dw_spi.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994
  1. /*
  2. * dw_spi.c - Designware SPI core controller driver (refer pxa2xx_spi.c)
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/highmem.h>
  22. #include <linux/delay.h>
  23. #include <linux/slab.h>
  24. #include <linux/spi/dw_spi.h>
  25. #include <linux/spi/spi.h>
  26. #ifdef CONFIG_DEBUG_FS
  27. #include <linux/debugfs.h>
  28. #endif
  29. #define START_STATE ((void *)0)
  30. #define RUNNING_STATE ((void *)1)
  31. #define DONE_STATE ((void *)2)
  32. #define ERROR_STATE ((void *)-1)
  33. #define QUEUE_RUNNING 0
  34. #define QUEUE_STOPPED 1
  35. #define MRST_SPI_DEASSERT 0
  36. #define MRST_SPI_ASSERT 1
  37. /* Slave spi_dev related */
  38. struct chip_data {
  39. u16 cr0;
  40. u8 cs; /* chip select pin */
  41. u8 n_bytes; /* current is a 1/2/4 byte op */
  42. u8 tmode; /* TR/TO/RO/EEPROM */
  43. u8 type; /* SPI/SSP/MicroWire */
  44. u8 poll_mode; /* 1 means use poll mode */
  45. u32 dma_width;
  46. u32 rx_threshold;
  47. u32 tx_threshold;
  48. u8 enable_dma;
  49. u8 bits_per_word;
  50. u16 clk_div; /* baud rate divider */
  51. u32 speed_hz; /* baud rate */
  52. int (*write)(struct dw_spi *dws);
  53. int (*read)(struct dw_spi *dws);
  54. void (*cs_control)(u32 command);
  55. };
  56. #ifdef CONFIG_DEBUG_FS
  57. static int spi_show_regs_open(struct inode *inode, struct file *file)
  58. {
  59. file->private_data = inode->i_private;
  60. return 0;
  61. }
  62. #define SPI_REGS_BUFSIZE 1024
  63. static ssize_t spi_show_regs(struct file *file, char __user *user_buf,
  64. size_t count, loff_t *ppos)
  65. {
  66. struct dw_spi *dws;
  67. char *buf;
  68. u32 len = 0;
  69. ssize_t ret;
  70. dws = file->private_data;
  71. buf = kzalloc(SPI_REGS_BUFSIZE, GFP_KERNEL);
  72. if (!buf)
  73. return 0;
  74. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  75. "MRST SPI0 registers:\n");
  76. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  77. "=================================\n");
  78. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  79. "CTRL0: \t\t0x%08x\n", dw_readl(dws, ctrl0));
  80. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  81. "CTRL1: \t\t0x%08x\n", dw_readl(dws, ctrl1));
  82. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  83. "SSIENR: \t0x%08x\n", dw_readl(dws, ssienr));
  84. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  85. "SER: \t\t0x%08x\n", dw_readl(dws, ser));
  86. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  87. "BAUDR: \t\t0x%08x\n", dw_readl(dws, baudr));
  88. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  89. "TXFTLR: \t0x%08x\n", dw_readl(dws, txfltr));
  90. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  91. "RXFTLR: \t0x%08x\n", dw_readl(dws, rxfltr));
  92. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  93. "TXFLR: \t\t0x%08x\n", dw_readl(dws, txflr));
  94. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  95. "RXFLR: \t\t0x%08x\n", dw_readl(dws, rxflr));
  96. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  97. "SR: \t\t0x%08x\n", dw_readl(dws, sr));
  98. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  99. "IMR: \t\t0x%08x\n", dw_readl(dws, imr));
  100. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  101. "ISR: \t\t0x%08x\n", dw_readl(dws, isr));
  102. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  103. "DMACR: \t\t0x%08x\n", dw_readl(dws, dmacr));
  104. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  105. "DMATDLR: \t0x%08x\n", dw_readl(dws, dmatdlr));
  106. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  107. "DMARDLR: \t0x%08x\n", dw_readl(dws, dmardlr));
  108. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  109. "=================================\n");
  110. ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
  111. kfree(buf);
  112. return ret;
