irq.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515
  1. /*
  2. * Platform dependent support for SGI SN
  3. *
  4. * This file is subject to the terms and conditions of the GNU General Public
  5. * License. See the file "COPYING" in the main directory of this archive
  6. * for more details.
  7. *
  8. * Copyright (c) 2000-2008 Silicon Graphics, Inc. All Rights Reserved.
  9. */
  10. #include <linux/irq.h>
  11. #include <linux/spinlock.h>
  12. #include <linux/init.h>
  13. #include <linux/rculist.h>
  14. #include <linux/slab.h>
  15. #include <asm/sn/addrs.h>
  16. #include <asm/sn/arch.h>
  17. #include <asm/sn/intr.h>
  18. #include <asm/sn/pcibr_provider.h>
  19. #include <asm/sn/pcibus_provider_defs.h>
  20. #include <asm/sn/pcidev.h>
  21. #include <asm/sn/shub_mmr.h>
  22. #include <asm/sn/sn_sal.h>
  23. #include <asm/sn/sn_feature_sets.h>
  24. static void force_interrupt(int irq);
  25. static void register_intr_pda(struct sn_irq_info *sn_irq_info);
  26. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
  27. int sn_force_interrupt_flag = 1;
  28. extern int sn_ioif_inited;
  29. struct list_head **sn_irq_lh;
  30. static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
  31. u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
  32. struct sn_irq_info *sn_irq_info,
  33. int req_irq, nasid_t req_nasid,
  34. int req_slice)
  35. {
  36. struct ia64_sal_retval ret_stuff;
  37. ret_stuff.status = 0;
  38. ret_stuff.v0 = 0;
  39. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  40. (u64) SAL_INTR_ALLOC, (u64) local_nasid,
  41. (u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
  42. (u64) req_nasid, (u64) req_slice);
  43. return ret_stuff.status;
  44. }
  45. void sn_intr_free(nasid_t local_nasid, int local_widget,
  46. struct sn_irq_info *sn_irq_info)
  47. {
  48. struct ia64_sal_retval ret_stuff;
  49. ret_stuff.status = 0;
  50. ret_stuff.v0 = 0;
  51. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  52. (u64) SAL_INTR_FREE, (u64) local_nasid,
  53. (u64) local_widget, (u64) sn_irq_info->irq_irq,
  54. (u64) sn_irq_info->irq_cookie, 0, 0);
  55. }
  56. u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
  57. struct sn_irq_info *sn_irq_info,
  58. nasid_t req_nasid, int req_slice)
  59. {
  60. struct ia64_sal_retval ret_stuff;
  61. ret_stuff.status = 0;
  62. ret_stuff.v0 = 0;
  63. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  64. (u64) SAL_INTR_REDIRECT, (u64) local_nasid,
  65. (u64) local_widget, __pa(sn_irq_info),
  66. (u64) req_nasid, (u64) req_slice, 0);
  67. return ret_stuff.status;
  68. }
  69. static unsigned int sn_startup_irq(unsigned int irq)
  70. {
  71. return 0;
  72. }
  73. static void sn_shutdown_irq(unsigned int irq)
  74. {
  75. }
  76. extern void ia64_mca_register_cpev(int);
  77. static void sn_disable_irq(unsigned int irq)
  78. {
  79. if (irq == local_vector_to_irq(IA64_CPE_VECTOR))
  80. ia64_mca_register_cpev(0);
  81. }
  82. static void sn_enable_irq(unsigned int irq)
  83. {
  84. if (irq == local_vector_to_irq(IA64_CPE_VECTOR))
  85. ia64_mca_register_cpev(irq);
  86. }
  87. static void sn_ack_irq(unsigned int irq)
  88. {
  89. u64 event_occurred, mask;
  90. irq = irq & 0xff;
  91. event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
  92. mask = event_occurred & SH_ALL_INT_MASK;
  93. HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask);
  94. __set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
  95. move_native_irq(irq);
  96. }
  97. static void sn_irq_info_free(struct rcu_head *head);
  98. struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info,
  99. nasid_t nasid, int slice)
  100. {
  101. int vector;
  102. int cpuid;
  103. #ifdef CONFIG_SMP
  104. int cpuphys;
  105. #endif
  106. int64_t bridge;
  107. int local_widget, status;
  108. nasid_t local_nasid;
  109. struct sn_irq_info *new_irq_info;
  110. struct sn_pcibus_provider *pci_provider;
  111. bridge = (u64) sn_irq_info->irq_bridge;
  112. if (!bridge) {
  113. return NULL; /* irq is not a device interrupt */
  114. }
  115. local_nasid = NASID_GET(bridge);
  116. if (local_nasid & 1)
  117. local_widget = TIO_SWIN_WIDGETNUM(bridge);
  118. else
  119. local_widget = SWIN_WIDGETNUM(bridge);
  120. vector = sn_irq_info->irq_irq;
  121. /* Make use of SAL_INTR_REDIRECT if PROM supports it */
  122. status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
  123. if (!status) {
  124. new_irq_info = sn_irq_info;
  125. goto finish_up;
  126. }
  127. /*
  128. * PROM does not support SAL_INTR_REDIRECT, or it failed.
