amd_iommu.c 83 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/ratelimit.h>
  20. #include <linux/pci.h>
  21. #include <linux/pci-ats.h>
  22. #include <linux/bitmap.h>
  23. #include <linux/slab.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/iommu-helper.h>
  28. #include <linux/iommu.h>
  29. #include <linux/delay.h>
  30. #include <linux/amd-iommu.h>
  31. #include <linux/notifier.h>
  32. #include <linux/export.h>
  33. #include <asm/msidef.h>
  34. #include <asm/proto.h>
  35. #include <asm/iommu.h>
  36. #include <asm/gart.h>
  37. #include <asm/dma.h>
  38. #include "amd_iommu_proto.h"
  39. #include "amd_iommu_types.h"
  40. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  41. #define LOOP_TIMEOUT 100000
  42. /*
  43. * This bitmap is used to advertise the page sizes our hardware support
  44. * to the IOMMU core, which will then use this information to split
  45. * physically contiguous memory regions it is mapping into page sizes
  46. * that we support.
  47. *
  48. * Traditionally the IOMMU core just handed us the mappings directly,
  49. * after making sure the size is an order of a 4KiB page and that the
  50. * mapping has natural alignment.
  51. *
  52. * To retain this behavior, we currently advertise that we support
  53. * all page sizes that are an order of 4KiB.
  54. *
  55. * If at some point we'd like to utilize the IOMMU core's new behavior,
  56. * we could change this to advertise the real page sizes we support.
  57. */
  58. #define AMD_IOMMU_PGSIZES (~0xFFFUL)
  59. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  60. /* A list of preallocated protection domains */
  61. static LIST_HEAD(iommu_pd_list);
  62. static DEFINE_SPINLOCK(iommu_pd_list_lock);
  63. /* List of all available dev_data structures */
  64. static LIST_HEAD(dev_data_list);
  65. static DEFINE_SPINLOCK(dev_data_list_lock);
  66. /*
  67. * Domain for untranslated devices - only allocated
  68. * if iommu=pt passed on kernel cmd line.
  69. */
  70. static struct protection_domain *pt_domain;
  71. static struct iommu_ops amd_iommu_ops;
  72. static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  73. int amd_iommu_max_glx_val = -1;
  74. /*
  75. * general struct to manage commands send to an IOMMU
  76. */
  77. struct iommu_cmd {
  78. u32 data[4];
  79. };
  80. static void update_domain(struct protection_domain *domain);
  81. static int __init alloc_passthrough_domain(void);
  82. /****************************************************************************
  83. *
  84. * Helper functions
  85. *
  86. ****************************************************************************/
  87. static struct iommu_dev_data *alloc_dev_data(u16 devid)
  88. {
  89. struct iommu_dev_data *dev_data;
  90. unsigned long flags;
  91. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  92. if (!dev_data)
  93. return NULL;
  94. dev_data->devid = devid;
  95. atomic_set(&dev_data->bind, 0);
  96. spin_lock_irqsave(&dev_data_list_lock, flags);
  97. list_add_tail(&dev_data->dev_data_list, &dev_data_list);
  98. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  99. return dev_data;
  100. }
  101. static void free_dev_data(struct iommu_dev_data *dev_data)
  102. {
  103. unsigned long flags;
  104. spin_lock_irqsave(&dev_data_list_lock, flags);
  105. list_del(&dev_data->dev_data_list);
  106. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  107. kfree(dev_data);
  108. }
  109. static struct iommu_dev_data *search_dev_data(u16 devid)
  110. {
  111. struct iommu_dev_data *dev_data;
  112. unsigned long flags;
  113. spin_lock_irqsave(&dev_data_list_lock, flags);
  114. list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
  115. if (dev_data->devid == devid)
  116. goto out_unlock;
  117. }
  118. dev_data = NULL;
  119. out_unlock:
  120. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  121. return dev_data;
  122. }
  123. static struct iommu_dev_data *find_dev_data(u16 devid)
  124. {
  125. struct iommu_dev_data *dev_data;
  126. dev_data = search_dev_data(devid);
  127. if (dev_data == NULL)
  128. dev_data = alloc_dev_data(devid);
  129. return dev_data;
  130. }
  131. static inline u16 get_device_id(struct device *dev)
  132. {
  133. struct pci_dev *pdev = to_pci_dev(dev);
  134. return calc_devid(pdev->bus->number, pdev->devfn);
  135. }
  136. static struct iommu_dev_data *get_dev_data(struct device *dev)
  137. {
  138. return dev->archdata.iommu;
  139. }
  140. static bool pci_iommuv2_capable(struct pci_dev *pdev)
  141. {
  142. static const int caps[] = {
  143. PCI_EXT_CAP_ID_ATS,
  144. PCI_EXT_CAP_ID_PRI,
  145. PCI_EXT_CAP_ID_PASID,
  146. };
  147. int i, pos;
  148. for (i = 0; i < 3; ++i) {
  149. pos = pci_find_ext_capability(pdev, caps[i]);
  150. if (pos == 0)
  151. return false;
  152. }
  153. return true;
  154. }
  155. static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
  156. {
  157. struct iommu_dev_data *dev_data;
  158. dev_data = get_dev_data(&pdev->dev);
  159. return dev_data->errata & (1 << erratum) ? true : false;
  160. }
  161. /*
  162. * In this function the list of preallocated protection domains is traversed to
  163. * find the domain for a specific device
  164. */
  165. static struct dma_ops_domain *find_protection_domain(u16 devid)
  166. {
  167. struct dma_ops_domain *entry, *ret = NULL;
  168. unsigned long flags;
  169. u16 alias = amd_iommu_alias_table[devid];
  170. if (list_empty(&iommu_pd_list))
  171. return NULL;
  172. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  173. list_for_each_entry(entry, &iommu_pd_list, list) {
  174. if (entry->target_dev == devid ||
  175. entry->target_dev == alias) {
  176. ret = entry;
  177. break;
  178. }
  179. }
  180. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  181. return ret;
  182. }
  183. /*
  184. * This function checks if the driver got a valid device from the caller to
  185. * avoid dereferencing invalid pointers.
  186. */
  187. static bool check_device(struct device *dev)
  188. {
  189. u16 devid;
  190. if (!dev || !dev->dma_mask)
  191. return false;
  192. /* No device or no PCI device */
  193. if (dev->bus != &pci_bus_type)
  194. return false;
  195. devid = get_device_id(dev);
  196. /* Out of our scope? */
  197. if (devid > amd_iommu_last_bdf)
  198. return false;
  199. if (amd_iommu_rlookup_table[devid] == NULL)
  200. return false;
  201. return true;
  202. }
  203. static int iommu_init_device(struct device *dev)
  204. {
  205. struct pci_dev *pdev = to_pci_dev(dev);
  206. struct iommu_dev_data *dev_data;
  207. u16 alias;
  208. if (dev->archdata.iommu)
  209. return 0;
  210. dev_data = find_dev_data(get_device_id(dev));
  211. if (!dev_data)
  212. return -ENOMEM;
  213. alias = amd_iommu_alias_table[dev_data->devid];
  214. if (alias != dev_data->devid) {
  215. struct iommu_dev_data *alias_data;
  216. alias_data = find_dev_data(alias);
  217. if (alias_data == NULL) {
  218. pr_err("AMD-Vi: Warning: Unhandled device %s\n",
  219. dev_name(dev));
  220. free_dev_data(dev_data);
  221. return -ENOTSUPP;
  222. }
  223. dev_data->alias_data = alias_data;
  224. }
  225. if (pci_iommuv2_capable(pdev)) {
  226. struct amd_iommu *iommu;
  227. iommu = amd_iommu_rlookup_table[dev_data->devid];
  228. dev_data->iommu_v2 = iommu->is_iommu_v2;
  229. }
  230. dev->archdata.iommu = dev_data;
  231. return 0;
  232. }
  233. static void iommu_ignore_device(struct device *dev)
  234. {
  235. u16 devid, alias;
  236. devid = get_device_id(dev);
  237. alias = amd_iommu_alias_table[devid];
  238. memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
  239. memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
  240. amd_iommu_rlookup_table[devid] = NULL;
  241. amd_iommu_rlookup_table[alias] = NULL;
  242. }
  243. static void iommu_uninit_device(struct device *dev)
  244. {
  245. /*
  246. * Nothing to do here - we keep dev_data around for unplugged devices
  247. * and reuse it when the device is re-plugged - not doing so would
  248. * introduce a ton of races.
  249. */
  250. }
  251. void __init amd_iommu_uninit_devices(void)
  252. {
  253. struct iommu_dev_data *dev_data, *n;
  254. struct pci_dev *pdev = NULL;
  255. for_each_pci_dev(pdev) {
  256. if (!check_device(&pdev->dev))
  257. continue;
  258. iommu_uninit_device(&pdev->dev);
  259. }
  260. /* Free all of our dev_data structures */
  261. list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
  262. free_dev_data(dev_data);
  263. }
  264. int __init amd_iommu_init_devices(void)
  265. {
  266. struct pci_dev *pdev = NULL;
  267. int ret = 0;
  268. for_each_pci_dev(pdev) {
  269. if (!check_device(&pdev->dev))
  270. continue;
  271. ret = iommu_init_device(&pdev->dev);
  272. if (ret == -ENOTSUPP)
  273. iommu_ignore_device(&pdev->dev);
  274. else if (ret)
  275. goto out_free;
  276. }
  277. return 0;
  278. out_free:
  279. amd_iommu_uninit_devices();
  280. return ret;
  281. }
  282. #ifdef CONFIG_AMD_IOMMU_STATS
  283. /*
  284. * Initialization code for statistics collection
  285. */
  286. DECLARE_STATS_COUNTER(compl_wait);
  287. DECLARE_STATS_COUNTER(cnt_map_single);
  288. DECLARE_STATS_COUNTER(cnt_unmap_single);
  289. DECLARE_STATS_COUNTER(cnt_map_sg);
  290. DECLARE_STATS_COUNTER(cnt_unmap_sg);
  291. DECLARE_STATS_COUNTER(cnt_alloc_coherent);
  292. DECLARE_STATS_COUNTER(cnt_free_coherent);
  293. DECLARE_STATS_COUNTER(cross_page);
  294. DECLARE_STATS_COUNTER(domain_flush_single);
  295. DECLARE_STATS_COUNTER(domain_flush_all);
  296. DECLARE_STATS_COUNTER(alloced_io_mem);
  297. DECLARE_STATS_COUNTER(total_map_requests);
  298. DECLARE_STATS_COUNTER(complete_ppr);
  299. DECLARE_STATS_COUNTER(invalidate_iotlb);
  300. DECLARE_STATS_COUNTER(invalidate_iotlb_all);
  301. DECLARE_STATS_COUNTER(pri_requests);
  302. static struct dentry *stats_dir;
  303. static struct dentry *de_fflush;
  304. static void amd_iommu_stats_add(struct __iommu_counter *cnt)
  305. {
  306. if (stats_dir == NULL)
  307. return;
  308. cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
  309. &cnt->value);
  310. }
  311. static void amd_iommu_stats_init(void)
  312. {
  313. stats_dir = debugfs_create_dir("amd-iommu", NULL);
  314. if (stats_dir == NULL)
  315. return;
  316. de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
  317. (u32 *)&amd_iommu_unmap_flush);
  318. amd_iommu_stats_add(&compl_wait);
  319. amd_iommu_stats_add(&cnt_map_single);
  320. amd_iommu_stats_add(&cnt_unmap_single);
  321. amd_iommu_stats_add(&cnt_map_sg);
  322. amd_iommu_stats_add(&cnt_unmap_sg);
  323. amd_iommu_stats_add(&cnt_alloc_coherent);
  324. amd_iommu_stats_add(&cnt_free_coherent);
  325. amd_iommu_stats_add(&cross_page);
  326. amd_iommu_stats_add(&domain_flush_single);
  327. amd_iommu_stats_add(&domain_flush_all);
  328. amd_iommu_stats_add(&alloced_io_mem);
  329. amd_iommu_stats_add(&total_map_requests);
  330. amd_iommu_stats_add(&complete_ppr);
  331. amd_iommu_stats_add(&invalidate_iotlb);
  332. amd_iommu_stats_add(&invalidate_iotlb_all);
  333. amd_iommu_stats_add(&pri_requests);
  334. }
  335. #endif
  336. /****************************************************************************
  337. *
  338. * Interrupt handling functions
  339. *
  340. ****************************************************************************/
  341. static void dump_dte_entry(u16 devid)
  342. {
  343. int i;
  344. for (i = 0; i < 4; ++i)
  345. pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
  346. amd_iommu_dev_table[devid].data[i]);
  347. }
  348. static void dump_command(unsigned long phys_addr)
  349. {
  350. struct iommu_cmd *cmd = phys_to_virt(phys_addr);
  351. int i;
  352. for (i = 0; i < 4; ++i)
  353. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  354. }
  355. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  356. {
  357. int type, devid, domid, flags;
  358. volatile u32 *event = __evt;
  359. int count = 0;
  360. u64 address;
  361. retry:
  362. type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  363. devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  364. domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  365. flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  366. address = (u64)(((u64)event[3]) << 32) | event[2];
  367. if (type == 0) {
  368. /* Did we hit the erratum? */
  369. if (++count == LOOP_TIMEOUT) {
  370. pr_err("AMD-Vi: No event written to event log\n");
  371. return;
  372. }
  373. udelay(1);
  374. goto retry;
  375. }
  376. printk(KERN_ERR "AMD-Vi: Event logged [");
  377. switch (type) {
  378. case EVENT_TYPE_ILL_DEV:
  379. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  380. "address=0x%016llx flags=0x%04x]\n",
  381. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  382. address, flags);
  383. dump_dte_entry(devid);
  384. break;
  385. case EVENT_TYPE_IO_FAULT:
  386. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  387. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  388. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  389. domid, address, flags);
  390. break;
  391. case EVENT_TYPE_DEV_TAB_ERR:
  392. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  393. "address=0x%016llx flags=0x%04x]\n",
  394. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  395. address, flags);
  396. break;
  397. case EVENT_TYPE_PAGE_TAB_ERR:
  398. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  399. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  400. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  401. domid, address, flags);
  402. break;
  403. case EVENT_TYPE_ILL_CMD:
  404. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  405. dump_command(address);
  406. break;
  407. case EVENT_TYPE_CMD_HARD_ERR:
  408. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  409. "flags=0x%04x]\n", address, flags);
  410. break;
  411. case EVENT_TYPE_IOTLB_INV_TO:
  412. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  413. "address=0x%016llx]\n",
  414. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  415. address);
  416. break;
  417. case EVENT_TYPE_INV_DEV_REQ:
  418. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  419. "address=0x%016llx flags=0x%04x]\n",
  420. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  421. address, flags);
  422. break;
  423. default:
  424. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  425. }
  426. memset(__evt, 0, 4 * sizeof(u32));
  427. }
  428. static void iommu_poll_events(struct amd_iommu *iommu)
  429. {
  430. u32 head, tail;
  431. unsigned long flags;
  432. spin_lock_irqsave(&iommu->lock, flags);
  433. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  434. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  435. while (head != tail) {
  436. iommu_print_event(iommu, iommu->evt_buf + head);
  437. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  438. }
  439. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  440. spin_unlock_irqrestore(&iommu->lock, flags);
  441. }
  442. static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u32 head)
  443. {
  444. struct amd_iommu_fault fault;
  445. volatile u64 *raw;
  446. int i;
  447. INC_STATS_COUNTER(pri_requests);
  448. raw = (u64 *)(iommu->ppr_log + head);
  449. /*
  450. * Hardware bug: Interrupt may arrive before the entry is written to
  451. * memory. If this happens we need to wait for the entry to arrive.