  113. }
  114. static const struct file_operations mrst_spi_regs_ops = {
  115. .owner = THIS_MODULE,
  116. .open = spi_show_regs_open,
  117. .read = spi_show_regs,
  118. .llseek = default_llseek,
  119. };
  120. static int mrst_spi_debugfs_init(struct dw_spi *dws)
  121. {
  122. dws->debugfs = debugfs_create_dir("mrst_spi", NULL);
  123. if (!dws->debugfs)
  124. return -ENOMEM;
  125. debugfs_create_file("registers", S_IFREG | S_IRUGO,
  126. dws->debugfs, (void *)dws, &mrst_spi_regs_ops);
  127. return 0;
  128. }
  129. static void mrst_spi_debugfs_remove(struct dw_spi *dws)
  130. {
  131. if (dws->debugfs)
  132. debugfs_remove_recursive(dws->debugfs);
  133. }
  134. #else
  135. static inline int mrst_spi_debugfs_init(struct dw_spi *dws)
  136. {
  137. return 0;
  138. }
  139. static inline void mrst_spi_debugfs_remove(struct dw_spi *dws)
  140. {
  141. }
  142. #endif /* CONFIG_DEBUG_FS */
  143. static void wait_till_not_busy(struct dw_spi *dws)
  144. {
  145. unsigned long end = jiffies + 1 + usecs_to_jiffies(1000);
  146. while (time_before(jiffies, end)) {
  147. if (!(dw_readw(dws, sr) & SR_BUSY))
  148. return;
  149. }
  150. dev_err(&dws->master->dev,
  151. "DW SPI: Status keeps busy for 1000us after a read/write!\n");
  152. }
  153. static void flush(struct dw_spi *dws)
  154. {
  155. while (dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  156. dw_readw(dws, dr);
  157. wait_till_not_busy(dws);
  158. }
  159. static int null_writer(struct dw_spi *dws)
  160. {
  161. u8 n_bytes = dws->n_bytes;
  162. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  163. || (dws->tx == dws->tx_end))
  164. return 0;
  165. dw_writew(dws, dr, 0);
  166. dws->tx += n_bytes;
  167. wait_till_not_busy(dws);
  168. return 1;
  169. }
  170. static int null_reader(struct dw_spi *dws)
  171. {
  172. u8 n_bytes = dws->n_bytes;
  173. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  174. && (dws->rx < dws->rx_end)) {
  175. dw_readw(dws, dr);
  176. dws->rx += n_bytes;
  177. }
  178. wait_till_not_busy(dws);
  179. return dws->rx == dws->rx_end;
  180. }
  181. static int u8_writer(struct dw_spi *dws)
  182. {
  183. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  184. || (dws->tx == dws->tx_end))
  185. return 0;
  186. dw_writew(dws, dr, *(u8 *)(dws->tx));
  187. ++dws->tx;
  188. wait_till_not_busy(dws);
  189. return 1;
  190. }
  191. static int u8_reader(struct dw_spi *dws)
  192. {
  193. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  194. && (dws->rx < dws->rx_end)) {
  195. *(u8 *)(dws->rx) = dw_readw(dws, dr);
  196. ++dws->rx;
  197. }
  198. wait_till_not_busy(dws);
  199. return dws->rx == dws->rx_end;
  200. }
  201. static int u16_writer(struct dw_spi *dws)
  202. {
  203. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  204. || (dws->tx == dws->tx_end))
  205. return 0;
  206. dw_writew(dws, dr, *(u16 *)(dws->tx));
  207. dws->tx += 2;
  208. wait_till_not_busy(dws);
  209. return 1;
  210. }
  211. static int u16_reader(struct dw_spi *dws)
  212. {
  213. u16 temp;
  214. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  215. && (dws->rx < dws->rx_end)) {
  216. temp = dw_readw(dws, dr);
  217. *(u16 *)(dws->rx) = temp;
  218. dws->rx += 2;
  219. }
  220. wait_till_not_busy(dws);
  221. return dws->rx == dws->rx_end;
  222. }
  223. static void *next_transfer(struct dw_spi *dws)
  224. {
  225. struct spi_message *msg = dws->cur_msg;
  226. struct spi_transfer *trans = dws->cur_transfer;
  227. /* Move to next transfer */
  228. if (trans->transfer_list.next != &msg->transfers) {
  229. dws->cur_transfer =
  230. list_entry(trans->transfer_list.next,
  231. struct spi_transfer,
  232. transfer_list);
  233. return RUNNING_STATE;
  234. } else
  235. return DONE_STATE;
  236. }
  237. /*
  238. * Note: first step is the protocol driver prepares
