init.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/slab.h>
  17. #include "ath9k.h"
  18. static char *dev_info = "ath9k";
  19. MODULE_AUTHOR("Atheros Communications");
  20. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  21. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  22. MODULE_LICENSE("Dual BSD/GPL");
  23. static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
  24. module_param_named(debug, ath9k_debug, uint, 0);
  25. MODULE_PARM_DESC(debug, "Debugging mask");
  26. int modparam_nohwcrypt;
  27. module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
  28. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
  29. /* We use the hw_value as an index into our private channel structure */
  30. #define CHAN2G(_freq, _idx) { \
  31. .center_freq = (_freq), \
  32. .hw_value = (_idx), \
  33. .max_power = 20, \
  34. }
  35. #define CHAN5G(_freq, _idx) { \
  36. .band = IEEE80211_BAND_5GHZ, \
  37. .center_freq = (_freq), \
  38. .hw_value = (_idx), \
  39. .max_power = 20, \
  40. }
  41. /* Some 2 GHz radios are actually tunable on 2312-2732
  42. * on 5 MHz steps, we support the channels which we know
  43. * we have calibration data for all cards though to make
  44. * this static */
  45. static struct ieee80211_channel ath9k_2ghz_chantable[] = {
  46. CHAN2G(2412, 0), /* Channel 1 */
  47. CHAN2G(2417, 1), /* Channel 2 */
  48. CHAN2G(2422, 2), /* Channel 3 */
  49. CHAN2G(2427, 3), /* Channel 4 */
  50. CHAN2G(2432, 4), /* Channel 5 */
  51. CHAN2G(2437, 5), /* Channel 6 */
  52. CHAN2G(2442, 6), /* Channel 7 */
  53. CHAN2G(2447, 7), /* Channel 8 */
  54. CHAN2G(2452, 8), /* Channel 9 */
  55. CHAN2G(2457, 9), /* Channel 10 */
  56. CHAN2G(2462, 10), /* Channel 11 */
  57. CHAN2G(2467, 11), /* Channel 12 */
  58. CHAN2G(2472, 12), /* Channel 13 */
  59. CHAN2G(2484, 13), /* Channel 14 */
  60. };
  61. /* Some 5 GHz radios are actually tunable on XXXX-YYYY
  62. * on 5 MHz steps, we support the channels which we know
  63. * we have calibration data for all cards though to make
  64. * this static */
  65. static struct ieee80211_channel ath9k_5ghz_chantable[] = {
  66. /* _We_ call this UNII 1 */
  67. CHAN5G(5180, 14), /* Channel 36 */
  68. CHAN5G(5200, 15), /* Channel 40 */
  69. CHAN5G(5220, 16), /* Channel 44 */
  70. CHAN5G(5240, 17), /* Channel 48 */
  71. /* _We_ call this UNII 2 */
  72. CHAN5G(5260, 18), /* Channel 52 */
  73. CHAN5G(5280, 19), /* Channel 56 */
  74. CHAN5G(5300, 20), /* Channel 60 */
  75. CHAN5G(5320, 21), /* Channel 64 */
  76. /* _We_ call this "Middle band" */
  77. CHAN5G(5500, 22), /* Channel 100 */
  78. CHAN5G(5520, 23), /* Channel 104 */
  79. CHAN5G(5540, 24), /* Channel 108 */
  80. CHAN5G(5560, 25), /* Channel 112 */
  81. CHAN5G(5580, 26), /* Channel 116 */
  82. CHAN5G(5600, 27), /* Channel 120 */
  83. CHAN5G(5620, 28), /* Channel 124 */
  84. CHAN5G(5640, 29), /* Channel 128 */
  85. CHAN5G(5660, 30), /* Channel 132 */
  86. CHAN5G(5680, 31), /* Channel 136 */
  87. CHAN5G(5700, 32), /* Channel 140 */
  88. /* _We_ call this UNII 3 */
  89. CHAN5G(5745, 33), /* Channel 149 */
  90. CHAN5G(5765, 34), /* Channel 153 */
  91. CHAN5G(5785, 35), /* Channel 157 */
  92. CHAN5G(5805, 36), /* Channel 161 */
  93. CHAN5G(5825, 37), /* Channel 165 */
  94. };
  95. /* Atheros hardware rate code addition for short premble */
  96. #define SHPCHECK(__hw_rate, __flags) \
  97. ((__flags & IEEE80211_RATE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0)
  98. #define RATE(_bitrate, _hw_rate, _flags) { \
  99. .bitrate = (_bitrate), \
  100. .flags = (_flags), \
  101. .hw_value = (_hw_rate), \
  102. .hw_value_short = (SHPCHECK(_hw_rate, _flags)) \