  129. * Revert to old method.
  130. */
  131. new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
  132. if (new_irq_info == NULL)
  133. return NULL;
  134. memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
  135. /* Free the old PROM new_irq_info structure */
  136. sn_intr_free(local_nasid, local_widget, new_irq_info);
  137. unregister_intr_pda(new_irq_info);
  138. /* allocate a new PROM new_irq_info struct */
  139. status = sn_intr_alloc(local_nasid, local_widget,
  140. new_irq_info, vector,
  141. nasid, slice);
  142. /* SAL call failed */
  143. if (status) {
  144. kfree(new_irq_info);
  145. return NULL;
  146. }
  147. register_intr_pda(new_irq_info);
  148. spin_lock(&sn_irq_info_lock);
  149. list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
  150. spin_unlock(&sn_irq_info_lock);
  151. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  152. finish_up:
  153. /* Update kernels new_irq_info with new target info */
  154. cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
  155. new_irq_info->irq_slice);
  156. new_irq_info->irq_cpuid = cpuid;
  157. pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
  158. /*
  159. * If this represents a line interrupt, target it. If it's
  160. * an msi (irq_int_bit < 0), it's already targeted.
  161. */
  162. if (new_irq_info->irq_int_bit >= 0 &&
  163. pci_provider && pci_provider->target_interrupt)
  164. (pci_provider->target_interrupt)(new_irq_info);
  165. #ifdef CONFIG_SMP
  166. cpuphys = cpu_physical_id(cpuid);
  167. set_irq_affinity_info((vector & 0xff), cpuphys, 0);
  168. #endif
  169. return new_irq_info;
  170. }
  171. static int sn_set_affinity_irq(unsigned int irq, const struct cpumask *mask)
  172. {
  173. struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
  174. nasid_t nasid;
  175. int slice;
  176. nasid = cpuid_to_nasid(cpumask_first(mask));
  177. slice = cpuid_to_slice(cpumask_first(mask));
  178. list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
  179. sn_irq_lh[irq], list)
  180. (void)sn_retarget_vector(sn_irq_info, nasid, slice);
  181. return 0;
  182. }
  183. #ifdef CONFIG_SMP
  184. void sn_set_err_irq_affinity(unsigned int irq)
  185. {
  186. /*
  187. * On systems which support CPU disabling (SHub2), all error interrupts
  188. * are targetted at the boot CPU.
