i915_gem.c 132 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static LIST_HEAD(shrink_list);
  58. static DEFINE_SPINLOCK(shrink_list_lock);
  59. int
  60. i915_gem_check_is_wedged(struct drm_device *dev)
  61. {
  62. struct drm_i915_private *dev_priv = dev->dev_private;
  63. struct completion *x = &dev_priv->error_completion;
  64. unsigned long flags;
  65. int ret;
  66. if (!atomic_read(&dev_priv->mm.wedged))
  67. return 0;
  68. ret = wait_for_completion_interruptible(x);
  69. if (ret)
  70. return ret;
  71. /* Success, we reset the GPU! */
  72. if (!atomic_read(&dev_priv->mm.wedged))
  73. return 0;
  74. /* GPU is hung, bump the completion count to account for
  75. * the token we just consumed so that we never hit zero and
  76. * end up waiting upon a subsequent completion event that
  77. * will never happen.
  78. */
  79. spin_lock_irqsave(&x->wait.lock, flags);
  80. x->done++;
  81. spin_unlock_irqrestore(&x->wait.lock, flags);
  82. return -EIO;
  83. }
  84. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  85. {
  86. struct drm_i915_private *dev_priv = dev->dev_private;
  87. int ret;
  88. ret = i915_gem_check_is_wedged(dev);
  89. if (ret)
  90. return ret;
  91. ret = mutex_lock_interruptible(&dev->struct_mutex);
  92. if (ret)
  93. return ret;
  94. if (atomic_read(&dev_priv->mm.wedged)) {
  95. mutex_unlock(&dev->struct_mutex);
  96. return -EAGAIN;
  97. }
  98. return 0;
  99. }
  100. static inline bool
  101. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  102. {
  103. return obj_priv->gtt_space &&
  104. !obj_priv->active &&
  105. obj_priv->pin_count == 0;
  106. }
  107. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  108. unsigned long end)
  109. {
  110. drm_i915_private_t *dev_priv = dev->dev_private;
  111. if (start >= end ||
  112. (start & (PAGE_SIZE - 1)) != 0 ||
  113. (end & (PAGE_SIZE - 1)) != 0) {
  114. return -EINVAL;
  115. }
  116. drm_mm_init(&dev_priv->mm.gtt_space, start,
  117. end - start);
  118. dev->gtt_total = (uint32_t) (end - start);
  119. return 0;
  120. }
  121. int
  122. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  123. struct drm_file *file_priv)
  124. {
  125. struct drm_i915_gem_init *args = data;
  126. int ret;
  127. mutex_lock(&dev->struct_mutex);
  128. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  129. mutex_unlock(&dev->struct_mutex);
  130. return ret;
  131. }
  132. int
  133. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  134. struct drm_file *file_priv)
  135. {
  136. struct drm_i915_gem_get_aperture *args = data;
  137. if (!(dev->driver->driver_features & DRIVER_GEM))
  138. return -ENODEV;
  139. args->aper_size = dev->gtt_total;
  140. args->aper_available_size = (args->aper_size -
  141. atomic_read(&dev->pin_memory));
  142. return 0;
  143. }
  144. /**
  145. * Creates a new mm object and returns a handle to it.
  146. */
  147. int
  148. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  149. struct drm_file *file_priv)
  150. {
  151. struct drm_i915_gem_create *args = data;
  152. struct drm_gem_object *obj;
  153. int ret;
  154. u32 handle;
  155. args->size = roundup(args->size, PAGE_SIZE);
  156. /* Allocate the new object */
  157. obj = i915_gem_alloc_object(dev, args->size);
  158. if (obj == NULL)
  159. return -ENOMEM;
  160. ret = drm_gem_handle_create(file_priv, obj, &handle);
  161. if (ret) {
  162. drm_gem_object_unreference_unlocked(obj);
  163. return ret;
  164. }
  165. /* Sink the floating reference from kref_init(handlecount) */
  166. drm_gem_object_handle_unreference_unlocked(obj);
  167. args->handle = handle;
  168. return 0;
  169. }
  170. static inline int
  171. fast_shmem_read(struct page **pages,
  172. loff_t page_base, int page_offset,
  173. char __user *data,
  174. int length)
  175. {
  176. char __iomem *vaddr;
  177. int unwritten;
  178. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  179. if (vaddr == NULL)
  180. return -ENOMEM;
  181. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  182. kunmap_atomic(vaddr, KM_USER0);
  183. if (unwritten)
  184. return -EFAULT;
  185. return 0;
  186. }
  187. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  188. {
  189. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  190. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  191. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  192. obj_priv->tiling_mode != I915_TILING_NONE;
  193. }
  194. static inline void
  195. slow_shmem_copy(struct page *dst_page,
  196. int dst_offset,
  197. struct page *src_page,
  198. int src_offset,
  199. int length)
  200. {
  201. char *dst_vaddr, *src_vaddr;
  202. dst_vaddr = kmap(dst_page);
  203. src_vaddr = kmap(src_page);
  204. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  205. kunmap(src_page);
  206. kunmap(dst_page);
  207. }
  208. static inline void
  209. slow_shmem_bit17_copy(struct page *gpu_page,
  210. int gpu_offset,
  211. struct page *cpu_page,
  212. int cpu_offset,
  213. int length,
  214. int is_read)
  215. {
  216. char *gpu_vaddr, *cpu_vaddr;
  217. /* Use the unswizzled path if this page isn't affected. */
  218. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  219. if (is_read)
  220. return slow_shmem_copy(cpu_page, cpu_offset,
  221. gpu_page, gpu_offset, length);
  222. else
  223. return slow_shmem_copy(gpu_page, gpu_offset,
  224. cpu_page, cpu_offset, length);
  225. }
  226. gpu_vaddr = kmap(gpu_page);
  227. cpu_vaddr = kmap(cpu_page);
  228. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  229. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  230. */
  231. while (length > 0) {
  232. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  233. int this_length = min(cacheline_end - gpu_offset, length);
  234. int swizzled_gpu_offset = gpu_offset ^ 64;
  235. if (is_read) {
  236. memcpy(cpu_vaddr + cpu_offset,
  237. gpu_vaddr + swizzled_gpu_offset,
  238. this_length);
  239. } else {
  240. memcpy(gpu_vaddr + swizzled_gpu_offset,
  241. cpu_vaddr + cpu_offset,
  242. this_length);
  243. }
  244. cpu_offset += this_length;
  245. gpu_offset += this_length;
  246. length -= this_length;
  247. }
  248. kunmap(cpu_page);
  249. kunmap(gpu_page);
  250. }
  251. /**
  252. * This is the fast shmem pread path, which attempts to copy_from_user directly
  253. * from the backing pages of the object to the user's address space. On a
  254. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  255. */
  256. static int
  257. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  258. struct drm_i915_gem_pread *args,
  259. struct drm_file *file_priv)
  260. {
  261. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  262. ssize_t remain;
  263. loff_t offset, page_base;
  264. char __user *user_data;
  265. int page_offset, page_length;
  266. int ret;
  267. user_data = (char __user *) (uintptr_t) args->data_ptr;
  268. remain = args->size;
  269. ret = i915_mutex_lock_interruptible(dev);
  270. if (ret)
  271. return ret;
  272. ret = i915_gem_object_get_pages(obj, 0);
  273. if (ret != 0)
  274. goto fail_unlock;
  275. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  276. args->size);
  277. if (ret != 0)
  278. goto fail_put_pages;
  279. obj_priv = to_intel_bo(obj);
  280. offset = args->offset;
  281. while (remain > 0) {
  282. /* Operation in this page
  283. *
  284. * page_base = page offset within aperture
  285. * page_offset = offset within page
  286. * page_length = bytes to copy for this page
  287. */
  288. page_base = (offset & ~(PAGE_SIZE-1));
  289. page_offset = offset & (PAGE_SIZE-1);
  290. page_length = remain;
  291. if ((page_offset + remain) > PAGE_SIZE)
  292. page_length = PAGE_SIZE - page_offset;
  293. ret = fast_shmem_read(obj_priv->pages,
  294. page_base, page_offset,
  295. user_data, page_length);
  296. if (ret)
  297. goto fail_put_pages;
  298. remain -= page_length;
  299. user_data += page_length;
  300. offset += page_length;
  301. }
  302. fail_put_pages:
  303. i915_gem_object_put_pages(obj);
  304. fail_unlock:
  305. mutex_unlock(&dev->struct_mutex);
  306. return ret;
  307. }
  308. static int
  309. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  310. {
  311. int ret;
  312. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  313. /* If we've insufficient memory to map in the pages, attempt
  314. * to make some space by throwing out some old buffers.
  315. */
  316. if (ret == -ENOMEM) {
  317. struct drm_device *dev = obj->dev;
  318. ret = i915_gem_evict_something(dev, obj->size,
  319. i915_gem_get_gtt_alignment(obj));
  320. if (ret)
  321. return ret;
  322. ret = i915_gem_object_get_pages(obj, 0);
  323. }
  324. return ret;
  325. }
  326. /**
  327. * This is the fallback shmem pread path, which allocates temporary storage
  328. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  329. * can copy out of the object's backing pages while holding the struct mutex
  330. * and not take page faults.
  331. */
  332. static int
  333. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  334. struct drm_i915_gem_pread *args,
  335. struct drm_file *file_priv)
  336. {
  337. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  338. struct mm_struct *mm = current->mm;
  339. struct page **user_pages;
  340. ssize_t remain;
  341. loff_t offset, pinned_pages, i;
  342. loff_t first_data_page, last_data_page, num_pages;
  343. int shmem_page_index, shmem_page_offset;
  344. int data_page_index, data_page_offset;
  345. int page_length;
  346. int ret;
  347. uint64_t data_ptr = args->data_ptr;
  348. int do_bit17_swizzling;
  349. remain = args->size;
  350. /* Pin the user pages containing the data. We can't fault while
  351. * holding the struct mutex, yet we want to hold it while
  352. * dereferencing the user data.
  353. */
  354. first_data_page = data_ptr / PAGE_SIZE;
  355. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  356. num_pages = last_data_page - first_data_page + 1;
  357. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  358. if (user_pages == NULL)
  359. return -ENOMEM;
  360. down_read(&mm->mmap_sem);
  361. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  362. num_pages, 1, 0, user_pages, NULL);
  363. up_read(&mm->mmap_sem);
  364. if (pinned_pages < num_pages) {
  365. ret = -EFAULT;
  366. goto fail_put_user_pages;
  367. }
  368. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  369. ret = i915_mutex_lock_interruptible(dev);
  370. if (ret)
  371. goto fail_put_user_pages;
  372. ret = i915_gem_object_get_pages_or_evict(obj);
  373. if (ret)
  374. goto fail_unlock;
  375. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  376. args->size);
  377. if (ret != 0)
  378. goto fail_put_pages;
  379. obj_priv = to_intel_bo(obj);
  380. offset = args->offset;
  381. while (remain > 0) {
  382. /* Operation in this page
  383. *
  384. * shmem_page_index = page number within shmem file
  385. * shmem_page_offset = offset within page in shmem file
  386. * data_page_index = page number in get_user_pages return
  387. * data_page_offset = offset with data_page_index page.
  388. * page_length = bytes to copy for this page
  389. */
  390. shmem_page_index = offset / PAGE_SIZE;
  391. shmem_page_offset = offset & ~PAGE_MASK;
  392. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  393. data_page_offset = data_ptr & ~PAGE_MASK;
  394. page_length = remain;
  395. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  396. page_length = PAGE_SIZE - shmem_page_offset;
  397. if ((data_page_offset + page_length) > PAGE_SIZE)
  398. page_length = PAGE_SIZE - data_page_offset;
  399. if (do_bit17_swizzling) {
  400. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  401. shmem_page_offset,
  402. user_pages[data_page_index],
  403. data_page_offset,
  404. page_length,
  405. 1);
  406. } else {
  407. slow_shmem_copy(user_pages[data_page_index],
  408. data_page_offset,
  409. obj_priv->pages[shmem_page_index],
  410. shmem_page_offset,
  411. page_length);
  412. }
  413. remain -= page_length;
  414. data_ptr += page_length;
  415. offset += page_length;
  416. }
  417. fail_put_pages:
  418. i915_gem_object_put_pages(obj);
  419. fail_unlock:
  420. mutex_unlock(&dev->struct_mutex);
  421. fail_put_user_pages:
  422. for (i = 0; i < pinned_pages; i++) {
  423. SetPageDirty(user_pages[i]);
  424. page_cache_release(user_pages[i]);
  425. }
  426. drm_free_large(user_pages);
  427. return ret;
  428. }
  429. /**
  430. * Reads data from the object referenced by handle.
  431. *
  432. * On error, the contents of *data are undefined.
  433. */
  434. int
  435. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  436. struct drm_file *file_priv)
  437. {
  438. struct drm_i915_gem_pread *args = data;
  439. struct drm_gem_object *obj;
  440. struct drm_i915_gem_object *obj_priv;
  441. int ret;
  442. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  443. if (obj == NULL)
  444. return -ENOENT;
  445. obj_priv = to_intel_bo(obj);
  446. /* Bounds check source.
  447. *
  448. * XXX: This could use review for overflow issues...
  449. */
  450. if (args->offset > obj->size || args->size > obj->size ||
  451. args->offset + args->size > obj->size) {
  452. drm_gem_object_unreference_unlocked(obj);
  453. return -EINVAL;
  454. }
  455. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  456. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  457. } else {
  458. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  459. if (ret != 0)
  460. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  461. file_priv);
  462. }
  463. drm_gem_object_unreference_unlocked(obj);
  464. return ret;
  465. }
  466. /* This is the fast write path which cannot handle
  467. * page faults in the source data
  468. */
  469. static inline int
  470. fast_user_write(struct io_mapping *mapping,
  471. loff_t page_base, int page_offset,
  472. char __user *user_data,
  473. int length)
  474. {
  475. char *vaddr_atomic;
  476. unsigned long unwritten;
  477. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
  478. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  479. user_data, length);
  480. io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
  481. if (unwritten)
  482. return -EFAULT;
  483. return 0;
  484. }
  485. /* Here's the write path which can sleep for
  486. * page faults
  487. */
  488. static inline void
  489. slow_kernel_write(struct io_mapping *mapping,
  490. loff_t gtt_base, int gtt_offset,
  491. struct page *user_page, int user_offset,
  492. int length)
  493. {
  494. char __iomem *dst_vaddr;
  495. char *src_vaddr;
  496. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  497. src_vaddr = kmap(user_page);
  498. memcpy_toio(dst_vaddr + gtt_offset,
  499. src_vaddr + user_offset,
  500. length);
  501. kunmap(user_page);
  502. io_mapping_unmap(dst_vaddr);
  503. }
  504. static inline int
  505. fast_shmem_write(struct page **pages,
  506. loff_t page_base, int page_offset,
  507. char __user *data,
  508. int length)
  509. {
  510. char __iomem *vaddr;
  511. unsigned long unwritten;
  512. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  513. if (vaddr == NULL)
  514. return -ENOMEM;
  515. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  516. kunmap_atomic(vaddr, KM_USER0);
  517. if (unwritten)
  518. return -EFAULT;
  519. return 0;
  520. }
  521. /**
  522. * This is the fast pwrite path, where we copy the data directly from the
  523. * user into the GTT, uncached.
  524. */
  525. static int
  526. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  527. struct drm_i915_gem_pwrite *args,
  528. struct drm_file *file_priv)
  529. {
  530. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  531. drm_i915_private_t *dev_priv = dev->dev_private;
  532. ssize_t remain;
  533. loff_t offset, page_base;
  534. char __user *user_data;
  535. int page_offset, page_length;
  536. int ret;
  537. user_data = (char __user *) (uintptr_t) args->data_ptr;
  538. remain = args->size;
  539. if (!access_ok(VERIFY_READ, user_data, remain))
  540. return -EFAULT;
  541. ret = i915_mutex_lock_interruptible(dev);
  542. if (ret)
  543. return ret;
  544. ret = i915_gem_object_pin(obj, 0);
  545. if (ret) {
  546. mutex_unlock(&dev->struct_mutex);
  547. return ret;
  548. }
  549. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  550. if (ret)
  551. goto fail;
  552. obj_priv = to_intel_bo(obj);
  553. offset = obj_priv->gtt_offset + args->offset;
  554. while (remain > 0) {
  555. /* Operation in this page
  556. *
  557. * page_base = page offset within aperture
  558. * page_offset = offset within page
  559. * page_length = bytes to copy for this page
  560. */
  561. page_base = (offset & ~(PAGE_SIZE-1));
  562. page_offset = offset & (PAGE_SIZE-1);
  563. page_length = remain;
  564. if ((page_offset + remain) > PAGE_SIZE)
  565. page_length = PAGE_SIZE - page_offset;
  566. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  567. page_offset, user_data, page_length);
  568. /* If we get a fault while copying data, then (presumably) our
  569. * source page isn't available. Return the error and we'll
  570. * retry in the slow path.
  571. */
  572. if (ret)
  573. goto fail;
  574. remain -= page_length;
  575. user_data += page_length;
  576. offset += page_length;
  577. }
  578. fail:
  579. i915_gem_object_unpin(obj);
  580. mutex_unlock(&dev->struct_mutex);
  581. return ret;
  582. }
  583. /**
  584. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  585. * the memory and maps it using kmap_atomic for copying.
  586. *
  587. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  588. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  589. */
  590. static int
  591. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  592. struct drm_i915_gem_pwrite *args,
  593. struct drm_file *file_priv)
  594. {
  595. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  596. drm_i915_private_t *dev_priv = dev->dev_private;
  597. ssize_t remain;
  598. loff_t gtt_page_base, offset;
  599. loff_t first_data_page, last_data_page, num_pages;
  600. loff_t pinned_pages, i;
  601. struct page **user_pages;
  602. struct mm_struct *mm = current->mm;
  603. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  604. int ret;
  605. uint64_t data_ptr = args->data_ptr;
  606. remain = args->size;
  607. /* Pin the user pages containing the data. We can't fault while
  608. * holding the struct mutex, and all of the pwrite implementations
  609. * want to hold it while dereferencing the user data.
  610. */
  611. first_data_page = data_ptr / PAGE_SIZE;
  612. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  613. num_pages = last_data_page - first_data_page + 1;
  614. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  615. if (user_pages == NULL)
  616. return -ENOMEM;
  617. down_read(&mm->mmap_sem);
  618. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  619. num_pages, 0, 0, user_pages, NULL);
  620. up_read(&mm->mmap_sem);
  621. if (pinned_pages < num_pages) {
  622. ret = -EFAULT;
  623. goto out_unpin_pages;
  624. }
  625. ret = i915_mutex_lock_interruptible(dev);
  626. if (ret)
  627. goto out_unpin_pages;
  628. ret = i915_gem_object_pin(obj, 0);
  629. if (ret)
  630. goto out_unlock;
  631. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  632. if (ret)
  633. goto out_unpin_object;
  634. obj_priv = to_intel_bo(obj);
  635. offset = obj_priv->gtt_offset + args->offset;
  636. while (remain > 0) {
  637. /* Operation in this page
  638. *
  639. * gtt_page_base = page offset within aperture
  640. * gtt_page_offset = offset within page in aperture
  641. * data_page_index = page number in get_user_pages return
  642. * data_page_offset = offset with data_page_index page.
