paging_tmpl.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. /*
  21. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  22. * so the code in this file is compiled twice, once per pte size.
  23. */
  24. #if PTTYPE == 64
  25. #define pt_element_t u64
  26. #define guest_walker guest_walker64
  27. #define FNAME(name) paging##64_##name
  28. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  29. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  30. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  31. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define FNAME(name) paging##32_##name
  44. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  45. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  46. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  49. #define PT_MAX_FULL_LEVELS 2
  50. #define CMPXCHG cmpxchg
  51. #else
  52. #error Invalid PTTYPE value
  53. #endif
  54. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  55. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  56. /*
  57. * The guest_walker structure emulates the behavior of the hardware page
  58. * table walker.
  59. */
  60. struct guest_walker {
  61. int level;
  62. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  63. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  64. pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  65. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  66. unsigned pt_access;
  67. unsigned pte_access;
  68. gfn_t gfn;
  69. struct x86_exception fault;
  70. };
  71. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  72. {
  73. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  74. }
  75. static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  76. pt_element_t __user *ptep_user, unsigned index,
  77. pt_element_t orig_pte, pt_element_t new_pte)
  78. {
  79. int npages;
  80. pt_element_t ret;
  81. pt_element_t *table;
  82. struct page *page;
  83. npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
  84. /* Check if the user is doing something meaningless. */
  85. if (unlikely(npages != 1))
  86. return -EFAULT;
  87. table = kmap_atomic(page);
  88. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  89. kunmap_atomic(table);
  90. kvm_release_page_dirty(page);
  91. return (ret != orig_pte);
  92. }
  93. static bool FNAME(is_last_gpte)(struct guest_walker *walker,
  94. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  95. pt_element_t gpte)
  96. {
  97. if (walker->level == PT_PAGE_TABLE_LEVEL)
  98. return true;
  99. if ((walker->level == PT_DIRECTORY_LEVEL) && is_large_pte(gpte) &&
  100. (PTTYPE == 64 || is_pse(vcpu)))
  101. return true;
  102. if ((walker->level == PT_PDPE_LEVEL) && is_large_pte(gpte) &&
  103. (mmu->root_level == PT64_ROOT_LEVEL))
  104. return true;
  105. return false;
  106. }
  107. /*
  108. * Fetch a guest pte for a guest virtual address
  109. */
  110. static int FNAME(walk_addr_generic)(struct guest_walker *walker,
  111. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  112. gva_t addr, u32 access)
  113. {
  114. pt_element_t pte;
  115. pt_element_t __user *uninitialized_var(ptep_user);
  116. gfn_t table_gfn;
  117. unsigned index, pt_access, uninitialized_var(pte_access);
  118. gpa_t pte_gpa;
  119. bool eperm, last_gpte;
  120. int offset;
  121. const int write_fault = access & PFERR_WRITE_MASK;
  122. const int user_fault = access & PFERR_USER_MASK;
  123. const int fetch_fault = access & PFERR_FETCH_MASK;
  124. u16 errcode = 0;
  125. trace_kvm_mmu_pagetable_walk(addr, access);
  126. retry_walk:
  127. eperm = false;
  128. walker->level = mmu->root_level;
  129. pte = mmu->get_cr3(vcpu);
  130. #if PTTYPE == 64
  131. if (walker->level == PT32E_ROOT_LEVEL) {
  132. pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
  133. trace_kvm_mmu_paging_element(pte, walker->level);
  134. if (!is_present_gpte(pte))
  135. goto error;
  136. --walker->level;
  137. }
  138. #endif
  139. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  140. (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
  141. pt_access = ACC_ALL;
  142. for (;;) {
  143. gfn_t real_gfn;
  144. unsigned long host_addr;
  145. index = PT_INDEX(addr, walker->level);
  146. table_gfn = gpte_to_gfn(pte);
  147. offset = index * sizeof(pt_element_t);
  148. pte_gpa = gfn_to_gpa(table_gfn) + offset;
  149. walker->table_gfn[walker->level - 1] = table_gfn;
  150. walker->pte_gpa[walker->level - 1] = pte_gpa;
  151. real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
  152. PFERR_USER_MASK|PFERR_WRITE_MASK);
