elevator.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@suse.de> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/config.h>
  31. #include <linux/module.h>
  32. #include <linux/slab.h>
  33. #include <linux/init.h>
  34. #include <linux/compiler.h>
  35. #include <linux/delay.h>
  36. #include <asm/uaccess.h>
  37. static DEFINE_SPINLOCK(elv_list_lock);
  38. static LIST_HEAD(elv_list);
  39. /*
  40. * can we safely merge with this request?
  41. */
  42. inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  43. {
  44. if (!rq_mergeable(rq))
  45. return 0;
  46. /*
  47. * different data direction or already started, don't merge
  48. */
  49. if (bio_data_dir(bio) != rq_data_dir(rq))
  50. return 0;
  51. /*
  52. * same device and no special stuff set, merge is ok
  53. */
  54. if (rq->rq_disk == bio->bi_bdev->bd_disk &&
  55. !rq->waiting && !rq->special)
  56. return 1;
  57. return 0;
  58. }
  59. EXPORT_SYMBOL(elv_rq_merge_ok);
  60. static inline int elv_try_merge(struct request *__rq, struct bio *bio)
  61. {
  62. int ret = ELEVATOR_NO_MERGE;
  63. /*
  64. * we can merge and sequence is ok, check if it's possible
  65. */
  66. if (elv_rq_merge_ok(__rq, bio)) {
  67. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  68. ret = ELEVATOR_BACK_MERGE;
  69. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  70. ret = ELEVATOR_FRONT_MERGE;
  71. }
  72. return ret;
  73. }
  74. static struct elevator_type *elevator_find(const char *name)
  75. {
  76. struct elevator_type *e = NULL;
  77. struct list_head *entry;
  78. list_for_each(entry, &elv_list) {
  79. struct elevator_type *__e;
  80. __e = list_entry(entry, struct elevator_type, list);
  81. if (!strcmp(__e->elevator_name, name)) {
  82. e = __e;
  83. break;
  84. }
  85. }
  86. return e;
  87. }
  88. static void elevator_put(struct elevator_type *e)
  89. {
  90. module_put(e->elevator_owner);
  91. }
  92. static struct elevator_type *elevator_get(const char *name)
  93. {
  94. struct elevator_type *e;
  95. spin_lock_irq(&elv_list_lock);
  96. e = elevator_find(name);
  97. if (e && !try_module_get(e->elevator_owner))
  98. e = NULL;
  99. spin_unlock_irq(&elv_list_lock);
  100. return e;
  101. }
  102. static int elevator_attach(request_queue_t *q, struct elevator_queue *eq)
  103. {
  104. int ret = 0;
  105. q->elevator = eq;
  106. if (eq->ops->elevator_init_fn)
  107. ret = eq->ops->elevator_init_fn(q, eq);
  108. return ret;
  109. }
  110. static char chosen_elevator[16];
  111. static int __init elevator_setup(char *str)
  112. {
  113. /*
  114. * Be backwards-compatible with previous kernels, so users
  115. * won't get the wrong elevator.
