evlist.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851
  1. /*
  2. * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
  3. *
  4. * Parts came from builtin-{top,stat,record}.c, see those files for further
  5. * copyright notes.
  6. *
  7. * Released under the GPL v2. (and only v2, not any later version)
  8. */
  9. #include "util.h"
  10. #include "debugfs.h"
  11. #include <poll.h>
  12. #include "cpumap.h"
  13. #include "thread_map.h"
  14. #include "target.h"
  15. #include "evlist.h"
  16. #include "evsel.h"
  17. #include <unistd.h>
  18. #include "parse-events.h"
  19. #include <sys/mman.h>
  20. #include <linux/bitops.h>
  21. #include <linux/hash.h>
  22. #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  23. #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
  24. void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
  25. struct thread_map *threads)
  26. {
  27. int i;
  28. for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
  29. INIT_HLIST_HEAD(&evlist->heads[i]);
  30. INIT_LIST_HEAD(&evlist->entries);
  31. perf_evlist__set_maps(evlist, cpus, threads);
  32. evlist->workload.pid = -1;
  33. }
  34. struct perf_evlist *perf_evlist__new(struct cpu_map *cpus,
  35. struct thread_map *threads)
  36. {
  37. struct perf_evlist *evlist = zalloc(sizeof(*evlist));
  38. if (evlist != NULL)
  39. perf_evlist__init(evlist, cpus, threads);
  40. return evlist;
  41. }
  42. void perf_evlist__config(struct perf_evlist *evlist,
  43. struct perf_record_opts *opts)
  44. {
  45. struct perf_evsel *evsel;
  46. /*
  47. * Set the evsel leader links before we configure attributes,
  48. * since some might depend on this info.
  49. */
  50. if (opts->group)
  51. perf_evlist__set_leader(evlist);
  52. if (evlist->cpus->map[0] < 0)
  53. opts->no_inherit = true;
  54. list_for_each_entry(evsel, &evlist->entries, node) {
  55. perf_evsel__config(evsel, opts);
  56. if (evlist->nr_entries > 1)
  57. perf_evsel__set_sample_id(evsel);
  58. }
  59. }
  60. static void perf_evlist__purge(struct perf_evlist *evlist)
  61. {
  62. struct perf_evsel *pos, *n;
  63. list_for_each_entry_safe(pos, n, &evlist->entries, node) {
  64. list_del_init(&pos->node);
  65. perf_evsel__delete(pos);
  66. }
  67. evlist->nr_entries = 0;
  68. }
  69. void perf_evlist__exit(struct perf_evlist *evlist)
  70. {
  71. free(evlist->mmap);
  72. free(evlist->pollfd);
  73. evlist->mmap = NULL;
  74. evlist->pollfd = NULL;
  75. }
  76. void perf_evlist__delete(struct perf_evlist *evlist)
  77. {
  78. perf_evlist__purge(evlist);
  79. perf_evlist__exit(evlist);
  80. free(evlist);
  81. }
  82. void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
  83. {
  84. list_add_tail(&entry->node, &evlist->entries);
  85. ++evlist->nr_entries;
  86. }
  87. void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
  88. struct list_head *list,
  89. int nr_entries)
  90. {
  91. list_splice_tail(list, &evlist->entries);
  92. evlist->nr_entries += nr_entries;
  93. }
  94. void __perf_evlist__set_leader(struct list_head *list)
  95. {
  96. struct perf_evsel *evsel, *leader;
  97. leader = list_entry(list->next, struct perf_evsel, node);
  98. evsel = list_entry(list->prev, struct perf_evsel, node);
  99. leader->nr_members = evsel->idx - leader->idx + 1;
  100. list_for_each_entry(evsel, list, node) {
  101. evsel->leader = leader;
  102. }
  103. }
  104. void perf_evlist__set_leader(struct perf_evlist *evlist)
  105. {
  106. if (evlist->nr_entries) {
  107. evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0;
  108. __perf_evlist__set_leader(&evlist->entries);
  109. }
  110. }
  111. int perf_evlist__add_default(struct perf_evlist *evlist)