  452. */
  453. for (i = 0; i < LOOP_TIMEOUT; ++i) {
  454. if (PPR_REQ_TYPE(raw[0]) != 0)
  455. break;
  456. udelay(1);
  457. }
  458. if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
  459. pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
  460. return;
  461. }
  462. fault.address = raw[1];
  463. fault.pasid = PPR_PASID(raw[0]);
  464. fault.device_id = PPR_DEVID(raw[0]);
  465. fault.tag = PPR_TAG(raw[0]);
  466. fault.flags = PPR_FLAGS(raw[0]);
  467. /*
  468. * To detect the hardware bug we need to clear the entry
  469. * to back to zero.
  470. */
  471. raw[0] = raw[1] = 0;
  472. atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
  473. }
  474. static void iommu_poll_ppr_log(struct amd_iommu *iommu)
  475. {
  476. unsigned long flags;
  477. u32 head, tail;
  478. if (iommu->ppr_log == NULL)
  479. return;
  480. spin_lock_irqsave(&iommu->lock, flags);
  481. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  482. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  483. while (head != tail) {
  484. /* Handle PPR entry */
  485. iommu_handle_ppr_entry(iommu, head);
  486. /* Update and refresh ring-buffer state*/
  487. head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
  488. writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  489. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  490. }
  491. /* enable ppr interrupts again */
  492. writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
  493. spin_unlock_irqrestore(&iommu->lock, flags);
  494. }
  495. irqreturn_t amd_iommu_int_thread(int irq, void *data)
  496. {
  497. struct amd_iommu *iommu;
  498. for_each_iommu(iommu) {
  499. iommu_poll_events(iommu);
  500. iommu_poll_ppr_log(iommu);
  501. }
  502. return IRQ_HANDLED;
  503. }
  504. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  505. {
  506. return IRQ_WAKE_THREAD;
  507. }
  508. /****************************************************************************
  509. *
  510. * IOMMU command queuing functions
  511. *
  512. ****************************************************************************/
  513. static int wait_on_sem(volatile u64 *sem)
  514. {
  515. int i = 0;
  516. while (*sem == 0 && i < LOOP_TIMEOUT) {
  517. udelay(1);
  518. i += 1;
  519. }
  520. if (i == LOOP_TIMEOUT) {
  521. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  522. return -EIO;
  523. }
  524. return 0;
  525. }
  526. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  527. struct iommu_cmd *cmd,
  528. u32 tail)
  529. {
  530. u8 *target;
  531. target = iommu->cmd_buf + tail;
  532. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  533. /* Copy command to buffer */
  534. memcpy(target, cmd, sizeof(*cmd));
  535. /* Tell the IOMMU about it */
  536. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  537. }
  538. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  539. {
  540. WARN_ON(address & 0x7ULL);
  541. memset(cmd, 0, sizeof(*cmd));
  542. cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
  543. cmd->data[1] = upper_32_bits(__pa(address));
  544. cmd->data[2] = 1;
  545. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  546. }
  547. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  548. {
  549. memset(cmd, 0, sizeof(*cmd));
  550. cmd->data[0] = devid;
  551. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  552. }
  553. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  554. size_t size, u16 domid, int pde)
  555. {
  556. u64 pages;
  557. int s;
  558. pages = iommu_num_pages(address, size, PAGE_SIZE);
  559. s = 0;
  560. if (pages > 1) {
  561. /*
  562. * If we have to flush more than one page, flush all
  563. * TLB entries for this domain
  564. */
  565. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  566. s = 1;
  567. }
  568. address &= PAGE_MASK;
  569. memset(cmd, 0, sizeof(*cmd));
  570. cmd->data[1] |= domid;
  571. cmd->data[2] = lower_32_bits(address);
  572. cmd->data[3] = upper_32_bits(address);
  573. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  574. if (s) /* size bit - we flush more than one 4kb page */
  575. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  576. if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
  577. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  578. }
  579. static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
  580. u64 address, size_t size)
  581. {
  582. u64 pages;
  583. int s;
  584. pages = iommu_num_pages(address, size, PAGE_SIZE);
  585. s = 0;
  586. if (pages > 1) {
  587. /*
  588. * If we have to flush more than one page, flush all
  589. * TLB entries for this domain
  590. */
  591. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  592. s = 1;
  593. }
  594. address &= PAGE_MASK;
  595. memset(cmd, 0, sizeof(*cmd));
  596. cmd->data[0] = devid;
  597. cmd->data[0] |= (qdep & 0xff) << 24;
  598. cmd->data[1] = devid;
  599. cmd->data[2] = lower_32_bits(address);
  600. cmd->data[3] = upper_32_bits(address);
  601. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  602. if (s)
  603. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  604. }
  605. static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
  606. u64 address, bool size)
  607. {
  608. memset(cmd, 0, sizeof(*cmd));
  609. address &= ~(0xfffULL);
  610. cmd->data[0] = pasid & PASID_MASK;
  611. cmd->data[1] = domid;
  612. cmd->data[2] = lower_32_bits(address);
  613. cmd->data[3] = upper_32_bits(address);
  614. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  615. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  616. if (size)
  617. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  618. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  619. }
  620. static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
  621. int qdep, u64 address, bool size)
  622. {
  623. memset(cmd, 0, sizeof(*cmd));
  624. address &= ~(0xfffULL);
  625. cmd->data[0] = devid;
  626. cmd->data[0] |= (pasid & 0xff) << 16;
  627. cmd->data[0] |= (qdep & 0xff) << 24;
  628. cmd->data[1] = devid;
  629. cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
  630. cmd->data[2] = lower_32_bits(address);
  631. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  632. cmd->data[3] = upper_32_bits(address);
  633. if (size)
  634. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  635. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  636. }
  637. static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
  638. int status, int tag, bool gn)
  639. {
  640. memset(cmd, 0, sizeof(*cmd));
  641. cmd->data[0] = devid;
  642. if (gn) {
  643. cmd->data[1] = pasid & PASID_MASK;
  644. cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
  645. }
  646. cmd->data[3] = tag & 0x1ff;
  647. cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
  648. CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
  649. }
  650. static void build_inv_all(struct iommu_cmd *cmd)
  651. {
  652. memset(cmd, 0, sizeof(*cmd));
  653. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  654. }
  655. /*
  656. * Writes the command to the IOMMUs command buffer and informs the
  657. * hardware about the new command.
  658. */
  659. static int iommu_queue_command_sync(struct amd_iommu *iommu,
  660. struct iommu_cmd *cmd,
  661. bool sync)
  662. {
  663. u32 left, tail, head, next_tail;
  664. unsigned long flags;
  665. WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
  666. again:
  667. spin_lock_irqsave(&iommu->lock, flags);
  668. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  669. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  670. next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  671. left = (head - next_tail) % iommu->cmd_buf_size;
  672. if (left <= 2) {
  673. struct iommu_cmd sync_cmd;
  674. volatile u64 sem = 0;
  675. int ret;
  676. build_completion_wait(&sync_cmd, (u64)&sem);
  677. copy_cmd_to_buffer(iommu, &sync_cmd, tail);
  678. spin_unlock_irqrestore(&iommu->lock, flags);
  679. if ((ret = wait_on_sem(&sem)) != 0)
  680. return ret;
  681. goto again;
  682. }
  683. copy_cmd_to_buffer(iommu, cmd, tail);
  684. /* We need to sync now to make sure all commands are processed */
  685. iommu->need_sync = sync;
  686. spin_unlock_irqrestore(&iommu->lock, flags);
  687. return 0;
  688. }
  689. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  690. {
  691. return iommu_queue_command_sync(iommu, cmd, true);
  692. }
  693. /*
  694. * This function queues a completion wait command into the command
  695. * buffer of an IOMMU
  696. */
  697. static int iommu_completion_wait(struct amd_iommu *iommu)
  698. {
  699. struct iommu_cmd cmd;
  700. volatile u64 sem = 0;
  701. int ret;
  702. if (!iommu->need_sync)
  703. return 0;
  704. build_completion_wait(&cmd, (u64)&sem);
  705. ret = iommu_queue_command_sync(iommu, &cmd, false);
  706. if (ret)
  707. return ret;
  708. return wait_on_sem(&sem);
  709. }
  710. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  711. {
  712. struct iommu_cmd cmd;
  713. build_inv_dte(&cmd, devid);
  714. return iommu_queue_command(iommu, &cmd);
  715. }
  716. static void iommu_flush_dte_all(struct amd_iommu *iommu)
  717. {
  718. u32 devid;
  719. for (devid = 0; devid <= 0xffff; ++devid)
  720. iommu_flush_dte(iommu, devid);
  721. iommu_completion_wait(iommu);
  722. }
  723. /*
  724. * This function uses heavy locking and may disable irqs for some time. But
  725. * this is no issue because it is only called during resume.
  726. */
  727. static void iommu_flush_tlb_all(struct amd_iommu *iommu)
  728. {
  729. u32 dom_id;
  730. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  731. struct iommu_cmd cmd;
  732. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  733. dom_id, 1);
  734. iommu_queue_command(iommu, &cmd);
  735. }
  736. iommu_completion_wait(iommu);
  737. }
  738. static void iommu_flush_all(struct amd_iommu *iommu)
  739. {
  740. struct iommu_cmd cmd;
  741. build_inv_all(&cmd);
  742. iommu_queue_command(iommu, &cmd);
  743. iommu_completion_wait(iommu);
  744. }
  745. void iommu_flush_all_caches(struct amd_iommu *iommu)
  746. {
  747. if (iommu_feature(iommu, FEATURE_IA)) {
  748. iommu_flush_all(iommu);
  749. } else {
  750. iommu_flush_dte_all(iommu);
  751. iommu_flush_tlb_all(iommu);
  752. }
  753. }
  754. /*
  755. * Command send function for flushing on-device TLB
  756. */
  757. static int device_flush_iotlb(struct iommu_dev_data *dev_data,
  758. u64 address, size_t size)
  759. {
  760. struct amd_iommu *iommu;
  761. struct iommu_cmd cmd;
  762. int qdep;
  763. qdep = dev_data->ats.qdep;
  764. iommu = amd_iommu_rlookup_table[dev_data->devid];
  765. build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
  766. return iommu_queue_command(iommu, &cmd);
  767. }
  768. /*
  769. * Command send function for invalidating a device table entry
  770. */
  771. static int device_flush_dte(struct iommu_dev_data *dev_data)
  772. {
  773. struct amd_iommu *iommu;
  774. int ret;
  775. iommu = amd_iommu_rlookup_table[dev_data->devid];
  776. ret = iommu_flush_dte(iommu, dev_data->devid);
  777. if (ret)
  778. return ret;
  779. if (dev_data->ats.enabled)
  780. ret = device_flush_iotlb(dev_data, 0, ~0UL);
  781. return ret;
  782. }
  783. /*
  784. * TLB invalidation function which is called from the mapping functions.