  103. }
  104. static struct ieee80211_rate ath9k_legacy_rates[] = {
  105. RATE(10, 0x1b, 0),
  106. RATE(20, 0x1a, IEEE80211_RATE_SHORT_PREAMBLE),
  107. RATE(55, 0x19, IEEE80211_RATE_SHORT_PREAMBLE),
  108. RATE(110, 0x18, IEEE80211_RATE_SHORT_PREAMBLE),
  109. RATE(60, 0x0b, 0),
  110. RATE(90, 0x0f, 0),
  111. RATE(120, 0x0a, 0),
  112. RATE(180, 0x0e, 0),
  113. RATE(240, 0x09, 0),
  114. RATE(360, 0x0d, 0),
  115. RATE(480, 0x08, 0),
  116. RATE(540, 0x0c, 0),
  117. };
  118. static void ath9k_deinit_softc(struct ath_softc *sc);
  119. /*
  120. * Read and write, they both share the same lock. We do this to serialize
  121. * reads and writes on Atheros 802.11n PCI devices only. This is required
  122. * as the FIFO on these devices can only accept sanely 2 requests.
  123. */
  124. static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
  125. {
  126. struct ath_hw *ah = (struct ath_hw *) hw_priv;
  127. struct ath_common *common = ath9k_hw_common(ah);
  128. struct ath_softc *sc = (struct ath_softc *) common->priv;
  129. if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
  130. unsigned long flags;
  131. spin_lock_irqsave(&sc->sc_serial_rw, flags);
  132. iowrite32(val, sc->mem + reg_offset);
  133. spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
  134. } else
  135. iowrite32(val, sc->mem + reg_offset);
  136. }
  137. static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
  138. {
  139. struct ath_hw *ah = (struct ath_hw *) hw_priv;
  140. struct ath_common *common = ath9k_hw_common(ah);
  141. struct ath_softc *sc = (struct ath_softc *) common->priv;
  142. u32 val;
  143. if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
  144. unsigned long flags;
  145. spin_lock_irqsave(&sc->sc_serial_rw, flags);
  146. val = ioread32(sc->mem + reg_offset);
  147. spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
  148. } else
  149. val = ioread32(sc->mem + reg_offset);
  150. return val;
  151. }
  152. static const struct ath_ops ath9k_common_ops = {
  153. .read = ath9k_ioread32,
  154. .write = ath9k_iowrite32,
  155. };
  156. /**************************/
  157. /* Initialization */
  158. /**************************/
  159. static void setup_ht_cap(struct ath_softc *sc,
  160. struct ieee80211_sta_ht_cap *ht_info)
  161. {
  162. struct ath_hw *ah = sc->sc_ah;
  163. struct ath_common *common = ath9k_hw_common(ah);
  164. u8 tx_streams, rx_streams;
  165. int i, max_streams;
  166. ht_info->ht_supported = true;
  167. ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  168. IEEE80211_HT_CAP_SM_PS |
  169. IEEE80211_HT_CAP_SGI_40 |
  170. IEEE80211_HT_CAP_DSSSCCK40;
  171. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_LDPC)
  172. ht_info->cap |= IEEE80211_HT_CAP_LDPC_CODING;
  173. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
  174. ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
  175. ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
  176. ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
  177. if (AR_SREV_9300_20_OR_LATER(ah))
  178. max_streams = 3;
  179. else
  180. max_streams = 2;
  181. if (AR_SREV_9280_10_OR_LATER(ah)) {
  182. if (max_streams >= 2)
  183. ht_info->cap |= IEEE80211_HT_CAP_TX_STBC;
  184. ht_info->cap |= (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
  185. }
  186. /* set up supported mcs set */
  187. memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
  188. tx_streams = ath9k_cmn_count_streams(common->tx_chainmask, max_streams);
  189. rx_streams = ath9k_cmn_count_streams(common->rx_chainmask, max_streams);
  190. ath_print(common, ATH_DBG_CONFIG,