  239. * a dma-capable memory, and this func just need translate
  240. * the virt addr to physical
  241. */
  242. static int map_dma_buffers(struct dw_spi *dws)
  243. {
  244. if (!dws->cur_msg->is_dma_mapped || !dws->dma_inited
  245. || !dws->cur_chip->enable_dma)
  246. return 0;
  247. if (dws->cur_transfer->tx_dma)
  248. dws->tx_dma = dws->cur_transfer->tx_dma;
  249. if (dws->cur_transfer->rx_dma)
  250. dws->rx_dma = dws->cur_transfer->rx_dma;
  251. return 1;
  252. }
  253. /* Caller already set message->status; dma and pio irqs are blocked */
  254. static void giveback(struct dw_spi *dws)
  255. {
  256. struct spi_transfer *last_transfer;
  257. unsigned long flags;
  258. struct spi_message *msg;
  259. spin_lock_irqsave(&dws->lock, flags);
  260. msg = dws->cur_msg;
  261. dws->cur_msg = NULL;
  262. dws->cur_transfer = NULL;
  263. dws->prev_chip = dws->cur_chip;
  264. dws->cur_chip = NULL;
  265. dws->dma_mapped = 0;
  266. queue_work(dws->workqueue, &dws->pump_messages);
  267. spin_unlock_irqrestore(&dws->lock, flags);
  268. last_transfer = list_entry(msg->transfers.prev,
  269. struct spi_transfer,
  270. transfer_list);
  271. if (!last_transfer->cs_change && dws->cs_control)
  272. dws->cs_control(MRST_SPI_DEASSERT);
  273. msg->state = NULL;
  274. if (msg->complete)
  275. msg->complete(msg->context);
  276. }
  277. static void int_error_stop(struct dw_spi *dws, const char *msg)
  278. {
  279. /* Stop and reset hw */
  280. flush(dws);
  281. spi_enable_chip(dws, 0);
  282. dev_err(&dws->master->dev, "%s\n", msg);
  283. dws->cur_msg->state = ERROR_STATE;
  284. tasklet_schedule(&dws->pump_transfers);
  285. }
  286. static void transfer_complete(struct dw_spi *dws)
  287. {
  288. /* Update total byte transfered return count actual bytes read */
  289. dws->cur_msg->actual_length += dws->len;
  290. /* Move to next transfer */
  291. dws->cur_msg->state = next_transfer(dws);
  292. /* Handle end of message */
  293. if (dws->cur_msg->state == DONE_STATE) {
  294. dws->cur_msg->status = 0;
  295. giveback(dws);
  296. } else
  297. tasklet_schedule(&dws->pump_transfers);
  298. }
  299. static irqreturn_t interrupt_transfer(struct dw_spi *dws)
  300. {
  301. u16 irq_status, irq_mask = 0x3f;
  302. u32 int_level = dws->fifo_len / 2;
  303. u32 left;
  304. irq_status = dw_readw(dws, isr) & irq_mask;
  305. /* Error handling */
  306. if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) {
  307. dw_readw(dws, txoicr);
  308. dw_readw(dws, rxoicr);
  309. dw_readw(dws, rxuicr);
  310. int_error_stop(dws, "interrupt_transfer: fifo overrun");
  311. return IRQ_HANDLED;
  312. }
  313. if (irq_status & SPI_INT_TXEI) {
  314. spi_mask_intr(dws, SPI_INT_TXEI);
  315. left = (dws->tx_end - dws->tx) / dws->n_bytes;
  316. left = (left > int_level) ? int_level : left;
  317. while (left--)
  318. dws->write(dws);
  319. dws->read(dws);
  320. /* Re-enable the IRQ if there is still data left to tx */
  321. if (dws->tx_end > dws->tx)
  322. spi_umask_intr(dws, SPI_INT_TXEI);
  323. else
  324. transfer_complete(dws);
  325. }
  326. return IRQ_HANDLED;
  327. }
  328. static irqreturn_t dw_spi_irq(int irq, void *dev_id)
  329. {
  330. struct dw_spi *dws = dev_id;
  331. u16 irq_status, irq_mask = 0x3f;
  332. irq_status = dw_readw(dws, isr) & irq_mask;
  333. if (!irq_status)
  334. return IRQ_NONE;
  335. if (!dws->cur_msg) {
  336. spi_mask_intr(dws, SPI_INT_TXEI);
  337. /* Never fail */
  338. return IRQ_HANDLED;
  339. }
  340. return dws->transfer_handler(dws);
  341. }
  342. /* Must be called inside pump_transfers() */
  343. static void poll_transfer(struct dw_spi *dws)
  344. {
  345. while (dws->write(dws))
  346. dws->read(dws);
  347. /*
  348. * There is a possibility that the last word of a transaction
  349. * will be lost if data is not ready. Re-read to solve this issue.
