page-writeback.c 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  35. #include <linux/pagevec.h>
  36. #include <linux/timer.h>
  37. #include <linux/sched/rt.h>
  38. #include <trace/events/writeback.h>
  39. /*
  40. * Sleep at most 200ms at a time in balance_dirty_pages().
  41. */
  42. #define MAX_PAUSE max(HZ/5, 1)
  43. /*
  44. * Try to keep balance_dirty_pages() call intervals higher than this many pages
  45. * by raising pause time to max_pause when falls below it.
  46. */
  47. #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
  48. /*
  49. * Estimate write bandwidth at 200ms intervals.
  50. */
  51. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  52. #define RATELIMIT_CALC_SHIFT 10
  53. /*
  54. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  55. * will look to see if it needs to force writeback or throttling.
  56. */
  57. static long ratelimit_pages = 32;
  58. /* The following parameters are exported via /proc/sys/vm */
  59. /*
  60. * Start background writeback (via writeback threads) at this percentage
  61. */
  62. int dirty_background_ratio = 10;
  63. /*
  64. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  65. * dirty_background_ratio * the amount of dirtyable memory
  66. */
  67. unsigned long dirty_background_bytes;
  68. /*
  69. * free highmem will not be subtracted from the total free memory
  70. * for calculating free ratios if vm_highmem_is_dirtyable is true
  71. */
  72. int vm_highmem_is_dirtyable;
  73. /*
  74. * The generator of dirty data starts writeback at this percentage
  75. */
  76. int vm_dirty_ratio = 20;
  77. /*
  78. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  79. * vm_dirty_ratio * the amount of dirtyable memory
  80. */
  81. unsigned long vm_dirty_bytes;
  82. /*
  83. * The interval between `kupdate'-style writebacks
  84. */
  85. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  86. EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  87. /*
  88. * The longest time for which data is allowed to remain dirty
  89. */
  90. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  91. /*
  92. * Flag that makes the machine dump writes/reads and block dirtyings.
  93. */
  94. int block_dump;
  95. /*
  96. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  97. * a full sync is triggered after this time elapses without any disk activity.
  98. */
  99. int laptop_mode;
  100. EXPORT_SYMBOL(laptop_mode);
  101. /* End of sysctl-exported parameters */
  102. unsigned long global_dirty_limit;
  103. /*
  104. * Scale the writeback cache size proportional to the relative writeout speeds.
  105. *
  106. * We do this by keeping a floating proportion between BDIs, based on page
  107. * writeback completions [end_page_writeback()]. Those devices that write out
  108. * pages fastest will get the larger share, while the slower will get a smaller
  109. * share.
  110. *
  111. * We use page writeout completions because we are interested in getting rid of
  112. * dirty pages. Having them written out is the primary goal.
  113. *
  114. * We introduce a concept of time, a period over which we measure these events,
  115. * because demand can/will vary over time. The length of this period itself is
  116. * measured in page writeback completions.
  117. *
  118. */
  119. static struct fprop_global writeout_completions;
  120. static void writeout_period(unsigned long t);
  121. /* Timer for aging of writeout_completions */
  122. static struct timer_list writeout_period_timer =
  123. TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
  124. static unsigned long writeout_period_time = 0;
  125. /*
  126. * Length of period for aging writeout fractions of bdis. This is an
  127. * arbitrarily chosen number. The longer the period, the slower fractions will
  128. * reflect changes in current writeout rate.
  129. */
  130. #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
  131. /*
  132. * Work out the current dirty-memory clamping and background writeout
  133. * thresholds.
  134. *
  135. * The main aim here is to lower them aggressively if there is a lot of mapped
  136. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  137. * pages. It is better to clamp down on writers than to start swapping, and
  138. * performing lots of scanning.
  139. *
  140. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  141. *
  142. * We don't permit the clamping level to fall below 5% - that is getting rather
  143. * excessive.
  144. *
  145. * We make sure that the background writeout level is below the adjusted
  146. * clamping level.
  147. */
  148. /*
  149. * In a memory zone, there is a certain amount of pages we consider
  150. * available for the page cache, which is essentially the number of
  151. * free and reclaimable pages, minus some zone reserves to protect
  152. * lowmem and the ability to uphold the zone's watermarks without
  153. * requiring writeback.
  154. *
  155. * This number of dirtyable pages is the base value of which the
  156. * user-configurable dirty ratio is the effictive number of pages that
  157. * are allowed to be actually dirtied. Per individual zone, or
  158. * globally by using the sum of dirtyable pages over all zones.
  159. *
  160. * Because the user is allowed to specify the dirty limit globally as
  161. * absolute number of bytes, calculating the per-zone dirty limit can
  162. * require translating the configured limit into a percentage of
  163. * global dirtyable memory first.
  164. */
  165. static unsigned long highmem_dirtyable_memory(unsigned long total)
  166. {
  167. #ifdef CONFIG_HIGHMEM
  168. int node;
  169. unsigned long x = 0;
  170. for_each_node_state(node, N_HIGH_MEMORY) {
  171. struct zone *z =
  172. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  173. x += zone_page_state(z, NR_FREE_PAGES) +
  174. zone_reclaimable_pages(z) - z->dirty_balance_reserve;
  175. }
  176. /*
  177. * Unreclaimable memory (kernel memory or anonymous memory
  178. * without swap) can bring down the dirtyable pages below
  179. * the zone's dirty balance reserve and the above calculation
  180. * will underflow. However we still want to add in nodes
  181. * which are below threshold (negative values) to get a more
  182. * accurate calculation but make sure that the total never
  183. * underflows.
  184. */
  185. if ((long)x < 0)
  186. x = 0;
  187. /*
  188. * Make sure that the number of highmem pages is never larger
  189. * than the number of the total dirtyable memory. This can only
  190. * occur in very strange VM situations but we want to make sure
  191. * that this does not occur.
  192. */
  193. return min(x, total);
  194. #else
  195. return 0;
  196. #endif
  197. }
  198. /**
  199. * global_dirtyable_memory - number of globally dirtyable pages
  200. *
  201. * Returns the global number of pages potentially available for dirty
  202. * page cache. This is the base value for the global dirty limits.
  203. */
  204. static unsigned long global_dirtyable_memory(void)
  205. {
  206. unsigned long x;
  207. x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
  208. x -= min(x, dirty_balance_reserve);
  209. if (!vm_highmem_is_dirtyable)
  210. x -= highmem_dirtyable_memory(x);
  211. return x + 1; /* Ensure that we never return 0 */
  212. }
  213. /*
  214. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  215. *
  216. * Calculate the dirty thresholds based on sysctl parameters
  217. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  218. * - vm.dirty_ratio or vm.dirty_bytes
  219. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  220. * real-time tasks.
  221. */
  222. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  223. {
  224. unsigned long background;
  225. unsigned long dirty;
  226. unsigned long uninitialized_var(available_memory);
  227. struct task_struct *tsk;
  228. if (!vm_dirty_bytes || !dirty_background_bytes)
  229. available_memory = global_dirtyable_memory();
  230. if (vm_dirty_bytes)
  231. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  232. else
  233. dirty = (vm_dirty_ratio * available_memory) / 100;
  234. if (dirty_background_bytes)
  235. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  236. else
  237. background = (dirty_background_ratio * available_memory) / 100;
  238. if (background >= dirty)
  239. background = dirty / 2;
  240. tsk = current;
  241. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  242. background += background / 4;
  243. dirty += dirty / 4;
  244. }
  245. *pbackground = background;
  246. *pdirty = dirty;
  247. trace_global_dirty_state(background, dirty);
  248. }
  249. /**
  250. * zone_dirtyable_memory - number of dirtyable pages in a zone
  251. * @zone: the zone
  252. *
  253. * Returns the zone's number of pages potentially available for dirty
  254. * page cache. This is the base value for the per-zone dirty limits.
  255. */
  256. static unsigned long zone_dirtyable_memory(struct zone *zone)
  257. {
  258. /*
  259. * The effective global number of dirtyable pages may exclude
  260. * highmem as a big-picture measure to keep the ratio between
  261. * dirty memory and lowmem reasonable.
  262. *
  263. * But this function is purely about the individual zone and a
  264. * highmem zone can hold its share of dirty pages, so we don't
  265. * care about vm_highmem_is_dirtyable here.
  266. */
  267. unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) +
  268. zone_reclaimable_pages(zone);
  269. /* don't allow this to underflow */
  270. nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
  271. return nr_pages;
  272. }
  273. /**
  274. * zone_dirty_limit - maximum number of dirty pages allowed in a zone
  275. * @zone: the zone
  276. *
  277. * Returns the maximum number of dirty pages allowed in a zone, based
  278. * on the zone's dirtyable memory.