  116. */
  117. if (!strcmp(str, "as"))
  118. strcpy(chosen_elevator, "anticipatory");
  119. else
  120. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  121. return 0;
  122. }
  123. __setup("elevator=", elevator_setup);
  124. static struct kobj_type elv_ktype;
  125. static elevator_t *elevator_alloc(struct elevator_type *e)
  126. {
  127. elevator_t *eq = kmalloc(sizeof(elevator_t), GFP_KERNEL);
  128. if (eq) {
  129. memset(eq, 0, sizeof(*eq));
  130. eq->ops = &e->ops;
  131. eq->elevator_type = e;
  132. kobject_init(&eq->kobj);
  133. snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
  134. eq->kobj.ktype = &elv_ktype;
  135. mutex_init(&eq->sysfs_lock);
  136. } else {
  137. elevator_put(e);
  138. }
  139. return eq;
  140. }
  141. static void elevator_release(struct kobject *kobj)
  142. {
  143. elevator_t *e = container_of(kobj, elevator_t, kobj);
  144. elevator_put(e->elevator_type);
  145. kfree(e);
  146. }
  147. int elevator_init(request_queue_t *q, char *name)
  148. {
  149. struct elevator_type *e = NULL;
  150. struct elevator_queue *eq;
  151. int ret = 0;
  152. INIT_LIST_HEAD(&q->queue_head);
  153. q->last_merge = NULL;
  154. q->end_sector = 0;
  155. q->boundary_rq = NULL;
  156. if (name && !(e = elevator_get(name)))
  157. return -EINVAL;
  158. if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
  159. printk("I/O scheduler %s not found\n", chosen_elevator);
  160. if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
  161. printk("Default I/O scheduler not found, using no-op\n");
  162. e = elevator_get("noop");
  163. }
  164. eq = elevator_alloc(e);
  165. if (!eq)
  166. return -ENOMEM;
  167. ret = elevator_attach(q, eq);
  168. if (ret)
  169. kobject_put(&eq->kobj);
  170. return ret;
  171. }
  172. void elevator_exit(elevator_t *e)
  173. {
  174. mutex_lock(&e->sysfs_lock);
  175. if (e->ops->elevator_exit_fn)
  176. e->ops->elevator_exit_fn(e);
  177. e->ops = NULL;
  178. mutex_unlock(&e->sysfs_lock);
  179. kobject_put(&e->kobj);
  180. }
  181. /*
  182. * Insert rq into dispatch queue of q. Queue lock must be held on
  183. * entry. If sort != 0, rq is sort-inserted; otherwise, rq will be
  184. * appended to the dispatch queue. To be used by specific elevators.
  185. */
  186. void elv_dispatch_sort(request_queue_t *q, struct request *rq)
  187. {
  188. sector_t boundary;
  189. struct list_head *entry;
  190. if (q->last_merge == rq)
  191. q->last_merge = NULL;
  192. q->nr_sorted--;
  193. boundary = q->end_sector;
  194. list_for_each_prev(entry, &q->queue_head) {
  195. struct request *pos = list_entry_rq(entry);
  196. if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
  197. break;
  198. if (rq->sector >= boundary) {
  199. if (pos->sector < boundary)
  200. continue;
  201. } else {
  202. if (pos->sector >= boundary)
  203. break;
  204. }
  205. if (rq->sector >= pos->sector)
  206. break;
  207. }
  208. list_add(&rq->queuelist, entry);
  209. }
  210. int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
  211. {
  212. elevator_t *e = q->elevator;
  213. int ret;
  214. if (q->last_merge) {
  215. ret = elv_try_merge(q->last_merge, bio);
  216. if (ret != ELEVATOR_NO_MERGE) {
  217. *req = q->last_merge;
  218. return ret;
  219. }
  220. }
  221. if (e->ops->elevator_merge_fn)
  222. return e->ops->elevator_merge_fn(q, req, bio);
  223. return ELEVATOR_NO_MERGE;
  224. }
  225. void elv_merged_request(request_queue_t *q, struct request *rq)
  226. {
  227. elevator_t *e = q->elevator;
  228. if (e->ops->elevator_merged_fn)
  229. e->ops->elevator_merged_fn(q, rq);
  230. q->last_merge = rq;
  231. }
  232. void elv_merge_requests(request_queue_t *q, struct request *rq,
  233. struct request *next)
  234. {
  235. elevator_t *e = q->elevator;
  236. if (e->ops->elevator_merge_req_fn)
  237. e->ops->elevator_merge_req_fn(q, rq, next);
  238. q->nr_sorted--;
  239. q->last_merge = rq;
  240. }
  241. void elv_requeue_request(request_queue_t *q, struct request *rq)
  242. {
  243. elevator_t *e = q->elevator;
  244. /*
  245. * it already went through dequeue, we need to decrement the
  246. * in_flight count again
  247. */
  248. if (blk_account_rq(rq)) {
  249. q->in_flight--;
  250. if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
  251. e->ops->elevator_deactivate_req_fn(q, rq);
  252. }
  253. rq->flags &= ~REQ_STARTED;
  254. elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
  255. }
  256. static void elv_drain_elevator(request_queue_t *q)
  257. {
  258. static int printed;
  259. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  260. ;
  261. if (q->nr_sorted == 0)
  262. return;
  263. if (printed++ < 10) {
  264. printk(KERN_ERR "%s: forced dispatching is broken "
  265. "(nr_sorted=%u), please report this\n",
  266. q->elevator->elevator_type->elevator_name, q->nr_sorted);
  267. }
  268. }
  269. void elv_insert(request_queue_t *q, struct request *rq, int where)
  270. {
  271. struct list_head *pos;
  272. unsigned ordseq;
  273. rq->q = q;
  274. switch (where) {
  275. case ELEVATOR_INSERT_FRONT:
  276. rq->flags |= REQ_SOFTBARRIER;
  277. list_add(&rq->queuelist, &q->queue_head);
  278. break;
  279. case ELEVATOR_INSERT_BACK:
  280. rq->flags |= REQ_SOFTBARRIER;
  281. elv_drain_elevator(q);
  282. list_add_tail(&rq->queuelist, &q->queue_head);
  283. /*
  284. * We kick the queue here for the following reasons.