  785. * It invalidates a single PTE if the range to flush is within a single
  786. * page. Otherwise it flushes the whole TLB of the IOMMU.
  787. */
  788. static void __domain_flush_pages(struct protection_domain *domain,
  789. u64 address, size_t size, int pde)
  790. {
  791. struct iommu_dev_data *dev_data;
  792. struct iommu_cmd cmd;
  793. int ret = 0, i;
  794. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  795. for (i = 0; i < amd_iommus_present; ++i) {
  796. if (!domain->dev_iommu[i])
  797. continue;
  798. /*
  799. * Devices of this domain are behind this IOMMU
  800. * We need a TLB flush
  801. */
  802. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  803. }
  804. list_for_each_entry(dev_data, &domain->dev_list, list) {
  805. if (!dev_data->ats.enabled)
  806. continue;
  807. ret |= device_flush_iotlb(dev_data, address, size);
  808. }
  809. WARN_ON(ret);
  810. }
  811. static void domain_flush_pages(struct protection_domain *domain,
  812. u64 address, size_t size)
  813. {
  814. __domain_flush_pages(domain, address, size, 0);
  815. }
  816. /* Flush the whole IO/TLB for a given protection domain */
  817. static void domain_flush_tlb(struct protection_domain *domain)
  818. {
  819. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  820. }
  821. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  822. static void domain_flush_tlb_pde(struct protection_domain *domain)
  823. {
  824. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  825. }
  826. static void domain_flush_complete(struct protection_domain *domain)
  827. {
  828. int i;
  829. for (i = 0; i < amd_iommus_present; ++i) {
  830. if (!domain->dev_iommu[i])
  831. continue;
  832. /*
  833. * Devices of this domain are behind this IOMMU
  834. * We need to wait for completion of all commands.
  835. */
  836. iommu_completion_wait(amd_iommus[i]);
  837. }
  838. }
  839. /*
  840. * This function flushes the DTEs for all devices in domain
  841. */
  842. static void domain_flush_devices(struct protection_domain *domain)
  843. {
  844. struct iommu_dev_data *dev_data;
  845. list_for_each_entry(dev_data, &domain->dev_list, list)
  846. device_flush_dte(dev_data);
  847. }
  848. /****************************************************************************
  849. *
  850. * The functions below are used the create the page table mappings for
  851. * unity mapped regions.
  852. *
  853. ****************************************************************************/
  854. /*
  855. * This function is used to add another level to an IO page table. Adding
  856. * another level increases the size of the address space by 9 bits to a size up
  857. * to 64 bits.
  858. */
  859. static bool increase_address_space(struct protection_domain *domain,
  860. gfp_t gfp)
  861. {
  862. u64 *pte;
  863. if (domain->mode == PAGE_MODE_6_LEVEL)
  864. /* address space already 64 bit large */
  865. return false;
  866. pte = (void *)get_zeroed_page(gfp);
  867. if (!pte)
  868. return false;
  869. *pte = PM_LEVEL_PDE(domain->mode,
  870. virt_to_phys(domain->pt_root));
  871. domain->pt_root = pte;
  872. domain->mode += 1;
  873. domain->updated = true;
  874. return true;
  875. }
  876. static u64 *alloc_pte(struct protection_domain *domain,
  877. unsigned long address,
  878. unsigned long page_size,
  879. u64 **pte_page,
  880. gfp_t gfp)
  881. {
  882. int level, end_lvl;
  883. u64 *pte, *page;
  884. BUG_ON(!is_power_of_2(page_size));
  885. while (address > PM_LEVEL_SIZE(domain->mode))
  886. increase_address_space(domain, gfp);
  887. level = domain->mode - 1;
  888. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  889. address = PAGE_SIZE_ALIGN(address, page_size);
  890. end_lvl = PAGE_SIZE_LEVEL(page_size);
  891. while (level > end_lvl) {
  892. if (!IOMMU_PTE_PRESENT(*pte)) {
  893. page = (u64 *)get_zeroed_page(gfp);
  894. if (!page)
  895. return NULL;
  896. *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
  897. }
  898. /* No level skipping support yet */
  899. if (PM_PTE_LEVEL(*pte) != level)
  900. return NULL;
  901. level -= 1;
  902. pte = IOMMU_PTE_PAGE(*pte);
  903. if (pte_page && level == end_lvl)
  904. *pte_page = pte;
  905. pte = &pte[PM_LEVEL_INDEX(level, address)];
  906. }
  907. return pte;
  908. }
  909. /*
  910. * This function checks if there is a PTE for a given dma address. If
  911. * there is one, it returns the pointer to it.
  912. */
  913. static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
  914. {
  915. int level;
  916. u64 *pte;
  917. if (address > PM_LEVEL_SIZE(domain->mode))
  918. return NULL;
  919. level = domain->mode - 1;
  920. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  921. while (level > 0) {
  922. /* Not Present */
  923. if (!IOMMU_PTE_PRESENT(*pte))
  924. return NULL;
  925. /* Large PTE */
  926. if (PM_PTE_LEVEL(*pte) == 0x07) {
  927. unsigned long pte_mask, __pte;
  928. /*
  929. * If we have a series of large PTEs, make
  930. * sure to return a pointer to the first one.
  931. */
  932. pte_mask = PTE_PAGE_SIZE(*pte);
  933. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  934. __pte = ((unsigned long)pte) & pte_mask;
  935. return (u64 *)__pte;
  936. }
  937. /* No level skipping support yet */
  938. if (PM_PTE_LEVEL(*pte) != level)
  939. return NULL;
  940. level -= 1;
  941. /* Walk to the next level */
  942. pte = IOMMU_PTE_PAGE(*pte);
  943. pte = &pte[PM_LEVEL_INDEX(level, address)];
  944. }
  945. return pte;
  946. }
  947. /*
  948. * Generic mapping functions. It maps a physical address into a DMA
  949. * address space. It allocates the page table pages if necessary.
  950. * In the future it can be extended to a generic mapping function
  951. * supporting all features of AMD IOMMU page tables like level skipping
  952. * and full 64 bit address spaces.
  953. */
  954. static int iommu_map_page(struct protection_domain *dom,
  955. unsigned long bus_addr,
  956. unsigned long phys_addr,
  957. int prot,
  958. unsigned long page_size)
  959. {
  960. u64 __pte, *pte;
  961. int i, count;
  962. if (!(prot & IOMMU_PROT_MASK))
  963. return -EINVAL;
  964. bus_addr = PAGE_ALIGN(bus_addr);
  965. phys_addr = PAGE_ALIGN(phys_addr);
  966. count = PAGE_SIZE_PTE_COUNT(page_size);
  967. pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
  968. for (i = 0; i < count; ++i)
  969. if (IOMMU_PTE_PRESENT(pte[i]))
  970. return -EBUSY;
  971. if (page_size > PAGE_SIZE) {
  972. __pte = PAGE_SIZE_PTE(phys_addr, page_size);
  973. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
  974. } else
  975. __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
  976. if (prot & IOMMU_PROT_IR)
  977. __pte |= IOMMU_PTE_IR;
  978. if (prot & IOMMU_PROT_IW)
  979. __pte |= IOMMU_PTE_IW;
  980. for (i = 0; i < count; ++i)
  981. pte[i] = __pte;
  982. update_domain(dom);
  983. return 0;
  984. }
  985. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  986. unsigned long bus_addr,
  987. unsigned long page_size)
  988. {
  989. unsigned long long unmap_size, unmapped;
  990. u64 *pte;
  991. BUG_ON(!is_power_of_2(page_size));
  992. unmapped = 0;
  993. while (unmapped < page_size) {
  994. pte = fetch_pte(dom, bus_addr);
  995. if (!pte) {
  996. /*
  997. * No PTE for this address
  998. * move forward in 4kb steps
  999. */
  1000. unmap_size = PAGE_SIZE;
  1001. } else if (PM_PTE_LEVEL(*pte) == 0) {
  1002. /* 4kb PTE found for this address */
  1003. unmap_size = PAGE_SIZE;
  1004. *pte = 0ULL;
  1005. } else {
  1006. int count, i;
  1007. /* Large PTE found which maps this address */
  1008. unmap_size = PTE_PAGE_SIZE(*pte);
  1009. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  1010. for (i = 0; i < count; i++)
  1011. pte[i] = 0ULL;
  1012. }
  1013. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  1014. unmapped += unmap_size;
  1015. }
  1016. BUG_ON(!is_power_of_2(unmapped));
  1017. return unmapped;
  1018. }
  1019. /*
  1020. * This function checks if a specific unity mapping entry is needed for
  1021. * this specific IOMMU.
  1022. */
  1023. static int iommu_for_unity_map(struct amd_iommu *iommu,
  1024. struct unity_map_entry *entry)
  1025. {
  1026. u16 bdf, i;
  1027. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  1028. bdf = amd_iommu_alias_table[i];
  1029. if (amd_iommu_rlookup_table[bdf] == iommu)
  1030. return 1;
  1031. }
  1032. return 0;
  1033. }
  1034. /*
  1035. * This function actually applies the mapping to the page table of the
  1036. * dma_ops domain.
  1037. */
  1038. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  1039. struct unity_map_entry *e)
  1040. {
  1041. u64 addr;
  1042. int ret;
  1043. for (addr = e->address_start; addr < e->address_end;
  1044. addr += PAGE_SIZE) {
  1045. ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
  1046. PAGE_SIZE);
  1047. if (ret)
  1048. return ret;
  1049. /*
  1050. * if unity mapping is in aperture range mark the page
  1051. * as allocated in the aperture
  1052. */
  1053. if (addr < dma_dom->aperture_size)
  1054. __set_bit(addr >> PAGE_SHIFT,
  1055. dma_dom->aperture[0]->bitmap);
  1056. }
  1057. return 0;
  1058. }
  1059. /*
  1060. * Init the unity mappings for a specific IOMMU in the system
  1061. *
  1062. * Basically iterates over all unity mapping entries and applies them to
  1063. * the default domain DMA of that IOMMU if necessary.
  1064. */
  1065. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  1066. {
  1067. struct unity_map_entry *entry;
  1068. int ret;
  1069. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  1070. if (!iommu_for_unity_map(iommu, entry))
  1071. continue;
  1072. ret = dma_ops_unity_map(iommu->default_dom, entry);
  1073. if (ret)
  1074. return ret;
  1075. }
  1076. return 0;
  1077. }
  1078. /*
  1079. * Inits the unity mappings required for a specific device
  1080. */
  1081. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  1082. u16 devid)
  1083. {
  1084. struct unity_map_entry *e;
  1085. int ret;
  1086. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  1087. if (!(devid >= e->devid_start && devid <= e->devid_end))
  1088. continue;
  1089. ret = dma_ops_unity_map(dma_dom, e);
  1090. if (ret)
  1091. return ret;
  1092. }
  1093. return 0;
  1094. }
  1095. /****************************************************************************
  1096. *
  1097. * The next functions belong to the address allocator for the dma_ops
  1098. * interface functions. They work like the allocators in the other IOMMU
  1099. * drivers. Its basically a bitmap which marks the allocated pages in
  1100. * the aperture. Maybe it could be enhanced in the future to a more
  1101. * efficient allocator.
  1102. *
  1103. ****************************************************************************/
  1104. /*
  1105. * The address allocator core functions.
  1106. *
  1107. * called with domain->lock held
  1108. */
  1109. /*
  1110. * Used to reserve address ranges in the aperture (e.g. for exclusion
  1111. * ranges.
  1112. */
  1113. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  1114. unsigned long start_page,
  1115. unsigned int pages)
  1116. {
  1117. unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
  1118. if (start_page + pages > last_page)
  1119. pages = last_page - start_page;
  1120. for (i = start_page; i < start_page + pages; ++i) {
  1121. int index = i / APERTURE_RANGE_PAGES;
  1122. int page = i % APERTURE_RANGE_PAGES;
  1123. __set_bit(page, dom->aperture[index]->bitmap);
  1124. }
  1125. }
  1126. /*
  1127. * This function is used to add a new aperture range to an existing
  1128. * aperture in case of dma_ops domain allocation or address allocation
  1129. * failure.
