md.c 93 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/linkage.h>
  29. #include <linux/raid/md.h>
  30. #include <linux/raid/bitmap.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/devfs_fs_kernel.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/suspend.h>
  35. #include <linux/init.h>
  36. #include <linux/file.h>
  37. #ifdef CONFIG_KMOD
  38. #include <linux/kmod.h>
  39. #endif
  40. #include <asm/unaligned.h>
  41. #define MAJOR_NR MD_MAJOR
  42. #define MD_DRIVER
  43. /* 63 partitions with the alternate major number (mdp) */
  44. #define MdpMinorShift 6
  45. #define DEBUG 0
  46. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  47. #ifndef MODULE
  48. static void autostart_arrays (int part);
  49. #endif
  50. static mdk_personality_t *pers[MAX_PERSONALITY];
  51. static DEFINE_SPINLOCK(pers_lock);
  52. /*
  53. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  54. * is 1000 KB/sec, so the extra system load does not show up that much.
  55. * Increase it if you want to have more _guaranteed_ speed. Note that
  56. * the RAID driver will use the maximum available bandwith if the IO
  57. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  58. * speed limit - in case reconstruction slows down your system despite
  59. * idle IO detection.
  60. *
  61. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  62. */
  63. static int sysctl_speed_limit_min = 1000;
  64. static int sysctl_speed_limit_max = 200000;
  65. static struct ctl_table_header *raid_table_header;
  66. static ctl_table raid_table[] = {
  67. {
  68. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  69. .procname = "speed_limit_min",
  70. .data = &sysctl_speed_limit_min,
  71. .maxlen = sizeof(int),
  72. .mode = 0644,
  73. .proc_handler = &proc_dointvec,
  74. },
  75. {
  76. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  77. .procname = "speed_limit_max",
  78. .data = &sysctl_speed_limit_max,
  79. .maxlen = sizeof(int),
  80. .mode = 0644,
  81. .proc_handler = &proc_dointvec,
  82. },
  83. { .ctl_name = 0 }
  84. };
  85. static ctl_table raid_dir_table[] = {
  86. {
  87. .ctl_name = DEV_RAID,
  88. .procname = "raid",
  89. .maxlen = 0,
  90. .mode = 0555,
  91. .child = raid_table,
  92. },
  93. { .ctl_name = 0 }
  94. };
  95. static ctl_table raid_root_table[] = {
  96. {
  97. .ctl_name = CTL_DEV,
  98. .procname = "dev",
  99. .maxlen = 0,
  100. .mode = 0555,
  101. .child = raid_dir_table,
  102. },
  103. { .ctl_name = 0 }
  104. };
  105. static struct block_device_operations md_fops;
  106. /*
  107. * Enables to iterate over all existing md arrays
  108. * all_mddevs_lock protects this list.
  109. */
  110. static LIST_HEAD(all_mddevs);
  111. static DEFINE_SPINLOCK(all_mddevs_lock);
  112. /*
  113. * iterates through all used mddevs in the system.
  114. * We take care to grab the all_mddevs_lock whenever navigating
  115. * the list, and to always hold a refcount when unlocked.
  116. * Any code which breaks out of this loop while own
  117. * a reference to the current mddev and must mddev_put it.
  118. */
  119. #define ITERATE_MDDEV(mddev,tmp) \
  120. \
  121. for (({ spin_lock(&all_mddevs_lock); \
  122. tmp = all_mddevs.next; \
  123. mddev = NULL;}); \
  124. ({ if (tmp != &all_mddevs) \
  125. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  126. spin_unlock(&all_mddevs_lock); \
  127. if (mddev) mddev_put(mddev); \
  128. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  129. tmp != &all_mddevs;}); \
  130. ({ spin_lock(&all_mddevs_lock); \
  131. tmp = tmp->next;}) \
  132. )
  133. static int md_fail_request (request_queue_t *q, struct bio *bio)
  134. {
  135. bio_io_error(bio, bio->bi_size);
  136. return 0;
  137. }
  138. static inline mddev_t *mddev_get(mddev_t *mddev)
  139. {
  140. atomic_inc(&mddev->active);
  141. return mddev;
  142. }
  143. static void mddev_put(mddev_t *mddev)
  144. {
  145. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  146. return;
  147. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  148. list_del(&mddev->all_mddevs);
  149. blk_put_queue(mddev->queue);
  150. kfree(mddev);
  151. }
  152. spin_unlock(&all_mddevs_lock);
  153. }
  154. static mddev_t * mddev_find(dev_t unit)
  155. {
  156. mddev_t *mddev, *new = NULL;
  157. retry:
  158. spin_lock(&all_mddevs_lock);
  159. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  160. if (mddev->unit == unit) {
  161. mddev_get(mddev);
  162. spin_unlock(&all_mddevs_lock);
  163. if (new)
  164. kfree(new);
  165. return mddev;
  166. }
  167. if (new) {
  168. list_add(&new->all_mddevs, &all_mddevs);
  169. spin_unlock(&all_mddevs_lock);
  170. return new;
  171. }
  172. spin_unlock(&all_mddevs_lock);
  173. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  174. if (!new)
  175. return NULL;
  176. memset(new, 0, sizeof(*new));
  177. new->unit = unit;
  178. if (MAJOR(unit) == MD_MAJOR)
  179. new->md_minor = MINOR(unit);
  180. else
  181. new->md_minor = MINOR(unit) >> MdpMinorShift;
  182. init_MUTEX(&new->reconfig_sem);
  183. INIT_LIST_HEAD(&new->disks);
  184. INIT_LIST_HEAD(&new->all_mddevs);
  185. init_timer(&new->safemode_timer);
  186. atomic_set(&new->active, 1);
  187. spin_lock_init(&new->write_lock);
  188. init_waitqueue_head(&new->sb_wait);
  189. new->queue = blk_alloc_queue(GFP_KERNEL);
  190. if (!new->queue) {
  191. kfree(new);
  192. return NULL;
  193. }
  194. blk_queue_make_request(new->queue, md_fail_request);
  195. goto retry;
  196. }
  197. static inline int mddev_lock(mddev_t * mddev)
  198. {
  199. return down_interruptible(&mddev->reconfig_sem);
  200. }
  201. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  202. {
  203. down(&mddev->reconfig_sem);
  204. }
  205. static inline int mddev_trylock(mddev_t * mddev)
  206. {
  207. return down_trylock(&mddev->reconfig_sem);
  208. }
  209. static inline void mddev_unlock(mddev_t * mddev)
  210. {
  211. up(&mddev->reconfig_sem);
  212. if (mddev->thread)
  213. md_wakeup_thread(mddev->thread);
  214. }
  215. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  216. {
  217. mdk_rdev_t * rdev;
  218. struct list_head *tmp;
  219. ITERATE_RDEV(mddev,rdev,tmp) {
  220. if (rdev->desc_nr == nr)
  221. return rdev;
  222. }
  223. return NULL;
  224. }
  225. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  226. {
  227. struct list_head *tmp;
  228. mdk_rdev_t *rdev;
  229. ITERATE_RDEV(mddev,rdev,tmp) {
  230. if (rdev->bdev->bd_dev == dev)
  231. return rdev;
  232. }
  233. return NULL;
  234. }
  235. inline static sector_t calc_dev_sboffset(struct block_device *bdev)
  236. {
  237. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  238. return MD_NEW_SIZE_BLOCKS(size);
  239. }
  240. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  241. {
  242. sector_t size;
  243. size = rdev->sb_offset;
  244. if (chunk_size)
  245. size &= ~((sector_t)chunk_size/1024 - 1);
  246. return size;
  247. }
  248. static int alloc_disk_sb(mdk_rdev_t * rdev)
  249. {
  250. if (rdev->sb_page)
  251. MD_BUG();
  252. rdev->sb_page = alloc_page(GFP_KERNEL);
  253. if (!rdev->sb_page) {
  254. printk(KERN_ALERT "md: out of memory.\n");
  255. return -EINVAL;
  256. }
  257. return 0;
  258. }
  259. static void free_disk_sb(mdk_rdev_t * rdev)
  260. {
  261. if (rdev->sb_page) {
  262. page_cache_release(rdev->sb_page);
  263. rdev->sb_loaded = 0;
  264. rdev->sb_page = NULL;
  265. rdev->sb_offset = 0;
  266. rdev->size = 0;
  267. }
  268. }
  269. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  270. {
  271. if (bio->bi_size)
  272. return 1;
  273. complete((struct completion*)bio->bi_private);
  274. return 0;
  275. }
  276. static int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  277. struct page *page, int rw)
  278. {
  279. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  280. struct completion event;
  281. int ret;
  282. rw |= (1 << BIO_RW_SYNC);
  283. bio->bi_bdev = bdev;
  284. bio->bi_sector = sector;
  285. bio_add_page(bio, page, size, 0);
  286. init_completion(&event);
  287. bio->bi_private = &event;
  288. bio->bi_end_io = bi_complete;
  289. submit_bio(rw, bio);
  290. wait_for_completion(&event);
  291. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  292. bio_put(bio);
  293. return ret;
  294. }
  295. static int read_disk_sb(mdk_rdev_t * rdev)
  296. {
  297. char b[BDEVNAME_SIZE];
  298. if (!rdev->sb_page) {
  299. MD_BUG();
  300. return -EINVAL;
  301. }
  302. if (rdev->sb_loaded)
  303. return 0;
  304. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
  305. goto fail;
  306. rdev->sb_loaded = 1;
  307. return 0;
  308. fail:
  309. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  310. bdevname(rdev->bdev,b));
  311. return -EINVAL;
  312. }
  313. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  314. {
  315. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  316. (sb1->set_uuid1 == sb2->set_uuid1) &&
  317. (sb1->set_uuid2 == sb2->set_uuid2) &&
  318. (sb1->set_uuid3 == sb2->set_uuid3))
  319. return 1;
  320. return 0;
  321. }
  322. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  323. {
  324. int ret;
  325. mdp_super_t *tmp1, *tmp2;
  326. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  327. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  328. if (!tmp1 || !tmp2) {
  329. ret = 0;
  330. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  331. goto abort;
  332. }
  333. *tmp1 = *sb1;
  334. *tmp2 = *sb2;
  335. /*
  336. * nr_disks is not constant
  337. */
  338. tmp1->nr_disks = 0;
  339. tmp2->nr_disks = 0;
  340. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  341. ret = 0;
  342. else
  343. ret = 1;
  344. abort:
  345. if (tmp1)
  346. kfree(tmp1);
  347. if (tmp2)
  348. kfree(tmp2);
  349. return ret;
  350. }
  351. static unsigned int calc_sb_csum(mdp_super_t * sb)
  352. {
  353. unsigned int disk_csum, csum;
  354. disk_csum = sb->sb_csum;
  355. sb->sb_csum = 0;
  356. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  357. sb->sb_csum = disk_csum;
  358. return csum;
  359. }
  360. /*
  361. * Handle superblock details.
  362. * We want to be able to handle multiple superblock formats
  363. * so we have a common interface to them all, and an array of
  364. * different handlers.
  365. * We rely on user-space to write the initial superblock, and support
  366. * reading and updating of superblocks.
  367. * Interface methods are:
  368. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  369. * loads and validates a superblock on dev.
  370. * if refdev != NULL, compare superblocks on both devices
  371. * Return:
  372. * 0 - dev has a superblock that is compatible with refdev
  373. * 1 - dev has a superblock that is compatible and newer than refdev
  374. * so dev should be used as the refdev in future
  375. * -EINVAL superblock incompatible or invalid
  376. * -othererror e.g. -EIO
  377. *
  378. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  379. * Verify that dev is acceptable into mddev.
  380. * The first time, mddev->raid_disks will be 0, and data from
  381. * dev should be merged in. Subsequent calls check that dev
  382. * is new enough. Return 0 or -EINVAL
  383. *
  384. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  385. * Update the superblock for rdev with data in mddev
  386. * This does not write to disc.
  387. *
  388. */
  389. struct super_type {
  390. char *name;
  391. struct module *owner;
  392. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  393. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  394. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  395. };
  396. /*
  397. * load_super for 0.90.0
  398. */
  399. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  400. {
  401. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  402. mdp_super_t *sb;
  403. int ret;
  404. sector_t sb_offset;
  405. /*
  406. * Calculate the position of the superblock,
  407. * it's at the end of the disk.
  408. *
  409. * It also happens to be a multiple of 4Kb.
  410. */
  411. sb_offset = calc_dev_sboffset(rdev->bdev);
  412. rdev->sb_offset = sb_offset;
  413. ret = read_disk_sb(rdev);
  414. if (ret) return ret;
  415. ret = -EINVAL;
  416. bdevname(rdev->bdev, b);
  417. sb = (mdp_super_t*)page_address(rdev->sb_page);
  418. if (sb->md_magic != MD_SB_MAGIC) {
  419. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  420. b);
  421. goto abort;
  422. }
  423. if (sb->major_version != 0 ||
  424. sb->minor_version != 90) {
  425. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  426. sb->major_version, sb->minor_version,
  427. b);
  428. goto abort;
  429. }
  430. if (sb->raid_disks <= 0)
  431. goto abort;
  432. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  433. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  434. b);
  435. goto abort;
  436. }
  437. rdev->preferred_minor = sb->md_minor;
  438. rdev->data_offset = 0;
  439. if (sb->level == LEVEL_MULTIPATH)
  440. rdev->desc_nr = -1;
  441. else
  442. rdev->desc_nr = sb->this_disk.number;
  443. if (refdev == 0)
  444. ret = 1;
  445. else {
  446. __u64 ev1, ev2;
  447. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  448. if (!uuid_equal(refsb, sb)) {
  449. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  450. b, bdevname(refdev->bdev,b2));
  451. goto abort;
  452. }
  453. if (!sb_equal(refsb, sb)) {
  454. printk(KERN_WARNING "md: %s has same UUID"
  455. " but different superblock to %s\n",
  456. b, bdevname(refdev->bdev, b2));
  457. goto abort;
  458. }
  459. ev1 = md_event(sb);
  460. ev2 = md_event(refsb);
  461. if (ev1 > ev2)
  462. ret = 1;
  463. else
  464. ret = 0;
  465. }
  466. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  467. abort:
  468. return ret;
  469. }
  470. /*
  471. * validate_super for 0.90.0
  472. */
  473. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  474. {
  475. mdp_disk_t *desc;
  476. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  477. rdev->raid_disk = -1;
  478. rdev->in_sync = 0;
  479. if (mddev->raid_disks == 0) {
  480. mddev->major_version = 0;
  481. mddev->minor_version = sb->minor_version;
  482. mddev->patch_version = sb->patch_version;
  483. mddev->persistent = ! sb->not_persistent;
  484. mddev->chunk_size = sb->chunk_size;
  485. mddev->ctime = sb->ctime;
  486. mddev->utime = sb->utime;
  487. mddev->level = sb->level;
  488. mddev->layout = sb->layout;
  489. mddev->raid_disks = sb->raid_disks;
  490. mddev->size = sb->size;
  491. mddev->events = md_event(sb);
  492. if (sb->state & (1<<MD_SB_CLEAN))
  493. mddev->recovery_cp = MaxSector;
  494. else {
  495. if (sb->events_hi == sb->cp_events_hi &&
  496. sb->events_lo == sb->cp_events_lo) {
  497. mddev->recovery_cp = sb->recovery_cp;
  498. } else
  499. mddev->recovery_cp = 0;
  500. }
  501. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  502. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  503. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  504. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  505. mddev->max_disks = MD_SB_DISKS;
  506. } else if (mddev->pers == NULL) {
  507. /* Insist on good event counter while assembling */
  508. __u64 ev1 = md_event(sb);
  509. ++ev1;
  510. if (ev1 < mddev->events)
  511. return -EINVAL;
  512. } else if (mddev->bitmap) {
  513. /* if adding to array with a bitmap, then we can accept an
  514. * older device ... but not too old.