  285. * - The elevator might have returned NULL previously
  286. * to delay requests and returned them now. As the
  287. * queue wasn't empty before this request, ll_rw_blk
  288. * won't run the queue on return, resulting in hang.
  289. * - Usually, back inserted requests won't be merged
  290. * with anything. There's no point in delaying queue
  291. * processing.
  292. */
  293. blk_remove_plug(q);
  294. q->request_fn(q);
  295. break;
  296. case ELEVATOR_INSERT_SORT:
  297. BUG_ON(!blk_fs_request(rq));
  298. rq->flags |= REQ_SORTED;
  299. q->nr_sorted++;
  300. if (q->last_merge == NULL && rq_mergeable(rq))
  301. q->last_merge = rq;
  302. /*
  303. * Some ioscheds (cfq) run q->request_fn directly, so
  304. * rq cannot be accessed after calling
  305. * elevator_add_req_fn.
  306. */
  307. q->elevator->ops->elevator_add_req_fn(q, rq);
  308. break;
  309. case ELEVATOR_INSERT_REQUEUE:
  310. /*
  311. * If ordered flush isn't in progress, we do front
  312. * insertion; otherwise, requests should be requeued
  313. * in ordseq order.
  314. */
  315. rq->flags |= REQ_SOFTBARRIER;
  316. if (q->ordseq == 0) {
  317. list_add(&rq->queuelist, &q->queue_head);
  318. break;
  319. }
  320. ordseq = blk_ordered_req_seq(rq);
  321. list_for_each(pos, &q->queue_head) {
  322. struct request *pos_rq = list_entry_rq(pos);
  323. if (ordseq <= blk_ordered_req_seq(pos_rq))
  324. break;
  325. }
  326. list_add_tail(&rq->queuelist, pos);
  327. break;
  328. default:
  329. printk(KERN_ERR "%s: bad insertion point %d\n",
  330. __FUNCTION__, where);
  331. BUG();
  332. }
  333. if (blk_queue_plugged(q)) {
  334. int nrq = q->rq.count[READ] + q->rq.count[WRITE]
  335. - q->in_flight;
  336. if (nrq >= q->unplug_thresh)
  337. __generic_unplug_device(q);
  338. }
  339. }
  340. void __elv_add_request(request_queue_t *q, struct request *rq, int where,
  341. int plug)
  342. {
  343. if (q->ordcolor)
  344. rq->flags |= REQ_ORDERED_COLOR;
  345. if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  346. /*
  347. * toggle ordered color
  348. */
  349. if (blk_barrier_rq(rq))
  350. q->ordcolor ^= 1;
  351. /*
  352. * barriers implicitly indicate back insertion
  353. */
  354. if (where == ELEVATOR_INSERT_SORT)
  355. where = ELEVATOR_INSERT_BACK;
  356. /*
  357. * this request is scheduling boundary, update
  358. * end_sector
  359. */
  360. if (blk_fs_request(rq)) {
  361. q->end_sector = rq_end_sector(rq);
  362. q->boundary_rq = rq;
  363. }
  364. } else if (!(rq->flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
  365. where = ELEVATOR_INSERT_BACK;
  366. if (plug)
  367. blk_plug_device(q);
  368. elv_insert(q, rq, where);
  369. }
  370. void elv_add_request(request_queue_t *q, struct request *rq, int where,
  371. int plug)
  372. {
  373. unsigned long flags;
  374. spin_lock_irqsave(q->queue_lock, flags);
  375. __elv_add_request(q, rq, where, plug);
  376. spin_unlock_irqrestore(q->queue_lock, flags);
  377. }
  378. static inline struct request *__elv_next_request(request_queue_t *q)
  379. {
  380. struct request *rq;
  381. while (1) {
  382. while (!list_empty(&q->queue_head)) {
  383. rq = list_entry_rq(q->queue_head.next);
  384. if (blk_do_ordered(q, &rq))
  385. return rq;
  386. }
  387. if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
  388. return NULL;
  389. }
  390. }
  391. struct request *elv_next_request(request_queue_t *q)
  392. {
  393. struct request *rq;
  394. int ret;
  395. while ((rq = __elv_next_request(q)) != NULL) {
  396. if (!(rq->flags & REQ_STARTED)) {
  397. elevator_t *e = q->elevator;
  398. /*
  399. * This is the first time the device driver
  400. * sees this request (possibly after
  401. * requeueing). Notify IO scheduler.