  350. */
  351. dws->read(dws);
  352. transfer_complete(dws);
  353. }
  354. static void dma_transfer(struct dw_spi *dws, int cs_change)
  355. {
  356. }
  357. static void pump_transfers(unsigned long data)
  358. {
  359. struct dw_spi *dws = (struct dw_spi *)data;
  360. struct spi_message *message = NULL;
  361. struct spi_transfer *transfer = NULL;
  362. struct spi_transfer *previous = NULL;
  363. struct spi_device *spi = NULL;
  364. struct chip_data *chip = NULL;
  365. u8 bits = 0;
  366. u8 imask = 0;
  367. u8 cs_change = 0;
  368. u16 txint_level = 0;
  369. u16 clk_div = 0;
  370. u32 speed = 0;
  371. u32 cr0 = 0;
  372. /* Get current state information */
  373. message = dws->cur_msg;
  374. transfer = dws->cur_transfer;
  375. chip = dws->cur_chip;
  376. spi = message->spi;
  377. if (unlikely(!chip->clk_div))
  378. chip->clk_div = dws->max_freq / chip->speed_hz;
  379. if (message->state == ERROR_STATE) {
  380. message->status = -EIO;
  381. goto early_exit;
  382. }
  383. /* Handle end of message */
  384. if (message->state == DONE_STATE) {
  385. message->status = 0;
  386. goto early_exit;
  387. }
  388. /* Delay if requested at end of transfer*/
  389. if (message->state == RUNNING_STATE) {
  390. previous = list_entry(transfer->transfer_list.prev,
  391. struct spi_transfer,
  392. transfer_list);
  393. if (previous->delay_usecs)
  394. udelay(previous->delay_usecs);
  395. }
  396. dws->n_bytes = chip->n_bytes;
  397. dws->dma_width = chip->dma_width;
  398. dws->cs_control = chip->cs_control;
  399. dws->rx_dma = transfer->rx_dma;
  400. dws->tx_dma = transfer->tx_dma;
  401. dws->tx = (void *)transfer->tx_buf;
  402. dws->tx_end = dws->tx + transfer->len;
  403. dws->rx = transfer->rx_buf;
  404. dws->rx_end = dws->rx + transfer->len;
  405. dws->write = dws->tx ? chip->write : null_writer;
  406. dws->read = dws->rx ? chip->read : null_reader;
  407. dws->cs_change = transfer->cs_change;
  408. dws->len = dws->cur_transfer->len;
  409. if (chip != dws->prev_chip)
  410. cs_change = 1;
  411. cr0 = chip->cr0;
  412. /* Handle per transfer options for bpw and speed */
  413. if (transfer->speed_hz) {
  414. speed = chip->speed_hz;
  415. if (transfer->speed_hz != speed) {
  416. speed = transfer->speed_hz;
  417. if (speed > dws->max_freq) {
  418. printk(KERN_ERR "MRST SPI0: unsupported"
  419. "freq: %dHz\n", speed);
  420. message->status = -EIO;
  421. goto early_exit;
  422. }
  423. /* clk_div doesn't support odd number */
  424. clk_div = dws->max_freq / speed;
  425. clk_div = (clk_div + 1) & 0xfffe;
  426. chip->speed_hz = speed;
  427. chip->clk_div = clk_div;
  428. }
  429. }
  430. if (transfer->bits_per_word) {
  431. bits = transfer->bits_per_word;
  432. switch (bits) {
  433. case 8:
  434. dws->n_bytes = 1;
  435. dws->dma_width = 1;
  436. dws->read = (dws->read != null_reader) ?