  189. */
  190. if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT))
  191. set_irq_affinity_info(irq, cpu_physical_id(0), 0);
  192. }
  193. #else
  194. void sn_set_err_irq_affinity(unsigned int irq) { }
  195. #endif
  196. static void
  197. sn_mask_irq(unsigned int irq)
  198. {
  199. }
  200. static void
  201. sn_unmask_irq(unsigned int irq)
  202. {
  203. }
  204. struct irq_chip irq_type_sn = {
  205. .name = "SN hub",
  206. .startup = sn_startup_irq,
  207. .shutdown = sn_shutdown_irq,
  208. .enable = sn_enable_irq,
  209. .disable = sn_disable_irq,
  210. .ack = sn_ack_irq,
  211. .mask = sn_mask_irq,
  212. .unmask = sn_unmask_irq,
  213. .set_affinity = sn_set_affinity_irq
  214. };
  215. ia64_vector sn_irq_to_vector(int irq)
  216. {
  217. if (irq >= IA64_NUM_VECTORS)
  218. return 0;
  219. return (ia64_vector)irq;
  220. }
  221. unsigned int sn_local_vector_to_irq(u8 vector)
  222. {
  223. return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
  224. }
  225. void sn_irq_init(void)
  226. {
  227. int i;
  228. struct irq_desc *base_desc = irq_desc;
  229. ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR;
  230. ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR;
  231. for (i = 0; i < NR_IRQS; i++) {
  232. if (base_desc[i].chip == &no_irq_chip) {
  233. base_desc[i].chip = &irq_type_sn;
  234. }
  235. }
  236. }
  237. static void register_intr_pda(struct sn_irq_info *sn_irq_info)
  238. {
  239. int irq = sn_irq_info->irq_irq;
  240. int cpu = sn_irq_info->irq_cpuid;
  241. if (pdacpu(cpu)->sn_last_irq < irq) {
  242. pdacpu(cpu)->sn_last_irq = irq;
  243. }
  244. if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
  245. pdacpu(cpu)->sn_first_irq = irq;
  246. }
  247. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
  248. {
  249. int irq = sn_irq_info->irq_irq;
  250. int cpu = sn_irq_info->irq_cpuid;
  251. struct sn_irq_info *tmp_irq_info;
  252. int i, foundmatch;
  253. rcu_read_lock();
  254. if (pdacpu(cpu)->sn_last_irq == irq) {
  255. foundmatch = 0;
  256. for (i = pdacpu(cpu)->sn_last_irq - 1;
  257. i && !foundmatch; i--) {
  258. list_for_each_entry_rcu(tmp_irq_info,
  259. sn_irq_lh[i],
  260. list) {
  261. if (tmp_irq_info->irq_cpuid == cpu) {
  262. foundmatch = 1;
  263. break;
  264. }
  265. }
  266. }
  267. pdacpu(cpu)->sn_last_irq = i;
  268. }
  269. if (pdacpu(cpu)->sn_first_irq == irq) {
  270. foundmatch = 0;
  271. for (i = pdacpu(cpu)->sn_first_irq + 1;
  272. i < NR_IRQS && !foundmatch; i++) {
  273. list_for_each_entry_rcu(tmp_irq_info,
  274. sn_irq_lh[i],
  275. list) {
  276. if (tmp_irq_info->irq_cpuid == cpu) {
  277. foundmatch = 1;
  278. break;
  279. }
  280. }
  281. }
  282. pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
  283. }
  284. rcu_read_unlock();
  285. }
  286. static void sn_irq_info_free(struct rcu_head *head)
  287. {
  288. struct sn_irq_info *sn_irq_info;
  289. sn_irq_info = container_of(head, struct sn_irq_info, rcu);
  290. kfree(sn_irq_info);
  291. }
  292. void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
  293. {
  294. nasid_t nasid = sn_irq_info->irq_nasid;
  295. int slice = sn_irq_info->irq_slice;
  296. int cpu = nasid_slice_to_cpuid(nasid, slice);
  297. #ifdef CONFIG_SMP
  298. int cpuphys;
  299. struct irq_desc *desc;
  300. #endif
  301. pci_dev_get(pci_dev);
  302. sn_irq_info->irq_cpuid = cpu;
  303. sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
  304. /* link it into the sn_irq[irq] list */
  305. spin_lock(&sn_irq_info_lock);
  306. list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
  307. reserve_irq_vector(sn_irq_info->irq_irq);
  308. spin_unlock(&sn_irq_info_lock);
  309. register_intr_pda(sn_irq_info);
  310. #ifdef CONFIG_SMP
  311. cpuphys = cpu_physical_id(cpu);
  312. set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
  313. desc = irq_to_desc(sn_irq_info->irq_irq);
  314. /*
  315. * Affinity was set by the PROM, prevent it from
  316. * being reset by the request_irq() path.
