bug(struct task_struct *prev)
  3122. {
  3123. struct pt_regs *regs = get_irq_regs();
  3124. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3125. prev->comm, prev->pid, preempt_count());
  3126. debug_show_held_locks(prev);
  3127. print_modules();
  3128. if (irqs_disabled())
  3129. print_irqtrace_events(prev);
  3130. if (regs)
  3131. show_regs(regs);
  3132. else
  3133. dump_stack();
  3134. }
  3135. /*
  3136. * Various schedule()-time debugging checks and statistics:
  3137. */
  3138. static inline void schedule_debug(struct task_struct *prev)
  3139. {
  3140. /*
  3141. * Test if we are atomic. Since do_exit() needs to call into
  3142. * schedule() atomically, we ignore that path for now.
  3143. * Otherwise, whine if we are scheduling when we should not be.
  3144. */
  3145. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3146. __schedule_bug(prev);
  3147. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3148. schedstat_inc(this_rq(), sched_count);
  3149. #ifdef CONFIG_SCHEDSTATS
  3150. if (unlikely(prev->lock_depth >= 0)) {
  3151. schedstat_inc(this_rq(), bkl_count);
  3152. schedstat_inc(prev, sched_info.bkl_count);
  3153. }
  3154. #endif
  3155. }
  3156. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3157. {
  3158. if (prev->se.on_rq)
  3159. update_rq_clock(rq);
  3160. rq->skip_clock_update = 0;
  3161. prev->sched_class->put_prev_task(rq, prev);
  3162. }
  3163. /*
  3164. * Pick up the highest-prio task:
  3165. */
  3166. static inline struct task_struct *
  3167. pick_next_task(struct rq *rq)
  3168. {
  3169. const struct sched_class *class;
  3170. struct task_struct *p;
  3171. /*
  3172. * Optimization: we know that if all tasks are in
  3173. * the fair class we can call that function directly:
  3174. */
  3175. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3176. p = fair_sched_class.pick_next_task(rq);
  3177. if (likely(p))
  3178. return p;
  3179. }
  3180. for_each_class(class) {
  3181. p = class->pick_next_task(rq);
  3182. if (p)
  3183. return p;
  3184. }
  3185. BUG(); /* the idle class will always have a runnable task */
  3186. }
  3187. /*
  3188. * schedule() is the main scheduler function.
  3189. */
  3190. asmlinkage void __sched schedule(void)
  3191. {
  3192. struct task_struct *prev, *next;
  3193. unsigned long *switch_count;
  3194. struct rq *rq;
  3195. int cpu;
  3196. need_resched:
  3197. preempt_disable();
  3198. cpu = smp_processor_id();
  3199. rq = cpu_rq(cpu);
  3200. rcu_note_context_switch(cpu);
  3201. prev = rq->curr;
  3202. release_kernel_lock(prev);
  3203. need_resched_nonpreemptible:
  3204. schedule_debug(prev);
  3205. if (sched_feat(HRTICK))
  3206. hrtick_clear(rq);
  3207. raw_spin_lock_irq(&rq->lock);
  3208. clear_tsk_need_resched(prev);
  3209. switch_count = &prev->nivcsw;
  3210. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3211. if (unlikely(signal_pending_state(prev->state, prev))) {
  3212. prev->state = TASK_RUNNING;
  3213. } else {
  3214. /*
  3215. * If a worker is going to sleep, notify and
  3216. * ask workqueue whether it wants to wake up a
  3217. * task to maintain concurrency. If so, wake
  3218. * up the task.
  3219. */
  3220. if (prev->flags & PF_WQ_WORKER) {
  3221. struct task_struct *to_wakeup;
  3222. to_wakeup = wq_worker_sleeping(prev, cpu);
  3223. if (to_wakeup)
  3224. try_to_wake_up_local(to_wakeup);
  3225. }
  3226. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3227. }
  3228. switch_count = &prev->nvcsw;
  3229. }
  3230. pre_schedule(rq, prev);
  3231. if (unlikely(!rq->nr_running))
  3232. idle_balance(cpu, rq);
  3233. put_prev_task(rq, prev);
  3234. next = pick_next_task(rq);
  3235. if (likely(prev != next)) {
  3236. sched_info_switch(prev, next);
  3237. perf_event_task_sched_out(prev, next);
  3238. rq->nr_switches++;
  3239. rq->curr = next;
  3240. ++*switch_count;
  3241. context_switch(rq, prev, next); /* unlocks the rq */
  3242. /*
  3243. * The context switch have flipped the stack from under us
  3244. * and restored the local variables which were saved when
  3245. * this task called schedule() in the past. prev == current
  3246. * is still correct, but it can be moved to another cpu/rq.
  3247. */
  3248. cpu = smp_processor_id();
  3249. rq = cpu_rq(cpu);
  3250. } else
  3251. raw_spin_unlock_irq(&rq->lock);
  3252. post_schedule(rq);
  3253. if (unlikely(reacquire_kernel_lock(prev)))
  3254. goto need_resched_nonpreemptible;
  3255. preempt_enable_no_resched();
  3256. if (need_resched())
  3257. goto need_resched;
  3258. }
  3259. EXPORT_SYMBOL(schedule);
  3260. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3261. /*
  3262. * Look out! "owner" is an entirely speculative pointer
  3263. * access and not reliable.
  3264. */
  3265. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3266. {
  3267. unsigned int cpu;
  3268. struct rq *rq;
  3269. if (!sched_feat(OWNER_SPIN))
  3270. return 0;
  3271. #ifdef CONFIG_DEBUG_PAGEALLOC
  3272. /*
  3273. * Need to access the cpu field knowing that
  3274. * DEBUG_PAGEALLOC could have unmapped it if
  3275. * the mutex owner just released it and exited.
  3276. */
  3277. if (probe_kernel_address(&owner->cpu, cpu))
  3278. return 0;
  3279. #else
  3280. cpu = owner->cpu;
  3281. #endif
  3282. /*
  3283. * Even if the access succeeded (likely case),
  3284. * the cpu field may no longer be valid.
  3285. */
  3286. if (cpu >= nr_cpumask_bits)
  3287. return 0;
  3288. /*
  3289. * We need to validate that we can do a
  3290. * get_cpu() and that we have the percpu area.
  3291. */
  3292. if (!cpu_online(cpu))
  3293. return 0;
  3294. rq = cpu_rq(cpu);
  3295. for (;;) {
  3296. /*
  3297. * Owner changed, break to re-assess state.
  3298. */
  3299. if (lock->owner != owner) {
  3300. /*
  3301. * If the lock has switched to a different owner,
  3302. * we likely have heavy contention. Return 0 to quit
  3303. * optimistic spinning and not contend further:
  3304. */
  3305. if (lock->owner)
  3306. return 0;
  3307. break;
  3308. }
  3309. /*
  3310. * Is that owner really running on that cpu?
  3311. */
  3312. if (task_thread_info(rq->curr) != owner || need_resched())
  3313. return 0;
  3314. cpu_relax();
  3315. }
  3316. return 1;
  3317. }
  3318. #endif
  3319. #ifdef CONFIG_PREEMPT
  3320. /*
  3321. * this is the entry point to schedule() from in-kernel preemption
  3322. * off of preempt_enable. Kernel preemptions off return from interrupt
  3323. * occur there and call schedule directly.
  3324. */
  3325. asmlinkage void __sched notrace preempt_schedule(void)
  3326. {
  3327. struct thread_info *ti = current_thread_info();
  3328. /*
  3329. * If there is a non-zero preempt_count or interrupts are disabled,
  3330. * we do not want to preempt the current task. Just return..
  3331. */
  3332. if (likely(ti->preempt_count || irqs_disabled()))
  3333. return;
  3334. do {
  3335. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3336. schedule();
  3337. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3338. /*
  3339. * Check again in case we missed a preemption opportunity
  3340. * between schedule and now.
  3341. */
  3342. barrier();
  3343. } while (need_resched());
  3344. }
  3345. EXPORT_SYMBOL(preempt_schedule);
  3346. /*
  3347. * this is the entry point to schedule() from kernel preemption
  3348. * off of irq context.
  3349. * Note, that this is called and return with irqs disabled. This will
  3350. * protect us against recursive calling from irq.
  3351. */
  3352. asmlinkage void __sched preempt_schedule_irq(void)
  3353. {
  3354. struct thread_info *ti = current_thread_info();
  3355. /* Catch callers which need to be fixed */
  3356. BUG_ON(ti->preempt_count || !irqs_disabled());
  3357. do {
  3358. add_preempt_count(PREEMPT_ACTIVE);
  3359. local_irq_enable();
  3360. schedule();
  3361. local_irq_disable();
  3362. sub_preempt_count(PREEMPT_ACTIVE);
  3363. /*
  3364. * Check again in case we missed a preemption opportunity
  3365. * between schedule and now.
  3366. */
  3367. barrier();
  3368. } while (need_resched());
  3369. }
  3370. #endif /* CONFIG_PREEMPT */
  3371. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3372. void *key)
  3373. {
  3374. return try_to_wake_up(curr->private, mode, wake_flags);
  3375. }
  3376. EXPORT_SYMBOL(default_wake_function);
  3377. /*
  3378. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3379. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3380. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3381. *
  3382. * There are circumstances in which we can try to wake a task which has already
  3383. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3384. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3385. */
  3386. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3387. int nr_exclusive, int wake_flags, void *key)
  3388. {
  3389. wait_queue_t *curr, *next;
  3390. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3391. unsigned flags = curr->flags;
  3392. if (curr->func(curr, mode, wake_flags, key) &&
  3393. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3394. break;
  3395. }
  3396. }
  3397. /**
  3398. * __wake_up - wake up threads blocked on a waitqueue.
  3399. * @q: the waitqueue
  3400. * @mode: which threads
  3401. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3402. * @key: is directly passed to the wakeup function
  3403. *
  3404. * It may be assumed that this function implies a write memory barrier before
  3405. * changing the task state if and only if any tasks are woken up.
  3406. */
  3407. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3408. int nr_exclusive, void *key)
  3409. {
  3410. unsigned long flags;
  3411. spin_lock_irqsave(&q->lock, flags);
  3412. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3413. spin_unlock_irqrestore(&q->lock, flags);
  3414. }
  3415. EXPORT_SYMBOL(__wake_up);
  3416. /*
  3417. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3418. */
  3419. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3420. {
  3421. __wake_up_common(q, mode, 1, 0, NULL);
  3422. }
  3423. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3424. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3425. {
  3426. __wake_up_common(q, mode, 1, 0, key);
  3427. }
  3428. /**
  3429. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3430. * @q: the waitqueue
  3431. * @mode: which threads
  3432. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3433. * @key: opaque value to be passed to wakeup targets
  3434. *
  3435. * The sync wakeup differs that the waker knows that it will schedule
  3436. * away soon, so while the target thread will be woken up, it will not
  3437. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3438. * with each other. This can prevent needless bouncing between CPUs.
  3439. *
  3440. * On UP it can prevent extra preemption.
  3441. *
  3442. * It may be assumed that this function implies a write memory barrier before
  3443. * changing the task state if and only if any tasks are woken up.
  3444. */
  3445. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3446. int nr_exclusive, void *key)
  3447. {
  3448. unsigned long flags;
  3449. int wake_flags = WF_SYNC;
  3450. if (unlikely(!q))
  3451. return;
  3452. if (unlikely(!nr_exclusive))
  3453. wake_flags = 0;
  3454. spin_lock_irqsave(&q->lock, flags);
  3455. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3456. spin_unlock_irqrestore(&q->lock, flags);
  3457. }
  3458. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3459. /*
  3460. * __wake_up_sync - see __wake_up_sync_key()
  3461. */
  3462. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3463. {
  3464. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3465. }
  3466. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3467. /**
  3468. * complete: - signals a single thread waiting on this completion
  3469. * @x: holds the state of this particular completion
  3470. *
  3471. * This will wake up a single thread waiting on this completion. Threads will be
  3472. * awakened in the same order in which they were queued.
  3473. *
  3474. * See also complete_all(), wait_for_completion() and related routines.
  3475. *
  3476. * It may be assumed that this function implies a write memory barrier before
  3477. * changing the task state if and only if any tasks are woken up.
  3478. */
  3479. void complete(struct completion *x)
  3480. {
  3481. unsigned long flags;
  3482. spin_lock_irqsave(&x->wait.lock, flags);
  3483. x->done++;
  3484. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3485. spin_unlock_irqrestore(&x->wait.lock, flags);
  3486. }
  3487. EXPORT_SYMBOL(complete);
  3488. /**
  3489. * complete_all: - signals all threads waiting on this completion
  3490. * @x: holds the state of this particular completion
  3491. *
  3492. * This will wake up all threads waiting on this particular completion event.
  3493. *
  3494. * It may be assumed that this function implies a write memory barrier before
  3495. * changing the task state if and only if any tasks are woken up.
  3496. */
  3497. void complete_all(struct completion *x)
  3498. {
  3499. unsigned long flags;
  3500. spin_lock_irqsave(&x->wait.lock, flags);
  3501. x->done += UINT_MAX/2;
  3502. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3503. spin_unlock_irqrestore(&x->wait.lock, flags);
  3504. }
  3505. EXPORT_SYMBOL(complete_all);
  3506. static inline long __sched
  3507. do_wait_for_common(struct completion *x, long timeout, int state)
  3508. {
  3509. if (!x->done) {
  3510. DECLARE_WAITQUEUE(wait, current);
  3511. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3512. do {
  3513. if (signal_pending_state(state, current)) {
  3514. timeout = -ERESTARTSYS;
  3515. break;
  3516. }
  3517. __set_current_state(state);
  3518. spin_unlock_irq(&x->wait.lock);
  3519. timeout = schedule_timeout(timeout);
  3520. spin_lock_irq(&x->wait.lock);
  3521. } while (!x->done && timeout);
  3522. __remove_wait_queue(&x->wait, &wait);
  3523. if (!x->done)
  3524. return timeout;
  3525. }
  3526. x->done--;
  3527. return timeout ?: 1;
  3528. }
  3529. static long __sched
  3530. wait_for_common(struct completion *x, long timeout, int state)
  3531. {
  3532. might_sleep();
  3533. spin_lock_irq(&x->wait.lock);
  3534. timeout = do_wait_for_common(x, timeout, state);
  3535. spin_unlock_irq(&x->wait.lock);
  3536. return timeout;
  3537. }
  3538. /**
  3539. * wait_for_completion: - waits for completion of a task
  3540. * @x: holds the state of this particular completion
  3541. *
  3542. * This waits to be signaled for completion of a specific task. It is NOT
  3543. * interruptible and there is no timeout.
  3544. *
  3545. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3546. * and interrupt capability. Also see complete().
  3547. */
  3548. void __sched wait_for_completion(struct completion *x)
  3549. {
  3550. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3551. }
  3552. EXPORT_SYMBOL(wait_for_completion);
  3553. /**
  3554. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3555. * @x: holds the state of this particular completion
  3556. * @timeout: timeout value in jiffies
  3557. *
  3558. * This waits for either a completion of a specific task to be signaled or for a
  3559. * specified timeout to expire. The timeout is in jiffies. It is not
  3560. * interruptible.
  3561. */
  3562. unsigned long __sched
  3563. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3564. {
  3565. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3566. }
  3567. EXPORT_SYMBOL(wait_for_completion_timeout);
  3568. /**
  3569. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3570. * @x: holds the state of this particular completion
  3571. *
  3572. * This waits for completion of a specific task to be signaled. It is
  3573. * interruptible.
  3574. */
  3575. int __sched wait_for_completion_interruptible(struct completion *x)
  3576. {
  3577. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3578. if (t == -ERESTARTSYS)
  3579. return t;
  3580. return 0;
  3581. }
  3582. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3583. /**
  3584. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3585. * @x: holds the state of this particular completion
  3586. * @timeout: timeout value in jiffies
  3587. *
  3588. * This waits for either a completion of a specific task to be signaled or for a
  3589. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3590. */
  3591. unsigned long __sched
  3592. wait_for_completion_interruptible_timeout(struct completion *x,
  3593. unsigned long timeout)
  3594. {
  3595. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3596. }
  3597. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3598. /**
  3599. * wait_for_completion_killable: - waits for completion of a task (killable)
  3600. * @x: holds the state of this particular completion
  3601. *
  3602. * This waits to be signaled for completion of a specific task. It can be
  3603. * interrupted by a kill signal.
  3604. */
  3605. int __sched wait_for_completion_killable(struct completion *x)
  3606. {
  3607. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3608. if (t == -ERESTARTSYS)
  3609. return t;
  3610. return 0;
  3611. }
  3612. EXPORT_SYMBOL(wait_for_completion_killable);
  3613. /**
  3614. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3615. * @x: holds the state of this particular completion
  3616. * @timeout: timeout value in jiffies
  3617. *
  3618. * This waits for either a completion of a specific task to be
  3619. * signaled or for a specified timeout to expire. It can be
  3620. * interrupted by a kill signal. The timeout is in jiffies.
  3621. */
  3622. unsigned long __sched
  3623. wait_for_completion_killable_timeout(struct completion *x,
  3624. unsigned long timeout)
  3625. {
  3626. return wait_for_common(x, timeout, TASK_KILLABLE);
  3627. }
  3628. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3629. /**
  3630. * try_wait_for_completion - try to decrement a completion without blocking
  3631. * @x: completion structure
  3632. *
  3633. * Returns: 0 if a decrement cannot be done without blocking
  3634. * 1 if a decrement succeeded.
  3635. *
  3636. * If a completion is being used as a counting completion,
  3637. * attempt to decrement the counter without blocking. This
  3638. * enables us to avoid waiting if the resource the completion
  3639. * is protecting is not available.
  3640. */
  3641. bool try_wait_for_completion(struct completion *x)
  3642. {
  3643. unsigned long flags;
  3644. int ret = 1;
  3645. spin_lock_irqsave(&x->wait.lock, flags);
  3646. if (!x->done)
  3647. ret = 0;
  3648. else
  3649. x->done--;
  3650. spin_unlock_irqrestore(&x->wait.lock, flags);
  3651. return ret;
  3652. }
  3653. EXPORT_SYMBOL(try_wait_for_completion);
  3654. /**
  3655. * completion_done - Test to see if a completion has any waiters
  3656. * @x: completion structure
  3657. *
  3658. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3659. * 1 if there are no waiters.
  3660. *
  3661. */
  3662. bool completion_done(struct completion *x)
  3663. {
  3664. unsigned long flags;
  3665. int ret = 1;
  3666. spin_lock_irqsave(&x->wait.lock, flags);
  3667. if (!x->done)
  3668. ret = 0;
  3669. spin_unlock_irqrestore(&x->wait.lock, flags);
  3670. return ret;
  3671. }
  3672. EXPORT_SYMBOL(completion_done);
  3673. static long __sched
  3674. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3675. {
  3676. unsigned long flags;
  3677. wait_queue_t wait;
  3678. init_waitqueue_entry(&wait, current);
  3679. __set_current_state(state);
  3680. spin_lock_irqsave(&q->lock, flags);
  3681. __add_wait_queue(q, &wait);
  3682. spin_unlock(&q->lock);
  3683. timeout = schedule_timeout(timeout);
  3684. spin_lock_irq(&q->lock);
  3685. __remove_wait_queue(q, &wait);
  3686. spin_unlock_irqrestore(&q->lock, flags);
  3687. return timeout;
  3688. }
  3689. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3690. {
  3691. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3692. }
  3693. EXPORT_SYMBOL(interruptible_sleep_on);
  3694. long __sched
  3695. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3696. {
  3697. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3698. }
  3699. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3700. void __sched sleep_on(wait_queue_head_t *q)
  3701. {
  3702. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3703. }
  3704. EXPORT_SYMBOL(sleep_on);
  3705. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3706. {
  3707. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3708. }
  3709. EXPORT_SYMBOL(sleep_on_timeout);
  3710. #ifdef CONFIG_RT_MUTEXES
  3711. /*
  3712. * rt_mutex_setprio - set the current priority of a task
  3713. * @p: task
  3714. * @prio: prio value (kernel-internal form)
  3715. *
  3716. * This function changes the 'effective' priority of a task. It does
  3717. * not touch ->normal_prio like __setscheduler().