  643. * page_length = bytes to copy for this page
  644. */
  645. gtt_page_base = offset & PAGE_MASK;
  646. gtt_page_offset = offset & ~PAGE_MASK;
  647. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  648. data_page_offset = data_ptr & ~PAGE_MASK;
  649. page_length = remain;
  650. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  651. page_length = PAGE_SIZE - gtt_page_offset;
  652. if ((data_page_offset + page_length) > PAGE_SIZE)
  653. page_length = PAGE_SIZE - data_page_offset;
  654. slow_kernel_write(dev_priv->mm.gtt_mapping,
  655. gtt_page_base, gtt_page_offset,
  656. user_pages[data_page_index],
  657. data_page_offset,
  658. page_length);
  659. remain -= page_length;
  660. offset += page_length;
  661. data_ptr += page_length;
  662. }
  663. out_unpin_object:
  664. i915_gem_object_unpin(obj);
  665. out_unlock:
  666. mutex_unlock(&dev->struct_mutex);
  667. out_unpin_pages:
  668. for (i = 0; i < pinned_pages; i++)
  669. page_cache_release(user_pages[i]);
  670. drm_free_large(user_pages);
  671. return ret;
  672. }
  673. /**
  674. * This is the fast shmem pwrite path, which attempts to directly
  675. * copy_from_user into the kmapped pages backing the object.
  676. */
  677. static int
  678. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  679. struct drm_i915_gem_pwrite *args,
  680. struct drm_file *file_priv)
  681. {
  682. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  683. ssize_t remain;
  684. loff_t offset, page_base;
  685. char __user *user_data;
  686. int page_offset, page_length;
  687. int ret;
  688. user_data = (char __user *) (uintptr_t) args->data_ptr;
  689. remain = args->size;
  690. ret = i915_mutex_lock_interruptible(dev);
  691. if (ret)
  692. return ret;
  693. ret = i915_gem_object_get_pages(obj, 0);
  694. if (ret != 0)
  695. goto fail_unlock;
  696. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  697. if (ret != 0)
  698. goto fail_put_pages;
  699. obj_priv = to_intel_bo(obj);
  700. offset = args->offset;
  701. obj_priv->dirty = 1;
  702. while (remain > 0) {
  703. /* Operation in this page
  704. *
  705. * page_base = page offset within aperture
  706. * page_offset = offset within page
  707. * page_length = bytes to copy for this page
  708. */
  709. page_base = (offset & ~(PAGE_SIZE-1));
  710. page_offset = offset & (PAGE_SIZE-1);
  711. page_length = remain;
  712. if ((page_offset + remain) > PAGE_SIZE)
  713. page_length = PAGE_SIZE - page_offset;
  714. ret = fast_shmem_write(obj_priv->pages,
  715. page_base, page_offset,
  716. user_data, page_length);
  717. if (ret)
  718. goto fail_put_pages;
  719. remain -= page_length;
  720. user_data += page_length;
  721. offset += page_length;
  722. }
  723. fail_put_pages:
  724. i915_gem_object_put_pages(obj);
  725. fail_unlock:
  726. mutex_unlock(&dev->struct_mutex);
  727. return ret;
  728. }
  729. /**
  730. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  731. * the memory and maps it using kmap_atomic for copying.
  732. *
  733. * This avoids taking mmap_sem for faulting on the user's address while the
  734. * struct_mutex is held.
  735. */
  736. static int
  737. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  738. struct drm_i915_gem_pwrite *args,
  739. struct drm_file *file_priv)
  740. {
  741. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  742. struct mm_struct *mm = current->mm;
  743. struct page **user_pages;
  744. ssize_t remain;
  745. loff_t offset, pinned_pages, i;
  746. loff_t first_data_page, last_data_page, num_pages;
  747. int shmem_page_index, shmem_page_offset;
  748. int data_page_index, data_page_offset;
  749. int page_length;
  750. int ret;
  751. uint64_t data_ptr = args->data_ptr;
  752. int do_bit17_swizzling;
  753. remain = args->size;
  754. /* Pin the user pages containing the data. We can't fault while
  755. * holding the struct mutex, and all of the pwrite implementations
  756. * want to hold it while dereferencing the user data.
  757. */
  758. first_data_page = data_ptr / PAGE_SIZE;
  759. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  760. num_pages = last_data_page - first_data_page + 1;
  761. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  762. if (user_pages == NULL)
  763. return -ENOMEM;
  764. down_read(&mm->mmap_sem);
  765. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  766. num_pages, 0, 0, user_pages, NULL);
  767. up_read(&mm->mmap_sem);
  768. if (pinned_pages < num_pages) {
  769. ret = -EFAULT;
  770. goto fail_put_user_pages;
  771. }
  772. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  773. ret = i915_mutex_lock_interruptible(dev);
  774. if (ret)
  775. goto fail_put_user_pages;
  776. ret = i915_gem_object_get_pages_or_evict(obj);
  777. if (ret)
  778. goto fail_unlock;
  779. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  780. if (ret != 0)
  781. goto fail_put_pages;
  782. obj_priv = to_intel_bo(obj);
  783. offset = args->offset;
  784. obj_priv->dirty = 1;
  785. while (remain > 0) {
  786. /* Operation in this page
  787. *
  788. * shmem_page_index = page number within shmem file
  789. * shmem_page_offset = offset within page in shmem file
  790. * data_page_index = page number in get_user_pages return
  791. * data_page_offset = offset with data_page_index page.
  792. * page_length = bytes to copy for this page
  793. */
  794. shmem_page_index = offset / PAGE_SIZE;
  795. shmem_page_offset = offset & ~PAGE_MASK;
  796. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  797. data_page_offset = data_ptr & ~PAGE_MASK;
  798. page_length = remain;
  799. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  800. page_length = PAGE_SIZE - shmem_page_offset;
  801. if ((data_page_offset + page_length) > PAGE_SIZE)
  802. page_length = PAGE_SIZE - data_page_offset;
  803. if (do_bit17_swizzling) {
  804. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  805. shmem_page_offset,
  806. user_pages[data_page_index],
  807. data_page_offset,
  808. page_length,
  809. 0);
  810. } else {
  811. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  812. shmem_page_offset,
  813. user_pages[data_page_index],
  814. data_page_offset,
  815. page_length);
  816. }
  817. remain -= page_length;
  818. data_ptr += page_length;
  819. offset += page_length;
  820. }
  821. fail_put_pages:
  822. i915_gem_object_put_pages(obj);
  823. fail_unlock:
  824. mutex_unlock(&dev->struct_mutex);
  825. fail_put_user_pages:
  826. for (i = 0; i < pinned_pages; i++)
  827. page_cache_release(user_pages[i]);
  828. drm_free_large(user_pages);
  829. return ret;
  830. }
  831. /**
  832. * Writes data to the object referenced by handle.
  833. *
  834. * On error, the contents of the buffer that were to be modified are undefined.
  835. */
  836. int
  837. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  838. struct drm_file *file_priv)
  839. {
  840. struct drm_i915_gem_pwrite *args = data;
  841. struct drm_gem_object *obj;
  842. struct drm_i915_gem_object *obj_priv;
  843. int ret = 0;
  844. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  845. if (obj == NULL)
  846. return -ENOENT;
  847. obj_priv = to_intel_bo(obj);
  848. /* Bounds check destination.
  849. *
  850. * XXX: This could use review for overflow issues...
  851. */
  852. if (args->offset > obj->size || args->size > obj->size ||
  853. args->offset + args->size > obj->size) {
  854. drm_gem_object_unreference_unlocked(obj);
  855. return -EINVAL;
  856. }
  857. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  858. * it would end up going through the fenced access, and we'll get
  859. * different detiling behavior between reading and writing.
  860. * pread/pwrite currently are reading and writing from the CPU
  861. * perspective, requiring manual detiling by the client.
  862. */
  863. if (obj_priv->phys_obj)
  864. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  865. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  866. dev->gtt_total != 0 &&
  867. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  868. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  869. if (ret == -EFAULT) {
  870. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  871. file_priv);
  872. }
  873. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  874. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  875. } else {
  876. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  877. if (ret == -EFAULT) {
  878. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  879. file_priv);
  880. }
  881. }
  882. #if WATCH_PWRITE
  883. if (ret)
  884. DRM_INFO("pwrite failed %d\n", ret);
  885. #endif
  886. drm_gem_object_unreference_unlocked(obj);
  887. return ret;
  888. }
  889. /**
  890. * Called when user space prepares to use an object with the CPU, either
  891. * through the mmap ioctl's mapping or a GTT mapping.
  892. */
  893. int
  894. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  895. struct drm_file *file_priv)
  896. {
  897. struct drm_i915_private *dev_priv = dev->dev_private;
  898. struct drm_i915_gem_set_domain *args = data;
  899. struct drm_gem_object *obj;
  900. struct drm_i915_gem_object *obj_priv;
  901. uint32_t read_domains = args->read_domains;
  902. uint32_t write_domain = args->write_domain;
  903. int ret;
  904. if (!(dev->driver->driver_features & DRIVER_GEM))
  905. return -ENODEV;
  906. /* Only handle setting domains to types used by the CPU. */
  907. if (write_domain & I915_GEM_GPU_DOMAINS)
  908. return -EINVAL;
  909. if (read_domains & I915_GEM_GPU_DOMAINS)
  910. return -EINVAL;
  911. /* Having something in the write domain implies it's in the read
  912. * domain, and only that read domain. Enforce that in the request.
  913. */
  914. if (write_domain != 0 && read_domains != write_domain)
  915. return -EINVAL;
  916. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  917. if (obj == NULL)
  918. return -ENOENT;
  919. obj_priv = to_intel_bo(obj);
  920. ret = i915_mutex_lock_interruptible(dev);
  921. if (ret) {
  922. drm_gem_object_unreference_unlocked(obj);
  923. return ret;
  924. }
  925. intel_mark_busy(dev, obj);
  926. if (read_domains & I915_GEM_DOMAIN_GTT) {
  927. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  928. /* Update the LRU on the fence for the CPU access that's
  929. * about to occur.
  930. */
  931. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  932. struct drm_i915_fence_reg *reg =
  933. &dev_priv->fence_regs[obj_priv->fence_reg];
  934. list_move_tail(&reg->lru_list,
  935. &dev_priv->mm.fence_list);
  936. }
  937. /* Silently promote "you're not bound, there was nothing to do"
  938. * to success, since the client was just asking us to
  939. * make sure everything was done.
  940. */
  941. if (ret == -EINVAL)
  942. ret = 0;
  943. } else {
  944. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  945. }
  946. /* Maintain LRU order of "inactive" objects */
  947. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  948. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  949. drm_gem_object_unreference(obj);
  950. mutex_unlock(&dev->struct_mutex);
  951. return ret;
  952. }
  953. /**
  954. * Called when user space has done writes to this buffer
  955. */
  956. int
  957. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  958. struct drm_file *file_priv)
  959. {
  960. struct drm_i915_gem_sw_finish *args = data;
  961. struct drm_gem_object *obj;
  962. int ret = 0;
  963. if (!(dev->driver->driver_features & DRIVER_GEM))
  964. return -ENODEV;
  965. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  966. if (obj == NULL)
  967. return -ENOENT;
  968. ret = i915_mutex_lock_interruptible(dev);
  969. if (ret) {
  970. drm_gem_object_unreference_unlocked(obj);
  971. return ret;
  972. }
  973. /* Pinned buffers may be scanout, so flush the cache */
  974. if (to_intel_bo(obj)->pin_count)
  975. i915_gem_object_flush_cpu_write_domain(obj);
  976. drm_gem_object_unreference(obj);
  977. mutex_unlock(&dev->struct_mutex);
  978. return ret;
  979. }
  980. /**
  981. * Maps the contents of an object, returning the address it is mapped
  982. * into.
  983. *
  984. * While the mapping holds a reference on the contents of the object, it doesn't
  985. * imply a ref on the object itself.
  986. */
  987. int
  988. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  989. struct drm_file *file_priv)
  990. {
  991. struct drm_i915_gem_mmap *args = data;
  992. struct drm_gem_object *obj;
  993. loff_t offset;
  994. unsigned long addr;
  995. if (!(dev->driver->driver_features & DRIVER_GEM))
  996. return -ENODEV;
  997. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  998. if (obj == NULL)
  999. return -ENOENT;
  1000. offset = args->offset;
  1001. down_write(&current->mm->mmap_sem);
  1002. addr = do_mmap(obj->filp, 0, args->size,
  1003. PROT_READ | PROT_WRITE, MAP_SHARED,
  1004. args->offset);
  1005. up_write(&current->mm->mmap_sem);
  1006. drm_gem_object_unreference_unlocked(obj);
  1007. if (IS_ERR((void *)addr))
  1008. return addr;
  1009. args->addr_ptr = (uint64_t) addr;
  1010. return 0;
  1011. }
  1012. /**
  1013. * i915_gem_fault - fault a page into the GTT
  1014. * vma: VMA in question
  1015. * vmf: fault info
  1016. *
  1017. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1018. * from userspace. The fault handler takes care of binding the object to
  1019. * the GTT (if needed), allocating and programming a fence register (again,
  1020. * only if needed based on whether the old reg is still valid or the object
  1021. * is tiled) and inserting a new PTE into the faulting process.
  1022. *
  1023. * Note that the faulting process may involve evicting existing objects
  1024. * from the GTT and/or fence registers to make room. So performance may
  1025. * suffer if the GTT working set is large or there are few fence registers
  1026. * left.
  1027. */
  1028. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1029. {
  1030. struct drm_gem_object *obj = vma->vm_private_data;
  1031. struct drm_device *dev = obj->dev;
  1032. drm_i915_private_t *dev_priv = dev->dev_private;
  1033. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1034. pgoff_t page_offset;
  1035. unsigned long pfn;
  1036. int ret = 0;
  1037. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1038. /* We don't use vmf->pgoff since that has the fake offset */
  1039. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1040. PAGE_SHIFT;
  1041. /* Now bind it into the GTT if needed */
  1042. mutex_lock(&dev->struct_mutex);
  1043. if (!obj_priv->gtt_space) {
  1044. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1045. if (ret)
  1046. goto unlock;
  1047. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1048. if (ret)
  1049. goto unlock;
  1050. }
  1051. /* Need a new fence register? */
  1052. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1053. ret = i915_gem_object_get_fence_reg(obj, true);
  1054. if (ret)
  1055. goto unlock;
  1056. }
  1057. if (i915_gem_object_is_inactive(obj_priv))
  1058. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1059. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1060. page_offset;
  1061. /* Finally, remap it using the new GTT offset */
  1062. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1063. unlock:
  1064. mutex_unlock(&dev->struct_mutex);
  1065. switch (ret) {
  1066. case 0:
  1067. case -ERESTARTSYS:
  1068. return VM_FAULT_NOPAGE;
  1069. case -ENOMEM:
  1070. case -EAGAIN:
  1071. return VM_FAULT_OOM;
  1072. default:
  1073. return VM_FAULT_SIGBUS;
  1074. }
  1075. }
  1076. /**
  1077. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1078. * @obj: obj in question
  1079. *
  1080. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1081. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1082. * up the object based on the offset and sets up the various memory mapping
  1083. * structures.
  1084. *
  1085. * This routine allocates and attaches a fake offset for @obj.
  1086. */
  1087. static int
  1088. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1089. {
  1090. struct drm_device *dev = obj->dev;
  1091. struct drm_gem_mm *mm = dev->mm_private;
  1092. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1093. struct drm_map_list *list;
  1094. struct drm_local_map *map;
  1095. int ret = 0;
  1096. /* Set the object up for mmap'ing */
  1097. list = &obj->map_list;
  1098. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1099. if (!list->map)
  1100. return -ENOMEM;
  1101. map = list->map;
  1102. map->type = _DRM_GEM;
  1103. map->size = obj->size;
  1104. map->handle = obj;
  1105. /* Get a DRM GEM mmap offset allocated... */
  1106. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1107. obj->size / PAGE_SIZE, 0, 0);
  1108. if (!list->file_offset_node) {
  1109. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1110. ret = -ENOSPC;
  1111. goto out_free_list;
  1112. }
  1113. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1114. obj->size / PAGE_SIZE, 0);
  1115. if (!list->file_offset_node) {
  1116. ret = -ENOMEM;
  1117. goto out_free_list;
  1118. }
  1119. list->hash.key = list->file_offset_node->start;
  1120. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1121. if (ret) {
  1122. DRM_ERROR("failed to add to map hash\n");
  1123. goto out_free_mm;
  1124. }
  1125. /* By now we should be all set, any drm_mmap request on the offset
  1126. * below will get to our mmap & fault handler */
  1127. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1128. return 0;
  1129. out_free_mm:
  1130. drm_mm_put_block(list->file_offset_node);
  1131. out_free_list:
  1132. kfree(list->map);
  1133. return ret;
  1134. }
  1135. /**
  1136. * i915_gem_release_mmap - remove physical page mappings
  1137. * @obj: obj in question
  1138. *
  1139. * Preserve the reservation of the mmapping with the DRM core code, but
  1140. * relinquish ownership of the pages back to the system.
  1141. *
  1142. * It is vital that we remove the page mapping if we have mapped a tiled
  1143. * object through the GTT and then lose the fence register due to
  1144. * resource pressure. Similarly if the object has been moved out of the
  1145. * aperture, than pages mapped into userspace must be revoked. Removing the
  1146. * mapping will then trigger a page fault on the next user access, allowing
  1147. * fixup by i915_gem_fault().
  1148. */
  1149. void
  1150. i915_gem_release_mmap(struct drm_gem_object *obj)
  1151. {
  1152. struct drm_device *dev = obj->dev;
  1153. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1154. if (dev->dev_mapping)
  1155. unmap_mapping_range(dev->dev_mapping,
  1156. obj_priv->mmap_offset, obj->size, 1);
  1157. }
  1158. static void
  1159. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1160. {
  1161. struct drm_device *dev = obj->dev;
  1162. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1163. struct drm_gem_mm *mm = dev->mm_private;
  1164. struct drm_map_list *list;
  1165. list = &obj->map_list;
  1166. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1167. if (list->file_offset_node) {
  1168. drm_mm_put_block(list->file_offset_node);
  1169. list->file_offset_node = NULL;
  1170. }
  1171. if (list->map) {
  1172. kfree(list->map);
  1173. list->map = NULL;
  1174. }
  1175. obj_priv->mmap_offset = 0;
  1176. }
  1177. /**
  1178. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1179. * @obj: object to check
  1180. *
  1181. * Return the required GTT alignment for an object, taking into account
  1182. * potential fence register mapping if needed.