  1130. */
  1131. static int alloc_new_range(struct dma_ops_domain *dma_dom,
  1132. bool populate, gfp_t gfp)
  1133. {
  1134. int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1135. struct amd_iommu *iommu;
  1136. unsigned long i, old_size;
  1137. #ifdef CONFIG_IOMMU_STRESS
  1138. populate = false;
  1139. #endif
  1140. if (index >= APERTURE_MAX_RANGES)
  1141. return -ENOMEM;
  1142. dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
  1143. if (!dma_dom->aperture[index])
  1144. return -ENOMEM;
  1145. dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
  1146. if (!dma_dom->aperture[index]->bitmap)
  1147. goto out_free;
  1148. dma_dom->aperture[index]->offset = dma_dom->aperture_size;
  1149. if (populate) {
  1150. unsigned long address = dma_dom->aperture_size;
  1151. int i, num_ptes = APERTURE_RANGE_PAGES / 512;
  1152. u64 *pte, *pte_page;
  1153. for (i = 0; i < num_ptes; ++i) {
  1154. pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
  1155. &pte_page, gfp);
  1156. if (!pte)
  1157. goto out_free;
  1158. dma_dom->aperture[index]->pte_pages[i] = pte_page;
  1159. address += APERTURE_RANGE_SIZE / 64;
  1160. }
  1161. }
  1162. old_size = dma_dom->aperture_size;
  1163. dma_dom->aperture_size += APERTURE_RANGE_SIZE;
  1164. /* Reserve address range used for MSI messages */
  1165. if (old_size < MSI_ADDR_BASE_LO &&
  1166. dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
  1167. unsigned long spage;
  1168. int pages;
  1169. pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
  1170. spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
  1171. dma_ops_reserve_addresses(dma_dom, spage, pages);
  1172. }
  1173. /* Initialize the exclusion range if necessary */
  1174. for_each_iommu(iommu) {
  1175. if (iommu->exclusion_start &&
  1176. iommu->exclusion_start >= dma_dom->aperture[index]->offset
  1177. && iommu->exclusion_start < dma_dom->aperture_size) {
  1178. unsigned long startpage;
  1179. int pages = iommu_num_pages(iommu->exclusion_start,
  1180. iommu->exclusion_length,
  1181. PAGE_SIZE);
  1182. startpage = iommu->exclusion_start >> PAGE_SHIFT;
  1183. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  1184. }
  1185. }
  1186. /*
  1187. * Check for areas already mapped as present in the new aperture
  1188. * range and mark those pages as reserved in the allocator. Such
  1189. * mappings may already exist as a result of requested unity
  1190. * mappings for devices.
  1191. */
  1192. for (i = dma_dom->aperture[index]->offset;
  1193. i < dma_dom->aperture_size;
  1194. i += PAGE_SIZE) {
  1195. u64 *pte = fetch_pte(&dma_dom->domain, i);
  1196. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  1197. continue;
  1198. dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
  1199. }
  1200. update_domain(&dma_dom->domain);
  1201. return 0;
  1202. out_free:
  1203. update_domain(&dma_dom->domain);
  1204. free_page((unsigned long)dma_dom->aperture[index]->bitmap);
  1205. kfree(dma_dom->aperture[index]);
  1206. dma_dom->aperture[index] = NULL;
  1207. return -ENOMEM;
  1208. }
  1209. static unsigned long dma_ops_area_alloc(struct device *dev,
  1210. struct dma_ops_domain *dom,
  1211. unsigned int pages,
  1212. unsigned long align_mask,
  1213. u64 dma_mask,
  1214. unsigned long start)
  1215. {
  1216. unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
  1217. int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1218. int i = start >> APERTURE_RANGE_SHIFT;
  1219. unsigned long boundary_size;
  1220. unsigned long address = -1;
  1221. unsigned long limit;
  1222. next_bit >>= PAGE_SHIFT;
  1223. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  1224. PAGE_SIZE) >> PAGE_SHIFT;
  1225. for (;i < max_index; ++i) {
  1226. unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
  1227. if (dom->aperture[i]->offset >= dma_mask)
  1228. break;
  1229. limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
  1230. dma_mask >> PAGE_SHIFT);
  1231. address = iommu_area_alloc(dom->aperture[i]->bitmap,
  1232. limit, next_bit, pages, 0,
  1233. boundary_size, align_mask);
  1234. if (address != -1) {
  1235. address = dom->aperture[i]->offset +
  1236. (address << PAGE_SHIFT);
  1237. dom->next_address = address + (pages << PAGE_SHIFT);
  1238. break;
  1239. }
  1240. next_bit = 0;
  1241. }
  1242. return address;
  1243. }
  1244. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  1245. struct dma_ops_domain *dom,
  1246. unsigned int pages,
  1247. unsigned long align_mask,
  1248. u64 dma_mask)
  1249. {
  1250. unsigned long address;
  1251. #ifdef CONFIG_IOMMU_STRESS
  1252. dom->next_address = 0;
  1253. dom->need_flush = true;
  1254. #endif
  1255. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1256. dma_mask, dom->next_address);
  1257. if (address == -1) {
  1258. dom->next_address = 0;
  1259. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1260. dma_mask, 0);
  1261. dom->need_flush = true;
  1262. }
  1263. if (unlikely(address == -1))
  1264. address = DMA_ERROR_CODE;
  1265. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  1266. return address;
  1267. }
  1268. /*
  1269. * The address free function.
  1270. *
  1271. * called with domain->lock held
  1272. */
  1273. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  1274. unsigned long address,
  1275. unsigned int pages)
  1276. {
  1277. unsigned i = address >> APERTURE_RANGE_SHIFT;
  1278. struct aperture_range *range = dom->aperture[i];
  1279. BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
  1280. #ifdef CONFIG_IOMMU_STRESS
  1281. if (i < 4)
  1282. return;
  1283. #endif
  1284. if (address >= dom->next_address)
  1285. dom->need_flush = true;
  1286. address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
  1287. bitmap_clear(range->bitmap, address, pages);
  1288. }
  1289. /****************************************************************************
  1290. *
  1291. * The next functions belong to the domain allocation. A domain is
  1292. * allocated for every IOMMU as the default domain. If device isolation
  1293. * is enabled, every device get its own domain. The most important thing
  1294. * about domains is the page table mapping the DMA address space they
  1295. * contain.
  1296. *
  1297. ****************************************************************************/
  1298. /*
  1299. * This function adds a protection domain to the global protection domain list
  1300. */
  1301. static void add_domain_to_list(struct protection_domain *domain)
  1302. {
  1303. unsigned long flags;
  1304. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1305. list_add(&domain->list, &amd_iommu_pd_list);
  1306. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1307. }
  1308. /*
  1309. * This function removes a protection domain to the global
  1310. * protection domain list
  1311. */
  1312. static void del_domain_from_list(struct protection_domain *domain)
  1313. {
  1314. unsigned long flags;
  1315. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1316. list_del(&domain->list);
  1317. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1318. }
  1319. static u16 domain_id_alloc(void)
  1320. {
  1321. unsigned long flags;
  1322. int id;
  1323. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1324. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1325. BUG_ON(id == 0);
  1326. if (id > 0 && id < MAX_DOMAIN_ID)
  1327. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1328. else
  1329. id = 0;
  1330. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1331. return id;
  1332. }
  1333. static void domain_id_free(int id)
  1334. {
  1335. unsigned long flags;
  1336. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1337. if (id > 0 && id < MAX_DOMAIN_ID)
  1338. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1339. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1340. }
  1341. static void free_pagetable(struct protection_domain *domain)
  1342. {
  1343. int i, j;
  1344. u64 *p1, *p2, *p3;
  1345. p1 = domain->pt_root;
  1346. if (!p1)
  1347. return;
  1348. for (i = 0; i < 512; ++i) {
  1349. if (!IOMMU_PTE_PRESENT(p1[i]))
  1350. continue;
  1351. p2 = IOMMU_PTE_PAGE(p1[i]);
  1352. for (j = 0; j < 512; ++j) {
  1353. if (!IOMMU_PTE_PRESENT(p2[j]))
  1354. continue;
  1355. p3 = IOMMU_PTE_PAGE(p2[j]);
  1356. free_page((unsigned long)p3);
  1357. }
  1358. free_page((unsigned long)p2);
  1359. }
  1360. free_page((unsigned long)p1);
  1361. domain->pt_root = NULL;
  1362. }
  1363. static void free_gcr3_tbl_level1(u64 *tbl)
  1364. {
  1365. u64 *ptr;
  1366. int i;
  1367. for (i = 0; i < 512; ++i) {
  1368. if (!(tbl[i] & GCR3_VALID))
  1369. continue;
  1370. ptr = __va(tbl[i] & PAGE_MASK);
  1371. free_page((unsigned long)ptr);
  1372. }
  1373. }
  1374. static void free_gcr3_tbl_level2(u64 *tbl)
  1375. {
  1376. u64 *ptr;
  1377. int i;
  1378. for (i = 0; i < 512; ++i) {
  1379. if (!(tbl[i] & GCR3_VALID))
  1380. continue;
  1381. ptr = __va(tbl[i] & PAGE_MASK);
  1382. free_gcr3_tbl_level1(ptr);
  1383. }
  1384. }
  1385. static void free_gcr3_table(struct protection_domain *domain)
  1386. {
  1387. if (domain->glx == 2)
  1388. free_gcr3_tbl_level2(domain->gcr3_tbl);
  1389. else if (domain->glx == 1)
  1390. free_gcr3_tbl_level1(domain->gcr3_tbl);
  1391. else if (domain->glx != 0)
  1392. BUG();
  1393. free_page((unsigned long)domain->gcr3_tbl);
  1394. }
  1395. /*
  1396. * Free a domain, only used if something went wrong in the
  1397. * allocation path and we need to free an already allocated page table
  1398. */
  1399. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1400. {
  1401. int i;
  1402. if (!dom)
  1403. return;
  1404. del_domain_from_list(&dom->domain);
  1405. free_pagetable(&dom->domain);
  1406. for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
  1407. if (!dom->aperture[i])
  1408. continue;
  1409. free_page((unsigned long)dom->aperture[i]->bitmap);
  1410. kfree(dom->aperture[i]);
  1411. }
  1412. kfree(dom);
  1413. }
  1414. /*
  1415. * Allocates a new protection domain usable for the dma_ops functions.