  3718. *
  3719. * Used by the rt_mutex code to implement priority inheritance logic.
  3720. */
  3721. void rt_mutex_setprio(struct task_struct *p, int prio)
  3722. {
  3723. unsigned long flags;
  3724. int oldprio, on_rq, running;
  3725. struct rq *rq;
  3726. const struct sched_class *prev_class;
  3727. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3728. rq = task_rq_lock(p, &flags);
  3729. trace_sched_pi_setprio(p, prio);
  3730. oldprio = p->prio;
  3731. prev_class = p->sched_class;
  3732. on_rq = p->se.on_rq;
  3733. running = task_current(rq, p);
  3734. if (on_rq)
  3735. dequeue_task(rq, p, 0);
  3736. if (running)
  3737. p->sched_class->put_prev_task(rq, p);
  3738. if (rt_prio(prio))
  3739. p->sched_class = &rt_sched_class;
  3740. else
  3741. p->sched_class = &fair_sched_class;
  3742. p->prio = prio;
  3743. if (running)
  3744. p->sched_class->set_curr_task(rq);
  3745. if (on_rq) {
  3746. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3747. check_class_changed(rq, p, prev_class, oldprio, running);
  3748. }
  3749. task_rq_unlock(rq, &flags);
  3750. }
  3751. #endif
  3752. void set_user_nice(struct task_struct *p, long nice)
  3753. {
  3754. int old_prio, delta, on_rq;
  3755. unsigned long flags;
  3756. struct rq *rq;
  3757. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3758. return;
  3759. /*
  3760. * We have to be careful, if called from sys_setpriority(),
  3761. * the task might be in the middle of scheduling on another CPU.
  3762. */
  3763. rq = task_rq_lock(p, &flags);
  3764. /*
  3765. * The RT priorities are set via sched_setscheduler(), but we still
  3766. * allow the 'normal' nice value to be set - but as expected
  3767. * it wont have any effect on scheduling until the task is
  3768. * SCHED_FIFO/SCHED_RR:
  3769. */
  3770. if (task_has_rt_policy(p)) {
  3771. p->static_prio = NICE_TO_PRIO(nice);
  3772. goto out_unlock;
  3773. }
  3774. on_rq = p->se.on_rq;
  3775. if (on_rq)
  3776. dequeue_task(rq, p, 0);
  3777. p->static_prio = NICE_TO_PRIO(nice);
  3778. set_load_weight(p);
  3779. old_prio = p->prio;
  3780. p->prio = effective_prio(p);
  3781. delta = p->prio - old_prio;
  3782. if (on_rq) {
  3783. enqueue_task(rq, p, 0);
  3784. /*
  3785. * If the task increased its priority or is running and
  3786. * lowered its priority, then reschedule its CPU:
  3787. */
  3788. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3789. resched_task(rq->curr);
  3790. }
  3791. out_unlock:
  3792. task_rq_unlock(rq, &flags);
  3793. }
  3794. EXPORT_SYMBOL(set_user_nice);
  3795. /*
  3796. * can_nice - check if a task can reduce its nice value
  3797. * @p: task
  3798. * @nice: nice value
  3799. */
  3800. int can_nice(const struct task_struct *p, const int nice)
  3801. {
  3802. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3803. int nice_rlim = 20 - nice;
  3804. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3805. capable(CAP_SYS_NICE));
  3806. }
  3807. #ifdef __ARCH_WANT_SYS_NICE
  3808. /*
  3809. * sys_nice - change the priority of the current process.
  3810. * @increment: priority increment
  3811. *
  3812. * sys_setpriority is a more generic, but much slower function that
  3813. * does similar things.
  3814. */
  3815. SYSCALL_DEFINE1(nice, int, increment)
  3816. {
  3817. long nice, retval;
  3818. /*
  3819. * Setpriority might change our priority at the same moment.
  3820. * We don't have to worry. Conceptually one call occurs first
  3821. * and we have a single winner.
  3822. */
  3823. if (increment < -40)
  3824. increment = -40;
  3825. if (increment > 40)
  3826. increment = 40;
  3827. nice = TASK_NICE(current) + increment;
  3828. if (nice < -20)
  3829. nice = -20;
  3830. if (nice > 19)
  3831. nice = 19;
  3832. if (increment < 0 && !can_nice(current, nice))
  3833. return -EPERM;
  3834. retval = security_task_setnice(current, nice);
  3835. if (retval)
  3836. return retval;
  3837. set_user_nice(current, nice);
  3838. return 0;
  3839. }
  3840. #endif
  3841. /**
  3842. * task_prio - return the priority value of a given task.
  3843. * @p: the task in question.
  3844. *
  3845. * This is the priority value as seen by users in /proc.
  3846. * RT tasks are offset by -200. Normal tasks are centered
  3847. * around 0, value goes from -16 to +15.
  3848. */
  3849. int task_prio(const struct task_struct *p)
  3850. {
  3851. return p->prio - MAX_RT_PRIO;
  3852. }
  3853. /**
  3854. * task_nice - return the nice value of a given task.
  3855. * @p: the task in question.
  3856. */
  3857. int task_nice(const struct task_struct *p)
  3858. {
  3859. return TASK_NICE(p);
  3860. }
  3861. EXPORT_SYMBOL(task_nice);
  3862. /**
  3863. * idle_cpu - is a given cpu idle currently?
  3864. * @cpu: the processor in question.
  3865. */
  3866. int idle_cpu(int cpu)
  3867. {
  3868. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3869. }
  3870. /**
  3871. * idle_task - return the idle task for a given cpu.
  3872. * @cpu: the processor in question.
  3873. */
  3874. struct task_struct *idle_task(int cpu)
  3875. {
  3876. return cpu_rq(cpu)->idle;
  3877. }
  3878. /**
  3879. * find_process_by_pid - find a process with a matching PID value.
  3880. * @pid: the pid in question.
  3881. */
  3882. static struct task_struct *find_process_by_pid(pid_t pid)
  3883. {
  3884. return pid ? find_task_by_vpid(pid) : current;
  3885. }
  3886. /* Actually do priority change: must hold rq lock. */
  3887. static void
  3888. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3889. {
  3890. BUG_ON(p->se.on_rq);
  3891. p->policy = policy;
  3892. p->rt_priority = prio;
  3893. p->normal_prio = normal_prio(p);
  3894. /* we are holding p->pi_lock already */
  3895. p->prio = rt_mutex_getprio(p);
  3896. if (rt_prio(p->prio))
  3897. p->sched_class = &rt_sched_class;
  3898. else
  3899. p->sched_class = &fair_sched_class;
  3900. set_load_weight(p);
  3901. }
  3902. /*
  3903. * check the target process has a UID that matches the current process's
  3904. */
  3905. static bool check_same_owner(struct task_struct *p)
  3906. {
  3907. const struct cred *cred = current_cred(), *pcred;
  3908. bool match;
  3909. rcu_read_lock();
  3910. pcred = __task_cred(p);
  3911. match = (cred->euid == pcred->euid ||
  3912. cred->euid == pcred->uid);
  3913. rcu_read_unlock();
  3914. return match;
  3915. }
  3916. static int __sched_setscheduler(struct task_struct *p, int policy,
  3917. const struct sched_param *param, bool user)
  3918. {
  3919. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3920. unsigned long flags;
  3921. const struct sched_class *prev_class;
  3922. struct rq *rq;
  3923. int reset_on_fork;
  3924. /* may grab non-irq protected spin_locks */
  3925. BUG_ON(in_interrupt());
  3926. recheck:
  3927. /* double check policy once rq lock held */
  3928. if (policy < 0) {
  3929. reset_on_fork = p->sched_reset_on_fork;
  3930. policy = oldpolicy = p->policy;
  3931. } else {
  3932. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3933. policy &= ~SCHED_RESET_ON_FORK;
  3934. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3935. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3936. policy != SCHED_IDLE)
  3937. return -EINVAL;
  3938. }
  3939. /*
  3940. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3941. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3942. * SCHED_BATCH and SCHED_IDLE is 0.
  3943. */
  3944. if (param->sched_priority < 0 ||
  3945. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3946. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3947. return -EINVAL;
  3948. if (rt_policy(policy) != (param->sched_priority != 0))
  3949. return -EINVAL;
  3950. /*
  3951. * Allow unprivileged RT tasks to decrease priority:
  3952. */
  3953. if (user && !capable(CAP_SYS_NICE)) {
  3954. if (rt_policy(policy)) {
  3955. unsigned long rlim_rtprio =
  3956. task_rlimit(p, RLIMIT_RTPRIO);
  3957. /* can't set/change the rt policy */
  3958. if (policy != p->policy && !rlim_rtprio)
  3959. return -EPERM;
  3960. /* can't increase priority */
  3961. if (param->sched_priority > p->rt_priority &&
  3962. param->sched_priority > rlim_rtprio)
  3963. return -EPERM;
  3964. }
  3965. /*
  3966. * Like positive nice levels, dont allow tasks to
  3967. * move out of SCHED_IDLE either:
  3968. */
  3969. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3970. return -EPERM;
  3971. /* can't change other user's priorities */
  3972. if (!check_same_owner(p))
  3973. return -EPERM;
  3974. /* Normal users shall not reset the sched_reset_on_fork flag */
  3975. if (p->sched_reset_on_fork && !reset_on_fork)
  3976. return -EPERM;
  3977. }
  3978. if (user) {
  3979. retval = security_task_setscheduler(p);
  3980. if (retval)
  3981. return retval;
  3982. }
  3983. /*
  3984. * make sure no PI-waiters arrive (or leave) while we are
  3985. * changing the priority of the task:
  3986. */
  3987. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3988. /*
  3989. * To be able to change p->policy safely, the apropriate
  3990. * runqueue lock must be held.
  3991. */
  3992. rq = __task_rq_lock(p);
  3993. /*
  3994. * Changing the policy of the stop threads its a very bad idea
  3995. */
  3996. if (p == rq->stop) {
  3997. __task_rq_unlock(rq);
  3998. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3999. return -EINVAL;
  4000. }
  4001. #ifdef CONFIG_RT_GROUP_SCHED
  4002. if (user) {
  4003. /*
  4004. * Do not allow realtime tasks into groups that have no runtime
  4005. * assigned.
  4006. */
  4007. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4008. task_group(p)->rt_bandwidth.rt_runtime == 0) {
  4009. __task_rq_unlock(rq);
  4010. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4011. return -EPERM;
  4012. }
  4013. }
  4014. #endif
  4015. /* recheck policy now with rq lock held */
  4016. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4017. policy = oldpolicy = -1;
  4018. __task_rq_unlock(rq);
  4019. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4020. goto recheck;
  4021. }
  4022. on_rq = p->se.on_rq;
  4023. running = task_current(rq, p);
  4024. if (on_rq)
  4025. deactivate_task(rq, p, 0);
  4026. if (running)
  4027. p->sched_class->put_prev_task(rq, p);
  4028. p->sched_reset_on_fork = reset_on_fork;
  4029. oldprio = p->prio;
  4030. prev_class = p->sched_class;
  4031. __setscheduler(rq, p, policy, param->sched_priority);
  4032. if (running)
  4033. p->sched_class->set_curr_task(rq);
  4034. if (on_rq) {
  4035. activate_task(rq, p, 0);
  4036. check_class_changed(rq, p, prev_class, oldprio, running);
  4037. }
  4038. __task_rq_unlock(rq);
  4039. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4040. rt_mutex_adjust_pi(p);
  4041. return 0;
  4042. }
  4043. /**
  4044. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4045. * @p: the task in question.
  4046. * @policy: new policy.
  4047. * @param: structure containing the new RT priority.
  4048. *
  4049. * NOTE that the task may be already dead.
  4050. */
  4051. int sched_setscheduler(struct task_struct *p, int policy,
  4052. const struct sched_param *param)
  4053. {
  4054. return __sched_setscheduler(p, policy, param, true);
  4055. }
  4056. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4057. /**
  4058. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4059. * @p: the task in question.
  4060. * @policy: new policy.
  4061. * @param: structure containing the new RT priority.
  4062. *
  4063. * Just like sched_setscheduler, only don't bother checking if the
  4064. * current context has permission. For example, this is needed in
  4065. * stop_machine(): we create temporary high priority worker threads,
  4066. * but our caller might not have that capability.
  4067. */
  4068. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4069. const struct sched_param *param)
  4070. {
  4071. return __sched_setscheduler(p, policy, param, false);
  4072. }
  4073. static int
  4074. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4075. {
  4076. struct sched_param lparam;
  4077. struct task_struct *p;
  4078. int retval;
  4079. if (!param || pid < 0)
  4080. return -EINVAL;
  4081. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4082. return -EFAULT;
  4083. rcu_read_lock();
  4084. retval = -ESRCH;
  4085. p = find_process_by_pid(pid);
  4086. if (p != NULL)
  4087. retval = sched_setscheduler(p, policy, &lparam);
  4088. rcu_read_unlock();
  4089. return retval;
  4090. }
  4091. /**
  4092. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4093. * @pid: the pid in question.
  4094. * @policy: new policy.
  4095. * @param: structure containing the new RT priority.
  4096. */
  4097. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4098. struct sched_param __user *, param)
  4099. {
  4100. /* negative values for policy are not valid */
  4101. if (policy < 0)
  4102. return -EINVAL;
  4103. return do_sched_setscheduler(pid, policy, param);
  4104. }
  4105. /**
  4106. * sys_sched_setparam - set/change the RT priority of a thread
  4107. * @pid: the pid in question.
  4108. * @param: structure containing the new RT priority.
  4109. */
  4110. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4111. {
  4112. return do_sched_setscheduler(pid, -1, param);
  4113. }
  4114. /**
  4115. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4116. * @pid: the pid in question.
  4117. */
  4118. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4119. {
  4120. struct task_struct *p;
  4121. int retval;
  4122. if (pid < 0)
  4123. return -EINVAL;
  4124. retval = -ESRCH;
  4125. rcu_read_lock();
  4126. p = find_process_by_pid(pid);
  4127. if (p) {
  4128. retval = security_task_getscheduler(p);
  4129. if (!retval)
  4130. retval = p->policy
  4131. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4132. }
  4133. rcu_read_unlock();
  4134. return retval;
  4135. }
  4136. /**
  4137. * sys_sched_getparam - get the RT priority of a thread
  4138. * @pid: the pid in question.
  4139. * @param: structure containing the RT priority.
  4140. */
  4141. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4142. {
  4143. struct sched_param lp;
  4144. struct task_struct *p;
  4145. int retval;
  4146. if (!param || pid < 0)
  4147. return -EINVAL;
  4148. rcu_read_lock();
  4149. p = find_process_by_pid(pid);
  4150. retval = -ESRCH;
  4151. if (!p)
  4152. goto out_unlock;
  4153. retval = security_task_getscheduler(p);
  4154. if (retval)
  4155. goto out_unlock;
  4156. lp.sched_priority = p->rt_priority;
  4157. rcu_read_unlock();
  4158. /*
  4159. * This one might sleep, we cannot do it with a spinlock held ...
  4160. */
  4161. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4162. return retval;
  4163. out_unlock:
  4164. rcu_read_unlock();
  4165. return retval;
  4166. }
  4167. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4168. {
  4169. cpumask_var_t cpus_allowed, new_mask;
  4170. struct task_struct *p;
  4171. int retval;
  4172. get_online_cpus();
  4173. rcu_read_lock();
  4174. p = find_process_by_pid(pid);
  4175. if (!p) {
  4176. rcu_read_unlock();
  4177. put_online_cpus();
  4178. return -ESRCH;
  4179. }
  4180. /* Prevent p going away */
  4181. get_task_struct(p);
  4182. rcu_read_unlock();
  4183. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4184. retval = -ENOMEM;
  4185. goto out_put_task;
  4186. }
  4187. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4188. retval = -ENOMEM;
  4189. goto out_free_cpus_allowed;
  4190. }
  4191. retval = -EPERM;
  4192. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4193. goto out_unlock;
  4194. retval = security_task_setscheduler(p);
  4195. if (retval)
  4196. goto out_unlock;
  4197. cpuset_cpus_allowed(p, cpus_allowed);
  4198. cpumask_and(new_mask, in_mask, cpus_allowed);
  4199. again:
  4200. retval = set_cpus_allowed_ptr(p, new_mask);
  4201. if (!retval) {
  4202. cpuset_cpus_allowed(p, cpus_allowed);
  4203. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4204. /*
  4205. * We must have raced with a concurrent cpuset
  4206. * update. Just reset the cpus_allowed to the
  4207. * cpuset's cpus_allowed
  4208. */
  4209. cpumask_copy(new_mask, cpus_allowed);
  4210. goto again;
  4211. }
  4212. }
  4213. out_unlock:
  4214. free_cpumask_var(new_mask);
  4215. out_free_cpus_allowed:
  4216. free_cpumask_var(cpus_allowed);
  4217. out_put_task:
  4218. put_task_struct(p);
  4219. put_online_cpus();
  4220. return retval;
  4221. }
  4222. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4223. struct cpumask *new_mask)
  4224. {
  4225. if (len < cpumask_size())
  4226. cpumask_clear(new_mask);
  4227. else if (len > cpumask_size())
  4228. len = cpumask_size();
  4229. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4230. }
  4231. /**
  4232. * sys_sched_setaffinity - set the cpu affinity of a process
  4233. * @pid: pid of the process
  4234. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4235. * @user_mask_ptr: user-space pointer to the new cpu mask
  4236. */
  4237. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4238. unsigned long __user *, user_mask_ptr)
  4239. {
  4240. cpumask_var_t new_mask;
  4241. int retval;
  4242. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4243. return -ENOMEM;
  4244. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4245. if (retval == 0)
  4246. retval = sched_setaffinity(pid, new_mask);
  4247. free_cpumask_var(new_mask);
  4248. return retval;
  4249. }
  4250. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4251. {
  4252. struct task_struct *p;
  4253. unsigned long flags;
  4254. struct rq *rq;
  4255. int retval;
  4256. get_online_cpus();
  4257. rcu_read_lock();
  4258. retval = -ESRCH;
  4259. p = find_process_by_pid(pid);
  4260. if (!p)
  4261. goto out_unlock;
  4262. retval = security_task_getscheduler(p);
  4263. if (retval)
  4264. goto out_unlock;
  4265. rq = task_rq_lock(p, &flags);
  4266. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4267. task_rq_unlock(rq, &flags);
  4268. out_unlock:
  4269. rcu_read_unlock();
  4270. put_online_cpus();
  4271. return retval;
  4272. }
  4273. /**
  4274. * sys_sched_getaffinity - get the cpu affinity of a process
  4275. * @pid: pid of the process
  4276. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4277. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4278. */
  4279. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4280. unsigned long __user *, user_mask_ptr)
  4281. {
  4282. int ret;
  4283. cpumask_var_t mask;
  4284. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4285. return -EINVAL;
  4286. if (len & (sizeof(unsigned long)-1))
  4287. return -EINVAL;
  4288. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4289. return -ENOMEM;
  4290. ret = sched_getaffinity(pid, mask);
  4291. if (ret == 0) {
  4292. size_t retlen = min_t(size_t, len, cpumask_size());
  4293. if (copy_to_user(user_mask_ptr, mask, retlen))
  4294. ret = -EFAULT;
  4295. else
  4296. ret = retlen;
  4297. }
  4298. free_cpumask_var(mask);
  4299. return ret;
  4300. }
  4301. /**
  4302. * sys_sched_yield - yield the current processor to other threads.