  1183. */
  1184. static uint32_t
  1185. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1186. {
  1187. struct drm_device *dev = obj->dev;
  1188. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1189. int start, i;
  1190. /*
  1191. * Minimum alignment is 4k (GTT page size), but might be greater
  1192. * if a fence register is needed for the object.
  1193. */
  1194. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1195. return 4096;
  1196. /*
  1197. * Previous chips need to be aligned to the size of the smallest
  1198. * fence register that can contain the object.
  1199. */
  1200. if (INTEL_INFO(dev)->gen == 3)
  1201. start = 1024*1024;
  1202. else
  1203. start = 512*1024;
  1204. for (i = start; i < obj->size; i <<= 1)
  1205. ;
  1206. return i;
  1207. }
  1208. /**
  1209. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1210. * @dev: DRM device
  1211. * @data: GTT mapping ioctl data
  1212. * @file_priv: GEM object info
  1213. *
  1214. * Simply returns the fake offset to userspace so it can mmap it.
  1215. * The mmap call will end up in drm_gem_mmap(), which will set things
  1216. * up so we can get faults in the handler above.
  1217. *
  1218. * The fault handler will take care of binding the object into the GTT
  1219. * (since it may have been evicted to make room for something), allocating
  1220. * a fence register, and mapping the appropriate aperture address into
  1221. * userspace.
  1222. */
  1223. int
  1224. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1225. struct drm_file *file_priv)
  1226. {
  1227. struct drm_i915_gem_mmap_gtt *args = data;
  1228. struct drm_gem_object *obj;
  1229. struct drm_i915_gem_object *obj_priv;
  1230. int ret;
  1231. if (!(dev->driver->driver_features & DRIVER_GEM))
  1232. return -ENODEV;
  1233. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1234. if (obj == NULL)
  1235. return -ENOENT;
  1236. ret = i915_mutex_lock_interruptible(dev);
  1237. if (ret) {
  1238. drm_gem_object_unreference_unlocked(obj);
  1239. return ret;
  1240. }
  1241. obj_priv = to_intel_bo(obj);
  1242. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1243. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1244. drm_gem_object_unreference(obj);
  1245. mutex_unlock(&dev->struct_mutex);
  1246. return -EINVAL;
  1247. }
  1248. if (!obj_priv->mmap_offset) {
  1249. ret = i915_gem_create_mmap_offset(obj);
  1250. if (ret) {
  1251. drm_gem_object_unreference(obj);
  1252. mutex_unlock(&dev->struct_mutex);
  1253. return ret;
  1254. }
  1255. }
  1256. args->offset = obj_priv->mmap_offset;
  1257. /*
  1258. * Pull it into the GTT so that we have a page list (makes the
  1259. * initial fault faster and any subsequent flushing possible).
  1260. */
  1261. if (!obj_priv->agp_mem) {
  1262. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1263. if (ret) {
  1264. drm_gem_object_unreference(obj);
  1265. mutex_unlock(&dev->struct_mutex);
  1266. return ret;
  1267. }
  1268. }
  1269. drm_gem_object_unreference(obj);
  1270. mutex_unlock(&dev->struct_mutex);
  1271. return 0;
  1272. }
  1273. void
  1274. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1275. {
  1276. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1277. int page_count = obj->size / PAGE_SIZE;
  1278. int i;
  1279. BUG_ON(obj_priv->pages_refcount == 0);
  1280. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1281. if (--obj_priv->pages_refcount != 0)
  1282. return;
  1283. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1284. i915_gem_object_save_bit_17_swizzle(obj);
  1285. if (obj_priv->madv == I915_MADV_DONTNEED)
  1286. obj_priv->dirty = 0;
  1287. for (i = 0; i < page_count; i++) {
  1288. if (obj_priv->dirty)
  1289. set_page_dirty(obj_priv->pages[i]);
  1290. if (obj_priv->madv == I915_MADV_WILLNEED)
  1291. mark_page_accessed(obj_priv->pages[i]);
  1292. page_cache_release(obj_priv->pages[i]);
  1293. }
  1294. obj_priv->dirty = 0;
  1295. drm_free_large(obj_priv->pages);
  1296. obj_priv->pages = NULL;
  1297. }
  1298. static uint32_t
  1299. i915_gem_next_request_seqno(struct drm_device *dev,
  1300. struct intel_ring_buffer *ring)
  1301. {
  1302. drm_i915_private_t *dev_priv = dev->dev_private;
  1303. ring->outstanding_lazy_request = true;
  1304. return dev_priv->next_seqno;
  1305. }
  1306. static void
  1307. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1308. struct intel_ring_buffer *ring)
  1309. {
  1310. struct drm_device *dev = obj->dev;
  1311. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1312. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1313. BUG_ON(ring == NULL);
  1314. obj_priv->ring = ring;
  1315. /* Add a reference if we're newly entering the active list. */
  1316. if (!obj_priv->active) {
  1317. drm_gem_object_reference(obj);
  1318. obj_priv->active = 1;
  1319. }
  1320. /* Move from whatever list we were on to the tail of execution. */
  1321. list_move_tail(&obj_priv->list, &ring->active_list);
  1322. obj_priv->last_rendering_seqno = seqno;
  1323. }
  1324. static void
  1325. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1326. {
  1327. struct drm_device *dev = obj->dev;
  1328. drm_i915_private_t *dev_priv = dev->dev_private;
  1329. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1330. BUG_ON(!obj_priv->active);
  1331. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1332. obj_priv->last_rendering_seqno = 0;
  1333. }
  1334. /* Immediately discard the backing storage */
  1335. static void
  1336. i915_gem_object_truncate(struct drm_gem_object *obj)
  1337. {
  1338. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1339. struct inode *inode;
  1340. /* Our goal here is to return as much of the memory as
  1341. * is possible back to the system as we are called from OOM.
  1342. * To do this we must instruct the shmfs to drop all of its
  1343. * backing pages, *now*. Here we mirror the actions taken
  1344. * when by shmem_delete_inode() to release the backing store.
  1345. */
  1346. inode = obj->filp->f_path.dentry->d_inode;
  1347. truncate_inode_pages(inode->i_mapping, 0);
  1348. if (inode->i_op->truncate_range)
  1349. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1350. obj_priv->madv = __I915_MADV_PURGED;
  1351. }
  1352. static inline int
  1353. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1354. {
  1355. return obj_priv->madv == I915_MADV_DONTNEED;
  1356. }
  1357. static void
  1358. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1359. {
  1360. struct drm_device *dev = obj->dev;
  1361. drm_i915_private_t *dev_priv = dev->dev_private;
  1362. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1363. i915_verify_inactive(dev, __FILE__, __LINE__);
  1364. if (obj_priv->pin_count != 0)
  1365. list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
  1366. else
  1367. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1368. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1369. obj_priv->last_rendering_seqno = 0;
  1370. obj_priv->ring = NULL;
  1371. if (obj_priv->active) {
  1372. obj_priv->active = 0;
  1373. drm_gem_object_unreference(obj);
  1374. }
  1375. i915_verify_inactive(dev, __FILE__, __LINE__);
  1376. }
  1377. static void
  1378. i915_gem_process_flushing_list(struct drm_device *dev,
  1379. uint32_t flush_domains,
  1380. struct intel_ring_buffer *ring)
  1381. {
  1382. drm_i915_private_t *dev_priv = dev->dev_private;
  1383. struct drm_i915_gem_object *obj_priv, *next;
  1384. list_for_each_entry_safe(obj_priv, next,
  1385. &dev_priv->mm.gpu_write_list,
  1386. gpu_write_list) {
  1387. struct drm_gem_object *obj = &obj_priv->base;
  1388. if (obj->write_domain & flush_domains &&
  1389. obj_priv->ring == ring) {
  1390. uint32_t old_write_domain = obj->write_domain;
  1391. obj->write_domain = 0;
  1392. list_del_init(&obj_priv->gpu_write_list);
  1393. i915_gem_object_move_to_active(obj, ring);
  1394. /* update the fence lru list */
  1395. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1396. struct drm_i915_fence_reg *reg =
  1397. &dev_priv->fence_regs[obj_priv->fence_reg];
  1398. list_move_tail(&reg->lru_list,
  1399. &dev_priv->mm.fence_list);
  1400. }
  1401. trace_i915_gem_object_change_domain(obj,
  1402. obj->read_domains,
  1403. old_write_domain);
  1404. }
  1405. }
  1406. }
  1407. uint32_t
  1408. i915_add_request(struct drm_device *dev,
  1409. struct drm_file *file,
  1410. struct drm_i915_gem_request *request,
  1411. struct intel_ring_buffer *ring)
  1412. {
  1413. drm_i915_private_t *dev_priv = dev->dev_private;
  1414. struct drm_i915_file_private *file_priv = NULL;
  1415. uint32_t seqno;
  1416. int was_empty;
  1417. if (file != NULL)
  1418. file_priv = file->driver_priv;
  1419. if (request == NULL) {
  1420. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1421. if (request == NULL)
  1422. return 0;
  1423. }
  1424. seqno = ring->add_request(dev, ring, 0);
  1425. ring->outstanding_lazy_request = false;
  1426. request->seqno = seqno;
  1427. request->ring = ring;
  1428. request->emitted_jiffies = jiffies;
  1429. was_empty = list_empty(&ring->request_list);
  1430. list_add_tail(&request->list, &ring->request_list);
  1431. if (file_priv) {
  1432. spin_lock(&file_priv->mm.lock);
  1433. request->file_priv = file_priv;
  1434. list_add_tail(&request->client_list,
  1435. &file_priv->mm.request_list);
  1436. spin_unlock(&file_priv->mm.lock);
  1437. }
  1438. if (!dev_priv->mm.suspended) {
  1439. mod_timer(&dev_priv->hangcheck_timer,
  1440. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1441. if (was_empty)
  1442. queue_delayed_work(dev_priv->wq,
  1443. &dev_priv->mm.retire_work, HZ);
  1444. }
  1445. return seqno;
  1446. }
  1447. /**
  1448. * Command execution barrier
  1449. *
  1450. * Ensures that all commands in the ring are finished
  1451. * before signalling the CPU
  1452. */
  1453. static void
  1454. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1455. {
  1456. uint32_t flush_domains = 0;
  1457. /* The sampler always gets flushed on i965 (sigh) */
  1458. if (INTEL_INFO(dev)->gen >= 4)
  1459. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1460. ring->flush(dev, ring,
  1461. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1462. }
  1463. static inline void
  1464. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1465. {
  1466. struct drm_i915_file_private *file_priv = request->file_priv;
  1467. if (!file_priv)
  1468. return;
  1469. spin_lock(&file_priv->mm.lock);
  1470. list_del(&request->client_list);
  1471. request->file_priv = NULL;
  1472. spin_unlock(&file_priv->mm.lock);
  1473. }
  1474. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1475. struct intel_ring_buffer *ring)
  1476. {
  1477. while (!list_empty(&ring->request_list)) {
  1478. struct drm_i915_gem_request *request;
  1479. request = list_first_entry(&ring->request_list,
  1480. struct drm_i915_gem_request,
  1481. list);
  1482. list_del(&request->list);
  1483. i915_gem_request_remove_from_client(request);
  1484. kfree(request);
  1485. }
  1486. while (!list_empty(&ring->active_list)) {
  1487. struct drm_i915_gem_object *obj_priv;
  1488. obj_priv = list_first_entry(&ring->active_list,
  1489. struct drm_i915_gem_object,
  1490. list);
  1491. obj_priv->base.write_domain = 0;
  1492. list_del_init(&obj_priv->gpu_write_list);
  1493. i915_gem_object_move_to_inactive(&obj_priv->base);
  1494. }
  1495. }
  1496. void i915_gem_reset_lists(struct drm_device *dev)
  1497. {
  1498. struct drm_i915_private *dev_priv = dev->dev_private;
  1499. struct drm_i915_gem_object *obj_priv;
  1500. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1501. if (HAS_BSD(dev))
  1502. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1503. /* Remove anything from the flushing lists. The GPU cache is likely
  1504. * to be lost on reset along with the data, so simply move the
  1505. * lost bo to the inactive list.
  1506. */
  1507. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1508. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1509. struct drm_i915_gem_object,
  1510. list);
  1511. obj_priv->base.write_domain = 0;
  1512. list_del_init(&obj_priv->gpu_write_list);
  1513. i915_gem_object_move_to_inactive(&obj_priv->base);
  1514. }
  1515. /* Move everything out of the GPU domains to ensure we do any
  1516. * necessary invalidation upon reuse.
  1517. */
  1518. list_for_each_entry(obj_priv,
  1519. &dev_priv->mm.inactive_list,
  1520. list)
  1521. {
  1522. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1523. }
  1524. }
  1525. /**
  1526. * This function clears the request list as sequence numbers are passed.
  1527. */
  1528. static void
  1529. i915_gem_retire_requests_ring(struct drm_device *dev,
  1530. struct intel_ring_buffer *ring)
  1531. {
  1532. drm_i915_private_t *dev_priv = dev->dev_private;
  1533. uint32_t seqno;
  1534. if (!ring->status_page.page_addr ||
  1535. list_empty(&ring->request_list))
  1536. return;
  1537. seqno = ring->get_seqno(dev, ring);
  1538. while (!list_empty(&ring->request_list)) {
  1539. struct drm_i915_gem_request *request;
  1540. request = list_first_entry(&ring->request_list,
  1541. struct drm_i915_gem_request,
  1542. list);
  1543. if (!i915_seqno_passed(seqno, request->seqno))
  1544. break;
  1545. trace_i915_gem_request_retire(dev, request->seqno);
  1546. list_del(&request->list);
  1547. i915_gem_request_remove_from_client(request);
  1548. kfree(request);
  1549. }
  1550. /* Move any buffers on the active list that are no longer referenced
  1551. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1552. */
  1553. while (!list_empty(&ring->active_list)) {
  1554. struct drm_gem_object *obj;
  1555. struct drm_i915_gem_object *obj_priv;
  1556. obj_priv = list_first_entry(&ring->active_list,
  1557. struct drm_i915_gem_object,
  1558. list);
  1559. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1560. break;
  1561. obj = &obj_priv->base;
  1562. if (obj->write_domain != 0)
  1563. i915_gem_object_move_to_flushing(obj);
  1564. else
  1565. i915_gem_object_move_to_inactive(obj);
  1566. }
  1567. if (unlikely (dev_priv->trace_irq_seqno &&
  1568. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1569. ring->user_irq_put(dev, ring);
  1570. dev_priv->trace_irq_seqno = 0;
  1571. }
  1572. }
  1573. void
  1574. i915_gem_retire_requests(struct drm_device *dev)
  1575. {
  1576. drm_i915_private_t *dev_priv = dev->dev_private;
  1577. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1578. struct drm_i915_gem_object *obj_priv, *tmp;
  1579. /* We must be careful that during unbind() we do not
  1580. * accidentally infinitely recurse into retire requests.
  1581. * Currently:
  1582. * retire -> free -> unbind -> wait -> retire_ring
  1583. */
  1584. list_for_each_entry_safe(obj_priv, tmp,
  1585. &dev_priv->mm.deferred_free_list,
  1586. list)
  1587. i915_gem_free_object_tail(&obj_priv->base);
  1588. }
  1589. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1590. if (HAS_BSD(dev))
  1591. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1592. }
  1593. static void
  1594. i915_gem_retire_work_handler(struct work_struct *work)
  1595. {
  1596. drm_i915_private_t *dev_priv;
  1597. struct drm_device *dev;
  1598. dev_priv = container_of(work, drm_i915_private_t,
  1599. mm.retire_work.work);
  1600. dev = dev_priv->dev;
  1601. mutex_lock(&dev->struct_mutex);
  1602. i915_gem_retire_requests(dev);
  1603. if (!dev_priv->mm.suspended &&
  1604. (!list_empty(&dev_priv->render_ring.request_list) ||
  1605. (HAS_BSD(dev) &&
  1606. !list_empty(&dev_priv->bsd_ring.request_list))))
  1607. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1608. mutex_unlock(&dev->struct_mutex);
  1609. }
  1610. int
  1611. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1612. bool interruptible, struct intel_ring_buffer *ring)
  1613. {
  1614. drm_i915_private_t *dev_priv = dev->dev_private;
  1615. u32 ier;
  1616. int ret = 0;
  1617. BUG_ON(seqno == 0);
  1618. if (atomic_read(&dev_priv->mm.wedged))
  1619. return -EAGAIN;
  1620. if (ring->outstanding_lazy_request) {
  1621. seqno = i915_add_request(dev, NULL, NULL, ring);
  1622. if (seqno == 0)
  1623. return -ENOMEM;
  1624. }
  1625. BUG_ON(seqno == dev_priv->next_seqno);
  1626. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  1627. if (HAS_PCH_SPLIT(dev))
  1628. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1629. else
  1630. ier = I915_READ(IER);
  1631. if (!ier) {
  1632. DRM_ERROR("something (likely vbetool) disabled "
  1633. "interrupts, re-enabling\n");
  1634. i915_driver_irq_preinstall(dev);
  1635. i915_driver_irq_postinstall(dev);
  1636. }
  1637. trace_i915_gem_request_wait_begin(dev, seqno);
  1638. ring->waiting_gem_seqno = seqno;
  1639. ring->user_irq_get(dev, ring);
  1640. if (interruptible)
  1641. ret = wait_event_interruptible(ring->irq_queue,
  1642. i915_seqno_passed(
  1643. ring->get_seqno(dev, ring), seqno)
  1644. || atomic_read(&dev_priv->mm.wedged));
  1645. else
  1646. wait_event(ring->irq_queue,
  1647. i915_seqno_passed(
  1648. ring->get_seqno(dev, ring), seqno)
  1649. || atomic_read(&dev_priv->mm.wedged));
  1650. ring->user_irq_put(dev, ring);
  1651. ring->waiting_gem_seqno = 0;
  1652. trace_i915_gem_request_wait_end(dev, seqno);
  1653. }
  1654. if (atomic_read(&dev_priv->mm.wedged))
  1655. ret = -EAGAIN;
  1656. if (ret && ret != -ERESTARTSYS)
  1657. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1658. __func__, ret, seqno, ring->get_seqno(dev, ring),
  1659. dev_priv->next_seqno);
  1660. /* Directly dispatch request retiring. While we have the work queue
  1661. * to handle this, the waiter on a request often wants an associated
  1662. * buffer to have made it to the inactive list, and we would need
  1663. * a separate wait queue to handle that.