  515. */
  516. __u64 ev1 = md_event(sb);
  517. if (ev1 < mddev->bitmap->events_cleared)
  518. return 0;
  519. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  520. return 0;
  521. if (mddev->level != LEVEL_MULTIPATH) {
  522. rdev->faulty = 0;
  523. desc = sb->disks + rdev->desc_nr;
  524. if (desc->state & (1<<MD_DISK_FAULTY))
  525. rdev->faulty = 1;
  526. else if (desc->state & (1<<MD_DISK_SYNC) &&
  527. desc->raid_disk < mddev->raid_disks) {
  528. rdev->in_sync = 1;
  529. rdev->raid_disk = desc->raid_disk;
  530. }
  531. } else /* MULTIPATH are always insync */
  532. rdev->in_sync = 1;
  533. return 0;
  534. }
  535. /*
  536. * sync_super for 0.90.0
  537. */
  538. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  539. {
  540. mdp_super_t *sb;
  541. struct list_head *tmp;
  542. mdk_rdev_t *rdev2;
  543. int next_spare = mddev->raid_disks;
  544. /* make rdev->sb match mddev data..
  545. *
  546. * 1/ zero out disks
  547. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  548. * 3/ any empty disks < next_spare become removed
  549. *
  550. * disks[0] gets initialised to REMOVED because
  551. * we cannot be sure from other fields if it has
  552. * been initialised or not.
  553. */
  554. int i;
  555. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  556. sb = (mdp_super_t*)page_address(rdev->sb_page);
  557. memset(sb, 0, sizeof(*sb));
  558. sb->md_magic = MD_SB_MAGIC;
  559. sb->major_version = mddev->major_version;
  560. sb->minor_version = mddev->minor_version;
  561. sb->patch_version = mddev->patch_version;
  562. sb->gvalid_words = 0; /* ignored */
  563. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  564. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  565. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  566. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  567. sb->ctime = mddev->ctime;
  568. sb->level = mddev->level;
  569. sb->size = mddev->size;
  570. sb->raid_disks = mddev->raid_disks;
  571. sb->md_minor = mddev->md_minor;
  572. sb->not_persistent = !mddev->persistent;
  573. sb->utime = mddev->utime;
  574. sb->state = 0;
  575. sb->events_hi = (mddev->events>>32);
  576. sb->events_lo = (u32)mddev->events;
  577. if (mddev->in_sync)
  578. {
  579. sb->recovery_cp = mddev->recovery_cp;
  580. sb->cp_events_hi = (mddev->events>>32);
  581. sb->cp_events_lo = (u32)mddev->events;
  582. if (mddev->recovery_cp == MaxSector)
  583. sb->state = (1<< MD_SB_CLEAN);
  584. } else
  585. sb->recovery_cp = 0;
  586. sb->layout = mddev->layout;
  587. sb->chunk_size = mddev->chunk_size;
  588. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  589. ITERATE_RDEV(mddev,rdev2,tmp) {
  590. mdp_disk_t *d;
  591. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  592. rdev2->desc_nr = rdev2->raid_disk;
  593. else
  594. rdev2->desc_nr = next_spare++;
  595. d = &sb->disks[rdev2->desc_nr];
  596. nr_disks++;
  597. d->number = rdev2->desc_nr;
  598. d->major = MAJOR(rdev2->bdev->bd_dev);
  599. d->minor = MINOR(rdev2->bdev->bd_dev);
  600. if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
  601. d->raid_disk = rdev2->raid_disk;
  602. else
  603. d->raid_disk = rdev2->desc_nr; /* compatibility */
  604. if (rdev2->faulty) {
  605. d->state = (1<<MD_DISK_FAULTY);
  606. failed++;
  607. } else if (rdev2->in_sync) {
  608. d->state = (1<<MD_DISK_ACTIVE);
  609. d->state |= (1<<MD_DISK_SYNC);
  610. active++;
  611. working++;
  612. } else {
  613. d->state = 0;
  614. spare++;
  615. working++;
  616. }
  617. }
  618. /* now set the "removed" and "faulty" bits on any missing devices */
  619. for (i=0 ; i < mddev->raid_disks ; i++) {
  620. mdp_disk_t *d = &sb->disks[i];
  621. if (d->state == 0 && d->number == 0) {
  622. d->number = i;
  623. d->raid_disk = i;
  624. d->state = (1<<MD_DISK_REMOVED);
  625. d->state |= (1<<MD_DISK_FAULTY);
  626. failed++;
  627. }
  628. }
  629. sb->nr_disks = nr_disks;
  630. sb->active_disks = active;
  631. sb->working_disks = working;
  632. sb->failed_disks = failed;
  633. sb->spare_disks = spare;
  634. sb->this_disk = sb->disks[rdev->desc_nr];
  635. sb->sb_csum = calc_sb_csum(sb);
  636. }
  637. /*
  638. * version 1 superblock
  639. */
  640. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  641. {
  642. unsigned int disk_csum, csum;
  643. unsigned long long newcsum;
  644. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  645. unsigned int *isuper = (unsigned int*)sb;
  646. int i;
  647. disk_csum = sb->sb_csum;
  648. sb->sb_csum = 0;
  649. newcsum = 0;
  650. for (i=0; size>=4; size -= 4 )
  651. newcsum += le32_to_cpu(*isuper++);
  652. if (size == 2)
  653. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  654. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  655. sb->sb_csum = disk_csum;
  656. return cpu_to_le32(csum);
  657. }
  658. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  659. {
  660. struct mdp_superblock_1 *sb;
  661. int ret;
  662. sector_t sb_offset;
  663. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  664. /*
  665. * Calculate the position of the superblock.
  666. * It is always aligned to a 4K boundary and
  667. * depeding on minor_version, it can be:
  668. * 0: At least 8K, but less than 12K, from end of device
  669. * 1: At start of device
  670. * 2: 4K from start of device.
  671. */
  672. switch(minor_version) {
  673. case 0:
  674. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  675. sb_offset -= 8*2;
  676. sb_offset &= ~(4*2-1);
  677. /* convert from sectors to K */
  678. sb_offset /= 2;
  679. break;
  680. case 1:
  681. sb_offset = 0;
  682. break;
  683. case 2:
  684. sb_offset = 4;
  685. break;
  686. default:
  687. return -EINVAL;
  688. }
  689. rdev->sb_offset = sb_offset;
  690. ret = read_disk_sb(rdev);
  691. if (ret) return ret;
  692. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  693. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  694. sb->major_version != cpu_to_le32(1) ||
  695. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  696. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  697. sb->feature_map != 0)
  698. return -EINVAL;
  699. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  700. printk("md: invalid superblock checksum on %s\n",
  701. bdevname(rdev->bdev,b));
  702. return -EINVAL;
  703. }
  704. if (le64_to_cpu(sb->data_size) < 10) {
  705. printk("md: data_size too small on %s\n",
  706. bdevname(rdev->bdev,b));
  707. return -EINVAL;
  708. }
  709. rdev->preferred_minor = 0xffff;
  710. rdev->data_offset = le64_to_cpu(sb->data_offset);
  711. if (refdev == 0)
  712. return 1;
  713. else {
  714. __u64 ev1, ev2;
  715. struct mdp_superblock_1 *refsb =
  716. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  717. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  718. sb->level != refsb->level ||
  719. sb->layout != refsb->layout ||
  720. sb->chunksize != refsb->chunksize) {
  721. printk(KERN_WARNING "md: %s has strangely different"
  722. " superblock to %s\n",
  723. bdevname(rdev->bdev,b),
  724. bdevname(refdev->bdev,b2));
  725. return -EINVAL;
  726. }
  727. ev1 = le64_to_cpu(sb->events);
  728. ev2 = le64_to_cpu(refsb->events);
  729. if (ev1 > ev2)
  730. return 1;
  731. }
  732. if (minor_version)
  733. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  734. else
  735. rdev->size = rdev->sb_offset;
  736. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  737. return -EINVAL;
  738. rdev->size = le64_to_cpu(sb->data_size)/2;
  739. if (le32_to_cpu(sb->chunksize))
  740. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  741. return 0;
  742. }
  743. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  744. {
  745. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  746. rdev->raid_disk = -1;
  747. rdev->in_sync = 0;
  748. if (mddev->raid_disks == 0) {
  749. mddev->major_version = 1;
  750. mddev->patch_version = 0;
  751. mddev->persistent = 1;
  752. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  753. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  754. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  755. mddev->level = le32_to_cpu(sb->level);
  756. mddev->layout = le32_to_cpu(sb->layout);
  757. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  758. mddev->size = le64_to_cpu(sb->size)/2;
  759. mddev->events = le64_to_cpu(sb->events);
  760. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  761. memcpy(mddev->uuid, sb->set_uuid, 16);
  762. mddev->max_disks = (4096-256)/2;
  763. } else if (mddev->pers == NULL) {
  764. /* Insist of good event counter while assembling */
  765. __u64 ev1 = le64_to_cpu(sb->events);
  766. ++ev1;
  767. if (ev1 < mddev->events)
  768. return -EINVAL;
  769. } else if (mddev->bitmap) {
  770. /* If adding to array with a bitmap, then we can accept an
  771. * older device, but not too old.
  772. */
  773. __u64 ev1 = le64_to_cpu(sb->events);
  774. if (ev1 < mddev->bitmap->events_cleared)
  775. return 0;
  776. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  777. return 0;
  778. if (mddev->level != LEVEL_MULTIPATH) {
  779. int role;
  780. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  781. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  782. switch(role) {
  783. case 0xffff: /* spare */
  784. rdev->faulty = 0;
  785. break;
  786. case 0xfffe: /* faulty */
  787. rdev->faulty = 1;
  788. break;
  789. default:
  790. rdev->in_sync = 1;
  791. rdev->faulty = 0;
  792. rdev->raid_disk = role;
  793. break;
  794. }
  795. } else /* MULTIPATH are always insync */
  796. rdev->in_sync = 1;
  797. return 0;
  798. }
  799. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  800. {
  801. struct mdp_superblock_1 *sb;
  802. struct list_head *tmp;
  803. mdk_rdev_t *rdev2;
  804. int max_dev, i;
  805. /* make rdev->sb match mddev and rdev data. */
  806. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  807. sb->feature_map = 0;
  808. sb->pad0 = 0;
  809. memset(sb->pad1, 0, sizeof(sb->pad1));
  810. memset(sb->pad2, 0, sizeof(sb->pad2));
  811. memset(sb->pad3, 0, sizeof(sb->pad3));
  812. sb->utime = cpu_to_le64((__u64)mddev->utime);
  813. sb->events = cpu_to_le64(mddev->events);
  814. if (mddev->in_sync)
  815. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  816. else
  817. sb->resync_offset = cpu_to_le64(0);
  818. max_dev = 0;
  819. ITERATE_RDEV(mddev,rdev2,tmp)
  820. if (rdev2->desc_nr+1 > max_dev)
  821. max_dev = rdev2->desc_nr+1;
  822. sb->max_dev = cpu_to_le32(max_dev);
  823. for (i=0; i<max_dev;i++)
  824. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  825. ITERATE_RDEV(mddev,rdev2,tmp) {
  826. i = rdev2->desc_nr;
  827. if (rdev2->faulty)
  828. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  829. else if (rdev2->in_sync)
  830. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  831. else
  832. sb->dev_roles[i] = cpu_to_le16(0xffff);
  833. }
  834. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  835. sb->sb_csum = calc_sb_1_csum(sb);
  836. }
  837. static struct super_type super_types[] = {
  838. [0] = {
  839. .name = "0.90.0",
  840. .owner = THIS_MODULE,
  841. .load_super = super_90_load,
  842. .validate_super = super_90_validate,
  843. .sync_super = super_90_sync,
  844. },
  845. [1] = {
  846. .name = "md-1",
  847. .owner = THIS_MODULE,
  848. .load_super = super_1_load,
  849. .validate_super = super_1_validate,
  850. .sync_super = super_1_sync,
  851. },
  852. };
  853. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  854. {
  855. struct list_head *tmp;
  856. mdk_rdev_t *rdev;
  857. ITERATE_RDEV(mddev,rdev,tmp)
  858. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  859. return rdev;
  860. return NULL;
  861. }
  862. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  863. {
  864. struct list_head *tmp;
  865. mdk_rdev_t *rdev;
  866. ITERATE_RDEV(mddev1,rdev,tmp)
  867. if (match_dev_unit(mddev2, rdev))
  868. return 1;
  869. return 0;
  870. }
  871. static LIST_HEAD(pending_raid_disks);
  872. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  873. {
  874. mdk_rdev_t *same_pdev;
  875. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  876. if (rdev->mddev) {
  877. MD_BUG();
  878. return -EINVAL;
  879. }
  880. same_pdev = match_dev_unit(mddev, rdev);
  881. if (same_pdev)
  882. printk(KERN_WARNING
  883. "%s: WARNING: %s appears to be on the same physical"
  884. " disk as %s. True\n protection against single-disk"
  885. " failure might be compromised.\n",
  886. mdname(mddev), bdevname(rdev->bdev,b),
  887. bdevname(same_pdev->bdev,b2));
  888. /* Verify rdev->desc_nr is unique.
  889. * If it is -1, assign a free number, else
  890. * check number is not in use
  891. */
  892. if (rdev->desc_nr < 0) {
  893. int choice = 0;
  894. if (mddev->pers) choice = mddev->raid_disks;
  895. while (find_rdev_nr(mddev, choice))
  896. choice++;
  897. rdev->desc_nr = choice;
  898. } else {
  899. if (find_rdev_nr(mddev, rdev->desc_nr))
  900. return -EBUSY;
  901. }
  902. list_add(&rdev->same_set, &mddev->disks);
  903. rdev->mddev = mddev;
  904. printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
  905. return 0;
  906. }
  907. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  908. {
  909. char b[BDEVNAME_SIZE];
  910. if (!rdev->mddev) {
  911. MD_BUG();
  912. return;
  913. }
  914. list_del_init(&rdev->same_set);
  915. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  916. rdev->mddev = NULL;
  917. }
  918. /*
  919. * prevent the device from being mounted, repartitioned or
  920. * otherwise reused by a RAID array (or any other kernel
  921. * subsystem), by bd_claiming the device.