  402. */
  403. if (blk_sorted_rq(rq) &&
  404. e->ops->elevator_activate_req_fn)
  405. e->ops->elevator_activate_req_fn(q, rq);
  406. /*
  407. * just mark as started even if we don't start
  408. * it, a request that has been delayed should
  409. * not be passed by new incoming requests
  410. */
  411. rq->flags |= REQ_STARTED;
  412. }
  413. if (!q->boundary_rq || q->boundary_rq == rq) {
  414. q->end_sector = rq_end_sector(rq);
  415. q->boundary_rq = NULL;
  416. }
  417. if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn)
  418. break;
  419. ret = q->prep_rq_fn(q, rq);
  420. if (ret == BLKPREP_OK) {
  421. break;
  422. } else if (ret == BLKPREP_DEFER) {
  423. /*
  424. * the request may have been (partially) prepped.
  425. * we need to keep this request in the front to
  426. * avoid resource deadlock. REQ_STARTED will
  427. * prevent other fs requests from passing this one.
  428. */
  429. rq = NULL;
  430. break;
  431. } else if (ret == BLKPREP_KILL) {
  432. int nr_bytes = rq->hard_nr_sectors << 9;
  433. if (!nr_bytes)
  434. nr_bytes = rq->data_len;
  435. blkdev_dequeue_request(rq);
  436. rq->flags |= REQ_QUIET;
  437. end_that_request_chunk(rq, 0, nr_bytes);
  438. end_that_request_last(rq, 0);
  439. } else {
  440. printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
  441. ret);
  442. break;
  443. }
  444. }
  445. return rq;
  446. }
  447. void elv_dequeue_request(request_queue_t *q, struct request *rq)
  448. {
  449. BUG_ON(list_empty(&rq->queuelist));
  450. list_del_init(&rq->queuelist);
  451. /*
  452. * the time frame between a request being removed from the lists
  453. * and to it is freed is accounted as io that is in progress at
  454. * the driver side.
  455. */
  456. if (blk_account_rq(rq))
  457. q->in_flight++;
  458. }
  459. int elv_queue_empty(request_queue_t *q)
  460. {
  461. elevator_t *e = q->elevator;
  462. if (!list_empty(&q->queue_head))
  463. return 0;
  464. if (e->ops->elevator_queue_empty_fn)
  465. return e->ops->elevator_queue_empty_fn(q);
  466. return 1;
  467. }
  468. struct request *elv_latter_request(request_queue_t *q, struct request *rq)
  469. {
  470. elevator_t *e = q->elevator;
  471. if (e->ops->elevator_latter_req_fn)
  472. return e->ops->elevator_latter_req_fn(q, rq);
  473. return NULL;
  474. }
  475. struct request *elv_former_request(request_queue_t *q, struct request *rq)
  476. {
  477. elevator_t *e = q->elevator;
  478. if (e->ops->elevator_former_req_fn)
  479. return e->ops->elevator_former_req_fn(q, rq);
  480. return NULL;
  481. }
  482. int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
  483. gfp_t gfp_mask)
  484. {
  485. elevator_t *e = q->elevator;
  486. if (e->ops->elevator_set_req_fn)
  487. return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
  488. rq->elevator_private = NULL;
  489. return 0;
  490. }
  491. void elv_put_request(request_queue_t *q, struct request *rq)
  492. {
  493. elevator_t *e = q->elevator;
  494. if (e->ops->elevator_put_req_fn)
  495. e->ops->elevator_put_req_fn(q, rq);
  496. }
  497. int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
  498. {
  499. elevator_t *e = q->elevator;
  500. if (e->ops->elevator_may_queue_fn)
  501. return e->ops->elevator_may_queue_fn(q, rw, bio);
  502. return ELV_MQUEUE_MAY;
  503. }
  504. void elv_completed_request(request_queue_t *q, struct request *rq)
  505. {
  506. elevator_t *e = q->elevator;
  507. /*
  508. * request is released from the driver, io must be done
  509. */
  510. if (blk_account_rq(rq)) {
  511. q->in_flight--;
  512. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  513. e->ops->elevator_completed_req_fn(q, rq);
  514. }
  515. /*
  516. * Check if the queue is waiting for fs requests to be
  517. * drained for flush sequence.