  279. */
  280. static unsigned long zone_dirty_limit(struct zone *zone)
  281. {
  282. unsigned long zone_memory = zone_dirtyable_memory(zone);
  283. struct task_struct *tsk = current;
  284. unsigned long dirty;
  285. if (vm_dirty_bytes)
  286. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
  287. zone_memory / global_dirtyable_memory();
  288. else
  289. dirty = vm_dirty_ratio * zone_memory / 100;
  290. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
  291. dirty += dirty / 4;
  292. return dirty;
  293. }
  294. /**
  295. * zone_dirty_ok - tells whether a zone is within its dirty limits
  296. * @zone: the zone to check
  297. *
  298. * Returns %true when the dirty pages in @zone are within the zone's
  299. * dirty limit, %false if the limit is exceeded.
  300. */
  301. bool zone_dirty_ok(struct zone *zone)
  302. {
  303. unsigned long limit = zone_dirty_limit(zone);
  304. return zone_page_state(zone, NR_FILE_DIRTY) +
  305. zone_page_state(zone, NR_UNSTABLE_NFS) +
  306. zone_page_state(zone, NR_WRITEBACK) <= limit;
  307. }
  308. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  309. void __user *buffer, size_t *lenp,
  310. loff_t *ppos)
  311. {
  312. int ret;
  313. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  314. if (ret == 0 && write)
  315. dirty_background_bytes = 0;
  316. return ret;
  317. }
  318. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  319. void __user *buffer, size_t *lenp,
  320. loff_t *ppos)
  321. {
  322. int ret;
  323. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  324. if (ret == 0 && write)
  325. dirty_background_ratio = 0;
  326. return ret;
  327. }
  328. int dirty_ratio_handler(struct ctl_table *table, int write,
  329. void __user *buffer, size_t *lenp,
  330. loff_t *ppos)
  331. {
  332. int old_ratio = vm_dirty_ratio;
  333. int ret;
  334. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  335. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  336. writeback_set_ratelimit();
  337. vm_dirty_bytes = 0;
  338. }
  339. return ret;
  340. }
  341. int dirty_bytes_handler(struct ctl_table *table, int write,
  342. void __user *buffer, size_t *lenp,
  343. loff_t *ppos)
  344. {
  345. unsigned long old_bytes = vm_dirty_bytes;
  346. int ret;
  347. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  348. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  349. writeback_set_ratelimit();
  350. vm_dirty_ratio = 0;
  351. }
  352. return ret;
  353. }
  354. static unsigned long wp_next_time(unsigned long cur_time)
  355. {
  356. cur_time += VM_COMPLETIONS_PERIOD_LEN;
  357. /* 0 has a special meaning... */
  358. if (!cur_time)
  359. return 1;
  360. return cur_time;
  361. }
  362. /*
  363. * Increment the BDI's writeout completion count and the global writeout
  364. * completion count. Called from test_clear_page_writeback().
  365. */
  366. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  367. {
  368. __inc_bdi_stat(bdi, BDI_WRITTEN);
  369. __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
  370. bdi->max_prop_frac);
  371. /* First event after period switching was turned off? */
  372. if (!unlikely(writeout_period_time)) {
  373. /*
  374. * We can race with other __bdi_writeout_inc calls here but
  375. * it does not cause any harm since the resulting time when
  376. * timer will fire and what is in writeout_period_time will be
  377. * roughly the same.
  378. */
  379. writeout_period_time = wp_next_time(jiffies);
  380. mod_timer(&writeout_period_timer, writeout_period_time);
  381. }
  382. }
  383. void bdi_writeout_inc(struct backing_dev_info *bdi)
  384. {
  385. unsigned long flags;
  386. local_irq_save(flags);
  387. __bdi_writeout_inc(bdi);
  388. local_irq_restore(flags);
  389. }
  390. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  391. /*
  392. * Obtain an accurate fraction of the BDI's portion.
  393. */
  394. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  395. long *numerator, long *denominator)
  396. {
  397. fprop_fraction_percpu(&writeout_completions, &bdi->completions,
  398. numerator, denominator);
  399. }
  400. /*
  401. * On idle system, we can be called long after we scheduled because we use
  402. * deferred timers so count with missed periods.
  403. */
  404. static void writeout_period(unsigned long t)
  405. {
  406. int miss_periods = (jiffies - writeout_period_time) /
  407. VM_COMPLETIONS_PERIOD_LEN;
  408. if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
  409. writeout_period_time = wp_next_time(writeout_period_time +
  410. miss_periods * VM_COMPLETIONS_PERIOD_LEN);
  411. mod_timer(&writeout_period_timer, writeout_period_time);
  412. } else {
  413. /*
  414. * Aging has zeroed all fractions. Stop wasting CPU on period
  415. * updates.
  416. */
  417. writeout_period_time = 0;
  418. }
  419. }
  420. /*
  421. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  422. * registered backing devices, which, for obvious reasons, can not
  423. * exceed 100%.
  424. */
  425. static unsigned int bdi_min_ratio;
  426. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  427. {
  428. int ret = 0;
  429. spin_lock_bh(&bdi_lock);
  430. if (min_ratio > bdi->max_ratio) {
  431. ret = -EINVAL;
  432. } else {
  433. min_ratio -= bdi->min_ratio;
  434. if (bdi_min_ratio + min_ratio < 100) {
  435. bdi_min_ratio += min_ratio;
  436. bdi->min_ratio += min_ratio;
  437. } else {
  438. ret = -EINVAL;
  439. }
  440. }
  441. spin_unlock_bh(&bdi_lock);
  442. return ret;
  443. }
  444. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  445. {
  446. int ret = 0;
  447. if (max_ratio > 100)
  448. return -EINVAL;
  449. spin_lock_bh(&bdi_lock);
  450. if (bdi->min_ratio > max_ratio) {
  451. ret = -EINVAL;
  452. } else {
  453. bdi->max_ratio = max_ratio;
  454. bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
  455. }
  456. spin_unlock_bh(&bdi_lock);
  457. return ret;
  458. }
  459. EXPORT_SYMBOL(bdi_set_max_ratio);
  460. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  461. unsigned long bg_thresh)
  462. {
  463. return (thresh + bg_thresh) / 2;
  464. }
  465. static unsigned long hard_dirty_limit(unsigned long thresh)
  466. {
  467. return max(thresh, global_dirty_limit);
  468. }
  469. /**
  470. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  471. * @bdi: the backing_dev_info to query
  472. * @dirty: global dirty limit in pages
  473. *
  474. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  475. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  476. *
  477. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  478. * when sleeping max_pause per page is not enough to keep the dirty pages under
  479. * control. For example, when the device is completely stalled due to some error
  480. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  481. * In the other normal situations, it acts more gently by throttling the tasks
  482. * more (rather than completely block them) when the bdi dirty pages go high.
  483. *
  484. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  485. * - starving fast devices
  486. * - piling up dirty pages (that will take long time to sync) on slow devices
  487. *
  488. * The bdi's share of dirty limit will be adapting to its throughput and
  489. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  490. */
  491. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  492. {
  493. u64 bdi_dirty;
  494. long numerator, denominator;
  495. /*
  496. * Calculate this BDI's share of the dirty ratio.
  497. */
  498. bdi_writeout_fraction(bdi, &numerator, &denominator);
  499. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  500. bdi_dirty *= numerator;
  501. do_div(bdi_dirty, denominator);
  502. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  503. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  504. bdi_dirty = dirty * bdi->max_ratio / 100;
  505. return bdi_dirty;
  506. }
  507. /*
  508. * Dirty position control.
  509. *
  510. * (o) global/bdi setpoints
  511. *
  512. * We want the dirty pages be balanced around the global/bdi setpoints.
  513. * When the number of dirty pages is higher/lower than the setpoint, the
  514. * dirty position control ratio (and hence task dirty ratelimit) will be
  515. * decreased/increased to bring the dirty pages back to the setpoint.
  516. *
  517. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  518. *
  519. * if (dirty < setpoint) scale up pos_ratio
  520. * if (dirty > setpoint) scale down pos_ratio
  521. *
  522. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  523. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  524. *
  525. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  526. *
  527. * (o) global control line
  528. *
  529. * ^ pos_ratio
  530. * |
  531. * | |<===== global dirty control scope ======>|
  532. * 2.0 .............*
  533. * | .*
  534. * | . *
  535. * | . *
  536. * | . *
  537. * | . *
  538. * | . *
  539. * 1.0 ................................*
  540. * | . . *
  541. * | . . *
  542. * | . . *
  543. * | . . *
  544. * | . . *
  545. * 0 +------------.------------------.----------------------*------------->
  546. * freerun^ setpoint^ limit^ dirty pages
  547. *
  548. * (o) bdi control line
  549. *
  550. * ^ pos_ratio
  551. * |
  552. * | *
  553. * | *
  554. * | *
  555. * | *
  556. * | * |<=========== span ============>|
  557. * 1.0 .......................*
  558. * | . *
  559. * | . *
  560. * | . *
  561. * | . *
  562. * | . *
  563. * | . *
  564. * | . *
  565. * | . *
  566. * | . *
  567. * | . *
  568. * | . *
  569. * 1/4 ...............................................* * * * * * * * * * * *
  570. * | . .