  4303. *
  4304. * This function yields the current CPU to other tasks. If there are no
  4305. * other threads running on this CPU then this function will return.
  4306. */
  4307. SYSCALL_DEFINE0(sched_yield)
  4308. {
  4309. struct rq *rq = this_rq_lock();
  4310. schedstat_inc(rq, yld_count);
  4311. current->sched_class->yield_task(rq);
  4312. /*
  4313. * Since we are going to call schedule() anyway, there's
  4314. * no need to preempt or enable interrupts:
  4315. */
  4316. __release(rq->lock);
  4317. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4318. do_raw_spin_unlock(&rq->lock);
  4319. preempt_enable_no_resched();
  4320. schedule();
  4321. return 0;
  4322. }
  4323. static inline int should_resched(void)
  4324. {
  4325. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4326. }
  4327. static void __cond_resched(void)
  4328. {
  4329. add_preempt_count(PREEMPT_ACTIVE);
  4330. schedule();
  4331. sub_preempt_count(PREEMPT_ACTIVE);
  4332. }
  4333. int __sched _cond_resched(void)
  4334. {
  4335. if (should_resched()) {
  4336. __cond_resched();
  4337. return 1;
  4338. }
  4339. return 0;
  4340. }
  4341. EXPORT_SYMBOL(_cond_resched);
  4342. /*
  4343. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4344. * call schedule, and on return reacquire the lock.
  4345. *
  4346. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4347. * operations here to prevent schedule() from being called twice (once via
  4348. * spin_unlock(), once by hand).
  4349. */
  4350. int __cond_resched_lock(spinlock_t *lock)
  4351. {
  4352. int resched = should_resched();
  4353. int ret = 0;
  4354. lockdep_assert_held(lock);
  4355. if (spin_needbreak(lock) || resched) {
  4356. spin_unlock(lock);
  4357. if (resched)
  4358. __cond_resched();
  4359. else
  4360. cpu_relax();
  4361. ret = 1;
  4362. spin_lock(lock);
  4363. }
  4364. return ret;
  4365. }
  4366. EXPORT_SYMBOL(__cond_resched_lock);
  4367. int __sched __cond_resched_softirq(void)
  4368. {
  4369. BUG_ON(!in_softirq());
  4370. if (should_resched()) {
  4371. local_bh_enable();
  4372. __cond_resched();
  4373. local_bh_disable();
  4374. return 1;
  4375. }
  4376. return 0;
  4377. }
  4378. EXPORT_SYMBOL(__cond_resched_softirq);
  4379. /**
  4380. * yield - yield the current processor to other threads.
  4381. *
  4382. * This is a shortcut for kernel-space yielding - it marks the
  4383. * thread runnable and calls sys_sched_yield().
  4384. */
  4385. void __sched yield(void)
  4386. {
  4387. set_current_state(TASK_RUNNING);
  4388. sys_sched_yield();
  4389. }
  4390. EXPORT_SYMBOL(yield);
  4391. /*
  4392. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4393. * that process accounting knows that this is a task in IO wait state.
  4394. */
  4395. void __sched io_schedule(void)
  4396. {
  4397. struct rq *rq = raw_rq();
  4398. delayacct_blkio_start();
  4399. atomic_inc(&rq->nr_iowait);
  4400. current->in_iowait = 1;
  4401. schedule();
  4402. current->in_iowait = 0;
  4403. atomic_dec(&rq->nr_iowait);
  4404. delayacct_blkio_end();
  4405. }
  4406. EXPORT_SYMBOL(io_schedule);
  4407. long __sched io_schedule_timeout(long timeout)
  4408. {
  4409. struct rq *rq = raw_rq();
  4410. long ret;
  4411. delayacct_blkio_start();
  4412. atomic_inc(&rq->nr_iowait);
  4413. current->in_iowait = 1;
  4414. ret = schedule_timeout(timeout);
  4415. current->in_iowait = 0;
  4416. atomic_dec(&rq->nr_iowait);
  4417. delayacct_blkio_end();
  4418. return ret;
  4419. }
  4420. /**
  4421. * sys_sched_get_priority_max - return maximum RT priority.
  4422. * @policy: scheduling class.
  4423. *
  4424. * this syscall returns the maximum rt_priority that can be used
  4425. * by a given scheduling class.
  4426. */
  4427. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4428. {
  4429. int ret = -EINVAL;
  4430. switch (policy) {
  4431. case SCHED_FIFO:
  4432. case SCHED_RR:
  4433. ret = MAX_USER_RT_PRIO-1;
  4434. break;
  4435. case SCHED_NORMAL:
  4436. case SCHED_BATCH:
  4437. case SCHED_IDLE:
  4438. ret = 0;
  4439. break;
  4440. }
  4441. return ret;
  4442. }
  4443. /**
  4444. * sys_sched_get_priority_min - return minimum RT priority.
  4445. * @policy: scheduling class.
  4446. *
  4447. * this syscall returns the minimum rt_priority that can be used
  4448. * by a given scheduling class.
  4449. */
  4450. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4451. {
  4452. int ret = -EINVAL;
  4453. switch (policy) {
  4454. case SCHED_FIFO:
  4455. case SCHED_RR:
  4456. ret = 1;
  4457. break;
  4458. case SCHED_NORMAL:
  4459. case SCHED_BATCH:
  4460. case SCHED_IDLE:
  4461. ret = 0;
  4462. }
  4463. return ret;
  4464. }
  4465. /**
  4466. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4467. * @pid: pid of the process.
  4468. * @interval: userspace pointer to the timeslice value.
  4469. *
  4470. * this syscall writes the default timeslice value of a given process
  4471. * into the user-space timespec buffer. A value of '0' means infinity.
  4472. */
  4473. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4474. struct timespec __user *, interval)
  4475. {
  4476. struct task_struct *p;
  4477. unsigned int time_slice;
  4478. unsigned long flags;
  4479. struct rq *rq;
  4480. int retval;
  4481. struct timespec t;
  4482. if (pid < 0)
  4483. return -EINVAL;
  4484. retval = -ESRCH;
  4485. rcu_read_lock();
  4486. p = find_process_by_pid(pid);
  4487. if (!p)
  4488. goto out_unlock;
  4489. retval = security_task_getscheduler(p);
  4490. if (retval)
  4491. goto out_unlock;
  4492. rq = task_rq_lock(p, &flags);
  4493. time_slice = p->sched_class->get_rr_interval(rq, p);
  4494. task_rq_unlock(rq, &flags);
  4495. rcu_read_unlock();
  4496. jiffies_to_timespec(time_slice, &t);
  4497. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4498. return retval;
  4499. out_unlock:
  4500. rcu_read_unlock();
  4501. return retval;
  4502. }
  4503. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4504. void sched_show_task(struct task_struct *p)
  4505. {
  4506. unsigned long free = 0;
  4507. unsigned state;
  4508. state = p->state ? __ffs(p->state) + 1 : 0;
  4509. printk(KERN_INFO "%-13.13s %c", p->comm,
  4510. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4511. #if BITS_PER_LONG == 32
  4512. if (state == TASK_RUNNING)
  4513. printk(KERN_CONT " running ");
  4514. else
  4515. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4516. #else
  4517. if (state == TASK_RUNNING)
  4518. printk(KERN_CONT " running task ");
  4519. else
  4520. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4521. #endif
  4522. #ifdef CONFIG_DEBUG_STACK_USAGE
  4523. free = stack_not_used(p);
  4524. #endif
  4525. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4526. task_pid_nr(p), task_pid_nr(p->real_parent),
  4527. (unsigned long)task_thread_info(p)->flags);
  4528. show_stack(p, NULL);
  4529. }
  4530. void show_state_filter(unsigned long state_filter)
  4531. {
  4532. struct task_struct *g, *p;
  4533. #if BITS_PER_LONG == 32
  4534. printk(KERN_INFO
  4535. " task PC stack pid father\n");
  4536. #else
  4537. printk(KERN_INFO
  4538. " task PC stack pid father\n");
  4539. #endif
  4540. read_lock(&tasklist_lock);
  4541. do_each_thread(g, p) {
  4542. /*
  4543. * reset the NMI-timeout, listing all files on a slow
  4544. * console might take alot of time:
  4545. */
  4546. touch_nmi_watchdog();
  4547. if (!state_filter || (p->state & state_filter))
  4548. sched_show_task(p);
  4549. } while_each_thread(g, p);
  4550. touch_all_softlockup_watchdogs();
  4551. #ifdef CONFIG_SCHED_DEBUG
  4552. sysrq_sched_debug_show();
  4553. #endif
  4554. read_unlock(&tasklist_lock);
  4555. /*
  4556. * Only show locks if all tasks are dumped:
  4557. */
  4558. if (!state_filter)
  4559. debug_show_all_locks();
  4560. }
  4561. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4562. {
  4563. idle->sched_class = &idle_sched_class;
  4564. }
  4565. /**
  4566. * init_idle - set up an idle thread for a given CPU
  4567. * @idle: task in question
  4568. * @cpu: cpu the idle task belongs to
  4569. *
  4570. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4571. * flag, to make booting more robust.
  4572. */
  4573. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4574. {
  4575. struct rq *rq = cpu_rq(cpu);
  4576. unsigned long flags;
  4577. raw_spin_lock_irqsave(&rq->lock, flags);
  4578. __sched_fork(idle);
  4579. idle->state = TASK_RUNNING;
  4580. idle->se.exec_start = sched_clock();
  4581. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4582. /*
  4583. * We're having a chicken and egg problem, even though we are
  4584. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4585. * lockdep check in task_group() will fail.
  4586. *
  4587. * Similar case to sched_fork(). / Alternatively we could
  4588. * use task_rq_lock() here and obtain the other rq->lock.
  4589. *
  4590. * Silence PROVE_RCU
  4591. */
  4592. rcu_read_lock();
  4593. __set_task_cpu(idle, cpu);
  4594. rcu_read_unlock();
  4595. rq->curr = rq->idle = idle;
  4596. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4597. idle->oncpu = 1;
  4598. #endif
  4599. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4600. /* Set the preempt count _outside_ the spinlocks! */
  4601. #if defined(CONFIG_PREEMPT)
  4602. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4603. #else
  4604. task_thread_info(idle)->preempt_count = 0;
  4605. #endif
  4606. /*
  4607. * The idle tasks have their own, simple scheduling class:
  4608. */
  4609. idle->sched_class = &idle_sched_class;
  4610. ftrace_graph_init_task(idle);
  4611. }
  4612. /*
  4613. * In a system that switches off the HZ timer nohz_cpu_mask
  4614. * indicates which cpus entered this state. This is used
  4615. * in the rcu update to wait only for active cpus. For system
  4616. * which do not switch off the HZ timer nohz_cpu_mask should
  4617. * always be CPU_BITS_NONE.
  4618. */
  4619. cpumask_var_t nohz_cpu_mask;
  4620. /*
  4621. * Increase the granularity value when there are more CPUs,
  4622. * because with more CPUs the 'effective latency' as visible
  4623. * to users decreases. But the relationship is not linear,
  4624. * so pick a second-best guess by going with the log2 of the
  4625. * number of CPUs.
  4626. *
  4627. * This idea comes from the SD scheduler of Con Kolivas:
  4628. */
  4629. static int get_update_sysctl_factor(void)
  4630. {
  4631. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4632. unsigned int factor;
  4633. switch (sysctl_sched_tunable_scaling) {
  4634. case SCHED_TUNABLESCALING_NONE:
  4635. factor = 1;
  4636. break;
  4637. case SCHED_TUNABLESCALING_LINEAR:
  4638. factor = cpus;
  4639. break;
  4640. case SCHED_TUNABLESCALING_LOG:
  4641. default:
  4642. factor = 1 + ilog2(cpus);
  4643. break;
  4644. }
  4645. return factor;
  4646. }
  4647. static void update_sysctl(void)
  4648. {
  4649. unsigned int factor = get_update_sysctl_factor();
  4650. #define SET_SYSCTL(name) \
  4651. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4652. SET_SYSCTL(sched_min_granularity);
  4653. SET_SYSCTL(sched_latency);
  4654. SET_SYSCTL(sched_wakeup_granularity);
  4655. #undef SET_SYSCTL
  4656. }
  4657. static inline void sched_init_granularity(void)
  4658. {
  4659. update_sysctl();
  4660. }
  4661. #ifdef CONFIG_SMP
  4662. /*
  4663. * This is how migration works:
  4664. *
  4665. * 1) we invoke migration_cpu_stop() on the target CPU using
  4666. * stop_one_cpu().
  4667. * 2) stopper starts to run (implicitly forcing the migrated thread
  4668. * off the CPU)
  4669. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4670. * 4) if it's in the wrong runqueue then the migration thread removes
  4671. * it and puts it into the right queue.
  4672. * 5) stopper completes and stop_one_cpu() returns and the migration
  4673. * is done.
  4674. */
  4675. /*
  4676. * Change a given task's CPU affinity. Migrate the thread to a
  4677. * proper CPU and schedule it away if the CPU it's executing on
  4678. * is removed from the allowed bitmask.
  4679. *
  4680. * NOTE: the caller must have a valid reference to the task, the
  4681. * task must not exit() & deallocate itself prematurely. The
  4682. * call is not atomic; no spinlocks may be held.
  4683. */
  4684. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4685. {
  4686. unsigned long flags;
  4687. struct rq *rq;
  4688. unsigned int dest_cpu;
  4689. int ret = 0;
  4690. /*
  4691. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4692. * drop the rq->lock and still rely on ->cpus_allowed.
  4693. */
  4694. again:
  4695. while (task_is_waking(p))
  4696. cpu_relax();
  4697. rq = task_rq_lock(p, &flags);
  4698. if (task_is_waking(p)) {
  4699. task_rq_unlock(rq, &flags);
  4700. goto again;
  4701. }
  4702. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4703. ret = -EINVAL;
  4704. goto out;
  4705. }
  4706. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4707. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4708. ret = -EINVAL;
  4709. goto out;
  4710. }
  4711. if (p->sched_class->set_cpus_allowed)
  4712. p->sched_class->set_cpus_allowed(p, new_mask);
  4713. else {
  4714. cpumask_copy(&p->cpus_allowed, new_mask);
  4715. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4716. }
  4717. /* Can the task run on the task's current CPU? If so, we're done */
  4718. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4719. goto out;
  4720. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4721. if (migrate_task(p, dest_cpu)) {
  4722. struct migration_arg arg = { p, dest_cpu };
  4723. /* Need help from migration thread: drop lock and wait. */
  4724. task_rq_unlock(rq, &flags);
  4725. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4726. tlb_migrate_finish(p->mm);
  4727. return 0;
  4728. }
  4729. out:
  4730. task_rq_unlock(rq, &flags);
  4731. return ret;
  4732. }
  4733. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4734. /*
  4735. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4736. * this because either it can't run here any more (set_cpus_allowed()
  4737. * away from this CPU, or CPU going down), or because we're
  4738. * attempting to rebalance this task on exec (sched_exec).
  4739. *
  4740. * So we race with normal scheduler movements, but that's OK, as long
  4741. * as the task is no longer on this CPU.
  4742. *
  4743. * Returns non-zero if task was successfully migrated.
  4744. */
  4745. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4746. {
  4747. struct rq *rq_dest, *rq_src;
  4748. int ret = 0;
  4749. if (unlikely(!cpu_active(dest_cpu)))
  4750. return ret;
  4751. rq_src = cpu_rq(src_cpu);
  4752. rq_dest = cpu_rq(dest_cpu);
  4753. double_rq_lock(rq_src, rq_dest);
  4754. /* Already moved. */
  4755. if (task_cpu(p) != src_cpu)
  4756. goto done;
  4757. /* Affinity changed (again). */
  4758. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4759. goto fail;
  4760. /*
  4761. * If we're not on a rq, the next wake-up will ensure we're
  4762. * placed properly.
  4763. */
  4764. if (p->se.on_rq) {
  4765. deactivate_task(rq_src, p, 0);
  4766. set_task_cpu(p, dest_cpu);
  4767. activate_task(rq_dest, p, 0);
  4768. check_preempt_curr(rq_dest, p, 0);
  4769. }
  4770. done:
  4771. ret = 1;
  4772. fail:
  4773. double_rq_unlock(rq_src, rq_dest);
  4774. return ret;
  4775. }
  4776. /*
  4777. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4778. * and performs thread migration by bumping thread off CPU then
  4779. * 'pushing' onto another runqueue.
  4780. */
  4781. static int migration_cpu_stop(void *data)
  4782. {
  4783. struct migration_arg *arg = data;
  4784. /*
  4785. * The original target cpu might have gone down and we might
  4786. * be on another cpu but it doesn't matter.
  4787. */
  4788. local_irq_disable();
  4789. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4790. local_irq_enable();
  4791. return 0;
  4792. }
  4793. #ifdef CONFIG_HOTPLUG_CPU
  4794. /*
  4795. * Ensures that the idle task is using init_mm right before its cpu goes
  4796. * offline.
  4797. */
  4798. void idle_task_exit(void)
  4799. {
  4800. struct mm_struct *mm = current->active_mm;
  4801. BUG_ON(cpu_online(smp_processor_id()));
  4802. if (mm != &init_mm)
  4803. switch_mm(mm, &init_mm, current);
  4804. mmdrop(mm);
  4805. }
  4806. /*
  4807. * While a dead CPU has no uninterruptible tasks queued at this point,
  4808. * it might still have a nonzero ->nr_uninterruptible counter, because
  4809. * for performance reasons the counter is not stricly tracking tasks to
  4810. * their home CPUs. So we just add the counter to another CPU's counter,
  4811. * to keep the global sum constant after CPU-down:
  4812. */
  4813. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4814. {
  4815. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4816. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4817. rq_src->nr_uninterruptible = 0;
  4818. }
  4819. /*
  4820. * remove the tasks which were accounted by rq from calc_load_tasks.
  4821. */
  4822. static void calc_global_load_remove(struct rq *rq)
  4823. {
  4824. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4825. rq->calc_load_active = 0;
  4826. }
  4827. /*
  4828. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4829. * try_to_wake_up()->select_task_rq().
  4830. *
  4831. * Called with rq->lock held even though we'er in stop_machine() and
  4832. * there's no concurrency possible, we hold the required locks anyway
  4833. * because of lock validation efforts.
  4834. */
  4835. static void migrate_tasks(unsigned int dead_cpu)
  4836. {
  4837. struct rq *rq = cpu_rq(dead_cpu);
  4838. struct task_struct *next, *stop = rq->stop;
  4839. int dest_cpu;
  4840. /*
  4841. * Fudge the rq selection such that the below task selection loop
  4842. * doesn't get stuck on the currently eligible stop task.
  4843. *
  4844. * We're currently inside stop_machine() and the rq is either stuck
  4845. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4846. * either way we should never end up calling schedule() until we're
  4847. * done here.
  4848. */
  4849. rq->stop = NULL;
  4850. for ( ; ; ) {
  4851. /*
  4852. * There's this thread running, bail when that's the only
  4853. * remaining thread.
  4854. */
  4855. if (rq->nr_running == 1)
  4856. break;
  4857. next = pick_next_task(rq);
  4858. BUG_ON(!next);
  4859. next->sched_class->put_prev_task(rq, next);
  4860. /* Find suitable destination for @next, with force if needed. */
  4861. dest_cpu = select_fallback_rq(dead_cpu, next);
  4862. raw_spin_unlock(&rq->lock);
  4863. __migrate_task(next, dead_cpu, dest_cpu);
  4864. raw_spin_lock(&rq->lock);
  4865. }
  4866. rq->stop = stop;
  4867. }
  4868. #endif /* CONFIG_HOTPLUG_CPU */
  4869. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4870. static struct ctl_table sd_ctl_dir[] = {
  4871. {
  4872. .procname = "sched_domain",
  4873. .mode = 0555,
  4874. },
  4875. {}
  4876. };
  4877. static struct ctl_table sd_ctl_root[] = {
  4878. {
  4879. .procname = "kernel",
  4880. .mode = 0555,
  4881. .child = sd_ctl_dir,
  4882. },
  4883. {}
  4884. };
  4885. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4886. {
  4887. struct ctl_table *entry =
  4888. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4889. return entry;
  4890. }
  4891. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4892. {
  4893. struct ctl_table *entry;
  4894. /*
  4895. * In the intermediate directories, both the child directory and
  4896. * procname are dynamically allocated and could fail but the mode
  4897. * will always be set. In the lowest directory the names are
  4898. * static strings and all have proc handlers.
