checkpoint.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include <trace/events/f2fs.h>
  23. static struct kmem_cache *orphan_entry_slab;
  24. static struct kmem_cache *inode_entry_slab;
  25. /*
  26. * We guarantee no failure on the returned page.
  27. */
  28. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  29. {
  30. struct address_space *mapping = sbi->meta_inode->i_mapping;
  31. struct page *page = NULL;
  32. repeat:
  33. page = grab_cache_page(mapping, index);
  34. if (!page) {
  35. cond_resched();
  36. goto repeat;
  37. }
  38. /* We wait writeback only inside grab_meta_page() */
  39. wait_on_page_writeback(page);
  40. SetPageUptodate(page);
  41. return page;
  42. }
  43. /*
  44. * We guarantee no failure on the returned page.
  45. */
  46. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  47. {
  48. struct address_space *mapping = sbi->meta_inode->i_mapping;
  49. struct page *page;
  50. repeat:
  51. page = grab_cache_page(mapping, index);
  52. if (!page) {
  53. cond_resched();
  54. goto repeat;
  55. }
  56. if (PageUptodate(page))
  57. goto out;
  58. if (f2fs_readpage(sbi, page, index, READ_SYNC))
  59. goto repeat;
  60. lock_page(page);
  61. if (page->mapping != mapping) {
  62. f2fs_put_page(page, 1);
  63. goto repeat;
  64. }
  65. out:
  66. mark_page_accessed(page);
  67. return page;
  68. }
  69. static int f2fs_write_meta_page(struct page *page,
  70. struct writeback_control *wbc)
  71. {
  72. struct inode *inode = page->mapping->host;
  73. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  74. /* Should not write any meta pages, if any IO error was occurred */
  75. if (wbc->for_reclaim ||
  76. is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
  77. dec_page_count(sbi, F2FS_DIRTY_META);
  78. wbc->pages_skipped++;
  79. set_page_dirty(page);
  80. return AOP_WRITEPAGE_ACTIVATE;
  81. }
  82. wait_on_page_writeback(page);
  83. write_meta_page(sbi, page);
  84. dec_page_count(sbi, F2FS_DIRTY_META);
  85. unlock_page(page);
  86. return 0;
  87. }
  88. static int f2fs_write_meta_pages(struct address_space *mapping,
  89. struct writeback_control *wbc)
  90. {
  91. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  92. struct block_device *bdev = sbi->sb->s_bdev;
  93. long written;
  94. if (wbc->for_kupdate)
  95. return 0;
  96. if (get_pages(sbi, F2FS_DIRTY_META) == 0)
  97. return 0;
  98. /* if mounting is failed, skip writing node pages */
  99. mutex_lock(&sbi->cp_mutex);
  100. written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
  101. mutex_unlock(&sbi->cp_mutex);
  102. wbc->nr_to_write -= written;
  103. return 0;
  104. }
  105. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  106. long nr_to_write)
  107. {
  108. struct address_space *mapping = sbi->meta_inode->i_mapping;
  109. pgoff_t index = 0, end = LONG_MAX;
  110. struct pagevec pvec;
  111. long nwritten = 0;
  112. struct writeback_control wbc = {
  113. .for_reclaim = 0,
  114. };
  115. pagevec_init(&pvec, 0);
  116. while (index <= end) {
  117. int i, nr_pages;
  118. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  119. PAGECACHE_TAG_DIRTY,
  120. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  121. if (nr_pages == 0)
  122. break;
  123. for (i = 0; i < nr_pages; i++) {
  124. struct page *page = pvec.pages[i];
  125. lock_page(page);
  126. BUG_ON(page->mapping != mapping);
  127. BUG_ON(!PageDirty(page));
  128. clear_page_dirty_for_io(page);
  129. if (f2fs_write_meta_page(page, &wbc)) {
  130. unlock_page(page);
  131. break;
  132. }
  133. if (nwritten++ >= nr_to_write)
  134. break;
  135. }
  136. pagevec_release(&pvec);
  137. cond_resched();
  138. }
  139. if (nwritten)
  140. f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
  141. return nwritten;
  142. }
  143. static int f2fs_set_meta_page_dirty(struct page *page)
  144. {
  145. struct address_space *mapping = page->mapping;
  146. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  147. SetPageUptodate(page);
  148. if (!PageDirty(page)) {
  149. __set_page_dirty_nobuffers(page);
  150. inc_page_count(sbi, F2FS_DIRTY_META);
  151. return 1;
  152. }
  153. return 0;
  154. }
  155. const struct address_space_operations f2fs_meta_aops = {