  571. * | . .
  572. * | . .
  573. * 0 +----------------------.-------------------------------.------------->
  574. * bdi_setpoint^ x_intercept^
  575. *
  576. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  577. * be smoothly throttled down to normal if it starts high in situations like
  578. * - start writing to a slow SD card and a fast disk at the same time. The SD
  579. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  580. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  581. */
  582. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  583. unsigned long thresh,
  584. unsigned long bg_thresh,
  585. unsigned long dirty,
  586. unsigned long bdi_thresh,
  587. unsigned long bdi_dirty)
  588. {
  589. unsigned long write_bw = bdi->avg_write_bandwidth;
  590. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  591. unsigned long limit = hard_dirty_limit(thresh);
  592. unsigned long x_intercept;
  593. unsigned long setpoint; /* dirty pages' target balance point */
  594. unsigned long bdi_setpoint;
  595. unsigned long span;
  596. long long pos_ratio; /* for scaling up/down the rate limit */
  597. long x;
  598. if (unlikely(dirty >= limit))
  599. return 0;
  600. /*
  601. * global setpoint
  602. *
  603. * setpoint - dirty 3
  604. * f(dirty) := 1.0 + (----------------)
  605. * limit - setpoint
  606. *
  607. * it's a 3rd order polynomial that subjects to
  608. *
  609. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  610. * (2) f(setpoint) = 1.0 => the balance point
  611. * (3) f(limit) = 0 => the hard limit
  612. * (4) df/dx <= 0 => negative feedback control
  613. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  614. * => fast response on large errors; small oscillation near setpoint
  615. */
  616. setpoint = (freerun + limit) / 2;
  617. x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
  618. limit - setpoint + 1);
  619. pos_ratio = x;
  620. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  621. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  622. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  623. /*
  624. * We have computed basic pos_ratio above based on global situation. If
  625. * the bdi is over/under its share of dirty pages, we want to scale
  626. * pos_ratio further down/up. That is done by the following mechanism.
  627. */
  628. /*
  629. * bdi setpoint
  630. *
  631. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  632. *
  633. * x_intercept - bdi_dirty
  634. * := --------------------------
  635. * x_intercept - bdi_setpoint
  636. *
  637. * The main bdi control line is a linear function that subjects to
  638. *
  639. * (1) f(bdi_setpoint) = 1.0
  640. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  641. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  642. *
  643. * For single bdi case, the dirty pages are observed to fluctuate
  644. * regularly within range
  645. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  646. * for various filesystems, where (2) can yield in a reasonable 12.5%
  647. * fluctuation range for pos_ratio.
  648. *
  649. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  650. * own size, so move the slope over accordingly and choose a slope that
  651. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  652. */
  653. if (unlikely(bdi_thresh > thresh))
  654. bdi_thresh = thresh;
  655. /*
  656. * It's very possible that bdi_thresh is close to 0 not because the
  657. * device is slow, but that it has remained inactive for long time.
  658. * Honour such devices a reasonable good (hopefully IO efficient)
  659. * threshold, so that the occasional writes won't be blocked and active
  660. * writes can rampup the threshold quickly.
  661. */
  662. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  663. /*
  664. * scale global setpoint to bdi's:
  665. * bdi_setpoint = setpoint * bdi_thresh / thresh
  666. */
  667. x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  668. bdi_setpoint = setpoint * (u64)x >> 16;
  669. /*
  670. * Use span=(8*write_bw) in single bdi case as indicated by
  671. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  672. *
  673. * bdi_thresh thresh - bdi_thresh
  674. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  675. * thresh thresh
  676. */
  677. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  678. x_intercept = bdi_setpoint + span;
  679. if (bdi_dirty < x_intercept - span / 4) {
  680. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  681. x_intercept - bdi_setpoint + 1);
  682. } else
  683. pos_ratio /= 4;
  684. /*
  685. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  686. * It may push the desired control point of global dirty pages higher
  687. * than setpoint.
  688. */
  689. x_intercept = bdi_thresh / 2;
  690. if (bdi_dirty < x_intercept) {
  691. if (bdi_dirty > x_intercept / 8)
  692. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  693. else
  694. pos_ratio *= 8;
  695. }
  696. return pos_ratio;
  697. }
  698. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  699. unsigned long elapsed,
  700. unsigned long written)
  701. {
  702. const unsigned long period = roundup_pow_of_two(3 * HZ);
  703. unsigned long avg = bdi->avg_write_bandwidth;
  704. unsigned long old = bdi->write_bandwidth;
  705. u64 bw;
  706. /*
  707. * bw = written * HZ / elapsed
  708. *
  709. * bw * elapsed + write_bandwidth * (period - elapsed)
  710. * write_bandwidth = ---------------------------------------------------
  711. * period
  712. */
  713. bw = written - bdi->written_stamp;
  714. bw *= HZ;
  715. if (unlikely(elapsed > period)) {
  716. do_div(bw, elapsed);
  717. avg = bw;
  718. goto out;
  719. }
  720. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  721. bw >>= ilog2(period);
  722. /*
  723. * one more level of smoothing, for filtering out sudden spikes
  724. */
  725. if (avg > old && old >= (unsigned long)bw)
  726. avg -= (avg - old) >> 3;
  727. if (avg < old && old <= (unsigned long)bw)
  728. avg += (old - avg) >> 3;
  729. out:
  730. bdi->write_bandwidth = bw;
  731. bdi->avg_write_bandwidth = avg;
  732. }
  733. /*
  734. * The global dirtyable memory and dirty threshold could be suddenly knocked
  735. * down by a large amount (eg. on the startup of KVM in a swapless system).
  736. * This may throw the system into deep dirty exceeded state and throttle
  737. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  738. * global_dirty_limit for tracking slowly down to the knocked down dirty
  739. * threshold.
  740. */
  741. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  742. {
  743. unsigned long limit = global_dirty_limit;
  744. /*
  745. * Follow up in one step.
  746. */
  747. if (limit < thresh) {
  748. limit = thresh;
  749. goto update;
  750. }
  751. /*
  752. * Follow down slowly. Use the higher one as the target, because thresh
  753. * may drop below dirty. This is exactly the reason to introduce
  754. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  755. */
  756. thresh = max(thresh, dirty);
  757. if (limit > thresh) {
  758. limit -= (limit - thresh) >> 5;
  759. goto update;
  760. }
  761. return;
  762. update:
  763. global_dirty_limit = limit;
  764. }
  765. static void global_update_bandwidth(unsigned long thresh,
  766. unsigned long dirty,
  767. unsigned long now)
  768. {
  769. static DEFINE_SPINLOCK(dirty_lock);
  770. static unsigned long update_time;
  771. /*
  772. * check locklessly first to optimize away locking for the most time
  773. */
  774. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  775. return;
  776. spin_lock(&dirty_lock);
  777. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  778. update_dirty_limit(thresh, dirty);
  779. update_time = now;
  780. }
  781. spin_unlock(&dirty_lock);
  782. }
  783. /*
  784. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  785. *
  786. * Normal bdi tasks will be curbed at or below it in long term.
  787. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  788. */
  789. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  790. unsigned long thresh,
  791. unsigned long bg_thresh,
  792. unsigned long dirty,
  793. unsigned long bdi_thresh,
  794. unsigned long bdi_dirty,
  795. unsigned long dirtied,
  796. unsigned long elapsed)
  797. {
  798. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  799. unsigned long limit = hard_dirty_limit(thresh);
  800. unsigned long setpoint = (freerun + limit) / 2;
  801. unsigned long write_bw = bdi->avg_write_bandwidth;
  802. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  803. unsigned long dirty_rate;
  804. unsigned long task_ratelimit;
  805. unsigned long balanced_dirty_ratelimit;
  806. unsigned long pos_ratio;
  807. unsigned long step;
  808. unsigned long x;
  809. /*
  810. * The dirty rate will match the writeout rate in long term, except
  811. * when dirty pages are truncated by userspace or re-dirtied by FS.
  812. */
  813. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  814. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  815. bdi_thresh, bdi_dirty);
  816. /*
  817. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  818. */
  819. task_ratelimit = (u64)dirty_ratelimit *
  820. pos_ratio >> RATELIMIT_CALC_SHIFT;
  821. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  822. /*
  823. * A linear estimation of the "balanced" throttle rate. The theory is,
  824. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  825. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  826. * formula will yield the balanced rate limit (write_bw / N).