  4899. */
  4900. for (entry = *tablep; entry->mode; entry++) {
  4901. if (entry->child)
  4902. sd_free_ctl_entry(&entry->child);
  4903. if (entry->proc_handler == NULL)
  4904. kfree(entry->procname);
  4905. }
  4906. kfree(*tablep);
  4907. *tablep = NULL;
  4908. }
  4909. static void
  4910. set_table_entry(struct ctl_table *entry,
  4911. const char *procname, void *data, int maxlen,
  4912. mode_t mode, proc_handler *proc_handler)
  4913. {
  4914. entry->procname = procname;
  4915. entry->data = data;
  4916. entry->maxlen = maxlen;
  4917. entry->mode = mode;
  4918. entry->proc_handler = proc_handler;
  4919. }
  4920. static struct ctl_table *
  4921. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4922. {
  4923. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4924. if (table == NULL)
  4925. return NULL;
  4926. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4927. sizeof(long), 0644, proc_doulongvec_minmax);
  4928. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4929. sizeof(long), 0644, proc_doulongvec_minmax);
  4930. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4931. sizeof(int), 0644, proc_dointvec_minmax);
  4932. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4933. sizeof(int), 0644, proc_dointvec_minmax);
  4934. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4935. sizeof(int), 0644, proc_dointvec_minmax);
  4936. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4937. sizeof(int), 0644, proc_dointvec_minmax);
  4938. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4939. sizeof(int), 0644, proc_dointvec_minmax);
  4940. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4941. sizeof(int), 0644, proc_dointvec_minmax);
  4942. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4943. sizeof(int), 0644, proc_dointvec_minmax);
  4944. set_table_entry(&table[9], "cache_nice_tries",
  4945. &sd->cache_nice_tries,
  4946. sizeof(int), 0644, proc_dointvec_minmax);
  4947. set_table_entry(&table[10], "flags", &sd->flags,
  4948. sizeof(int), 0644, proc_dointvec_minmax);
  4949. set_table_entry(&table[11], "name", sd->name,
  4950. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4951. /* &table[12] is terminator */
  4952. return table;
  4953. }
  4954. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4955. {
  4956. struct ctl_table *entry, *table;
  4957. struct sched_domain *sd;
  4958. int domain_num = 0, i;
  4959. char buf[32];
  4960. for_each_domain(cpu, sd)
  4961. domain_num++;
  4962. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4963. if (table == NULL)
  4964. return NULL;
  4965. i = 0;
  4966. for_each_domain(cpu, sd) {
  4967. snprintf(buf, 32, "domain%d", i);
  4968. entry->procname = kstrdup(buf, GFP_KERNEL);
  4969. entry->mode = 0555;
  4970. entry->child = sd_alloc_ctl_domain_table(sd);
  4971. entry++;
  4972. i++;
  4973. }
  4974. return table;
  4975. }
  4976. static struct ctl_table_header *sd_sysctl_header;
  4977. static void register_sched_domain_sysctl(void)
  4978. {
  4979. int i, cpu_num = num_possible_cpus();
  4980. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4981. char buf[32];
  4982. WARN_ON(sd_ctl_dir[0].child);
  4983. sd_ctl_dir[0].child = entry;
  4984. if (entry == NULL)
  4985. return;
  4986. for_each_possible_cpu(i) {
  4987. snprintf(buf, 32, "cpu%d", i);
  4988. entry->procname = kstrdup(buf, GFP_KERNEL);
  4989. entry->mode = 0555;
  4990. entry->child = sd_alloc_ctl_cpu_table(i);
  4991. entry++;
  4992. }
  4993. WARN_ON(sd_sysctl_header);
  4994. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4995. }
  4996. /* may be called multiple times per register */
  4997. static void unregister_sched_domain_sysctl(void)
  4998. {
  4999. if (sd_sysctl_header)
  5000. unregister_sysctl_table(sd_sysctl_header);
  5001. sd_sysctl_header = NULL;
  5002. if (sd_ctl_dir[0].child)
  5003. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5004. }
  5005. #else
  5006. static void register_sched_domain_sysctl(void)
  5007. {
  5008. }
  5009. static void unregister_sched_domain_sysctl(void)
  5010. {
  5011. }
  5012. #endif
  5013. static void set_rq_online(struct rq *rq)
  5014. {
  5015. if (!rq->online) {
  5016. const struct sched_class *class;
  5017. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5018. rq->online = 1;
  5019. for_each_class(class) {
  5020. if (class->rq_online)
  5021. class->rq_online(rq);
  5022. }
  5023. }
  5024. }
  5025. static void set_rq_offline(struct rq *rq)
  5026. {
  5027. if (rq->online) {
  5028. const struct sched_class *class;
  5029. for_each_class(class) {
  5030. if (class->rq_offline)
  5031. class->rq_offline(rq);
  5032. }
  5033. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5034. rq->online = 0;
  5035. }
  5036. }
  5037. /*
  5038. * migration_call - callback that gets triggered when a CPU is added.
  5039. * Here we can start up the necessary migration thread for the new CPU.
  5040. */
  5041. static int __cpuinit
  5042. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5043. {
  5044. int cpu = (long)hcpu;
  5045. unsigned long flags;
  5046. struct rq *rq = cpu_rq(cpu);
  5047. switch (action & ~CPU_TASKS_FROZEN) {
  5048. case CPU_UP_PREPARE:
  5049. rq->calc_load_update = calc_load_update;
  5050. break;
  5051. case CPU_ONLINE:
  5052. /* Update our root-domain */
  5053. raw_spin_lock_irqsave(&rq->lock, flags);
  5054. if (rq->rd) {
  5055. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5056. set_rq_online(rq);
  5057. }
  5058. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5059. break;
  5060. #ifdef CONFIG_HOTPLUG_CPU
  5061. case CPU_DYING:
  5062. /* Update our root-domain */
  5063. raw_spin_lock_irqsave(&rq->lock, flags);
  5064. if (rq->rd) {
  5065. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5066. set_rq_offline(rq);
  5067. }
  5068. migrate_tasks(cpu);
  5069. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5070. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5071. migrate_nr_uninterruptible(rq);
  5072. calc_global_load_remove(rq);
  5073. break;
  5074. #endif
  5075. }
  5076. return NOTIFY_OK;
  5077. }
  5078. /*
  5079. * Register at high priority so that task migration (migrate_all_tasks)
  5080. * happens before everything else. This has to be lower priority than
  5081. * the notifier in the perf_event subsystem, though.
  5082. */
  5083. static struct notifier_block __cpuinitdata migration_notifier = {
  5084. .notifier_call = migration_call,
  5085. .priority = CPU_PRI_MIGRATION,
  5086. };
  5087. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5088. unsigned long action, void *hcpu)
  5089. {
  5090. switch (action & ~CPU_TASKS_FROZEN) {
  5091. case CPU_ONLINE:
  5092. case CPU_DOWN_FAILED:
  5093. set_cpu_active((long)hcpu, true);
  5094. return NOTIFY_OK;
  5095. default:
  5096. return NOTIFY_DONE;
  5097. }
  5098. }
  5099. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5100. unsigned long action, void *hcpu)
  5101. {
  5102. switch (action & ~CPU_TASKS_FROZEN) {
  5103. case CPU_DOWN_PREPARE:
  5104. set_cpu_active((long)hcpu, false);
  5105. return NOTIFY_OK;
  5106. default:
  5107. return NOTIFY_DONE;
  5108. }
  5109. }
  5110. static int __init migration_init(void)
  5111. {
  5112. void *cpu = (void *)(long)smp_processor_id();
  5113. int err;
  5114. /* Initialize migration for the boot CPU */
  5115. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5116. BUG_ON(err == NOTIFY_BAD);
  5117. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5118. register_cpu_notifier(&migration_notifier);
  5119. /* Register cpu active notifiers */
  5120. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5121. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5122. return 0;
  5123. }
  5124. early_initcall(migration_init);
  5125. #endif
  5126. #ifdef CONFIG_SMP
  5127. #ifdef CONFIG_SCHED_DEBUG
  5128. static __read_mostly int sched_domain_debug_enabled;
  5129. static int __init sched_domain_debug_setup(char *str)
  5130. {
  5131. sched_domain_debug_enabled = 1;
  5132. return 0;
  5133. }
  5134. early_param("sched_debug", sched_domain_debug_setup);
  5135. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5136. struct cpumask *groupmask)
  5137. {
  5138. struct sched_group *group = sd->groups;
  5139. char str[256];
  5140. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5141. cpumask_clear(groupmask);
  5142. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5143. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5144. printk("does not load-balance\n");
  5145. if (sd->parent)
  5146. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5147. " has parent");
  5148. return -1;
  5149. }
  5150. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5151. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5152. printk(KERN_ERR "ERROR: domain->span does not contain "
  5153. "CPU%d\n", cpu);
  5154. }
  5155. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5156. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5157. " CPU%d\n", cpu);
  5158. }
  5159. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5160. do {
  5161. if (!group) {
  5162. printk("\n");
  5163. printk(KERN_ERR "ERROR: group is NULL\n");
  5164. break;
  5165. }
  5166. if (!group->cpu_power) {
  5167. printk(KERN_CONT "\n");
  5168. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5169. "set\n");
  5170. break;
  5171. }
  5172. if (!cpumask_weight(sched_group_cpus(group))) {
  5173. printk(KERN_CONT "\n");
  5174. printk(KERN_ERR "ERROR: empty group\n");
  5175. break;
  5176. }
  5177. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5178. printk(KERN_CONT "\n");
  5179. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5180. break;
  5181. }
  5182. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5183. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5184. printk(KERN_CONT " %s", str);
  5185. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5186. printk(KERN_CONT " (cpu_power = %d)",
  5187. group->cpu_power);
  5188. }
  5189. group = group->next;
  5190. } while (group != sd->groups);
  5191. printk(KERN_CONT "\n");
  5192. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5193. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5194. if (sd->parent &&
  5195. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5196. printk(KERN_ERR "ERROR: parent span is not a superset "
  5197. "of domain->span\n");
  5198. return 0;
  5199. }
  5200. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5201. {
  5202. cpumask_var_t groupmask;
  5203. int level = 0;
  5204. if (!sched_domain_debug_enabled)
  5205. return;
  5206. if (!sd) {
  5207. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5208. return;
  5209. }
  5210. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5211. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5212. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5213. return;
  5214. }
  5215. for (;;) {
  5216. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5217. break;
  5218. level++;
  5219. sd = sd->parent;
  5220. if (!sd)
  5221. break;
  5222. }
  5223. free_cpumask_var(groupmask);
  5224. }
  5225. #else /* !CONFIG_SCHED_DEBUG */
  5226. # define sched_domain_debug(sd, cpu) do { } while (0)
  5227. #endif /* CONFIG_SCHED_DEBUG */
  5228. static int sd_degenerate(struct sched_domain *sd)
  5229. {
  5230. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5231. return 1;
  5232. /* Following flags need at least 2 groups */
  5233. if (sd->flags & (SD_LOAD_BALANCE |
  5234. SD_BALANCE_NEWIDLE |
  5235. SD_BALANCE_FORK |
  5236. SD_BALANCE_EXEC |
  5237. SD_SHARE_CPUPOWER |
  5238. SD_SHARE_PKG_RESOURCES)) {
  5239. if (sd->groups != sd->groups->next)
  5240. return 0;
  5241. }
  5242. /* Following flags don't use groups */
  5243. if (sd->flags & (SD_WAKE_AFFINE))
  5244. return 0;
  5245. return 1;
  5246. }
  5247. static int
  5248. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5249. {
  5250. unsigned long cflags = sd->flags, pflags = parent->flags;
  5251. if (sd_degenerate(parent))
  5252. return 1;
  5253. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5254. return 0;
  5255. /* Flags needing groups don't count if only 1 group in parent */
  5256. if (parent->groups == parent->groups->next) {
  5257. pflags &= ~(SD_LOAD_BALANCE |
  5258. SD_BALANCE_NEWIDLE |
  5259. SD_BALANCE_FORK |
  5260. SD_BALANCE_EXEC |
  5261. SD_SHARE_CPUPOWER |
  5262. SD_SHARE_PKG_RESOURCES);
  5263. if (nr_node_ids == 1)
  5264. pflags &= ~SD_SERIALIZE;
  5265. }
  5266. if (~cflags & pflags)
  5267. return 0;
  5268. return 1;
  5269. }
  5270. static void free_rootdomain(struct root_domain *rd)
  5271. {
  5272. synchronize_sched();
  5273. cpupri_cleanup(&rd->cpupri);
  5274. free_cpumask_var(rd->rto_mask);
  5275. free_cpumask_var(rd->online);
  5276. free_cpumask_var(rd->span);
  5277. kfree(rd);
  5278. }
  5279. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5280. {
  5281. struct root_domain *old_rd = NULL;
  5282. unsigned long flags;
  5283. raw_spin_lock_irqsave(&rq->lock, flags);
  5284. if (rq->rd) {
  5285. old_rd = rq->rd;
  5286. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5287. set_rq_offline(rq);
  5288. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5289. /*
  5290. * If we dont want to free the old_rt yet then
  5291. * set old_rd to NULL to skip the freeing later
  5292. * in this function:
  5293. */
  5294. if (!atomic_dec_and_test(&old_rd->refcount))
  5295. old_rd = NULL;
  5296. }
  5297. atomic_inc(&rd->refcount);
  5298. rq->rd = rd;
  5299. cpumask_set_cpu(rq->cpu, rd->span);
  5300. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5301. set_rq_online(rq);
  5302. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5303. if (old_rd)
  5304. free_rootdomain(old_rd);
  5305. }
  5306. static int init_rootdomain(struct root_domain *rd)
  5307. {
  5308. memset(rd, 0, sizeof(*rd));
  5309. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5310. goto out;
  5311. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5312. goto free_span;
  5313. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5314. goto free_online;
  5315. if (cpupri_init(&rd->cpupri) != 0)
  5316. goto free_rto_mask;
  5317. return 0;
  5318. free_rto_mask:
  5319. free_cpumask_var(rd->rto_mask);
  5320. free_online:
  5321. free_cpumask_var(rd->online);
  5322. free_span:
  5323. free_cpumask_var(rd->span);
  5324. out:
  5325. return -ENOMEM;
  5326. }
  5327. static void init_defrootdomain(void)
  5328. {
  5329. init_rootdomain(&def_root_domain);
  5330. atomic_set(&def_root_domain.refcount, 1);
  5331. }
  5332. static struct root_domain *alloc_rootdomain(void)
  5333. {
  5334. struct root_domain *rd;
  5335. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5336. if (!rd)
  5337. return NULL;
  5338. if (init_rootdomain(rd) != 0) {
  5339. kfree(rd);
  5340. return NULL;
  5341. }
  5342. return rd;
  5343. }
  5344. /*
  5345. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5346. * hold the hotplug lock.
  5347. */
  5348. static void
  5349. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5350. {
  5351. struct rq *rq = cpu_rq(cpu);
  5352. struct sched_domain *tmp;
  5353. for (tmp = sd; tmp; tmp = tmp->parent)
  5354. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5355. /* Remove the sched domains which do not contribute to scheduling. */
  5356. for (tmp = sd; tmp; ) {
  5357. struct sched_domain *parent = tmp->parent;
  5358. if (!parent)
  5359. break;
  5360. if (sd_parent_degenerate(tmp, parent)) {
  5361. tmp->parent = parent->parent;
  5362. if (parent->parent)
  5363. parent->parent->child = tmp;
  5364. } else
  5365. tmp = tmp->parent;
  5366. }
  5367. if (sd && sd_degenerate(sd)) {
  5368. sd = sd->parent;
  5369. if (sd)
  5370. sd->child = NULL;
  5371. }
  5372. sched_domain_debug(sd, cpu);
  5373. rq_attach_root(rq, rd);
  5374. rcu_assign_pointer(rq->sd, sd);
  5375. }
  5376. /* cpus with isolated domains */
  5377. static cpumask_var_t cpu_isolated_map;
  5378. /* Setup the mask of cpus configured for isolated domains */
  5379. static int __init isolated_cpu_setup(char *str)
  5380. {
  5381. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5382. cpulist_parse(str, cpu_isolated_map);
  5383. return 1;
  5384. }
  5385. __setup("isolcpus=", isolated_cpu_setup);
  5386. /*
  5387. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5388. * to a function which identifies what group(along with sched group) a CPU
  5389. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5390. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5391. *
  5392. * init_sched_build_groups will build a circular linked list of the groups
  5393. * covered by the given span, and will set each group's ->cpumask correctly,
  5394. * and ->cpu_power to 0.
  5395. */
  5396. static void
  5397. init_sched_build_groups(const struct cpumask *span,
  5398. const struct cpumask *cpu_map,
  5399. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5400. struct sched_group **sg,
  5401. struct cpumask *tmpmask),
  5402. struct cpumask *covered, struct cpumask *tmpmask)
  5403. {
  5404. struct sched_group *first = NULL, *last = NULL;
  5405. int i;
  5406. cpumask_clear(covered);
  5407. for_each_cpu(i, span) {
  5408. struct sched_group *sg;
  5409. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5410. int j;
  5411. if (cpumask_test_cpu(i, covered))
  5412. continue;
  5413. cpumask_clear(sched_group_cpus(sg));
  5414. sg->cpu_power = 0;
  5415. for_each_cpu(j, span) {
  5416. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5417. continue;
  5418. cpumask_set_cpu(j, covered);
  5419. cpumask_set_cpu(j, sched_group_cpus(sg));
  5420. }
  5421. if (!first)
  5422. first = sg;
  5423. if (last)
  5424. last->next = sg;
  5425. last = sg;
  5426. }
  5427. last->next = first;
  5428. }
  5429. #define SD_NODES_PER_DOMAIN 16
  5430. #ifdef CONFIG_NUMA
  5431. /**
  5432. * find_next_best_node - find the next node to include in a sched_domain
  5433. * @node: node whose sched_domain we're building
  5434. * @used_nodes: nodes already in the sched_domain
  5435. *
  5436. * Find the next node to include in a given scheduling domain. Simply
  5437. * finds the closest node not already in the @used_nodes map.
  5438. *
  5439. * Should use nodemask_t.
  5440. */
  5441. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5442. {
  5443. int i, n, val, min_val, best_node = 0;
  5444. min_val = INT_MAX;
  5445. for (i = 0; i < nr_node_ids; i++) {
  5446. /* Start at @node */
  5447. n = (node + i) % nr_node_ids;
  5448. if (!nr_cpus_node(n))
  5449. continue;
  5450. /* Skip already used nodes */
  5451. if (node_isset(n, *used_nodes))
  5452. continue;
  5453. /* Simple min distance search */
  5454. val = node_distance(node, n);
  5455. if (val < min_val) {
  5456. min_val = val;
  5457. best_node = n;
  5458. }
  5459. }
  5460. node_set(best_node, *used_nodes);
  5461. return best_node;
  5462. }
  5463. /**
  5464. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5465. * @node: node whose cpumask we're constructing
  5466. * @span: resulting cpumask
  5467. *
  5468. * Given a node, construct a good cpumask for its sched_domain to span. It
  5469. * should be one that prevents unnecessary balancing, but also spreads tasks
  5470. * out optimally.