  191. "TX streams %d, RX streams: %d\n",
  192. tx_streams, rx_streams);
  193. if (tx_streams != rx_streams) {
  194. ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
  195. ht_info->mcs.tx_params |= ((tx_streams - 1) <<
  196. IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
  197. }
  198. for (i = 0; i < rx_streams; i++)
  199. ht_info->mcs.rx_mask[i] = 0xff;
  200. ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
  201. }
  202. static int ath9k_reg_notifier(struct wiphy *wiphy,
  203. struct regulatory_request *request)
  204. {
  205. struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
  206. struct ath_wiphy *aphy = hw->priv;
  207. struct ath_softc *sc = aphy->sc;
  208. struct ath_regulatory *reg = ath9k_hw_regulatory(sc->sc_ah);
  209. return ath_reg_notifier_apply(wiphy, request, reg);
  210. }
  211. /*
  212. * This function will allocate both the DMA descriptor structure, and the
  213. * buffers it contains. These are used to contain the descriptors used
  214. * by the system.
  215. */
  216. int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
  217. struct list_head *head, const char *name,
  218. int nbuf, int ndesc, bool is_tx)
  219. {
  220. #define DS2PHYS(_dd, _ds) \
  221. ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
  222. #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
  223. #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
  224. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  225. u8 *ds;
  226. struct ath_buf *bf;
  227. int i, bsize, error, desc_len;
  228. ath_print(common, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
  229. name, nbuf, ndesc);
  230. INIT_LIST_HEAD(head);
  231. if (is_tx)
  232. desc_len = sc->sc_ah->caps.tx_desc_len;
  233. else
  234. desc_len = sizeof(struct ath_desc);
  235. /* ath_desc must be a multiple of DWORDs */
  236. if ((desc_len % 4) != 0) {
  237. ath_print(common, ATH_DBG_FATAL,
  238. "ath_desc not DWORD aligned\n");
  239. BUG_ON((desc_len % 4) != 0);
  240. error = -ENOMEM;
  241. goto fail;
  242. }
  243. dd->dd_desc_len = desc_len * nbuf * ndesc;
  244. /*
  245. * Need additional DMA memory because we can't use
  246. * descriptors that cross the 4K page boundary. Assume
  247. * one skipped descriptor per 4K page.
  248. */
  249. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  250. u32 ndesc_skipped =
  251. ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
  252. u32 dma_len;
  253. while (ndesc_skipped) {
  254. dma_len = ndesc_skipped * desc_len;
  255. dd->dd_desc_len += dma_len;
  256. ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
  257. }
  258. }
  259. /* allocate descriptors */
  260. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  261. &dd->dd_desc_paddr, GFP_KERNEL);
  262. if (dd->dd_desc == NULL) {
  263. error = -ENOMEM;
  264. goto fail;
  265. }
  266. ds = (u8 *) dd->dd_desc;
  267. ath_print(common, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
  268. name, ds, (u32) dd->dd_desc_len,
  269. ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
  270. /* allocate buffers */
  271. bsize = sizeof(struct ath_buf) * nbuf;
  272. bf = kzalloc(bsize, GFP_KERNEL);
  273. if (bf == NULL) {
  274. error = -ENOMEM;
  275. goto fail2;
  276. }
  277. dd->dd_bufptr = bf;
  278. for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
  279. bf->bf_desc = ds;
  280. bf->bf_daddr = DS2PHYS(dd, ds);
  281. if (!(sc->sc_ah->caps.hw_caps &
  282. ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  283. /*
  284. * Skip descriptor addresses which can cause 4KB
  285. * boundary crossing (addr + length) with a 32 dword
  286. * descriptor fetch.