  922. */
  923. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  924. {
  925. int err = 0;
  926. struct block_device *bdev;
  927. char b[BDEVNAME_SIZE];
  928. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  929. if (IS_ERR(bdev)) {
  930. printk(KERN_ERR "md: could not open %s.\n",
  931. __bdevname(dev, b));
  932. return PTR_ERR(bdev);
  933. }
  934. err = bd_claim(bdev, rdev);
  935. if (err) {
  936. printk(KERN_ERR "md: could not bd_claim %s.\n",
  937. bdevname(bdev, b));
  938. blkdev_put(bdev);
  939. return err;
  940. }
  941. rdev->bdev = bdev;
  942. return err;
  943. }
  944. static void unlock_rdev(mdk_rdev_t *rdev)
  945. {
  946. struct block_device *bdev = rdev->bdev;
  947. rdev->bdev = NULL;
  948. if (!bdev)
  949. MD_BUG();
  950. bd_release(bdev);
  951. blkdev_put(bdev);
  952. }
  953. void md_autodetect_dev(dev_t dev);
  954. static void export_rdev(mdk_rdev_t * rdev)
  955. {
  956. char b[BDEVNAME_SIZE];
  957. printk(KERN_INFO "md: export_rdev(%s)\n",
  958. bdevname(rdev->bdev,b));
  959. if (rdev->mddev)
  960. MD_BUG();
  961. free_disk_sb(rdev);
  962. list_del_init(&rdev->same_set);
  963. #ifndef MODULE
  964. md_autodetect_dev(rdev->bdev->bd_dev);
  965. #endif
  966. unlock_rdev(rdev);
  967. kfree(rdev);
  968. }
  969. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  970. {
  971. unbind_rdev_from_array(rdev);
  972. export_rdev(rdev);
  973. }
  974. static void export_array(mddev_t *mddev)
  975. {
  976. struct list_head *tmp;
  977. mdk_rdev_t *rdev;
  978. ITERATE_RDEV(mddev,rdev,tmp) {
  979. if (!rdev->mddev) {
  980. MD_BUG();
  981. continue;
  982. }
  983. kick_rdev_from_array(rdev);
  984. }
  985. if (!list_empty(&mddev->disks))
  986. MD_BUG();
  987. mddev->raid_disks = 0;
  988. mddev->major_version = 0;
  989. }
  990. static void print_desc(mdp_disk_t *desc)
  991. {
  992. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  993. desc->major,desc->minor,desc->raid_disk,desc->state);
  994. }
  995. static void print_sb(mdp_super_t *sb)
  996. {
  997. int i;
  998. printk(KERN_INFO
  999. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1000. sb->major_version, sb->minor_version, sb->patch_version,
  1001. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1002. sb->ctime);
  1003. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1004. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1005. sb->md_minor, sb->layout, sb->chunk_size);
  1006. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1007. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1008. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1009. sb->failed_disks, sb->spare_disks,
  1010. sb->sb_csum, (unsigned long)sb->events_lo);
  1011. printk(KERN_INFO);
  1012. for (i = 0; i < MD_SB_DISKS; i++) {
  1013. mdp_disk_t *desc;
  1014. desc = sb->disks + i;
  1015. if (desc->number || desc->major || desc->minor ||
  1016. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1017. printk(" D %2d: ", i);
  1018. print_desc(desc);
  1019. }
  1020. }
  1021. printk(KERN_INFO "md: THIS: ");
  1022. print_desc(&sb->this_disk);
  1023. }
  1024. static void print_rdev(mdk_rdev_t *rdev)
  1025. {
  1026. char b[BDEVNAME_SIZE];
  1027. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1028. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1029. rdev->faulty, rdev->in_sync, rdev->desc_nr);
  1030. if (rdev->sb_loaded) {
  1031. printk(KERN_INFO "md: rdev superblock:\n");
  1032. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1033. } else
  1034. printk(KERN_INFO "md: no rdev superblock!\n");
  1035. }
  1036. void md_print_devices(void)
  1037. {
  1038. struct list_head *tmp, *tmp2;
  1039. mdk_rdev_t *rdev;
  1040. mddev_t *mddev;
  1041. char b[BDEVNAME_SIZE];
  1042. printk("\n");
  1043. printk("md: **********************************\n");
  1044. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1045. printk("md: **********************************\n");
  1046. ITERATE_MDDEV(mddev,tmp) {
  1047. if (mddev->bitmap)
  1048. bitmap_print_sb(mddev->bitmap);
  1049. else
  1050. printk("%s: ", mdname(mddev));
  1051. ITERATE_RDEV(mddev,rdev,tmp2)
  1052. printk("<%s>", bdevname(rdev->bdev,b));
  1053. printk("\n");
  1054. ITERATE_RDEV(mddev,rdev,tmp2)
  1055. print_rdev(rdev);
  1056. }
  1057. printk("md: **********************************\n");
  1058. printk("\n");
  1059. }
  1060. static int write_disk_sb(mdk_rdev_t * rdev)
  1061. {
  1062. char b[BDEVNAME_SIZE];
  1063. if (!rdev->sb_loaded) {
  1064. MD_BUG();
  1065. return 1;
  1066. }
  1067. if (rdev->faulty) {
  1068. MD_BUG();
  1069. return 1;
  1070. }
  1071. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1072. bdevname(rdev->bdev,b),
  1073. (unsigned long long)rdev->sb_offset);
  1074. if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE))
  1075. return 0;
  1076. printk("md: write_disk_sb failed for device %s\n",
  1077. bdevname(rdev->bdev,b));
  1078. return 1;
  1079. }
  1080. static void sync_sbs(mddev_t * mddev)
  1081. {
  1082. mdk_rdev_t *rdev;
  1083. struct list_head *tmp;
  1084. ITERATE_RDEV(mddev,rdev,tmp) {
  1085. super_types[mddev->major_version].
  1086. sync_super(mddev, rdev);
  1087. rdev->sb_loaded = 1;
  1088. }
  1089. }
  1090. static void md_update_sb(mddev_t * mddev)
  1091. {
  1092. int err, count = 100;
  1093. struct list_head *tmp;
  1094. mdk_rdev_t *rdev;
  1095. int sync_req;
  1096. repeat:
  1097. spin_lock(&mddev->write_lock);
  1098. sync_req = mddev->in_sync;
  1099. mddev->utime = get_seconds();
  1100. mddev->events ++;
  1101. if (!mddev->events) {
  1102. /*
  1103. * oops, this 64-bit counter should never wrap.
  1104. * Either we are in around ~1 trillion A.C., assuming
  1105. * 1 reboot per second, or we have a bug:
  1106. */
  1107. MD_BUG();
  1108. mddev->events --;
  1109. }
  1110. sync_sbs(mddev);
  1111. /*
  1112. * do not write anything to disk if using
  1113. * nonpersistent superblocks
  1114. */
  1115. if (!mddev->persistent) {
  1116. mddev->sb_dirty = 0;
  1117. spin_unlock(&mddev->write_lock);
  1118. wake_up(&mddev->sb_wait);
  1119. return;
  1120. }
  1121. spin_unlock(&mddev->write_lock);
  1122. dprintk(KERN_INFO
  1123. "md: updating %s RAID superblock on device (in sync %d)\n",
  1124. mdname(mddev),mddev->in_sync);
  1125. err = bitmap_update_sb(mddev->bitmap);
  1126. ITERATE_RDEV(mddev,rdev,tmp) {
  1127. char b[BDEVNAME_SIZE];
  1128. dprintk(KERN_INFO "md: ");
  1129. if (rdev->faulty)
  1130. dprintk("(skipping faulty ");
  1131. dprintk("%s ", bdevname(rdev->bdev,b));
  1132. if (!rdev->faulty) {
  1133. err += write_disk_sb(rdev);
  1134. } else
  1135. dprintk(")\n");
  1136. if (!err && mddev->level == LEVEL_MULTIPATH)
  1137. /* only need to write one superblock... */
  1138. break;
  1139. }
  1140. if (err) {
  1141. if (--count) {
  1142. printk(KERN_ERR "md: errors occurred during superblock"
  1143. " update, repeating\n");
  1144. goto repeat;
  1145. }
  1146. printk(KERN_ERR \
  1147. "md: excessive errors occurred during superblock update, exiting\n");
  1148. }
  1149. spin_lock(&mddev->write_lock);
  1150. if (mddev->in_sync != sync_req) {
  1151. /* have to write it out again */
  1152. spin_unlock(&mddev->write_lock);
  1153. goto repeat;
  1154. }
  1155. mddev->sb_dirty = 0;
  1156. spin_unlock(&mddev->write_lock);
  1157. wake_up(&mddev->sb_wait);
  1158. }
  1159. /*
  1160. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1161. *
  1162. * mark the device faulty if:
  1163. *
  1164. * - the device is nonexistent (zero size)
  1165. * - the device has no valid superblock
  1166. *
  1167. * a faulty rdev _never_ has rdev->sb set.
  1168. */
  1169. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1170. {
  1171. char b[BDEVNAME_SIZE];
  1172. int err;
  1173. mdk_rdev_t *rdev;
  1174. sector_t size;
  1175. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1176. if (!rdev) {
  1177. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1178. return ERR_PTR(-ENOMEM);
  1179. }
  1180. memset(rdev, 0, sizeof(*rdev));
  1181. if ((err = alloc_disk_sb(rdev)))
  1182. goto abort_free;
  1183. err = lock_rdev(rdev, newdev);
  1184. if (err)
  1185. goto abort_free;
  1186. rdev->desc_nr = -1;
  1187. rdev->faulty = 0;
  1188. rdev->in_sync = 0;
  1189. rdev->data_offset = 0;
  1190. atomic_set(&rdev->nr_pending, 0);
  1191. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1192. if (!size) {
  1193. printk(KERN_WARNING
  1194. "md: %s has zero or unknown size, marking faulty!\n",
  1195. bdevname(rdev->bdev,b));
  1196. err = -EINVAL;
  1197. goto abort_free;
  1198. }
  1199. if (super_format >= 0) {
  1200. err = super_types[super_format].
  1201. load_super(rdev, NULL, super_minor);
  1202. if (err == -EINVAL) {
  1203. printk(KERN_WARNING
  1204. "md: %s has invalid sb, not importing!\n",
  1205. bdevname(rdev->bdev,b));
  1206. goto abort_free;
  1207. }
  1208. if (err < 0) {
  1209. printk(KERN_WARNING
  1210. "md: could not read %s's sb, not importing!\n",
  1211. bdevname(rdev->bdev,b));
  1212. goto abort_free;
  1213. }
  1214. }
  1215. INIT_LIST_HEAD(&rdev->same_set);
  1216. return rdev;
  1217. abort_free:
  1218. if (rdev->sb_page) {
  1219. if (rdev->bdev)
  1220. unlock_rdev(rdev);
  1221. free_disk_sb(rdev);
  1222. }
  1223. kfree(rdev);
  1224. return ERR_PTR(err);
  1225. }
  1226. /*
  1227. * Check a full RAID array for plausibility
  1228. */
  1229. static void analyze_sbs(mddev_t * mddev)
  1230. {
  1231. int i;
  1232. struct list_head *tmp;
  1233. mdk_rdev_t *rdev, *freshest;
  1234. char b[BDEVNAME_SIZE];
  1235. freshest = NULL;
  1236. ITERATE_RDEV(mddev,rdev,tmp)
  1237. switch (super_types[mddev->major_version].
  1238. load_super(rdev, freshest, mddev->minor_version)) {
  1239. case 1:
  1240. freshest = rdev;
  1241. break;
  1242. case 0:
  1243. break;
  1244. default:
  1245. printk( KERN_ERR \
  1246. "md: fatal superblock inconsistency in %s"
  1247. " -- removing from array\n",
  1248. bdevname(rdev->bdev,b));
  1249. kick_rdev_from_array(rdev);
  1250. }
  1251. super_types[mddev->major_version].
  1252. validate_super(mddev, freshest);
  1253. i = 0;
  1254. ITERATE_RDEV(mddev,rdev,tmp) {
  1255. if (rdev != freshest)
  1256. if (super_types[mddev->major_version].
  1257. validate_super(mddev, rdev)) {
  1258. printk(KERN_WARNING "md: kicking non-fresh %s"
  1259. " from array!\n",
  1260. bdevname(rdev->bdev,b));
  1261. kick_rdev_from_array(rdev);
  1262. continue;
  1263. }
  1264. if (mddev->level == LEVEL_MULTIPATH) {
  1265. rdev->desc_nr = i++;
  1266. rdev->raid_disk = rdev->desc_nr;
  1267. rdev->in_sync = 1;
  1268. }
  1269. }
  1270. if (mddev->recovery_cp != MaxSector &&
  1271. mddev->level >= 1)
  1272. printk(KERN_ERR "md: %s: raid array is not clean"
  1273. " -- starting background reconstruction\n",
  1274. mdname(mddev));
  1275. }
  1276. int mdp_major = 0;
  1277. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1278. {
  1279. static DECLARE_MUTEX(disks_sem);
  1280. mddev_t *mddev = mddev_find(dev);
  1281. struct gendisk *disk;
  1282. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1283. int shift = partitioned ? MdpMinorShift : 0;
  1284. int unit = MINOR(dev) >> shift;
  1285. if (!mddev)
  1286. return NULL;
  1287. down(&disks_sem);
  1288. if (mddev->gendisk) {
  1289. up(&disks_sem);
  1290. mddev_put(mddev);
  1291. return NULL;
  1292. }
  1293. disk = alloc_disk(1 << shift);
  1294. if (!disk) {
  1295. up(&disks_sem);
  1296. mddev_put(mddev);
  1297. return NULL;
  1298. }
  1299. disk->major = MAJOR(dev);
  1300. disk->first_minor = unit << shift;
  1301. if (partitioned) {
  1302. sprintf(disk->disk_name, "md_d%d", unit);
  1303. sprintf(disk->devfs_name, "md/d%d", unit);
  1304. } else {
  1305. sprintf(disk->disk_name, "md%d", unit);
  1306. sprintf(disk->devfs_name, "md/%d", unit);
  1307. }
  1308. disk->fops = &md_fops;
  1309. disk->private_data = mddev;
  1310. disk->queue = mddev->queue;
  1311. add_disk(disk);
  1312. mddev->gendisk = disk;
  1313. up(&disks_sem);
  1314. return NULL;
  1315. }
  1316. void md_wakeup_thread(mdk_thread_t *thread);
  1317. static void md_safemode_timeout(unsigned long data)
  1318. {
  1319. mddev_t *mddev = (mddev_t *) data;
  1320. mddev->safemode = 1;
  1321. md_wakeup_thread(mddev->thread);
  1322. }
  1323. static int do_md_run(mddev_t * mddev)
  1324. {
  1325. int pnum, err;
  1326. int chunk_size;
  1327. struct list_head *tmp;
  1328. mdk_rdev_t *rdev;
  1329. struct gendisk *disk;
  1330. char b[BDEVNAME_SIZE];
  1331. if (list_empty(&mddev->disks))
  1332. /* cannot run an array with no devices.. */
  1333. return -EINVAL;
  1334. if (mddev->pers)
  1335. return -EBUSY;
  1336. /*
  1337. * Analyze all RAID superblock(s)
  1338. */
  1339. if (!mddev->raid_disks)
  1340. analyze_sbs(mddev);
  1341. chunk_size = mddev->chunk_size;
  1342. pnum = level_to_pers(mddev->level);
  1343. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1344. if (!chunk_size) {
  1345. /*
  1346. * 'default chunksize' in the old md code used to
  1347. * be PAGE_SIZE, baaad.