  5471. */
  5472. static void sched_domain_node_span(int node, struct cpumask *span)
  5473. {
  5474. nodemask_t used_nodes;
  5475. int i;
  5476. cpumask_clear(span);
  5477. nodes_clear(used_nodes);
  5478. cpumask_or(span, span, cpumask_of_node(node));
  5479. node_set(node, used_nodes);
  5480. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5481. int next_node = find_next_best_node(node, &used_nodes);
  5482. cpumask_or(span, span, cpumask_of_node(next_node));
  5483. }
  5484. }
  5485. #endif /* CONFIG_NUMA */
  5486. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5487. /*
  5488. * The cpus mask in sched_group and sched_domain hangs off the end.
  5489. *
  5490. * ( See the the comments in include/linux/sched.h:struct sched_group
  5491. * and struct sched_domain. )
  5492. */
  5493. struct static_sched_group {
  5494. struct sched_group sg;
  5495. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5496. };
  5497. struct static_sched_domain {
  5498. struct sched_domain sd;
  5499. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5500. };
  5501. struct s_data {
  5502. #ifdef CONFIG_NUMA
  5503. int sd_allnodes;
  5504. cpumask_var_t domainspan;
  5505. cpumask_var_t covered;
  5506. cpumask_var_t notcovered;
  5507. #endif
  5508. cpumask_var_t nodemask;
  5509. cpumask_var_t this_sibling_map;
  5510. cpumask_var_t this_core_map;
  5511. cpumask_var_t this_book_map;
  5512. cpumask_var_t send_covered;
  5513. cpumask_var_t tmpmask;
  5514. struct sched_group **sched_group_nodes;
  5515. struct root_domain *rd;
  5516. };
  5517. enum s_alloc {
  5518. sa_sched_groups = 0,
  5519. sa_rootdomain,
  5520. sa_tmpmask,
  5521. sa_send_covered,
  5522. sa_this_book_map,
  5523. sa_this_core_map,
  5524. sa_this_sibling_map,
  5525. sa_nodemask,
  5526. sa_sched_group_nodes,
  5527. #ifdef CONFIG_NUMA
  5528. sa_notcovered,
  5529. sa_covered,
  5530. sa_domainspan,
  5531. #endif
  5532. sa_none,
  5533. };
  5534. /*
  5535. * SMT sched-domains:
  5536. */
  5537. #ifdef CONFIG_SCHED_SMT
  5538. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5539. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5540. static int
  5541. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5542. struct sched_group **sg, struct cpumask *unused)
  5543. {
  5544. if (sg)
  5545. *sg = &per_cpu(sched_groups, cpu).sg;
  5546. return cpu;
  5547. }
  5548. #endif /* CONFIG_SCHED_SMT */
  5549. /*
  5550. * multi-core sched-domains:
  5551. */
  5552. #ifdef CONFIG_SCHED_MC
  5553. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5554. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5555. static int
  5556. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5557. struct sched_group **sg, struct cpumask *mask)
  5558. {
  5559. int group;
  5560. #ifdef CONFIG_SCHED_SMT
  5561. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5562. group = cpumask_first(mask);
  5563. #else
  5564. group = cpu;
  5565. #endif
  5566. if (sg)
  5567. *sg = &per_cpu(sched_group_core, group).sg;
  5568. return group;
  5569. }
  5570. #endif /* CONFIG_SCHED_MC */
  5571. /*
  5572. * book sched-domains:
  5573. */
  5574. #ifdef CONFIG_SCHED_BOOK
  5575. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5576. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5577. static int
  5578. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5579. struct sched_group **sg, struct cpumask *mask)
  5580. {
  5581. int group = cpu;
  5582. #ifdef CONFIG_SCHED_MC
  5583. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5584. group = cpumask_first(mask);
  5585. #elif defined(CONFIG_SCHED_SMT)
  5586. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5587. group = cpumask_first(mask);
  5588. #endif
  5589. if (sg)
  5590. *sg = &per_cpu(sched_group_book, group).sg;
  5591. return group;
  5592. }
  5593. #endif /* CONFIG_SCHED_BOOK */
  5594. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5595. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5596. static int
  5597. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5598. struct sched_group **sg, struct cpumask *mask)
  5599. {
  5600. int group;
  5601. #ifdef CONFIG_SCHED_BOOK
  5602. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5603. group = cpumask_first(mask);
  5604. #elif defined(CONFIG_SCHED_MC)
  5605. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5606. group = cpumask_first(mask);
  5607. #elif defined(CONFIG_SCHED_SMT)
  5608. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5609. group = cpumask_first(mask);
  5610. #else
  5611. group = cpu;
  5612. #endif
  5613. if (sg)
  5614. *sg = &per_cpu(sched_group_phys, group).sg;
  5615. return group;
  5616. }
  5617. #ifdef CONFIG_NUMA
  5618. /*
  5619. * The init_sched_build_groups can't handle what we want to do with node
  5620. * groups, so roll our own. Now each node has its own list of groups which
  5621. * gets dynamically allocated.
  5622. */
  5623. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5624. static struct sched_group ***sched_group_nodes_bycpu;
  5625. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5626. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5627. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5628. struct sched_group **sg,
  5629. struct cpumask *nodemask)
  5630. {
  5631. int group;
  5632. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5633. group = cpumask_first(nodemask);
  5634. if (sg)
  5635. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5636. return group;
  5637. }
  5638. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5639. {
  5640. struct sched_group *sg = group_head;
  5641. int j;
  5642. if (!sg)
  5643. return;
  5644. do {
  5645. for_each_cpu(j, sched_group_cpus(sg)) {
  5646. struct sched_domain *sd;
  5647. sd = &per_cpu(phys_domains, j).sd;
  5648. if (j != group_first_cpu(sd->groups)) {
  5649. /*
  5650. * Only add "power" once for each
  5651. * physical package.
  5652. */
  5653. continue;
  5654. }
  5655. sg->cpu_power += sd->groups->cpu_power;
  5656. }
  5657. sg = sg->next;
  5658. } while (sg != group_head);
  5659. }
  5660. static int build_numa_sched_groups(struct s_data *d,
  5661. const struct cpumask *cpu_map, int num)
  5662. {
  5663. struct sched_domain *sd;
  5664. struct sched_group *sg, *prev;
  5665. int n, j;
  5666. cpumask_clear(d->covered);
  5667. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5668. if (cpumask_empty(d->nodemask)) {
  5669. d->sched_group_nodes[num] = NULL;
  5670. goto out;
  5671. }
  5672. sched_domain_node_span(num, d->domainspan);
  5673. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5674. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5675. GFP_KERNEL, num);
  5676. if (!sg) {
  5677. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5678. num);
  5679. return -ENOMEM;
  5680. }
  5681. d->sched_group_nodes[num] = sg;
  5682. for_each_cpu(j, d->nodemask) {
  5683. sd = &per_cpu(node_domains, j).sd;
  5684. sd->groups = sg;
  5685. }
  5686. sg->cpu_power = 0;
  5687. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5688. sg->next = sg;
  5689. cpumask_or(d->covered, d->covered, d->nodemask);
  5690. prev = sg;
  5691. for (j = 0; j < nr_node_ids; j++) {
  5692. n = (num + j) % nr_node_ids;
  5693. cpumask_complement(d->notcovered, d->covered);
  5694. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5695. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5696. if (cpumask_empty(d->tmpmask))
  5697. break;
  5698. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5699. if (cpumask_empty(d->tmpmask))
  5700. continue;
  5701. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5702. GFP_KERNEL, num);
  5703. if (!sg) {
  5704. printk(KERN_WARNING
  5705. "Can not alloc domain group for node %d\n", j);
  5706. return -ENOMEM;
  5707. }
  5708. sg->cpu_power = 0;
  5709. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5710. sg->next = prev->next;
  5711. cpumask_or(d->covered, d->covered, d->tmpmask);
  5712. prev->next = sg;
  5713. prev = sg;
  5714. }
  5715. out:
  5716. return 0;
  5717. }
  5718. #endif /* CONFIG_NUMA */
  5719. #ifdef CONFIG_NUMA
  5720. /* Free memory allocated for various sched_group structures */
  5721. static void free_sched_groups(const struct cpumask *cpu_map,
  5722. struct cpumask *nodemask)
  5723. {
  5724. int cpu, i;
  5725. for_each_cpu(cpu, cpu_map) {
  5726. struct sched_group **sched_group_nodes
  5727. = sched_group_nodes_bycpu[cpu];
  5728. if (!sched_group_nodes)
  5729. continue;
  5730. for (i = 0; i < nr_node_ids; i++) {
  5731. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5732. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5733. if (cpumask_empty(nodemask))
  5734. continue;
  5735. if (sg == NULL)
  5736. continue;
  5737. sg = sg->next;
  5738. next_sg:
  5739. oldsg = sg;
  5740. sg = sg->next;
  5741. kfree(oldsg);
  5742. if (oldsg != sched_group_nodes[i])
  5743. goto next_sg;
  5744. }
  5745. kfree(sched_group_nodes);
  5746. sched_group_nodes_bycpu[cpu] = NULL;
  5747. }
  5748. }
  5749. #else /* !CONFIG_NUMA */
  5750. static void free_sched_groups(const struct cpumask *cpu_map,
  5751. struct cpumask *nodemask)
  5752. {
  5753. }
  5754. #endif /* CONFIG_NUMA */
  5755. /*
  5756. * Initialize sched groups cpu_power.
  5757. *
  5758. * cpu_power indicates the capacity of sched group, which is used while
  5759. * distributing the load between different sched groups in a sched domain.
  5760. * Typically cpu_power for all the groups in a sched domain will be same unless
  5761. * there are asymmetries in the topology. If there are asymmetries, group
  5762. * having more cpu_power will pickup more load compared to the group having
  5763. * less cpu_power.
  5764. */
  5765. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5766. {
  5767. struct sched_domain *child;
  5768. struct sched_group *group;
  5769. long power;
  5770. int weight;
  5771. WARN_ON(!sd || !sd->groups);
  5772. if (cpu != group_first_cpu(sd->groups))
  5773. return;
  5774. child = sd->child;
  5775. sd->groups->cpu_power = 0;
  5776. if (!child) {
  5777. power = SCHED_LOAD_SCALE;
  5778. weight = cpumask_weight(sched_domain_span(sd));
  5779. /*
  5780. * SMT siblings share the power of a single core.
  5781. * Usually multiple threads get a better yield out of
  5782. * that one core than a single thread would have,
  5783. * reflect that in sd->smt_gain.
  5784. */
  5785. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5786. power *= sd->smt_gain;
  5787. power /= weight;
  5788. power >>= SCHED_LOAD_SHIFT;
  5789. }
  5790. sd->groups->cpu_power += power;
  5791. return;
  5792. }
  5793. /*
  5794. * Add cpu_power of each child group to this groups cpu_power.
  5795. */
  5796. group = child->groups;
  5797. do {
  5798. sd->groups->cpu_power += group->cpu_power;
  5799. group = group->next;
  5800. } while (group != child->groups);
  5801. }
  5802. /*
  5803. * Initializers for schedule domains
  5804. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5805. */
  5806. #ifdef CONFIG_SCHED_DEBUG
  5807. # define SD_INIT_NAME(sd, type) sd->name = #type
  5808. #else
  5809. # define SD_INIT_NAME(sd, type) do { } while (0)
  5810. #endif
  5811. #define SD_INIT(sd, type) sd_init_##type(sd)
  5812. #define SD_INIT_FUNC(type) \
  5813. static noinline void sd_init_##type(struct sched_domain *sd) \
  5814. { \
  5815. memset(sd, 0, sizeof(*sd)); \
  5816. *sd = SD_##type##_INIT; \
  5817. sd->level = SD_LV_##type; \
  5818. SD_INIT_NAME(sd, type); \
  5819. }
  5820. SD_INIT_FUNC(CPU)
  5821. #ifdef CONFIG_NUMA
  5822. SD_INIT_FUNC(ALLNODES)
  5823. SD_INIT_FUNC(NODE)
  5824. #endif
  5825. #ifdef CONFIG_SCHED_SMT
  5826. SD_INIT_FUNC(SIBLING)
  5827. #endif
  5828. #ifdef CONFIG_SCHED_MC
  5829. SD_INIT_FUNC(MC)
  5830. #endif
  5831. #ifdef CONFIG_SCHED_BOOK
  5832. SD_INIT_FUNC(BOOK)
  5833. #endif
  5834. static int default_relax_domain_level = -1;
  5835. static int __init setup_relax_domain_level(char *str)
  5836. {
  5837. unsigned long val;
  5838. val = simple_strtoul(str, NULL, 0);
  5839. if (val < SD_LV_MAX)
  5840. default_relax_domain_level = val;
  5841. return 1;
  5842. }
  5843. __setup("relax_domain_level=", setup_relax_domain_level);
  5844. static void set_domain_attribute(struct sched_domain *sd,
  5845. struct sched_domain_attr *attr)
  5846. {
  5847. int request;
  5848. if (!attr || attr->relax_domain_level < 0) {
  5849. if (default_relax_domain_level < 0)
  5850. return;
  5851. else
  5852. request = default_relax_domain_level;
  5853. } else
  5854. request = attr->relax_domain_level;
  5855. if (request < sd->level) {
  5856. /* turn off idle balance on this domain */
  5857. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5858. } else {
  5859. /* turn on idle balance on this domain */
  5860. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5861. }
  5862. }
  5863. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5864. const struct cpumask *cpu_map)
  5865. {
  5866. switch (what) {
  5867. case sa_sched_groups:
  5868. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5869. d->sched_group_nodes = NULL;
  5870. case sa_rootdomain:
  5871. free_rootdomain(d->rd); /* fall through */
  5872. case sa_tmpmask:
  5873. free_cpumask_var(d->tmpmask); /* fall through */
  5874. case sa_send_covered:
  5875. free_cpumask_var(d->send_covered); /* fall through */
  5876. case sa_this_book_map:
  5877. free_cpumask_var(d->this_book_map); /* fall through */
  5878. case sa_this_core_map:
  5879. free_cpumask_var(d->this_core_map); /* fall through */
  5880. case sa_this_sibling_map:
  5881. free_cpumask_var(d->this_sibling_map); /* fall through */
  5882. case sa_nodemask:
  5883. free_cpumask_var(d->nodemask); /* fall through */
  5884. case sa_sched_group_nodes:
  5885. #ifdef CONFIG_NUMA
  5886. kfree(d->sched_group_nodes); /* fall through */
  5887. case sa_notcovered:
  5888. free_cpumask_var(d->notcovered); /* fall through */
  5889. case sa_covered:
  5890. free_cpumask_var(d->covered); /* fall through */
  5891. case sa_domainspan:
  5892. free_cpumask_var(d->domainspan); /* fall through */
  5893. #endif
  5894. case sa_none:
  5895. break;
  5896. }
  5897. }
  5898. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5899. const struct cpumask *cpu_map)
  5900. {
  5901. #ifdef CONFIG_NUMA
  5902. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5903. return sa_none;
  5904. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5905. return sa_domainspan;
  5906. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5907. return sa_covered;
  5908. /* Allocate the per-node list of sched groups */
  5909. d->sched_group_nodes = kcalloc(nr_node_ids,
  5910. sizeof(struct sched_group *), GFP_KERNEL);
  5911. if (!d->sched_group_nodes) {
  5912. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5913. return sa_notcovered;
  5914. }
  5915. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5916. #endif
  5917. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5918. return sa_sched_group_nodes;
  5919. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5920. return sa_nodemask;
  5921. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5922. return sa_this_sibling_map;
  5923. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  5924. return sa_this_core_map;
  5925. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5926. return sa_this_book_map;
  5927. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5928. return sa_send_covered;
  5929. d->rd = alloc_rootdomain();
  5930. if (!d->rd) {
  5931. printk(KERN_WARNING "Cannot alloc root domain\n");
  5932. return sa_tmpmask;
  5933. }
  5934. return sa_rootdomain;
  5935. }
  5936. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5937. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5938. {
  5939. struct sched_domain *sd = NULL;
  5940. #ifdef CONFIG_NUMA
  5941. struct sched_domain *parent;
  5942. d->sd_allnodes = 0;
  5943. if (cpumask_weight(cpu_map) >
  5944. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5945. sd = &per_cpu(allnodes_domains, i).sd;
  5946. SD_INIT(sd, ALLNODES);
  5947. set_domain_attribute(sd, attr);
  5948. cpumask_copy(sched_domain_span(sd), cpu_map);
  5949. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5950. d->sd_allnodes = 1;
  5951. }
  5952. parent = sd;
  5953. sd = &per_cpu(node_domains, i).sd;
  5954. SD_INIT(sd, NODE);
  5955. set_domain_attribute(sd, attr);
  5956. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5957. sd->parent = parent;
  5958. if (parent)
  5959. parent->child = sd;
  5960. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5961. #endif
  5962. return sd;
  5963. }
  5964. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5965. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5966. struct sched_domain *parent, int i)
  5967. {
  5968. struct sched_domain *sd;
  5969. sd = &per_cpu(phys_domains, i).sd;
  5970. SD_INIT(sd, CPU);
  5971. set_domain_attribute(sd, attr);
  5972. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5973. sd->parent = parent;
  5974. if (parent)
  5975. parent->child = sd;
  5976. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5977. return sd;
  5978. }
  5979. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  5980. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5981. struct sched_domain *parent, int i)
  5982. {
  5983. struct sched_domain *sd = parent;
  5984. #ifdef CONFIG_SCHED_BOOK
  5985. sd = &per_cpu(book_domains, i).sd;
  5986. SD_INIT(sd, BOOK);
  5987. set_domain_attribute(sd, attr);
  5988. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  5989. sd->parent = parent;
  5990. parent->child = sd;
  5991. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  5992. #endif
  5993. return sd;
  5994. }
  5995. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5996. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5997. struct sched_domain *parent, int i)
  5998. {
  5999. struct sched_domain *sd = parent;
  6000. #ifdef CONFIG_SCHED_MC
  6001. sd = &per_cpu(core_domains, i).sd;
  6002. SD_INIT(sd, MC);
  6003. set_domain_attribute(sd, attr);
  6004. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6005. sd->parent = parent;
  6006. parent->child = sd;
  6007. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6008. #endif
  6009. return sd;
  6010. }
  6011. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6012. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6013. struct sched_domain *parent, int i)
  6014. {
  6015. struct sched_domain *sd = parent;
  6016. #ifdef CONFIG_SCHED_SMT
  6017. sd = &per_cpu(cpu_domains, i).sd;
  6018. SD_INIT(sd, SIBLING);
  6019. set_domain_attribute(sd, attr);
  6020. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6021. sd->parent = parent;
  6022. parent->child = sd;
  6023. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6024. #endif
  6025. return sd;
  6026. }
  6027. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6028. const struct cpumask *cpu_map, int cpu)
  6029. {
  6030. switch (l) {
  6031. #ifdef CONFIG_SCHED_SMT
  6032. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6033. cpumask_and(d->this_sibling_map, cpu_map,
  6034. topology_thread_cpumask(cpu));
  6035. if (cpu == cpumask_first(d->this_sibling_map))
  6036. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6037. &cpu_to_cpu_group,
  6038. d->send_covered, d->tmpmask);
  6039. break;
  6040. #endif
  6041. #ifdef CONFIG_SCHED_MC
  6042. case SD_LV_MC: /* set up multi-core groups */
  6043. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6044. if (cpu == cpumask_first(d->this_core_map))
  6045. init_sched_build_groups(d->this_core_map, cpu_map,
  6046. &cpu_to_core_group,
  6047. d->send_covered, d->tmpmask);
  6048. break;
  6049. #endif
  6050. #ifdef CONFIG_SCHED_BOOK
  6051. case SD_LV_BOOK: /* set up book groups */
  6052. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6053. if (cpu == cpumask_first(d->this_book_map))
  6054. init_sched_build_groups(d->this_book_map, cpu_map,
  6055. &cpu_to_book_group,
  6056. d->send_covered, d->tmpmask);
  6057. break;
  6058. #endif
  6059. case SD_LV_CPU: /* set up physical groups */
  6060. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6061. if (!cpumask_empty(d->nodemask))
  6062. init_sched_build_groups(d->nodemask, cpu_map,
  6063. &cpu_to_phys_group,
  6064. d->send_covered, d->tmpmask);
  6065. break;
  6066. #ifdef CONFIG_NUMA
  6067. case SD_LV_ALLNODES:
  6068. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6069. d->send_covered, d->tmpmask);
  6070. break;
  6071. #endif
  6072. default:
  6073. break;
  6074. }
  6075. }
  6076. /*
  6077. * Build sched domains for a given set of cpus and attach the sched domains
  6078. * to the individual cpus
  6079. */
  6080. static int __build_sched_domains(const struct cpumask *cpu_map,
  6081. struct sched_domain_attr *attr)
  6082. {
  6083. enum s_alloc alloc_state = sa_none;
  6084. struct s_data d;
  6085. struct sched_domain *sd;
  6086. int i;
  6087. #ifdef CONFIG_NUMA
  6088. d.sd_allnodes = 0;
  6089. #endif
  6090. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6091. if (alloc_state != sa_rootdomain)
  6092. goto error;
  6093. alloc_state = sa_sched_groups;
  6094. /*
  6095. * Set up domains for cpus specified by the cpu_map.