  1664. */
  1665. if (ret == 0)
  1666. i915_gem_retire_requests_ring(dev, ring);
  1667. return ret;
  1668. }
  1669. /**
  1670. * Waits for a sequence number to be signaled, and cleans up the
  1671. * request and object lists appropriately for that event.
  1672. */
  1673. static int
  1674. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1675. struct intel_ring_buffer *ring)
  1676. {
  1677. return i915_do_wait_request(dev, seqno, 1, ring);
  1678. }
  1679. static void
  1680. i915_gem_flush_ring(struct drm_device *dev,
  1681. struct drm_file *file_priv,
  1682. struct intel_ring_buffer *ring,
  1683. uint32_t invalidate_domains,
  1684. uint32_t flush_domains)
  1685. {
  1686. ring->flush(dev, ring, invalidate_domains, flush_domains);
  1687. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1688. }
  1689. static void
  1690. i915_gem_flush(struct drm_device *dev,
  1691. struct drm_file *file_priv,
  1692. uint32_t invalidate_domains,
  1693. uint32_t flush_domains,
  1694. uint32_t flush_rings)
  1695. {
  1696. drm_i915_private_t *dev_priv = dev->dev_private;
  1697. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1698. drm_agp_chipset_flush(dev);
  1699. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1700. if (flush_rings & RING_RENDER)
  1701. i915_gem_flush_ring(dev, file_priv,
  1702. &dev_priv->render_ring,
  1703. invalidate_domains, flush_domains);
  1704. if (flush_rings & RING_BSD)
  1705. i915_gem_flush_ring(dev, file_priv,
  1706. &dev_priv->bsd_ring,
  1707. invalidate_domains, flush_domains);
  1708. }
  1709. }
  1710. /**
  1711. * Ensures that all rendering to the object has completed and the object is
  1712. * safe to unbind from the GTT or access from the CPU.
  1713. */
  1714. static int
  1715. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1716. bool interruptible)
  1717. {
  1718. struct drm_device *dev = obj->dev;
  1719. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1720. int ret;
  1721. /* This function only exists to support waiting for existing rendering,
  1722. * not for emitting required flushes.
  1723. */
  1724. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1725. /* If there is rendering queued on the buffer being evicted, wait for
  1726. * it.
  1727. */
  1728. if (obj_priv->active) {
  1729. ret = i915_do_wait_request(dev,
  1730. obj_priv->last_rendering_seqno,
  1731. interruptible,
  1732. obj_priv->ring);
  1733. if (ret)
  1734. return ret;
  1735. }
  1736. return 0;
  1737. }
  1738. /**
  1739. * Unbinds an object from the GTT aperture.
  1740. */
  1741. int
  1742. i915_gem_object_unbind(struct drm_gem_object *obj)
  1743. {
  1744. struct drm_device *dev = obj->dev;
  1745. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1746. int ret = 0;
  1747. if (obj_priv->gtt_space == NULL)
  1748. return 0;
  1749. if (obj_priv->pin_count != 0) {
  1750. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1751. return -EINVAL;
  1752. }
  1753. /* blow away mappings if mapped through GTT */
  1754. i915_gem_release_mmap(obj);
  1755. /* Move the object to the CPU domain to ensure that
  1756. * any possible CPU writes while it's not in the GTT
  1757. * are flushed when we go to remap it. This will
  1758. * also ensure that all pending GPU writes are finished
  1759. * before we unbind.
  1760. */
  1761. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1762. if (ret == -ERESTARTSYS)
  1763. return ret;
  1764. /* Continue on if we fail due to EIO, the GPU is hung so we
  1765. * should be safe and we need to cleanup or else we might
  1766. * cause memory corruption through use-after-free.
  1767. */
  1768. /* release the fence reg _after_ flushing */
  1769. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1770. i915_gem_clear_fence_reg(obj);
  1771. if (obj_priv->agp_mem != NULL) {
  1772. drm_unbind_agp(obj_priv->agp_mem);
  1773. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1774. obj_priv->agp_mem = NULL;
  1775. }
  1776. i915_gem_object_put_pages(obj);
  1777. BUG_ON(obj_priv->pages_refcount);
  1778. if (obj_priv->gtt_space) {
  1779. atomic_dec(&dev->gtt_count);
  1780. atomic_sub(obj->size, &dev->gtt_memory);
  1781. drm_mm_put_block(obj_priv->gtt_space);
  1782. obj_priv->gtt_space = NULL;
  1783. }
  1784. list_del_init(&obj_priv->list);
  1785. if (i915_gem_object_is_purgeable(obj_priv))
  1786. i915_gem_object_truncate(obj);
  1787. trace_i915_gem_object_unbind(obj);
  1788. return ret;
  1789. }
  1790. static int i915_ring_idle(struct drm_device *dev,
  1791. struct intel_ring_buffer *ring)
  1792. {
  1793. i915_gem_flush_ring(dev, NULL, ring,
  1794. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1795. return i915_wait_request(dev,
  1796. i915_gem_next_request_seqno(dev, ring),
  1797. ring);
  1798. }
  1799. int
  1800. i915_gpu_idle(struct drm_device *dev)
  1801. {
  1802. drm_i915_private_t *dev_priv = dev->dev_private;
  1803. bool lists_empty;
  1804. int ret;
  1805. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1806. list_empty(&dev_priv->render_ring.active_list) &&
  1807. (!HAS_BSD(dev) ||
  1808. list_empty(&dev_priv->bsd_ring.active_list)));
  1809. if (lists_empty)
  1810. return 0;
  1811. /* Flush everything onto the inactive list. */
  1812. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1813. if (ret)
  1814. return ret;
  1815. if (HAS_BSD(dev)) {
  1816. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1817. if (ret)
  1818. return ret;
  1819. }
  1820. return 0;
  1821. }
  1822. int
  1823. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1824. gfp_t gfpmask)
  1825. {
  1826. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1827. int page_count, i;
  1828. struct address_space *mapping;
  1829. struct inode *inode;
  1830. struct page *page;
  1831. BUG_ON(obj_priv->pages_refcount
  1832. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1833. if (obj_priv->pages_refcount++ != 0)
  1834. return 0;
  1835. /* Get the list of pages out of our struct file. They'll be pinned
  1836. * at this point until we release them.
  1837. */
  1838. page_count = obj->size / PAGE_SIZE;
  1839. BUG_ON(obj_priv->pages != NULL);
  1840. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1841. if (obj_priv->pages == NULL) {
  1842. obj_priv->pages_refcount--;
  1843. return -ENOMEM;
  1844. }
  1845. inode = obj->filp->f_path.dentry->d_inode;
  1846. mapping = inode->i_mapping;
  1847. for (i = 0; i < page_count; i++) {
  1848. page = read_cache_page_gfp(mapping, i,
  1849. GFP_HIGHUSER |
  1850. __GFP_COLD |
  1851. __GFP_RECLAIMABLE |
  1852. gfpmask);
  1853. if (IS_ERR(page))
  1854. goto err_pages;
  1855. obj_priv->pages[i] = page;
  1856. }
  1857. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1858. i915_gem_object_do_bit_17_swizzle(obj);
  1859. return 0;
  1860. err_pages:
  1861. while (i--)
  1862. page_cache_release(obj_priv->pages[i]);
  1863. drm_free_large(obj_priv->pages);
  1864. obj_priv->pages = NULL;
  1865. obj_priv->pages_refcount--;
  1866. return PTR_ERR(page);
  1867. }
  1868. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1869. {
  1870. struct drm_gem_object *obj = reg->obj;
  1871. struct drm_device *dev = obj->dev;
  1872. drm_i915_private_t *dev_priv = dev->dev_private;
  1873. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1874. int regnum = obj_priv->fence_reg;
  1875. uint64_t val;
  1876. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1877. 0xfffff000) << 32;
  1878. val |= obj_priv->gtt_offset & 0xfffff000;
  1879. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1880. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1881. if (obj_priv->tiling_mode == I915_TILING_Y)
  1882. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1883. val |= I965_FENCE_REG_VALID;
  1884. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1885. }
  1886. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1887. {
  1888. struct drm_gem_object *obj = reg->obj;
  1889. struct drm_device *dev = obj->dev;
  1890. drm_i915_private_t *dev_priv = dev->dev_private;
  1891. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1892. int regnum = obj_priv->fence_reg;
  1893. uint64_t val;
  1894. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1895. 0xfffff000) << 32;
  1896. val |= obj_priv->gtt_offset & 0xfffff000;
  1897. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1898. if (obj_priv->tiling_mode == I915_TILING_Y)
  1899. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1900. val |= I965_FENCE_REG_VALID;
  1901. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1902. }
  1903. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1904. {
  1905. struct drm_gem_object *obj = reg->obj;
  1906. struct drm_device *dev = obj->dev;
  1907. drm_i915_private_t *dev_priv = dev->dev_private;
  1908. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1909. int regnum = obj_priv->fence_reg;
  1910. int tile_width;
  1911. uint32_t fence_reg, val;
  1912. uint32_t pitch_val;
  1913. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1914. (obj_priv->gtt_offset & (obj->size - 1))) {
  1915. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1916. __func__, obj_priv->gtt_offset, obj->size);
  1917. return;
  1918. }
  1919. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1920. HAS_128_BYTE_Y_TILING(dev))
  1921. tile_width = 128;
  1922. else
  1923. tile_width = 512;
  1924. /* Note: pitch better be a power of two tile widths */
  1925. pitch_val = obj_priv->stride / tile_width;
  1926. pitch_val = ffs(pitch_val) - 1;
  1927. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1928. HAS_128_BYTE_Y_TILING(dev))
  1929. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1930. else
  1931. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1932. val = obj_priv->gtt_offset;
  1933. if (obj_priv->tiling_mode == I915_TILING_Y)
  1934. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1935. val |= I915_FENCE_SIZE_BITS(obj->size);
  1936. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1937. val |= I830_FENCE_REG_VALID;
  1938. if (regnum < 8)
  1939. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1940. else
  1941. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1942. I915_WRITE(fence_reg, val);
  1943. }
  1944. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1945. {
  1946. struct drm_gem_object *obj = reg->obj;
  1947. struct drm_device *dev = obj->dev;
  1948. drm_i915_private_t *dev_priv = dev->dev_private;
  1949. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1950. int regnum = obj_priv->fence_reg;
  1951. uint32_t val;
  1952. uint32_t pitch_val;
  1953. uint32_t fence_size_bits;
  1954. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1955. (obj_priv->gtt_offset & (obj->size - 1))) {
  1956. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1957. __func__, obj_priv->gtt_offset);
  1958. return;
  1959. }
  1960. pitch_val = obj_priv->stride / 128;
  1961. pitch_val = ffs(pitch_val) - 1;
  1962. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1963. val = obj_priv->gtt_offset;
  1964. if (obj_priv->tiling_mode == I915_TILING_Y)
  1965. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1966. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1967. WARN_ON(fence_size_bits & ~0x00000f00);
  1968. val |= fence_size_bits;
  1969. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1970. val |= I830_FENCE_REG_VALID;
  1971. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1972. }
  1973. static int i915_find_fence_reg(struct drm_device *dev,
  1974. bool interruptible)
  1975. {
  1976. struct drm_i915_fence_reg *reg = NULL;
  1977. struct drm_i915_gem_object *obj_priv = NULL;
  1978. struct drm_i915_private *dev_priv = dev->dev_private;
  1979. struct drm_gem_object *obj = NULL;
  1980. int i, avail, ret;
  1981. /* First try to find a free reg */
  1982. avail = 0;
  1983. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1984. reg = &dev_priv->fence_regs[i];
  1985. if (!reg->obj)
  1986. return i;
  1987. obj_priv = to_intel_bo(reg->obj);
  1988. if (!obj_priv->pin_count)
  1989. avail++;
  1990. }
  1991. if (avail == 0)
  1992. return -ENOSPC;
  1993. /* None available, try to steal one or wait for a user to finish */
  1994. i = I915_FENCE_REG_NONE;
  1995. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  1996. lru_list) {
  1997. obj = reg->obj;
  1998. obj_priv = to_intel_bo(obj);
  1999. if (obj_priv->pin_count)
  2000. continue;
  2001. /* found one! */
  2002. i = obj_priv->fence_reg;
  2003. break;
  2004. }
  2005. BUG_ON(i == I915_FENCE_REG_NONE);
  2006. /* We only have a reference on obj from the active list. put_fence_reg
  2007. * might drop that one, causing a use-after-free in it. So hold a
  2008. * private reference to obj like the other callers of put_fence_reg
  2009. * (set_tiling ioctl) do. */
  2010. drm_gem_object_reference(obj);
  2011. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2012. drm_gem_object_unreference(obj);
  2013. if (ret != 0)
  2014. return ret;
  2015. return i;
  2016. }
  2017. /**
  2018. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2019. * @obj: object to map through a fence reg
  2020. *
  2021. * When mapping objects through the GTT, userspace wants to be able to write
  2022. * to them without having to worry about swizzling if the object is tiled.
  2023. *
  2024. * This function walks the fence regs looking for a free one for @obj,
  2025. * stealing one if it can't find any.
  2026. *
  2027. * It then sets up the reg based on the object's properties: address, pitch
  2028. * and tiling format.
  2029. */
  2030. int
  2031. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2032. bool interruptible)
  2033. {
  2034. struct drm_device *dev = obj->dev;
  2035. struct drm_i915_private *dev_priv = dev->dev_private;
  2036. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2037. struct drm_i915_fence_reg *reg = NULL;
  2038. int ret;
  2039. /* Just update our place in the LRU if our fence is getting used. */
  2040. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2041. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2042. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2043. return 0;
  2044. }
  2045. switch (obj_priv->tiling_mode) {
  2046. case I915_TILING_NONE:
  2047. WARN(1, "allocating a fence for non-tiled object?\n");
  2048. break;
  2049. case I915_TILING_X:
  2050. if (!obj_priv->stride)
  2051. return -EINVAL;
  2052. WARN((obj_priv->stride & (512 - 1)),
  2053. "object 0x%08x is X tiled but has non-512B pitch\n",
  2054. obj_priv->gtt_offset);
  2055. break;
  2056. case I915_TILING_Y:
  2057. if (!obj_priv->stride)
  2058. return -EINVAL;
  2059. WARN((obj_priv->stride & (128 - 1)),
  2060. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2061. obj_priv->gtt_offset);
  2062. break;
  2063. }
  2064. ret = i915_find_fence_reg(dev, interruptible);
  2065. if (ret < 0)
  2066. return ret;
  2067. obj_priv->fence_reg = ret;
  2068. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2069. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2070. reg->obj = obj;
  2071. switch (INTEL_INFO(dev)->gen) {
  2072. case 6:
  2073. sandybridge_write_fence_reg(reg);
  2074. break;
  2075. case 5:
  2076. case 4:
  2077. i965_write_fence_reg(reg);
  2078. break;
  2079. case 3:
  2080. i915_write_fence_reg(reg);
  2081. break;
  2082. case 2:
  2083. i830_write_fence_reg(reg);
  2084. break;
  2085. }
  2086. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2087. obj_priv->tiling_mode);
  2088. return 0;
  2089. }
  2090. /**
  2091. * i915_gem_clear_fence_reg - clear out fence register info
  2092. * @obj: object to clear
  2093. *
  2094. * Zeroes out the fence register itself and clears out the associated
  2095. * data structures in dev_priv and obj_priv.
  2096. */
  2097. static void
  2098. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2099. {
  2100. struct drm_device *dev = obj->dev;
  2101. drm_i915_private_t *dev_priv = dev->dev_private;
  2102. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2103. struct drm_i915_fence_reg *reg =
  2104. &dev_priv->fence_regs[obj_priv->fence_reg];
  2105. uint32_t fence_reg;
  2106. switch (INTEL_INFO(dev)->gen) {
  2107. case 6:
  2108. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2109. (obj_priv->fence_reg * 8), 0);
  2110. break;
  2111. case 5:
  2112. case 4:
  2113. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2114. break;
  2115. case 3:
  2116. if (obj_priv->fence_reg >= 8)
  2117. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2118. else
  2119. case 2:
  2120. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2121. I915_WRITE(fence_reg, 0);
  2122. break;
  2123. }
  2124. reg->obj = NULL;
  2125. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2126. list_del_init(&reg->lru_list);
  2127. }
  2128. /**
  2129. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2130. * to the buffer to finish, and then resets the fence register.
  2131. * @obj: tiled object holding a fence register.
  2132. * @bool: whether the wait upon the fence is interruptible
  2133. *
  2134. * Zeroes out the fence register itself and clears out the associated
  2135. * data structures in dev_priv and obj_priv.
  2136. */
  2137. int
  2138. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2139. bool interruptible)
  2140. {
  2141. struct drm_device *dev = obj->dev;
  2142. struct drm_i915_private *dev_priv = dev->dev_private;
  2143. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2144. struct drm_i915_fence_reg *reg;
  2145. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2146. return 0;
  2147. /* If we've changed tiling, GTT-mappings of the object
  2148. * need to re-fault to ensure that the correct fence register
  2149. * setup is in place.
  2150. */
  2151. i915_gem_release_mmap(obj);
  2152. /* On the i915, GPU access to tiled buffers is via a fence,
  2153. * therefore we must wait for any outstanding access to complete
  2154. * before clearing the fence.
  2155. */
  2156. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2157. if (reg->gpu) {
  2158. int ret;
  2159. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2160. if (ret)
  2161. return ret;
  2162. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2163. if (ret)
  2164. return ret;
  2165. reg->gpu = false;
  2166. }
  2167. i915_gem_object_flush_gtt_write_domain(obj);
  2168. i915_gem_clear_fence_reg(obj);
  2169. return 0;
  2170. }
  2171. /**
  2172. * Finds free space in the GTT aperture and binds the object there.
  2173. */
  2174. static int
  2175. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2176. {
  2177. struct drm_device *dev = obj->dev;
  2178. drm_i915_private_t *dev_priv = dev->dev_private;
  2179. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2180. struct drm_mm_node *free_space;
  2181. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2182. int ret;
  2183. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2184. DRM_ERROR("Attempting to bind a purgeable object\n");
  2185. return -EINVAL;
  2186. }
  2187. if (alignment == 0)
  2188. alignment = i915_gem_get_gtt_alignment(obj);
  2189. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2190. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2191. return -EINVAL;
  2192. }
  2193. /* If the object is bigger than the entire aperture, reject it early
  2194. * before evicting everything in a vain attempt to find space.
  2195. */
  2196. if (obj->size > dev->gtt_total) {
  2197. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2198. return -E2BIG;
  2199. }
  2200. search_free:
  2201. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2202. obj->size, alignment, 0);
  2203. if (free_space != NULL) {
  2204. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2205. alignment);
  2206. if (obj_priv->gtt_space != NULL)
  2207. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2208. }
  2209. if (obj_priv->gtt_space == NULL) {
  2210. /* If the gtt is empty and we're still having trouble
  2211. * fitting our object in, we're out of memory.