  827. *
  828. * Note that the expanded form is not a pure rate feedback:
  829. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  830. * but also takes pos_ratio into account:
  831. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  832. *
  833. * (1) is not realistic because pos_ratio also takes part in balancing
  834. * the dirty rate. Consider the state
  835. * pos_ratio = 0.5 (3)
  836. * rate = 2 * (write_bw / N) (4)
  837. * If (1) is used, it will stuck in that state! Because each dd will
  838. * be throttled at
  839. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  840. * yielding
  841. * dirty_rate = N * task_ratelimit = write_bw (6)
  842. * put (6) into (1) we get
  843. * rate_(i+1) = rate_(i) (7)
  844. *
  845. * So we end up using (2) to always keep
  846. * rate_(i+1) ~= (write_bw / N) (8)
  847. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  848. * pos_ratio is able to drive itself to 1.0, which is not only where
  849. * the dirty count meet the setpoint, but also where the slope of
  850. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  851. */
  852. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  853. dirty_rate | 1);
  854. /*
  855. * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
  856. */
  857. if (unlikely(balanced_dirty_ratelimit > write_bw))
  858. balanced_dirty_ratelimit = write_bw;
  859. /*
  860. * We could safely do this and return immediately:
  861. *
  862. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  863. *
  864. * However to get a more stable dirty_ratelimit, the below elaborated
  865. * code makes use of task_ratelimit to filter out singular points and
  866. * limit the step size.
  867. *
  868. * The below code essentially only uses the relative value of
  869. *
  870. * task_ratelimit - dirty_ratelimit
  871. * = (pos_ratio - 1) * dirty_ratelimit
  872. *
  873. * which reflects the direction and size of dirty position error.
  874. */
  875. /*
  876. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  877. * task_ratelimit is on the same side of dirty_ratelimit, too.
  878. * For example, when
  879. * - dirty_ratelimit > balanced_dirty_ratelimit
  880. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  881. * lowering dirty_ratelimit will help meet both the position and rate
  882. * control targets. Otherwise, don't update dirty_ratelimit if it will
  883. * only help meet the rate target. After all, what the users ultimately
  884. * feel and care are stable dirty rate and small position error.
  885. *
  886. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  887. * and filter out the singular points of balanced_dirty_ratelimit. Which
  888. * keeps jumping around randomly and can even leap far away at times
  889. * due to the small 200ms estimation period of dirty_rate (we want to
  890. * keep that period small to reduce time lags).
  891. */
  892. step = 0;
  893. if (dirty < setpoint) {
  894. x = min(bdi->balanced_dirty_ratelimit,
  895. min(balanced_dirty_ratelimit, task_ratelimit));
  896. if (dirty_ratelimit < x)
  897. step = x - dirty_ratelimit;
  898. } else {
  899. x = max(bdi->balanced_dirty_ratelimit,
  900. max(balanced_dirty_ratelimit, task_ratelimit));
  901. if (dirty_ratelimit > x)
  902. step = dirty_ratelimit - x;
  903. }
  904. /*
  905. * Don't pursue 100% rate matching. It's impossible since the balanced
  906. * rate itself is constantly fluctuating. So decrease the track speed
  907. * when it gets close to the target. Helps eliminate pointless tremors.
  908. */
  909. step >>= dirty_ratelimit / (2 * step + 1);
  910. /*
  911. * Limit the tracking speed to avoid overshooting.
  912. */
  913. step = (step + 7) / 8;
  914. if (dirty_ratelimit < balanced_dirty_ratelimit)
  915. dirty_ratelimit += step;
  916. else
  917. dirty_ratelimit -= step;
  918. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  919. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  920. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  921. }
  922. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  923. unsigned long thresh,
  924. unsigned long bg_thresh,
  925. unsigned long dirty,
  926. unsigned long bdi_thresh,
  927. unsigned long bdi_dirty,
  928. unsigned long start_time)
  929. {
  930. unsigned long now = jiffies;
  931. unsigned long elapsed = now - bdi->bw_time_stamp;
  932. unsigned long dirtied;
  933. unsigned long written;
  934. /*
  935. * rate-limit, only update once every 200ms.
  936. */
  937. if (elapsed < BANDWIDTH_INTERVAL)
  938. return;
  939. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  940. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  941. /*
  942. * Skip quiet periods when disk bandwidth is under-utilized.
  943. * (at least 1s idle time between two flusher runs)
  944. */
  945. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  946. goto snapshot;
  947. if (thresh) {
  948. global_update_bandwidth(thresh, dirty, now);
  949. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  950. bdi_thresh, bdi_dirty,
  951. dirtied, elapsed);
  952. }
  953. bdi_update_write_bandwidth(bdi, elapsed, written);
  954. snapshot:
  955. bdi->dirtied_stamp = dirtied;
  956. bdi->written_stamp = written;
  957. bdi->bw_time_stamp = now;
  958. }
  959. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  960. unsigned long thresh,
  961. unsigned long bg_thresh,
  962. unsigned long dirty,
  963. unsigned long bdi_thresh,
  964. unsigned long bdi_dirty,
  965. unsigned long start_time)
  966. {
  967. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  968. return;
  969. spin_lock(&bdi->wb.list_lock);
  970. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  971. bdi_thresh, bdi_dirty, start_time);
  972. spin_unlock(&bdi->wb.list_lock);
  973. }
  974. /*
  975. * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
  976. * will look to see if it needs to start dirty throttling.
  977. *
  978. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  979. * global_page_state() too often. So scale it near-sqrt to the safety margin
  980. * (the number of pages we may dirty without exceeding the dirty limits).
  981. */
  982. static unsigned long dirty_poll_interval(unsigned long dirty,
  983. unsigned long thresh)
  984. {
  985. if (thresh > dirty)
  986. return 1UL << (ilog2(thresh - dirty) >> 1);
  987. return 1;
  988. }
  989. static long bdi_max_pause(struct backing_dev_info *bdi,
  990. unsigned long bdi_dirty)
  991. {
  992. long bw = bdi->avg_write_bandwidth;
  993. long t;
  994. /*
  995. * Limit pause time for small memory systems. If sleeping for too long
  996. * time, a small pool of dirty/writeback pages may go empty and disk go
  997. * idle.
  998. *
  999. * 8 serves as the safety ratio.
  1000. */
  1001. t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
  1002. t++;
  1003. return min_t(long, t, MAX_PAUSE);
  1004. }
  1005. static long bdi_min_pause(struct backing_dev_info *bdi,
  1006. long max_pause,
  1007. unsigned long task_ratelimit,
  1008. unsigned long dirty_ratelimit,
  1009. int *nr_dirtied_pause)
  1010. {
  1011. long hi = ilog2(bdi->avg_write_bandwidth);
  1012. long lo = ilog2(bdi->dirty_ratelimit);
  1013. long t; /* target pause */
  1014. long pause; /* estimated next pause */
  1015. int pages; /* target nr_dirtied_pause */
  1016. /* target for 10ms pause on 1-dd case */
  1017. t = max(1, HZ / 100);
  1018. /*
  1019. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  1020. * overheads.
  1021. *
  1022. * (N * 10ms) on 2^N concurrent tasks.
  1023. */
  1024. if (hi > lo)
  1025. t += (hi - lo) * (10 * HZ) / 1024;
  1026. /*
  1027. * This is a bit convoluted. We try to base the next nr_dirtied_pause
  1028. * on the much more stable dirty_ratelimit. However the next pause time
  1029. * will be computed based on task_ratelimit and the two rate limits may
  1030. * depart considerably at some time. Especially if task_ratelimit goes
  1031. * below dirty_ratelimit/2 and the target pause is max_pause, the next
  1032. * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
  1033. * result task_ratelimit won't be executed faithfully, which could
  1034. * eventually bring down dirty_ratelimit.
  1035. *
  1036. * We apply two rules to fix it up:
  1037. * 1) try to estimate the next pause time and if necessary, use a lower
  1038. * nr_dirtied_pause so as not to exceed max_pause. When this happens,
  1039. * nr_dirtied_pause will be "dancing" with task_ratelimit.
  1040. * 2) limit the target pause time to max_pause/2, so that the normal
  1041. * small fluctuations of task_ratelimit won't trigger rule (1) and
  1042. * nr_dirtied_pause will remain as stable as dirty_ratelimit.
  1043. */
  1044. t = min(t, 1 + max_pause / 2);
  1045. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1046. /*
  1047. * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
  1048. * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
  1049. * When the 16 consecutive reads are often interrupted by some dirty
  1050. * throttling pause during the async writes, cfq will go into idles
  1051. * (deadline is fine). So push nr_dirtied_pause as high as possible
  1052. * until reaches DIRTY_POLL_THRESH=32 pages.
  1053. */
  1054. if (pages < DIRTY_POLL_THRESH) {
  1055. t = max_pause;
  1056. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1057. if (pages > DIRTY_POLL_THRESH) {
  1058. pages = DIRTY_POLL_THRESH;
  1059. t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
  1060. }
  1061. }
  1062. pause = HZ * pages / (task_ratelimit + 1);
  1063. if (pause > max_pause) {
  1064. t = max_pause;
  1065. pages = task_ratelimit * t / roundup_pow_of_two(HZ);
  1066. }
  1067. *nr_dirtied_pause = pages;
  1068. /*
  1069. * The minimal pause time will normally be half the target pause time.
  1070. */
  1071. return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
  1072. }
  1073. /*
  1074. * balance_dirty_pages() must be called by processes which are generating dirty
  1075. * data. It looks at the number of dirty pages in the machine and will force
  1076. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  1077. * If we're over `background_thresh' then the writeback threads are woken to
  1078. * perform some writeout.