  518. */
  519. if (unlikely(q->ordseq)) {
  520. struct request *first_rq = list_entry_rq(q->queue_head.next);
  521. if (q->in_flight == 0 &&
  522. blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
  523. blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
  524. blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
  525. q->request_fn(q);
  526. }
  527. }
  528. }
  529. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  530. static ssize_t
  531. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  532. {
  533. elevator_t *e = container_of(kobj, elevator_t, kobj);
  534. struct elv_fs_entry *entry = to_elv(attr);
  535. ssize_t error;
  536. if (!entry->show)
  537. return -EIO;
  538. mutex_lock(&e->sysfs_lock);
  539. error = e->ops ? entry->show(e, page) : -ENOENT;
  540. mutex_unlock(&e->sysfs_lock);
  541. return error;
  542. }
  543. static ssize_t
  544. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  545. const char *page, size_t length)
  546. {
  547. elevator_t *e = container_of(kobj, elevator_t, kobj);
  548. struct elv_fs_entry *entry = to_elv(attr);
  549. ssize_t error;
  550. if (!entry->store)
  551. return -EIO;
  552. mutex_lock(&e->sysfs_lock);
  553. error = e->ops ? entry->store(e, page, length) : -ENOENT;
  554. mutex_unlock(&e->sysfs_lock);
  555. return error;
  556. }
  557. static struct sysfs_ops elv_sysfs_ops = {
  558. .show = elv_attr_show,
  559. .store = elv_attr_store,
  560. };
  561. static struct kobj_type elv_ktype = {
  562. .sysfs_ops = &elv_sysfs_ops,
  563. .release = elevator_release,
  564. };
  565. int elv_register_queue(struct request_queue *q)
  566. {
  567. elevator_t *e = q->elevator;
  568. int error;
  569. e->kobj.parent = &q->kobj;
  570. error = kobject_add(&e->kobj);
  571. if (!error) {
  572. struct attribute **attr = e->elevator_type->elevator_attrs;
  573. if (attr) {
  574. while (*attr) {
  575. if (sysfs_create_file(&e->kobj,*attr++))
  576. break;
  577. }
  578. }
  579. kobject_uevent(&e->kobj, KOBJ_ADD);
  580. }
  581. return error;
  582. }
  583. void elv_unregister_queue(struct request_queue *q)
  584. {
  585. if (q) {
  586. elevator_t *e = q->elevator;
  587. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  588. kobject_del(&e->kobj);
  589. }
  590. }
  591. int elv_register(struct elevator_type *e)
  592. {
  593. spin_lock_irq(&elv_list_lock);
  594. if (elevator_find(e->elevator_name))
  595. BUG();
  596. list_add_tail(&e->list, &elv_list);
  597. spin_unlock_irq(&elv_list_lock);
  598. printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
  599. if (!strcmp(e->elevator_name, chosen_elevator) ||
  600. (!*chosen_elevator &&
  601. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  602. printk(" (default)");
  603. printk("\n");
  604. return 0;
  605. }
  606. EXPORT_SYMBOL_GPL(elv_register);
  607. void elv_unregister(struct elevator_type *e)
  608. {
  609. struct task_struct *g, *p;
  610. /*
  611. * Iterate every thread in the process to remove the io contexts.