  2212. */
  2213. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2214. if (ret)
  2215. return ret;
  2216. goto search_free;
  2217. }
  2218. ret = i915_gem_object_get_pages(obj, gfpmask);
  2219. if (ret) {
  2220. drm_mm_put_block(obj_priv->gtt_space);
  2221. obj_priv->gtt_space = NULL;
  2222. if (ret == -ENOMEM) {
  2223. /* first try to clear up some space from the GTT */
  2224. ret = i915_gem_evict_something(dev, obj->size,
  2225. alignment);
  2226. if (ret) {
  2227. /* now try to shrink everyone else */
  2228. if (gfpmask) {
  2229. gfpmask = 0;
  2230. goto search_free;
  2231. }
  2232. return ret;
  2233. }
  2234. goto search_free;
  2235. }
  2236. return ret;
  2237. }
  2238. /* Create an AGP memory structure pointing at our pages, and bind it
  2239. * into the GTT.
  2240. */
  2241. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2242. obj_priv->pages,
  2243. obj->size >> PAGE_SHIFT,
  2244. obj_priv->gtt_offset,
  2245. obj_priv->agp_type);
  2246. if (obj_priv->agp_mem == NULL) {
  2247. i915_gem_object_put_pages(obj);
  2248. drm_mm_put_block(obj_priv->gtt_space);
  2249. obj_priv->gtt_space = NULL;
  2250. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2251. if (ret)
  2252. return ret;
  2253. goto search_free;
  2254. }
  2255. atomic_inc(&dev->gtt_count);
  2256. atomic_add(obj->size, &dev->gtt_memory);
  2257. /* keep track of bounds object by adding it to the inactive list */
  2258. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  2259. /* Assert that the object is not currently in any GPU domain. As it
  2260. * wasn't in the GTT, there shouldn't be any way it could have been in
  2261. * a GPU cache
  2262. */
  2263. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2264. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2265. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2266. return 0;
  2267. }
  2268. void
  2269. i915_gem_clflush_object(struct drm_gem_object *obj)
  2270. {
  2271. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2272. /* If we don't have a page list set up, then we're not pinned
  2273. * to GPU, and we can ignore the cache flush because it'll happen
  2274. * again at bind time.
  2275. */
  2276. if (obj_priv->pages == NULL)
  2277. return;
  2278. trace_i915_gem_object_clflush(obj);
  2279. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2280. }
  2281. /** Flushes any GPU write domain for the object if it's dirty. */
  2282. static int
  2283. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2284. bool pipelined)
  2285. {
  2286. struct drm_device *dev = obj->dev;
  2287. uint32_t old_write_domain;
  2288. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2289. return 0;
  2290. /* Queue the GPU write cache flushing we need. */
  2291. old_write_domain = obj->write_domain;
  2292. i915_gem_flush_ring(dev, NULL,
  2293. to_intel_bo(obj)->ring,
  2294. 0, obj->write_domain);
  2295. BUG_ON(obj->write_domain);
  2296. trace_i915_gem_object_change_domain(obj,
  2297. obj->read_domains,
  2298. old_write_domain);
  2299. if (pipelined)
  2300. return 0;
  2301. return i915_gem_object_wait_rendering(obj, true);
  2302. }
  2303. /** Flushes the GTT write domain for the object if it's dirty. */
  2304. static void
  2305. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2306. {
  2307. uint32_t old_write_domain;
  2308. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2309. return;
  2310. /* No actual flushing is required for the GTT write domain. Writes
  2311. * to it immediately go to main memory as far as we know, so there's
  2312. * no chipset flush. It also doesn't land in render cache.
  2313. */
  2314. old_write_domain = obj->write_domain;
  2315. obj->write_domain = 0;
  2316. trace_i915_gem_object_change_domain(obj,
  2317. obj->read_domains,
  2318. old_write_domain);
  2319. }
  2320. /** Flushes the CPU write domain for the object if it's dirty. */
  2321. static void
  2322. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2323. {
  2324. struct drm_device *dev = obj->dev;
  2325. uint32_t old_write_domain;
  2326. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2327. return;
  2328. i915_gem_clflush_object(obj);
  2329. drm_agp_chipset_flush(dev);
  2330. old_write_domain = obj->write_domain;
  2331. obj->write_domain = 0;
  2332. trace_i915_gem_object_change_domain(obj,
  2333. obj->read_domains,
  2334. old_write_domain);
  2335. }
  2336. /**
  2337. * Moves a single object to the GTT read, and possibly write domain.
  2338. *
  2339. * This function returns when the move is complete, including waiting on
  2340. * flushes to occur.
  2341. */
  2342. int
  2343. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2344. {
  2345. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2346. uint32_t old_write_domain, old_read_domains;
  2347. int ret;
  2348. /* Not valid to be called on unbound objects. */
  2349. if (obj_priv->gtt_space == NULL)
  2350. return -EINVAL;
  2351. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2352. if (ret != 0)
  2353. return ret;
  2354. i915_gem_object_flush_cpu_write_domain(obj);
  2355. if (write) {
  2356. ret = i915_gem_object_wait_rendering(obj, true);
  2357. if (ret)
  2358. return ret;
  2359. }
  2360. old_write_domain = obj->write_domain;
  2361. old_read_domains = obj->read_domains;
  2362. /* It should now be out of any other write domains, and we can update
  2363. * the domain values for our changes.
  2364. */
  2365. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2366. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2367. if (write) {
  2368. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2369. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2370. obj_priv->dirty = 1;
  2371. }
  2372. trace_i915_gem_object_change_domain(obj,
  2373. old_read_domains,
  2374. old_write_domain);
  2375. return 0;
  2376. }
  2377. /*
  2378. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2379. * wait, as in modesetting process we're not supposed to be interrupted.
  2380. */
  2381. int
  2382. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2383. bool pipelined)
  2384. {
  2385. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2386. uint32_t old_read_domains;
  2387. int ret;
  2388. /* Not valid to be called on unbound objects. */
  2389. if (obj_priv->gtt_space == NULL)
  2390. return -EINVAL;
  2391. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2392. if (ret)
  2393. return ret;
  2394. /* Currently, we are always called from an non-interruptible context. */
  2395. if (!pipelined) {
  2396. ret = i915_gem_object_wait_rendering(obj, false);
  2397. if (ret)
  2398. return ret;
  2399. }
  2400. i915_gem_object_flush_cpu_write_domain(obj);
  2401. old_read_domains = obj->read_domains;
  2402. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2403. trace_i915_gem_object_change_domain(obj,
  2404. old_read_domains,
  2405. obj->write_domain);
  2406. return 0;
  2407. }
  2408. /**
  2409. * Moves a single object to the CPU read, and possibly write domain.
  2410. *
  2411. * This function returns when the move is complete, including waiting on
  2412. * flushes to occur.
  2413. */
  2414. static int
  2415. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2416. {
  2417. uint32_t old_write_domain, old_read_domains;
  2418. int ret;
  2419. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2420. if (ret != 0)
  2421. return ret;
  2422. i915_gem_object_flush_gtt_write_domain(obj);
  2423. /* If we have a partially-valid cache of the object in the CPU,
  2424. * finish invalidating it and free the per-page flags.
  2425. */
  2426. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2427. if (write) {
  2428. ret = i915_gem_object_wait_rendering(obj, true);
  2429. if (ret)
  2430. return ret;
  2431. }
  2432. old_write_domain = obj->write_domain;
  2433. old_read_domains = obj->read_domains;
  2434. /* Flush the CPU cache if it's still invalid. */
  2435. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2436. i915_gem_clflush_object(obj);
  2437. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2438. }
  2439. /* It should now be out of any other write domains, and we can update
  2440. * the domain values for our changes.
  2441. */
  2442. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2443. /* If we're writing through the CPU, then the GPU read domains will
  2444. * need to be invalidated at next use.
  2445. */
  2446. if (write) {
  2447. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2448. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2449. }
  2450. trace_i915_gem_object_change_domain(obj,
  2451. old_read_domains,
  2452. old_write_domain);
  2453. return 0;
  2454. }
  2455. /*
  2456. * Set the next domain for the specified object. This
  2457. * may not actually perform the necessary flushing/invaliding though,
  2458. * as that may want to be batched with other set_domain operations
  2459. *
  2460. * This is (we hope) the only really tricky part of gem. The goal
  2461. * is fairly simple -- track which caches hold bits of the object
  2462. * and make sure they remain coherent. A few concrete examples may
  2463. * help to explain how it works. For shorthand, we use the notation
  2464. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2465. * a pair of read and write domain masks.
  2466. *
  2467. * Case 1: the batch buffer
  2468. *
  2469. * 1. Allocated
  2470. * 2. Written by CPU
  2471. * 3. Mapped to GTT
  2472. * 4. Read by GPU
  2473. * 5. Unmapped from GTT
  2474. * 6. Freed
  2475. *
  2476. * Let's take these a step at a time
  2477. *
  2478. * 1. Allocated
  2479. * Pages allocated from the kernel may still have
  2480. * cache contents, so we set them to (CPU, CPU) always.
  2481. * 2. Written by CPU (using pwrite)
  2482. * The pwrite function calls set_domain (CPU, CPU) and
  2483. * this function does nothing (as nothing changes)
  2484. * 3. Mapped by GTT
  2485. * This function asserts that the object is not
  2486. * currently in any GPU-based read or write domains
  2487. * 4. Read by GPU
  2488. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2489. * As write_domain is zero, this function adds in the
  2490. * current read domains (CPU+COMMAND, 0).
  2491. * flush_domains is set to CPU.
  2492. * invalidate_domains is set to COMMAND
  2493. * clflush is run to get data out of the CPU caches
  2494. * then i915_dev_set_domain calls i915_gem_flush to
  2495. * emit an MI_FLUSH and drm_agp_chipset_flush
  2496. * 5. Unmapped from GTT
  2497. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2498. * flush_domains and invalidate_domains end up both zero
  2499. * so no flushing/invalidating happens
  2500. * 6. Freed
  2501. * yay, done
  2502. *
  2503. * Case 2: The shared render buffer
  2504. *
  2505. * 1. Allocated
  2506. * 2. Mapped to GTT
  2507. * 3. Read/written by GPU
  2508. * 4. set_domain to (CPU,CPU)
  2509. * 5. Read/written by CPU
  2510. * 6. Read/written by GPU
  2511. *
  2512. * 1. Allocated
  2513. * Same as last example, (CPU, CPU)
  2514. * 2. Mapped to GTT
  2515. * Nothing changes (assertions find that it is not in the GPU)
  2516. * 3. Read/written by GPU
  2517. * execbuffer calls set_domain (RENDER, RENDER)
  2518. * flush_domains gets CPU
  2519. * invalidate_domains gets GPU
  2520. * clflush (obj)
  2521. * MI_FLUSH and drm_agp_chipset_flush
  2522. * 4. set_domain (CPU, CPU)
  2523. * flush_domains gets GPU
  2524. * invalidate_domains gets CPU
  2525. * wait_rendering (obj) to make sure all drawing is complete.
  2526. * This will include an MI_FLUSH to get the data from GPU
  2527. * to memory
  2528. * clflush (obj) to invalidate the CPU cache
  2529. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2530. * 5. Read/written by CPU
  2531. * cache lines are loaded and dirtied
  2532. * 6. Read written by GPU
  2533. * Same as last GPU access
  2534. *
  2535. * Case 3: The constant buffer
  2536. *
  2537. * 1. Allocated
  2538. * 2. Written by CPU
  2539. * 3. Read by GPU
  2540. * 4. Updated (written) by CPU again
  2541. * 5. Read by GPU
  2542. *
  2543. * 1. Allocated
  2544. * (CPU, CPU)
  2545. * 2. Written by CPU
  2546. * (CPU, CPU)
  2547. * 3. Read by GPU
  2548. * (CPU+RENDER, 0)
  2549. * flush_domains = CPU
  2550. * invalidate_domains = RENDER
  2551. * clflush (obj)
  2552. * MI_FLUSH
  2553. * drm_agp_chipset_flush
  2554. * 4. Updated (written) by CPU again
  2555. * (CPU, CPU)
  2556. * flush_domains = 0 (no previous write domain)
  2557. * invalidate_domains = 0 (no new read domains)
  2558. * 5. Read by GPU
  2559. * (CPU+RENDER, 0)
  2560. * flush_domains = CPU
  2561. * invalidate_domains = RENDER
  2562. * clflush (obj)
  2563. * MI_FLUSH
  2564. * drm_agp_chipset_flush
  2565. */
  2566. static void
  2567. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2568. {
  2569. struct drm_device *dev = obj->dev;
  2570. struct drm_i915_private *dev_priv = dev->dev_private;
  2571. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2572. uint32_t invalidate_domains = 0;
  2573. uint32_t flush_domains = 0;
  2574. uint32_t old_read_domains;
  2575. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2576. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2577. intel_mark_busy(dev, obj);
  2578. /*
  2579. * If the object isn't moving to a new write domain,
  2580. * let the object stay in multiple read domains
  2581. */
  2582. if (obj->pending_write_domain == 0)
  2583. obj->pending_read_domains |= obj->read_domains;
  2584. else
  2585. obj_priv->dirty = 1;
  2586. /*
  2587. * Flush the current write domain if
  2588. * the new read domains don't match. Invalidate
  2589. * any read domains which differ from the old
  2590. * write domain
  2591. */
  2592. if (obj->write_domain &&
  2593. obj->write_domain != obj->pending_read_domains) {
  2594. flush_domains |= obj->write_domain;
  2595. invalidate_domains |=
  2596. obj->pending_read_domains & ~obj->write_domain;
  2597. }
  2598. /*
  2599. * Invalidate any read caches which may have
  2600. * stale data. That is, any new read domains.
  2601. */
  2602. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2603. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2604. i915_gem_clflush_object(obj);
  2605. old_read_domains = obj->read_domains;
  2606. /* The actual obj->write_domain will be updated with
  2607. * pending_write_domain after we emit the accumulated flush for all
  2608. * of our domain changes in execbuffers (which clears objects'
  2609. * write_domains). So if we have a current write domain that we
  2610. * aren't changing, set pending_write_domain to that.
  2611. */
  2612. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2613. obj->pending_write_domain = obj->write_domain;
  2614. obj->read_domains = obj->pending_read_domains;
  2615. dev->invalidate_domains |= invalidate_domains;
  2616. dev->flush_domains |= flush_domains;
  2617. if (obj_priv->ring)
  2618. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2619. trace_i915_gem_object_change_domain(obj,
  2620. old_read_domains,
  2621. obj->write_domain);
  2622. }
  2623. /**
  2624. * Moves the object from a partially CPU read to a full one.
  2625. *
  2626. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2627. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2628. */
  2629. static void
  2630. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2631. {
  2632. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2633. if (!obj_priv->page_cpu_valid)
  2634. return;
  2635. /* If we're partially in the CPU read domain, finish moving it in.
  2636. */
  2637. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2638. int i;
  2639. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2640. if (obj_priv->page_cpu_valid[i])
  2641. continue;
  2642. drm_clflush_pages(obj_priv->pages + i, 1);
  2643. }
  2644. }
  2645. /* Free the page_cpu_valid mappings which are now stale, whether
  2646. * or not we've got I915_GEM_DOMAIN_CPU.
  2647. */
  2648. kfree(obj_priv->page_cpu_valid);
  2649. obj_priv->page_cpu_valid = NULL;
  2650. }
  2651. /**
  2652. * Set the CPU read domain on a range of the object.
  2653. *
  2654. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2655. * not entirely valid. The page_cpu_valid member of the object flags which
  2656. * pages have been flushed, and will be respected by
  2657. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2658. * of the whole object.
  2659. *
  2660. * This function returns when the move is complete, including waiting on
  2661. * flushes to occur.
  2662. */
  2663. static int
  2664. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2665. uint64_t offset, uint64_t size)
  2666. {
  2667. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2668. uint32_t old_read_domains;
  2669. int i, ret;
  2670. if (offset == 0 && size == obj->size)
  2671. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2672. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2673. if (ret != 0)
  2674. return ret;
  2675. i915_gem_object_flush_gtt_write_domain(obj);
  2676. /* If we're already fully in the CPU read domain, we're done. */
  2677. if (obj_priv->page_cpu_valid == NULL &&
  2678. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2679. return 0;
  2680. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2681. * newly adding I915_GEM_DOMAIN_CPU
  2682. */
  2683. if (obj_priv->page_cpu_valid == NULL) {
  2684. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2685. GFP_KERNEL);
  2686. if (obj_priv->page_cpu_valid == NULL)
  2687. return -ENOMEM;
  2688. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2689. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2690. /* Flush the cache on any pages that are still invalid from the CPU's
  2691. * perspective.
  2692. */
  2693. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2694. i++) {
  2695. if (obj_priv->page_cpu_valid[i])
  2696. continue;
  2697. drm_clflush_pages(obj_priv->pages + i, 1);
  2698. obj_priv->page_cpu_valid[i] = 1;
  2699. }
  2700. /* It should now be out of any other write domains, and we can update
  2701. * the domain values for our changes.
  2702. */
  2703. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2704. old_read_domains = obj->read_domains;
  2705. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2706. trace_i915_gem_object_change_domain(obj,
  2707. old_read_domains,
  2708. obj->write_domain);
  2709. return 0;
  2710. }
  2711. /**
  2712. * Pin an object to the GTT and evaluate the relocations landing in it.
  2713. */
  2714. static int
  2715. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2716. struct drm_file *file_priv,
  2717. struct drm_i915_gem_exec_object2 *entry,
  2718. struct drm_i915_gem_relocation_entry *relocs)
  2719. {
  2720. struct drm_device *dev = obj->dev;
  2721. drm_i915_private_t *dev_priv = dev->dev_private;
  2722. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2723. int i, ret;
  2724. void __iomem *reloc_page;
  2725. bool need_fence;
  2726. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2727. obj_priv->tiling_mode != I915_TILING_NONE;
  2728. /* Check fence reg constraints and rebind if necessary */
  2729. if (need_fence &&
  2730. !i915_gem_object_fence_offset_ok(obj,
  2731. obj_priv->tiling_mode)) {
  2732. ret = i915_gem_object_unbind(obj);
  2733. if (ret)
  2734. return ret;
  2735. }
  2736. /* Choose the GTT offset for our buffer and put it there. */
  2737. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2738. if (ret)
  2739. return ret;
  2740. /*
  2741. * Pre-965 chips need a fence register set up in order to
  2742. * properly handle blits to/from tiled surfaces.
  2743. */
  2744. if (need_fence) {
  2745. ret = i915_gem_object_get_fence_reg(obj, true);
  2746. if (ret != 0) {
  2747. i915_gem_object_unpin(obj);
  2748. return ret;
  2749. }
  2750. dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
  2751. }
  2752. entry->offset = obj_priv->gtt_offset;
  2753. /* Apply the relocations, using the GTT aperture to avoid cache
  2754. * flushing requirements.
