process.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/module.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/user.h>
  19. #include <linux/delay.h>
  20. #include <linux/reboot.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/init.h>
  24. #include <linux/cpu.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/leds.h>
  32. #include <asm/processor.h>
  33. #include <asm/system.h>
  34. #include <asm/thread_notify.h>
  35. #include <asm/stacktrace.h>
  36. #include <asm/mach/time.h>
  37. static const char *processor_modes[] = {
  38. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  39. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  40. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  41. "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  42. };
  43. static const char *isa_modes[] = {
  44. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  45. };
  46. extern void setup_mm_for_reboot(char mode);
  47. static volatile int hlt_counter;
  48. #include <mach/system.h>
  49. void disable_hlt(void)
  50. {
  51. hlt_counter++;
  52. }
  53. EXPORT_SYMBOL(disable_hlt);
  54. void enable_hlt(void)
  55. {
  56. hlt_counter--;
  57. }
  58. EXPORT_SYMBOL(enable_hlt);
  59. static int __init nohlt_setup(char *__unused)
  60. {
  61. hlt_counter = 1;
  62. return 1;
  63. }
  64. static int __init hlt_setup(char *__unused)
  65. {
  66. hlt_counter = 0;
  67. return 1;
  68. }
  69. __setup("nohlt", nohlt_setup);
  70. __setup("hlt", hlt_setup);
  71. void arm_machine_restart(char mode, const char *cmd)
  72. {
  73. /* Disable interrupts first */
  74. local_irq_disable();
  75. local_fiq_disable();
  76. /*
  77. * Tell the mm system that we are going to reboot -
  78. * we may need it to insert some 1:1 mappings so that
  79. * soft boot works.
  80. */
  81. setup_mm_for_reboot(mode);
  82. /* Clean and invalidate caches */
  83. flush_cache_all();
  84. /* Turn off caching */
  85. cpu_proc_fin();
  86. /* Push out any further dirty data, and ensure cache is empty */
  87. flush_cache_all();
  88. /*
  89. * Now call the architecture specific reboot code.
  90. */
  91. arch_reset(mode, cmd);
  92. /*
  93. * Whoops - the architecture was unable to reboot.
  94. * Tell the user!
  95. */
  96. mdelay(1000);
  97. printk("Reboot failed -- System halted\n");
  98. while (1);
  99. }
  100. /*
  101. * Function pointers to optional machine specific functions
  102. */
  103. void (*pm_power_off)(void);
  104. EXPORT_SYMBOL(pm_power_off);
  105. void (*arm_pm_restart)(char str, const char *cmd) = arm_machine_restart;
  106. EXPORT_SYMBOL_GPL(arm_pm_restart);
  107. /*
  108. * This is our default idle handler. We need to disable
  109. * interrupts here to ensure we don't miss a wakeup call.
  110. */
  111. static void default_idle(void)
  112. {
  113. if (!need_resched())
  114. arch_idle();
  115. local_irq_enable();
  116. }
  117. void (*pm_idle)(void) = default_idle;
  118. EXPORT_SYMBOL(pm_idle);
  119. /*
  120. * The idle thread, has rather strange semantics for calling pm_idle,
  121. * but this is what x86 does and we need to do the same, so that
  122. * things like cpuidle get called in the same way. The only difference
  123. * is that we always respect 'hlt_counter' to prevent low power idle.
  124. */
  125. void cpu_idle(void)
  126. {
  127. local_fiq_enable();
  128. /* endless idle loop with no priority at all */
  129. while (1) {
  130. tick_nohz_stop_sched_tick(1);
  131. leds_event(led_idle_start);
  132. while (!need_resched()) {
  133. #ifdef CONFIG_HOTPLUG_CPU
  134. if (cpu_is_offline(smp_processor_id()))
  135. cpu_die();
  136. #endif
  137. local_irq_disable();
  138. if (hlt_counter) {
  139. local_irq_enable();
  140. cpu_relax();
  141. } else {
  142. stop_critical_timings();
  143. pm_idle();
  144. start_critical_timings();
  145. /*
  146. * This will eventually be removed - pm_idle
  147. * functions should always return with IRQs
  148. * enabled.