  1348. * we abort here to be on the safe side. We don't
  1349. * want to continue the bad practice.
  1350. */
  1351. printk(KERN_ERR
  1352. "no chunksize specified, see 'man raidtab'\n");
  1353. return -EINVAL;
  1354. }
  1355. if (chunk_size > MAX_CHUNK_SIZE) {
  1356. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1357. chunk_size, MAX_CHUNK_SIZE);
  1358. return -EINVAL;
  1359. }
  1360. /*
  1361. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1362. */
  1363. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1364. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1365. return -EINVAL;
  1366. }
  1367. if (chunk_size < PAGE_SIZE) {
  1368. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1369. chunk_size, PAGE_SIZE);
  1370. return -EINVAL;
  1371. }
  1372. /* devices must have minimum size of one chunk */
  1373. ITERATE_RDEV(mddev,rdev,tmp) {
  1374. if (rdev->faulty)
  1375. continue;
  1376. if (rdev->size < chunk_size / 1024) {
  1377. printk(KERN_WARNING
  1378. "md: Dev %s smaller than chunk_size:"
  1379. " %lluk < %dk\n",
  1380. bdevname(rdev->bdev,b),
  1381. (unsigned long long)rdev->size,
  1382. chunk_size / 1024);
  1383. return -EINVAL;
  1384. }
  1385. }
  1386. }
  1387. #ifdef CONFIG_KMOD
  1388. if (!pers[pnum])
  1389. {
  1390. request_module("md-personality-%d", pnum);
  1391. }
  1392. #endif
  1393. /*
  1394. * Drop all container device buffers, from now on
  1395. * the only valid external interface is through the md
  1396. * device.
  1397. * Also find largest hardsector size
  1398. */
  1399. ITERATE_RDEV(mddev,rdev,tmp) {
  1400. if (rdev->faulty)
  1401. continue;
  1402. sync_blockdev(rdev->bdev);
  1403. invalidate_bdev(rdev->bdev, 0);
  1404. }
  1405. md_probe(mddev->unit, NULL, NULL);
  1406. disk = mddev->gendisk;
  1407. if (!disk)
  1408. return -ENOMEM;
  1409. spin_lock(&pers_lock);
  1410. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1411. spin_unlock(&pers_lock);
  1412. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1413. pnum);
  1414. return -EINVAL;
  1415. }
  1416. mddev->pers = pers[pnum];
  1417. spin_unlock(&pers_lock);
  1418. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1419. /* before we start the array running, initialise the bitmap */
  1420. err = bitmap_create(mddev);
  1421. if (err)
  1422. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1423. mdname(mddev), err);
  1424. else
  1425. err = mddev->pers->run(mddev);
  1426. if (err) {
  1427. printk(KERN_ERR "md: pers->run() failed ...\n");
  1428. module_put(mddev->pers->owner);
  1429. mddev->pers = NULL;
  1430. bitmap_destroy(mddev);
  1431. return err;
  1432. }
  1433. atomic_set(&mddev->writes_pending,0);
  1434. mddev->safemode = 0;
  1435. mddev->safemode_timer.function = md_safemode_timeout;
  1436. mddev->safemode_timer.data = (unsigned long) mddev;
  1437. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1438. mddev->in_sync = 1;
  1439. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1440. if (mddev->sb_dirty)
  1441. md_update_sb(mddev);
  1442. set_capacity(disk, mddev->array_size<<1);
  1443. /* If we call blk_queue_make_request here, it will
  1444. * re-initialise max_sectors etc which may have been
  1445. * refined inside -> run. So just set the bits we need to set.
  1446. * Most initialisation happended when we called
  1447. * blk_queue_make_request(..., md_fail_request)
  1448. * earlier.
  1449. */
  1450. mddev->queue->queuedata = mddev;
  1451. mddev->queue->make_request_fn = mddev->pers->make_request;
  1452. mddev->changed = 1;
  1453. return 0;
  1454. }
  1455. static int restart_array(mddev_t *mddev)
  1456. {
  1457. struct gendisk *disk = mddev->gendisk;
  1458. int err;
  1459. /*
  1460. * Complain if it has no devices
  1461. */
  1462. err = -ENXIO;
  1463. if (list_empty(&mddev->disks))
  1464. goto out;
  1465. if (mddev->pers) {
  1466. err = -EBUSY;
  1467. if (!mddev->ro)
  1468. goto out;
  1469. mddev->safemode = 0;
  1470. mddev->ro = 0;
  1471. set_disk_ro(disk, 0);
  1472. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1473. mdname(mddev));
  1474. /*
  1475. * Kick recovery or resync if necessary
  1476. */
  1477. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1478. md_wakeup_thread(mddev->thread);
  1479. err = 0;
  1480. } else {
  1481. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1482. mdname(mddev));
  1483. err = -EINVAL;
  1484. }
  1485. out:
  1486. return err;
  1487. }
  1488. static int do_md_stop(mddev_t * mddev, int ro)
  1489. {
  1490. int err = 0;
  1491. struct gendisk *disk = mddev->gendisk;
  1492. if (mddev->pers) {
  1493. if (atomic_read(&mddev->active)>2) {
  1494. printk("md: %s still in use.\n",mdname(mddev));
  1495. return -EBUSY;
  1496. }
  1497. if (mddev->sync_thread) {
  1498. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1499. md_unregister_thread(mddev->sync_thread);
  1500. mddev->sync_thread = NULL;
  1501. }
  1502. del_timer_sync(&mddev->safemode_timer);
  1503. invalidate_partition(disk, 0);
  1504. if (ro) {
  1505. err = -ENXIO;
  1506. if (mddev->ro)
  1507. goto out;
  1508. mddev->ro = 1;
  1509. } else {
  1510. if (mddev->ro)
  1511. set_disk_ro(disk, 0);
  1512. blk_queue_make_request(mddev->queue, md_fail_request);
  1513. mddev->pers->stop(mddev);
  1514. module_put(mddev->pers->owner);
  1515. mddev->pers = NULL;
  1516. if (mddev->ro)
  1517. mddev->ro = 0;
  1518. }
  1519. if (!mddev->in_sync) {
  1520. /* mark array as shutdown cleanly */
  1521. mddev->in_sync = 1;
  1522. md_update_sb(mddev);
  1523. }
  1524. if (ro)
  1525. set_disk_ro(disk, 1);
  1526. }
  1527. bitmap_destroy(mddev);
  1528. if (mddev->bitmap_file) {
  1529. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1530. fput(mddev->bitmap_file);
  1531. mddev->bitmap_file = NULL;
  1532. }
  1533. /*
  1534. * Free resources if final stop
  1535. */
  1536. if (!ro) {
  1537. struct gendisk *disk;
  1538. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1539. export_array(mddev);
  1540. mddev->array_size = 0;
  1541. disk = mddev->gendisk;
  1542. if (disk)
  1543. set_capacity(disk, 0);
  1544. mddev->changed = 1;
  1545. } else
  1546. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1547. mdname(mddev));
  1548. err = 0;
  1549. out:
  1550. return err;
  1551. }
  1552. static void autorun_array(mddev_t *mddev)
  1553. {
  1554. mdk_rdev_t *rdev;
  1555. struct list_head *tmp;
  1556. int err;
  1557. if (list_empty(&mddev->disks))
  1558. return;
  1559. printk(KERN_INFO "md: running: ");
  1560. ITERATE_RDEV(mddev,rdev,tmp) {
  1561. char b[BDEVNAME_SIZE];
  1562. printk("<%s>", bdevname(rdev->bdev,b));
  1563. }
  1564. printk("\n");
  1565. err = do_md_run (mddev);
  1566. if (err) {
  1567. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1568. do_md_stop (mddev, 0);
  1569. }
  1570. }
  1571. /*
  1572. * lets try to run arrays based on all disks that have arrived
  1573. * until now. (those are in pending_raid_disks)
  1574. *
  1575. * the method: pick the first pending disk, collect all disks with
  1576. * the same UUID, remove all from the pending list and put them into
  1577. * the 'same_array' list. Then order this list based on superblock
  1578. * update time (freshest comes first), kick out 'old' disks and
  1579. * compare superblocks. If everything's fine then run it.
  1580. *
  1581. * If "unit" is allocated, then bump its reference count
  1582. */
  1583. static void autorun_devices(int part)
  1584. {
  1585. struct list_head candidates;
  1586. struct list_head *tmp;
  1587. mdk_rdev_t *rdev0, *rdev;
  1588. mddev_t *mddev;
  1589. char b[BDEVNAME_SIZE];
  1590. printk(KERN_INFO "md: autorun ...\n");
  1591. while (!list_empty(&pending_raid_disks)) {
  1592. dev_t dev;
  1593. rdev0 = list_entry(pending_raid_disks.next,
  1594. mdk_rdev_t, same_set);
  1595. printk(KERN_INFO "md: considering %s ...\n",
  1596. bdevname(rdev0->bdev,b));
  1597. INIT_LIST_HEAD(&candidates);
  1598. ITERATE_RDEV_PENDING(rdev,tmp)
  1599. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1600. printk(KERN_INFO "md: adding %s ...\n",
  1601. bdevname(rdev->bdev,b));
  1602. list_move(&rdev->same_set, &candidates);
  1603. }
  1604. /*
  1605. * now we have a set of devices, with all of them having
  1606. * mostly sane superblocks. It's time to allocate the
  1607. * mddev.
  1608. */
  1609. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1610. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1611. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1612. break;
  1613. }
  1614. if (part)
  1615. dev = MKDEV(mdp_major,
  1616. rdev0->preferred_minor << MdpMinorShift);
  1617. else
  1618. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1619. md_probe(dev, NULL, NULL);
  1620. mddev = mddev_find(dev);
  1621. if (!mddev) {
  1622. printk(KERN_ERR
  1623. "md: cannot allocate memory for md drive.\n");
  1624. break;
  1625. }
  1626. if (mddev_lock(mddev))
  1627. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1628. mdname(mddev));
  1629. else if (mddev->raid_disks || mddev->major_version
  1630. || !list_empty(&mddev->disks)) {
  1631. printk(KERN_WARNING
  1632. "md: %s already running, cannot run %s\n",
  1633. mdname(mddev), bdevname(rdev0->bdev,b));
  1634. mddev_unlock(mddev);
  1635. } else {
  1636. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1637. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1638. list_del_init(&rdev->same_set);
  1639. if (bind_rdev_to_array(rdev, mddev))
  1640. export_rdev(rdev);
  1641. }
  1642. autorun_array(mddev);
  1643. mddev_unlock(mddev);
  1644. }
  1645. /* on success, candidates will be empty, on error
  1646. * it won't...
  1647. */
  1648. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1649. export_rdev(rdev);
  1650. mddev_put(mddev);
  1651. }
  1652. printk(KERN_INFO "md: ... autorun DONE.\n");
  1653. }
  1654. /*
  1655. * import RAID devices based on one partition
  1656. * if possible, the array gets run as well.