  287. */
  288. while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
  289. BUG_ON((caddr_t) bf->bf_desc >=
  290. ((caddr_t) dd->dd_desc +
  291. dd->dd_desc_len));
  292. ds += (desc_len * ndesc);
  293. bf->bf_desc = ds;
  294. bf->bf_daddr = DS2PHYS(dd, ds);
  295. }
  296. }
  297. list_add_tail(&bf->list, head);
  298. }
  299. return 0;
  300. fail2:
  301. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  302. dd->dd_desc_paddr);
  303. fail:
  304. memset(dd, 0, sizeof(*dd));
  305. return error;
  306. #undef ATH_DESC_4KB_BOUND_CHECK
  307. #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
  308. #undef DS2PHYS
  309. }
  310. static void ath9k_init_crypto(struct ath_softc *sc)
  311. {
  312. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  313. int i = 0;
  314. /* Get the hardware key cache size. */
  315. common->keymax = sc->sc_ah->caps.keycache_size;
  316. if (common->keymax > ATH_KEYMAX) {
  317. ath_print(common, ATH_DBG_ANY,
  318. "Warning, using only %u entries in %u key cache\n",
  319. ATH_KEYMAX, common->keymax);
  320. common->keymax = ATH_KEYMAX;
  321. }
  322. /*
  323. * Reset the key cache since some parts do not
  324. * reset the contents on initial power up.
  325. */
  326. for (i = 0; i < common->keymax; i++)
  327. ath9k_hw_keyreset(sc->sc_ah, (u16) i);
  328. /*
  329. * Check whether the separate key cache entries
  330. * are required to handle both tx+rx MIC keys.
  331. * With split mic keys the number of stations is limited
  332. * to 27 otherwise 59.
  333. */
  334. if (!(sc->sc_ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA))
  335. common->splitmic = 1;
  336. }
  337. static int ath9k_init_btcoex(struct ath_softc *sc)
  338. {
  339. int r, qnum;
  340. switch (sc->sc_ah->btcoex_hw.scheme) {
  341. case ATH_BTCOEX_CFG_NONE:
  342. break;
  343. case ATH_BTCOEX_CFG_2WIRE:
  344. ath9k_hw_btcoex_init_2wire(sc->sc_ah);
  345. break;
  346. case ATH_BTCOEX_CFG_3WIRE:
  347. ath9k_hw_btcoex_init_3wire(sc->sc_ah);
  348. r = ath_init_btcoex_timer(sc);
  349. if (r)
  350. return -1;
  351. qnum = sc->tx.hwq_map[WME_AC_BE];
  352. ath9k_hw_init_btcoex_hw(sc->sc_ah, qnum);
  353. sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW;
  354. break;
  355. default:
  356. WARN_ON(1);
  357. break;
  358. }
  359. return 0;
  360. }
  361. static int ath9k_init_queues(struct ath_softc *sc)
  362. {
  363. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  364. int i = 0;
  365. for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
  366. sc->tx.hwq_map[i] = -1;
  367. sc->beacon.beaconq = ath9k_hw_beaconq_setup(sc->sc_ah);
  368. if (sc->beacon.beaconq == -1) {
  369. ath_print(common, ATH_DBG_FATAL,
  370. "Unable to setup a beacon xmit queue\n");
  371. goto err;
  372. }
  373. sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
  374. if (sc->beacon.cabq == NULL) {
  375. ath_print(common, ATH_DBG_FATAL,
  376. "Unable to setup CAB xmit queue\n");
  377. goto err;
  378. }
  379. sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
  380. ath_cabq_update(sc);
  381. if (!ath_tx_setup(sc, WME_AC_BK)) {
  382. ath_print(common, ATH_DBG_FATAL,
  383. "Unable to setup xmit queue for BK traffic\n");
  384. goto err;
  385. }
  386. if (!ath_tx_setup(sc, WME_AC_BE)) {
  387. ath_print(common, ATH_DBG_FATAL,
  388. "Unable to setup xmit queue for BE traffic\n");
  389. goto err;
  390. }
  391. if (!ath_tx_setup(sc, WME_AC_VI)) {
  392. ath_print(common, ATH_DBG_FATAL,
  393. "Unable to setup xmit queue for VI traffic\n");
  394. goto err;
  395. }