  1416. * It also initializes the page table and the address allocator data
  1417. * structures required for the dma_ops interface
  1418. */
  1419. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1420. {
  1421. struct dma_ops_domain *dma_dom;
  1422. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1423. if (!dma_dom)
  1424. return NULL;
  1425. spin_lock_init(&dma_dom->domain.lock);
  1426. dma_dom->domain.id = domain_id_alloc();
  1427. if (dma_dom->domain.id == 0)
  1428. goto free_dma_dom;
  1429. INIT_LIST_HEAD(&dma_dom->domain.dev_list);
  1430. dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
  1431. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1432. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1433. dma_dom->domain.priv = dma_dom;
  1434. if (!dma_dom->domain.pt_root)
  1435. goto free_dma_dom;
  1436. dma_dom->need_flush = false;
  1437. dma_dom->target_dev = 0xffff;
  1438. add_domain_to_list(&dma_dom->domain);
  1439. if (alloc_new_range(dma_dom, true, GFP_KERNEL))
  1440. goto free_dma_dom;
  1441. /*
  1442. * mark the first page as allocated so we never return 0 as
  1443. * a valid dma-address. So we can use 0 as error value
  1444. */
  1445. dma_dom->aperture[0]->bitmap[0] = 1;
  1446. dma_dom->next_address = 0;
  1447. return dma_dom;
  1448. free_dma_dom:
  1449. dma_ops_domain_free(dma_dom);
  1450. return NULL;
  1451. }
  1452. /*
  1453. * little helper function to check whether a given protection domain is a
  1454. * dma_ops domain
  1455. */
  1456. static bool dma_ops_domain(struct protection_domain *domain)
  1457. {
  1458. return domain->flags & PD_DMA_OPS_MASK;
  1459. }
  1460. static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
  1461. {
  1462. u64 pte_root = 0;
  1463. u64 flags = 0;
  1464. if (domain->mode != PAGE_MODE_NONE)
  1465. pte_root = virt_to_phys(domain->pt_root);
  1466. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1467. << DEV_ENTRY_MODE_SHIFT;
  1468. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  1469. flags = amd_iommu_dev_table[devid].data[1];
  1470. if (ats)
  1471. flags |= DTE_FLAG_IOTLB;
  1472. if (domain->flags & PD_IOMMUV2_MASK) {
  1473. u64 gcr3 = __pa(domain->gcr3_tbl);
  1474. u64 glx = domain->glx;
  1475. u64 tmp;
  1476. pte_root |= DTE_FLAG_GV;
  1477. pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
  1478. /* First mask out possible old values for GCR3 table */
  1479. tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
  1480. flags &= ~tmp;
  1481. tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
  1482. flags &= ~tmp;
  1483. /* Encode GCR3 table into DTE */
  1484. tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
  1485. pte_root |= tmp;
  1486. tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
  1487. flags |= tmp;
  1488. tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
  1489. flags |= tmp;
  1490. }
  1491. flags &= ~(0xffffUL);
  1492. flags |= domain->id;
  1493. amd_iommu_dev_table[devid].data[1] = flags;
  1494. amd_iommu_dev_table[devid].data[0] = pte_root;
  1495. }
  1496. static void clear_dte_entry(u16 devid)
  1497. {
  1498. /* remove entry from the device table seen by the hardware */
  1499. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  1500. amd_iommu_dev_table[devid].data[1] = 0;
  1501. amd_iommu_apply_erratum_63(devid);
  1502. }
  1503. static void do_attach(struct iommu_dev_data *dev_data,
  1504. struct protection_domain *domain)
  1505. {
  1506. struct amd_iommu *iommu;
  1507. bool ats;
  1508. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1509. ats = dev_data->ats.enabled;
  1510. /* Update data structures */
  1511. dev_data->domain = domain;
  1512. list_add(&dev_data->list, &domain->dev_list);
  1513. set_dte_entry(dev_data->devid, domain, ats);
  1514. /* Do reference counting */
  1515. domain->dev_iommu[iommu->index] += 1;
  1516. domain->dev_cnt += 1;
  1517. /* Flush the DTE entry */
  1518. device_flush_dte(dev_data);
  1519. }
  1520. static void do_detach(struct iommu_dev_data *dev_data)
  1521. {
  1522. struct amd_iommu *iommu;
  1523. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1524. /* decrease reference counters */
  1525. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1526. dev_data->domain->dev_cnt -= 1;
  1527. /* Update data structures */
  1528. dev_data->domain = NULL;
  1529. list_del(&dev_data->list);
  1530. clear_dte_entry(dev_data->devid);
  1531. /* Flush the DTE entry */
  1532. device_flush_dte(dev_data);
  1533. }
  1534. /*
  1535. * If a device is not yet associated with a domain, this function does
  1536. * assigns it visible for the hardware
  1537. */
  1538. static int __attach_device(struct iommu_dev_data *dev_data,
  1539. struct protection_domain *domain)
  1540. {
  1541. int ret;
  1542. /* lock domain */
  1543. spin_lock(&domain->lock);
  1544. if (dev_data->alias_data != NULL) {
  1545. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1546. /* Some sanity checks */
  1547. ret = -EBUSY;
  1548. if (alias_data->domain != NULL &&
  1549. alias_data->domain != domain)
  1550. goto out_unlock;
  1551. if (dev_data->domain != NULL &&
  1552. dev_data->domain != domain)
  1553. goto out_unlock;
  1554. /* Do real assignment */
  1555. if (alias_data->domain == NULL)
  1556. do_attach(alias_data, domain);
  1557. atomic_inc(&alias_data->bind);
  1558. }
  1559. if (dev_data->domain == NULL)
  1560. do_attach(dev_data, domain);
  1561. atomic_inc(&dev_data->bind);
  1562. ret = 0;
  1563. out_unlock:
  1564. /* ready */
  1565. spin_unlock(&domain->lock);
  1566. return ret;
  1567. }
  1568. static void pdev_iommuv2_disable(struct pci_dev *pdev)
  1569. {
  1570. pci_disable_ats(pdev);
  1571. pci_disable_pri(pdev);
  1572. pci_disable_pasid(pdev);
  1573. }
  1574. /* FIXME: Change generic reset-function to do the same */
  1575. static int pri_reset_while_enabled(struct pci_dev *pdev)
  1576. {
  1577. u16 control;
  1578. int pos;
  1579. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1580. if (!pos)
  1581. return -EINVAL;
  1582. pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
  1583. control |= PCI_PRI_CTRL_RESET;
  1584. pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
  1585. return 0;
  1586. }
  1587. static int pdev_iommuv2_enable(struct pci_dev *pdev)
  1588. {
  1589. bool reset_enable;
  1590. int reqs, ret;
  1591. /* FIXME: Hardcode number of outstanding requests for now */
  1592. reqs = 32;
  1593. if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
  1594. reqs = 1;
  1595. reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
  1596. /* Only allow access to user-accessible pages */
  1597. ret = pci_enable_pasid(pdev, 0);
  1598. if (ret)
  1599. goto out_err;
  1600. /* First reset the PRI state of the device */
  1601. ret = pci_reset_pri(pdev);
  1602. if (ret)
  1603. goto out_err;
  1604. /* Enable PRI */
  1605. ret = pci_enable_pri(pdev, reqs);
  1606. if (ret)
  1607. goto out_err;
  1608. if (reset_enable) {
  1609. ret = pri_reset_while_enabled(pdev);
  1610. if (ret)
  1611. goto out_err;
  1612. }
  1613. ret = pci_enable_ats(pdev, PAGE_SHIFT);
  1614. if (ret)
  1615. goto out_err;
  1616. return 0;
  1617. out_err:
  1618. pci_disable_pri(pdev);
  1619. pci_disable_pasid(pdev);
  1620. return ret;
  1621. }
  1622. /* FIXME: Move this to PCI code */
  1623. #define PCI_PRI_TLP_OFF (1 << 15)
  1624. bool pci_pri_tlp_required(struct pci_dev *pdev)
  1625. {
  1626. u16 status;
  1627. int pos;
  1628. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1629. if (!pos)
  1630. return false;
  1631. pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
  1632. return (status & PCI_PRI_TLP_OFF) ? true : false;
  1633. }
  1634. /*
  1635. * If a device is not yet associated with a domain, this function does
  1636. * assigns it visible for the hardware
  1637. */
  1638. static int attach_device(struct device *dev,
  1639. struct protection_domain *domain)
  1640. {
  1641. struct pci_dev *pdev = to_pci_dev(dev);
  1642. struct iommu_dev_data *dev_data;
  1643. unsigned long flags;
  1644. int ret;
  1645. dev_data = get_dev_data(dev);
  1646. if (domain->flags & PD_IOMMUV2_MASK) {
  1647. if (!dev_data->iommu_v2 || !dev_data->passthrough)
  1648. return -EINVAL;
  1649. if (pdev_iommuv2_enable(pdev) != 0)
  1650. return -EINVAL;
  1651. dev_data->ats.enabled = true;
  1652. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1653. dev_data->pri_tlp = pci_pri_tlp_required(pdev);
  1654. } else if (amd_iommu_iotlb_sup &&
  1655. pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
  1656. dev_data->ats.enabled = true;
  1657. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1658. }
  1659. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1660. ret = __attach_device(dev_data, domain);
  1661. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1662. /*
  1663. * We might boot into a crash-kernel here. The crashed kernel
  1664. * left the caches in the IOMMU dirty. So we have to flush
  1665. * here to evict all dirty stuff.
  1666. */
  1667. domain_flush_tlb_pde(domain);
  1668. return ret;
  1669. }
  1670. /*
  1671. * Removes a device from a protection domain (unlocked)
  1672. */
  1673. static void __detach_device(struct iommu_dev_data *dev_data)
  1674. {
  1675. struct protection_domain *domain;
  1676. unsigned long flags;
  1677. BUG_ON(!dev_data->domain);
  1678. domain = dev_data->domain;
  1679. spin_lock_irqsave(&domain->lock, flags);
  1680. if (dev_data->alias_data != NULL) {
  1681. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1682. if (atomic_dec_and_test(&alias_data->bind))
  1683. do_detach(alias_data);
  1684. }
  1685. if (atomic_dec_and_test(&dev_data->bind))
  1686. do_detach(dev_data);
  1687. spin_unlock_irqrestore(&domain->lock, flags);
  1688. /*
  1689. * If we run in passthrough mode the device must be assigned to the
  1690. * passthrough domain if it is detached from any other domain.
  1691. * Make sure we can deassign from the pt_domain itself.
  1692. */
  1693. if (dev_data->passthrough &&
  1694. (dev_data->domain == NULL && domain != pt_domain))
  1695. __attach_device(dev_data, pt_domain);
  1696. }
  1697. /*
  1698. * Removes a device from a protection domain (with devtable_lock held)
  1699. */
  1700. static void detach_device(struct device *dev)
  1701. {
  1702. struct protection_domain *domain;
  1703. struct iommu_dev_data *dev_data;
  1704. unsigned long flags;
  1705. dev_data = get_dev_data(dev);
  1706. domain = dev_data->domain;
  1707. /* lock device table */
  1708. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1709. __detach_device(dev_data);
  1710. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1711. if (domain->flags & PD_IOMMUV2_MASK)
  1712. pdev_iommuv2_disable(to_pci_dev(dev));
  1713. else if (dev_data->ats.enabled)
  1714. pci_disable_ats(to_pci_dev(dev));
  1715. dev_data->ats.enabled = false;
  1716. }
  1717. /*
  1718. * Find out the protection domain structure for a given PCI device. This
  1719. * will give us the pointer to the page table root for example.
  1720. */
  1721. static struct protection_domain *domain_for_device(struct device *dev)
  1722. {
  1723. struct iommu_dev_data *dev_data;
  1724. struct protection_domain *dom = NULL;
  1725. unsigned long flags;
  1726. dev_data = get_dev_data(dev);
  1727. if (dev_data->domain)
  1728. return dev_data->domain;
  1729. if (dev_data->alias_data != NULL) {
  1730. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1731. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1732. if (alias_data->domain != NULL) {
  1733. __attach_device(dev_data, alias_data->domain);
  1734. dom = alias_data->domain;
  1735. }
  1736. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1737. }
  1738. return dom;
  1739. }
  1740. static int device_change_notifier(struct notifier_block *nb,
  1741. unsigned long action, void *data)
  1742. {
  1743. struct dma_ops_domain *dma_domain;
  1744. struct protection_domain *domain;
  1745. struct iommu_dev_data *dev_data;
  1746. struct device *dev = data;
  1747. struct amd_iommu *iommu;
  1748. unsigned long flags;
  1749. u16 devid;
  1750. if (!check_device(dev))
  1751. return 0;
  1752. devid = get_device_id(dev);
  1753. iommu = amd_iommu_rlookup_table[devid];
  1754. dev_data = get_dev_data(dev);
  1755. switch (action) {
  1756. case BUS_NOTIFY_UNBOUND_DRIVER:
  1757. domain = domain_for_device(dev);
  1758. if (!domain)
  1759. goto out;
  1760. if (dev_data->passthrough)
  1761. break;
  1762. detach_device(dev);
  1763. break;
  1764. case BUS_NOTIFY_ADD_DEVICE:
  1765. iommu_init_device(dev);
  1766. domain = domain_for_device(dev);
  1767. /* allocate a protection domain if a device is added */
  1768. dma_domain = find_protection_domain(devid);
  1769. if (dma_domain)
  1770. goto out;
  1771. dma_domain = dma_ops_domain_alloc();
  1772. if (!dma_domain)
  1773. goto out;
  1774. dma_domain->target_dev = devid;
  1775. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  1776. list_add_tail(&dma_domain->list, &iommu_pd_list);
  1777. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  1778. break;
  1779. case BUS_NOTIFY_DEL_DEVICE:
  1780. iommu_uninit_device(dev);
  1781. default:
  1782. goto out;
  1783. }
  1784. iommu_completion_wait(iommu);
  1785. out:
  1786. return 0;
  1787. }
  1788. static struct notifier_block device_nb = {
  1789. .notifier_call = device_change_notifier,
  1790. };
  1791. void amd_iommu_init_notifier(void)
  1792. {
  1793. bus_register_notifier(&pci_bus_type, &device_nb);
  1794. }
  1795. /*****************************************************************************
  1796. *
  1797. * The next functions belong to the dma_ops mapping/unmapping code.
  1798. *
  1799. *****************************************************************************/
  1800. /*
  1801. * In the dma_ops path we only have the struct device. This function
  1802. * finds the corresponding IOMMU, the protection domain and the
  1803. * requestor id for a given device.
  1804. * If the device is not yet associated with a domain this is also done
  1805. * in this function.