  1657. */
  1658. static int autostart_array(dev_t startdev)
  1659. {
  1660. char b[BDEVNAME_SIZE];
  1661. int err = -EINVAL, i;
  1662. mdp_super_t *sb = NULL;
  1663. mdk_rdev_t *start_rdev = NULL, *rdev;
  1664. start_rdev = md_import_device(startdev, 0, 0);
  1665. if (IS_ERR(start_rdev))
  1666. return err;
  1667. /* NOTE: this can only work for 0.90.0 superblocks */
  1668. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  1669. if (sb->major_version != 0 ||
  1670. sb->minor_version != 90 ) {
  1671. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  1672. export_rdev(start_rdev);
  1673. return err;
  1674. }
  1675. if (start_rdev->faulty) {
  1676. printk(KERN_WARNING
  1677. "md: can not autostart based on faulty %s!\n",
  1678. bdevname(start_rdev->bdev,b));
  1679. export_rdev(start_rdev);
  1680. return err;
  1681. }
  1682. list_add(&start_rdev->same_set, &pending_raid_disks);
  1683. for (i = 0; i < MD_SB_DISKS; i++) {
  1684. mdp_disk_t *desc = sb->disks + i;
  1685. dev_t dev = MKDEV(desc->major, desc->minor);
  1686. if (!dev)
  1687. continue;
  1688. if (dev == startdev)
  1689. continue;
  1690. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  1691. continue;
  1692. rdev = md_import_device(dev, 0, 0);
  1693. if (IS_ERR(rdev))
  1694. continue;
  1695. list_add(&rdev->same_set, &pending_raid_disks);
  1696. }
  1697. /*
  1698. * possibly return codes
  1699. */
  1700. autorun_devices(0);
  1701. return 0;
  1702. }
  1703. static int get_version(void __user * arg)
  1704. {
  1705. mdu_version_t ver;
  1706. ver.major = MD_MAJOR_VERSION;
  1707. ver.minor = MD_MINOR_VERSION;
  1708. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  1709. if (copy_to_user(arg, &ver, sizeof(ver)))
  1710. return -EFAULT;
  1711. return 0;
  1712. }
  1713. static int get_array_info(mddev_t * mddev, void __user * arg)
  1714. {
  1715. mdu_array_info_t info;
  1716. int nr,working,active,failed,spare;
  1717. mdk_rdev_t *rdev;
  1718. struct list_head *tmp;
  1719. nr=working=active=failed=spare=0;
  1720. ITERATE_RDEV(mddev,rdev,tmp) {
  1721. nr++;
  1722. if (rdev->faulty)
  1723. failed++;
  1724. else {
  1725. working++;
  1726. if (rdev->in_sync)
  1727. active++;
  1728. else
  1729. spare++;
  1730. }
  1731. }
  1732. info.major_version = mddev->major_version;
  1733. info.minor_version = mddev->minor_version;
  1734. info.patch_version = MD_PATCHLEVEL_VERSION;
  1735. info.ctime = mddev->ctime;
  1736. info.level = mddev->level;
  1737. info.size = mddev->size;
  1738. info.nr_disks = nr;
  1739. info.raid_disks = mddev->raid_disks;
  1740. info.md_minor = mddev->md_minor;
  1741. info.not_persistent= !mddev->persistent;
  1742. info.utime = mddev->utime;
  1743. info.state = 0;
  1744. if (mddev->in_sync)
  1745. info.state = (1<<MD_SB_CLEAN);
  1746. info.active_disks = active;
  1747. info.working_disks = working;
  1748. info.failed_disks = failed;
  1749. info.spare_disks = spare;
  1750. info.layout = mddev->layout;
  1751. info.chunk_size = mddev->chunk_size;
  1752. if (copy_to_user(arg, &info, sizeof(info)))
  1753. return -EFAULT;
  1754. return 0;
  1755. }
  1756. static int get_bitmap_file(mddev_t * mddev, void * arg)
  1757. {
  1758. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  1759. char *ptr, *buf = NULL;
  1760. int err = -ENOMEM;
  1761. file = kmalloc(sizeof(*file), GFP_KERNEL);
  1762. if (!file)
  1763. goto out;
  1764. /* bitmap disabled, zero the first byte and copy out */
  1765. if (!mddev->bitmap || !mddev->bitmap->file) {
  1766. file->pathname[0] = '\0';
  1767. goto copy_out;
  1768. }
  1769. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  1770. if (!buf)
  1771. goto out;
  1772. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  1773. if (!ptr)
  1774. goto out;
  1775. strcpy(file->pathname, ptr);
  1776. copy_out:
  1777. err = 0;
  1778. if (copy_to_user(arg, file, sizeof(*file)))
  1779. err = -EFAULT;
  1780. out:
  1781. kfree(buf);
  1782. kfree(file);
  1783. return err;
  1784. }
  1785. static int get_disk_info(mddev_t * mddev, void __user * arg)
  1786. {
  1787. mdu_disk_info_t info;
  1788. unsigned int nr;
  1789. mdk_rdev_t *rdev;
  1790. if (copy_from_user(&info, arg, sizeof(info)))
  1791. return -EFAULT;
  1792. nr = info.number;
  1793. rdev = find_rdev_nr(mddev, nr);
  1794. if (rdev) {
  1795. info.major = MAJOR(rdev->bdev->bd_dev);
  1796. info.minor = MINOR(rdev->bdev->bd_dev);
  1797. info.raid_disk = rdev->raid_disk;
  1798. info.state = 0;
  1799. if (rdev->faulty)
  1800. info.state |= (1<<MD_DISK_FAULTY);
  1801. else if (rdev->in_sync) {
  1802. info.state |= (1<<MD_DISK_ACTIVE);
  1803. info.state |= (1<<MD_DISK_SYNC);
  1804. }
  1805. } else {
  1806. info.major = info.minor = 0;
  1807. info.raid_disk = -1;
  1808. info.state = (1<<MD_DISK_REMOVED);
  1809. }
  1810. if (copy_to_user(arg, &info, sizeof(info)))
  1811. return -EFAULT;
  1812. return 0;
  1813. }
  1814. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  1815. {
  1816. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1817. mdk_rdev_t *rdev;
  1818. dev_t dev = MKDEV(info->major,info->minor);
  1819. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  1820. return -EOVERFLOW;
  1821. if (!mddev->raid_disks) {
  1822. int err;
  1823. /* expecting a device which has a superblock */
  1824. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  1825. if (IS_ERR(rdev)) {
  1826. printk(KERN_WARNING
  1827. "md: md_import_device returned %ld\n",
  1828. PTR_ERR(rdev));
  1829. return PTR_ERR(rdev);
  1830. }
  1831. if (!list_empty(&mddev->disks)) {
  1832. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  1833. mdk_rdev_t, same_set);
  1834. int err = super_types[mddev->major_version]
  1835. .load_super(rdev, rdev0, mddev->minor_version);
  1836. if (err < 0) {
  1837. printk(KERN_WARNING
  1838. "md: %s has different UUID to %s\n",
  1839. bdevname(rdev->bdev,b),
  1840. bdevname(rdev0->bdev,b2));
  1841. export_rdev(rdev);
  1842. return -EINVAL;
  1843. }
  1844. }
  1845. err = bind_rdev_to_array(rdev, mddev);
  1846. if (err)
  1847. export_rdev(rdev);
  1848. return err;
  1849. }
  1850. /*
  1851. * add_new_disk can be used once the array is assembled
  1852. * to add "hot spares". They must already have a superblock
  1853. * written
  1854. */
  1855. if (mddev->pers) {
  1856. int err;
  1857. if (!mddev->pers->hot_add_disk) {
  1858. printk(KERN_WARNING
  1859. "%s: personality does not support diskops!\n",
  1860. mdname(mddev));
  1861. return -EINVAL;
  1862. }
  1863. rdev = md_import_device(dev, mddev->major_version,
  1864. mddev->minor_version);
  1865. if (IS_ERR(rdev)) {
  1866. printk(KERN_WARNING
  1867. "md: md_import_device returned %ld\n",
  1868. PTR_ERR(rdev));
  1869. return PTR_ERR(rdev);
  1870. }
  1871. /* set save_raid_disk if appropriate */
  1872. if (!mddev->persistent) {
  1873. if (info->state & (1<<MD_DISK_SYNC) &&
  1874. info->raid_disk < mddev->raid_disks)
  1875. rdev->raid_disk = info->raid_disk;
  1876. else
  1877. rdev->raid_disk = -1;
  1878. } else
  1879. super_types[mddev->major_version].
  1880. validate_super(mddev, rdev);
  1881. rdev->saved_raid_disk = rdev->raid_disk;
  1882. rdev->in_sync = 0; /* just to be sure */
  1883. rdev->raid_disk = -1;
  1884. err = bind_rdev_to_array(rdev, mddev);
  1885. if (err)
  1886. export_rdev(rdev);
  1887. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1888. if (mddev->thread)
  1889. md_wakeup_thread(mddev->thread);
  1890. return err;
  1891. }
  1892. /* otherwise, add_new_disk is only allowed
  1893. * for major_version==0 superblocks
  1894. */
  1895. if (mddev->major_version != 0) {
  1896. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  1897. mdname(mddev));
  1898. return -EINVAL;
  1899. }
  1900. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  1901. int err;
  1902. rdev = md_import_device (dev, -1, 0);
  1903. if (IS_ERR(rdev)) {
  1904. printk(KERN_WARNING
  1905. "md: error, md_import_device() returned %ld\n",
  1906. PTR_ERR(rdev));
  1907. return PTR_ERR(rdev);
  1908. }
  1909. rdev->desc_nr = info->number;
  1910. if (info->raid_disk < mddev->raid_disks)
  1911. rdev->raid_disk = info->raid_disk;
  1912. else
  1913. rdev->raid_disk = -1;
  1914. rdev->faulty = 0;
  1915. if (rdev->raid_disk < mddev->raid_disks)
  1916. rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
  1917. else
  1918. rdev->in_sync = 0;
  1919. err = bind_rdev_to_array(rdev, mddev);
  1920. if (err) {
  1921. export_rdev(rdev);
  1922. return err;
  1923. }
  1924. if (!mddev->persistent) {
  1925. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  1926. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1927. } else
  1928. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1929. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  1930. if (!mddev->size || (mddev->size > rdev->size))
  1931. mddev->size = rdev->size;
  1932. }
  1933. return 0;
  1934. }
  1935. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  1936. {
  1937. char b[BDEVNAME_SIZE];
  1938. mdk_rdev_t *rdev;
  1939. if (!mddev->pers)
  1940. return -ENODEV;
  1941. rdev = find_rdev(mddev, dev);
  1942. if (!rdev)
  1943. return -ENXIO;
  1944. if (rdev->raid_disk >= 0)
  1945. goto busy;
  1946. kick_rdev_from_array(rdev);
  1947. md_update_sb(mddev);
  1948. return 0;
  1949. busy:
  1950. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  1951. bdevname(rdev->bdev,b), mdname(mddev));
  1952. return -EBUSY;
  1953. }
  1954. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  1955. {
  1956. char b[BDEVNAME_SIZE];
  1957. int err;
  1958. unsigned int size;
  1959. mdk_rdev_t *rdev;
  1960. if (!mddev->pers)
  1961. return -ENODEV;
  1962. if (mddev->major_version != 0) {
  1963. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  1964. " version-0 superblocks.\n",
  1965. mdname(mddev));
  1966. return -EINVAL;
  1967. }
  1968. if (!mddev->pers->hot_add_disk) {
  1969. printk(KERN_WARNING
  1970. "%s: personality does not support diskops!\n",
  1971. mdname(mddev));
  1972. return -EINVAL;
  1973. }
  1974. rdev = md_import_device (dev, -1, 0);
  1975. if (IS_ERR(rdev)) {
  1976. printk(KERN_WARNING
  1977. "md: error, md_import_device() returned %ld\n",
  1978. PTR_ERR(rdev));
  1979. return -EINVAL;
  1980. }
  1981. if (mddev->persistent)
  1982. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1983. else
  1984. rdev->sb_offset =
  1985. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1986. size = calc_dev_size(rdev, mddev->chunk_size);
  1987. rdev->size = size;
  1988. if (size < mddev->size) {
  1989. printk(KERN_WARNING
  1990. "%s: disk size %llu blocks < array size %llu\n",
  1991. mdname(mddev), (unsigned long long)size,
  1992. (unsigned long long)mddev->size);
  1993. err = -ENOSPC;
  1994. goto abort_export;
  1995. }
  1996. if (rdev->faulty) {
  1997. printk(KERN_WARNING
  1998. "md: can not hot-add faulty %s disk to %s!\n",
  1999. bdevname(rdev->bdev,b), mdname(mddev));
  2000. err = -EINVAL;
  2001. goto abort_export;
  2002. }
  2003. rdev->in_sync = 0;
  2004. rdev->desc_nr = -1;
  2005. bind_rdev_to_array(rdev, mddev);
  2006. /*
  2007. * The rest should better be atomic, we can have disk failures
  2008. * noticed in interrupt contexts ...
  2009. */
  2010. if (rdev->desc_nr == mddev->max_disks) {
  2011. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2012. mdname(mddev));
  2013. err = -EBUSY;
  2014. goto abort_unbind_export;
  2015. }
  2016. rdev->raid_disk = -1;
  2017. md_update_sb(mddev);
  2018. /*
  2019. * Kick recovery, maybe this spare has to be added to the
  2020. * array immediately.
  2021. */
  2022. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2023. md_wakeup_thread(mddev->thread);
  2024. return 0;
  2025. abort_unbind_export:
  2026. unbind_rdev_from_array(rdev);
  2027. abort_export:
  2028. export_rdev(rdev);
  2029. return err;
  2030. }
  2031. /* similar to deny_write_access, but accounts for our holding a reference
  2032. * to the file ourselves */
  2033. static int deny_bitmap_write_access(struct file * file)
  2034. {
  2035. struct inode *inode = file->f_mapping->host;
  2036. spin_lock(&inode->i_lock);
  2037. if (atomic_read(&inode->i_writecount) > 1) {
  2038. spin_unlock(&inode->i_lock);
  2039. return -ETXTBSY;
  2040. }
  2041. atomic_set(&inode->i_writecount, -1);
  2042. spin_unlock(&inode->i_lock);
  2043. return 0;
  2044. }
  2045. static int set_bitmap_file(mddev_t *mddev, int fd)
  2046. {
  2047. int err;
  2048. if (mddev->pers)
  2049. return -EBUSY;
  2050. mddev->bitmap_file = fget(fd);
  2051. if (mddev->bitmap_file == NULL) {
  2052. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2053. mdname(mddev));
  2054. return -EBADF;
  2055. }
  2056. err = deny_bitmap_write_access(mddev->bitmap_file);
  2057. if (err) {
  2058. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2059. mdname(mddev));
  2060. fput(mddev->bitmap_file);
  2061. mddev->bitmap_file = NULL;
  2062. }
  2063. return err;
  2064. }
  2065. /*
  2066. * set_array_info is used two different ways
  2067. * The original usage is when creating a new array.
  2068. * In this usage, raid_disks is > 0 and it together with
  2069. * level, size, not_persistent,layout,chunksize determine the
  2070. * shape of the array.
  2071. * This will always create an array with a type-0.90.0 superblock.
  2072. * The newer usage is when assembling an array.
  2073. * In this case raid_disks will be 0, and the major_version field is
  2074. * use to determine which style super-blocks are to be found on the devices.
  2075. * The minor and patch _version numbers are also kept incase the
  2076. * super_block handler wishes to interpret them.
  2077. */
  2078. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2079. {
  2080. if (info->raid_disks == 0) {
  2081. /* just setting version number for superblock loading */
  2082. if (info->major_version < 0 ||
  2083. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2084. super_types[info->major_version].name == NULL) {
  2085. /* maybe try to auto-load a module? */
  2086. printk(KERN_INFO
  2087. "md: superblock version %d not known\n",
  2088. info->major_version);
  2089. return -EINVAL;
  2090. }
  2091. mddev->major_version = info->major_version;
  2092. mddev->minor_version = info->minor_version;
  2093. mddev->patch_version = info->patch_version;
  2094. return 0;
  2095. }
  2096. mddev->major_version = MD_MAJOR_VERSION;
  2097. mddev->minor_version = MD_MINOR_VERSION;
  2098. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2099. mddev->ctime = get_seconds();
  2100. mddev->level = info->level;
  2101. mddev->size = info->size;
  2102. mddev->raid_disks = info->raid_disks;
  2103. /* don't set md_minor, it is determined by which /dev/md* was
  2104. * openned
  2105. */
  2106. if (info->state & (1<<MD_SB_CLEAN))
  2107. mddev->recovery_cp = MaxSector;
  2108. else
  2109. mddev->recovery_cp = 0;
  2110. mddev->persistent = ! info->not_persistent;
  2111. mddev->layout = info->layout;
  2112. mddev->chunk_size = info->chunk_size;
  2113. mddev->max_disks = MD_SB_DISKS;
  2114. mddev->sb_dirty = 1;
  2115. /*
  2116. * Generate a 128 bit UUID
  2117. */
  2118. get_random_bytes(mddev->uuid, 16);
  2119. return 0;
  2120. }
  2121. /*
  2122. * update_array_info is used to change the configuration of an
  2123. * on-line array.
  2124. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2125. * fields in the info are checked against the array.
  2126. * Any differences that cannot be handled will cause an error.
  2127. * Normally, only one change can be managed at a time.
  2128. */
  2129. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2130. {
  2131. int rv = 0;
  2132. int cnt = 0;
  2133. if (mddev->major_version != info->major_version ||
  2134. mddev->minor_version != info->minor_version ||
  2135. /* mddev->patch_version != info->patch_version || */
  2136. mddev->ctime != info->ctime ||
  2137. mddev->level != info->level ||
  2138. /* mddev->layout != info->layout || */
  2139. !mddev->persistent != info->not_persistent||
  2140. mddev->chunk_size != info->chunk_size )
  2141. return -EINVAL;
  2142. /* Check there is only one change */
  2143. if (mddev->size != info->size) cnt++;
  2144. if (mddev->raid_disks != info->raid_disks) cnt++;
  2145. if (mddev->layout != info->layout) cnt++;
  2146. if (cnt == 0) return 0;
  2147. if (cnt > 1) return -EINVAL;
  2148. if (mddev->layout != info->layout) {
  2149. /* Change layout
  2150. * we don't need to do anything at the md level, the
  2151. * personality will take care of it all.