  153. if (unlikely(real_gfn == UNMAPPED_GVA))
  154. goto error;
  155. real_gfn = gpa_to_gfn(real_gfn);
  156. host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
  157. if (unlikely(kvm_is_error_hva(host_addr)))
  158. goto error;
  159. ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
  160. if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
  161. goto error;
  162. trace_kvm_mmu_paging_element(pte, walker->level);
  163. if (unlikely(!is_present_gpte(pte)))
  164. goto error;
  165. if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
  166. walker->level))) {
  167. errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
  168. goto error;
  169. }
  170. if (!check_write_user_access(vcpu, write_fault, user_fault,
  171. pte))
  172. eperm = true;
  173. #if PTTYPE == 64
  174. if (unlikely(fetch_fault && (pte & PT64_NX_MASK)))
  175. eperm = true;
  176. #endif
  177. last_gpte = FNAME(is_last_gpte)(walker, vcpu, mmu, pte);
  178. if (last_gpte) {
  179. pte_access = pt_access & gpte_access(vcpu, pte);
  180. /* check if the kernel is fetching from user page */
  181. if (unlikely(pte_access & PT_USER_MASK) &&
  182. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  183. if (fetch_fault && !user_fault)
  184. eperm = true;
  185. }
  186. if (!eperm && unlikely(!(pte & PT_ACCESSED_MASK))) {
  187. int ret;
  188. trace_kvm_mmu_set_accessed_bit(table_gfn, index,
  189. sizeof(pte));
  190. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
  191. pte, pte|PT_ACCESSED_MASK);
  192. if (unlikely(ret < 0))
  193. goto error;
  194. else if (ret)
  195. goto retry_walk;
  196. mark_page_dirty(vcpu->kvm, table_gfn);
  197. pte |= PT_ACCESSED_MASK;
  198. }
  199. walker->ptes[walker->level - 1] = pte;
  200. if (last_gpte) {
  201. int lvl = walker->level;
  202. gpa_t real_gpa;
  203. gfn_t gfn;
  204. u32 ac;
  205. gfn = gpte_to_gfn_lvl(pte, lvl);
  206. gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
  207. if (PTTYPE == 32 &&
  208. walker->level == PT_DIRECTORY_LEVEL &&
  209. is_cpuid_PSE36())
  210. gfn += pse36_gfn_delta(pte);
  211. ac = write_fault | fetch_fault | user_fault;
  212. real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
  213. ac);
  214. if (real_gpa == UNMAPPED_GVA)
  215. return 0;
  216. walker->gfn = real_gpa >> PAGE_SHIFT;
  217. break;
  218. }
  219. pt_access &= gpte_access(vcpu, pte);
  220. --walker->level;
  221. }
  222. if (unlikely(eperm)) {
  223. errcode |= PFERR_PRESENT_MASK;
  224. goto error;
  225. }
  226. if (!write_fault)
  227. protect_clean_gpte(&pte_access, pte);
  228. else if (unlikely(!is_dirty_gpte(pte))) {
  229. int ret;
  230. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  231. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
  232. pte, pte|PT_DIRTY_MASK);
  233. if (unlikely(ret < 0))
  234. goto error;
  235. else if (ret)
  236. goto retry_walk;
  237. mark_page_dirty(vcpu->kvm, table_gfn);
  238. pte |= PT_DIRTY_MASK;
  239. walker->ptes[walker->level - 1] = pte;
  240. }
  241. walker->pt_access = pt_access;
  242. walker->pte_access = pte_access;
  243. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  244. __func__, (u64)pte, pte_access, pt_access);
  245. return 1;
  246. error:
  247. errcode |= write_fault | user_fault;
  248. if (fetch_fault && (mmu->nx ||
  249. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
  250. errcode |= PFERR_FETCH_MASK;
  251. walker->fault.vector = PF_VECTOR;
  252. walker->fault.error_code_valid = true;
  253. walker->fault.error_code = errcode;
  254. walker->fault.address = addr;
  255. walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
  256. trace_kvm_mmu_walker_error(walker->fault.error_code);
  257. return 0;
  258. }
  259. static int FNAME(walk_addr)(struct guest_walker *walker,
  260. struct kvm_vcpu *vcpu, gva_t addr, u32 access)
  261. {
  262. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
  263. access);
  264. }
  265. static int FNAME(walk_addr_nested)(struct guest_walker *walker,
  266. struct kvm_vcpu *vcpu, gva_t addr,
  267. u32 access)
  268. {
  269. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
  270. addr, access);
  271. }
  272. static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
  273. struct kvm_mmu_page *sp, u64 *spte,
  274. pt_element_t gpte)
  275. {
  276. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  277. goto no_present;
  278. if (!is_present_gpte(gpte))
  279. goto no_present;
  280. if (!(gpte & PT_ACCESSED_MASK))
  281. goto no_present;
  282. return false;
  283. no_present:
  284. drop_spte(vcpu->kvm, spte);
  285. return true;