  156. .writepage = f2fs_write_meta_page,
  157. .writepages = f2fs_write_meta_pages,
  158. .set_page_dirty = f2fs_set_meta_page_dirty,
  159. };
  160. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  161. {
  162. unsigned int max_orphans;
  163. int err = 0;
  164. /*
  165. * considering 512 blocks in a segment 5 blocks are needed for cp
  166. * and log segment summaries. Remaining blocks are used to keep
  167. * orphan entries with the limitation one reserved segment
  168. * for cp pack we can have max 1020*507 orphan entries
  169. */
  170. max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
  171. mutex_lock(&sbi->orphan_inode_mutex);
  172. if (sbi->n_orphans >= max_orphans)
  173. err = -ENOSPC;
  174. else
  175. sbi->n_orphans++;
  176. mutex_unlock(&sbi->orphan_inode_mutex);
  177. return err;
  178. }
  179. void release_orphan_inode(struct f2fs_sb_info *sbi)
  180. {
  181. mutex_lock(&sbi->orphan_inode_mutex);
  182. BUG_ON(sbi->n_orphans == 0);
  183. sbi->n_orphans--;
  184. mutex_unlock(&sbi->orphan_inode_mutex);
  185. }
  186. void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  187. {
  188. struct list_head *head, *this;
  189. struct orphan_inode_entry *new = NULL, *orphan = NULL;
  190. mutex_lock(&sbi->orphan_inode_mutex);
  191. head = &sbi->orphan_inode_list;
  192. list_for_each(this, head) {
  193. orphan = list_entry(this, struct orphan_inode_entry, list);
  194. if (orphan->ino == ino)
  195. goto out;
  196. if (orphan->ino > ino)
  197. break;
  198. orphan = NULL;
  199. }
  200. retry:
  201. new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
  202. if (!new) {
  203. cond_resched();
  204. goto retry;
  205. }
  206. new->ino = ino;
  207. /* add new_oentry into list which is sorted by inode number */
  208. if (orphan)
  209. list_add(&new->list, this->prev);
  210. else
  211. list_add_tail(&new->list, head);
  212. out:
  213. mutex_unlock(&sbi->orphan_inode_mutex);
  214. }
  215. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  216. {
  217. struct list_head *head;
  218. struct orphan_inode_entry *orphan;
  219. mutex_lock(&sbi->orphan_inode_mutex);
  220. head = &sbi->orphan_inode_list;
  221. list_for_each_entry(orphan, head, list) {
  222. if (orphan->ino == ino) {
  223. list_del(&orphan->list);
  224. kmem_cache_free(orphan_entry_slab, orphan);
  225. BUG_ON(sbi->n_orphans == 0);
  226. sbi->n_orphans--;
  227. break;
  228. }
  229. }
  230. mutex_unlock(&sbi->orphan_inode_mutex);
  231. }
  232. static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  233. {
  234. struct inode *inode = f2fs_iget(sbi->sb, ino);
  235. BUG_ON(IS_ERR(inode));
  236. clear_nlink(inode);
  237. /* truncate all the data during iput */
  238. iput(inode);
  239. }
  240. int recover_orphan_inodes(struct f2fs_sb_info *sbi)
  241. {
  242. block_t start_blk, orphan_blkaddr, i, j;
  243. if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
  244. return 0;
  245. sbi->por_doing = 1;
  246. start_blk = __start_cp_addr(sbi) + 1;
  247. orphan_blkaddr = __start_sum_addr(sbi) - 1;
  248. for (i = 0; i < orphan_blkaddr; i++) {
  249. struct page *page = get_meta_page(sbi, start_blk + i);
  250. struct f2fs_orphan_block *orphan_blk;
  251. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  252. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  253. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  254. recover_orphan_inode(sbi, ino);
  255. }
  256. f2fs_put_page(page, 1);
  257. }
  258. /* clear Orphan Flag */
  259. clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
  260. sbi->por_doing = 0;
  261. return 0;
  262. }
  263. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  264. {
  265. struct list_head *head, *this, *next;
  266. struct f2fs_orphan_block *orphan_blk = NULL;
  267. struct page *page = NULL;
  268. unsigned int nentries = 0;
  269. unsigned short index = 1;
  270. unsigned short orphan_blocks;
  271. orphan_blocks = (unsigned short)((sbi->n_orphans +
  272. (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
  273. mutex_lock(&sbi->orphan_inode_mutex);
  274. head = &sbi->orphan_inode_list;
  275. /* loop for each orphan inode entry and write them in Jornal block */