  112. {
  113. struct perf_event_attr attr = {
  114. .type = PERF_TYPE_HARDWARE,
  115. .config = PERF_COUNT_HW_CPU_CYCLES,
  116. };
  117. struct perf_evsel *evsel;
  118. event_attr_init(&attr);
  119. evsel = perf_evsel__new(&attr, 0);
  120. if (evsel == NULL)
  121. goto error;
  122. /* use strdup() because free(evsel) assumes name is allocated */
  123. evsel->name = strdup("cycles");
  124. if (!evsel->name)
  125. goto error_free;
  126. perf_evlist__add(evlist, evsel);
  127. return 0;
  128. error_free:
  129. perf_evsel__delete(evsel);
  130. error:
  131. return -ENOMEM;
  132. }
  133. static int perf_evlist__add_attrs(struct perf_evlist *evlist,
  134. struct perf_event_attr *attrs, size_t nr_attrs)
  135. {
  136. struct perf_evsel *evsel, *n;
  137. LIST_HEAD(head);
  138. size_t i;
  139. for (i = 0; i < nr_attrs; i++) {
  140. evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i);
  141. if (evsel == NULL)
  142. goto out_delete_partial_list;
  143. list_add_tail(&evsel->node, &head);
  144. }
  145. perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
  146. return 0;
  147. out_delete_partial_list:
  148. list_for_each_entry_safe(evsel, n, &head, node)
  149. perf_evsel__delete(evsel);
  150. return -1;
  151. }
  152. int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
  153. struct perf_event_attr *attrs, size_t nr_attrs)
  154. {
  155. size_t i;
  156. for (i = 0; i < nr_attrs; i++)
  157. event_attr_init(attrs + i);
  158. return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
  159. }
  160. struct perf_evsel *
  161. perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
  162. {
  163. struct perf_evsel *evsel;
  164. list_for_each_entry(evsel, &evlist->entries, node) {
  165. if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
  166. (int)evsel->attr.config == id)
  167. return evsel;
  168. }
  169. return NULL;
  170. }
  171. int perf_evlist__add_newtp(struct perf_evlist *evlist,
  172. const char *sys, const char *name, void *handler)
  173. {
  174. struct perf_evsel *evsel;
  175. evsel = perf_evsel__newtp(sys, name, evlist->nr_entries);
  176. if (evsel == NULL)
  177. return -1;
  178. evsel->handler.func = handler;
  179. perf_evlist__add(evlist, evsel);
  180. return 0;
  181. }
  182. void perf_evlist__disable(struct perf_evlist *evlist)
  183. {
  184. int cpu, thread;
  185. struct perf_evsel *pos;
  186. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  187. list_for_each_entry(pos, &evlist->entries, node) {
  188. if (!perf_evsel__is_group_leader(pos))
  189. continue;
  190. for (thread = 0; thread < evlist->threads->nr; thread++)
  191. ioctl(FD(pos, cpu, thread),
  192. PERF_EVENT_IOC_DISABLE, 0);
  193. }
  194. }
  195. }
  196. void perf_evlist__enable(struct perf_evlist *evlist)
  197. {
  198. int cpu, thread;
  199. struct perf_evsel *pos;
  200. for (cpu = 0; cpu < cpu_map__nr(evlist->cpus); cpu++) {
  201. list_for_each_entry(pos, &evlist->entries, node) {
  202. if (!perf_evsel__is_group_leader(pos))
  203. continue;
  204. for (thread = 0; thread < evlist->threads->nr; thread++)
  205. ioctl(FD(pos, cpu, thread),
  206. PERF_EVENT_IOC_ENABLE, 0);
  207. }
  208. }
  209. }
  210. static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
  211. {
  212. int nfds = cpu_map__nr(evlist->cpus) * evlist->threads->nr * evlist->nr_entries;
  213. evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
  214. return evlist->pollfd != NULL ? 0 : -ENOMEM;
  215. }
  216. void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
  217. {
  218. fcntl(fd, F_SETFL, O_NONBLOCK);
  219. evlist->pollfd[evlist->nr_fds].fd = fd;
  220. evlist->pollfd[evlist->nr_fds].events = POLLIN;