  2755. */
  2756. for (i = 0; i < entry->relocation_count; i++) {
  2757. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2758. struct drm_gem_object *target_obj;
  2759. struct drm_i915_gem_object *target_obj_priv;
  2760. uint32_t reloc_val, reloc_offset;
  2761. uint32_t __iomem *reloc_entry;
  2762. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2763. reloc->target_handle);
  2764. if (target_obj == NULL) {
  2765. i915_gem_object_unpin(obj);
  2766. return -ENOENT;
  2767. }
  2768. target_obj_priv = to_intel_bo(target_obj);
  2769. #if WATCH_RELOC
  2770. DRM_INFO("%s: obj %p offset %08x target %d "
  2771. "read %08x write %08x gtt %08x "
  2772. "presumed %08x delta %08x\n",
  2773. __func__,
  2774. obj,
  2775. (int) reloc->offset,
  2776. (int) reloc->target_handle,
  2777. (int) reloc->read_domains,
  2778. (int) reloc->write_domain,
  2779. (int) target_obj_priv->gtt_offset,
  2780. (int) reloc->presumed_offset,
  2781. reloc->delta);
  2782. #endif
  2783. /* The target buffer should have appeared before us in the
  2784. * exec_object list, so it should have a GTT space bound by now.
  2785. */
  2786. if (target_obj_priv->gtt_space == NULL) {
  2787. DRM_ERROR("No GTT space found for object %d\n",
  2788. reloc->target_handle);
  2789. drm_gem_object_unreference(target_obj);
  2790. i915_gem_object_unpin(obj);
  2791. return -EINVAL;
  2792. }
  2793. /* Validate that the target is in a valid r/w GPU domain */
  2794. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2795. DRM_ERROR("reloc with multiple write domains: "
  2796. "obj %p target %d offset %d "
  2797. "read %08x write %08x",
  2798. obj, reloc->target_handle,
  2799. (int) reloc->offset,
  2800. reloc->read_domains,
  2801. reloc->write_domain);
  2802. return -EINVAL;
  2803. }
  2804. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2805. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2806. DRM_ERROR("reloc with read/write CPU domains: "
  2807. "obj %p target %d offset %d "
  2808. "read %08x write %08x",
  2809. obj, reloc->target_handle,
  2810. (int) reloc->offset,
  2811. reloc->read_domains,
  2812. reloc->write_domain);
  2813. drm_gem_object_unreference(target_obj);
  2814. i915_gem_object_unpin(obj);
  2815. return -EINVAL;
  2816. }
  2817. if (reloc->write_domain && target_obj->pending_write_domain &&
  2818. reloc->write_domain != target_obj->pending_write_domain) {
  2819. DRM_ERROR("Write domain conflict: "
  2820. "obj %p target %d offset %d "
  2821. "new %08x old %08x\n",
  2822. obj, reloc->target_handle,
  2823. (int) reloc->offset,
  2824. reloc->write_domain,
  2825. target_obj->pending_write_domain);
  2826. drm_gem_object_unreference(target_obj);
  2827. i915_gem_object_unpin(obj);
  2828. return -EINVAL;
  2829. }
  2830. target_obj->pending_read_domains |= reloc->read_domains;
  2831. target_obj->pending_write_domain |= reloc->write_domain;
  2832. /* If the relocation already has the right value in it, no
  2833. * more work needs to be done.
  2834. */
  2835. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2836. drm_gem_object_unreference(target_obj);
  2837. continue;
  2838. }
  2839. /* Check that the relocation address is valid... */
  2840. if (reloc->offset > obj->size - 4) {
  2841. DRM_ERROR("Relocation beyond object bounds: "
  2842. "obj %p target %d offset %d size %d.\n",
  2843. obj, reloc->target_handle,
  2844. (int) reloc->offset, (int) obj->size);
  2845. drm_gem_object_unreference(target_obj);
  2846. i915_gem_object_unpin(obj);
  2847. return -EINVAL;
  2848. }
  2849. if (reloc->offset & 3) {
  2850. DRM_ERROR("Relocation not 4-byte aligned: "
  2851. "obj %p target %d offset %d.\n",
  2852. obj, reloc->target_handle,
  2853. (int) reloc->offset);
  2854. drm_gem_object_unreference(target_obj);
  2855. i915_gem_object_unpin(obj);
  2856. return -EINVAL;
  2857. }
  2858. /* and points to somewhere within the target object. */
  2859. if (reloc->delta >= target_obj->size) {
  2860. DRM_ERROR("Relocation beyond target object bounds: "
  2861. "obj %p target %d delta %d size %d.\n",
  2862. obj, reloc->target_handle,
  2863. (int) reloc->delta, (int) target_obj->size);
  2864. drm_gem_object_unreference(target_obj);
  2865. i915_gem_object_unpin(obj);
  2866. return -EINVAL;
  2867. }
  2868. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2869. if (ret != 0) {
  2870. drm_gem_object_unreference(target_obj);
  2871. i915_gem_object_unpin(obj);
  2872. return -EINVAL;
  2873. }
  2874. /* Map the page containing the relocation we're going to
  2875. * perform.
  2876. */
  2877. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2878. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2879. (reloc_offset &
  2880. ~(PAGE_SIZE - 1)),
  2881. KM_USER0);
  2882. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2883. (reloc_offset & (PAGE_SIZE - 1)));
  2884. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2885. writel(reloc_val, reloc_entry);
  2886. io_mapping_unmap_atomic(reloc_page, KM_USER0);
  2887. /* The updated presumed offset for this entry will be
  2888. * copied back out to the user.
  2889. */
  2890. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2891. drm_gem_object_unreference(target_obj);
  2892. }
  2893. return 0;
  2894. }
  2895. /* Throttle our rendering by waiting until the ring has completed our requests
  2896. * emitted over 20 msec ago.
  2897. *
  2898. * Note that if we were to use the current jiffies each time around the loop,
  2899. * we wouldn't escape the function with any frames outstanding if the time to
  2900. * render a frame was over 20ms.
  2901. *
  2902. * This should get us reasonable parallelism between CPU and GPU but also
  2903. * relatively low latency when blocking on a particular request to finish.
  2904. */
  2905. static int
  2906. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2907. {
  2908. struct drm_i915_private *dev_priv = dev->dev_private;
  2909. struct drm_i915_file_private *file_priv = file->driver_priv;
  2910. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2911. struct drm_i915_gem_request *request;
  2912. struct intel_ring_buffer *ring = NULL;
  2913. u32 seqno = 0;
  2914. int ret;
  2915. spin_lock(&file_priv->mm.lock);
  2916. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2917. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2918. break;
  2919. ring = request->ring;
  2920. seqno = request->seqno;
  2921. }
  2922. spin_unlock(&file_priv->mm.lock);
  2923. if (seqno == 0)
  2924. return 0;
  2925. ret = 0;
  2926. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  2927. /* And wait for the seqno passing without holding any locks and
  2928. * causing extra latency for others. This is safe as the irq
  2929. * generation is designed to be run atomically and so is
  2930. * lockless.
  2931. */
  2932. ring->user_irq_get(dev, ring);
  2933. ret = wait_event_interruptible(ring->irq_queue,
  2934. i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
  2935. || atomic_read(&dev_priv->mm.wedged));
  2936. ring->user_irq_put(dev, ring);
  2937. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2938. ret = -EIO;
  2939. }
  2940. if (ret == 0)
  2941. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2942. return ret;
  2943. }
  2944. static int
  2945. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  2946. uint32_t buffer_count,
  2947. struct drm_i915_gem_relocation_entry **relocs)
  2948. {
  2949. uint32_t reloc_count = 0, reloc_index = 0, i;
  2950. int ret;
  2951. *relocs = NULL;
  2952. for (i = 0; i < buffer_count; i++) {
  2953. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2954. return -EINVAL;
  2955. reloc_count += exec_list[i].relocation_count;
  2956. }
  2957. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2958. if (*relocs == NULL) {
  2959. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  2960. return -ENOMEM;
  2961. }
  2962. for (i = 0; i < buffer_count; i++) {
  2963. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2964. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2965. ret = copy_from_user(&(*relocs)[reloc_index],
  2966. user_relocs,
  2967. exec_list[i].relocation_count *
  2968. sizeof(**relocs));
  2969. if (ret != 0) {
  2970. drm_free_large(*relocs);
  2971. *relocs = NULL;
  2972. return -EFAULT;
  2973. }
  2974. reloc_index += exec_list[i].relocation_count;
  2975. }
  2976. return 0;
  2977. }
  2978. static int
  2979. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  2980. uint32_t buffer_count,
  2981. struct drm_i915_gem_relocation_entry *relocs)
  2982. {
  2983. uint32_t reloc_count = 0, i;
  2984. int ret = 0;
  2985. if (relocs == NULL)
  2986. return 0;
  2987. for (i = 0; i < buffer_count; i++) {
  2988. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2989. int unwritten;
  2990. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2991. unwritten = copy_to_user(user_relocs,
  2992. &relocs[reloc_count],
  2993. exec_list[i].relocation_count *
  2994. sizeof(*relocs));
  2995. if (unwritten) {
  2996. ret = -EFAULT;
  2997. goto err;
  2998. }
  2999. reloc_count += exec_list[i].relocation_count;
  3000. }
  3001. err:
  3002. drm_free_large(relocs);
  3003. return ret;
  3004. }
  3005. static int
  3006. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  3007. uint64_t exec_offset)
  3008. {
  3009. uint32_t exec_start, exec_len;
  3010. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3011. exec_len = (uint32_t) exec->batch_len;
  3012. if ((exec_start | exec_len) & 0x7)
  3013. return -EINVAL;
  3014. if (!exec_start)
  3015. return -EINVAL;
  3016. return 0;
  3017. }
  3018. static int
  3019. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  3020. struct drm_gem_object **object_list,
  3021. int count)
  3022. {
  3023. drm_i915_private_t *dev_priv = dev->dev_private;
  3024. struct drm_i915_gem_object *obj_priv;
  3025. DEFINE_WAIT(wait);
  3026. int i, ret = 0;
  3027. for (;;) {
  3028. prepare_to_wait(&dev_priv->pending_flip_queue,
  3029. &wait, TASK_INTERRUPTIBLE);
  3030. for (i = 0; i < count; i++) {
  3031. obj_priv = to_intel_bo(object_list[i]);
  3032. if (atomic_read(&obj_priv->pending_flip) > 0)
  3033. break;
  3034. }
  3035. if (i == count)
  3036. break;
  3037. if (!signal_pending(current)) {
  3038. mutex_unlock(&dev->struct_mutex);
  3039. schedule();
  3040. mutex_lock(&dev->struct_mutex);
  3041. continue;
  3042. }
  3043. ret = -ERESTARTSYS;
  3044. break;
  3045. }
  3046. finish_wait(&dev_priv->pending_flip_queue, &wait);
  3047. return ret;
  3048. }
  3049. static int
  3050. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3051. struct drm_file *file_priv,
  3052. struct drm_i915_gem_execbuffer2 *args,
  3053. struct drm_i915_gem_exec_object2 *exec_list)
  3054. {
  3055. drm_i915_private_t *dev_priv = dev->dev_private;
  3056. struct drm_gem_object **object_list = NULL;
  3057. struct drm_gem_object *batch_obj;
  3058. struct drm_i915_gem_object *obj_priv;
  3059. struct drm_clip_rect *cliprects = NULL;
  3060. struct drm_i915_gem_relocation_entry *relocs = NULL;
  3061. struct drm_i915_gem_request *request = NULL;
  3062. int ret, ret2, i, pinned = 0;
  3063. uint64_t exec_offset;
  3064. uint32_t reloc_index;
  3065. int pin_tries, flips;
  3066. struct intel_ring_buffer *ring = NULL;
  3067. ret = i915_gem_check_is_wedged(dev);
  3068. if (ret)
  3069. return ret;
  3070. #if WATCH_EXEC
  3071. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3072. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3073. #endif
  3074. if (args->flags & I915_EXEC_BSD) {
  3075. if (!HAS_BSD(dev)) {
  3076. DRM_ERROR("execbuf with wrong flag\n");
  3077. return -EINVAL;
  3078. }
  3079. ring = &dev_priv->bsd_ring;
  3080. } else {
  3081. ring = &dev_priv->render_ring;
  3082. }
  3083. if (args->buffer_count < 1) {
  3084. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3085. return -EINVAL;
  3086. }
  3087. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3088. if (object_list == NULL) {
  3089. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3090. args->buffer_count);
  3091. ret = -ENOMEM;
  3092. goto pre_mutex_err;
  3093. }
  3094. if (args->num_cliprects != 0) {
  3095. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3096. GFP_KERNEL);
  3097. if (cliprects == NULL) {
  3098. ret = -ENOMEM;
  3099. goto pre_mutex_err;
  3100. }
  3101. ret = copy_from_user(cliprects,
  3102. (struct drm_clip_rect __user *)
  3103. (uintptr_t) args->cliprects_ptr,
  3104. sizeof(*cliprects) * args->num_cliprects);
  3105. if (ret != 0) {
  3106. DRM_ERROR("copy %d cliprects failed: %d\n",
  3107. args->num_cliprects, ret);
  3108. ret = -EFAULT;
  3109. goto pre_mutex_err;
  3110. }
  3111. }
  3112. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3113. if (request == NULL) {
  3114. ret = -ENOMEM;
  3115. goto pre_mutex_err;
  3116. }
  3117. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3118. &relocs);
  3119. if (ret != 0)
  3120. goto pre_mutex_err;
  3121. ret = i915_mutex_lock_interruptible(dev);
  3122. if (ret)
  3123. goto pre_mutex_err;
  3124. i915_verify_inactive(dev, __FILE__, __LINE__);
  3125. if (dev_priv->mm.suspended) {
  3126. mutex_unlock(&dev->struct_mutex);
  3127. ret = -EBUSY;
  3128. goto pre_mutex_err;
  3129. }
  3130. /* Look up object handles */
  3131. flips = 0;
  3132. for (i = 0; i < args->buffer_count; i++) {
  3133. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3134. exec_list[i].handle);
  3135. if (object_list[i] == NULL) {
  3136. DRM_ERROR("Invalid object handle %d at index %d\n",
  3137. exec_list[i].handle, i);
  3138. /* prevent error path from reading uninitialized data */
  3139. args->buffer_count = i + 1;
  3140. ret = -ENOENT;
  3141. goto err;
  3142. }
  3143. obj_priv = to_intel_bo(object_list[i]);
  3144. if (obj_priv->in_execbuffer) {
  3145. DRM_ERROR("Object %p appears more than once in object list\n",
  3146. object_list[i]);
  3147. /* prevent error path from reading uninitialized data */
  3148. args->buffer_count = i + 1;
  3149. ret = -EINVAL;
  3150. goto err;
  3151. }
  3152. obj_priv->in_execbuffer = true;
  3153. flips += atomic_read(&obj_priv->pending_flip);
  3154. }
  3155. if (flips > 0) {
  3156. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3157. args->buffer_count);
  3158. if (ret)
  3159. goto err;
  3160. }
  3161. /* Pin and relocate */
  3162. for (pin_tries = 0; ; pin_tries++) {
  3163. ret = 0;
  3164. reloc_index = 0;
  3165. for (i = 0; i < args->buffer_count; i++) {
  3166. object_list[i]->pending_read_domains = 0;
  3167. object_list[i]->pending_write_domain = 0;
  3168. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3169. file_priv,
  3170. &exec_list[i],
  3171. &relocs[reloc_index]);
  3172. if (ret)
  3173. break;
  3174. pinned = i + 1;
  3175. reloc_index += exec_list[i].relocation_count;
  3176. }
  3177. /* success */
  3178. if (ret == 0)
  3179. break;
  3180. /* error other than GTT full, or we've already tried again */
  3181. if (ret != -ENOSPC || pin_tries >= 1) {
  3182. if (ret != -ERESTARTSYS) {
  3183. unsigned long long total_size = 0;
  3184. int num_fences = 0;
  3185. for (i = 0; i < args->buffer_count; i++) {
  3186. obj_priv = to_intel_bo(object_list[i]);
  3187. total_size += object_list[i]->size;
  3188. num_fences +=
  3189. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3190. obj_priv->tiling_mode != I915_TILING_NONE;
  3191. }
  3192. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3193. pinned+1, args->buffer_count,
  3194. total_size, num_fences,
  3195. ret);
  3196. DRM_ERROR("%d objects [%d pinned], "
  3197. "%d object bytes [%d pinned], "
  3198. "%d/%d gtt bytes\n",
  3199. atomic_read(&dev->object_count),
  3200. atomic_read(&dev->pin_count),
  3201. atomic_read(&dev->object_memory),
  3202. atomic_read(&dev->pin_memory),
  3203. atomic_read(&dev->gtt_memory),
  3204. dev->gtt_total);
  3205. }
  3206. goto err;
  3207. }
  3208. /* unpin all of our buffers */
  3209. for (i = 0; i < pinned; i++)
  3210. i915_gem_object_unpin(object_list[i]);
  3211. pinned = 0;
  3212. /* evict everyone we can from the aperture */
  3213. ret = i915_gem_evict_everything(dev);
  3214. if (ret && ret != -ENOSPC)
  3215. goto err;
  3216. }
  3217. /* Set the pending read domains for the batch buffer to COMMAND */
  3218. batch_obj = object_list[args->buffer_count-1];
  3219. if (batch_obj->pending_write_domain) {
  3220. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3221. ret = -EINVAL;
  3222. goto err;
  3223. }
  3224. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3225. /* Sanity check the batch buffer, prior to moving objects */
  3226. exec_offset = exec_list[args->buffer_count - 1].offset;
  3227. ret = i915_gem_check_execbuffer (args, exec_offset);
  3228. if (ret != 0) {
  3229. DRM_ERROR("execbuf with invalid offset/length\n");
  3230. goto err;
  3231. }
  3232. i915_verify_inactive(dev, __FILE__, __LINE__);
  3233. /* Zero the global flush/invalidate flags. These
  3234. * will be modified as new domains are computed
  3235. * for each object
  3236. */
  3237. dev->invalidate_domains = 0;
  3238. dev->flush_domains = 0;
  3239. dev_priv->mm.flush_rings = 0;
  3240. for (i = 0; i < args->buffer_count; i++) {
  3241. struct drm_gem_object *obj = object_list[i];
  3242. /* Compute new gpu domains and update invalidate/flush */
  3243. i915_gem_object_set_to_gpu_domain(obj);
  3244. }
  3245. i915_verify_inactive(dev, __FILE__, __LINE__);
  3246. if (dev->invalidate_domains | dev->flush_domains) {
  3247. #if WATCH_EXEC
  3248. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3249. __func__,
  3250. dev->invalidate_domains,
  3251. dev->flush_domains);
  3252. #endif
  3253. i915_gem_flush(dev, file_priv,
  3254. dev->invalidate_domains,
  3255. dev->flush_domains,
  3256. dev_priv->mm.flush_rings);
  3257. }
  3258. for (i = 0; i < args->buffer_count; i++) {
  3259. struct drm_gem_object *obj = object_list[i];
  3260. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3261. uint32_t old_write_domain = obj->write_domain;
  3262. obj->write_domain = obj->pending_write_domain;
  3263. if (obj->write_domain)
  3264. list_move_tail(&obj_priv->gpu_write_list,
  3265. &dev_priv->mm.gpu_write_list);
  3266. else
  3267. list_del_init(&obj_priv->gpu_write_list);
  3268. trace_i915_gem_object_change_domain(obj,
  3269. obj->read_domains,
  3270. old_write_domain);
  3271. }
  3272. i915_verify_inactive(dev, __FILE__, __LINE__);
  3273. #if WATCH_COHERENCY
  3274. for (i = 0; i < args->buffer_count; i++) {
  3275. i915_gem_object_check_coherency(object_list[i],
  3276. exec_list[i].handle);
  3277. }
  3278. #endif
  3279. #if WATCH_EXEC
  3280. i915_gem_dump_object(batch_obj,
  3281. args->batch_len,
  3282. __func__,
  3283. ~0);
  3284. #endif
  3285. /* Exec the batchbuffer */
  3286. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3287. cliprects, exec_offset);
  3288. if (ret) {
  3289. DRM_ERROR("dispatch failed %d\n", ret);
  3290. goto err;
  3291. }
  3292. /*
  3293. * Ensure that the commands in the batch buffer are
  3294. * finished before the interrupt fires
  3295. */
  3296. i915_retire_commands(dev, ring);
  3297. i915_verify_inactive(dev, __FILE__, __LINE__);
  3298. for (i = 0; i < args->buffer_count; i++) {
  3299. struct drm_gem_object *obj = object_list[i];
  3300. obj_priv = to_intel_bo(obj);
  3301. i915_gem_object_move_to_active(obj, ring);
  3302. }
  3303. i915_add_request(dev, file_priv, request, ring);
  3304. request = NULL;
  3305. i915_verify_inactive(dev, __FILE__, __LINE__);
  3306. err:
  3307. for (i = 0; i < pinned; i++)
  3308. i915_gem_object_unpin(object_list[i]);
  3309. for (i = 0; i < args->buffer_count; i++) {
  3310. if (object_list[i]) {
  3311. obj_priv = to_intel_bo(object_list[i]);
  3312. obj_priv->in_execbuffer = false;
  3313. }
  3314. drm_gem_object_unreference(object_list[i]);
  3315. }
  3316. mutex_unlock(&dev->struct_mutex);
  3317. pre_mutex_err:
  3318. /* Copy the updated relocations out regardless of current error
  3319. * state. Failure to update the relocs would mean that the next
  3320. * time userland calls execbuf, it would do so with presumed offset
  3321. * state that didn't match the actual object state.