  276. list_for_each_safe(this, next, head) {
  277. struct orphan_inode_entry *orphan;
  278. orphan = list_entry(this, struct orphan_inode_entry, list);
  279. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  280. /*
  281. * an orphan block is full of 1020 entries,
  282. * then we need to flush current orphan blocks
  283. * and bring another one in memory
  284. */
  285. orphan_blk->blk_addr = cpu_to_le16(index);
  286. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  287. orphan_blk->entry_count = cpu_to_le32(nentries);
  288. set_page_dirty(page);
  289. f2fs_put_page(page, 1);
  290. index++;
  291. start_blk++;
  292. nentries = 0;
  293. page = NULL;
  294. }
  295. if (page)
  296. goto page_exist;
  297. page = grab_meta_page(sbi, start_blk);
  298. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  299. memset(orphan_blk, 0, sizeof(*orphan_blk));
  300. page_exist:
  301. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  302. }
  303. if (!page)
  304. goto end;
  305. orphan_blk->blk_addr = cpu_to_le16(index);
  306. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  307. orphan_blk->entry_count = cpu_to_le32(nentries);
  308. set_page_dirty(page);
  309. f2fs_put_page(page, 1);
  310. end:
  311. mutex_unlock(&sbi->orphan_inode_mutex);
  312. }
  313. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  314. block_t cp_addr, unsigned long long *version)
  315. {
  316. struct page *cp_page_1, *cp_page_2 = NULL;
  317. unsigned long blk_size = sbi->blocksize;
  318. struct f2fs_checkpoint *cp_block;
  319. unsigned long long cur_version = 0, pre_version = 0;
  320. size_t crc_offset;
  321. __u32 crc = 0;
  322. /* Read the 1st cp block in this CP pack */
  323. cp_page_1 = get_meta_page(sbi, cp_addr);
  324. /* get the version number */
  325. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
  326. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  327. if (crc_offset >= blk_size)
  328. goto invalid_cp1;
  329. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  330. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  331. goto invalid_cp1;
  332. pre_version = cur_cp_version(cp_block);
  333. /* Read the 2nd cp block in this CP pack */
  334. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  335. cp_page_2 = get_meta_page(sbi, cp_addr);
  336. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
  337. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  338. if (crc_offset >= blk_size)
  339. goto invalid_cp2;
  340. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  341. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  342. goto invalid_cp2;
  343. cur_version = cur_cp_version(cp_block);
  344. if (cur_version == pre_version) {
  345. *version = cur_version;
  346. f2fs_put_page(cp_page_2, 1);
  347. return cp_page_1;
  348. }
  349. invalid_cp2:
  350. f2fs_put_page(cp_page_2, 1);
  351. invalid_cp1:
  352. f2fs_put_page(cp_page_1, 1);
  353. return NULL;
  354. }
  355. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  356. {
  357. struct f2fs_checkpoint *cp_block;
  358. struct f2fs_super_block *fsb = sbi->raw_super;
  359. struct page *cp1, *cp2, *cur_page;
  360. unsigned long blk_size = sbi->blocksize;
  361. unsigned long long cp1_version = 0, cp2_version = 0;
  362. unsigned long long cp_start_blk_no;
  363. sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
  364. if (!sbi->ckpt)
  365. return -ENOMEM;
  366. /*
  367. * Finding out valid cp block involves read both
  368. * sets( cp pack1 and cp pack 2)
  369. */
  370. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  371. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  372. /* The second checkpoint pack should start at the next segment */
  373. cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  374. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  375. if (cp1 && cp2) {
  376. if (ver_after(cp2_version, cp1_version))
  377. cur_page = cp2;
  378. else
  379. cur_page = cp1;
  380. } else if (cp1) {
  381. cur_page = cp1;
  382. } else if (cp2) {
  383. cur_page = cp2;
  384. } else {
  385. goto fail_no_cp;
  386. }
  387. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  388. memcpy(sbi->ckpt, cp_block, blk_size);
  389. f2fs_put_page(cp1, 1);