  221. evlist->nr_fds++;
  222. }
  223. static void perf_evlist__id_hash(struct perf_evlist *evlist,
  224. struct perf_evsel *evsel,
  225. int cpu, int thread, u64 id)
  226. {
  227. int hash;
  228. struct perf_sample_id *sid = SID(evsel, cpu, thread);
  229. sid->id = id;
  230. sid->evsel = evsel;
  231. hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
  232. hlist_add_head(&sid->node, &evlist->heads[hash]);
  233. }
  234. void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
  235. int cpu, int thread, u64 id)
  236. {
  237. perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
  238. evsel->id[evsel->ids++] = id;
  239. }
  240. static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
  241. struct perf_evsel *evsel,
  242. int cpu, int thread, int fd)
  243. {
  244. u64 read_data[4] = { 0, };
  245. int id_idx = 1; /* The first entry is the counter value */
  246. if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
  247. read(fd, &read_data, sizeof(read_data)) == -1)
  248. return -1;
  249. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  250. ++id_idx;
  251. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  252. ++id_idx;
  253. perf_evlist__id_add(evlist, evsel, cpu, thread, read_data[id_idx]);
  254. return 0;
  255. }
  256. struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
  257. {
  258. struct hlist_head *head;
  259. struct hlist_node *pos;
  260. struct perf_sample_id *sid;
  261. int hash;
  262. if (evlist->nr_entries == 1)
  263. return perf_evlist__first(evlist);
  264. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  265. head = &evlist->heads[hash];
  266. hlist_for_each_entry(sid, pos, head, node)
  267. if (sid->id == id)
  268. return sid->evsel;
  269. if (!perf_evlist__sample_id_all(evlist))
  270. return perf_evlist__first(evlist);
  271. return NULL;
  272. }
  273. union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
  274. {
  275. struct perf_mmap *md = &evlist->mmap[idx];
  276. unsigned int head = perf_mmap__read_head(md);
  277. unsigned int old = md->prev;
  278. unsigned char *data = md->base + page_size;
  279. union perf_event *event = NULL;
  280. if (evlist->overwrite) {
  281. /*
  282. * If we're further behind than half the buffer, there's a chance
  283. * the writer will bite our tail and mess up the samples under us.
  284. *
  285. * If we somehow ended up ahead of the head, we got messed up.
  286. *
  287. * In either case, truncate and restart at head.
  288. */
  289. int diff = head - old;
  290. if (diff > md->mask / 2 || diff < 0) {
  291. fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
  292. /*
  293. * head points to a known good entry, start there.
  294. */
  295. old = head;
  296. }
  297. }
  298. if (old != head) {
  299. size_t size;
  300. event = (union perf_event *)&data[old & md->mask];
  301. size = event->header.size;
  302. /*
  303. * Event straddles the mmap boundary -- header should always
  304. * be inside due to u64 alignment of output.
  305. */
  306. if ((old & md->mask) + size != ((old + size) & md->mask)) {
  307. unsigned int offset = old;
  308. unsigned int len = min(sizeof(*event), size), cpy;
  309. void *dst = &md->event_copy;
  310. do {
  311. cpy = min(md->mask + 1 - (offset & md->mask), len);
  312. memcpy(dst, &data[offset & md->mask], cpy);
  313. offset += cpy;
  314. dst += cpy;
  315. len -= cpy;
  316. } while (len);
  317. event = &md->event_copy;
  318. }
  319. old += size;
  320. }
  321. md->prev = old;
  322. if (!evlist->overwrite)
  323. perf_mmap__write_tail(md, old);
  324. return event;
  325. }
  326. void perf_evlist__munmap(struct perf_evlist *evlist)
  327. {
  328. int i;