  612. */
  613. if (e->ops.trim) {
  614. read_lock(&tasklist_lock);
  615. do_each_thread(g, p) {
  616. task_lock(p);
  617. e->ops.trim(p->io_context);
  618. task_unlock(p);
  619. } while_each_thread(g, p);
  620. read_unlock(&tasklist_lock);
  621. }
  622. spin_lock_irq(&elv_list_lock);
  623. list_del_init(&e->list);
  624. spin_unlock_irq(&elv_list_lock);
  625. }
  626. EXPORT_SYMBOL_GPL(elv_unregister);
  627. /*
  628. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  629. * we don't free the old io scheduler, before we have allocated what we
  630. * need for the new one. this way we have a chance of going back to the old
  631. * one, if the new one fails init for some reason.
  632. */
  633. static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
  634. {
  635. elevator_t *old_elevator, *e;
  636. /*
  637. * Allocate new elevator
  638. */
  639. e = elevator_alloc(new_e);
  640. if (!e)
  641. return 0;
  642. /*
  643. * Turn on BYPASS and drain all requests w/ elevator private data
  644. */
  645. spin_lock_irq(q->queue_lock);
  646. set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  647. elv_drain_elevator(q);
  648. while (q->rq.elvpriv) {
  649. blk_remove_plug(q);
  650. q->request_fn(q);
  651. spin_unlock_irq(q->queue_lock);
  652. msleep(10);
  653. spin_lock_irq(q->queue_lock);
  654. elv_drain_elevator(q);
  655. }
  656. spin_unlock_irq(q->queue_lock);
  657. /*
  658. * unregister old elevator data
  659. */
  660. elv_unregister_queue(q);
  661. old_elevator = q->elevator;
  662. /*
  663. * attach and start new elevator
  664. */
  665. if (elevator_attach(q, e))
  666. goto fail;
  667. if (elv_register_queue(q))
  668. goto fail_register;
  669. /*
  670. * finally exit old elevator and turn off BYPASS.
  671. */
  672. elevator_exit(old_elevator);
  673. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  674. return 1;
  675. fail_register:
  676. /*
  677. * switch failed, exit the new io scheduler and reattach the old
  678. * one again (along with re-adding the sysfs dir)
  679. */
  680. elevator_exit(e);
  681. e = NULL;
  682. fail:
  683. q->elevator = old_elevator;
  684. elv_register_queue(q);
  685. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  686. if (e)
  687. kobject_put(&e->kobj);
  688. return 0;
  689. }
  690. ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
  691. {
  692. char elevator_name[ELV_NAME_MAX];
  693. size_t len;
  694. struct elevator_type *e;
  695. elevator_name[sizeof(elevator_name) - 1] = '\0';
  696. strncpy(elevator_name, name, sizeof(elevator_name) - 1);
  697. len = strlen(elevator_name);
  698. if (len && elevator_name[len - 1] == '\n')
  699. elevator_name[len - 1] = '\0';
  700. e = elevator_get(elevator_name);
  701. if (!e) {
  702. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  703. return -EINVAL;
  704. }
  705. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
  706. elevator_put(e);
  707. return count;
  708. }
  709. if (!elevator_switch(q, e))
  710. printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
  711. return count;
  712. }
  713. ssize_t elv_iosched_show(request_queue_t *q, char *name)
  714. {
  715. elevator_t *e = q->elevator;
  716. struct elevator_type *elv = e->elevator_type;
  717. struct list_head *entry;
  718. int len = 0;
  719. spin_lock_irq(q->queue_lock);
  720. list_for_each(entry, &elv_list) {
  721. struct elevator_type *__e;
  722. __e = list_entry(entry, struct elevator_type, list);
  723. if (!strcmp(elv->elevator_name, __e->elevator_name))
  724. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  725. else
  726. len += sprintf(name+len, "%s ", __e->elevator_name);
  727. }
  728. spin_unlock_irq(q->queue_lock);
  729. len += sprintf(len+name, "\n");
  730. return len;
  731. }
  732. EXPORT_SYMBOL(elv_dispatch_sort);
  733. EXPORT_SYMBOL(elv_add_request);
  734. EXPORT_SYMBOL(__elv_add_request);
  735. EXPORT_SYMBOL(elv_requeue_request);
  736. EXPORT_SYMBOL(elv_next_request);
  737. EXPORT_SYMBOL(elv_dequeue_request);
  738. EXPORT_SYMBOL(elv_queue_empty);
  739. EXPORT_SYMBOL(elv_completed_request);
  740. EXPORT_SYMBOL(elevator_exit);
  741. EXPORT_SYMBOL(elevator_init);