  1079. */
  1080. static void balance_dirty_pages(struct address_space *mapping,
  1081. unsigned long pages_dirtied)
  1082. {
  1083. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  1084. unsigned long bdi_reclaimable;
  1085. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  1086. unsigned long bdi_dirty;
  1087. unsigned long freerun;
  1088. unsigned long background_thresh;
  1089. unsigned long dirty_thresh;
  1090. unsigned long bdi_thresh;
  1091. long period;
  1092. long pause;
  1093. long max_pause;
  1094. long min_pause;
  1095. int nr_dirtied_pause;
  1096. bool dirty_exceeded = false;
  1097. unsigned long task_ratelimit;
  1098. unsigned long dirty_ratelimit;
  1099. unsigned long pos_ratio;
  1100. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1101. unsigned long start_time = jiffies;
  1102. for (;;) {
  1103. unsigned long now = jiffies;
  1104. /*
  1105. * Unstable writes are a feature of certain networked
  1106. * filesystems (i.e. NFS) in which data may have been
  1107. * written to the server's write cache, but has not yet
  1108. * been flushed to permanent storage.
  1109. */
  1110. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  1111. global_page_state(NR_UNSTABLE_NFS);
  1112. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  1113. global_dirty_limits(&background_thresh, &dirty_thresh);
  1114. /*
  1115. * Throttle it only when the background writeback cannot
  1116. * catch-up. This avoids (excessively) small writeouts
  1117. * when the bdi limits are ramping up.
  1118. */
  1119. freerun = dirty_freerun_ceiling(dirty_thresh,
  1120. background_thresh);
  1121. if (nr_dirty <= freerun) {
  1122. current->dirty_paused_when = now;
  1123. current->nr_dirtied = 0;
  1124. current->nr_dirtied_pause =
  1125. dirty_poll_interval(nr_dirty, dirty_thresh);
  1126. break;
  1127. }
  1128. if (unlikely(!writeback_in_progress(bdi)))
  1129. bdi_start_background_writeback(bdi);
  1130. /*
  1131. * bdi_thresh is not treated as some limiting factor as
  1132. * dirty_thresh, due to reasons
  1133. * - in JBOD setup, bdi_thresh can fluctuate a lot
  1134. * - in a system with HDD and USB key, the USB key may somehow
  1135. * go into state (bdi_dirty >> bdi_thresh) either because
  1136. * bdi_dirty starts high, or because bdi_thresh drops low.
  1137. * In this case we don't want to hard throttle the USB key
  1138. * dirtiers for 100 seconds until bdi_dirty drops under
  1139. * bdi_thresh. Instead the auxiliary bdi control line in
  1140. * bdi_position_ratio() will let the dirtier task progress
  1141. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  1142. */
  1143. bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  1144. /*
  1145. * In order to avoid the stacked BDI deadlock we need
  1146. * to ensure we accurately count the 'dirty' pages when
  1147. * the threshold is low.
  1148. *
  1149. * Otherwise it would be possible to get thresh+n pages
  1150. * reported dirty, even though there are thresh-m pages
  1151. * actually dirty; with m+n sitting in the percpu
  1152. * deltas.
  1153. */
  1154. if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
  1155. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  1156. bdi_dirty = bdi_reclaimable +
  1157. bdi_stat_sum(bdi, BDI_WRITEBACK);
  1158. } else {
  1159. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  1160. bdi_dirty = bdi_reclaimable +
  1161. bdi_stat(bdi, BDI_WRITEBACK);
  1162. }
  1163. dirty_exceeded = (bdi_dirty > bdi_thresh) &&
  1164. (nr_dirty > dirty_thresh);
  1165. if (dirty_exceeded && !bdi->dirty_exceeded)
  1166. bdi->dirty_exceeded = 1;
  1167. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  1168. nr_dirty, bdi_thresh, bdi_dirty,
  1169. start_time);
  1170. dirty_ratelimit = bdi->dirty_ratelimit;
  1171. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  1172. background_thresh, nr_dirty,
  1173. bdi_thresh, bdi_dirty);
  1174. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  1175. RATELIMIT_CALC_SHIFT;
  1176. max_pause = bdi_max_pause(bdi, bdi_dirty);
  1177. min_pause = bdi_min_pause(bdi, max_pause,
  1178. task_ratelimit, dirty_ratelimit,
  1179. &nr_dirtied_pause);
  1180. if (unlikely(task_ratelimit == 0)) {
  1181. period = max_pause;
  1182. pause = max_pause;
  1183. goto pause;
  1184. }
  1185. period = HZ * pages_dirtied / task_ratelimit;
  1186. pause = period;
  1187. if (current->dirty_paused_when)
  1188. pause -= now - current->dirty_paused_when;
  1189. /*
  1190. * For less than 1s think time (ext3/4 may block the dirtier
  1191. * for up to 800ms from time to time on 1-HDD; so does xfs,
  1192. * however at much less frequency), try to compensate it in
  1193. * future periods by updating the virtual time; otherwise just
  1194. * do a reset, as it may be a light dirtier.
  1195. */
  1196. if (pause < min_pause) {
  1197. trace_balance_dirty_pages(bdi,
  1198. dirty_thresh,
  1199. background_thresh,
  1200. nr_dirty,
  1201. bdi_thresh,
  1202. bdi_dirty,
  1203. dirty_ratelimit,
  1204. task_ratelimit,
  1205. pages_dirtied,
  1206. period,
  1207. min(pause, 0L),
  1208. start_time);
  1209. if (pause < -HZ) {
  1210. current->dirty_paused_when = now;
  1211. current->nr_dirtied = 0;
  1212. } else if (period) {
  1213. current->dirty_paused_when += period;
  1214. current->nr_dirtied = 0;
  1215. } else if (current->nr_dirtied_pause <= pages_dirtied)
  1216. current->nr_dirtied_pause += pages_dirtied;
  1217. break;
  1218. }
  1219. if (unlikely(pause > max_pause)) {
  1220. /* for occasional dropped task_ratelimit */
  1221. now += min(pause - max_pause, max_pause);
  1222. pause = max_pause;
  1223. }
  1224. pause:
  1225. trace_balance_dirty_pages(bdi,
  1226. dirty_thresh,
  1227. background_thresh,
  1228. nr_dirty,
  1229. bdi_thresh,
  1230. bdi_dirty,
  1231. dirty_ratelimit,
  1232. task_ratelimit,
  1233. pages_dirtied,
  1234. period,
  1235. pause,
  1236. start_time);
  1237. __set_current_state(TASK_KILLABLE);
  1238. io_schedule_timeout(pause);
  1239. current->dirty_paused_when = now + pause;
  1240. current->nr_dirtied = 0;
  1241. current->nr_dirtied_pause = nr_dirtied_pause;
  1242. /*
  1243. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1244. * also keep "1000+ dd on a slow USB stick" under control.
  1245. */
  1246. if (task_ratelimit)
  1247. break;
  1248. /*
  1249. * In the case of an unresponding NFS server and the NFS dirty
  1250. * pages exceeds dirty_thresh, give the other good bdi's a pipe
  1251. * to go through, so that tasks on them still remain responsive.
  1252. *
  1253. * In theory 1 page is enough to keep the comsumer-producer
  1254. * pipe going: the flusher cleans 1 page => the task dirties 1
  1255. * more page. However bdi_dirty has accounting errors. So use
  1256. * the larger and more IO friendly bdi_stat_error.
  1257. */
  1258. if (bdi_dirty <= bdi_stat_error(bdi))
  1259. break;
  1260. if (fatal_signal_pending(current))
  1261. break;
  1262. }
  1263. if (!dirty_exceeded && bdi->dirty_exceeded)
  1264. bdi->dirty_exceeded = 0;
  1265. if (writeback_in_progress(bdi))
  1266. return;
  1267. /*
  1268. * In laptop mode, we wait until hitting the higher threshold before
  1269. * starting background writeout, and then write out all the way down
  1270. * to the lower threshold. So slow writers cause minimal disk activity.
  1271. *
  1272. * In normal mode, we start background writeout at the lower
  1273. * background_thresh, to keep the amount of dirty memory low.
  1274. */
  1275. if (laptop_mode)
  1276. return;
  1277. if (nr_reclaimable > background_thresh)
  1278. bdi_start_background_writeback(bdi);
  1279. }
  1280. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  1281. {
  1282. if (set_page_dirty(page) || page_mkwrite) {
  1283. struct address_space *mapping = page_mapping(page);
  1284. if (mapping)
  1285. balance_dirty_pages_ratelimited(mapping);
  1286. }
  1287. }
  1288. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1289. /*
  1290. * Normal tasks are throttled by
  1291. * loop {
  1292. * dirty tsk->nr_dirtied_pause pages;
  1293. * take a snap in balance_dirty_pages();
  1294. * }
  1295. * However there is a worst case. If every task exit immediately when dirtied
  1296. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1297. * called to throttle the page dirties. The solution is to save the not yet
  1298. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1299. * randomly into the running tasks. This works well for the above worst case,
  1300. * as the new task will pick up and accumulate the old task's leaked dirty
  1301. * count and eventually get throttled.