  1806. */
  1807. static struct protection_domain *get_domain(struct device *dev)
  1808. {
  1809. struct protection_domain *domain;
  1810. struct dma_ops_domain *dma_dom;
  1811. u16 devid = get_device_id(dev);
  1812. if (!check_device(dev))
  1813. return ERR_PTR(-EINVAL);
  1814. domain = domain_for_device(dev);
  1815. if (domain != NULL && !dma_ops_domain(domain))
  1816. return ERR_PTR(-EBUSY);
  1817. if (domain != NULL)
  1818. return domain;
  1819. /* Device not bount yet - bind it */
  1820. dma_dom = find_protection_domain(devid);
  1821. if (!dma_dom)
  1822. dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
  1823. attach_device(dev, &dma_dom->domain);
  1824. DUMP_printk("Using protection domain %d for device %s\n",
  1825. dma_dom->domain.id, dev_name(dev));
  1826. return &dma_dom->domain;
  1827. }
  1828. static void update_device_table(struct protection_domain *domain)
  1829. {
  1830. struct iommu_dev_data *dev_data;
  1831. list_for_each_entry(dev_data, &domain->dev_list, list)
  1832. set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
  1833. }
  1834. static void update_domain(struct protection_domain *domain)
  1835. {
  1836. if (!domain->updated)
  1837. return;
  1838. update_device_table(domain);
  1839. domain_flush_devices(domain);
  1840. domain_flush_tlb_pde(domain);
  1841. domain->updated = false;
  1842. }
  1843. /*
  1844. * This function fetches the PTE for a given address in the aperture
  1845. */
  1846. static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
  1847. unsigned long address)
  1848. {
  1849. struct aperture_range *aperture;
  1850. u64 *pte, *pte_page;
  1851. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1852. if (!aperture)
  1853. return NULL;
  1854. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1855. if (!pte) {
  1856. pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
  1857. GFP_ATOMIC);
  1858. aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
  1859. } else
  1860. pte += PM_LEVEL_INDEX(0, address);
  1861. update_domain(&dom->domain);
  1862. return pte;
  1863. }
  1864. /*
  1865. * This is the generic map function. It maps one 4kb page at paddr to
  1866. * the given address in the DMA address space for the domain.
  1867. */
  1868. static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
  1869. unsigned long address,
  1870. phys_addr_t paddr,
  1871. int direction)
  1872. {
  1873. u64 *pte, __pte;
  1874. WARN_ON(address > dom->aperture_size);
  1875. paddr &= PAGE_MASK;
  1876. pte = dma_ops_get_pte(dom, address);
  1877. if (!pte)
  1878. return DMA_ERROR_CODE;
  1879. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1880. if (direction == DMA_TO_DEVICE)
  1881. __pte |= IOMMU_PTE_IR;
  1882. else if (direction == DMA_FROM_DEVICE)
  1883. __pte |= IOMMU_PTE_IW;
  1884. else if (direction == DMA_BIDIRECTIONAL)
  1885. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  1886. WARN_ON(*pte);
  1887. *pte = __pte;
  1888. return (dma_addr_t)address;
  1889. }
  1890. /*
  1891. * The generic unmapping function for on page in the DMA address space.
  1892. */
  1893. static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
  1894. unsigned long address)
  1895. {
  1896. struct aperture_range *aperture;
  1897. u64 *pte;
  1898. if (address >= dom->aperture_size)
  1899. return;
  1900. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1901. if (!aperture)
  1902. return;
  1903. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1904. if (!pte)
  1905. return;
  1906. pte += PM_LEVEL_INDEX(0, address);
  1907. WARN_ON(!*pte);
  1908. *pte = 0ULL;
  1909. }
  1910. /*
  1911. * This function contains common code for mapping of a physically
  1912. * contiguous memory region into DMA address space. It is used by all
  1913. * mapping functions provided with this IOMMU driver.
  1914. * Must be called with the domain lock held.
  1915. */
  1916. static dma_addr_t __map_single(struct device *dev,
  1917. struct dma_ops_domain *dma_dom,
  1918. phys_addr_t paddr,
  1919. size_t size,
  1920. int dir,
  1921. bool align,
  1922. u64 dma_mask)
  1923. {
  1924. dma_addr_t offset = paddr & ~PAGE_MASK;
  1925. dma_addr_t address, start, ret;
  1926. unsigned int pages;
  1927. unsigned long align_mask = 0;
  1928. int i;
  1929. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1930. paddr &= PAGE_MASK;
  1931. INC_STATS_COUNTER(total_map_requests);
  1932. if (pages > 1)
  1933. INC_STATS_COUNTER(cross_page);
  1934. if (align)
  1935. align_mask = (1UL << get_order(size)) - 1;
  1936. retry:
  1937. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  1938. dma_mask);
  1939. if (unlikely(address == DMA_ERROR_CODE)) {
  1940. /*
  1941. * setting next_address here will let the address
  1942. * allocator only scan the new allocated range in the
  1943. * first run. This is a small optimization.
  1944. */
  1945. dma_dom->next_address = dma_dom->aperture_size;
  1946. if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
  1947. goto out;
  1948. /*
  1949. * aperture was successfully enlarged by 128 MB, try
  1950. * allocation again
  1951. */
  1952. goto retry;
  1953. }
  1954. start = address;
  1955. for (i = 0; i < pages; ++i) {
  1956. ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
  1957. if (ret == DMA_ERROR_CODE)
  1958. goto out_unmap;
  1959. paddr += PAGE_SIZE;
  1960. start += PAGE_SIZE;
  1961. }
  1962. address += offset;
  1963. ADD_STATS_COUNTER(alloced_io_mem, size);
  1964. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  1965. domain_flush_tlb(&dma_dom->domain);
  1966. dma_dom->need_flush = false;
  1967. } else if (unlikely(amd_iommu_np_cache))
  1968. domain_flush_pages(&dma_dom->domain, address, size);
  1969. out:
  1970. return address;
  1971. out_unmap:
  1972. for (--i; i >= 0; --i) {
  1973. start -= PAGE_SIZE;
  1974. dma_ops_domain_unmap(dma_dom, start);
  1975. }
  1976. dma_ops_free_addresses(dma_dom, address, pages);
  1977. return DMA_ERROR_CODE;
  1978. }
  1979. /*
  1980. * Does the reverse of the __map_single function. Must be called with
  1981. * the domain lock held too
  1982. */
  1983. static void __unmap_single(struct dma_ops_domain *dma_dom,
  1984. dma_addr_t dma_addr,
  1985. size_t size,
  1986. int dir)
  1987. {
  1988. dma_addr_t flush_addr;
  1989. dma_addr_t i, start;
  1990. unsigned int pages;
  1991. if ((dma_addr == DMA_ERROR_CODE) ||
  1992. (dma_addr + size > dma_dom->aperture_size))
  1993. return;
  1994. flush_addr = dma_addr;
  1995. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  1996. dma_addr &= PAGE_MASK;
  1997. start = dma_addr;
  1998. for (i = 0; i < pages; ++i) {
  1999. dma_ops_domain_unmap(dma_dom, start);
  2000. start += PAGE_SIZE;
  2001. }
  2002. SUB_STATS_COUNTER(alloced_io_mem, size);
  2003. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  2004. if (amd_iommu_unmap_flush || dma_dom->need_flush) {
  2005. domain_flush_pages(&dma_dom->domain, flush_addr, size);
  2006. dma_dom->need_flush = false;
  2007. }
  2008. }
  2009. /*
  2010. * The exported map_single function for dma_ops.
  2011. */
  2012. static dma_addr_t map_page(struct device *dev, struct page *page,
  2013. unsigned long offset, size_t size,
  2014. enum dma_data_direction dir,
  2015. struct dma_attrs *attrs)
  2016. {
  2017. unsigned long flags;
  2018. struct protection_domain *domain;
  2019. dma_addr_t addr;
  2020. u64 dma_mask;
  2021. phys_addr_t paddr = page_to_phys(page) + offset;
  2022. INC_STATS_COUNTER(cnt_map_single);
  2023. domain = get_domain(dev);
  2024. if (PTR_ERR(domain) == -EINVAL)
  2025. return (dma_addr_t)paddr;
  2026. else if (IS_ERR(domain))
  2027. return DMA_ERROR_CODE;
  2028. dma_mask = *dev->dma_mask;
  2029. spin_lock_irqsave(&domain->lock, flags);
  2030. addr = __map_single(dev, domain->priv, paddr, size, dir, false,
  2031. dma_mask);
  2032. if (addr == DMA_ERROR_CODE)
  2033. goto out;
  2034. domain_flush_complete(domain);
  2035. out:
  2036. spin_unlock_irqrestore(&domain->lock, flags);
  2037. return addr;
  2038. }
  2039. /*
  2040. * The exported unmap_single function for dma_ops.
  2041. */
  2042. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  2043. enum dma_data_direction dir, struct dma_attrs *attrs)
  2044. {
  2045. unsigned long flags;
  2046. struct protection_domain *domain;
  2047. INC_STATS_COUNTER(cnt_unmap_single);
  2048. domain = get_domain(dev);
  2049. if (IS_ERR(domain))
  2050. return;
  2051. spin_lock_irqsave(&domain->lock, flags);
  2052. __unmap_single(domain->priv, dma_addr, size, dir);
  2053. domain_flush_complete(domain);
  2054. spin_unlock_irqrestore(&domain->lock, flags);
  2055. }
  2056. /*
  2057. * This is a special map_sg function which is used if we should map a
  2058. * device which is not handled by an AMD IOMMU in the system.
  2059. */
  2060. static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
  2061. int nelems, int dir)
  2062. {
  2063. struct scatterlist *s;
  2064. int i;
  2065. for_each_sg(sglist, s, nelems, i) {
  2066. s->dma_address = (dma_addr_t)sg_phys(s);
  2067. s->dma_length = s->length;
  2068. }
  2069. return nelems;
  2070. }
  2071. /*
  2072. * The exported map_sg function for dma_ops (handles scatter-gather
  2073. * lists).
  2074. */
  2075. static int map_sg(struct device *dev, struct scatterlist *sglist,
  2076. int nelems, enum dma_data_direction dir,
  2077. struct dma_attrs *attrs)
  2078. {
  2079. unsigned long flags;
  2080. struct protection_domain *domain;
  2081. int i;
  2082. struct scatterlist *s;
  2083. phys_addr_t paddr;
  2084. int mapped_elems = 0;
  2085. u64 dma_mask;
  2086. INC_STATS_COUNTER(cnt_map_sg);
  2087. domain = get_domain(dev);
  2088. if (PTR_ERR(domain) == -EINVAL)
  2089. return map_sg_no_iommu(dev, sglist, nelems, dir);
  2090. else if (IS_ERR(domain))
  2091. return 0;
  2092. dma_mask = *dev->dma_mask;
  2093. spin_lock_irqsave(&domain->lock, flags);
  2094. for_each_sg(sglist, s, nelems, i) {
  2095. paddr = sg_phys(s);
  2096. s->dma_address = __map_single(dev, domain->priv,
  2097. paddr, s->length, dir, false,
  2098. dma_mask);
  2099. if (s->dma_address) {
  2100. s->dma_length = s->length;
  2101. mapped_elems++;
  2102. } else
  2103. goto unmap;
  2104. }
  2105. domain_flush_complete(domain);
  2106. out:
  2107. spin_unlock_irqrestore(&domain->lock, flags);
  2108. return mapped_elems;
  2109. unmap:
  2110. for_each_sg(sglist, s, mapped_elems, i) {
  2111. if (s->dma_address)
  2112. __unmap_single(domain->priv, s->dma_address,
  2113. s->dma_length, dir);
  2114. s->dma_address = s->dma_length = 0;
  2115. }
  2116. mapped_elems = 0;
  2117. goto out;
  2118. }
  2119. /*
  2120. * The exported map_sg function for dma_ops (handles scatter-gather
  2121. * lists).
  2122. */
  2123. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  2124. int nelems, enum dma_data_direction dir,
  2125. struct dma_attrs *attrs)
  2126. {
  2127. unsigned long flags;
  2128. struct protection_domain *domain;
  2129. struct scatterlist *s;
  2130. int i;
  2131. INC_STATS_COUNTER(cnt_unmap_sg);
  2132. domain = get_domain(dev);
  2133. if (IS_ERR(domain))
  2134. return;
  2135. spin_lock_irqsave(&domain->lock, flags);
  2136. for_each_sg(sglist, s, nelems, i) {
  2137. __unmap_single(domain->priv, s->dma_address,
  2138. s->dma_length, dir);
  2139. s->dma_address = s->dma_length = 0;
  2140. }
  2141. domain_flush_complete(domain);
  2142. spin_unlock_irqrestore(&domain->lock, flags);
  2143. }
  2144. /*
  2145. * The exported alloc_coherent function for dma_ops.