  3322. */
  3323. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3324. relocs);
  3325. if (ret2 != 0) {
  3326. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3327. if (ret == 0)
  3328. ret = ret2;
  3329. }
  3330. drm_free_large(object_list);
  3331. kfree(cliprects);
  3332. kfree(request);
  3333. return ret;
  3334. }
  3335. /*
  3336. * Legacy execbuffer just creates an exec2 list from the original exec object
  3337. * list array and passes it to the real function.
  3338. */
  3339. int
  3340. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3341. struct drm_file *file_priv)
  3342. {
  3343. struct drm_i915_gem_execbuffer *args = data;
  3344. struct drm_i915_gem_execbuffer2 exec2;
  3345. struct drm_i915_gem_exec_object *exec_list = NULL;
  3346. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3347. int ret, i;
  3348. #if WATCH_EXEC
  3349. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3350. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3351. #endif
  3352. if (args->buffer_count < 1) {
  3353. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3354. return -EINVAL;
  3355. }
  3356. /* Copy in the exec list from userland */
  3357. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3358. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3359. if (exec_list == NULL || exec2_list == NULL) {
  3360. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3361. args->buffer_count);
  3362. drm_free_large(exec_list);
  3363. drm_free_large(exec2_list);
  3364. return -ENOMEM;
  3365. }
  3366. ret = copy_from_user(exec_list,
  3367. (struct drm_i915_relocation_entry __user *)
  3368. (uintptr_t) args->buffers_ptr,
  3369. sizeof(*exec_list) * args->buffer_count);
  3370. if (ret != 0) {
  3371. DRM_ERROR("copy %d exec entries failed %d\n",
  3372. args->buffer_count, ret);
  3373. drm_free_large(exec_list);
  3374. drm_free_large(exec2_list);
  3375. return -EFAULT;
  3376. }
  3377. for (i = 0; i < args->buffer_count; i++) {
  3378. exec2_list[i].handle = exec_list[i].handle;
  3379. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3380. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3381. exec2_list[i].alignment = exec_list[i].alignment;
  3382. exec2_list[i].offset = exec_list[i].offset;
  3383. if (INTEL_INFO(dev)->gen < 4)
  3384. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3385. else
  3386. exec2_list[i].flags = 0;
  3387. }
  3388. exec2.buffers_ptr = args->buffers_ptr;
  3389. exec2.buffer_count = args->buffer_count;
  3390. exec2.batch_start_offset = args->batch_start_offset;
  3391. exec2.batch_len = args->batch_len;
  3392. exec2.DR1 = args->DR1;
  3393. exec2.DR4 = args->DR4;
  3394. exec2.num_cliprects = args->num_cliprects;
  3395. exec2.cliprects_ptr = args->cliprects_ptr;
  3396. exec2.flags = I915_EXEC_RENDER;
  3397. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3398. if (!ret) {
  3399. /* Copy the new buffer offsets back to the user's exec list. */
  3400. for (i = 0; i < args->buffer_count; i++)
  3401. exec_list[i].offset = exec2_list[i].offset;
  3402. /* ... and back out to userspace */
  3403. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3404. (uintptr_t) args->buffers_ptr,
  3405. exec_list,
  3406. sizeof(*exec_list) * args->buffer_count);
  3407. if (ret) {
  3408. ret = -EFAULT;
  3409. DRM_ERROR("failed to copy %d exec entries "
  3410. "back to user (%d)\n",
  3411. args->buffer_count, ret);
  3412. }
  3413. }
  3414. drm_free_large(exec_list);
  3415. drm_free_large(exec2_list);
  3416. return ret;
  3417. }
  3418. int
  3419. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3420. struct drm_file *file_priv)
  3421. {
  3422. struct drm_i915_gem_execbuffer2 *args = data;
  3423. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3424. int ret;
  3425. #if WATCH_EXEC
  3426. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3427. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3428. #endif
  3429. if (args->buffer_count < 1) {
  3430. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3431. return -EINVAL;
  3432. }
  3433. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3434. if (exec2_list == NULL) {
  3435. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3436. args->buffer_count);
  3437. return -ENOMEM;
  3438. }
  3439. ret = copy_from_user(exec2_list,
  3440. (struct drm_i915_relocation_entry __user *)
  3441. (uintptr_t) args->buffers_ptr,
  3442. sizeof(*exec2_list) * args->buffer_count);
  3443. if (ret != 0) {
  3444. DRM_ERROR("copy %d exec entries failed %d\n",
  3445. args->buffer_count, ret);
  3446. drm_free_large(exec2_list);
  3447. return -EFAULT;
  3448. }
  3449. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3450. if (!ret) {
  3451. /* Copy the new buffer offsets back to the user's exec list. */
  3452. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3453. (uintptr_t) args->buffers_ptr,
  3454. exec2_list,
  3455. sizeof(*exec2_list) * args->buffer_count);
  3456. if (ret) {
  3457. ret = -EFAULT;
  3458. DRM_ERROR("failed to copy %d exec entries "
  3459. "back to user (%d)\n",
  3460. args->buffer_count, ret);
  3461. }
  3462. }
  3463. drm_free_large(exec2_list);
  3464. return ret;
  3465. }
  3466. int
  3467. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3468. {
  3469. struct drm_device *dev = obj->dev;
  3470. struct drm_i915_private *dev_priv = dev->dev_private;
  3471. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3472. int ret;
  3473. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3474. i915_verify_inactive(dev, __FILE__, __LINE__);
  3475. if (obj_priv->gtt_space != NULL) {
  3476. if (alignment == 0)
  3477. alignment = i915_gem_get_gtt_alignment(obj);
  3478. if (obj_priv->gtt_offset & (alignment - 1)) {
  3479. WARN(obj_priv->pin_count,
  3480. "bo is already pinned with incorrect alignment:"
  3481. " offset=%x, req.alignment=%x\n",
  3482. obj_priv->gtt_offset, alignment);
  3483. ret = i915_gem_object_unbind(obj);
  3484. if (ret)
  3485. return ret;
  3486. }
  3487. }
  3488. if (obj_priv->gtt_space == NULL) {
  3489. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3490. if (ret)
  3491. return ret;
  3492. }
  3493. obj_priv->pin_count++;
  3494. /* If the object is not active and not pending a flush,
  3495. * remove it from the inactive list
  3496. */
  3497. if (obj_priv->pin_count == 1) {
  3498. atomic_inc(&dev->pin_count);
  3499. atomic_add(obj->size, &dev->pin_memory);
  3500. if (!obj_priv->active)
  3501. list_move_tail(&obj_priv->list,
  3502. &dev_priv->mm.pinned_list);
  3503. }
  3504. i915_verify_inactive(dev, __FILE__, __LINE__);
  3505. return 0;
  3506. }
  3507. void
  3508. i915_gem_object_unpin(struct drm_gem_object *obj)
  3509. {
  3510. struct drm_device *dev = obj->dev;
  3511. drm_i915_private_t *dev_priv = dev->dev_private;
  3512. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3513. i915_verify_inactive(dev, __FILE__, __LINE__);
  3514. obj_priv->pin_count--;
  3515. BUG_ON(obj_priv->pin_count < 0);
  3516. BUG_ON(obj_priv->gtt_space == NULL);
  3517. /* If the object is no longer pinned, and is
  3518. * neither active nor being flushed, then stick it on
  3519. * the inactive list
  3520. */
  3521. if (obj_priv->pin_count == 0) {
  3522. if (!obj_priv->active)
  3523. list_move_tail(&obj_priv->list,
  3524. &dev_priv->mm.inactive_list);
  3525. atomic_dec(&dev->pin_count);
  3526. atomic_sub(obj->size, &dev->pin_memory);
  3527. }
  3528. i915_verify_inactive(dev, __FILE__, __LINE__);
  3529. }
  3530. int
  3531. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3532. struct drm_file *file_priv)
  3533. {
  3534. struct drm_i915_gem_pin *args = data;
  3535. struct drm_gem_object *obj;
  3536. struct drm_i915_gem_object *obj_priv;
  3537. int ret;
  3538. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3539. if (obj == NULL) {
  3540. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3541. args->handle);
  3542. return -ENOENT;
  3543. }
  3544. obj_priv = to_intel_bo(obj);
  3545. ret = i915_mutex_lock_interruptible(dev);
  3546. if (ret) {
  3547. drm_gem_object_unreference_unlocked(obj);
  3548. return ret;
  3549. }
  3550. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3551. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3552. drm_gem_object_unreference(obj);
  3553. mutex_unlock(&dev->struct_mutex);
  3554. return -EINVAL;
  3555. }
  3556. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3557. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3558. args->handle);
  3559. drm_gem_object_unreference(obj);
  3560. mutex_unlock(&dev->struct_mutex);
  3561. return -EINVAL;
  3562. }
  3563. obj_priv->user_pin_count++;
  3564. obj_priv->pin_filp = file_priv;
  3565. if (obj_priv->user_pin_count == 1) {
  3566. ret = i915_gem_object_pin(obj, args->alignment);
  3567. if (ret != 0) {
  3568. drm_gem_object_unreference(obj);
  3569. mutex_unlock(&dev->struct_mutex);
  3570. return ret;
  3571. }
  3572. }
  3573. /* XXX - flush the CPU caches for pinned objects
  3574. * as the X server doesn't manage domains yet
  3575. */
  3576. i915_gem_object_flush_cpu_write_domain(obj);
  3577. args->offset = obj_priv->gtt_offset;
  3578. drm_gem_object_unreference(obj);
  3579. mutex_unlock(&dev->struct_mutex);
  3580. return 0;
  3581. }
  3582. int
  3583. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3584. struct drm_file *file_priv)
  3585. {
  3586. struct drm_i915_gem_pin *args = data;
  3587. struct drm_gem_object *obj;
  3588. struct drm_i915_gem_object *obj_priv;
  3589. int ret;
  3590. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3591. if (obj == NULL) {
  3592. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3593. args->handle);
  3594. return -ENOENT;
  3595. }
  3596. obj_priv = to_intel_bo(obj);
  3597. ret = i915_mutex_lock_interruptible(dev);
  3598. if (ret) {
  3599. drm_gem_object_unreference_unlocked(obj);
  3600. return ret;
  3601. }
  3602. if (obj_priv->pin_filp != file_priv) {
  3603. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3604. args->handle);
  3605. drm_gem_object_unreference(obj);
  3606. mutex_unlock(&dev->struct_mutex);
  3607. return -EINVAL;
  3608. }
  3609. obj_priv->user_pin_count--;
  3610. if (obj_priv->user_pin_count == 0) {
  3611. obj_priv->pin_filp = NULL;
  3612. i915_gem_object_unpin(obj);
  3613. }
  3614. drm_gem_object_unreference(obj);
  3615. mutex_unlock(&dev->struct_mutex);
  3616. return 0;
  3617. }
  3618. int
  3619. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3620. struct drm_file *file_priv)
  3621. {
  3622. struct drm_i915_gem_busy *args = data;
  3623. struct drm_gem_object *obj;
  3624. struct drm_i915_gem_object *obj_priv;
  3625. int ret;
  3626. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3627. if (obj == NULL) {
  3628. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3629. args->handle);
  3630. return -ENOENT;
  3631. }
  3632. ret = i915_mutex_lock_interruptible(dev);
  3633. if (ret) {
  3634. drm_gem_object_unreference_unlocked(obj);
  3635. return ret;
  3636. }
  3637. /* Count all active objects as busy, even if they are currently not used
  3638. * by the gpu. Users of this interface expect objects to eventually
  3639. * become non-busy without any further actions, therefore emit any
  3640. * necessary flushes here.
  3641. */
  3642. obj_priv = to_intel_bo(obj);
  3643. args->busy = obj_priv->active;
  3644. if (args->busy) {
  3645. /* Unconditionally flush objects, even when the gpu still uses this
  3646. * object. Userspace calling this function indicates that it wants to
  3647. * use this buffer rather sooner than later, so issuing the required
  3648. * flush earlier is beneficial.
  3649. */
  3650. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3651. i915_gem_flush_ring(dev, file_priv,
  3652. obj_priv->ring,
  3653. 0, obj->write_domain);
  3654. /* Update the active list for the hardware's current position.
  3655. * Otherwise this only updates on a delayed timer or when irqs
  3656. * are actually unmasked, and our working set ends up being
  3657. * larger than required.
  3658. */
  3659. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3660. args->busy = obj_priv->active;
  3661. }
  3662. drm_gem_object_unreference(obj);
  3663. mutex_unlock(&dev->struct_mutex);
  3664. return 0;
  3665. }
  3666. int
  3667. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3668. struct drm_file *file_priv)
  3669. {
  3670. return i915_gem_ring_throttle(dev, file_priv);
  3671. }
  3672. int
  3673. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3674. struct drm_file *file_priv)
  3675. {
  3676. struct drm_i915_gem_madvise *args = data;
  3677. struct drm_gem_object *obj;
  3678. struct drm_i915_gem_object *obj_priv;
  3679. int ret;
  3680. switch (args->madv) {
  3681. case I915_MADV_DONTNEED:
  3682. case I915_MADV_WILLNEED:
  3683. break;
  3684. default:
  3685. return -EINVAL;
  3686. }
  3687. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3688. if (obj == NULL) {
  3689. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3690. args->handle);
  3691. return -ENOENT;
  3692. }
  3693. obj_priv = to_intel_bo(obj);
  3694. ret = i915_mutex_lock_interruptible(dev);
  3695. if (ret) {
  3696. drm_gem_object_unreference_unlocked(obj);
  3697. return ret;
  3698. }
  3699. if (obj_priv->pin_count) {
  3700. drm_gem_object_unreference(obj);
  3701. mutex_unlock(&dev->struct_mutex);
  3702. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3703. return -EINVAL;
  3704. }
  3705. if (obj_priv->madv != __I915_MADV_PURGED)
  3706. obj_priv->madv = args->madv;
  3707. /* if the object is no longer bound, discard its backing storage */
  3708. if (i915_gem_object_is_purgeable(obj_priv) &&
  3709. obj_priv->gtt_space == NULL)
  3710. i915_gem_object_truncate(obj);
  3711. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3712. drm_gem_object_unreference(obj);
  3713. mutex_unlock(&dev->struct_mutex);
  3714. return 0;
  3715. }
  3716. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3717. size_t size)
  3718. {
  3719. struct drm_i915_gem_object *obj;
  3720. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3721. if (obj == NULL)
  3722. return NULL;
  3723. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3724. kfree(obj);
  3725. return NULL;
  3726. }
  3727. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3728. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3729. obj->agp_type = AGP_USER_MEMORY;
  3730. obj->base.driver_private = NULL;
  3731. obj->fence_reg = I915_FENCE_REG_NONE;
  3732. INIT_LIST_HEAD(&obj->list);
  3733. INIT_LIST_HEAD(&obj->gpu_write_list);
  3734. obj->madv = I915_MADV_WILLNEED;
  3735. trace_i915_gem_object_create(&obj->base);
  3736. return &obj->base;
  3737. }
  3738. int i915_gem_init_object(struct drm_gem_object *obj)
  3739. {
  3740. BUG();
  3741. return 0;
  3742. }
  3743. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3744. {
  3745. struct drm_device *dev = obj->dev;
  3746. drm_i915_private_t *dev_priv = dev->dev_private;
  3747. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3748. int ret;
  3749. ret = i915_gem_object_unbind(obj);
  3750. if (ret == -ERESTARTSYS) {
  3751. list_move(&obj_priv->list,
  3752. &dev_priv->mm.deferred_free_list);
  3753. return;
  3754. }
  3755. if (obj_priv->mmap_offset)
  3756. i915_gem_free_mmap_offset(obj);
  3757. drm_gem_object_release(obj);
  3758. kfree(obj_priv->page_cpu_valid);
  3759. kfree(obj_priv->bit_17);
  3760. kfree(obj_priv);
  3761. }
  3762. void i915_gem_free_object(struct drm_gem_object *obj)
  3763. {
  3764. struct drm_device *dev = obj->dev;
  3765. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3766. trace_i915_gem_object_destroy(obj);
  3767. while (obj_priv->pin_count > 0)
  3768. i915_gem_object_unpin(obj);
  3769. if (obj_priv->phys_obj)
  3770. i915_gem_detach_phys_object(dev, obj);
  3771. i915_gem_free_object_tail(obj);
  3772. }
  3773. int
  3774. i915_gem_idle(struct drm_device *dev)
  3775. {
  3776. drm_i915_private_t *dev_priv = dev->dev_private;
  3777. int ret;
  3778. mutex_lock(&dev->struct_mutex);
  3779. if (dev_priv->mm.suspended ||
  3780. (dev_priv->render_ring.gem_object == NULL) ||
  3781. (HAS_BSD(dev) &&
  3782. dev_priv->bsd_ring.gem_object == NULL)) {
  3783. mutex_unlock(&dev->struct_mutex);
  3784. return 0;
  3785. }
  3786. ret = i915_gpu_idle(dev);
  3787. if (ret) {
  3788. mutex_unlock(&dev->struct_mutex);
  3789. return ret;
  3790. }
  3791. /* Under UMS, be paranoid and evict. */
  3792. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3793. ret = i915_gem_evict_inactive(dev);
  3794. if (ret) {
  3795. mutex_unlock(&dev->struct_mutex);
  3796. return ret;
  3797. }
  3798. }
  3799. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3800. * We need to replace this with a semaphore, or something.