  1302. */
  1303. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1304. /**
  1305. * balance_dirty_pages_ratelimited - balance dirty memory state
  1306. * @mapping: address_space which was dirtied
  1307. *
  1308. * Processes which are dirtying memory should call in here once for each page
  1309. * which was newly dirtied. The function will periodically check the system's
  1310. * dirty state and will initiate writeback if needed.
  1311. *
  1312. * On really big machines, get_writeback_state is expensive, so try to avoid
  1313. * calling it too often (ratelimiting). But once we're over the dirty memory
  1314. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1315. * from overshooting the limit by (ratelimit_pages) each.
  1316. */
  1317. void balance_dirty_pages_ratelimited(struct address_space *mapping)
  1318. {
  1319. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1320. int ratelimit;
  1321. int *p;
  1322. if (!bdi_cap_account_dirty(bdi))
  1323. return;
  1324. ratelimit = current->nr_dirtied_pause;
  1325. if (bdi->dirty_exceeded)
  1326. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1327. preempt_disable();
  1328. /*
  1329. * This prevents one CPU to accumulate too many dirtied pages without
  1330. * calling into balance_dirty_pages(), which can happen when there are
  1331. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1332. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1333. */
  1334. p = &__get_cpu_var(bdp_ratelimits);
  1335. if (unlikely(current->nr_dirtied >= ratelimit))
  1336. *p = 0;
  1337. else if (unlikely(*p >= ratelimit_pages)) {
  1338. *p = 0;
  1339. ratelimit = 0;
  1340. }
  1341. /*
  1342. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1343. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1344. * the dirty throttling and livelock other long-run dirtiers.
  1345. */
  1346. p = &__get_cpu_var(dirty_throttle_leaks);
  1347. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1348. unsigned long nr_pages_dirtied;
  1349. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1350. *p -= nr_pages_dirtied;
  1351. current->nr_dirtied += nr_pages_dirtied;
  1352. }
  1353. preempt_enable();
  1354. if (unlikely(current->nr_dirtied >= ratelimit))
  1355. balance_dirty_pages(mapping, current->nr_dirtied);
  1356. }
  1357. EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
  1358. void throttle_vm_writeout(gfp_t gfp_mask)
  1359. {
  1360. unsigned long background_thresh;
  1361. unsigned long dirty_thresh;
  1362. for ( ; ; ) {
  1363. global_dirty_limits(&background_thresh, &dirty_thresh);
  1364. dirty_thresh = hard_dirty_limit(dirty_thresh);
  1365. /*
  1366. * Boost the allowable dirty threshold a bit for page
  1367. * allocators so they don't get DoS'ed by heavy writers
  1368. */
  1369. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1370. if (global_page_state(NR_UNSTABLE_NFS) +
  1371. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1372. break;
  1373. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1374. /*
  1375. * The caller might hold locks which can prevent IO completion
  1376. * or progress in the filesystem. So we cannot just sit here
  1377. * waiting for IO to complete.
  1378. */
  1379. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1380. break;
  1381. }
  1382. }
  1383. /*
  1384. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1385. */
  1386. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1387. void __user *buffer, size_t *length, loff_t *ppos)
  1388. {
  1389. proc_dointvec(table, write, buffer, length, ppos);
  1390. return 0;
  1391. }
  1392. #ifdef CONFIG_BLOCK
  1393. void laptop_mode_timer_fn(unsigned long data)
  1394. {
  1395. struct request_queue *q = (struct request_queue *)data;
  1396. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1397. global_page_state(NR_UNSTABLE_NFS);
  1398. /*
  1399. * We want to write everything out, not just down to the dirty
  1400. * threshold
  1401. */
  1402. if (bdi_has_dirty_io(&q->backing_dev_info))
  1403. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1404. WB_REASON_LAPTOP_TIMER);
  1405. }
  1406. /*
  1407. * We've spun up the disk and we're in laptop mode: schedule writeback
  1408. * of all dirty data a few seconds from now. If the flush is already scheduled
  1409. * then push it back - the user is still using the disk.
  1410. */
  1411. void laptop_io_completion(struct backing_dev_info *info)
  1412. {
  1413. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1414. }
  1415. /*
  1416. * We're in laptop mode and we've just synced. The sync's writes will have
  1417. * caused another writeback to be scheduled by laptop_io_completion.
  1418. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1419. */
  1420. void laptop_sync_completion(void)
  1421. {
  1422. struct backing_dev_info *bdi;
  1423. rcu_read_lock();
  1424. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1425. del_timer(&bdi->laptop_mode_wb_timer);
  1426. rcu_read_unlock();
  1427. }
  1428. #endif
  1429. /*
  1430. * If ratelimit_pages is too high then we can get into dirty-data overload
  1431. * if a large number of processes all perform writes at the same time.
  1432. * If it is too low then SMP machines will call the (expensive)
  1433. * get_writeback_state too often.
  1434. *
  1435. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1436. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1437. * thresholds.
  1438. */
  1439. void writeback_set_ratelimit(void)
  1440. {
  1441. unsigned long background_thresh;
  1442. unsigned long dirty_thresh;
  1443. global_dirty_limits(&background_thresh, &dirty_thresh);
  1444. global_dirty_limit = dirty_thresh;
  1445. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1446. if (ratelimit_pages < 16)
  1447. ratelimit_pages = 16;
  1448. }
  1449. static int __cpuinit
  1450. ratelimit_handler(struct notifier_block *self, unsigned long action,
  1451. void *hcpu)
  1452. {
  1453. switch (action & ~CPU_TASKS_FROZEN) {
  1454. case CPU_ONLINE:
  1455. case CPU_DEAD:
  1456. writeback_set_ratelimit();
  1457. return NOTIFY_OK;
  1458. default:
  1459. return NOTIFY_DONE;
  1460. }
  1461. }
  1462. static struct notifier_block __cpuinitdata ratelimit_nb = {
  1463. .notifier_call = ratelimit_handler,
  1464. .next = NULL,
  1465. };
  1466. /*
  1467. * Called early on to tune the page writeback dirty limits.
  1468. *
  1469. * We used to scale dirty pages according to how total memory
  1470. * related to pages that could be allocated for buffers (by
  1471. * comparing nr_free_buffer_pages() to vm_total_pages.
  1472. *
  1473. * However, that was when we used "dirty_ratio" to scale with
  1474. * all memory, and we don't do that any more. "dirty_ratio"
  1475. * is now applied to total non-HIGHPAGE memory (by subtracting
  1476. * totalhigh_pages from vm_total_pages), and as such we can't
  1477. * get into the old insane situation any more where we had
  1478. * large amounts of dirty pages compared to a small amount of
  1479. * non-HIGHMEM memory.
  1480. *
  1481. * But we might still want to scale the dirty_ratio by how
  1482. * much memory the box has..
  1483. */
  1484. void __init page_writeback_init(void)
  1485. {
  1486. writeback_set_ratelimit();
  1487. register_cpu_notifier(&ratelimit_nb);
  1488. fprop_global_init(&writeout_completions);
  1489. }
  1490. /**
  1491. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1492. * @mapping: address space structure to write
  1493. * @start: starting page index
  1494. * @end: ending page index (inclusive)
  1495. *
  1496. * This function scans the page range from @start to @end (inclusive) and tags
  1497. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1498. * that write_cache_pages (or whoever calls this function) will then use
  1499. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1500. * used to avoid livelocking of writeback by a process steadily creating new
  1501. * dirty pages in the file (thus it is important for this function to be quick
  1502. * so that it can tag pages faster than a dirtying process can create them).
  1503. */
  1504. /*
  1505. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1506. */
  1507. void tag_pages_for_writeback(struct address_space *mapping,
  1508. pgoff_t start, pgoff_t end)
  1509. {
  1510. #define WRITEBACK_TAG_BATCH 4096
  1511. unsigned long tagged;
  1512. do {
  1513. spin_lock_irq(&mapping->tree_lock);
  1514. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1515. &start, end, WRITEBACK_TAG_BATCH,
  1516. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1517. spin_unlock_irq(&mapping->tree_lock);
  1518. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1519. cond_resched();
  1520. /* We check 'start' to handle wrapping when end == ~0UL */
  1521. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1522. }
  1523. EXPORT_SYMBOL(tag_pages_for_writeback);
  1524. /**
  1525. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1526. * @mapping: address space structure to write
  1527. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1528. * @writepage: function called for each page
  1529. * @data: data passed to writepage function
  1530. *
  1531. * If a page is already under I/O, write_cache_pages() skips it, even
  1532. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1533. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1534. * and msync() need to guarantee that all the data which was dirty at the time
  1535. * the call was made get new I/O started against them. If wbc->sync_mode is
  1536. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1537. * existing IO to complete.