  390. f2fs_put_page(cp2, 1);
  391. return 0;
  392. fail_no_cp:
  393. kfree(sbi->ckpt);
  394. return -EINVAL;
  395. }
  396. static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
  397. {
  398. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  399. struct list_head *head = &sbi->dir_inode_list;
  400. struct list_head *this;
  401. list_for_each(this, head) {
  402. struct dir_inode_entry *entry;
  403. entry = list_entry(this, struct dir_inode_entry, list);
  404. if (entry->inode == inode)
  405. return -EEXIST;
  406. }
  407. list_add_tail(&new->list, head);
  408. #ifdef CONFIG_F2FS_STAT_FS
  409. sbi->n_dirty_dirs++;
  410. #endif
  411. return 0;
  412. }
  413. void set_dirty_dir_page(struct inode *inode, struct page *page)
  414. {
  415. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  416. struct dir_inode_entry *new;
  417. if (!S_ISDIR(inode->i_mode))
  418. return;
  419. retry:
  420. new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  421. if (!new) {
  422. cond_resched();
  423. goto retry;
  424. }
  425. new->inode = inode;
  426. INIT_LIST_HEAD(&new->list);
  427. spin_lock(&sbi->dir_inode_lock);
  428. if (__add_dirty_inode(inode, new))
  429. kmem_cache_free(inode_entry_slab, new);
  430. inc_page_count(sbi, F2FS_DIRTY_DENTS);
  431. inode_inc_dirty_dents(inode);
  432. SetPagePrivate(page);
  433. spin_unlock(&sbi->dir_inode_lock);
  434. }
  435. void add_dirty_dir_inode(struct inode *inode)
  436. {
  437. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  438. struct dir_inode_entry *new;
  439. retry:
  440. new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  441. if (!new) {
  442. cond_resched();
  443. goto retry;
  444. }
  445. new->inode = inode;
  446. INIT_LIST_HEAD(&new->list);
  447. spin_lock(&sbi->dir_inode_lock);
  448. if (__add_dirty_inode(inode, new))
  449. kmem_cache_free(inode_entry_slab, new);
  450. spin_unlock(&sbi->dir_inode_lock);
  451. }
  452. void remove_dirty_dir_inode(struct inode *inode)
  453. {
  454. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  455. struct list_head *head = &sbi->dir_inode_list;
  456. struct list_head *this;
  457. if (!S_ISDIR(inode->i_mode))
  458. return;
  459. spin_lock(&sbi->dir_inode_lock);
  460. if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
  461. spin_unlock(&sbi->dir_inode_lock);
  462. return;
  463. }
  464. list_for_each(this, head) {
  465. struct dir_inode_entry *entry;
  466. entry = list_entry(this, struct dir_inode_entry, list);
  467. if (entry->inode == inode) {
  468. list_del(&entry->list);
  469. kmem_cache_free(inode_entry_slab, entry);
  470. #ifdef CONFIG_F2FS_STAT_FS
  471. sbi->n_dirty_dirs--;
  472. #endif
  473. break;
  474. }
  475. }
  476. spin_unlock(&sbi->dir_inode_lock);
  477. /* Only from the recovery routine */
  478. if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
  479. clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
  480. iput(inode);
  481. }
  482. }
  483. struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
  484. {
  485. struct list_head *head = &sbi->dir_inode_list;
  486. struct list_head *this;
  487. struct inode *inode = NULL;
  488. spin_lock(&sbi->dir_inode_lock);
  489. list_for_each(this, head) {
  490. struct dir_inode_entry *entry;
  491. entry = list_entry(this, struct dir_inode_entry, list);
  492. if (entry->inode->i_ino == ino) {
  493. inode = entry->inode;
  494. break;
  495. }
  496. }
  497. spin_unlock(&sbi->dir_inode_lock);
  498. return inode;
  499. }
  500. void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
  501. {
  502. struct list_head *head = &sbi->dir_inode_list;
  503. struct dir_inode_entry *entry;
  504. struct inode *inode;
  505. retry:
  506. spin_lock(&sbi->dir_inode_lock);
  507. if (list_empty(head)) {
  508. spin_unlock(&sbi->dir_inode_lock);
  509. return;
  510. }
  511. entry = list_entry(head->next, struct dir_inode_entry, list);
  512. inode = igrab(entry->inode);
  513. spin_unlock(&sbi->dir_inode_lock);
  514. if (inode) {
  515. filemap_flush(inode->i_mapping);
  516. iput(inode);
  517. } else {
  518. /*
  519. * We should submit bio, since it exists several
  520. * wribacking dentry pages in the freeing inode.