  437. u8_reader : null_reader;
  438. dws->write = (dws->write != null_writer) ?
  439. u8_writer : null_writer;
  440. break;
  441. case 16:
  442. dws->n_bytes = 2;
  443. dws->dma_width = 2;
  444. dws->read = (dws->read != null_reader) ?
  445. u16_reader : null_reader;
  446. dws->write = (dws->write != null_writer) ?
  447. u16_writer : null_writer;
  448. break;
  449. default:
  450. printk(KERN_ERR "MRST SPI0: unsupported bits:"
  451. "%db\n", bits);
  452. message->status = -EIO;
  453. goto early_exit;
  454. }
  455. cr0 = (bits - 1)
  456. | (chip->type << SPI_FRF_OFFSET)
  457. | (spi->mode << SPI_MODE_OFFSET)
  458. | (chip->tmode << SPI_TMOD_OFFSET);
  459. }
  460. message->state = RUNNING_STATE;
  461. /*
  462. * Adjust transfer mode if necessary. Requires platform dependent
  463. * chipselect mechanism.
  464. */
  465. if (dws->cs_control) {
  466. if (dws->rx && dws->tx)
  467. chip->tmode = SPI_TMOD_TR;
  468. else if (dws->rx)
  469. chip->tmode = SPI_TMOD_RO;
  470. else
  471. chip->tmode = SPI_TMOD_TO;
  472. cr0 &= ~SPI_TMOD_MASK;
  473. cr0 |= (chip->tmode << SPI_TMOD_OFFSET);
  474. }
  475. /* Check if current transfer is a DMA transaction */
  476. dws->dma_mapped = map_dma_buffers(dws);
  477. /*
  478. * Interrupt mode
  479. * we only need set the TXEI IRQ, as TX/RX always happen syncronizely
  480. */
  481. if (!dws->dma_mapped && !chip->poll_mode) {
  482. int templen = dws->len / dws->n_bytes;
  483. txint_level = dws->fifo_len / 2;
  484. txint_level = (templen > txint_level) ? txint_level : templen;
  485. imask |= SPI_INT_TXEI;
  486. dws->transfer_handler = interrupt_transfer;
  487. }
  488. /*
  489. * Reprogram registers only if
  490. * 1. chip select changes
  491. * 2. clk_div is changed
  492. * 3. control value changes
  493. */
  494. if (dw_readw(dws, ctrl0) != cr0 || cs_change || clk_div || imask) {
  495. spi_enable_chip(dws, 0);
  496. if (dw_readw(dws, ctrl0) != cr0)
  497. dw_writew(dws, ctrl0, cr0);
  498. spi_set_clk(dws, clk_div ? clk_div : chip->clk_div);
  499. spi_chip_sel(dws, spi->chip_select);
  500. /* Set the interrupt mask, for poll mode just diable all int */
  501. spi_mask_intr(dws, 0xff);
  502. if (imask)
  503. spi_umask_intr(dws, imask);
  504. if (txint_level)
  505. dw_writew(dws, txfltr, txint_level);
  506. spi_enable_chip(dws, 1);
  507. if (cs_change)
  508. dws->prev_chip = chip;
  509. }
  510. if (dws->dma_mapped)
  511. dma_transfer(dws, cs_change);
  512. if (chip->poll_mode)
  513. poll_transfer(dws);
  514. return;
  515. early_exit:
  516. giveback(dws);
  517. return;
  518. }
  519. static void pump_messages(struct work_struct *work)