  1538. *
  1539. * To avoid livelocks (when other process dirties new pages), we first tag
  1540. * pages which should be written back with TOWRITE tag and only then start
  1541. * writing them. For data-integrity sync we have to be careful so that we do
  1542. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1543. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1544. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1545. */
  1546. int write_cache_pages(struct address_space *mapping,
  1547. struct writeback_control *wbc, writepage_t writepage,
  1548. void *data)
  1549. {
  1550. int ret = 0;
  1551. int done = 0;
  1552. struct pagevec pvec;
  1553. int nr_pages;
  1554. pgoff_t uninitialized_var(writeback_index);
  1555. pgoff_t index;
  1556. pgoff_t end; /* Inclusive */
  1557. pgoff_t done_index;
  1558. int cycled;
  1559. int range_whole = 0;
  1560. int tag;
  1561. pagevec_init(&pvec, 0);
  1562. if (wbc->range_cyclic) {
  1563. writeback_index = mapping->writeback_index; /* prev offset */
  1564. index = writeback_index;
  1565. if (index == 0)
  1566. cycled = 1;
  1567. else
  1568. cycled = 0;
  1569. end = -1;
  1570. } else {
  1571. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1572. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1573. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1574. range_whole = 1;
  1575. cycled = 1; /* ignore range_cyclic tests */
  1576. }
  1577. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1578. tag = PAGECACHE_TAG_TOWRITE;
  1579. else
  1580. tag = PAGECACHE_TAG_DIRTY;
  1581. retry:
  1582. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1583. tag_pages_for_writeback(mapping, index, end);
  1584. done_index = index;
  1585. while (!done && (index <= end)) {
  1586. int i;
  1587. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1588. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1589. if (nr_pages == 0)
  1590. break;
  1591. for (i = 0; i < nr_pages; i++) {
  1592. struct page *page = pvec.pages[i];
  1593. /*
  1594. * At this point, the page may be truncated or
  1595. * invalidated (changing page->mapping to NULL), or
  1596. * even swizzled back from swapper_space to tmpfs file
  1597. * mapping. However, page->index will not change
  1598. * because we have a reference on the page.
  1599. */
  1600. if (page->index > end) {
  1601. /*
  1602. * can't be range_cyclic (1st pass) because
  1603. * end == -1 in that case.
  1604. */
  1605. done = 1;
  1606. break;
  1607. }
  1608. done_index = page->index;
  1609. lock_page(page);
  1610. /*
  1611. * Page truncated or invalidated. We can freely skip it
  1612. * then, even for data integrity operations: the page
  1613. * has disappeared concurrently, so there could be no
  1614. * real expectation of this data interity operation
  1615. * even if there is now a new, dirty page at the same
  1616. * pagecache address.
  1617. */
  1618. if (unlikely(page->mapping != mapping)) {
  1619. continue_unlock:
  1620. unlock_page(page);
  1621. continue;
  1622. }
  1623. if (!PageDirty(page)) {
  1624. /* someone wrote it for us */
  1625. goto continue_unlock;
  1626. }
  1627. if (PageWriteback(page)) {
  1628. if (wbc->sync_mode != WB_SYNC_NONE)
  1629. wait_on_page_writeback(page);
  1630. else
  1631. goto continue_unlock;
  1632. }
  1633. BUG_ON(PageWriteback(page));
  1634. if (!clear_page_dirty_for_io(page))
  1635. goto continue_unlock;
  1636. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1637. ret = (*writepage)(page, wbc, data);
  1638. if (unlikely(ret)) {
  1639. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1640. unlock_page(page);
  1641. ret = 0;
  1642. } else {
  1643. /*
  1644. * done_index is set past this page,
  1645. * so media errors will not choke
  1646. * background writeout for the entire
  1647. * file. This has consequences for
  1648. * range_cyclic semantics (ie. it may
  1649. * not be suitable for data integrity
  1650. * writeout).
  1651. */
  1652. done_index = page->index + 1;
  1653. done = 1;
  1654. break;
  1655. }
  1656. }
  1657. /*
  1658. * We stop writing back only if we are not doing
  1659. * integrity sync. In case of integrity sync we have to
  1660. * keep going until we have written all the pages
  1661. * we tagged for writeback prior to entering this loop.
  1662. */
  1663. if (--wbc->nr_to_write <= 0 &&
  1664. wbc->sync_mode == WB_SYNC_NONE) {
  1665. done = 1;
  1666. break;
  1667. }
  1668. }
  1669. pagevec_release(&pvec);
  1670. cond_resched();
  1671. }
  1672. if (!cycled && !done) {
  1673. /*
  1674. * range_cyclic:
  1675. * We hit the last page and there is more work to be done: wrap
  1676. * back to the start of the file
  1677. */
  1678. cycled = 1;
  1679. index = 0;
  1680. end = writeback_index - 1;
  1681. goto retry;
  1682. }
  1683. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1684. mapping->writeback_index = done_index;
  1685. return ret;
  1686. }
  1687. EXPORT_SYMBOL(write_cache_pages);
  1688. /*
  1689. * Function used by generic_writepages to call the real writepage
  1690. * function and set the mapping flags on error
  1691. */
  1692. static int __writepage(struct page *page, struct writeback_control *wbc,
  1693. void *data)
  1694. {
  1695. struct address_space *mapping = data;
  1696. int ret = mapping->a_ops->writepage(page, wbc);
  1697. mapping_set_error(mapping, ret);
  1698. return ret;
  1699. }
  1700. /**
  1701. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1702. * @mapping: address space structure to write
  1703. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1704. *
  1705. * This is a library function, which implements the writepages()
  1706. * address_space_operation.
  1707. */
  1708. int generic_writepages(struct address_space *mapping,
  1709. struct writeback_control *wbc)
  1710. {
  1711. struct blk_plug plug;
  1712. int ret;
  1713. /* deal with chardevs and other special file */
  1714. if (!mapping->a_ops->writepage)
  1715. return 0;
  1716. blk_start_plug(&plug);
  1717. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1718. blk_finish_plug(&plug);
  1719. return ret;
  1720. }
  1721. EXPORT_SYMBOL(generic_writepages);
  1722. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1723. {
  1724. int ret;
  1725. if (wbc->nr_to_write <= 0)
  1726. return 0;
  1727. if (mapping->a_ops->writepages)
  1728. ret = mapping->a_ops->writepages(mapping, wbc);
  1729. else
  1730. ret = generic_writepages(mapping, wbc);
  1731. return ret;
  1732. }
  1733. /**
  1734. * write_one_page - write out a single page and optionally wait on I/O
  1735. * @page: the page to write
  1736. * @wait: if true, wait on writeout
  1737. *
  1738. * The page must be locked by the caller and will be unlocked upon return.
  1739. *
  1740. * write_one_page() returns a negative error code if I/O failed.
  1741. */
  1742. int write_one_page(struct page *page, int wait)
  1743. {
  1744. struct address_space *mapping = page->mapping;
  1745. int ret = 0;
  1746. struct writeback_control wbc = {
  1747. .sync_mode = WB_SYNC_ALL,
  1748. .nr_to_write = 1,
  1749. };
  1750. BUG_ON(!PageLocked(page));
  1751. if (wait)
  1752. wait_on_page_writeback(page);
  1753. if (clear_page_dirty_for_io(page)) {
  1754. page_cache_get(page);
  1755. ret = mapping->a_ops->writepage(page, &wbc);
  1756. if (ret == 0 && wait) {
  1757. wait_on_page_writeback(page);
  1758. if (PageError(page))
  1759. ret = -EIO;
  1760. }
  1761. page_cache_release(page);
  1762. } else {
  1763. unlock_page(page);
  1764. }
  1765. return ret;
  1766. }
  1767. EXPORT_SYMBOL(write_one_page);
  1768. /*
  1769. * For address_spaces which do not use buffers nor write back.
  1770. */
  1771. int __set_page_dirty_no_writeback(struct page *page)
  1772. {
  1773. if (!PageDirty(page))
  1774. return !TestSetPageDirty(page);
  1775. return 0;
  1776. }
  1777. /*
  1778. * Helper function for set_page_dirty family.
  1779. * NOTE: This relies on being atomic wrt interrupts.
  1780. */
  1781. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1782. {
  1783. if (mapping_cap_account_dirty(mapping)) {
  1784. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1785. __inc_zone_page_state(page, NR_DIRTIED);
  1786. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1787. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1788. task_io_account_write(PAGE_CACHE_SIZE);
  1789. current->nr_dirtied++;
  1790. this_cpu_inc(bdp_ratelimits);
  1791. }
  1792. }
  1793. EXPORT_SYMBOL(account_page_dirtied);
  1794. /*
  1795. * Helper function for set_page_writeback family.
  1796. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1797. * wrt interrupts.