  286. }
  287. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  288. u64 *spte, const void *pte)
  289. {
  290. pt_element_t gpte;
  291. unsigned pte_access;
  292. pfn_t pfn;
  293. gpte = *(const pt_element_t *)pte;
  294. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  295. return;
  296. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  297. pte_access = sp->role.access & gpte_access(vcpu, gpte);
  298. protect_clean_gpte(&pte_access, gpte);
  299. pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
  300. if (mmu_invalid_pfn(pfn))
  301. return;
  302. /*
  303. * we call mmu_set_spte() with host_writable = true because that
  304. * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
  305. */
  306. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  307. NULL, PT_PAGE_TABLE_LEVEL,
  308. gpte_to_gfn(gpte), pfn, true, true);
  309. }
  310. static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
  311. struct guest_walker *gw, int level)
  312. {
  313. pt_element_t curr_pte;
  314. gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
  315. u64 mask;
  316. int r, index;
  317. if (level == PT_PAGE_TABLE_LEVEL) {
  318. mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
  319. base_gpa = pte_gpa & ~mask;
  320. index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
  321. r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
  322. gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
  323. curr_pte = gw->prefetch_ptes[index];
  324. } else
  325. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
  326. &curr_pte, sizeof(curr_pte));
  327. return r || curr_pte != gw->ptes[level - 1];
  328. }
  329. static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
  330. u64 *sptep)
  331. {
  332. struct kvm_mmu_page *sp;
  333. pt_element_t *gptep = gw->prefetch_ptes;
  334. u64 *spte;
  335. int i;
  336. sp = page_header(__pa(sptep));
  337. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  338. return;
  339. if (sp->role.direct)
  340. return __direct_pte_prefetch(vcpu, sp, sptep);
  341. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  342. spte = sp->spt + i;
  343. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  344. pt_element_t gpte;
  345. unsigned pte_access;
  346. gfn_t gfn;
  347. pfn_t pfn;
  348. if (spte == sptep)
  349. continue;
  350. if (is_shadow_present_pte(*spte))
  351. continue;
  352. gpte = gptep[i];
  353. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  354. continue;
  355. pte_access = sp->role.access & gpte_access(vcpu, gpte);
  356. protect_clean_gpte(&pte_access, gpte);
  357. gfn = gpte_to_gfn(gpte);
  358. pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
  359. pte_access & ACC_WRITE_MASK);
  360. if (mmu_invalid_pfn(pfn))
  361. break;
  362. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  363. NULL, PT_PAGE_TABLE_LEVEL, gfn,
  364. pfn, true, true);
  365. }
  366. }
  367. /*
  368. * Fetch a shadow pte for a specific level in the paging hierarchy.
  369. */
  370. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  371. struct guest_walker *gw,
  372. int user_fault, int write_fault, int hlevel,
  373. int *emulate, pfn_t pfn, bool map_writable,
  374. bool prefault)
  375. {
  376. unsigned access = gw->pt_access;
  377. struct kvm_mmu_page *sp = NULL;
  378. int top_level;
  379. unsigned direct_access;
  380. struct kvm_shadow_walk_iterator it;
  381. if (!is_present_gpte(gw->ptes[gw->level - 1]))
  382. return NULL;
  383. direct_access = gw->pte_access;
  384. top_level = vcpu->arch.mmu.root_level;
  385. if (top_level == PT32E_ROOT_LEVEL)
  386. top_level = PT32_ROOT_LEVEL;
  387. /*
  388. * Verify that the top-level gpte is still there. Since the page
  389. * is a root page, it is either write protected (and cannot be
  390. * changed from now on) or it is invalid (in which case, we don't
  391. * really care if it changes underneath us after this point).
  392. */
  393. if (FNAME(gpte_changed)(vcpu, gw, top_level))
  394. goto out_gpte_changed;
  395. for (shadow_walk_init(&it, vcpu, addr);
  396. shadow_walk_okay(&it) && it.level > gw->level;
  397. shadow_walk_next(&it)) {
  398. gfn_t table_gfn;
  399. clear_sp_write_flooding_count(it.sptep);
  400. drop_large_spte(vcpu, it.sptep);
  401. sp = NULL;
  402. if (!is_shadow_present_pte(*it.sptep)) {
  403. table_gfn = gw->table_gfn[it.level - 2];
  404. sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
  405. false, access, it.sptep);
  406. }
  407. /*
  408. * Verify that the gpte in the page we've just write
  409. * protected is still there.