  2146. */
  2147. static void *alloc_coherent(struct device *dev, size_t size,
  2148. dma_addr_t *dma_addr, gfp_t flag,
  2149. struct dma_attrs *attrs)
  2150. {
  2151. unsigned long flags;
  2152. void *virt_addr;
  2153. struct protection_domain *domain;
  2154. phys_addr_t paddr;
  2155. u64 dma_mask = dev->coherent_dma_mask;
  2156. INC_STATS_COUNTER(cnt_alloc_coherent);
  2157. domain = get_domain(dev);
  2158. if (PTR_ERR(domain) == -EINVAL) {
  2159. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  2160. *dma_addr = __pa(virt_addr);
  2161. return virt_addr;
  2162. } else if (IS_ERR(domain))
  2163. return NULL;
  2164. dma_mask = dev->coherent_dma_mask;
  2165. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  2166. flag |= __GFP_ZERO;
  2167. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  2168. if (!virt_addr)
  2169. return NULL;
  2170. paddr = virt_to_phys(virt_addr);
  2171. if (!dma_mask)
  2172. dma_mask = *dev->dma_mask;
  2173. spin_lock_irqsave(&domain->lock, flags);
  2174. *dma_addr = __map_single(dev, domain->priv, paddr,
  2175. size, DMA_BIDIRECTIONAL, true, dma_mask);
  2176. if (*dma_addr == DMA_ERROR_CODE) {
  2177. spin_unlock_irqrestore(&domain->lock, flags);
  2178. goto out_free;
  2179. }
  2180. domain_flush_complete(domain);
  2181. spin_unlock_irqrestore(&domain->lock, flags);
  2182. return virt_addr;
  2183. out_free:
  2184. free_pages((unsigned long)virt_addr, get_order(size));
  2185. return NULL;
  2186. }
  2187. /*
  2188. * The exported free_coherent function for dma_ops.
  2189. */
  2190. static void free_coherent(struct device *dev, size_t size,
  2191. void *virt_addr, dma_addr_t dma_addr,
  2192. struct dma_attrs *attrs)
  2193. {
  2194. unsigned long flags;
  2195. struct protection_domain *domain;
  2196. INC_STATS_COUNTER(cnt_free_coherent);
  2197. domain = get_domain(dev);
  2198. if (IS_ERR(domain))
  2199. goto free_mem;
  2200. spin_lock_irqsave(&domain->lock, flags);
  2201. __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  2202. domain_flush_complete(domain);
  2203. spin_unlock_irqrestore(&domain->lock, flags);
  2204. free_mem:
  2205. free_pages((unsigned long)virt_addr, get_order(size));
  2206. }
  2207. /*
  2208. * This function is called by the DMA layer to find out if we can handle a
  2209. * particular device. It is part of the dma_ops.
  2210. */
  2211. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  2212. {
  2213. return check_device(dev);
  2214. }
  2215. /*
  2216. * The function for pre-allocating protection domains.
  2217. *
  2218. * If the driver core informs the DMA layer if a driver grabs a device
  2219. * we don't need to preallocate the protection domains anymore.
  2220. * For now we have to.
  2221. */
  2222. static void __init prealloc_protection_domains(void)
  2223. {
  2224. struct iommu_dev_data *dev_data;
  2225. struct dma_ops_domain *dma_dom;
  2226. struct pci_dev *dev = NULL;
  2227. u16 devid;
  2228. for_each_pci_dev(dev) {
  2229. /* Do we handle this device? */
  2230. if (!check_device(&dev->dev))
  2231. continue;
  2232. dev_data = get_dev_data(&dev->dev);
  2233. if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
  2234. /* Make sure passthrough domain is allocated */
  2235. alloc_passthrough_domain();
  2236. dev_data->passthrough = true;
  2237. attach_device(&dev->dev, pt_domain);
  2238. pr_info("AMD-Vi: Using passthough domain for device %s\n",
  2239. dev_name(&dev->dev));
  2240. }
  2241. /* Is there already any domain for it? */
  2242. if (domain_for_device(&dev->dev))
  2243. continue;
  2244. devid = get_device_id(&dev->dev);
  2245. dma_dom = dma_ops_domain_alloc();
  2246. if (!dma_dom)
  2247. continue;
  2248. init_unity_mappings_for_device(dma_dom, devid);
  2249. dma_dom->target_dev = devid;
  2250. attach_device(&dev->dev, &dma_dom->domain);
  2251. list_add_tail(&dma_dom->list, &iommu_pd_list);
  2252. }
  2253. }
  2254. static struct dma_map_ops amd_iommu_dma_ops = {
  2255. .alloc = alloc_coherent,
  2256. .free = free_coherent,
  2257. .map_page = map_page,
  2258. .unmap_page = unmap_page,
  2259. .map_sg = map_sg,
  2260. .unmap_sg = unmap_sg,
  2261. .dma_supported = amd_iommu_dma_supported,
  2262. };
  2263. static unsigned device_dma_ops_init(void)
  2264. {
  2265. struct iommu_dev_data *dev_data;
  2266. struct pci_dev *pdev = NULL;
  2267. unsigned unhandled = 0;
  2268. for_each_pci_dev(pdev) {
  2269. if (!check_device(&pdev->dev)) {
  2270. iommu_ignore_device(&pdev->dev);
  2271. unhandled += 1;
  2272. continue;
  2273. }
  2274. dev_data = get_dev_data(&pdev->dev);
  2275. if (!dev_data->passthrough)
  2276. pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
  2277. else
  2278. pdev->dev.archdata.dma_ops = &nommu_dma_ops;
  2279. }
  2280. return unhandled;
  2281. }
  2282. /*
  2283. * The function which clues the AMD IOMMU driver into dma_ops.
  2284. */
  2285. void __init amd_iommu_init_api(void)
  2286. {
  2287. bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
  2288. }
  2289. int __init amd_iommu_init_dma_ops(void)
  2290. {
  2291. struct amd_iommu *iommu;
  2292. int ret, unhandled;
  2293. /*
  2294. * first allocate a default protection domain for every IOMMU we
  2295. * found in the system. Devices not assigned to any other
  2296. * protection domain will be assigned to the default one.
  2297. */
  2298. for_each_iommu(iommu) {
  2299. iommu->default_dom = dma_ops_domain_alloc();
  2300. if (iommu->default_dom == NULL)
  2301. return -ENOMEM;
  2302. iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
  2303. ret = iommu_init_unity_mappings(iommu);
  2304. if (ret)
  2305. goto free_domains;
  2306. }
  2307. /*
  2308. * Pre-allocate the protection domains for each device.
  2309. */
  2310. prealloc_protection_domains();
  2311. iommu_detected = 1;
  2312. swiotlb = 0;
  2313. /* Make the driver finally visible to the drivers */
  2314. unhandled = device_dma_ops_init();
  2315. if (unhandled && max_pfn > MAX_DMA32_PFN) {
  2316. /* There are unhandled devices - initialize swiotlb for them */
  2317. swiotlb = 1;
  2318. }
  2319. amd_iommu_stats_init();
  2320. return 0;
  2321. free_domains:
  2322. for_each_iommu(iommu) {
  2323. if (iommu->default_dom)
  2324. dma_ops_domain_free(iommu->default_dom);
  2325. }
  2326. return ret;
  2327. }
  2328. /*****************************************************************************
  2329. *
  2330. * The following functions belong to the exported interface of AMD IOMMU
  2331. *
  2332. * This interface allows access to lower level functions of the IOMMU
  2333. * like protection domain handling and assignement of devices to domains
  2334. * which is not possible with the dma_ops interface.
  2335. *
  2336. *****************************************************************************/
  2337. static void cleanup_domain(struct protection_domain *domain)
  2338. {
  2339. struct iommu_dev_data *dev_data, *next;
  2340. unsigned long flags;
  2341. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2342. list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
  2343. __detach_device(dev_data);
  2344. atomic_set(&dev_data->bind, 0);
  2345. }
  2346. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2347. }
  2348. static void protection_domain_free(struct protection_domain *domain)
  2349. {
  2350. if (!domain)
  2351. return;
  2352. del_domain_from_list(domain);
  2353. if (domain->id)
  2354. domain_id_free(domain->id);
  2355. kfree(domain);
  2356. }
  2357. static struct protection_domain *protection_domain_alloc(void)
  2358. {
  2359. struct protection_domain *domain;
  2360. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  2361. if (!domain)
  2362. return NULL;
  2363. spin_lock_init(&domain->lock);
  2364. mutex_init(&domain->api_lock);
  2365. domain->id = domain_id_alloc();
  2366. if (!domain->id)
  2367. goto out_err;
  2368. INIT_LIST_HEAD(&domain->dev_list);
  2369. add_domain_to_list(domain);
  2370. return domain;
  2371. out_err:
  2372. kfree(domain);
  2373. return NULL;
  2374. }
  2375. static int __init alloc_passthrough_domain(void)
  2376. {
  2377. if (pt_domain != NULL)
  2378. return 0;
  2379. /* allocate passthrough domain */
  2380. pt_domain = protection_domain_alloc();
  2381. if (!pt_domain)
  2382. return -ENOMEM;
  2383. pt_domain->mode = PAGE_MODE_NONE;
  2384. return 0;
  2385. }
  2386. static int amd_iommu_domain_init(struct iommu_domain *dom)
  2387. {
  2388. struct protection_domain *domain;
  2389. domain = protection_domain_alloc();
  2390. if (!domain)
  2391. goto out_free;
  2392. domain->mode = PAGE_MODE_3_LEVEL;
  2393. domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  2394. if (!domain->pt_root)
  2395. goto out_free;
  2396. domain->iommu_domain = dom;
  2397. dom->priv = domain;
  2398. return 0;
  2399. out_free:
  2400. protection_domain_free(domain);
  2401. return -ENOMEM;
  2402. }
  2403. static void amd_iommu_domain_destroy(struct iommu_domain *dom)
  2404. {
  2405. struct protection_domain *domain = dom->priv;
  2406. if (!domain)
  2407. return;
  2408. if (domain->dev_cnt > 0)
  2409. cleanup_domain(domain);
  2410. BUG_ON(domain->dev_cnt != 0);
  2411. if (domain->mode != PAGE_MODE_NONE)
  2412. free_pagetable(domain);
  2413. if (domain->flags & PD_IOMMUV2_MASK)
  2414. free_gcr3_table(domain);
  2415. protection_domain_free(domain);
  2416. dom->priv = NULL;
  2417. }
  2418. static void amd_iommu_detach_device(struct iommu_domain *dom,
  2419. struct device *dev)
  2420. {
  2421. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2422. struct amd_iommu *iommu;
  2423. u16 devid;
  2424. if (!check_device(dev))
  2425. return;
  2426. devid = get_device_id(dev);
  2427. if (dev_data->domain != NULL)
  2428. detach_device(dev);
  2429. iommu = amd_iommu_rlookup_table[devid];
  2430. if (!iommu)
  2431. return;
  2432. iommu_completion_wait(iommu);
  2433. }
  2434. static int amd_iommu_attach_device(struct iommu_domain *dom,
  2435. struct device *dev)
  2436. {
  2437. struct protection_domain *domain = dom->priv;
  2438. struct iommu_dev_data *dev_data;
  2439. struct amd_iommu *iommu;
  2440. int ret;
  2441. if (!check_device(dev))
  2442. return -EINVAL;
  2443. dev_data = dev->archdata.iommu;
  2444. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2445. if (!iommu)
  2446. return -EINVAL;
  2447. if (dev_data->domain)
  2448. detach_device(dev);
  2449. ret = attach_device(dev, domain);
  2450. iommu_completion_wait(iommu);
  2451. return ret;
  2452. }
  2453. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  2454. phys_addr_t paddr, size_t page_size, int iommu_prot)
  2455. {
  2456. struct protection_domain *domain = dom->priv;
  2457. int prot = 0;
  2458. int ret;
  2459. if (domain->mode == PAGE_MODE_NONE)
  2460. return -EINVAL;
  2461. if (iommu_prot & IOMMU_READ)
  2462. prot |= IOMMU_PROT_IR;
  2463. if (iommu_prot & IOMMU_WRITE)
  2464. prot |= IOMMU_PROT_IW;
  2465. mutex_lock(&domain->api_lock);
  2466. ret = iommu_map_page(domain, iova, paddr, prot, page_size);
  2467. mutex_unlock(&domain->api_lock);
  2468. return ret;
  2469. }
  2470. static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  2471. size_t page_size)
  2472. {
  2473. struct protection_domain *domain = dom->priv;
  2474. size_t unmap_size;
  2475. if (domain->mode == PAGE_MODE_NONE)
  2476. return -EINVAL;
  2477. mutex_lock(&domain->api_lock);
  2478. unmap_size = iommu_unmap_page(domain, iova, page_size);
  2479. mutex_unlock(&domain->api_lock);
  2480. domain_flush_tlb_pde(domain);
  2481. return unmap_size;
  2482. }
  2483. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2484. unsigned long iova)
  2485. {
  2486. struct protection_domain *domain = dom->priv;
  2487. unsigned long offset_mask;
  2488. phys_addr_t paddr;
  2489. u64 *pte, __pte;
  2490. if (domain->mode == PAGE_MODE_NONE)
  2491. return iova;
  2492. pte = fetch_pte(domain, iova);
  2493. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2494. return 0;
  2495. if (PM_PTE_LEVEL(*pte) == 0)
  2496. offset_mask = PAGE_SIZE - 1;
  2497. else
  2498. offset_mask = PTE_PAGE_SIZE(*pte) - 1;
  2499. __pte = *pte & PM_ADDR_MASK;
  2500. paddr = (__pte & ~offset_mask) | (iova & offset_mask);
  2501. return paddr;
  2502. }
  2503. static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
  2504. unsigned long cap)
  2505. {
  2506. switch (cap) {
  2507. case IOMMU_CAP_CACHE_COHERENCY:
  2508. return 1;
  2509. }
  2510. return 0;
  2511. }
  2512. static int amd_iommu_device_group(struct device *dev, unsigned int *groupid)
  2513. {
  2514. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2515. struct pci_dev *pdev = to_pci_dev(dev);
  2516. u16 devid;
  2517. if (!dev_data)
  2518. return -ENODEV;
  2519. if (pdev->is_virtfn || !iommu_group_mf)
  2520. devid = dev_data->devid;
  2521. else
  2522. devid = calc_devid(pdev->bus->number,
  2523. PCI_DEVFN(PCI_SLOT(pdev->devfn), 0));
  2524. *groupid = amd_iommu_alias_table[devid];
  2525. return 0;
  2526. }
  2527. static struct iommu_ops amd_iommu_ops = {
  2528. .domain_init = amd_iommu_domain_init,
  2529. .domain_destroy = amd_iommu_domain_destroy,
  2530. .attach_dev = amd_iommu_attach_device,
  2531. .detach_dev = amd_iommu_detach_device,
  2532. .map = amd_iommu_map,
  2533. .unmap = amd_iommu_unmap,
  2534. .iova_to_phys = amd_iommu_iova_to_phys,
  2535. .domain_has_cap = amd_iommu_domain_has_cap,
  2536. .device_group = amd_iommu_device_group,
  2537. .pgsize_bitmap = AMD_IOMMU_PGSIZES,
  2538. };
  2539. /*****************************************************************************
  2540. *
  2541. * The next functions do a basic initialization of IOMMU for pass through
  2542. * mode
  2543. *
  2544. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2545. * DMA-API translation.