  317. */
  318. desc->status |= IRQ_AFFINITY_SET;
  319. #endif
  320. }
  321. void sn_irq_unfixup(struct pci_dev *pci_dev)
  322. {
  323. struct sn_irq_info *sn_irq_info;
  324. /* Only cleanup IRQ stuff if this device has a host bus context */
  325. if (!SN_PCIDEV_BUSSOFT(pci_dev))
  326. return;
  327. sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
  328. if (!sn_irq_info)
  329. return;
  330. if (!sn_irq_info->irq_irq) {
  331. kfree(sn_irq_info);
  332. return;
  333. }
  334. unregister_intr_pda(sn_irq_info);
  335. spin_lock(&sn_irq_info_lock);
  336. list_del_rcu(&sn_irq_info->list);
  337. spin_unlock(&sn_irq_info_lock);
  338. if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
  339. free_irq_vector(sn_irq_info->irq_irq);
  340. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  341. pci_dev_put(pci_dev);
  342. }
  343. static inline void
  344. sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
  345. {
  346. struct sn_pcibus_provider *pci_provider;
  347. pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
  348. /* Don't force an interrupt if the irq has been disabled */
  349. if (!(irq_desc[sn_irq_info->irq_irq].status & IRQ_DISABLED) &&
  350. pci_provider && pci_provider->force_interrupt)
  351. (*pci_provider->force_interrupt)(sn_irq_info);
  352. }
  353. static void force_interrupt(int irq)
  354. {
  355. struct sn_irq_info *sn_irq_info;
  356. if (!sn_ioif_inited)
  357. return;
  358. rcu_read_lock();
  359. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[irq], list)
  360. sn_call_force_intr_provider(sn_irq_info);
  361. rcu_read_unlock();
  362. }
  363. /*
  364. * Check for lost interrupts. If the PIC int_status reg. says that
  365. * an interrupt has been sent, but not handled, and the interrupt
  366. * is not pending in either the cpu irr regs or in the soft irr regs,
  367. * and the interrupt is not in service, then the interrupt may have
  368. * been lost. Force an interrupt on that pin. It is possible that
  369. * the interrupt is in flight, so we may generate a spurious interrupt,
  370. * but we should never miss a real lost interrupt.
  371. */
  372. static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
  373. {
  374. u64 regval;
  375. struct pcidev_info *pcidev_info;
  376. struct pcibus_info *pcibus_info;
  377. /*
  378. * Bridge types attached to TIO (anything but PIC) do not need this WAR
  379. * since they do not target Shub II interrupt registers. If that
  380. * ever changes, this check needs to accomodate.
  381. */
  382. if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
  383. return;
  384. pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
  385. if (!pcidev_info)
  386. return;
  387. pcibus_info =
  388. (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
  389. pdi_pcibus_info;
  390. regval = pcireg_intr_status_get(pcibus_info);
  391. if (!ia64_get_irr(irq_to_vector(irq))) {
  392. if (!test_bit(irq, pda->sn_in_service_ivecs)) {
  393. regval &= 0xff;
  394. if (sn_irq_info->irq_int_bit & regval &
  395. sn_irq_info->irq_last_intr) {
  396. regval &= ~(sn_irq_info->irq_int_bit & regval);
  397. sn_call_force_intr_provider(sn_irq_info);
  398. }
  399. }
  400. }
  401. sn_irq_info->irq_last_intr = regval;
  402. }
  403. void sn_lb_int_war_check(void)
  404. {
  405. struct sn_irq_info *sn_irq_info;
  406. int i;
  407. if (!sn_ioif_inited || pda->sn_first_irq == 0)
  408. return;
  409. rcu_read_lock();
  410. for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
  411. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
  412. sn_check_intr(i, sn_irq_info);
  413. }
  414. }
  415. rcu_read_unlock();
  416. }
  417. void __init sn_irq_lh_init(void)
  418. {
  419. int i;
  420. sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
  421. if (!sn_irq_lh)
  422. panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
  423. for (i = 0; i < NR_IRQS; i++) {
  424. sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
  425. if (!sn_irq_lh[i])
  426. panic("SN PCI INIT: Failed IRQ memory allocation\n");
  427. INIT_LIST_HEAD(sn_irq_lh[i]);
  428. }
  429. }