  410. */
  411. if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
  412. goto out_gpte_changed;
  413. if (sp)
  414. link_shadow_page(it.sptep, sp);
  415. }
  416. for (;
  417. shadow_walk_okay(&it) && it.level > hlevel;
  418. shadow_walk_next(&it)) {
  419. gfn_t direct_gfn;
  420. clear_sp_write_flooding_count(it.sptep);
  421. validate_direct_spte(vcpu, it.sptep, direct_access);
  422. drop_large_spte(vcpu, it.sptep);
  423. if (is_shadow_present_pte(*it.sptep))
  424. continue;
  425. direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
  426. sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
  427. true, direct_access, it.sptep);
  428. link_shadow_page(it.sptep, sp);
  429. }
  430. clear_sp_write_flooding_count(it.sptep);
  431. mmu_set_spte(vcpu, it.sptep, access, gw->pte_access,
  432. user_fault, write_fault, emulate, it.level,
  433. gw->gfn, pfn, prefault, map_writable);
  434. FNAME(pte_prefetch)(vcpu, gw, it.sptep);
  435. return it.sptep;
  436. out_gpte_changed:
  437. if (sp)
  438. kvm_mmu_put_page(sp, it.sptep);
  439. kvm_release_pfn_clean(pfn);
  440. return NULL;
  441. }
  442. /*
  443. * Page fault handler. There are several causes for a page fault:
  444. * - there is no shadow pte for the guest pte
  445. * - write access through a shadow pte marked read only so that we can set
  446. * the dirty bit
  447. * - write access to a shadow pte marked read only so we can update the page
  448. * dirty bitmap, when userspace requests it
  449. * - mmio access; in this case we will never install a present shadow pte
  450. * - normal guest page fault due to the guest pte marked not present, not
  451. * writable, or not executable
  452. *
  453. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  454. * a negative value on error.
  455. */
  456. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
  457. bool prefault)
  458. {
  459. int write_fault = error_code & PFERR_WRITE_MASK;
  460. int user_fault = error_code & PFERR_USER_MASK;
  461. struct guest_walker walker;
  462. u64 *sptep;
  463. int emulate = 0;
  464. int r;
  465. pfn_t pfn;
  466. int level = PT_PAGE_TABLE_LEVEL;
  467. int force_pt_level;
  468. unsigned long mmu_seq;
  469. bool map_writable;
  470. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  471. if (unlikely(error_code & PFERR_RSVD_MASK))
  472. return handle_mmio_page_fault(vcpu, addr, error_code,
  473. mmu_is_nested(vcpu));
  474. r = mmu_topup_memory_caches(vcpu);
  475. if (r)
  476. return r;
  477. /*
  478. * Look up the guest pte for the faulting address.
  479. */
  480. r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
  481. /*
  482. * The page is not mapped by the guest. Let the guest handle it.
  483. */
  484. if (!r) {
  485. pgprintk("%s: guest page fault\n", __func__);
  486. if (!prefault)
  487. inject_page_fault(vcpu, &walker.fault);
  488. return 0;
  489. }
  490. if (walker.level >= PT_DIRECTORY_LEVEL)
  491. force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
  492. else
  493. force_pt_level = 1;
  494. if (!force_pt_level) {
  495. level = min(walker.level, mapping_level(vcpu, walker.gfn));
  496. walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
  497. }
  498. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  499. smp_rmb();
  500. if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
  501. &map_writable))
  502. return 0;
  503. if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
  504. walker.gfn, pfn, walker.pte_access, &r))
  505. return r;
  506. spin_lock(&vcpu->kvm->mmu_lock);
  507. if (mmu_notifier_retry(vcpu, mmu_seq))
  508. goto out_unlock;
  509. kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
  510. kvm_mmu_free_some_pages(vcpu);
  511. if (!force_pt_level)
  512. transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
  513. sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  514. level, &emulate, pfn, map_writable, prefault);
  515. (void)sptep;
  516. pgprintk("%s: shadow pte %p %llx emulate %d\n", __func__,
  517. sptep, *sptep, emulate);
  518. ++vcpu->stat.pf_fixed;
  519. kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
  520. spin_unlock(&vcpu->kvm->mmu_lock);
  521. return emulate;
  522. out_unlock:
  523. spin_unlock(&vcpu->kvm->mmu_lock);
  524. kvm_release_pfn_clean(pfn);
  525. return 0;
  526. }
  527. static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
  528. {
  529. int offset = 0;
  530. WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
  531. if (PTTYPE == 32)
  532. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  533. return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
  534. }
  535. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  536. {
  537. struct kvm_shadow_walk_iterator iterator;
  538. struct kvm_mmu_page *sp;
  539. int level;
  540. u64 *sptep;
  541. vcpu_clear_mmio_info(vcpu, gva);
  542. /*
  543. * No need to check return value here, rmap_can_add() can
  544. * help us to skip pte prefetch later.