  521. */
  522. f2fs_submit_bio(sbi, DATA, true);
  523. }
  524. goto retry;
  525. }
  526. /*
  527. * Freeze all the FS-operations for checkpoint.
  528. */
  529. static void block_operations(struct f2fs_sb_info *sbi)
  530. {
  531. struct writeback_control wbc = {
  532. .sync_mode = WB_SYNC_ALL,
  533. .nr_to_write = LONG_MAX,
  534. .for_reclaim = 0,
  535. };
  536. struct blk_plug plug;
  537. blk_start_plug(&plug);
  538. retry_flush_dents:
  539. f2fs_lock_all(sbi);
  540. /* write all the dirty dentry pages */
  541. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  542. f2fs_unlock_all(sbi);
  543. sync_dirty_dir_inodes(sbi);
  544. goto retry_flush_dents;
  545. }
  546. /*
  547. * POR: we should ensure that there is no dirty node pages
  548. * until finishing nat/sit flush.
  549. */
  550. retry_flush_nodes:
  551. mutex_lock(&sbi->node_write);
  552. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  553. mutex_unlock(&sbi->node_write);
  554. sync_node_pages(sbi, 0, &wbc);
  555. goto retry_flush_nodes;
  556. }
  557. blk_finish_plug(&plug);
  558. }
  559. static void unblock_operations(struct f2fs_sb_info *sbi)
  560. {
  561. mutex_unlock(&sbi->node_write);
  562. f2fs_unlock_all(sbi);
  563. }
  564. static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
  565. {
  566. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  567. nid_t last_nid = 0;
  568. block_t start_blk;
  569. struct page *cp_page;
  570. unsigned int data_sum_blocks, orphan_blocks;
  571. __u32 crc32 = 0;
  572. void *kaddr;
  573. int i;
  574. /* Flush all the NAT/SIT pages */
  575. while (get_pages(sbi, F2FS_DIRTY_META))
  576. sync_meta_pages(sbi, META, LONG_MAX);
  577. next_free_nid(sbi, &last_nid);
  578. /*
  579. * modify checkpoint
  580. * version number is already updated
  581. */
  582. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  583. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  584. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  585. for (i = 0; i < 3; i++) {
  586. ckpt->cur_node_segno[i] =
  587. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  588. ckpt->cur_node_blkoff[i] =
  589. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  590. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  591. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  592. }
  593. for (i = 0; i < 3; i++) {
  594. ckpt->cur_data_segno[i] =
  595. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  596. ckpt->cur_data_blkoff[i] =
  597. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  598. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  599. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  600. }
  601. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  602. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  603. ckpt->next_free_nid = cpu_to_le32(last_nid);
  604. /* 2 cp + n data seg summary + orphan inode blocks */
  605. data_sum_blocks = npages_for_summary_flush(sbi);
  606. if (data_sum_blocks < 3)
  607. set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  608. else
  609. clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  610. orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
  611. / F2FS_ORPHANS_PER_BLOCK;
  612. ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
  613. if (is_umount) {
  614. set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  615. ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
  616. data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
  617. } else {
  618. clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  619. ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
  620. data_sum_blocks + orphan_blocks);
  621. }
  622. if (sbi->n_orphans)
  623. set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  624. else
  625. clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  626. /* update SIT/NAT bitmap */