  2152. */
  2153. if (mddev->pers->reconfig == NULL)
  2154. return -EINVAL;
  2155. else
  2156. return mddev->pers->reconfig(mddev, info->layout, -1);
  2157. }
  2158. if (mddev->size != info->size) {
  2159. mdk_rdev_t * rdev;
  2160. struct list_head *tmp;
  2161. if (mddev->pers->resize == NULL)
  2162. return -EINVAL;
  2163. /* The "size" is the amount of each device that is used.
  2164. * This can only make sense for arrays with redundancy.
  2165. * linear and raid0 always use whatever space is available
  2166. * We can only consider changing the size if no resync
  2167. * or reconstruction is happening, and if the new size
  2168. * is acceptable. It must fit before the sb_offset or,
  2169. * if that is <data_offset, it must fit before the
  2170. * size of each device.
  2171. * If size is zero, we find the largest size that fits.
  2172. */
  2173. if (mddev->sync_thread)
  2174. return -EBUSY;
  2175. ITERATE_RDEV(mddev,rdev,tmp) {
  2176. sector_t avail;
  2177. int fit = (info->size == 0);
  2178. if (rdev->sb_offset > rdev->data_offset)
  2179. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2180. else
  2181. avail = get_capacity(rdev->bdev->bd_disk)
  2182. - rdev->data_offset;
  2183. if (fit && (info->size == 0 || info->size > avail/2))
  2184. info->size = avail/2;
  2185. if (avail < ((sector_t)info->size << 1))
  2186. return -ENOSPC;
  2187. }
  2188. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2189. if (!rv) {
  2190. struct block_device *bdev;
  2191. bdev = bdget_disk(mddev->gendisk, 0);
  2192. if (bdev) {
  2193. down(&bdev->bd_inode->i_sem);
  2194. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2195. up(&bdev->bd_inode->i_sem);
  2196. bdput(bdev);
  2197. }
  2198. }
  2199. }
  2200. if (mddev->raid_disks != info->raid_disks) {
  2201. /* change the number of raid disks */
  2202. if (mddev->pers->reshape == NULL)
  2203. return -EINVAL;
  2204. if (info->raid_disks <= 0 ||
  2205. info->raid_disks >= mddev->max_disks)
  2206. return -EINVAL;
  2207. if (mddev->sync_thread)
  2208. return -EBUSY;
  2209. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2210. if (!rv) {
  2211. struct block_device *bdev;
  2212. bdev = bdget_disk(mddev->gendisk, 0);
  2213. if (bdev) {
  2214. down(&bdev->bd_inode->i_sem);
  2215. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2216. up(&bdev->bd_inode->i_sem);
  2217. bdput(bdev);
  2218. }
  2219. }
  2220. }
  2221. md_update_sb(mddev);
  2222. return rv;
  2223. }
  2224. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2225. {
  2226. mdk_rdev_t *rdev;
  2227. if (mddev->pers == NULL)
  2228. return -ENODEV;
  2229. rdev = find_rdev(mddev, dev);
  2230. if (!rdev)
  2231. return -ENODEV;
  2232. md_error(mddev, rdev);
  2233. return 0;
  2234. }
  2235. static int md_ioctl(struct inode *inode, struct file *file,
  2236. unsigned int cmd, unsigned long arg)
  2237. {
  2238. int err = 0;
  2239. void __user *argp = (void __user *)arg;
  2240. struct hd_geometry __user *loc = argp;
  2241. mddev_t *mddev = NULL;
  2242. if (!capable(CAP_SYS_ADMIN))
  2243. return -EACCES;
  2244. /*
  2245. * Commands dealing with the RAID driver but not any
  2246. * particular array:
  2247. */
  2248. switch (cmd)
  2249. {
  2250. case RAID_VERSION:
  2251. err = get_version(argp);
  2252. goto done;
  2253. case PRINT_RAID_DEBUG:
  2254. err = 0;
  2255. md_print_devices();
  2256. goto done;
  2257. #ifndef MODULE
  2258. case RAID_AUTORUN:
  2259. err = 0;
  2260. autostart_arrays(arg);
  2261. goto done;
  2262. #endif
  2263. default:;
  2264. }
  2265. /*
  2266. * Commands creating/starting a new array:
  2267. */
  2268. mddev = inode->i_bdev->bd_disk->private_data;
  2269. if (!mddev) {
  2270. BUG();
  2271. goto abort;
  2272. }
  2273. if (cmd == START_ARRAY) {
  2274. /* START_ARRAY doesn't need to lock the array as autostart_array
  2275. * does the locking, and it could even be a different array
  2276. */
  2277. static int cnt = 3;
  2278. if (cnt > 0 ) {
  2279. printk(KERN_WARNING
  2280. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2281. "This will not be supported beyond 2.6\n",
  2282. current->comm, current->pid);
  2283. cnt--;
  2284. }
  2285. err = autostart_array(new_decode_dev(arg));
  2286. if (err) {
  2287. printk(KERN_WARNING "md: autostart failed!\n");
  2288. goto abort;
  2289. }
  2290. goto done;
  2291. }
  2292. err = mddev_lock(mddev);
  2293. if (err) {
  2294. printk(KERN_INFO
  2295. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2296. err, cmd);
  2297. goto abort;
  2298. }
  2299. switch (cmd)
  2300. {
  2301. case SET_ARRAY_INFO:
  2302. {
  2303. mdu_array_info_t info;
  2304. if (!arg)
  2305. memset(&info, 0, sizeof(info));
  2306. else if (copy_from_user(&info, argp, sizeof(info))) {
  2307. err = -EFAULT;
  2308. goto abort_unlock;
  2309. }
  2310. if (mddev->pers) {
  2311. err = update_array_info(mddev, &info);
  2312. if (err) {
  2313. printk(KERN_WARNING "md: couldn't update"
  2314. " array info. %d\n", err);
  2315. goto abort_unlock;
  2316. }
  2317. goto done_unlock;
  2318. }
  2319. if (!list_empty(&mddev->disks)) {
  2320. printk(KERN_WARNING
  2321. "md: array %s already has disks!\n",
  2322. mdname(mddev));
  2323. err = -EBUSY;
  2324. goto abort_unlock;
  2325. }
  2326. if (mddev->raid_disks) {
  2327. printk(KERN_WARNING
  2328. "md: array %s already initialised!\n",
  2329. mdname(mddev));
  2330. err = -EBUSY;
  2331. goto abort_unlock;
  2332. }
  2333. err = set_array_info(mddev, &info);
  2334. if (err) {
  2335. printk(KERN_WARNING "md: couldn't set"
  2336. " array info. %d\n", err);
  2337. goto abort_unlock;
  2338. }
  2339. }
  2340. goto done_unlock;
  2341. default:;
  2342. }
  2343. /*
  2344. * Commands querying/configuring an existing array:
  2345. */
  2346. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2347. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2348. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2349. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2350. err = -ENODEV;
  2351. goto abort_unlock;
  2352. }
  2353. /*
  2354. * Commands even a read-only array can execute:
  2355. */
  2356. switch (cmd)
  2357. {
  2358. case GET_ARRAY_INFO:
  2359. err = get_array_info(mddev, argp);
  2360. goto done_unlock;
  2361. case GET_BITMAP_FILE:
  2362. err = get_bitmap_file(mddev, (void *)arg);
  2363. goto done_unlock;
  2364. case GET_DISK_INFO:
  2365. err = get_disk_info(mddev, argp);
  2366. goto done_unlock;
  2367. case RESTART_ARRAY_RW:
  2368. err = restart_array(mddev);
  2369. goto done_unlock;
  2370. case STOP_ARRAY:
  2371. err = do_md_stop (mddev, 0);
  2372. goto done_unlock;
  2373. case STOP_ARRAY_RO:
  2374. err = do_md_stop (mddev, 1);
  2375. goto done_unlock;
  2376. /*
  2377. * We have a problem here : there is no easy way to give a CHS
  2378. * virtual geometry. We currently pretend that we have a 2 heads
  2379. * 4 sectors (with a BIG number of cylinders...). This drives
  2380. * dosfs just mad... ;-)
  2381. */
  2382. case HDIO_GETGEO:
  2383. if (!loc) {
  2384. err = -EINVAL;
  2385. goto abort_unlock;
  2386. }
  2387. err = put_user (2, (char __user *) &loc->heads);
  2388. if (err)
  2389. goto abort_unlock;
  2390. err = put_user (4, (char __user *) &loc->sectors);
  2391. if (err)
  2392. goto abort_unlock;
  2393. err = put_user(get_capacity(mddev->gendisk)/8,
  2394. (short __user *) &loc->cylinders);
  2395. if (err)
  2396. goto abort_unlock;
  2397. err = put_user (get_start_sect(inode->i_bdev),
  2398. (long __user *) &loc->start);
  2399. goto done_unlock;
  2400. }
  2401. /*
  2402. * The remaining ioctls are changing the state of the
  2403. * superblock, so we do not allow read-only arrays
  2404. * here:
  2405. */
  2406. if (mddev->ro) {
  2407. err = -EROFS;
  2408. goto abort_unlock;
  2409. }
  2410. switch (cmd)
  2411. {
  2412. case ADD_NEW_DISK:
  2413. {
  2414. mdu_disk_info_t info;
  2415. if (copy_from_user(&info, argp, sizeof(info)))
  2416. err = -EFAULT;
  2417. else
  2418. err = add_new_disk(mddev, &info);
  2419. goto done_unlock;
  2420. }
  2421. case HOT_REMOVE_DISK:
  2422. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2423. goto done_unlock;
  2424. case HOT_ADD_DISK:
  2425. err = hot_add_disk(mddev, new_decode_dev(arg));
  2426. goto done_unlock;
  2427. case SET_DISK_FAULTY:
  2428. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2429. goto done_unlock;
  2430. case RUN_ARRAY:
  2431. err = do_md_run (mddev);
  2432. goto done_unlock;
  2433. case SET_BITMAP_FILE:
  2434. err = set_bitmap_file(mddev, (int)arg);
  2435. goto done_unlock;
  2436. default:
  2437. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2438. printk(KERN_WARNING "md: %s(pid %d) used"
  2439. " obsolete MD ioctl, upgrade your"
  2440. " software to use new ictls.\n",
  2441. current->comm, current->pid);
  2442. err = -EINVAL;
  2443. goto abort_unlock;
  2444. }
  2445. done_unlock:
  2446. abort_unlock:
  2447. mddev_unlock(mddev);
  2448. return err;
  2449. done:
  2450. if (err)
  2451. MD_BUG();
  2452. abort:
  2453. return err;
  2454. }
  2455. static int md_open(struct inode *inode, struct file *file)
  2456. {
  2457. /*
  2458. * Succeed if we can lock the mddev, which confirms that
  2459. * it isn't being stopped right now.
  2460. */
  2461. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2462. int err;
  2463. if ((err = mddev_lock(mddev)))
  2464. goto out;
  2465. err = 0;
  2466. mddev_get(mddev);
  2467. mddev_unlock(mddev);
  2468. check_disk_change(inode->i_bdev);
  2469. out:
  2470. return err;
  2471. }
  2472. static int md_release(struct inode *inode, struct file * file)
  2473. {
  2474. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2475. if (!mddev)
  2476. BUG();
  2477. mddev_put(mddev);
  2478. return 0;
  2479. }
  2480. static int md_media_changed(struct gendisk *disk)
  2481. {
  2482. mddev_t *mddev = disk->private_data;
  2483. return mddev->changed;
  2484. }
  2485. static int md_revalidate(struct gendisk *disk)
  2486. {
  2487. mddev_t *mddev = disk->private_data;
  2488. mddev->changed = 0;
  2489. return 0;
  2490. }
  2491. static struct block_device_operations md_fops =
  2492. {
  2493. .owner = THIS_MODULE,
  2494. .open = md_open,
  2495. .release = md_release,
  2496. .ioctl = md_ioctl,
  2497. .media_changed = md_media_changed,
  2498. .revalidate_disk= md_revalidate,
  2499. };
  2500. static int md_thread(void * arg)
  2501. {
  2502. mdk_thread_t *thread = arg;
  2503. lock_kernel();
  2504. /*
  2505. * Detach thread
  2506. */
  2507. daemonize(thread->name, mdname(thread->mddev));
  2508. current->exit_signal = SIGCHLD;
  2509. allow_signal(SIGKILL);
  2510. thread->tsk = current;
  2511. /*
  2512. * md_thread is a 'system-thread', it's priority should be very
  2513. * high. We avoid resource deadlocks individually in each
  2514. * raid personality. (RAID5 does preallocation) We also use RR and
  2515. * the very same RT priority as kswapd, thus we will never get
  2516. * into a priority inversion deadlock.
  2517. *
  2518. * we definitely have to have equal or higher priority than
  2519. * bdflush, otherwise bdflush will deadlock if there are too
  2520. * many dirty RAID5 blocks.
  2521. */
  2522. unlock_kernel();
  2523. complete(thread->event);
  2524. while (thread->run) {
  2525. void (*run)(mddev_t *);
  2526. wait_event_interruptible_timeout(thread->wqueue,
  2527. test_bit(THREAD_WAKEUP, &thread->flags),
  2528. thread->timeout);
  2529. if (current->flags & PF_FREEZE)
  2530. refrigerator(PF_FREEZE);
  2531. clear_bit(THREAD_WAKEUP, &thread->flags);
  2532. run = thread->run;
  2533. if (run)
  2534. run(thread->mddev);
  2535. if (signal_pending(current))
  2536. flush_signals(current);
  2537. }
  2538. complete(thread->event);
  2539. return 0;
  2540. }
  2541. void md_wakeup_thread(mdk_thread_t *thread)
  2542. {
  2543. if (thread) {
  2544. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2545. set_bit(THREAD_WAKEUP, &thread->flags);
  2546. wake_up(&thread->wqueue);
  2547. }
  2548. }
  2549. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2550. const char *name)
  2551. {
  2552. mdk_thread_t *thread;
  2553. int ret;
  2554. struct completion event;
  2555. thread = (mdk_thread_t *) kmalloc
  2556. (sizeof(mdk_thread_t), GFP_KERNEL);
  2557. if (!thread)
  2558. return NULL;
  2559. memset(thread, 0, sizeof(mdk_thread_t));
  2560. init_waitqueue_head(&thread->wqueue);
  2561. init_completion(&event);
  2562. thread->event = &event;
  2563. thread->run = run;
  2564. thread->mddev = mddev;
  2565. thread->name = name;
  2566. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  2567. ret = kernel_thread(md_thread, thread, 0);
  2568. if (ret < 0) {
  2569. kfree(thread);
  2570. return NULL;
  2571. }
  2572. wait_for_completion(&event);
  2573. return thread;
  2574. }
  2575. void md_unregister_thread(mdk_thread_t *thread)
  2576. {
  2577. struct completion event;
  2578. init_completion(&event);
  2579. thread->event = &event;
  2580. /* As soon as ->run is set to NULL, the task could disappear,
  2581. * so we need to hold tasklist_lock until we have sent the signal
  2582. */
  2583. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2584. read_lock(&tasklist_lock);
  2585. thread->run = NULL;
  2586. send_sig(SIGKILL, thread->tsk, 1);
  2587. read_unlock(&tasklist_lock);
  2588. wait_for_completion(&event);
  2589. kfree(thread);
  2590. }
  2591. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2592. {
  2593. if (!mddev) {
  2594. MD_BUG();
  2595. return;
  2596. }
  2597. if (!rdev || rdev->faulty)
  2598. return;
  2599. /*
  2600. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  2601. mdname(mddev),
  2602. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  2603. __builtin_return_address(0),__builtin_return_address(1),
  2604. __builtin_return_address(2),__builtin_return_address(3));
  2605. */
  2606. if (!mddev->pers->error_handler)
  2607. return;
  2608. mddev->pers->error_handler(mddev,rdev);
  2609. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2610. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2611. md_wakeup_thread(mddev->thread);
  2612. }
  2613. /* seq_file implementation /proc/mdstat */
  2614. static void status_unused(struct seq_file *seq)
  2615. {
  2616. int i = 0;
  2617. mdk_rdev_t *rdev;
  2618. struct list_head *tmp;
  2619. seq_printf(seq, "unused devices: ");
  2620. ITERATE_RDEV_PENDING(rdev,tmp) {
  2621. char b[BDEVNAME_SIZE];
  2622. i++;
  2623. seq_printf(seq, "%s ",
  2624. bdevname(rdev->bdev,b));
  2625. }
  2626. if (!i)
  2627. seq_printf(seq, "<none>");
  2628. seq_printf(seq, "\n");
  2629. }
  2630. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  2631. {
  2632. unsigned long max_blocks, resync, res, dt, db, rt;
  2633. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  2634. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2635. max_blocks = mddev->resync_max_sectors >> 1;
  2636. else
  2637. max_blocks = mddev->size;
  2638. /*
  2639. * Should not happen.