  329. for (i = 0; i < evlist->nr_mmaps; i++) {
  330. if (evlist->mmap[i].base != NULL) {
  331. munmap(evlist->mmap[i].base, evlist->mmap_len);
  332. evlist->mmap[i].base = NULL;
  333. }
  334. }
  335. free(evlist->mmap);
  336. evlist->mmap = NULL;
  337. }
  338. static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
  339. {
  340. evlist->nr_mmaps = cpu_map__nr(evlist->cpus);
  341. if (cpu_map__all(evlist->cpus))
  342. evlist->nr_mmaps = evlist->threads->nr;
  343. evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
  344. return evlist->mmap != NULL ? 0 : -ENOMEM;
  345. }
  346. static int __perf_evlist__mmap(struct perf_evlist *evlist,
  347. int idx, int prot, int mask, int fd)
  348. {
  349. evlist->mmap[idx].prev = 0;
  350. evlist->mmap[idx].mask = mask;
  351. evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
  352. MAP_SHARED, fd, 0);
  353. if (evlist->mmap[idx].base == MAP_FAILED) {
  354. evlist->mmap[idx].base = NULL;
  355. return -1;
  356. }
  357. perf_evlist__add_pollfd(evlist, fd);
  358. return 0;
  359. }
  360. static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask)
  361. {
  362. struct perf_evsel *evsel;
  363. int cpu, thread;
  364. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  365. int output = -1;
  366. for (thread = 0; thread < evlist->threads->nr; thread++) {
  367. list_for_each_entry(evsel, &evlist->entries, node) {
  368. int fd = FD(evsel, cpu, thread);
  369. if (output == -1) {
  370. output = fd;
  371. if (__perf_evlist__mmap(evlist, cpu,
  372. prot, mask, output) < 0)
  373. goto out_unmap;
  374. } else {
  375. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  376. goto out_unmap;
  377. }
  378. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  379. perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
  380. goto out_unmap;
  381. }
  382. }
  383. }
  384. return 0;
  385. out_unmap:
  386. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  387. if (evlist->mmap[cpu].base != NULL) {
  388. munmap(evlist->mmap[cpu].base, evlist->mmap_len);
  389. evlist->mmap[cpu].base = NULL;
  390. }
  391. }
  392. return -1;
  393. }
  394. static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask)
  395. {
  396. struct perf_evsel *evsel;
  397. int thread;
  398. for (thread = 0; thread < evlist->threads->nr; thread++) {
  399. int output = -1;
  400. list_for_each_entry(evsel, &evlist->entries, node) {
  401. int fd = FD(evsel, 0, thread);
  402. if (output == -1) {
  403. output = fd;
  404. if (__perf_evlist__mmap(evlist, thread,
  405. prot, mask, output) < 0)
  406. goto out_unmap;
  407. } else {
  408. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  409. goto out_unmap;
  410. }
  411. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  412. perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0)
  413. goto out_unmap;
  414. }
  415. }
  416. return 0;
  417. out_unmap:
  418. for (thread = 0; thread < evlist->threads->nr; thread++) {
  419. if (evlist->mmap[thread].base != NULL) {
  420. munmap(evlist->mmap[thread].base, evlist->mmap_len);
  421. evlist->mmap[thread].base = NULL;
  422. }
  423. }
  424. return -1;
  425. }
  426. /** perf_evlist__mmap - Create per cpu maps to receive events
  427. *
  428. * @evlist - list of events
  429. * @pages - map length in pages
  430. * @overwrite - overwrite older events?
  431. *
  432. * If overwrite is false the user needs to signal event consuption using:
  433. *
  434. * struct perf_mmap *m = &evlist->mmap[cpu];
  435. * unsigned int head = perf_mmap__read_head(m);
  436. *
  437. * perf_mmap__write_tail(m, head)
  438. *
  439. * Using perf_evlist__read_on_cpu does this automatically.