  396. if (!ath_tx_setup(sc, WME_AC_VO)) {
  397. ath_print(common, ATH_DBG_FATAL,
  398. "Unable to setup xmit queue for VO traffic\n");
  399. goto err;
  400. }
  401. return 0;
  402. err:
  403. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  404. if (ATH_TXQ_SETUP(sc, i))
  405. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  406. return -EIO;
  407. }
  408. static void ath9k_init_channels_rates(struct ath_softc *sc)
  409. {
  410. if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes)) {
  411. sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
  412. sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
  413. sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
  414. ARRAY_SIZE(ath9k_2ghz_chantable);
  415. sc->sbands[IEEE80211_BAND_2GHZ].bitrates = ath9k_legacy_rates;
  416. sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates =
  417. ARRAY_SIZE(ath9k_legacy_rates);
  418. }
  419. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
  420. sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
  421. sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
  422. sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
  423. ARRAY_SIZE(ath9k_5ghz_chantable);
  424. sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
  425. ath9k_legacy_rates + 4;
  426. sc->sbands[IEEE80211_BAND_5GHZ].n_bitrates =
  427. ARRAY_SIZE(ath9k_legacy_rates) - 4;
  428. }
  429. }
  430. static void ath9k_init_misc(struct ath_softc *sc)
  431. {
  432. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  433. int i = 0;
  434. common->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
  435. setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc);
  436. sc->config.txpowlimit = ATH_TXPOWER_MAX;
  437. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  438. sc->sc_flags |= SC_OP_TXAGGR;
  439. sc->sc_flags |= SC_OP_RXAGGR;
  440. }
  441. common->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
  442. common->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
  443. ath9k_hw_set_diversity(sc->sc_ah, true);
  444. sc->rx.defant = ath9k_hw_getdefantenna(sc->sc_ah);
  445. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
  446. memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
  447. sc->beacon.slottime = ATH9K_SLOT_TIME_9;
  448. for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
  449. sc->beacon.bslot[i] = NULL;
  450. sc->beacon.bslot_aphy[i] = NULL;
  451. }
  452. }
  453. static int ath9k_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid,
  454. const struct ath_bus_ops *bus_ops)
  455. {
  456. struct ath_hw *ah = NULL;
  457. struct ath_common *common;
  458. int ret = 0, i;
  459. int csz = 0;
  460. ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
  461. if (!ah)
  462. return -ENOMEM;
  463. ah->hw_version.devid = devid;
  464. ah->hw_version.subsysid = subsysid;
  465. sc->sc_ah = ah;
  466. common = ath9k_hw_common(ah);
  467. common->ops = &ath9k_common_ops;
  468. common->bus_ops = bus_ops;
  469. common->ah = ah;
  470. common->hw = sc->hw;
  471. common->priv = sc;
  472. common->debug_mask = ath9k_debug;
  473. spin_lock_init(&sc->wiphy_lock);
  474. spin_lock_init(&sc->sc_resetlock);
  475. spin_lock_init(&sc->sc_serial_rw);
  476. spin_lock_init(&sc->sc_pm_lock);
  477. mutex_init(&sc->mutex);
  478. tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
  479. tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
  480. (unsigned long)sc);
  481. /*
  482. * Cache line size is used to size and align various
  483. * structures used to communicate with the hardware.