  2640. */
  2641. if (!max_blocks) {
  2642. MD_BUG();
  2643. return;
  2644. }
  2645. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  2646. {
  2647. int i, x = res/50, y = 20-x;
  2648. seq_printf(seq, "[");
  2649. for (i = 0; i < x; i++)
  2650. seq_printf(seq, "=");
  2651. seq_printf(seq, ">");
  2652. for (i = 0; i < y; i++)
  2653. seq_printf(seq, ".");
  2654. seq_printf(seq, "] ");
  2655. }
  2656. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  2657. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  2658. "resync" : "recovery"),
  2659. res/10, res % 10, resync, max_blocks);
  2660. /*
  2661. * We do not want to overflow, so the order of operands and
  2662. * the * 100 / 100 trick are important. We do a +1 to be
  2663. * safe against division by zero. We only estimate anyway.
  2664. *
  2665. * dt: time from mark until now
  2666. * db: blocks written from mark until now
  2667. * rt: remaining time
  2668. */
  2669. dt = ((jiffies - mddev->resync_mark) / HZ);
  2670. if (!dt) dt++;
  2671. db = resync - (mddev->resync_mark_cnt/2);
  2672. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  2673. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  2674. seq_printf(seq, " speed=%ldK/sec", db/dt);
  2675. }
  2676. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  2677. {
  2678. struct list_head *tmp;
  2679. loff_t l = *pos;
  2680. mddev_t *mddev;
  2681. if (l >= 0x10000)
  2682. return NULL;
  2683. if (!l--)
  2684. /* header */
  2685. return (void*)1;
  2686. spin_lock(&all_mddevs_lock);
  2687. list_for_each(tmp,&all_mddevs)
  2688. if (!l--) {
  2689. mddev = list_entry(tmp, mddev_t, all_mddevs);
  2690. mddev_get(mddev);
  2691. spin_unlock(&all_mddevs_lock);
  2692. return mddev;
  2693. }
  2694. spin_unlock(&all_mddevs_lock);
  2695. if (!l--)
  2696. return (void*)2;/* tail */
  2697. return NULL;
  2698. }
  2699. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2700. {
  2701. struct list_head *tmp;
  2702. mddev_t *next_mddev, *mddev = v;
  2703. ++*pos;
  2704. if (v == (void*)2)
  2705. return NULL;
  2706. spin_lock(&all_mddevs_lock);
  2707. if (v == (void*)1)
  2708. tmp = all_mddevs.next;
  2709. else
  2710. tmp = mddev->all_mddevs.next;
  2711. if (tmp != &all_mddevs)
  2712. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  2713. else {
  2714. next_mddev = (void*)2;
  2715. *pos = 0x10000;
  2716. }
  2717. spin_unlock(&all_mddevs_lock);
  2718. if (v != (void*)1)
  2719. mddev_put(mddev);
  2720. return next_mddev;
  2721. }
  2722. static void md_seq_stop(struct seq_file *seq, void *v)
  2723. {
  2724. mddev_t *mddev = v;
  2725. if (mddev && v != (void*)1 && v != (void*)2)
  2726. mddev_put(mddev);
  2727. }
  2728. static int md_seq_show(struct seq_file *seq, void *v)
  2729. {
  2730. mddev_t *mddev = v;
  2731. sector_t size;
  2732. struct list_head *tmp2;
  2733. mdk_rdev_t *rdev;
  2734. int i;
  2735. struct bitmap *bitmap;
  2736. if (v == (void*)1) {
  2737. seq_printf(seq, "Personalities : ");
  2738. spin_lock(&pers_lock);
  2739. for (i = 0; i < MAX_PERSONALITY; i++)
  2740. if (pers[i])
  2741. seq_printf(seq, "[%s] ", pers[i]->name);
  2742. spin_unlock(&pers_lock);
  2743. seq_printf(seq, "\n");
  2744. return 0;
  2745. }
  2746. if (v == (void*)2) {
  2747. status_unused(seq);
  2748. return 0;
  2749. }
  2750. if (mddev_lock(mddev)!=0)
  2751. return -EINTR;
  2752. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  2753. seq_printf(seq, "%s : %sactive", mdname(mddev),
  2754. mddev->pers ? "" : "in");
  2755. if (mddev->pers) {
  2756. if (mddev->ro)
  2757. seq_printf(seq, " (read-only)");
  2758. seq_printf(seq, " %s", mddev->pers->name);
  2759. }
  2760. size = 0;
  2761. ITERATE_RDEV(mddev,rdev,tmp2) {
  2762. char b[BDEVNAME_SIZE];
  2763. seq_printf(seq, " %s[%d]",
  2764. bdevname(rdev->bdev,b), rdev->desc_nr);
  2765. if (rdev->faulty) {
  2766. seq_printf(seq, "(F)");
  2767. continue;
  2768. }
  2769. size += rdev->size;
  2770. }
  2771. if (!list_empty(&mddev->disks)) {
  2772. if (mddev->pers)
  2773. seq_printf(seq, "\n %llu blocks",
  2774. (unsigned long long)mddev->array_size);
  2775. else
  2776. seq_printf(seq, "\n %llu blocks",
  2777. (unsigned long long)size);
  2778. }
  2779. if (mddev->pers) {
  2780. mddev->pers->status (seq, mddev);
  2781. seq_printf(seq, "\n ");
  2782. if (mddev->curr_resync > 2) {
  2783. status_resync (seq, mddev);
  2784. seq_printf(seq, "\n ");
  2785. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  2786. seq_printf(seq, " resync=DELAYED\n ");
  2787. } else
  2788. seq_printf(seq, "\n ");
  2789. if ((bitmap = mddev->bitmap)) {
  2790. unsigned long chunk_kb;
  2791. unsigned long flags;
  2792. spin_lock_irqsave(&bitmap->lock, flags);
  2793. chunk_kb = bitmap->chunksize >> 10;
  2794. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  2795. "%lu%s chunk",
  2796. bitmap->pages - bitmap->missing_pages,
  2797. bitmap->pages,
  2798. (bitmap->pages - bitmap->missing_pages)
  2799. << (PAGE_SHIFT - 10),
  2800. chunk_kb ? chunk_kb : bitmap->chunksize,
  2801. chunk_kb ? "KB" : "B");
  2802. if (bitmap->file) {
  2803. seq_printf(seq, ", file: ");
  2804. seq_path(seq, bitmap->file->f_vfsmnt,
  2805. bitmap->file->f_dentry," \t\n");
  2806. }
  2807. seq_printf(seq, "\n");
  2808. spin_unlock_irqrestore(&bitmap->lock, flags);
  2809. }
  2810. seq_printf(seq, "\n");
  2811. }
  2812. mddev_unlock(mddev);
  2813. return 0;
  2814. }
  2815. static struct seq_operations md_seq_ops = {
  2816. .start = md_seq_start,
  2817. .next = md_seq_next,
  2818. .stop = md_seq_stop,
  2819. .show = md_seq_show,
  2820. };
  2821. static int md_seq_open(struct inode *inode, struct file *file)
  2822. {
  2823. int error;
  2824. error = seq_open(file, &md_seq_ops);
  2825. return error;
  2826. }
  2827. static struct file_operations md_seq_fops = {
  2828. .open = md_seq_open,
  2829. .read = seq_read,
  2830. .llseek = seq_lseek,
  2831. .release = seq_release,
  2832. };
  2833. int register_md_personality(int pnum, mdk_personality_t *p)
  2834. {
  2835. if (pnum >= MAX_PERSONALITY) {
  2836. printk(KERN_ERR
  2837. "md: tried to install personality %s as nr %d, but max is %lu\n",
  2838. p->name, pnum, MAX_PERSONALITY-1);
  2839. return -EINVAL;
  2840. }
  2841. spin_lock(&pers_lock);
  2842. if (pers[pnum]) {
  2843. spin_unlock(&pers_lock);
  2844. return -EBUSY;
  2845. }
  2846. pers[pnum] = p;
  2847. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  2848. spin_unlock(&pers_lock);
  2849. return 0;
  2850. }
  2851. int unregister_md_personality(int pnum)
  2852. {
  2853. if (pnum >= MAX_PERSONALITY)
  2854. return -EINVAL;
  2855. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  2856. spin_lock(&pers_lock);
  2857. pers[pnum] = NULL;
  2858. spin_unlock(&pers_lock);
  2859. return 0;
  2860. }
  2861. static int is_mddev_idle(mddev_t *mddev)
  2862. {
  2863. mdk_rdev_t * rdev;
  2864. struct list_head *tmp;
  2865. int idle;
  2866. unsigned long curr_events;
  2867. idle = 1;
  2868. ITERATE_RDEV(mddev,rdev,tmp) {
  2869. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  2870. curr_events = disk_stat_read(disk, read_sectors) +
  2871. disk_stat_read(disk, write_sectors) -
  2872. atomic_read(&disk->sync_io);
  2873. /* Allow some slack between valud of curr_events and last_events,
  2874. * as there are some uninteresting races.
  2875. * Note: the following is an unsigned comparison.
  2876. */
  2877. if ((curr_events - rdev->last_events + 32) > 64) {
  2878. rdev->last_events = curr_events;
  2879. idle = 0;
  2880. }
  2881. }
  2882. return idle;
  2883. }
  2884. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  2885. {
  2886. /* another "blocks" (512byte) blocks have been synced */
  2887. atomic_sub(blocks, &mddev->recovery_active);
  2888. wake_up(&mddev->recovery_wait);
  2889. if (!ok) {
  2890. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  2891. md_wakeup_thread(mddev->thread);
  2892. // stop recovery, signal do_sync ....
  2893. }
  2894. }
  2895. /* md_write_start(mddev, bi)
  2896. * If we need to update some array metadata (e.g. 'active' flag
  2897. * in superblock) before writing, schedule a superblock update
  2898. * and wait for it to complete.
  2899. */
  2900. void md_write_start(mddev_t *mddev, struct bio *bi)
  2901. {
  2902. DEFINE_WAIT(w);
  2903. if (bio_data_dir(bi) != WRITE)
  2904. return;
  2905. atomic_inc(&mddev->writes_pending);
  2906. if (mddev->in_sync) {
  2907. spin_lock(&mddev->write_lock);
  2908. if (mddev->in_sync) {
  2909. mddev->in_sync = 0;
  2910. mddev->sb_dirty = 1;
  2911. md_wakeup_thread(mddev->thread);
  2912. }
  2913. spin_unlock(&mddev->write_lock);
  2914. }
  2915. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  2916. }
  2917. void md_write_end(mddev_t *mddev)
  2918. {
  2919. if (atomic_dec_and_test(&mddev->writes_pending)) {
  2920. if (mddev->safemode == 2)
  2921. md_wakeup_thread(mddev->thread);
  2922. else
  2923. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  2924. }
  2925. }
  2926. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  2927. #define SYNC_MARKS 10
  2928. #define SYNC_MARK_STEP (3*HZ)
  2929. static void md_do_sync(mddev_t *mddev)
  2930. {
  2931. mddev_t *mddev2;
  2932. unsigned int currspeed = 0,
  2933. window;
  2934. sector_t max_sectors,j, io_sectors;
  2935. unsigned long mark[SYNC_MARKS];
  2936. sector_t mark_cnt[SYNC_MARKS];
  2937. int last_mark,m;
  2938. struct list_head *tmp;
  2939. sector_t last_check;
  2940. int skipped = 0;
  2941. /* just incase thread restarts... */
  2942. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  2943. return;
  2944. /* we overload curr_resync somewhat here.
  2945. * 0 == not engaged in resync at all
  2946. * 2 == checking that there is no conflict with another sync
  2947. * 1 == like 2, but have yielded to allow conflicting resync to
  2948. * commense
  2949. * other == active in resync - this many blocks
  2950. *
  2951. * Before starting a resync we must have set curr_resync to
  2952. * 2, and then checked that every "conflicting" array has curr_resync
  2953. * less than ours. When we find one that is the same or higher
  2954. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  2955. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  2956. * This will mean we have to start checking from the beginning again.