  2546. *
  2547. *****************************************************************************/
  2548. int __init amd_iommu_init_passthrough(void)
  2549. {
  2550. struct iommu_dev_data *dev_data;
  2551. struct pci_dev *dev = NULL;
  2552. struct amd_iommu *iommu;
  2553. u16 devid;
  2554. int ret;
  2555. ret = alloc_passthrough_domain();
  2556. if (ret)
  2557. return ret;
  2558. for_each_pci_dev(dev) {
  2559. if (!check_device(&dev->dev))
  2560. continue;
  2561. dev_data = get_dev_data(&dev->dev);
  2562. dev_data->passthrough = true;
  2563. devid = get_device_id(&dev->dev);
  2564. iommu = amd_iommu_rlookup_table[devid];
  2565. if (!iommu)
  2566. continue;
  2567. attach_device(&dev->dev, pt_domain);
  2568. }
  2569. amd_iommu_stats_init();
  2570. pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
  2571. return 0;
  2572. }
  2573. /* IOMMUv2 specific functions */
  2574. int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
  2575. {
  2576. return atomic_notifier_chain_register(&ppr_notifier, nb);
  2577. }
  2578. EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
  2579. int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
  2580. {
  2581. return atomic_notifier_chain_unregister(&ppr_notifier, nb);
  2582. }
  2583. EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
  2584. void amd_iommu_domain_direct_map(struct iommu_domain *dom)
  2585. {
  2586. struct protection_domain *domain = dom->priv;
  2587. unsigned long flags;
  2588. spin_lock_irqsave(&domain->lock, flags);
  2589. /* Update data structure */
  2590. domain->mode = PAGE_MODE_NONE;
  2591. domain->updated = true;
  2592. /* Make changes visible to IOMMUs */
  2593. update_domain(domain);
  2594. /* Page-table is not visible to IOMMU anymore, so free it */
  2595. free_pagetable(domain);
  2596. spin_unlock_irqrestore(&domain->lock, flags);
  2597. }
  2598. EXPORT_SYMBOL(amd_iommu_domain_direct_map);
  2599. int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
  2600. {
  2601. struct protection_domain *domain = dom->priv;
  2602. unsigned long flags;
  2603. int levels, ret;
  2604. if (pasids <= 0 || pasids > (PASID_MASK + 1))
  2605. return -EINVAL;
  2606. /* Number of GCR3 table levels required */
  2607. for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
  2608. levels += 1;
  2609. if (levels > amd_iommu_max_glx_val)
  2610. return -EINVAL;
  2611. spin_lock_irqsave(&domain->lock, flags);
  2612. /*
  2613. * Save us all sanity checks whether devices already in the
  2614. * domain support IOMMUv2. Just force that the domain has no
  2615. * devices attached when it is switched into IOMMUv2 mode.
  2616. */
  2617. ret = -EBUSY;
  2618. if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
  2619. goto out;
  2620. ret = -ENOMEM;
  2621. domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
  2622. if (domain->gcr3_tbl == NULL)
  2623. goto out;
  2624. domain->glx = levels;
  2625. domain->flags |= PD_IOMMUV2_MASK;
  2626. domain->updated = true;
  2627. update_domain(domain);
  2628. ret = 0;
  2629. out:
  2630. spin_unlock_irqrestore(&domain->lock, flags);
  2631. return ret;
  2632. }
  2633. EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
  2634. static int __flush_pasid(struct protection_domain *domain, int pasid,
  2635. u64 address, bool size)
  2636. {
  2637. struct iommu_dev_data *dev_data;
  2638. struct iommu_cmd cmd;
  2639. int i, ret;
  2640. if (!(domain->flags & PD_IOMMUV2_MASK))
  2641. return -EINVAL;
  2642. build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
  2643. /*
  2644. * IOMMU TLB needs to be flushed before Device TLB to
  2645. * prevent device TLB refill from IOMMU TLB
  2646. */
  2647. for (i = 0; i < amd_iommus_present; ++i) {
  2648. if (domain->dev_iommu[i] == 0)
  2649. continue;
  2650. ret = iommu_queue_command(amd_iommus[i], &cmd);
  2651. if (ret != 0)
  2652. goto out;
  2653. }
  2654. /* Wait until IOMMU TLB flushes are complete */
  2655. domain_flush_complete(domain);
  2656. /* Now flush device TLBs */
  2657. list_for_each_entry(dev_data, &domain->dev_list, list) {
  2658. struct amd_iommu *iommu;
  2659. int qdep;
  2660. BUG_ON(!dev_data->ats.enabled);
  2661. qdep = dev_data->ats.qdep;
  2662. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2663. build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
  2664. qdep, address, size);
  2665. ret = iommu_queue_command(iommu, &cmd);
  2666. if (ret != 0)
  2667. goto out;
  2668. }
  2669. /* Wait until all device TLBs are flushed */
  2670. domain_flush_complete(domain);
  2671. ret = 0;
  2672. out:
  2673. return ret;
  2674. }
  2675. static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
  2676. u64 address)
  2677. {
  2678. INC_STATS_COUNTER(invalidate_iotlb);
  2679. return __flush_pasid(domain, pasid, address, false);
  2680. }
  2681. int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
  2682. u64 address)
  2683. {
  2684. struct protection_domain *domain = dom->priv;
  2685. unsigned long flags;
  2686. int ret;
  2687. spin_lock_irqsave(&domain->lock, flags);
  2688. ret = __amd_iommu_flush_page(domain, pasid, address);
  2689. spin_unlock_irqrestore(&domain->lock, flags);
  2690. return ret;
  2691. }
  2692. EXPORT_SYMBOL(amd_iommu_flush_page);
  2693. static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
  2694. {
  2695. INC_STATS_COUNTER(invalidate_iotlb_all);
  2696. return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  2697. true);
  2698. }
  2699. int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
  2700. {
  2701. struct protection_domain *domain = dom->priv;
  2702. unsigned long flags;
  2703. int ret;
  2704. spin_lock_irqsave(&domain->lock, flags);
  2705. ret = __amd_iommu_flush_tlb(domain, pasid);
  2706. spin_unlock_irqrestore(&domain->lock, flags);
  2707. return ret;
  2708. }
  2709. EXPORT_SYMBOL(amd_iommu_flush_tlb);
  2710. static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
  2711. {
  2712. int index;
  2713. u64 *pte;
  2714. while (true) {
  2715. index = (pasid >> (9 * level)) & 0x1ff;
  2716. pte = &root[index];
  2717. if (level == 0)
  2718. break;
  2719. if (!(*pte & GCR3_VALID)) {
  2720. if (!alloc)
  2721. return NULL;
  2722. root = (void *)get_zeroed_page(GFP_ATOMIC);
  2723. if (root == NULL)
  2724. return NULL;
  2725. *pte = __pa(root) | GCR3_VALID;
  2726. }
  2727. root = __va(*pte & PAGE_MASK);
  2728. level -= 1;
  2729. }
  2730. return pte;
  2731. }
  2732. static int __set_gcr3(struct protection_domain *domain, int pasid,
  2733. unsigned long cr3)
  2734. {
  2735. u64 *pte;
  2736. if (domain->mode != PAGE_MODE_NONE)
  2737. return -EINVAL;
  2738. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
  2739. if (pte == NULL)
  2740. return -ENOMEM;
  2741. *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
  2742. return __amd_iommu_flush_tlb(domain, pasid);
  2743. }
  2744. static int __clear_gcr3(struct protection_domain *domain, int pasid)
  2745. {
  2746. u64 *pte;
  2747. if (domain->mode != PAGE_MODE_NONE)
  2748. return -EINVAL;
  2749. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
  2750. if (pte == NULL)
  2751. return 0;
  2752. *pte = 0;
  2753. return __amd_iommu_flush_tlb(domain, pasid);
  2754. }
  2755. int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
  2756. unsigned long cr3)
  2757. {
  2758. struct protection_domain *domain = dom->priv;
  2759. unsigned long flags;
  2760. int ret;
  2761. spin_lock_irqsave(&domain->lock, flags);
  2762. ret = __set_gcr3(domain, pasid, cr3);
  2763. spin_unlock_irqrestore(&domain->lock, flags);
  2764. return ret;
  2765. }
  2766. EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
  2767. int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
  2768. {
  2769. struct protection_domain *domain = dom->priv;
  2770. unsigned long flags;
  2771. int ret;
  2772. spin_lock_irqsave(&domain->lock, flags);
  2773. ret = __clear_gcr3(domain, pasid);
  2774. spin_unlock_irqrestore(&domain->lock, flags);
  2775. return ret;
  2776. }
  2777. EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
  2778. int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
  2779. int status, int tag)
  2780. {
  2781. struct iommu_dev_data *dev_data;
  2782. struct amd_iommu *iommu;
  2783. struct iommu_cmd cmd;
  2784. INC_STATS_COUNTER(complete_ppr);
  2785. dev_data = get_dev_data(&pdev->dev);
  2786. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2787. build_complete_ppr(&cmd, dev_data->devid, pasid, status,
  2788. tag, dev_data->pri_tlp);
  2789. return iommu_queue_command(iommu, &cmd);
  2790. }
  2791. EXPORT_SYMBOL(amd_iommu_complete_ppr);
  2792. struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
  2793. {
  2794. struct protection_domain *domain;
  2795. domain = get_domain(&pdev->dev);
  2796. if (IS_ERR(domain))
  2797. return NULL;
  2798. /* Only return IOMMUv2 domains */
  2799. if (!(domain->flags & PD_IOMMUV2_MASK))
  2800. return NULL;
  2801. return domain->iommu_domain;
  2802. }
  2803. EXPORT_SYMBOL(amd_iommu_get_v2_domain);
  2804. void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
  2805. {
  2806. struct iommu_dev_data *dev_data;
  2807. if (!amd_iommu_v2_supported())
  2808. return;
  2809. dev_data = get_dev_data(&pdev->dev);
  2810. dev_data->errata |= (1 << erratum);
  2811. }
  2812. EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
  2813. int amd_iommu_device_info(struct pci_dev *pdev,
  2814. struct amd_iommu_device_info *info)
  2815. {
  2816. int max_pasids;
  2817. int pos;
  2818. if (pdev == NULL || info == NULL)
  2819. return -EINVAL;
  2820. if (!amd_iommu_v2_supported())
  2821. return -EINVAL;
  2822. memset(info, 0, sizeof(*info));
  2823. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
  2824. if (pos)
  2825. info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
  2826. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  2827. if (pos)
  2828. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
  2829. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
  2830. if (pos) {
  2831. int features;
  2832. max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
  2833. max_pasids = min(max_pasids, (1 << 20));
  2834. info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
  2835. info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
  2836. features = pci_pasid_features(pdev);
  2837. if (features & PCI_PASID_CAP_EXEC)
  2838. info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
  2839. if (features & PCI_PASID_CAP_PRIV)
  2840. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
  2841. }
  2842. return 0;
  2843. }
  2844. EXPORT_SYMBOL(amd_iommu_device_info);