  149. */
  150. WARN_ON(irqs_disabled());
  151. local_irq_enable();
  152. }
  153. }
  154. leds_event(led_idle_end);
  155. tick_nohz_restart_sched_tick();
  156. preempt_enable_no_resched();
  157. schedule();
  158. preempt_disable();
  159. }
  160. }
  161. static char reboot_mode = 'h';
  162. int __init reboot_setup(char *str)
  163. {
  164. reboot_mode = str[0];
  165. return 1;
  166. }
  167. __setup("reboot=", reboot_setup);
  168. void machine_shutdown(void)
  169. {
  170. #ifdef CONFIG_SMP
  171. smp_send_stop();
  172. #endif
  173. }
  174. void machine_halt(void)
  175. {
  176. machine_shutdown();
  177. while (1);
  178. }
  179. void machine_power_off(void)
  180. {
  181. machine_shutdown();
  182. if (pm_power_off)
  183. pm_power_off();
  184. }
  185. void machine_restart(char *cmd)
  186. {
  187. machine_shutdown();
  188. arm_pm_restart(reboot_mode, cmd);
  189. }
  190. void __show_regs(struct pt_regs *regs)
  191. {
  192. unsigned long flags;
  193. char buf[64];
  194. printk("CPU: %d %s (%s %.*s)\n",
  195. raw_smp_processor_id(), print_tainted(),
  196. init_utsname()->release,
  197. (int)strcspn(init_utsname()->version, " "),
  198. init_utsname()->version);
  199. print_symbol("PC is at %s\n", instruction_pointer(regs));
  200. print_symbol("LR is at %s\n", regs->ARM_lr);
  201. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  202. "sp : %08lx ip : %08lx fp : %08lx\n",
  203. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  204. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  205. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  206. regs->ARM_r10, regs->ARM_r9,
  207. regs->ARM_r8);
  208. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  209. regs->ARM_r7, regs->ARM_r6,
  210. regs->ARM_r5, regs->ARM_r4);
  211. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  212. regs->ARM_r3, regs->ARM_r2,
  213. regs->ARM_r1, regs->ARM_r0);
  214. flags = regs->ARM_cpsr;
  215. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  216. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  217. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  218. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  219. buf[4] = '\0';
  220. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  221. buf, interrupts_enabled(regs) ? "n" : "ff",
  222. fast_interrupts_enabled(regs) ? "n" : "ff",
  223. processor_modes[processor_mode(regs)],
  224. isa_modes[isa_mode(regs)],
  225. get_fs() == get_ds() ? "kernel" : "user");
  226. #ifdef CONFIG_CPU_CP15
  227. {
  228. unsigned int ctrl;
  229. buf[0] = '\0';
  230. #ifdef CONFIG_CPU_CP15_MMU
  231. {
  232. unsigned int transbase, dac;
  233. asm("mrc p15, 0, %0, c2, c0\n\t"
  234. "mrc p15, 0, %1, c3, c0\n"
  235. : "=r" (transbase), "=r" (dac));
  236. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  237. transbase, dac);
  238. }
  239. #endif
  240. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  241. printk("Control: %08x%s\n", ctrl, buf);
  242. }
  243. #endif
  244. }
  245. void show_regs(struct pt_regs * regs)
  246. {
  247. printk("\n");
  248. printk("Pid: %d, comm: %20s\n", task_pid_nr(current), current->comm);
  249. __show_regs(regs);
  250. __backtrace();
  251. }
  252. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  253. EXPORT_SYMBOL_GPL(thread_notify_head);
  254. /*
  255. * Free current thread data structures etc..