  440. */
  441. int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
  442. bool overwrite)
  443. {
  444. struct perf_evsel *evsel;
  445. const struct cpu_map *cpus = evlist->cpus;
  446. const struct thread_map *threads = evlist->threads;
  447. int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
  448. /* 512 kiB: default amount of unprivileged mlocked memory */
  449. if (pages == UINT_MAX)
  450. pages = (512 * 1024) / page_size;
  451. else if (!is_power_of_2(pages))
  452. return -EINVAL;
  453. mask = pages * page_size - 1;
  454. if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
  455. return -ENOMEM;
  456. if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
  457. return -ENOMEM;
  458. evlist->overwrite = overwrite;
  459. evlist->mmap_len = (pages + 1) * page_size;
  460. list_for_each_entry(evsel, &evlist->entries, node) {
  461. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  462. evsel->sample_id == NULL &&
  463. perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0)
  464. return -ENOMEM;
  465. }
  466. if (cpu_map__all(cpus))
  467. return perf_evlist__mmap_per_thread(evlist, prot, mask);
  468. return perf_evlist__mmap_per_cpu(evlist, prot, mask);
  469. }
  470. int perf_evlist__create_maps(struct perf_evlist *evlist,
  471. struct perf_target *target)
  472. {
  473. evlist->threads = thread_map__new_str(target->pid, target->tid,
  474. target->uid);
  475. if (evlist->threads == NULL)
  476. return -1;
  477. if (perf_target__has_task(target))
  478. evlist->cpus = cpu_map__dummy_new();
  479. else if (!perf_target__has_cpu(target) && !target->uses_mmap)
  480. evlist->cpus = cpu_map__dummy_new();
  481. else
  482. evlist->cpus = cpu_map__new(target->cpu_list);
  483. if (evlist->cpus == NULL)
  484. goto out_delete_threads;
  485. return 0;
  486. out_delete_threads:
  487. thread_map__delete(evlist->threads);
  488. return -1;
  489. }
  490. void perf_evlist__delete_maps(struct perf_evlist *evlist)
  491. {
  492. cpu_map__delete(evlist->cpus);
  493. thread_map__delete(evlist->threads);
  494. evlist->cpus = NULL;
  495. evlist->threads = NULL;
  496. }
  497. int perf_evlist__apply_filters(struct perf_evlist *evlist)
  498. {
  499. struct perf_evsel *evsel;
  500. int err = 0;
  501. const int ncpus = cpu_map__nr(evlist->cpus),
  502. nthreads = evlist->threads->nr;
  503. list_for_each_entry(evsel, &evlist->entries, node) {
  504. if (evsel->filter == NULL)
  505. continue;
  506. err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter);
  507. if (err)
  508. break;
  509. }
  510. return err;
  511. }
  512. int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter)
  513. {
  514. struct perf_evsel *evsel;
  515. int err = 0;
  516. const int ncpus = cpu_map__nr(evlist->cpus),
  517. nthreads = evlist->threads->nr;
  518. list_for_each_entry(evsel, &evlist->entries, node) {
  519. err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter);
  520. if (err)
  521. break;
  522. }
  523. return err;
  524. }
  525. bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
  526. {
  527. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  528. list_for_each_entry_continue(pos, &evlist->entries, node) {
  529. if (first->attr.sample_type != pos->attr.sample_type)
  530. return false;
  531. }
  532. return true;
  533. }
  534. u64 perf_evlist__sample_type(struct perf_evlist *evlist)
  535. {
  536. struct perf_evsel *first = perf_evlist__first(evlist);
  537. return first->attr.sample_type;
  538. }
  539. u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
  540. {
  541. struct perf_evsel *first = perf_evlist__first(evlist);
  542. struct perf_sample *data;
  543. u64 sample_type;
  544. u16 size = 0;
  545. if (!first->attr.sample_id_all)
  546. goto out;
  547. sample_type = first->attr.sample_type;
  548. if (sample_type & PERF_SAMPLE_TID)
  549. size += sizeof(data->tid) * 2;
  550. if (sample_type & PERF_SAMPLE_TIME)
  551. size += sizeof(data->time);
  552. if (sample_type & PERF_SAMPLE_ID)
  553. size += sizeof(data->id);
  554. if (sample_type & PERF_SAMPLE_STREAM_ID)
  555. size += sizeof(data->stream_id);
  556. if (sample_type & PERF_SAMPLE_CPU)