  6096. */
  6097. for_each_cpu(i, cpu_map) {
  6098. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6099. cpu_map);
  6100. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6101. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6102. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6103. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6104. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6105. }
  6106. for_each_cpu(i, cpu_map) {
  6107. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6108. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6109. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6110. }
  6111. /* Set up physical groups */
  6112. for (i = 0; i < nr_node_ids; i++)
  6113. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6114. #ifdef CONFIG_NUMA
  6115. /* Set up node groups */
  6116. if (d.sd_allnodes)
  6117. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6118. for (i = 0; i < nr_node_ids; i++)
  6119. if (build_numa_sched_groups(&d, cpu_map, i))
  6120. goto error;
  6121. #endif
  6122. /* Calculate CPU power for physical packages and nodes */
  6123. #ifdef CONFIG_SCHED_SMT
  6124. for_each_cpu(i, cpu_map) {
  6125. sd = &per_cpu(cpu_domains, i).sd;
  6126. init_sched_groups_power(i, sd);
  6127. }
  6128. #endif
  6129. #ifdef CONFIG_SCHED_MC
  6130. for_each_cpu(i, cpu_map) {
  6131. sd = &per_cpu(core_domains, i).sd;
  6132. init_sched_groups_power(i, sd);
  6133. }
  6134. #endif
  6135. #ifdef CONFIG_SCHED_BOOK
  6136. for_each_cpu(i, cpu_map) {
  6137. sd = &per_cpu(book_domains, i).sd;
  6138. init_sched_groups_power(i, sd);
  6139. }
  6140. #endif
  6141. for_each_cpu(i, cpu_map) {
  6142. sd = &per_cpu(phys_domains, i).sd;
  6143. init_sched_groups_power(i, sd);
  6144. }
  6145. #ifdef CONFIG_NUMA
  6146. for (i = 0; i < nr_node_ids; i++)
  6147. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6148. if (d.sd_allnodes) {
  6149. struct sched_group *sg;
  6150. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6151. d.tmpmask);
  6152. init_numa_sched_groups_power(sg);
  6153. }
  6154. #endif
  6155. /* Attach the domains */
  6156. for_each_cpu(i, cpu_map) {
  6157. #ifdef CONFIG_SCHED_SMT
  6158. sd = &per_cpu(cpu_domains, i).sd;
  6159. #elif defined(CONFIG_SCHED_MC)
  6160. sd = &per_cpu(core_domains, i).sd;
  6161. #elif defined(CONFIG_SCHED_BOOK)
  6162. sd = &per_cpu(book_domains, i).sd;
  6163. #else
  6164. sd = &per_cpu(phys_domains, i).sd;
  6165. #endif
  6166. cpu_attach_domain(sd, d.rd, i);
  6167. }
  6168. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6169. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6170. return 0;
  6171. error:
  6172. __free_domain_allocs(&d, alloc_state, cpu_map);
  6173. return -ENOMEM;
  6174. }
  6175. static int build_sched_domains(const struct cpumask *cpu_map)
  6176. {
  6177. return __build_sched_domains(cpu_map, NULL);
  6178. }
  6179. static cpumask_var_t *doms_cur; /* current sched domains */
  6180. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6181. static struct sched_domain_attr *dattr_cur;
  6182. /* attribues of custom domains in 'doms_cur' */
  6183. /*
  6184. * Special case: If a kmalloc of a doms_cur partition (array of
  6185. * cpumask) fails, then fallback to a single sched domain,
  6186. * as determined by the single cpumask fallback_doms.
  6187. */
  6188. static cpumask_var_t fallback_doms;
  6189. /*
  6190. * arch_update_cpu_topology lets virtualized architectures update the
  6191. * cpu core maps. It is supposed to return 1 if the topology changed
  6192. * or 0 if it stayed the same.
  6193. */
  6194. int __attribute__((weak)) arch_update_cpu_topology(void)
  6195. {
  6196. return 0;
  6197. }
  6198. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6199. {
  6200. int i;
  6201. cpumask_var_t *doms;
  6202. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6203. if (!doms)
  6204. return NULL;
  6205. for (i = 0; i < ndoms; i++) {
  6206. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6207. free_sched_domains(doms, i);
  6208. return NULL;
  6209. }
  6210. }
  6211. return doms;
  6212. }
  6213. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6214. {
  6215. unsigned int i;
  6216. for (i = 0; i < ndoms; i++)
  6217. free_cpumask_var(doms[i]);
  6218. kfree(doms);
  6219. }
  6220. /*
  6221. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6222. * For now this just excludes isolated cpus, but could be used to
  6223. * exclude other special cases in the future.
  6224. */
  6225. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6226. {
  6227. int err;
  6228. arch_update_cpu_topology();
  6229. ndoms_cur = 1;
  6230. doms_cur = alloc_sched_domains(ndoms_cur);
  6231. if (!doms_cur)
  6232. doms_cur = &fallback_doms;
  6233. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6234. dattr_cur = NULL;
  6235. err = build_sched_domains(doms_cur[0]);
  6236. register_sched_domain_sysctl();
  6237. return err;
  6238. }
  6239. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6240. struct cpumask *tmpmask)
  6241. {
  6242. free_sched_groups(cpu_map, tmpmask);
  6243. }
  6244. /*
  6245. * Detach sched domains from a group of cpus specified in cpu_map
  6246. * These cpus will now be attached to the NULL domain
  6247. */
  6248. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6249. {
  6250. /* Save because hotplug lock held. */
  6251. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6252. int i;
  6253. for_each_cpu(i, cpu_map)
  6254. cpu_attach_domain(NULL, &def_root_domain, i);
  6255. synchronize_sched();
  6256. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6257. }
  6258. /* handle null as "default" */
  6259. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6260. struct sched_domain_attr *new, int idx_new)
  6261. {
  6262. struct sched_domain_attr tmp;
  6263. /* fast path */
  6264. if (!new && !cur)
  6265. return 1;
  6266. tmp = SD_ATTR_INIT;
  6267. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6268. new ? (new + idx_new) : &tmp,
  6269. sizeof(struct sched_domain_attr));
  6270. }
  6271. /*
  6272. * Partition sched domains as specified by the 'ndoms_new'
  6273. * cpumasks in the array doms_new[] of cpumasks. This compares
  6274. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6275. * It destroys each deleted domain and builds each new domain.
  6276. *
  6277. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6278. * The masks don't intersect (don't overlap.) We should setup one
  6279. * sched domain for each mask. CPUs not in any of the cpumasks will
  6280. * not be load balanced. If the same cpumask appears both in the
  6281. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6282. * it as it is.
  6283. *
  6284. * The passed in 'doms_new' should be allocated using
  6285. * alloc_sched_domains. This routine takes ownership of it and will
  6286. * free_sched_domains it when done with it. If the caller failed the
  6287. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6288. * and partition_sched_domains() will fallback to the single partition
  6289. * 'fallback_doms', it also forces the domains to be rebuilt.
  6290. *
  6291. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6292. * ndoms_new == 0 is a special case for destroying existing domains,
  6293. * and it will not create the default domain.
  6294. *
  6295. * Call with hotplug lock held
  6296. */
  6297. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6298. struct sched_domain_attr *dattr_new)
  6299. {
  6300. int i, j, n;
  6301. int new_topology;
  6302. mutex_lock(&sched_domains_mutex);
  6303. /* always unregister in case we don't destroy any domains */
  6304. unregister_sched_domain_sysctl();
  6305. /* Let architecture update cpu core mappings. */
  6306. new_topology = arch_update_cpu_topology();
  6307. n = doms_new ? ndoms_new : 0;
  6308. /* Destroy deleted domains */
  6309. for (i = 0; i < ndoms_cur; i++) {
  6310. for (j = 0; j < n && !new_topology; j++) {
  6311. if (cpumask_equal(doms_cur[i], doms_new[j])
  6312. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6313. goto match1;
  6314. }
  6315. /* no match - a current sched domain not in new doms_new[] */
  6316. detach_destroy_domains(doms_cur[i]);
  6317. match1:
  6318. ;
  6319. }
  6320. if (doms_new == NULL) {
  6321. ndoms_cur = 0;
  6322. doms_new = &fallback_doms;
  6323. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6324. WARN_ON_ONCE(dattr_new);
  6325. }
  6326. /* Build new domains */
  6327. for (i = 0; i < ndoms_new; i++) {
  6328. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6329. if (cpumask_equal(doms_new[i], doms_cur[j])
  6330. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6331. goto match2;
  6332. }
  6333. /* no match - add a new doms_new */
  6334. __build_sched_domains(doms_new[i],
  6335. dattr_new ? dattr_new + i : NULL);
  6336. match2:
  6337. ;
  6338. }
  6339. /* Remember the new sched domains */
  6340. if (doms_cur != &fallback_doms)
  6341. free_sched_domains(doms_cur, ndoms_cur);
  6342. kfree(dattr_cur); /* kfree(NULL) is safe */
  6343. doms_cur = doms_new;
  6344. dattr_cur = dattr_new;
  6345. ndoms_cur = ndoms_new;
  6346. register_sched_domain_sysctl();
  6347. mutex_unlock(&sched_domains_mutex);
  6348. }
  6349. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6350. static void arch_reinit_sched_domains(void)
  6351. {
  6352. get_online_cpus();
  6353. /* Destroy domains first to force the rebuild */
  6354. partition_sched_domains(0, NULL, NULL);
  6355. rebuild_sched_domains();
  6356. put_online_cpus();
  6357. }
  6358. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6359. {
  6360. unsigned int level = 0;
  6361. if (sscanf(buf, "%u", &level) != 1)
  6362. return -EINVAL;
  6363. /*
  6364. * level is always be positive so don't check for
  6365. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6366. * What happens on 0 or 1 byte write,
  6367. * need to check for count as well?
  6368. */
  6369. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6370. return -EINVAL;
  6371. if (smt)
  6372. sched_smt_power_savings = level;
  6373. else
  6374. sched_mc_power_savings = level;
  6375. arch_reinit_sched_domains();
  6376. return count;
  6377. }
  6378. #ifdef CONFIG_SCHED_MC
  6379. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6380. struct sysdev_class_attribute *attr,
  6381. char *page)
  6382. {
  6383. return sprintf(page, "%u\n", sched_mc_power_savings);
  6384. }
  6385. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6386. struct sysdev_class_attribute *attr,
  6387. const char *buf, size_t count)
  6388. {
  6389. return sched_power_savings_store(buf, count, 0);
  6390. }
  6391. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6392. sched_mc_power_savings_show,
  6393. sched_mc_power_savings_store);
  6394. #endif
  6395. #ifdef CONFIG_SCHED_SMT
  6396. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6397. struct sysdev_class_attribute *attr,
  6398. char *page)
  6399. {
  6400. return sprintf(page, "%u\n", sched_smt_power_savings);
  6401. }
  6402. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6403. struct sysdev_class_attribute *attr,
  6404. const char *buf, size_t count)
  6405. {
  6406. return sched_power_savings_store(buf, count, 1);
  6407. }
  6408. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6409. sched_smt_power_savings_show,
  6410. sched_smt_power_savings_store);
  6411. #endif
  6412. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6413. {
  6414. int err = 0;
  6415. #ifdef CONFIG_SCHED_SMT
  6416. if (smt_capable())
  6417. err = sysfs_create_file(&cls->kset.kobj,
  6418. &attr_sched_smt_power_savings.attr);
  6419. #endif
  6420. #ifdef CONFIG_SCHED_MC
  6421. if (!err && mc_capable())
  6422. err = sysfs_create_file(&cls->kset.kobj,
  6423. &attr_sched_mc_power_savings.attr);
  6424. #endif
  6425. return err;
  6426. }
  6427. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6428. /*
  6429. * Update cpusets according to cpu_active mask. If cpusets are
  6430. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6431. * around partition_sched_domains().
  6432. */
  6433. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6434. void *hcpu)
  6435. {
  6436. switch (action & ~CPU_TASKS_FROZEN) {
  6437. case CPU_ONLINE:
  6438. case CPU_DOWN_FAILED:
  6439. cpuset_update_active_cpus();
  6440. return NOTIFY_OK;
  6441. default:
  6442. return NOTIFY_DONE;
  6443. }
  6444. }
  6445. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6446. void *hcpu)
  6447. {
  6448. switch (action & ~CPU_TASKS_FROZEN) {
  6449. case CPU_DOWN_PREPARE:
  6450. cpuset_update_active_cpus();
  6451. return NOTIFY_OK;
  6452. default:
  6453. return NOTIFY_DONE;
  6454. }
  6455. }
  6456. static int update_runtime(struct notifier_block *nfb,
  6457. unsigned long action, void *hcpu)
  6458. {
  6459. int cpu = (int)(long)hcpu;
  6460. switch (action) {
  6461. case CPU_DOWN_PREPARE:
  6462. case CPU_DOWN_PREPARE_FROZEN:
  6463. disable_runtime(cpu_rq(cpu));
  6464. return NOTIFY_OK;
  6465. case CPU_DOWN_FAILED:
  6466. case CPU_DOWN_FAILED_FROZEN:
  6467. case CPU_ONLINE:
  6468. case CPU_ONLINE_FROZEN:
  6469. enable_runtime(cpu_rq(cpu));
  6470. return NOTIFY_OK;
  6471. default:
  6472. return NOTIFY_DONE;
  6473. }
  6474. }
  6475. void __init sched_init_smp(void)
  6476. {
  6477. cpumask_var_t non_isolated_cpus;
  6478. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6479. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6480. #if defined(CONFIG_NUMA)
  6481. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6482. GFP_KERNEL);
  6483. BUG_ON(sched_group_nodes_bycpu == NULL);
  6484. #endif
  6485. get_online_cpus();
  6486. mutex_lock(&sched_domains_mutex);
  6487. arch_init_sched_domains(cpu_active_mask);
  6488. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6489. if (cpumask_empty(non_isolated_cpus))
  6490. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6491. mutex_unlock(&sched_domains_mutex);
  6492. put_online_cpus();
  6493. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6494. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6495. /* RT runtime code needs to handle some hotplug events */
  6496. hotcpu_notifier(update_runtime, 0);
  6497. init_hrtick();
  6498. /* Move init over to a non-isolated CPU */
  6499. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6500. BUG();
  6501. sched_init_granularity();
  6502. free_cpumask_var(non_isolated_cpus);
  6503. init_sched_rt_class();
  6504. }
  6505. #else
  6506. void __init sched_init_smp(void)
  6507. {
  6508. sched_init_granularity();
  6509. }
  6510. #endif /* CONFIG_SMP */
  6511. const_debug unsigned int sysctl_timer_migration = 1;
  6512. int in_sched_functions(unsigned long addr)
  6513. {
  6514. return in_lock_functions(addr) ||
  6515. (addr >= (unsigned long)__sched_text_start
  6516. && addr < (unsigned long)__sched_text_end);
  6517. }
  6518. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6519. {
  6520. cfs_rq->tasks_timeline = RB_ROOT;
  6521. INIT_LIST_HEAD(&cfs_rq->tasks);
  6522. #ifdef CONFIG_FAIR_GROUP_SCHED
  6523. cfs_rq->rq = rq;
  6524. #endif
  6525. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6526. }
  6527. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6528. {
  6529. struct rt_prio_array *array;
  6530. int i;
  6531. array = &rt_rq->active;
  6532. for (i = 0; i < MAX_RT_PRIO; i++) {
  6533. INIT_LIST_HEAD(array->queue + i);
  6534. __clear_bit(i, array->bitmap);
  6535. }
  6536. /* delimiter for bitsearch: */
  6537. __set_bit(MAX_RT_PRIO, array->bitmap);
  6538. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6539. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6540. #ifdef CONFIG_SMP
  6541. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6542. #endif
  6543. #endif
  6544. #ifdef CONFIG_SMP
  6545. rt_rq->rt_nr_migratory = 0;
  6546. rt_rq->overloaded = 0;
  6547. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6548. #endif
  6549. rt_rq->rt_time = 0;
  6550. rt_rq->rt_throttled = 0;
  6551. rt_rq->rt_runtime = 0;
  6552. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6553. #ifdef CONFIG_RT_GROUP_SCHED
  6554. rt_rq->rt_nr_boosted = 0;
  6555. rt_rq->rq = rq;
  6556. #endif
  6557. }
  6558. #ifdef CONFIG_FAIR_GROUP_SCHED
  6559. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6560. struct sched_entity *se, int cpu,
  6561. struct sched_entity *parent)
  6562. {
  6563. struct rq *rq = cpu_rq(cpu);
  6564. tg->cfs_rq[cpu] = cfs_rq;
  6565. init_cfs_rq(cfs_rq, rq);
  6566. cfs_rq->tg = tg;
  6567. tg->se[cpu] = se;
  6568. /* se could be NULL for init_task_group */
  6569. if (!se)
  6570. return;
  6571. if (!parent)
  6572. se->cfs_rq = &rq->cfs;
  6573. else
  6574. se->cfs_rq = parent->my_q;
  6575. se->my_q = cfs_rq;
  6576. update_load_set(&se->load, tg->shares);
  6577. se->parent = parent;
  6578. }
  6579. #endif
  6580. #ifdef CONFIG_RT_GROUP_SCHED
  6581. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6582. struct sched_rt_entity *rt_se, int cpu,
  6583. struct sched_rt_entity *parent)
  6584. {
  6585. struct rq *rq = cpu_rq(cpu);
  6586. tg->rt_rq[cpu] = rt_rq;
  6587. init_rt_rq(rt_rq, rq);
  6588. rt_rq->tg = tg;
  6589. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6590. tg->rt_se[cpu] = rt_se;
  6591. if (!rt_se)
  6592. return;
  6593. if (!parent)
  6594. rt_se->rt_rq = &rq->rt;
  6595. else
  6596. rt_se->rt_rq = parent->my_q;
  6597. rt_se->my_q = rt_rq;
  6598. rt_se->parent = parent;
  6599. INIT_LIST_HEAD(&rt_se->run_list);
  6600. }
  6601. #endif
  6602. void __init sched_init(void)
  6603. {
  6604. int i, j;
  6605. unsigned long alloc_size = 0, ptr;
  6606. #ifdef CONFIG_FAIR_GROUP_SCHED
  6607. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6608. #endif
  6609. #ifdef CONFIG_RT_GROUP_SCHED
  6610. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6611. #endif
  6612. #ifdef CONFIG_CPUMASK_OFFSTACK
  6613. alloc_size += num_possible_cpus() * cpumask_size();
  6614. #endif
  6615. if (alloc_size) {
  6616. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6617. #ifdef CONFIG_FAIR_GROUP_SCHED
  6618. init_task_group.se = (struct sched_entity **)ptr;
  6619. ptr += nr_cpu_ids * sizeof(void **);
  6620. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6621. ptr += nr_cpu_ids * sizeof(void **);
  6622. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6623. #ifdef CONFIG_RT_GROUP_SCHED
  6624. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6625. ptr += nr_cpu_ids * sizeof(void **);
  6626. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6627. ptr += nr_cpu_ids * sizeof(void **);
  6628. #endif /* CONFIG_RT_GROUP_SCHED */
  6629. #ifdef CONFIG_CPUMASK_OFFSTACK
  6630. for_each_possible_cpu(i) {
  6631. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6632. ptr += cpumask_size();
  6633. }
  6634. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6635. }
  6636. #ifdef CONFIG_SMP
  6637. init_defrootdomain();
  6638. #endif
  6639. init_rt_bandwidth(&def_rt_bandwidth,
  6640. global_rt_period(), global_rt_runtime());
  6641. #ifdef CONFIG_RT_GROUP_SCHED
  6642. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6643. global_rt_period(), global_rt_runtime());
  6644. #endif /* CONFIG_RT_GROUP_SCHED */
  6645. #ifdef CONFIG_CGROUP_SCHED
  6646. list_add(&init_task_group.list, &task_groups);
  6647. INIT_LIST_HEAD(&init_task_group.children);
  6648. #endif /* CONFIG_CGROUP_SCHED */
  6649. for_each_possible_cpu(i) {
  6650. struct rq *rq;
  6651. rq = cpu_rq(i);
  6652. raw_spin_lock_init(&rq->lock);
  6653. rq->nr_running = 0;
  6654. rq->calc_load_active = 0;
  6655. rq->calc_load_update = jiffies + LOAD_FREQ;
  6656. init_cfs_rq(&rq->cfs, rq);
  6657. init_rt_rq(&rq->rt, rq);
  6658. #ifdef CONFIG_FAIR_GROUP_SCHED
  6659. init_task_group.shares = init_task_group_load;
  6660. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6661. #ifdef CONFIG_CGROUP_SCHED
  6662. /*
  6663. * How much cpu bandwidth does init_task_group get?