  520. {
  521. struct dw_spi *dws =
  522. container_of(work, struct dw_spi, pump_messages);
  523. unsigned long flags;
  524. /* Lock queue and check for queue work */
  525. spin_lock_irqsave(&dws->lock, flags);
  526. if (list_empty(&dws->queue) || dws->run == QUEUE_STOPPED) {
  527. dws->busy = 0;
  528. spin_unlock_irqrestore(&dws->lock, flags);
  529. return;
  530. }
  531. /* Make sure we are not already running a message */
  532. if (dws->cur_msg) {
  533. spin_unlock_irqrestore(&dws->lock, flags);
  534. return;
  535. }
  536. /* Extract head of queue */
  537. dws->cur_msg = list_entry(dws->queue.next, struct spi_message, queue);
  538. list_del_init(&dws->cur_msg->queue);
  539. /* Initial message state*/
  540. dws->cur_msg->state = START_STATE;
  541. dws->cur_transfer = list_entry(dws->cur_msg->transfers.next,
  542. struct spi_transfer,
  543. transfer_list);
  544. dws->cur_chip = spi_get_ctldata(dws->cur_msg->spi);
  545. /* Mark as busy and launch transfers */
  546. tasklet_schedule(&dws->pump_transfers);
  547. dws->busy = 1;
  548. spin_unlock_irqrestore(&dws->lock, flags);
  549. }
  550. /* spi_device use this to queue in their spi_msg */
  551. static int dw_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  552. {
  553. struct dw_spi *dws = spi_master_get_devdata(spi->master);
  554. unsigned long flags;
  555. spin_lock_irqsave(&dws->lock, flags);
  556. if (dws->run == QUEUE_STOPPED) {
  557. spin_unlock_irqrestore(&dws->lock, flags);
  558. return -ESHUTDOWN;
  559. }
  560. msg->actual_length = 0;
  561. msg->status = -EINPROGRESS;
  562. msg->state = START_STATE;
  563. list_add_tail(&msg->queue, &dws->queue);
  564. if (dws->run == QUEUE_RUNNING && !dws->busy) {
  565. if (dws->cur_transfer || dws->cur_msg)
  566. queue_work(dws->workqueue,
  567. &dws->pump_messages);
  568. else {
  569. /* If no other data transaction in air, just go */
  570. spin_unlock_irqrestore(&dws->lock, flags);
  571. pump_messages(&dws->pump_messages);
  572. return 0;
  573. }
  574. }
  575. spin_unlock_irqrestore(&dws->lock, flags);
  576. return 0;
  577. }
  578. /* This may be called twice for each spi dev */
  579. static int dw_spi_setup(struct spi_device *spi)
  580. {
  581. struct dw_spi_chip *chip_info = NULL;
  582. struct chip_data *chip;
  583. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  584. return -EINVAL;
  585. /* Only alloc on first setup */
  586. chip = spi_get_ctldata(spi);
  587. if (!chip) {
  588. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  589. if (!chip)
  590. return -ENOMEM;
  591. }
  592. /*
  593. * Protocol drivers may change the chip settings, so...