  256. */
  257. void exit_thread(void)
  258. {
  259. thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
  260. }
  261. void flush_thread(void)
  262. {
  263. struct thread_info *thread = current_thread_info();
  264. struct task_struct *tsk = current;
  265. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  266. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  267. memset(&thread->fpstate, 0, sizeof(union fp_state));
  268. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  269. }
  270. void release_thread(struct task_struct *dead_task)
  271. {
  272. }
  273. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  274. int
  275. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  276. unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
  277. {
  278. struct thread_info *thread = task_thread_info(p);
  279. struct pt_regs *childregs = task_pt_regs(p);
  280. *childregs = *regs;
  281. childregs->ARM_r0 = 0;
  282. childregs->ARM_sp = stack_start;
  283. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  284. thread->cpu_context.sp = (unsigned long)childregs;
  285. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  286. if (clone_flags & CLONE_SETTLS)
  287. thread->tp_value = regs->ARM_r3;
  288. return 0;
  289. }
  290. /*
  291. * Fill in the task's elfregs structure for a core dump.
  292. */
  293. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  294. {
  295. elf_core_copy_regs(elfregs, task_pt_regs(t));
  296. return 1;
  297. }
  298. /*
  299. * fill in the fpe structure for a core dump...
  300. */
  301. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  302. {
  303. struct thread_info *thread = current_thread_info();
  304. int used_math = thread->used_cp[1] | thread->used_cp[2];
  305. if (used_math)
  306. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  307. return used_math != 0;
  308. }
  309. EXPORT_SYMBOL(dump_fpu);
  310. /*
  311. * Shuffle the argument into the correct register before calling the
  312. * thread function. r4 is the thread argument, r5 is the pointer to
  313. * the thread function, and r6 points to the exit function.
  314. */
  315. extern void kernel_thread_helper(void);
  316. asm( ".pushsection .text\n"
  317. " .align\n"
  318. " .type kernel_thread_helper, #function\n"
  319. "kernel_thread_helper:\n"
  320. #ifdef CONFIG_TRACE_IRQFLAGS
  321. " bl trace_hardirqs_on\n"
  322. #endif
  323. " msr cpsr_c, r7\n"
  324. " mov r0, r4\n"
  325. " mov lr, r6\n"
  326. " mov pc, r5\n"
  327. " .size kernel_thread_helper, . - kernel_thread_helper\n"
  328. " .popsection");
  329. #ifdef CONFIG_ARM_UNWIND
  330. extern void kernel_thread_exit(long code);
  331. asm( ".pushsection .text\n"
  332. " .align\n"
  333. " .type kernel_thread_exit, #function\n"
  334. "kernel_thread_exit:\n"
  335. " .fnstart\n"
  336. " .cantunwind\n"
  337. " bl do_exit\n"
  338. " nop\n"
  339. " .fnend\n"
  340. " .size kernel_thread_exit, . - kernel_thread_exit\n"
  341. " .popsection");
  342. #else
  343. #define kernel_thread_exit do_exit
  344. #endif
  345. /*
  346. * Create a kernel thread.
  347. */
  348. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  349. {
  350. struct pt_regs regs;
  351. memset(&regs, 0, sizeof(regs));
  352. regs.ARM_r4 = (unsigned long)arg;
  353. regs.ARM_r5 = (unsigned long)fn;
  354. regs.ARM_r6 = (unsigned long)kernel_thread_exit;
  355. regs.ARM_r7 = SVC_MODE | PSR_ENDSTATE | PSR_ISETSTATE;
  356. regs.ARM_pc = (unsigned long)kernel_thread_helper;
  357. regs.ARM_cpsr = regs.ARM_r7 | PSR_I_BIT;
  358. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  359. }
  360. EXPORT_SYMBOL(kernel_thread);
  361. unsigned long get_wchan(struct task_struct *p)
  362. {
  363. struct stackframe frame;
  364. int count = 0;
  365. if (!p || p == current || p->state == TASK_RUNNING)
  366. return 0;
  367. frame.fp = thread_saved_fp(p);
  368. frame.sp = thread_saved_sp(p);
  369. frame.lr = 0; /* recovered from the stack */
  370. frame.pc = thread_saved_pc(p);
  371. do {
  372. int ret = unwind_frame(&frame);
  373. if (ret < 0)
  374. return 0;
  375. if (!in_sched_functions(frame.pc))
  376. return frame.pc;
  377. } while (count ++ < 16);
  378. return 0;
  379. }