  557. size += sizeof(data->cpu) * 2;
  558. out:
  559. return size;
  560. }
  561. bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
  562. {
  563. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  564. list_for_each_entry_continue(pos, &evlist->entries, node) {
  565. if (first->attr.sample_id_all != pos->attr.sample_id_all)
  566. return false;
  567. }
  568. return true;
  569. }
  570. bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
  571. {
  572. struct perf_evsel *first = perf_evlist__first(evlist);
  573. return first->attr.sample_id_all;
  574. }
  575. void perf_evlist__set_selected(struct perf_evlist *evlist,
  576. struct perf_evsel *evsel)
  577. {
  578. evlist->selected = evsel;
  579. }
  580. int perf_evlist__open(struct perf_evlist *evlist)
  581. {
  582. struct perf_evsel *evsel;
  583. int err, ncpus, nthreads;
  584. list_for_each_entry(evsel, &evlist->entries, node) {
  585. err = perf_evsel__open(evsel, evlist->cpus, evlist->threads);
  586. if (err < 0)
  587. goto out_err;
  588. }
  589. return 0;
  590. out_err:
  591. ncpus = evlist->cpus ? evlist->cpus->nr : 1;
  592. nthreads = evlist->threads ? evlist->threads->nr : 1;
  593. list_for_each_entry_reverse(evsel, &evlist->entries, node)
  594. perf_evsel__close(evsel, ncpus, nthreads);
  595. errno = -err;
  596. return err;
  597. }
  598. int perf_evlist__prepare_workload(struct perf_evlist *evlist,
  599. struct perf_record_opts *opts,
  600. const char *argv[])
  601. {
  602. int child_ready_pipe[2], go_pipe[2];
  603. char bf;
  604. if (pipe(child_ready_pipe) < 0) {
  605. perror("failed to create 'ready' pipe");
  606. return -1;
  607. }
  608. if (pipe(go_pipe) < 0) {
  609. perror("failed to create 'go' pipe");
  610. goto out_close_ready_pipe;
  611. }
  612. evlist->workload.pid = fork();
  613. if (evlist->workload.pid < 0) {
  614. perror("failed to fork");
  615. goto out_close_pipes;
  616. }
  617. if (!evlist->workload.pid) {
  618. if (opts->pipe_output)
  619. dup2(2, 1);
  620. close(child_ready_pipe[0]);
  621. close(go_pipe[1]);
  622. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  623. /*
  624. * Do a dummy execvp to get the PLT entry resolved,
  625. * so we avoid the resolver overhead on the real
  626. * execvp call.
  627. */
  628. execvp("", (char **)argv);
  629. /*
  630. * Tell the parent we're ready to go
  631. */
  632. close(child_ready_pipe[1]);
  633. /*
  634. * Wait until the parent tells us to go.
  635. */
  636. if (read(go_pipe[0], &bf, 1) == -1)
  637. perror("unable to read pipe");
  638. execvp(argv[0], (char **)argv);
  639. perror(argv[0]);
  640. kill(getppid(), SIGUSR1);
  641. exit(-1);
  642. }
  643. if (perf_target__none(&opts->target))
  644. evlist->threads->map[0] = evlist->workload.pid;
  645. close(child_ready_pipe[1]);
  646. close(go_pipe[0]);
  647. /*
  648. * wait for child to settle
  649. */
  650. if (read(child_ready_pipe[0], &bf, 1) == -1) {
  651. perror("unable to read pipe");
  652. goto out_close_pipes;
  653. }
  654. evlist->workload.cork_fd = go_pipe[1];
  655. close(child_ready_pipe[0]);
  656. return 0;
  657. out_close_pipes:
  658. close(go_pipe[0]);
  659. close(go_pipe[1]);
  660. out_close_ready_pipe:
  661. close(child_ready_pipe[0]);
  662. close(child_ready_pipe[1]);
  663. return -1;
  664. }
  665. int perf_evlist__start_workload(struct perf_evlist *evlist)
  666. {
  667. if (evlist->workload.cork_fd > 0) {
  668. /*
  669. * Remove the cork, let it rip!
  670. */
  671. return close(evlist->workload.cork_fd);
  672. }
  673. return 0;
  674. }
  675. int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
  676. struct perf_sample *sample)
  677. {
  678. struct perf_evsel *evsel = perf_evlist__first(evlist);
  679. return perf_evsel__parse_sample(evsel, event, sample);
  680. }
  681. size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp)
  682. {
  683. struct perf_evsel *evsel;
  684. size_t printed = 0;
  685. list_for_each_entry(evsel, &evlist->entries, node) {
  686. printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "",
  687. perf_evsel__name(evsel));
  688. }
  689. return printed + fprintf(fp, "\n");;
  690. }