  484. */
  485. ath_read_cachesize(common, &csz);
  486. common->cachelsz = csz << 2; /* convert to bytes */
  487. /* Initializes the hardware for all supported chipsets */
  488. ret = ath9k_hw_init(ah);
  489. if (ret)
  490. goto err_hw;
  491. ret = ath9k_init_debug(ah);
  492. if (ret) {
  493. ath_print(common, ATH_DBG_FATAL,
  494. "Unable to create debugfs files\n");
  495. goto err_debug;
  496. }
  497. ret = ath9k_init_queues(sc);
  498. if (ret)
  499. goto err_queues;
  500. ret = ath9k_init_btcoex(sc);
  501. if (ret)
  502. goto err_btcoex;
  503. ath9k_init_crypto(sc);
  504. ath9k_init_channels_rates(sc);
  505. ath9k_init_misc(sc);
  506. return 0;
  507. err_btcoex:
  508. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  509. if (ATH_TXQ_SETUP(sc, i))
  510. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  511. err_queues:
  512. ath9k_exit_debug(ah);
  513. err_debug:
  514. ath9k_hw_deinit(ah);
  515. err_hw:
  516. tasklet_kill(&sc->intr_tq);
  517. tasklet_kill(&sc->bcon_tasklet);
  518. kfree(ah);
  519. sc->sc_ah = NULL;
  520. return ret;
  521. }
  522. void ath9k_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
  523. {
  524. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  525. hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
  526. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  527. IEEE80211_HW_SIGNAL_DBM |
  528. IEEE80211_HW_SUPPORTS_PS |
  529. IEEE80211_HW_PS_NULLFUNC_STACK |
  530. IEEE80211_HW_SPECTRUM_MGMT |
  531. IEEE80211_HW_REPORTS_TX_ACK_STATUS;
  532. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  533. hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
  534. if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
  535. hw->flags |= IEEE80211_HW_MFP_CAPABLE;
  536. hw->wiphy->interface_modes =
  537. BIT(NL80211_IFTYPE_AP) |
  538. BIT(NL80211_IFTYPE_STATION) |
  539. BIT(NL80211_IFTYPE_ADHOC) |
  540. BIT(NL80211_IFTYPE_MESH_POINT);
  541. hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
  542. hw->queues = 4;
  543. hw->max_rates = 4;
  544. hw->channel_change_time = 5000;
  545. hw->max_listen_interval = 10;
  546. hw->max_rate_tries = 10;
  547. hw->sta_data_size = sizeof(struct ath_node);
  548. hw->vif_data_size = sizeof(struct ath_vif);
  549. hw->rate_control_algorithm = "ath9k_rate_control";
  550. if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes))
  551. hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
  552. &sc->sbands[IEEE80211_BAND_2GHZ];
  553. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
  554. hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
  555. &sc->sbands[IEEE80211_BAND_5GHZ];
  556. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  557. if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes))
  558. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
  559. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
  560. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
  561. }
  562. SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
  563. }
  564. int ath9k_init_device(u16 devid, struct ath_softc *sc, u16 subsysid,
  565. const struct ath_bus_ops *bus_ops)
  566. {
  567. struct ieee80211_hw *hw = sc->hw;
  568. struct ath_common *common;
  569. struct ath_hw *ah;
  570. int error = 0;
  571. struct ath_regulatory *reg;
  572. /* Bring up device */
  573. error = ath9k_init_softc(devid, sc, subsysid, bus_ops);
  574. if (error != 0)
  575. goto error_init;
  576. ah = sc->sc_ah;
  577. common = ath9k_hw_common(ah);
  578. ath9k_set_hw_capab(sc, hw);
  579. /* Initialize regulatory */
  580. error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
  581. ath9k_reg_notifier);
  582. if (error)
  583. goto error_regd;
  584. reg = &common->regulatory;
  585. /* Setup TX DMA */
  586. error = ath_tx_init(sc, ATH_TXBUF);
  587. if (error != 0)
  588. goto error_tx;
  589. /* Setup RX DMA */
  590. error = ath_rx_init(sc, ATH_RXBUF);
  591. if (error != 0)
  592. goto error_rx;
  593. /* Register with mac80211 */