  6664. *
  6665. * In case of task-groups formed thr' the cgroup filesystem, it
  6666. * gets 100% of the cpu resources in the system. This overall
  6667. * system cpu resource is divided among the tasks of
  6668. * init_task_group and its child task-groups in a fair manner,
  6669. * based on each entity's (task or task-group's) weight
  6670. * (se->load.weight).
  6671. *
  6672. * In other words, if init_task_group has 10 tasks of weight
  6673. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6674. * then A0's share of the cpu resource is:
  6675. *
  6676. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6677. *
  6678. * We achieve this by letting init_task_group's tasks sit
  6679. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6680. */
  6681. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, NULL);
  6682. #endif
  6683. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6684. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6685. #ifdef CONFIG_RT_GROUP_SCHED
  6686. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6687. #ifdef CONFIG_CGROUP_SCHED
  6688. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, NULL);
  6689. #endif
  6690. #endif
  6691. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6692. rq->cpu_load[j] = 0;
  6693. rq->last_load_update_tick = jiffies;
  6694. #ifdef CONFIG_SMP
  6695. rq->sd = NULL;
  6696. rq->rd = NULL;
  6697. rq->cpu_power = SCHED_LOAD_SCALE;
  6698. rq->post_schedule = 0;
  6699. rq->active_balance = 0;
  6700. rq->next_balance = jiffies;
  6701. rq->push_cpu = 0;
  6702. rq->cpu = i;
  6703. rq->online = 0;
  6704. rq->idle_stamp = 0;
  6705. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6706. rq_attach_root(rq, &def_root_domain);
  6707. #ifdef CONFIG_NO_HZ
  6708. rq->nohz_balance_kick = 0;
  6709. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6710. #endif
  6711. #endif
  6712. init_rq_hrtick(rq);
  6713. atomic_set(&rq->nr_iowait, 0);
  6714. }
  6715. set_load_weight(&init_task);
  6716. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6717. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6718. #endif
  6719. #ifdef CONFIG_SMP
  6720. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6721. #endif
  6722. #ifdef CONFIG_RT_MUTEXES
  6723. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6724. #endif
  6725. /*
  6726. * The boot idle thread does lazy MMU switching as well:
  6727. */
  6728. atomic_inc(&init_mm.mm_count);
  6729. enter_lazy_tlb(&init_mm, current);
  6730. /*
  6731. * Make us the idle thread. Technically, schedule() should not be
  6732. * called from this thread, however somewhere below it might be,
  6733. * but because we are the idle thread, we just pick up running again
  6734. * when this runqueue becomes "idle".
  6735. */
  6736. init_idle(current, smp_processor_id());
  6737. calc_load_update = jiffies + LOAD_FREQ;
  6738. /*
  6739. * During early bootup we pretend to be a normal task:
  6740. */
  6741. current->sched_class = &fair_sched_class;
  6742. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6743. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6744. #ifdef CONFIG_SMP
  6745. #ifdef CONFIG_NO_HZ
  6746. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6747. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6748. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6749. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6750. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6751. #endif
  6752. /* May be allocated at isolcpus cmdline parse time */
  6753. if (cpu_isolated_map == NULL)
  6754. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6755. #endif /* SMP */
  6756. perf_event_init();
  6757. scheduler_running = 1;
  6758. }
  6759. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6760. static inline int preempt_count_equals(int preempt_offset)
  6761. {
  6762. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6763. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6764. }
  6765. void __might_sleep(const char *file, int line, int preempt_offset)
  6766. {
  6767. #ifdef in_atomic
  6768. static unsigned long prev_jiffy; /* ratelimiting */
  6769. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6770. system_state != SYSTEM_RUNNING || oops_in_progress)
  6771. return;
  6772. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6773. return;
  6774. prev_jiffy = jiffies;
  6775. printk(KERN_ERR
  6776. "BUG: sleeping function called from invalid context at %s:%d\n",
  6777. file, line);
  6778. printk(KERN_ERR
  6779. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6780. in_atomic(), irqs_disabled(),
  6781. current->pid, current->comm);
  6782. debug_show_held_locks(current);
  6783. if (irqs_disabled())
  6784. print_irqtrace_events(current);
  6785. dump_stack();
  6786. #endif
  6787. }
  6788. EXPORT_SYMBOL(__might_sleep);
  6789. #endif
  6790. #ifdef CONFIG_MAGIC_SYSRQ
  6791. static void normalize_task(struct rq *rq, struct task_struct *p)
  6792. {
  6793. int on_rq;
  6794. on_rq = p->se.on_rq;
  6795. if (on_rq)
  6796. deactivate_task(rq, p, 0);
  6797. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6798. if (on_rq) {
  6799. activate_task(rq, p, 0);
  6800. resched_task(rq->curr);
  6801. }
  6802. }
  6803. void normalize_rt_tasks(void)
  6804. {
  6805. struct task_struct *g, *p;
  6806. unsigned long flags;
  6807. struct rq *rq;
  6808. read_lock_irqsave(&tasklist_lock, flags);
  6809. do_each_thread(g, p) {
  6810. /*
  6811. * Only normalize user tasks:
  6812. */
  6813. if (!p->mm)
  6814. continue;
  6815. p->se.exec_start = 0;
  6816. #ifdef CONFIG_SCHEDSTATS
  6817. p->se.statistics.wait_start = 0;
  6818. p->se.statistics.sleep_start = 0;
  6819. p->se.statistics.block_start = 0;
  6820. #endif
  6821. if (!rt_task(p)) {
  6822. /*
  6823. * Renice negative nice level userspace
  6824. * tasks back to 0:
  6825. */
  6826. if (TASK_NICE(p) < 0 && p->mm)
  6827. set_user_nice(p, 0);
  6828. continue;
  6829. }
  6830. raw_spin_lock(&p->pi_lock);
  6831. rq = __task_rq_lock(p);
  6832. normalize_task(rq, p);
  6833. __task_rq_unlock(rq);
  6834. raw_spin_unlock(&p->pi_lock);
  6835. } while_each_thread(g, p);
  6836. read_unlock_irqrestore(&tasklist_lock, flags);
  6837. }
  6838. #endif /* CONFIG_MAGIC_SYSRQ */
  6839. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6840. /*
  6841. * These functions are only useful for the IA64 MCA handling, or kdb.
  6842. *
  6843. * They can only be called when the whole system has been
  6844. * stopped - every CPU needs to be quiescent, and no scheduling
  6845. * activity can take place. Using them for anything else would
  6846. * be a serious bug, and as a result, they aren't even visible
  6847. * under any other configuration.
  6848. */
  6849. /**
  6850. * curr_task - return the current task for a given cpu.
  6851. * @cpu: the processor in question.
  6852. *
  6853. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6854. */
  6855. struct task_struct *curr_task(int cpu)
  6856. {
  6857. return cpu_curr(cpu);
  6858. }
  6859. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6860. #ifdef CONFIG_IA64
  6861. /**
  6862. * set_curr_task - set the current task for a given cpu.
  6863. * @cpu: the processor in question.
  6864. * @p: the task pointer to set.
  6865. *
  6866. * Description: This function must only be used when non-maskable interrupts
  6867. * are serviced on a separate stack. It allows the architecture to switch the
  6868. * notion of the current task on a cpu in a non-blocking manner. This function
  6869. * must be called with all CPU's synchronized, and interrupts disabled, the
  6870. * and caller must save the original value of the current task (see
  6871. * curr_task() above) and restore that value before reenabling interrupts and
  6872. * re-starting the system.
  6873. *
  6874. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6875. */
  6876. void set_curr_task(int cpu, struct task_struct *p)
  6877. {
  6878. cpu_curr(cpu) = p;
  6879. }
  6880. #endif
  6881. #ifdef CONFIG_FAIR_GROUP_SCHED
  6882. static void free_fair_sched_group(struct task_group *tg)
  6883. {
  6884. int i;
  6885. for_each_possible_cpu(i) {
  6886. if (tg->cfs_rq)
  6887. kfree(tg->cfs_rq[i]);
  6888. if (tg->se)
  6889. kfree(tg->se[i]);
  6890. }
  6891. kfree(tg->cfs_rq);
  6892. kfree(tg->se);
  6893. }
  6894. static
  6895. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6896. {
  6897. struct cfs_rq *cfs_rq;
  6898. struct sched_entity *se;
  6899. struct rq *rq;
  6900. int i;
  6901. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6902. if (!tg->cfs_rq)
  6903. goto err;
  6904. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6905. if (!tg->se)
  6906. goto err;
  6907. tg->shares = NICE_0_LOAD;
  6908. for_each_possible_cpu(i) {
  6909. rq = cpu_rq(i);
  6910. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6911. GFP_KERNEL, cpu_to_node(i));
  6912. if (!cfs_rq)
  6913. goto err;
  6914. se = kzalloc_node(sizeof(struct sched_entity),
  6915. GFP_KERNEL, cpu_to_node(i));
  6916. if (!se)
  6917. goto err_free_rq;
  6918. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  6919. }
  6920. return 1;
  6921. err_free_rq:
  6922. kfree(cfs_rq);
  6923. err:
  6924. return 0;
  6925. }
  6926. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6927. {
  6928. struct rq *rq = cpu_rq(cpu);
  6929. unsigned long flags;
  6930. int i;
  6931. /*
  6932. * Only empty task groups can be destroyed; so we can speculatively
  6933. * check on_list without danger of it being re-added.
  6934. */
  6935. if (!tg->cfs_rq[cpu]->on_list)
  6936. return;
  6937. raw_spin_lock_irqsave(&rq->lock, flags);
  6938. list_del_leaf_cfs_rq(tg->cfs_rq[i]);
  6939. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6940. }
  6941. #else /* !CONFG_FAIR_GROUP_SCHED */
  6942. static inline void free_fair_sched_group(struct task_group *tg)
  6943. {
  6944. }
  6945. static inline
  6946. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6947. {
  6948. return 1;
  6949. }
  6950. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6951. {
  6952. }
  6953. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6954. #ifdef CONFIG_RT_GROUP_SCHED
  6955. static void free_rt_sched_group(struct task_group *tg)
  6956. {
  6957. int i;
  6958. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6959. for_each_possible_cpu(i) {
  6960. if (tg->rt_rq)
  6961. kfree(tg->rt_rq[i]);
  6962. if (tg->rt_se)
  6963. kfree(tg->rt_se[i]);
  6964. }
  6965. kfree(tg->rt_rq);
  6966. kfree(tg->rt_se);
  6967. }
  6968. static
  6969. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6970. {
  6971. struct rt_rq *rt_rq;
  6972. struct sched_rt_entity *rt_se;
  6973. struct rq *rq;
  6974. int i;
  6975. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6976. if (!tg->rt_rq)
  6977. goto err;
  6978. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6979. if (!tg->rt_se)
  6980. goto err;
  6981. init_rt_bandwidth(&tg->rt_bandwidth,
  6982. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6983. for_each_possible_cpu(i) {
  6984. rq = cpu_rq(i);
  6985. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6986. GFP_KERNEL, cpu_to_node(i));
  6987. if (!rt_rq)
  6988. goto err;
  6989. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6990. GFP_KERNEL, cpu_to_node(i));
  6991. if (!rt_se)
  6992. goto err_free_rq;
  6993. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  6994. }
  6995. return 1;
  6996. err_free_rq:
  6997. kfree(rt_rq);
  6998. err:
  6999. return 0;
  7000. }
  7001. #else /* !CONFIG_RT_GROUP_SCHED */
  7002. static inline void free_rt_sched_group(struct task_group *tg)
  7003. {
  7004. }
  7005. static inline
  7006. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7007. {
  7008. return 1;
  7009. }
  7010. #endif /* CONFIG_RT_GROUP_SCHED */
  7011. #ifdef CONFIG_CGROUP_SCHED
  7012. static void free_sched_group(struct task_group *tg)
  7013. {
  7014. free_fair_sched_group(tg);
  7015. free_rt_sched_group(tg);
  7016. kfree(tg);
  7017. }
  7018. /* allocate runqueue etc for a new task group */
  7019. struct task_group *sched_create_group(struct task_group *parent)
  7020. {
  7021. struct task_group *tg;
  7022. unsigned long flags;
  7023. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7024. if (!tg)
  7025. return ERR_PTR(-ENOMEM);
  7026. if (!alloc_fair_sched_group(tg, parent))
  7027. goto err;
  7028. if (!alloc_rt_sched_group(tg, parent))
  7029. goto err;
  7030. spin_lock_irqsave(&task_group_lock, flags);
  7031. list_add_rcu(&tg->list, &task_groups);
  7032. WARN_ON(!parent); /* root should already exist */
  7033. tg->parent = parent;
  7034. INIT_LIST_HEAD(&tg->children);
  7035. list_add_rcu(&tg->siblings, &parent->children);
  7036. spin_unlock_irqrestore(&task_group_lock, flags);
  7037. return tg;
  7038. err:
  7039. free_sched_group(tg);
  7040. return ERR_PTR(-ENOMEM);
  7041. }
  7042. /* rcu callback to free various structures associated with a task group */
  7043. static void free_sched_group_rcu(struct rcu_head *rhp)
  7044. {
  7045. /* now it should be safe to free those cfs_rqs */
  7046. free_sched_group(container_of(rhp, struct task_group, rcu));
  7047. }
  7048. /* Destroy runqueue etc associated with a task group */
  7049. void sched_destroy_group(struct task_group *tg)
  7050. {
  7051. unsigned long flags;
  7052. int i;
  7053. /* end participation in shares distribution */
  7054. for_each_possible_cpu(i)
  7055. unregister_fair_sched_group(tg, i);
  7056. spin_lock_irqsave(&task_group_lock, flags);
  7057. list_del_rcu(&tg->list);
  7058. list_del_rcu(&tg->siblings);
  7059. spin_unlock_irqrestore(&task_group_lock, flags);
  7060. /* wait for possible concurrent references to cfs_rqs complete */
  7061. call_rcu(&tg->rcu, free_sched_group_rcu);
  7062. }
  7063. /* change task's runqueue when it moves between groups.
  7064. * The caller of this function should have put the task in its new group
  7065. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7066. * reflect its new group.
  7067. */
  7068. void sched_move_task(struct task_struct *tsk)
  7069. {
  7070. int on_rq, running;
  7071. unsigned long flags;
  7072. struct rq *rq;
  7073. rq = task_rq_lock(tsk, &flags);
  7074. running = task_current(rq, tsk);
  7075. on_rq = tsk->se.on_rq;
  7076. if (on_rq)
  7077. dequeue_task(rq, tsk, 0);
  7078. if (unlikely(running))
  7079. tsk->sched_class->put_prev_task(rq, tsk);
  7080. #ifdef CONFIG_FAIR_GROUP_SCHED
  7081. if (tsk->sched_class->task_move_group)
  7082. tsk->sched_class->task_move_group(tsk, on_rq);
  7083. else
  7084. #endif
  7085. set_task_rq(tsk, task_cpu(tsk));
  7086. if (unlikely(running))
  7087. tsk->sched_class->set_curr_task(rq);
  7088. if (on_rq)
  7089. enqueue_task(rq, tsk, 0);
  7090. task_rq_unlock(rq, &flags);
  7091. }
  7092. #endif /* CONFIG_CGROUP_SCHED */
  7093. #ifdef CONFIG_FAIR_GROUP_SCHED
  7094. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7095. {
  7096. struct cfs_rq *cfs_rq = se->cfs_rq;
  7097. int on_rq;
  7098. on_rq = se->on_rq;
  7099. if (on_rq)
  7100. dequeue_entity(cfs_rq, se, 0);
  7101. update_load_set(&se->load, shares);
  7102. if (on_rq)
  7103. enqueue_entity(cfs_rq, se, 0);
  7104. }
  7105. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7106. {
  7107. struct cfs_rq *cfs_rq = se->cfs_rq;
  7108. struct rq *rq = cfs_rq->rq;
  7109. unsigned long flags;
  7110. raw_spin_lock_irqsave(&rq->lock, flags);
  7111. __set_se_shares(se, shares);
  7112. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7113. }
  7114. static DEFINE_MUTEX(shares_mutex);
  7115. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7116. {
  7117. int i;
  7118. /*
  7119. * We can't change the weight of the root cgroup.
  7120. */
  7121. if (!tg->se[0])
  7122. return -EINVAL;
  7123. if (shares < MIN_SHARES)
  7124. shares = MIN_SHARES;
  7125. else if (shares > MAX_SHARES)
  7126. shares = MAX_SHARES;
  7127. mutex_lock(&shares_mutex);
  7128. if (tg->shares == shares)
  7129. goto done;
  7130. tg->shares = shares;
  7131. for_each_possible_cpu(i) {
  7132. /*
  7133. * force a rebalance
  7134. */
  7135. set_se_shares(tg->se[i], shares);
  7136. }
  7137. done:
  7138. mutex_unlock(&shares_mutex);
  7139. return 0;
  7140. }
  7141. unsigned long sched_group_shares(struct task_group *tg)
  7142. {
  7143. return tg->shares;
  7144. }
  7145. #endif
  7146. #ifdef CONFIG_RT_GROUP_SCHED
  7147. /*
  7148. * Ensure that the real time constraints are schedulable.