  627. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  628. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  629. crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
  630. *((__le32 *)((unsigned char *)ckpt +
  631. le32_to_cpu(ckpt->checksum_offset)))
  632. = cpu_to_le32(crc32);
  633. start_blk = __start_cp_addr(sbi);
  634. /* write out checkpoint buffer at block 0 */
  635. cp_page = grab_meta_page(sbi, start_blk++);
  636. kaddr = page_address(cp_page);
  637. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  638. set_page_dirty(cp_page);
  639. f2fs_put_page(cp_page, 1);
  640. if (sbi->n_orphans) {
  641. write_orphan_inodes(sbi, start_blk);
  642. start_blk += orphan_blocks;
  643. }
  644. write_data_summaries(sbi, start_blk);
  645. start_blk += data_sum_blocks;
  646. if (is_umount) {
  647. write_node_summaries(sbi, start_blk);
  648. start_blk += NR_CURSEG_NODE_TYPE;
  649. }
  650. /* writeout checkpoint block */
  651. cp_page = grab_meta_page(sbi, start_blk);
  652. kaddr = page_address(cp_page);
  653. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  654. set_page_dirty(cp_page);
  655. f2fs_put_page(cp_page, 1);
  656. /* wait for previous submitted node/meta pages writeback */
  657. while (get_pages(sbi, F2FS_WRITEBACK))
  658. congestion_wait(BLK_RW_ASYNC, HZ / 50);
  659. filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
  660. filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
  661. /* update user_block_counts */
  662. sbi->last_valid_block_count = sbi->total_valid_block_count;
  663. sbi->alloc_valid_block_count = 0;
  664. /* Here, we only have one bio having CP pack */
  665. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  666. if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
  667. clear_prefree_segments(sbi);
  668. F2FS_RESET_SB_DIRT(sbi);
  669. }
  670. }
  671. /*
  672. * We guarantee that this checkpoint procedure should not fail.
  673. */
  674. void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
  675. {
  676. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  677. unsigned long long ckpt_ver;
  678. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
  679. mutex_lock(&sbi->cp_mutex);
  680. block_operations(sbi);
  681. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
  682. f2fs_submit_bio(sbi, DATA, true);
  683. f2fs_submit_bio(sbi, NODE, true);
  684. f2fs_submit_bio(sbi, META, true);
  685. /*
  686. * update checkpoint pack index
  687. * Increase the version number so that
  688. * SIT entries and seg summaries are written at correct place
  689. */
  690. ckpt_ver = cur_cp_version(ckpt);
  691. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  692. /* write cached NAT/SIT entries to NAT/SIT area */
  693. flush_nat_entries(sbi);
  694. flush_sit_entries(sbi);
  695. /* unlock all the fs_lock[] in do_checkpoint() */
  696. do_checkpoint(sbi, is_umount);
  697. unblock_operations(sbi);
  698. mutex_unlock(&sbi->cp_mutex);
  699. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
  700. }
  701. void init_orphan_info(struct f2fs_sb_info *sbi)
  702. {
  703. mutex_init(&sbi->orphan_inode_mutex);
  704. INIT_LIST_HEAD(&sbi->orphan_inode_list);
  705. sbi->n_orphans = 0;
  706. }
  707. int __init create_checkpoint_caches(void)
  708. {
  709. orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
  710. sizeof(struct orphan_inode_entry), NULL);
  711. if (unlikely(!orphan_entry_slab))
  712. return -ENOMEM;
  713. inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
  714. sizeof(struct dir_inode_entry), NULL);
  715. if (unlikely(!inode_entry_slab)) {
  716. kmem_cache_destroy(orphan_entry_slab);
  717. return -ENOMEM;
  718. }
  719. return 0;
  720. }
  721. void destroy_checkpoint_caches(void)
  722. {
  723. kmem_cache_destroy(orphan_entry_slab);
  724. kmem_cache_destroy(inode_entry_slab);
  725. }