  545. */
  546. mmu_topup_memory_caches(vcpu);
  547. spin_lock(&vcpu->kvm->mmu_lock);
  548. for_each_shadow_entry(vcpu, gva, iterator) {
  549. level = iterator.level;
  550. sptep = iterator.sptep;
  551. sp = page_header(__pa(sptep));
  552. if (is_last_spte(*sptep, level)) {
  553. pt_element_t gpte;
  554. gpa_t pte_gpa;
  555. if (!sp->unsync)
  556. break;
  557. pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  558. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  559. if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
  560. kvm_flush_remote_tlbs(vcpu->kvm);
  561. if (!rmap_can_add(vcpu))
  562. break;
  563. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  564. sizeof(pt_element_t)))
  565. break;
  566. FNAME(update_pte)(vcpu, sp, sptep, &gpte);
  567. }
  568. if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
  569. break;
  570. }
  571. spin_unlock(&vcpu->kvm->mmu_lock);
  572. }
  573. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
  574. struct x86_exception *exception)
  575. {
  576. struct guest_walker walker;
  577. gpa_t gpa = UNMAPPED_GVA;
  578. int r;
  579. r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
  580. if (r) {
  581. gpa = gfn_to_gpa(walker.gfn);
  582. gpa |= vaddr & ~PAGE_MASK;
  583. } else if (exception)
  584. *exception = walker.fault;
  585. return gpa;
  586. }
  587. static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
  588. u32 access,
  589. struct x86_exception *exception)
  590. {
  591. struct guest_walker walker;
  592. gpa_t gpa = UNMAPPED_GVA;
  593. int r;
  594. r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
  595. if (r) {
  596. gpa = gfn_to_gpa(walker.gfn);
  597. gpa |= vaddr & ~PAGE_MASK;
  598. } else if (exception)
  599. *exception = walker.fault;
  600. return gpa;
  601. }
  602. /*
  603. * Using the cached information from sp->gfns is safe because:
  604. * - The spte has a reference to the struct page, so the pfn for a given gfn
  605. * can't change unless all sptes pointing to it are nuked first.
  606. *
  607. * Note:
  608. * We should flush all tlbs if spte is dropped even though guest is
  609. * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
  610. * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
  611. * used by guest then tlbs are not flushed, so guest is allowed to access the
  612. * freed pages.
  613. * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
  614. */
  615. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  616. {
  617. int i, nr_present = 0;
  618. bool host_writable;
  619. gpa_t first_pte_gpa;
  620. /* direct kvm_mmu_page can not be unsync. */
  621. BUG_ON(sp->role.direct);
  622. first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  623. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  624. unsigned pte_access;
  625. pt_element_t gpte;
  626. gpa_t pte_gpa;
  627. gfn_t gfn;
  628. if (!sp->spt[i])
  629. continue;
  630. pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
  631. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  632. sizeof(pt_element_t)))
  633. return -EINVAL;
  634. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
  635. vcpu->kvm->tlbs_dirty++;
  636. continue;
  637. }
  638. gfn = gpte_to_gfn(gpte);
  639. pte_access = sp->role.access;
  640. pte_access &= gpte_access(vcpu, gpte);
  641. protect_clean_gpte(&pte_access, gpte);
  642. if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
  643. continue;
  644. if (gfn != sp->gfns[i]) {
  645. drop_spte(vcpu->kvm, &sp->spt[i]);
  646. vcpu->kvm->tlbs_dirty++;
  647. continue;
  648. }
  649. nr_present++;
  650. host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
  651. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  652. PT_PAGE_TABLE_LEVEL, gfn,
  653. spte_to_pfn(sp->spt[i]), true, false,
  654. host_writable);
  655. }
  656. return !nr_present;
  657. }
  658. #undef pt_element_t
  659. #undef guest_walker
  660. #undef FNAME
  661. #undef PT_BASE_ADDR_MASK
  662. #undef PT_INDEX
  663. #undef PT_LVL_ADDR_MASK
  664. #undef PT_LVL_OFFSET_MASK
  665. #undef PT_LEVEL_BITS
  666. #undef PT_MAX_FULL_LEVELS
  667. #undef gpte_to_gfn
  668. #undef gpte_to_gfn_lvl
  669. #undef CMPXCHG