  7149. */
  7150. static DEFINE_MUTEX(rt_constraints_mutex);
  7151. static unsigned long to_ratio(u64 period, u64 runtime)
  7152. {
  7153. if (runtime == RUNTIME_INF)
  7154. return 1ULL << 20;
  7155. return div64_u64(runtime << 20, period);
  7156. }
  7157. /* Must be called with tasklist_lock held */
  7158. static inline int tg_has_rt_tasks(struct task_group *tg)
  7159. {
  7160. struct task_struct *g, *p;
  7161. do_each_thread(g, p) {
  7162. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7163. return 1;
  7164. } while_each_thread(g, p);
  7165. return 0;
  7166. }
  7167. struct rt_schedulable_data {
  7168. struct task_group *tg;
  7169. u64 rt_period;
  7170. u64 rt_runtime;
  7171. };
  7172. static int tg_schedulable(struct task_group *tg, void *data)
  7173. {
  7174. struct rt_schedulable_data *d = data;
  7175. struct task_group *child;
  7176. unsigned long total, sum = 0;
  7177. u64 period, runtime;
  7178. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7179. runtime = tg->rt_bandwidth.rt_runtime;
  7180. if (tg == d->tg) {
  7181. period = d->rt_period;
  7182. runtime = d->rt_runtime;
  7183. }
  7184. /*
  7185. * Cannot have more runtime than the period.
  7186. */
  7187. if (runtime > period && runtime != RUNTIME_INF)
  7188. return -EINVAL;
  7189. /*
  7190. * Ensure we don't starve existing RT tasks.
  7191. */
  7192. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7193. return -EBUSY;
  7194. total = to_ratio(period, runtime);
  7195. /*
  7196. * Nobody can have more than the global setting allows.
  7197. */
  7198. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7199. return -EINVAL;
  7200. /*
  7201. * The sum of our children's runtime should not exceed our own.
  7202. */
  7203. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7204. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7205. runtime = child->rt_bandwidth.rt_runtime;
  7206. if (child == d->tg) {
  7207. period = d->rt_period;
  7208. runtime = d->rt_runtime;
  7209. }
  7210. sum += to_ratio(period, runtime);
  7211. }
  7212. if (sum > total)
  7213. return -EINVAL;
  7214. return 0;
  7215. }
  7216. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7217. {
  7218. struct rt_schedulable_data data = {
  7219. .tg = tg,
  7220. .rt_period = period,
  7221. .rt_runtime = runtime,
  7222. };
  7223. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7224. }
  7225. static int tg_set_bandwidth(struct task_group *tg,
  7226. u64 rt_period, u64 rt_runtime)
  7227. {
  7228. int i, err = 0;
  7229. mutex_lock(&rt_constraints_mutex);
  7230. read_lock(&tasklist_lock);
  7231. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7232. if (err)
  7233. goto unlock;
  7234. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7235. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7236. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7237. for_each_possible_cpu(i) {
  7238. struct rt_rq *rt_rq = tg->rt_rq[i];
  7239. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7240. rt_rq->rt_runtime = rt_runtime;
  7241. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7242. }
  7243. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7244. unlock:
  7245. read_unlock(&tasklist_lock);
  7246. mutex_unlock(&rt_constraints_mutex);
  7247. return err;
  7248. }
  7249. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7250. {
  7251. u64 rt_runtime, rt_period;
  7252. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7253. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7254. if (rt_runtime_us < 0)
  7255. rt_runtime = RUNTIME_INF;
  7256. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7257. }
  7258. long sched_group_rt_runtime(struct task_group *tg)
  7259. {
  7260. u64 rt_runtime_us;
  7261. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7262. return -1;
  7263. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7264. do_div(rt_runtime_us, NSEC_PER_USEC);
  7265. return rt_runtime_us;
  7266. }
  7267. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7268. {
  7269. u64 rt_runtime, rt_period;
  7270. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7271. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7272. if (rt_period == 0)
  7273. return -EINVAL;
  7274. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7275. }
  7276. long sched_group_rt_period(struct task_group *tg)
  7277. {
  7278. u64 rt_period_us;
  7279. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7280. do_div(rt_period_us, NSEC_PER_USEC);
  7281. return rt_period_us;
  7282. }
  7283. static int sched_rt_global_constraints(void)
  7284. {
  7285. u64 runtime, period;
  7286. int ret = 0;
  7287. if (sysctl_sched_rt_period <= 0)
  7288. return -EINVAL;
  7289. runtime = global_rt_runtime();
  7290. period = global_rt_period();
  7291. /*
  7292. * Sanity check on the sysctl variables.
  7293. */
  7294. if (runtime > period && runtime != RUNTIME_INF)
  7295. return -EINVAL;
  7296. mutex_lock(&rt_constraints_mutex);
  7297. read_lock(&tasklist_lock);
  7298. ret = __rt_schedulable(NULL, 0, 0);
  7299. read_unlock(&tasklist_lock);
  7300. mutex_unlock(&rt_constraints_mutex);
  7301. return ret;
  7302. }
  7303. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7304. {
  7305. /* Don't accept realtime tasks when there is no way for them to run */
  7306. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7307. return 0;
  7308. return 1;
  7309. }
  7310. #else /* !CONFIG_RT_GROUP_SCHED */
  7311. static int sched_rt_global_constraints(void)
  7312. {
  7313. unsigned long flags;
  7314. int i;
  7315. if (sysctl_sched_rt_period <= 0)
  7316. return -EINVAL;
  7317. /*
  7318. * There's always some RT tasks in the root group
  7319. * -- migration, kstopmachine etc..
  7320. */
  7321. if (sysctl_sched_rt_runtime == 0)
  7322. return -EBUSY;
  7323. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7324. for_each_possible_cpu(i) {
  7325. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7326. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7327. rt_rq->rt_runtime = global_rt_runtime();
  7328. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7329. }
  7330. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7331. return 0;
  7332. }
  7333. #endif /* CONFIG_RT_GROUP_SCHED */
  7334. int sched_rt_handler(struct ctl_table *table, int write,
  7335. void __user *buffer, size_t *lenp,
  7336. loff_t *ppos)
  7337. {
  7338. int ret;
  7339. int old_period, old_runtime;
  7340. static DEFINE_MUTEX(mutex);
  7341. mutex_lock(&mutex);
  7342. old_period = sysctl_sched_rt_period;
  7343. old_runtime = sysctl_sched_rt_runtime;
  7344. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7345. if (!ret && write) {
  7346. ret = sched_rt_global_constraints();
  7347. if (ret) {
  7348. sysctl_sched_rt_period = old_period;
  7349. sysctl_sched_rt_runtime = old_runtime;
  7350. } else {
  7351. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7352. def_rt_bandwidth.rt_period =
  7353. ns_to_ktime(global_rt_period());
  7354. }
  7355. }
  7356. mutex_unlock(&mutex);
  7357. return ret;
  7358. }
  7359. #ifdef CONFIG_CGROUP_SCHED
  7360. /* return corresponding task_group object of a cgroup */
  7361. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7362. {
  7363. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7364. struct task_group, css);
  7365. }
  7366. static struct cgroup_subsys_state *
  7367. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7368. {
  7369. struct task_group *tg, *parent;
  7370. if (!cgrp->parent) {
  7371. /* This is early initialization for the top cgroup */
  7372. return &init_task_group.css;
  7373. }
  7374. parent = cgroup_tg(cgrp->parent);
  7375. tg = sched_create_group(parent);
  7376. if (IS_ERR(tg))
  7377. return ERR_PTR(-ENOMEM);
  7378. return &tg->css;
  7379. }
  7380. static void
  7381. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7382. {
  7383. struct task_group *tg = cgroup_tg(cgrp);
  7384. sched_destroy_group(tg);
  7385. }
  7386. static int
  7387. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7388. {
  7389. #ifdef CONFIG_RT_GROUP_SCHED
  7390. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7391. return -EINVAL;
  7392. #else
  7393. /* We don't support RT-tasks being in separate groups */
  7394. if (tsk->sched_class != &fair_sched_class)
  7395. return -EINVAL;
  7396. #endif
  7397. return 0;
  7398. }
  7399. static int
  7400. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7401. struct task_struct *tsk, bool threadgroup)
  7402. {
  7403. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7404. if (retval)
  7405. return retval;
  7406. if (threadgroup) {
  7407. struct task_struct *c;
  7408. rcu_read_lock();
  7409. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7410. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7411. if (retval) {
  7412. rcu_read_unlock();
  7413. return retval;
  7414. }
  7415. }
  7416. rcu_read_unlock();
  7417. }
  7418. return 0;
  7419. }
  7420. static void
  7421. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7422. struct cgroup *old_cont, struct task_struct *tsk,
  7423. bool threadgroup)
  7424. {
  7425. sched_move_task(tsk);
  7426. if (threadgroup) {
  7427. struct task_struct *c;
  7428. rcu_read_lock();
  7429. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7430. sched_move_task(c);
  7431. }
  7432. rcu_read_unlock();
  7433. }
  7434. }
  7435. #ifdef CONFIG_FAIR_GROUP_SCHED
  7436. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7437. u64 shareval)
  7438. {
  7439. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7440. }
  7441. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7442. {
  7443. struct task_group *tg = cgroup_tg(cgrp);
  7444. return (u64) tg->shares;
  7445. }
  7446. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7447. #ifdef CONFIG_RT_GROUP_SCHED
  7448. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7449. s64 val)
  7450. {
  7451. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7452. }
  7453. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7454. {
  7455. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7456. }
  7457. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7458. u64 rt_period_us)
  7459. {
  7460. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7461. }
  7462. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7463. {
  7464. return sched_group_rt_period(cgroup_tg(cgrp));
  7465. }
  7466. #endif /* CONFIG_RT_GROUP_SCHED */
  7467. static struct cftype cpu_files[] = {
  7468. #ifdef CONFIG_FAIR_GROUP_SCHED
  7469. {
  7470. .name = "shares",
  7471. .read_u64 = cpu_shares_read_u64,
  7472. .write_u64 = cpu_shares_write_u64,
  7473. },
  7474. #endif
  7475. #ifdef CONFIG_RT_GROUP_SCHED
  7476. {
  7477. .name = "rt_runtime_us",
  7478. .read_s64 = cpu_rt_runtime_read,
  7479. .write_s64 = cpu_rt_runtime_write,
  7480. },
  7481. {
  7482. .name = "rt_period_us",
  7483. .read_u64 = cpu_rt_period_read_uint,
  7484. .write_u64 = cpu_rt_period_write_uint,
  7485. },
  7486. #endif
  7487. };
  7488. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7489. {
  7490. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7491. }
  7492. struct cgroup_subsys cpu_cgroup_subsys = {
  7493. .name = "cpu",
  7494. .create = cpu_cgroup_create,
  7495. .destroy = cpu_cgroup_destroy,
  7496. .can_attach = cpu_cgroup_can_attach,
  7497. .attach = cpu_cgroup_attach,
  7498. .populate = cpu_cgroup_populate,
  7499. .subsys_id = cpu_cgroup_subsys_id,
  7500. .early_init = 1,
  7501. };
  7502. #endif /* CONFIG_CGROUP_SCHED */
  7503. #ifdef CONFIG_CGROUP_CPUACCT
  7504. /*
  7505. * CPU accounting code for task groups.
  7506. *
  7507. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7508. * (balbir@in.ibm.com).
  7509. */
  7510. /* track cpu usage of a group of tasks and its child groups */
  7511. struct cpuacct {
  7512. struct cgroup_subsys_state css;
  7513. /* cpuusage holds pointer to a u64-type object on every cpu */
  7514. u64 __percpu *cpuusage;
  7515. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7516. struct cpuacct *parent;
  7517. };
  7518. struct cgroup_subsys cpuacct_subsys;
  7519. /* return cpu accounting group corresponding to this container */
  7520. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7521. {
  7522. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7523. struct cpuacct, css);
  7524. }
  7525. /* return cpu accounting group to which this task belongs */
  7526. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7527. {
  7528. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7529. struct cpuacct, css);
  7530. }
  7531. /* create a new cpu accounting group */
  7532. static struct cgroup_subsys_state *cpuacct_create(
  7533. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7534. {
  7535. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7536. int i;
  7537. if (!ca)
  7538. goto out;
  7539. ca->cpuusage = alloc_percpu(u64);
  7540. if (!ca->cpuusage)
  7541. goto out_free_ca;
  7542. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7543. if (percpu_counter_init(&ca->cpustat[i], 0))
  7544. goto out_free_counters;
  7545. if (cgrp->parent)
  7546. ca->parent = cgroup_ca(cgrp->parent);
  7547. return &ca->css;
  7548. out_free_counters:
  7549. while (--i >= 0)
  7550. percpu_counter_destroy(&ca->cpustat[i]);
  7551. free_percpu(ca->cpuusage);
  7552. out_free_ca:
  7553. kfree(ca);
  7554. out:
  7555. return ERR_PTR(-ENOMEM);
  7556. }
  7557. /* destroy an existing cpu accounting group */
  7558. static void
  7559. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7560. {
  7561. struct cpuacct *ca = cgroup_ca(cgrp);
  7562. int i;
  7563. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7564. percpu_counter_destroy(&ca->cpustat[i]);
  7565. free_percpu(ca->cpuusage);
  7566. kfree(ca);
  7567. }
  7568. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7569. {
  7570. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7571. u64 data;
  7572. #ifndef CONFIG_64BIT
  7573. /*
  7574. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7575. */
  7576. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7577. data = *cpuusage;
  7578. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7579. #else
  7580. data = *cpuusage;
  7581. #endif
  7582. return data;
  7583. }
  7584. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7585. {
  7586. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7587. #ifndef CONFIG_64BIT
  7588. /*
  7589. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7590. */
  7591. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7592. *cpuusage = val;
  7593. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7594. #else
  7595. *cpuusage = val;
  7596. #endif
  7597. }
  7598. /* return total cpu usage (in nanoseconds) of a group */
  7599. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7600. {
  7601. struct cpuacct *ca = cgroup_ca(cgrp);
  7602. u64 totalcpuusage = 0;
  7603. int i;
  7604. for_each_present_cpu(i)
  7605. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7606. return totalcpuusage;
  7607. }
  7608. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7609. u64 reset)
  7610. {
  7611. struct cpuacct *ca = cgroup_ca(cgrp);
  7612. int err = 0;
  7613. int i;
  7614. if (reset) {
  7615. err = -EINVAL;
  7616. goto out;
  7617. }
  7618. for_each_present_cpu(i)
  7619. cpuacct_cpuusage_write(ca, i, 0);
  7620. out:
  7621. return err;
  7622. }
  7623. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7624. struct seq_file *m)
  7625. {
  7626. struct cpuacct *ca = cgroup_ca(cgroup);
  7627. u64 percpu;
  7628. int i;
  7629. for_each_present_cpu(i) {
  7630. percpu = cpuacct_cpuusage_read(ca, i);
  7631. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7632. }
  7633. seq_printf(m, "\n");
  7634. return 0;
  7635. }
  7636. static const char *cpuacct_stat_desc[] = {
  7637. [CPUACCT_STAT_USER] = "user",
  7638. [CPUACCT_STAT_SYSTEM] = "system",
  7639. };
  7640. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7641. struct cgroup_map_cb *cb)
  7642. {
  7643. struct cpuacct *ca = cgroup_ca(cgrp);
  7644. int i;
  7645. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7646. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7647. val = cputime64_to_clock_t(val);
  7648. cb->fill(cb, cpuacct_stat_desc[i], val);
  7649. }
  7650. return 0;
  7651. }
  7652. static struct cftype files[] = {
  7653. {
  7654. .name = "usage",
  7655. .read_u64 = cpuusage_read,
  7656. .write_u64 = cpuusage_write,
  7657. },
  7658. {
  7659. .name = "usage_percpu",
  7660. .read_seq_string = cpuacct_percpu_seq_read,
  7661. },
  7662. {
  7663. .name = "stat",
  7664. .read_map = cpuacct_stats_show,
  7665. },
  7666. };
  7667. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7668. {
  7669. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7670. }
  7671. /*
  7672. * charge this task's execution time to its accounting group.
  7673. *
  7674. * called with rq->lock held.
  7675. */
  7676. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7677. {
  7678. struct cpuacct *ca;
  7679. int cpu;
  7680. if (unlikely(!cpuacct_subsys.active))
  7681. return;
  7682. cpu = task_cpu(tsk);
  7683. rcu_read_lock();
  7684. ca = task_ca(tsk);
  7685. for (; ca; ca = ca->parent) {
  7686. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7687. *cpuusage += cputime;
  7688. }
  7689. rcu_read_unlock();
  7690. }
  7691. /*
  7692. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7693. * in cputime_t units. As a result, cpuacct_update_stats calls
  7694. * percpu_counter_add with values large enough to always overflow the
  7695. * per cpu batch limit causing bad SMP scalability.
  7696. *
  7697. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7698. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7699. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7700. */
  7701. #ifdef CONFIG_SMP
  7702. #define CPUACCT_BATCH \
  7703. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7704. #else
  7705. #define CPUACCT_BATCH 0
  7706. #endif
  7707. /*
  7708. * Charge the system/user time to the task's accounting group.
  7709. */
  7710. static void cpuacct_update_stats(struct task_struct *tsk,
  7711. enum cpuacct_stat_index idx, cputime_t val)
  7712. {
  7713. struct cpuacct *ca;
  7714. int batch = CPUACCT_BATCH;
  7715. if (unlikely(!cpuacct_subsys.active))
  7716. return;
  7717. rcu_read_lock();
  7718. ca = task_ca(tsk);
  7719. do {
  7720. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7721. ca = ca->parent;
  7722. } while (ca);
  7723. rcu_read_unlock();
  7724. }
  7725. struct cgroup_subsys cpuacct_subsys = {
  7726. .name = "cpuacct",
  7727. .create = cpuacct_create,
  7728. .destroy = cpuacct_destroy,
  7729. .populate = cpuacct_populate,
  7730. .subsys_id = cpuacct_subsys_id,
  7731. };
  7732. #endif /* CONFIG_CGROUP_CPUACCT */
  7733. #ifndef CONFIG_SMP
  7734. void synchronize_sched_expedited(void)
  7735. {
  7736. barrier();
  7737. }
  7738. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7739. #else /* #ifndef CONFIG_SMP */
  7740. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7741. static int synchronize_sched_expedited_cpu_stop(void *data)
  7742. {
  7743. /*
  7744. * There must be a full memory barrier on each affected CPU
  7745. * between the time that try_stop_cpus() is called and the
  7746. * time that it returns.
  7747. *
  7748. * In the current initial implementation of cpu_stop, the
  7749. * above condition is already met when the control reaches
  7750. * this point and the following smp_mb() is not strictly
  7751. * necessary. Do smp_mb() anyway for documentation and
  7752. * robustness against future implementation changes.
  7753. */
  7754. smp_mb(); /* See above comment block. */
  7755. return 0;
  7756. }
  7757. /*
  7758. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7759. * approach to force grace period to end quickly. This consumes
  7760. * significant time on all CPUs, and is thus not recommended for
  7761. * any sort of common-case code.
  7762. *
  7763. * Note that it is illegal to call this function while holding any
  7764. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7765. * observe this restriction will result in deadlock.
  7766. */
  7767. void synchronize_sched_expedited(void)
  7768. {
  7769. int snap, trycount = 0;
  7770. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7771. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7772. get_online_cpus();
  7773. while (try_stop_cpus(cpu_online_mask,
  7774. synchronize_sched_expedited_cpu_stop,
  7775. NULL) == -EAGAIN) {
  7776. put_online_cpus();
  7777. if (trycount++ < 10)
  7778. udelay(trycount * num_online_cpus());
  7779. else {
  7780. synchronize_sched();
  7781. return;
  7782. }
  7783. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7784. smp_mb(); /* ensure test happens before caller kfree */
  7785. return;
  7786. }
  7787. get_online_cpus();
  7788. }
  7789. atomic_inc(&synchronize_sched_expedited_count);
  7790. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7791. put_online_cpus();
  7792. }
  7793. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7794. #endif /* #else #ifndef CONFIG_SMP */