  2957. *
  2958. */
  2959. do {
  2960. mddev->curr_resync = 2;
  2961. try_again:
  2962. if (signal_pending(current)) {
  2963. flush_signals(current);
  2964. goto skip;
  2965. }
  2966. ITERATE_MDDEV(mddev2,tmp) {
  2967. printk(".");
  2968. if (mddev2 == mddev)
  2969. continue;
  2970. if (mddev2->curr_resync &&
  2971. match_mddev_units(mddev,mddev2)) {
  2972. DEFINE_WAIT(wq);
  2973. if (mddev < mddev2 && mddev->curr_resync == 2) {
  2974. /* arbitrarily yield */
  2975. mddev->curr_resync = 1;
  2976. wake_up(&resync_wait);
  2977. }
  2978. if (mddev > mddev2 && mddev->curr_resync == 1)
  2979. /* no need to wait here, we can wait the next
  2980. * time 'round when curr_resync == 2
  2981. */
  2982. continue;
  2983. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  2984. if (!signal_pending(current)
  2985. && mddev2->curr_resync >= mddev->curr_resync) {
  2986. printk(KERN_INFO "md: delaying resync of %s"
  2987. " until %s has finished resync (they"
  2988. " share one or more physical units)\n",
  2989. mdname(mddev), mdname(mddev2));
  2990. mddev_put(mddev2);
  2991. schedule();
  2992. finish_wait(&resync_wait, &wq);
  2993. goto try_again;
  2994. }
  2995. finish_wait(&resync_wait, &wq);
  2996. }
  2997. }
  2998. } while (mddev->curr_resync < 2);
  2999. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3000. /* resync follows the size requested by the personality,
  3001. * which defaults to physical size, but can be virtual size
  3002. */
  3003. max_sectors = mddev->resync_max_sectors;
  3004. else
  3005. /* recovery follows the physical size of devices */
  3006. max_sectors = mddev->size << 1;
  3007. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3008. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3009. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3010. printk(KERN_INFO "md: using maximum available idle IO bandwith "
  3011. "(but not more than %d KB/sec) for reconstruction.\n",
  3012. sysctl_speed_limit_max);
  3013. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3014. /* we don't use the checkpoint if there's a bitmap */
  3015. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
  3016. j = mddev->recovery_cp;
  3017. else
  3018. j = 0;
  3019. io_sectors = 0;
  3020. for (m = 0; m < SYNC_MARKS; m++) {
  3021. mark[m] = jiffies;
  3022. mark_cnt[m] = io_sectors;
  3023. }
  3024. last_mark = 0;
  3025. mddev->resync_mark = mark[last_mark];
  3026. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3027. /*
  3028. * Tune reconstruction:
  3029. */
  3030. window = 32*(PAGE_SIZE/512);
  3031. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3032. window/2,(unsigned long long) max_sectors/2);
  3033. atomic_set(&mddev->recovery_active, 0);
  3034. init_waitqueue_head(&mddev->recovery_wait);
  3035. last_check = 0;
  3036. if (j>2) {
  3037. printk(KERN_INFO
  3038. "md: resuming recovery of %s from checkpoint.\n",
  3039. mdname(mddev));
  3040. mddev->curr_resync = j;
  3041. }
  3042. while (j < max_sectors) {
  3043. sector_t sectors;
  3044. skipped = 0;
  3045. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3046. currspeed < sysctl_speed_limit_min);
  3047. if (sectors == 0) {
  3048. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3049. goto out;
  3050. }
  3051. if (!skipped) { /* actual IO requested */
  3052. io_sectors += sectors;
  3053. atomic_add(sectors, &mddev->recovery_active);
  3054. }
  3055. j += sectors;
  3056. if (j>1) mddev->curr_resync = j;
  3057. if (last_check + window > io_sectors || j == max_sectors)
  3058. continue;
  3059. last_check = io_sectors;
  3060. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3061. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3062. break;
  3063. repeat:
  3064. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3065. /* step marks */
  3066. int next = (last_mark+1) % SYNC_MARKS;
  3067. mddev->resync_mark = mark[next];
  3068. mddev->resync_mark_cnt = mark_cnt[next];
  3069. mark[next] = jiffies;
  3070. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3071. last_mark = next;
  3072. }
  3073. if (signal_pending(current)) {
  3074. /*
  3075. * got a signal, exit.
  3076. */
  3077. printk(KERN_INFO
  3078. "md: md_do_sync() got signal ... exiting\n");
  3079. flush_signals(current);
  3080. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3081. goto out;
  3082. }
  3083. /*
  3084. * this loop exits only if either when we are slower than
  3085. * the 'hard' speed limit, or the system was IO-idle for
  3086. * a jiffy.
  3087. * the system might be non-idle CPU-wise, but we only care
  3088. * about not overloading the IO subsystem. (things like an
  3089. * e2fsck being done on the RAID array should execute fast)
  3090. */
  3091. mddev->queue->unplug_fn(mddev->queue);
  3092. cond_resched();
  3093. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3094. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3095. if (currspeed > sysctl_speed_limit_min) {
  3096. if ((currspeed > sysctl_speed_limit_max) ||
  3097. !is_mddev_idle(mddev)) {
  3098. msleep_interruptible(250);
  3099. goto repeat;
  3100. }
  3101. }
  3102. }
  3103. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3104. /*
  3105. * this also signals 'finished resyncing' to md_stop
  3106. */
  3107. out:
  3108. mddev->queue->unplug_fn(mddev->queue);
  3109. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3110. /* tell personality that we are finished */
  3111. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3112. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3113. mddev->curr_resync > 2 &&
  3114. mddev->curr_resync >= mddev->recovery_cp) {
  3115. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3116. printk(KERN_INFO
  3117. "md: checkpointing recovery of %s.\n",
  3118. mdname(mddev));
  3119. mddev->recovery_cp = mddev->curr_resync;
  3120. } else
  3121. mddev->recovery_cp = MaxSector;
  3122. }
  3123. skip:
  3124. mddev->curr_resync = 0;
  3125. wake_up(&resync_wait);
  3126. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3127. md_wakeup_thread(mddev->thread);
  3128. }
  3129. /*
  3130. * This routine is regularly called by all per-raid-array threads to
  3131. * deal with generic issues like resync and super-block update.
  3132. * Raid personalities that don't have a thread (linear/raid0) do not
  3133. * need this as they never do any recovery or update the superblock.
  3134. *
  3135. * It does not do any resync itself, but rather "forks" off other threads
  3136. * to do that as needed.
  3137. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3138. * "->recovery" and create a thread at ->sync_thread.
  3139. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3140. * and wakeups up this thread which will reap the thread and finish up.
  3141. * This thread also removes any faulty devices (with nr_pending == 0).
  3142. *
  3143. * The overall approach is:
  3144. * 1/ if the superblock needs updating, update it.
  3145. * 2/ If a recovery thread is running, don't do anything else.
  3146. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3147. * 4/ If there are any faulty devices, remove them.
  3148. * 5/ If array is degraded, try to add spares devices
  3149. * 6/ If array has spares or is not in-sync, start a resync thread.
  3150. */
  3151. void md_check_recovery(mddev_t *mddev)
  3152. {
  3153. mdk_rdev_t *rdev;
  3154. struct list_head *rtmp;
  3155. if (mddev->bitmap)
  3156. bitmap_daemon_work(mddev->bitmap);
  3157. if (mddev->ro)
  3158. return;
  3159. if (signal_pending(current)) {
  3160. if (mddev->pers->sync_request) {
  3161. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3162. mdname(mddev));
  3163. mddev->safemode = 2;
  3164. }
  3165. flush_signals(current);
  3166. }
  3167. if ( ! (
  3168. mddev->sb_dirty ||
  3169. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3170. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3171. (mddev->safemode == 1) ||
  3172. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3173. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3174. ))
  3175. return;
  3176. if (mddev_trylock(mddev)==0) {
  3177. int spares =0;
  3178. spin_lock(&mddev->write_lock);
  3179. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3180. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3181. mddev->in_sync = 1;
  3182. mddev->sb_dirty = 1;
  3183. }
  3184. if (mddev->safemode == 1)
  3185. mddev->safemode = 0;
  3186. spin_unlock(&mddev->write_lock);
  3187. if (mddev->sb_dirty)
  3188. md_update_sb(mddev);
  3189. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3190. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3191. /* resync/recovery still happening */
  3192. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3193. goto unlock;
  3194. }
  3195. if (mddev->sync_thread) {
  3196. /* resync has finished, collect result */
  3197. md_unregister_thread(mddev->sync_thread);
  3198. mddev->sync_thread = NULL;
  3199. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3200. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3201. /* success...*/
  3202. /* activate any spares */
  3203. mddev->pers->spare_active(mddev);
  3204. }
  3205. md_update_sb(mddev);
  3206. /* if array is no-longer degraded, then any saved_raid_disk
  3207. * information must be scrapped
  3208. */
  3209. if (!mddev->degraded)
  3210. ITERATE_RDEV(mddev,rdev,rtmp)
  3211. rdev->saved_raid_disk = -1;
  3212. mddev->recovery = 0;
  3213. /* flag recovery needed just to double check */
  3214. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3215. goto unlock;
  3216. }
  3217. if (mddev->recovery)
  3218. /* probably just the RECOVERY_NEEDED flag */
  3219. mddev->recovery = 0;
  3220. /* no recovery is running.
  3221. * remove any failed drives, then
  3222. * add spares if possible.
  3223. * Spare are also removed and re-added, to allow
  3224. * the personality to fail the re-add.
  3225. */
  3226. ITERATE_RDEV(mddev,rdev,rtmp)
  3227. if (rdev->raid_disk >= 0 &&
  3228. (rdev->faulty || ! rdev->in_sync) &&
  3229. atomic_read(&rdev->nr_pending)==0) {
  3230. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
  3231. rdev->raid_disk = -1;
  3232. }
  3233. if (mddev->degraded) {
  3234. ITERATE_RDEV(mddev,rdev,rtmp)
  3235. if (rdev->raid_disk < 0
  3236. && !rdev->faulty) {
  3237. if (mddev->pers->hot_add_disk(mddev,rdev))
  3238. spares++;
  3239. else
  3240. break;
  3241. }
  3242. }
  3243. if (!spares && (mddev->recovery_cp == MaxSector )) {
  3244. /* nothing we can do ... */
  3245. goto unlock;
  3246. }
  3247. if (mddev->pers->sync_request) {
  3248. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3249. if (!spares)
  3250. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3251. mddev->sync_thread = md_register_thread(md_do_sync,
  3252. mddev,
  3253. "%s_resync");
  3254. if (!mddev->sync_thread) {
  3255. printk(KERN_ERR "%s: could not start resync"
  3256. " thread...\n",
  3257. mdname(mddev));
  3258. /* leave the spares where they are, it shouldn't hurt */
  3259. mddev->recovery = 0;
  3260. } else {
  3261. md_wakeup_thread(mddev->sync_thread);
  3262. }
  3263. }
  3264. unlock:
  3265. mddev_unlock(mddev);
  3266. }
  3267. }
  3268. static int md_notify_reboot(struct notifier_block *this,
  3269. unsigned long code, void *x)
  3270. {
  3271. struct list_head *tmp;
  3272. mddev_t *mddev;
  3273. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3274. printk(KERN_INFO "md: stopping all md devices.\n");
  3275. ITERATE_MDDEV(mddev,tmp)
  3276. if (mddev_trylock(mddev)==0)
  3277. do_md_stop (mddev, 1);
  3278. /*
  3279. * certain more exotic SCSI devices are known to be
  3280. * volatile wrt too early system reboots. While the
  3281. * right place to handle this issue is the given
  3282. * driver, we do want to have a safe RAID driver ...
  3283. */
  3284. mdelay(1000*1);
  3285. }
  3286. return NOTIFY_DONE;
  3287. }
  3288. static struct notifier_block md_notifier = {
  3289. .notifier_call = md_notify_reboot,
  3290. .next = NULL,
  3291. .priority = INT_MAX, /* before any real devices */
  3292. };
  3293. static void md_geninit(void)
  3294. {
  3295. struct proc_dir_entry *p;
  3296. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3297. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3298. if (p)
  3299. p->proc_fops = &md_seq_fops;
  3300. }
  3301. static int __init md_init(void)
  3302. {
  3303. int minor;
  3304. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3305. " MD_SB_DISKS=%d\n",
  3306. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3307. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3308. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
  3309. BITMAP_MINOR);
  3310. if (register_blkdev(MAJOR_NR, "md"))
  3311. return -1;
  3312. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3313. unregister_blkdev(MAJOR_NR, "md");
  3314. return -1;
  3315. }
  3316. devfs_mk_dir("md");
  3317. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3318. md_probe, NULL, NULL);
  3319. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3320. md_probe, NULL, NULL);
  3321. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3322. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3323. S_IFBLK|S_IRUSR|S_IWUSR,
  3324. "md/%d", minor);
  3325. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3326. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3327. S_IFBLK|S_IRUSR|S_IWUSR,
  3328. "md/mdp%d", minor);
  3329. register_reboot_notifier(&md_notifier);
  3330. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3331. md_geninit();
  3332. return (0);
  3333. }
  3334. #ifndef MODULE
  3335. /*
  3336. * Searches all registered partitions for autorun RAID arrays
  3337. * at boot time.
  3338. */
  3339. static dev_t detected_devices[128];
  3340. static int dev_cnt;
  3341. void md_autodetect_dev(dev_t dev)
  3342. {
  3343. if (dev_cnt >= 0 && dev_cnt < 127)
  3344. detected_devices[dev_cnt++] = dev;
  3345. }
  3346. static void autostart_arrays(int part)
  3347. {
  3348. mdk_rdev_t *rdev;
  3349. int i;
  3350. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3351. for (i = 0; i < dev_cnt; i++) {
  3352. dev_t dev = detected_devices[i];
  3353. rdev = md_import_device(dev,0, 0);
  3354. if (IS_ERR(rdev))
  3355. continue;
  3356. if (rdev->faulty) {
  3357. MD_BUG();
  3358. continue;
  3359. }
  3360. list_add(&rdev->same_set, &pending_raid_disks);
  3361. }
  3362. dev_cnt = 0;
  3363. autorun_devices(part);
  3364. }
  3365. #endif
  3366. static __exit void md_exit(void)
  3367. {
  3368. mddev_t *mddev;
  3369. struct list_head *tmp;
  3370. int i;
  3371. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3372. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3373. for (i=0; i < MAX_MD_DEVS; i++)
  3374. devfs_remove("md/%d", i);
  3375. for (i=0; i < MAX_MD_DEVS; i++)
  3376. devfs_remove("md/d%d", i);
  3377. devfs_remove("md");
  3378. unregister_blkdev(MAJOR_NR,"md");
  3379. unregister_blkdev(mdp_major, "mdp");
  3380. unregister_reboot_notifier(&md_notifier);
  3381. unregister_sysctl_table(raid_table_header);
  3382. remove_proc_entry("mdstat", NULL);
  3383. ITERATE_MDDEV(mddev,tmp) {
  3384. struct gendisk *disk = mddev->gendisk;
  3385. if (!disk)
  3386. continue;
  3387. export_array(mddev);
  3388. del_gendisk(disk);
  3389. put_disk(disk);
  3390. mddev->gendisk = NULL;
  3391. mddev_put(mddev);
  3392. }
  3393. }
  3394. module_init(md_init)
  3395. module_exit(md_exit)
  3396. EXPORT_SYMBOL(register_md_personality);
  3397. EXPORT_SYMBOL(unregister_md_personality);
  3398. EXPORT_SYMBOL(md_error);
  3399. EXPORT_SYMBOL(md_done_sync);
  3400. EXPORT_SYMBOL(md_write_start);
  3401. EXPORT_SYMBOL(md_write_end);
  3402. EXPORT_SYMBOL(md_register_thread);
  3403. EXPORT_SYMBOL(md_unregister_thread);
  3404. EXPORT_SYMBOL(md_wakeup_thread);
  3405. EXPORT_SYMBOL(md_print_devices);
  3406. EXPORT_SYMBOL(md_check_recovery);
  3407. MODULE_LICENSE("GPL");