  3801. * And not confound mm.suspended!
  3802. */
  3803. dev_priv->mm.suspended = 1;
  3804. del_timer_sync(&dev_priv->hangcheck_timer);
  3805. i915_kernel_lost_context(dev);
  3806. i915_gem_cleanup_ringbuffer(dev);
  3807. mutex_unlock(&dev->struct_mutex);
  3808. /* Cancel the retire work handler, which should be idle now. */
  3809. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3810. return 0;
  3811. }
  3812. /*
  3813. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3814. * over cache flushing.
  3815. */
  3816. static int
  3817. i915_gem_init_pipe_control(struct drm_device *dev)
  3818. {
  3819. drm_i915_private_t *dev_priv = dev->dev_private;
  3820. struct drm_gem_object *obj;
  3821. struct drm_i915_gem_object *obj_priv;
  3822. int ret;
  3823. obj = i915_gem_alloc_object(dev, 4096);
  3824. if (obj == NULL) {
  3825. DRM_ERROR("Failed to allocate seqno page\n");
  3826. ret = -ENOMEM;
  3827. goto err;
  3828. }
  3829. obj_priv = to_intel_bo(obj);
  3830. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3831. ret = i915_gem_object_pin(obj, 4096);
  3832. if (ret)
  3833. goto err_unref;
  3834. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3835. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3836. if (dev_priv->seqno_page == NULL)
  3837. goto err_unpin;
  3838. dev_priv->seqno_obj = obj;
  3839. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3840. return 0;
  3841. err_unpin:
  3842. i915_gem_object_unpin(obj);
  3843. err_unref:
  3844. drm_gem_object_unreference(obj);
  3845. err:
  3846. return ret;
  3847. }
  3848. static void
  3849. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3850. {
  3851. drm_i915_private_t *dev_priv = dev->dev_private;
  3852. struct drm_gem_object *obj;
  3853. struct drm_i915_gem_object *obj_priv;
  3854. obj = dev_priv->seqno_obj;
  3855. obj_priv = to_intel_bo(obj);
  3856. kunmap(obj_priv->pages[0]);
  3857. i915_gem_object_unpin(obj);
  3858. drm_gem_object_unreference(obj);
  3859. dev_priv->seqno_obj = NULL;
  3860. dev_priv->seqno_page = NULL;
  3861. }
  3862. int
  3863. i915_gem_init_ringbuffer(struct drm_device *dev)
  3864. {
  3865. drm_i915_private_t *dev_priv = dev->dev_private;
  3866. int ret;
  3867. if (HAS_PIPE_CONTROL(dev)) {
  3868. ret = i915_gem_init_pipe_control(dev);
  3869. if (ret)
  3870. return ret;
  3871. }
  3872. ret = intel_init_render_ring_buffer(dev);
  3873. if (ret)
  3874. goto cleanup_pipe_control;
  3875. if (HAS_BSD(dev)) {
  3876. ret = intel_init_bsd_ring_buffer(dev);
  3877. if (ret)
  3878. goto cleanup_render_ring;
  3879. }
  3880. dev_priv->next_seqno = 1;
  3881. return 0;
  3882. cleanup_render_ring:
  3883. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3884. cleanup_pipe_control:
  3885. if (HAS_PIPE_CONTROL(dev))
  3886. i915_gem_cleanup_pipe_control(dev);
  3887. return ret;
  3888. }
  3889. void
  3890. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3891. {
  3892. drm_i915_private_t *dev_priv = dev->dev_private;
  3893. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3894. if (HAS_BSD(dev))
  3895. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3896. if (HAS_PIPE_CONTROL(dev))
  3897. i915_gem_cleanup_pipe_control(dev);
  3898. }
  3899. int
  3900. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3901. struct drm_file *file_priv)
  3902. {
  3903. drm_i915_private_t *dev_priv = dev->dev_private;
  3904. int ret;
  3905. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3906. return 0;
  3907. if (atomic_read(&dev_priv->mm.wedged)) {
  3908. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3909. atomic_set(&dev_priv->mm.wedged, 0);
  3910. }
  3911. mutex_lock(&dev->struct_mutex);
  3912. dev_priv->mm.suspended = 0;
  3913. ret = i915_gem_init_ringbuffer(dev);
  3914. if (ret != 0) {
  3915. mutex_unlock(&dev->struct_mutex);
  3916. return ret;
  3917. }
  3918. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3919. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3920. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3921. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3922. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3923. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3924. mutex_unlock(&dev->struct_mutex);
  3925. ret = drm_irq_install(dev);
  3926. if (ret)
  3927. goto cleanup_ringbuffer;
  3928. return 0;
  3929. cleanup_ringbuffer:
  3930. mutex_lock(&dev->struct_mutex);
  3931. i915_gem_cleanup_ringbuffer(dev);
  3932. dev_priv->mm.suspended = 1;
  3933. mutex_unlock(&dev->struct_mutex);
  3934. return ret;
  3935. }
  3936. int
  3937. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3938. struct drm_file *file_priv)
  3939. {
  3940. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3941. return 0;
  3942. drm_irq_uninstall(dev);
  3943. return i915_gem_idle(dev);
  3944. }
  3945. void
  3946. i915_gem_lastclose(struct drm_device *dev)
  3947. {
  3948. int ret;
  3949. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3950. return;
  3951. ret = i915_gem_idle(dev);
  3952. if (ret)
  3953. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3954. }
  3955. void
  3956. i915_gem_load(struct drm_device *dev)
  3957. {
  3958. int i;
  3959. drm_i915_private_t *dev_priv = dev->dev_private;
  3960. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3961. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  3962. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3963. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3964. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3965. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3966. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  3967. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  3968. if (HAS_BSD(dev)) {
  3969. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  3970. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  3971. }
  3972. for (i = 0; i < 16; i++)
  3973. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3974. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3975. i915_gem_retire_work_handler);
  3976. init_completion(&dev_priv->error_completion);
  3977. spin_lock(&shrink_list_lock);
  3978. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3979. spin_unlock(&shrink_list_lock);
  3980. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3981. if (IS_GEN3(dev)) {
  3982. u32 tmp = I915_READ(MI_ARB_STATE);
  3983. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3984. /* arb state is a masked write, so set bit + bit in mask */
  3985. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3986. I915_WRITE(MI_ARB_STATE, tmp);
  3987. }
  3988. }
  3989. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3990. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3991. dev_priv->fence_reg_start = 3;
  3992. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3993. dev_priv->num_fence_regs = 16;
  3994. else
  3995. dev_priv->num_fence_regs = 8;
  3996. /* Initialize fence registers to zero */
  3997. switch (INTEL_INFO(dev)->gen) {
  3998. case 6:
  3999. for (i = 0; i < 16; i++)
  4000. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4001. break;
  4002. case 5:
  4003. case 4:
  4004. for (i = 0; i < 16; i++)
  4005. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4006. break;
  4007. case 3:
  4008. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4009. for (i = 0; i < 8; i++)
  4010. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4011. case 2:
  4012. for (i = 0; i < 8; i++)
  4013. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4014. break;
  4015. }
  4016. i915_gem_detect_bit_6_swizzle(dev);
  4017. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4018. }
  4019. /*
  4020. * Create a physically contiguous memory object for this object
  4021. * e.g. for cursor + overlay regs
  4022. */
  4023. static int i915_gem_init_phys_object(struct drm_device *dev,
  4024. int id, int size, int align)
  4025. {
  4026. drm_i915_private_t *dev_priv = dev->dev_private;
  4027. struct drm_i915_gem_phys_object *phys_obj;
  4028. int ret;
  4029. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4030. return 0;
  4031. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4032. if (!phys_obj)
  4033. return -ENOMEM;
  4034. phys_obj->id = id;
  4035. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4036. if (!phys_obj->handle) {
  4037. ret = -ENOMEM;
  4038. goto kfree_obj;
  4039. }
  4040. #ifdef CONFIG_X86
  4041. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4042. #endif
  4043. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4044. return 0;
  4045. kfree_obj:
  4046. kfree(phys_obj);
  4047. return ret;
  4048. }
  4049. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4050. {
  4051. drm_i915_private_t *dev_priv = dev->dev_private;
  4052. struct drm_i915_gem_phys_object *phys_obj;
  4053. if (!dev_priv->mm.phys_objs[id - 1])
  4054. return;
  4055. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4056. if (phys_obj->cur_obj) {
  4057. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4058. }
  4059. #ifdef CONFIG_X86
  4060. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4061. #endif
  4062. drm_pci_free(dev, phys_obj->handle);
  4063. kfree(phys_obj);
  4064. dev_priv->mm.phys_objs[id - 1] = NULL;
  4065. }
  4066. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4067. {
  4068. int i;
  4069. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4070. i915_gem_free_phys_object(dev, i);
  4071. }
  4072. void i915_gem_detach_phys_object(struct drm_device *dev,
  4073. struct drm_gem_object *obj)
  4074. {
  4075. struct drm_i915_gem_object *obj_priv;
  4076. int i;
  4077. int ret;
  4078. int page_count;
  4079. obj_priv = to_intel_bo(obj);
  4080. if (!obj_priv->phys_obj)
  4081. return;
  4082. ret = i915_gem_object_get_pages(obj, 0);
  4083. if (ret)
  4084. goto out;
  4085. page_count = obj->size / PAGE_SIZE;
  4086. for (i = 0; i < page_count; i++) {
  4087. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4088. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4089. memcpy(dst, src, PAGE_SIZE);
  4090. kunmap_atomic(dst, KM_USER0);
  4091. }
  4092. drm_clflush_pages(obj_priv->pages, page_count);
  4093. drm_agp_chipset_flush(dev);
  4094. i915_gem_object_put_pages(obj);
  4095. out:
  4096. obj_priv->phys_obj->cur_obj = NULL;
  4097. obj_priv->phys_obj = NULL;
  4098. }
  4099. int
  4100. i915_gem_attach_phys_object(struct drm_device *dev,
  4101. struct drm_gem_object *obj,
  4102. int id,
  4103. int align)
  4104. {
  4105. drm_i915_private_t *dev_priv = dev->dev_private;
  4106. struct drm_i915_gem_object *obj_priv;
  4107. int ret = 0;
  4108. int page_count;
  4109. int i;
  4110. if (id > I915_MAX_PHYS_OBJECT)
  4111. return -EINVAL;
  4112. obj_priv = to_intel_bo(obj);
  4113. if (obj_priv->phys_obj) {
  4114. if (obj_priv->phys_obj->id == id)
  4115. return 0;
  4116. i915_gem_detach_phys_object(dev, obj);
  4117. }
  4118. /* create a new object */
  4119. if (!dev_priv->mm.phys_objs[id - 1]) {
  4120. ret = i915_gem_init_phys_object(dev, id,
  4121. obj->size, align);
  4122. if (ret) {
  4123. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4124. goto out;
  4125. }
  4126. }
  4127. /* bind to the object */
  4128. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4129. obj_priv->phys_obj->cur_obj = obj;
  4130. ret = i915_gem_object_get_pages(obj, 0);
  4131. if (ret) {
  4132. DRM_ERROR("failed to get page list\n");
  4133. goto out;
  4134. }
  4135. page_count = obj->size / PAGE_SIZE;
  4136. for (i = 0; i < page_count; i++) {
  4137. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4138. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4139. memcpy(dst, src, PAGE_SIZE);
  4140. kunmap_atomic(src, KM_USER0);
  4141. }
  4142. i915_gem_object_put_pages(obj);
  4143. return 0;
  4144. out:
  4145. return ret;
  4146. }
  4147. static int
  4148. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4149. struct drm_i915_gem_pwrite *args,
  4150. struct drm_file *file_priv)
  4151. {
  4152. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4153. void *obj_addr;
  4154. int ret;
  4155. char __user *user_data;
  4156. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4157. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4158. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4159. ret = copy_from_user(obj_addr, user_data, args->size);
  4160. if (ret)
  4161. return -EFAULT;
  4162. drm_agp_chipset_flush(dev);
  4163. return 0;
  4164. }
  4165. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4166. {
  4167. struct drm_i915_file_private *file_priv = file->driver_priv;
  4168. /* Clean up our request list when the client is going away, so that
  4169. * later retire_requests won't dereference our soon-to-be-gone
  4170. * file_priv.
  4171. */
  4172. spin_lock(&file_priv->mm.lock);
  4173. while (!list_empty(&file_priv->mm.request_list)) {
  4174. struct drm_i915_gem_request *request;
  4175. request = list_first_entry(&file_priv->mm.request_list,
  4176. struct drm_i915_gem_request,
  4177. client_list);
  4178. list_del(&request->client_list);
  4179. request->file_priv = NULL;
  4180. }
  4181. spin_unlock(&file_priv->mm.lock);
  4182. }
  4183. static int
  4184. i915_gpu_is_active(struct drm_device *dev)
  4185. {
  4186. drm_i915_private_t *dev_priv = dev->dev_private;
  4187. int lists_empty;
  4188. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4189. list_empty(&dev_priv->render_ring.active_list);
  4190. if (HAS_BSD(dev))
  4191. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4192. return !lists_empty;
  4193. }
  4194. static int
  4195. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4196. {
  4197. drm_i915_private_t *dev_priv, *next_dev;
  4198. struct drm_i915_gem_object *obj_priv, *next_obj;
  4199. int cnt = 0;
  4200. int would_deadlock = 1;
  4201. /* "fast-path" to count number of available objects */
  4202. if (nr_to_scan == 0) {
  4203. spin_lock(&shrink_list_lock);
  4204. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4205. struct drm_device *dev = dev_priv->dev;
  4206. if (mutex_trylock(&dev->struct_mutex)) {
  4207. list_for_each_entry(obj_priv,
  4208. &dev_priv->mm.inactive_list,
  4209. list)
  4210. cnt++;
  4211. mutex_unlock(&dev->struct_mutex);
  4212. }
  4213. }
  4214. spin_unlock(&shrink_list_lock);
  4215. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4216. }
  4217. spin_lock(&shrink_list_lock);
  4218. rescan:
  4219. /* first scan for clean buffers */
  4220. list_for_each_entry_safe(dev_priv, next_dev,
  4221. &shrink_list, mm.shrink_list) {
  4222. struct drm_device *dev = dev_priv->dev;
  4223. if (! mutex_trylock(&dev->struct_mutex))
  4224. continue;
  4225. spin_unlock(&shrink_list_lock);
  4226. i915_gem_retire_requests(dev);
  4227. list_for_each_entry_safe(obj_priv, next_obj,
  4228. &dev_priv->mm.inactive_list,
  4229. list) {
  4230. if (i915_gem_object_is_purgeable(obj_priv)) {
  4231. i915_gem_object_unbind(&obj_priv->base);
  4232. if (--nr_to_scan <= 0)
  4233. break;
  4234. }
  4235. }
  4236. spin_lock(&shrink_list_lock);
  4237. mutex_unlock(&dev->struct_mutex);
  4238. would_deadlock = 0;
  4239. if (nr_to_scan <= 0)
  4240. break;
  4241. }
  4242. /* second pass, evict/count anything still on the inactive list */
  4243. list_for_each_entry_safe(dev_priv, next_dev,
  4244. &shrink_list, mm.shrink_list) {
  4245. struct drm_device *dev = dev_priv->dev;
  4246. if (! mutex_trylock(&dev->struct_mutex))
  4247. continue;
  4248. spin_unlock(&shrink_list_lock);
  4249. list_for_each_entry_safe(obj_priv, next_obj,
  4250. &dev_priv->mm.inactive_list,
  4251. list) {
  4252. if (nr_to_scan > 0) {
  4253. i915_gem_object_unbind(&obj_priv->base);
  4254. nr_to_scan--;
  4255. } else
  4256. cnt++;
  4257. }
  4258. spin_lock(&shrink_list_lock);
  4259. mutex_unlock(&dev->struct_mutex);
  4260. would_deadlock = 0;
  4261. }
  4262. if (nr_to_scan) {
  4263. int active = 0;
  4264. /*
  4265. * We are desperate for pages, so as a last resort, wait
  4266. * for the GPU to finish and discard whatever we can.
  4267. * This has a dramatic impact to reduce the number of
  4268. * OOM-killer events whilst running the GPU aggressively.
  4269. */
  4270. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4271. struct drm_device *dev = dev_priv->dev;
  4272. if (!mutex_trylock(&dev->struct_mutex))
  4273. continue;
  4274. spin_unlock(&shrink_list_lock);
  4275. if (i915_gpu_is_active(dev)) {
  4276. i915_gpu_idle(dev);
  4277. active++;
  4278. }
  4279. spin_lock(&shrink_list_lock);
  4280. mutex_unlock(&dev->struct_mutex);
  4281. }
  4282. if (active)
  4283. goto rescan;
  4284. }
  4285. spin_unlock(&shrink_list_lock);
  4286. if (would_deadlock)
  4287. return -1;
  4288. else if (cnt > 0)
  4289. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4290. else
  4291. return 0;
  4292. }
  4293. static struct shrinker shrinker = {
  4294. .shrink = i915_gem_shrink,
  4295. .seeks = DEFAULT_SEEKS,
  4296. };
  4297. __init void
  4298. i915_gem_shrinker_init(void)
  4299. {
  4300. register_shrinker(&shrinker);
  4301. }
  4302. __exit void
  4303. i915_gem_shrinker_exit(void)
  4304. {
  4305. unregister_shrinker(&shrinker);
  4306. }