  594. * if chip_info exists, use it
  595. */
  596. chip_info = spi->controller_data;
  597. /* chip_info doesn't always exist */
  598. if (chip_info) {
  599. if (chip_info->cs_control)
  600. chip->cs_control = chip_info->cs_control;
  601. chip->poll_mode = chip_info->poll_mode;
  602. chip->type = chip_info->type;
  603. chip->rx_threshold = 0;
  604. chip->tx_threshold = 0;
  605. chip->enable_dma = chip_info->enable_dma;
  606. }
  607. if (spi->bits_per_word <= 8) {
  608. chip->n_bytes = 1;
  609. chip->dma_width = 1;
  610. chip->read = u8_reader;
  611. chip->write = u8_writer;
  612. } else if (spi->bits_per_word <= 16) {
  613. chip->n_bytes = 2;
  614. chip->dma_width = 2;
  615. chip->read = u16_reader;
  616. chip->write = u16_writer;
  617. } else {
  618. /* Never take >16b case for MRST SPIC */
  619. dev_err(&spi->dev, "invalid wordsize\n");
  620. return -EINVAL;
  621. }
  622. chip->bits_per_word = spi->bits_per_word;
  623. if (!spi->max_speed_hz) {
  624. dev_err(&spi->dev, "No max speed HZ parameter\n");
  625. return -EINVAL;
  626. }
  627. chip->speed_hz = spi->max_speed_hz;
  628. chip->tmode = 0; /* Tx & Rx */
  629. /* Default SPI mode is SCPOL = 0, SCPH = 0 */
  630. chip->cr0 = (chip->bits_per_word - 1)
  631. | (chip->type << SPI_FRF_OFFSET)
  632. | (spi->mode << SPI_MODE_OFFSET)
  633. | (chip->tmode << SPI_TMOD_OFFSET);
  634. spi_set_ctldata(spi, chip);
  635. return 0;
  636. }
  637. static void dw_spi_cleanup(struct spi_device *spi)
  638. {
  639. struct chip_data *chip = spi_get_ctldata(spi);
  640. kfree(chip);
  641. }
  642. static int __devinit init_queue(struct dw_spi *dws)
  643. {
  644. INIT_LIST_HEAD(&dws->queue);
  645. spin_lock_init(&dws->lock);
  646. dws->run = QUEUE_STOPPED;
  647. dws->busy = 0;
  648. tasklet_init(&dws->pump_transfers,
  649. pump_transfers, (unsigned long)dws);
  650. INIT_WORK(&dws->pump_messages, pump_messages);
  651. dws->workqueue = create_singlethread_workqueue(
  652. dev_name(dws->master->dev.parent));
  653. if (dws->workqueue == NULL)
  654. return -EBUSY;
  655. return 0;
  656. }
  657. static int start_queue(struct dw_spi *dws)
  658. {
  659. unsigned long flags;
  660. spin_lock_irqsave(&dws->lock, flags);
  661. if (dws->run == QUEUE_RUNNING || dws->busy) {
  662. spin_unlock_irqrestore(&dws->lock, flags);
  663. return -EBUSY;
  664. }
  665. dws->run = QUEUE_RUNNING;
  666. dws->cur_msg = NULL;
  667. dws->cur_transfer = NULL;
  668. dws->cur_chip = NULL;
  669. dws->prev_chip = NULL;
  670. spin_unlock_irqrestore(&dws->lock, flags);
  671. queue_work(dws->workqueue, &dws->pump_messages);
  672. return 0;
  673. }
  674. static int stop_queue(struct dw_spi *dws)
  675. {
  676. unsigned long flags;
  677. unsigned limit = 50;
  678. int status = 0;
  679. spin_lock_irqsave(&dws->lock, flags);
  680. dws->run = QUEUE_STOPPED;
  681. while (!list_empty(&dws->queue) && dws->busy && limit--) {
  682. spin_unlock_irqrestore(&dws->lock, flags);
  683. msleep(10);
  684. spin_lock_irqsave(&dws->lock, flags);
  685. }
  686. if (!list_empty(&dws->queue) || dws->busy)
  687. status = -EBUSY;
  688. spin_unlock_irqrestore(&dws->lock, flags);
  689. return status;
  690. }
  691. static int destroy_queue(struct dw_spi *dws)
  692. {
  693. int status;
  694. status = stop_queue(dws);
  695. if (status != 0)
  696. return status;
  697. destroy_workqueue(dws->workqueue);
  698. return 0;
  699. }
  700. /* Restart the controller, disable all interrupts, clean rx fifo */
  701. static void spi_hw_init(struct dw_spi *dws)
  702. {
  703. spi_enable_chip(dws, 0);
  704. spi_mask_intr(dws, 0xff);