  594. error = ieee80211_register_hw(hw);
  595. if (error)
  596. goto error_register;
  597. /* Handle world regulatory */
  598. if (!ath_is_world_regd(reg)) {
  599. error = regulatory_hint(hw->wiphy, reg->alpha2);
  600. if (error)
  601. goto error_world;
  602. }
  603. INIT_WORK(&sc->paprd_work, ath_paprd_calibrate);
  604. INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
  605. INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
  606. sc->wiphy_scheduler_int = msecs_to_jiffies(500);
  607. ath_init_leds(sc);
  608. ath_start_rfkill_poll(sc);
  609. return 0;
  610. error_world:
  611. ieee80211_unregister_hw(hw);
  612. error_register:
  613. ath_rx_cleanup(sc);
  614. error_rx:
  615. ath_tx_cleanup(sc);
  616. error_tx:
  617. /* Nothing */
  618. error_regd:
  619. ath9k_deinit_softc(sc);
  620. error_init:
  621. return error;
  622. }
  623. /*****************************/
  624. /* De-Initialization */
  625. /*****************************/
  626. static void ath9k_deinit_softc(struct ath_softc *sc)
  627. {
  628. int i = 0;
  629. if ((sc->btcoex.no_stomp_timer) &&
  630. sc->sc_ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
  631. ath_gen_timer_free(sc->sc_ah, sc->btcoex.no_stomp_timer);
  632. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  633. if (ATH_TXQ_SETUP(sc, i))
  634. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  635. ath9k_exit_debug(sc->sc_ah);
  636. ath9k_hw_deinit(sc->sc_ah);
  637. tasklet_kill(&sc->intr_tq);
  638. tasklet_kill(&sc->bcon_tasklet);
  639. kfree(sc->sc_ah);
  640. sc->sc_ah = NULL;
  641. }
  642. void ath9k_deinit_device(struct ath_softc *sc)
  643. {
  644. struct ieee80211_hw *hw = sc->hw;
  645. int i = 0;
  646. ath9k_ps_wakeup(sc);
  647. wiphy_rfkill_stop_polling(sc->hw->wiphy);
  648. ath_deinit_leds(sc);
  649. for (i = 0; i < sc->num_sec_wiphy; i++) {
  650. struct ath_wiphy *aphy = sc->sec_wiphy[i];
  651. if (aphy == NULL)
  652. continue;
  653. sc->sec_wiphy[i] = NULL;
  654. ieee80211_unregister_hw(aphy->hw);
  655. ieee80211_free_hw(aphy->hw);
  656. }
  657. kfree(sc->sec_wiphy);
  658. ieee80211_unregister_hw(hw);
  659. ath_rx_cleanup(sc);
  660. ath_tx_cleanup(sc);
  661. ath9k_deinit_softc(sc);
  662. }
  663. void ath_descdma_cleanup(struct ath_softc *sc,
  664. struct ath_descdma *dd,
  665. struct list_head *head)
  666. {
  667. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  668. dd->dd_desc_paddr);
  669. INIT_LIST_HEAD(head);
  670. kfree(dd->dd_bufptr);
  671. memset(dd, 0, sizeof(*dd));
  672. }
  673. /************************/
  674. /* Module Hooks */
  675. /************************/
  676. static int __init ath9k_init(void)
  677. {
  678. int error;
  679. /* Register rate control algorithm */
  680. error = ath_rate_control_register();
  681. if (error != 0) {
  682. printk(KERN_ERR
  683. "ath9k: Unable to register rate control "
  684. "algorithm: %d\n",
  685. error);
  686. goto err_out;
  687. }
  688. error = ath9k_debug_create_root();
  689. if (error) {
  690. printk(KERN_ERR
  691. "ath9k: Unable to create debugfs root: %d\n",
  692. error);
  693. goto err_rate_unregister;
  694. }
  695. error = ath_pci_init();
  696. if (error < 0) {
  697. printk(KERN_ERR
  698. "ath9k: No PCI devices found, driver not installed.\n");
  699. error = -ENODEV;
  700. goto err_remove_root;
  701. }
  702. error = ath_ahb_init();
  703. if (error < 0) {
  704. error = -ENODEV;
  705. goto err_pci_exit;
  706. }
  707. return 0;
  708. err_pci_exit:
  709. ath_pci_exit();
  710. err_remove_root:
  711. ath9k_debug_remove_root();
  712. err_rate_unregister:
  713. ath_rate_control_unregister();
  714. err_out:
  715. return error;
  716. }
  717. module_init(ath9k_init);
  718. static void __exit ath9k_exit(void)
  719. {
  720. ath_ahb_exit();
  721. ath_pci_exit();
  722. ath9k_debug_remove_root();
  723. ath_rate_control_unregister();
  724. printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
  725. }
  726. module_exit(ath9k_exit);