  705. spi_enable_chip(dws, 1);
  706. flush(dws);
  707. /*
  708. * Try to detect the FIFO depth if not set by interface driver,
  709. * the depth could be from 2 to 256 from HW spec
  710. */
  711. if (!dws->fifo_len) {
  712. u32 fifo;
  713. for (fifo = 2; fifo <= 257; fifo++) {
  714. dw_writew(dws, txfltr, fifo);
  715. if (fifo != dw_readw(dws, txfltr))
  716. break;
  717. }
  718. dws->fifo_len = (fifo == 257) ? 0 : fifo;
  719. dw_writew(dws, txfltr, 0);
  720. }
  721. }
  722. int __devinit dw_spi_add_host(struct dw_spi *dws)
  723. {
  724. struct spi_master *master;
  725. int ret;
  726. BUG_ON(dws == NULL);
  727. master = spi_alloc_master(dws->parent_dev, 0);
  728. if (!master) {
  729. ret = -ENOMEM;
  730. goto exit;
  731. }
  732. dws->master = master;
  733. dws->type = SSI_MOTO_SPI;
  734. dws->prev_chip = NULL;
  735. dws->dma_inited = 0;
  736. dws->dma_addr = (dma_addr_t)(dws->paddr + 0x60);
  737. ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED,
  738. "dw_spi", dws);
  739. if (ret < 0) {
  740. dev_err(&master->dev, "can not get IRQ\n");
  741. goto err_free_master;
  742. }
  743. master->mode_bits = SPI_CPOL | SPI_CPHA;
  744. master->bus_num = dws->bus_num;
  745. master->num_chipselect = dws->num_cs;
  746. master->cleanup = dw_spi_cleanup;
  747. master->setup = dw_spi_setup;
  748. master->transfer = dw_spi_transfer;
  749. dws->dma_inited = 0;
  750. /* Basic HW init */
  751. spi_hw_init(dws);
  752. /* Initial and start queue */
  753. ret = init_queue(dws);
  754. if (ret) {
  755. dev_err(&master->dev, "problem initializing queue\n");
  756. goto err_diable_hw;
  757. }
  758. ret = start_queue(dws);
  759. if (ret) {
  760. dev_err(&master->dev, "problem starting queue\n");
  761. goto err_diable_hw;
  762. }
  763. spi_master_set_devdata(master, dws);
  764. ret = spi_register_master(master);
  765. if (ret) {
  766. dev_err(&master->dev, "problem registering spi master\n");
  767. goto err_queue_alloc;
  768. }
  769. mrst_spi_debugfs_init(dws);
  770. return 0;
  771. err_queue_alloc:
  772. destroy_queue(dws);
  773. err_diable_hw:
  774. spi_enable_chip(dws, 0);
  775. free_irq(dws->irq, dws);
  776. err_free_master:
  777. spi_master_put(master);
  778. exit:
  779. return ret;
  780. }
  781. EXPORT_SYMBOL(dw_spi_add_host);
  782. void __devexit dw_spi_remove_host(struct dw_spi *dws)
  783. {
  784. int status = 0;
  785. if (!dws)
  786. return;
  787. mrst_spi_debugfs_remove(dws);
  788. /* Remove the queue */
  789. status = destroy_queue(dws);
  790. if (status != 0)
  791. dev_err(&dws->master->dev, "dw_spi_remove: workqueue will not "
  792. "complete, message memory not freed\n");
  793. spi_enable_chip(dws, 0);
  794. /* Disable clk */
  795. spi_set_clk(dws, 0);
  796. free_irq(dws->irq, dws);
  797. /* Disconnect from the SPI framework */
  798. spi_unregister_master(dws->master);
  799. }
  800. EXPORT_SYMBOL(dw_spi_remove_host);
  801. int dw_spi_suspend_host(struct dw_spi *dws)
  802. {
  803. int ret = 0;
  804. ret = stop_queue(dws);
  805. if (ret)
  806. return ret;
  807. spi_enable_chip(dws, 0);
  808. spi_set_clk(dws, 0);
  809. return ret;
  810. }
  811. EXPORT_SYMBOL(dw_spi_suspend_host);
  812. int dw_spi_resume_host(struct dw_spi *dws)
  813. {
  814. int ret;
  815. spi_hw_init(dws);
  816. ret = start_queue(dws);
  817. if (ret)
  818. dev_err(&dws->master->dev, "fail to start queue (%d)\n", ret);
  819. return ret;
  820. }
  821. EXPORT_SYMBOL(dw_spi_resume_host);
  822. MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
  823. MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
  824. MODULE_LICENSE("GPL v2");