  1798. */
  1799. void account_page_writeback(struct page *page)
  1800. {
  1801. inc_zone_page_state(page, NR_WRITEBACK);
  1802. }
  1803. EXPORT_SYMBOL(account_page_writeback);
  1804. /*
  1805. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1806. * its radix tree.
  1807. *
  1808. * This is also used when a single buffer is being dirtied: we want to set the
  1809. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1810. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1811. *
  1812. * Most callers have locked the page, which pins the address_space in memory.
  1813. * But zap_pte_range() does not lock the page, however in that case the
  1814. * mapping is pinned by the vma's ->vm_file reference.
  1815. *
  1816. * We take care to handle the case where the page was truncated from the
  1817. * mapping by re-checking page_mapping() inside tree_lock.
  1818. */
  1819. int __set_page_dirty_nobuffers(struct page *page)
  1820. {
  1821. if (!TestSetPageDirty(page)) {
  1822. struct address_space *mapping = page_mapping(page);
  1823. struct address_space *mapping2;
  1824. if (!mapping)
  1825. return 1;
  1826. spin_lock_irq(&mapping->tree_lock);
  1827. mapping2 = page_mapping(page);
  1828. if (mapping2) { /* Race with truncate? */
  1829. BUG_ON(mapping2 != mapping);
  1830. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1831. account_page_dirtied(page, mapping);
  1832. radix_tree_tag_set(&mapping->page_tree,
  1833. page_index(page), PAGECACHE_TAG_DIRTY);
  1834. }
  1835. spin_unlock_irq(&mapping->tree_lock);
  1836. if (mapping->host) {
  1837. /* !PageAnon && !swapper_space */
  1838. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1839. }
  1840. return 1;
  1841. }
  1842. return 0;
  1843. }
  1844. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1845. /*
  1846. * Call this whenever redirtying a page, to de-account the dirty counters
  1847. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  1848. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  1849. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  1850. * control.
  1851. */
  1852. void account_page_redirty(struct page *page)
  1853. {
  1854. struct address_space *mapping = page->mapping;
  1855. if (mapping && mapping_cap_account_dirty(mapping)) {
  1856. current->nr_dirtied--;
  1857. dec_zone_page_state(page, NR_DIRTIED);
  1858. dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1859. }
  1860. }
  1861. EXPORT_SYMBOL(account_page_redirty);
  1862. /*
  1863. * When a writepage implementation decides that it doesn't want to write this
  1864. * page for some reason, it should redirty the locked page via
  1865. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1866. */
  1867. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1868. {
  1869. wbc->pages_skipped++;
  1870. account_page_redirty(page);
  1871. return __set_page_dirty_nobuffers(page);
  1872. }
  1873. EXPORT_SYMBOL(redirty_page_for_writepage);
  1874. /*
  1875. * Dirty a page.
  1876. *
  1877. * For pages with a mapping this should be done under the page lock
  1878. * for the benefit of asynchronous memory errors who prefer a consistent
  1879. * dirty state. This rule can be broken in some special cases,
  1880. * but should be better not to.
  1881. *
  1882. * If the mapping doesn't provide a set_page_dirty a_op, then
  1883. * just fall through and assume that it wants buffer_heads.
  1884. */
  1885. int set_page_dirty(struct page *page)
  1886. {
  1887. struct address_space *mapping = page_mapping(page);
  1888. if (likely(mapping)) {
  1889. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1890. /*
  1891. * readahead/lru_deactivate_page could remain
  1892. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1893. * About readahead, if the page is written, the flags would be
  1894. * reset. So no problem.
  1895. * About lru_deactivate_page, if the page is redirty, the flag
  1896. * will be reset. So no problem. but if the page is used by readahead
  1897. * it will confuse readahead and make it restart the size rampup
  1898. * process. But it's a trivial problem.
  1899. */
  1900. ClearPageReclaim(page);
  1901. #ifdef CONFIG_BLOCK
  1902. if (!spd)
  1903. spd = __set_page_dirty_buffers;
  1904. #endif
  1905. return (*spd)(page);
  1906. }
  1907. if (!PageDirty(page)) {
  1908. if (!TestSetPageDirty(page))
  1909. return 1;
  1910. }
  1911. return 0;
  1912. }
  1913. EXPORT_SYMBOL(set_page_dirty);
  1914. /*
  1915. * set_page_dirty() is racy if the caller has no reference against
  1916. * page->mapping->host, and if the page is unlocked. This is because another
  1917. * CPU could truncate the page off the mapping and then free the mapping.
  1918. *
  1919. * Usually, the page _is_ locked, or the caller is a user-space process which
  1920. * holds a reference on the inode by having an open file.
  1921. *
  1922. * In other cases, the page should be locked before running set_page_dirty().
  1923. */
  1924. int set_page_dirty_lock(struct page *page)
  1925. {
  1926. int ret;
  1927. lock_page(page);
  1928. ret = set_page_dirty(page);
  1929. unlock_page(page);
  1930. return ret;
  1931. }
  1932. EXPORT_SYMBOL(set_page_dirty_lock);
  1933. /*
  1934. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1935. * Returns true if the page was previously dirty.
  1936. *
  1937. * This is for preparing to put the page under writeout. We leave the page
  1938. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1939. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1940. * implementation will run either set_page_writeback() or set_page_dirty(),
  1941. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1942. * back into sync.
  1943. *
  1944. * This incoherency between the page's dirty flag and radix-tree tag is
  1945. * unfortunate, but it only exists while the page is locked.
  1946. */
  1947. int clear_page_dirty_for_io(struct page *page)
  1948. {
  1949. struct address_space *mapping = page_mapping(page);
  1950. BUG_ON(!PageLocked(page));
  1951. if (mapping && mapping_cap_account_dirty(mapping)) {
  1952. /*
  1953. * Yes, Virginia, this is indeed insane.
  1954. *
  1955. * We use this sequence to make sure that
  1956. * (a) we account for dirty stats properly
  1957. * (b) we tell the low-level filesystem to
  1958. * mark the whole page dirty if it was
  1959. * dirty in a pagetable. Only to then
  1960. * (c) clean the page again and return 1 to
  1961. * cause the writeback.
  1962. *
  1963. * This way we avoid all nasty races with the
  1964. * dirty bit in multiple places and clearing
  1965. * them concurrently from different threads.
  1966. *
  1967. * Note! Normally the "set_page_dirty(page)"
  1968. * has no effect on the actual dirty bit - since
  1969. * that will already usually be set. But we
  1970. * need the side effects, and it can help us
  1971. * avoid races.
  1972. *
  1973. * We basically use the page "master dirty bit"
  1974. * as a serialization point for all the different
  1975. * threads doing their things.
  1976. */
  1977. if (page_mkclean(page))
  1978. set_page_dirty(page);
  1979. /*
  1980. * We carefully synchronise fault handlers against
  1981. * installing a dirty pte and marking the page dirty
  1982. * at this point. We do this by having them hold the
  1983. * page lock at some point after installing their
  1984. * pte, but before marking the page dirty.
  1985. * Pages are always locked coming in here, so we get
  1986. * the desired exclusion. See mm/memory.c:do_wp_page()
  1987. * for more comments.
  1988. */
  1989. if (TestClearPageDirty(page)) {
  1990. dec_zone_page_state(page, NR_FILE_DIRTY);
  1991. dec_bdi_stat(mapping->backing_dev_info,
  1992. BDI_RECLAIMABLE);
  1993. return 1;
  1994. }
  1995. return 0;
  1996. }
  1997. return TestClearPageDirty(page);
  1998. }
  1999. EXPORT_SYMBOL(clear_page_dirty_for_io);
  2000. int test_clear_page_writeback(struct page *page)
  2001. {
  2002. struct address_space *mapping = page_mapping(page);
  2003. int ret;
  2004. if (mapping) {
  2005. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2006. unsigned long flags;
  2007. spin_lock_irqsave(&mapping->tree_lock, flags);
  2008. ret = TestClearPageWriteback(page);
  2009. if (ret) {
  2010. radix_tree_tag_clear(&mapping->page_tree,
  2011. page_index(page),
  2012. PAGECACHE_TAG_WRITEBACK);
  2013. if (bdi_cap_account_writeback(bdi)) {
  2014. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  2015. __bdi_writeout_inc(bdi);
  2016. }
  2017. }
  2018. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2019. } else {
  2020. ret = TestClearPageWriteback(page);
  2021. }
  2022. if (ret) {
  2023. dec_zone_page_state(page, NR_WRITEBACK);
  2024. inc_zone_page_state(page, NR_WRITTEN);
  2025. }
  2026. return ret;
  2027. }
  2028. int test_set_page_writeback(struct page *page)
  2029. {
  2030. struct address_space *mapping = page_mapping(page);
  2031. int ret;
  2032. if (mapping) {
  2033. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2034. unsigned long flags;
  2035. spin_lock_irqsave(&mapping->tree_lock, flags);
  2036. ret = TestSetPageWriteback(page);
  2037. if (!ret) {
  2038. radix_tree_tag_set(&mapping->page_tree,
  2039. page_index(page),
  2040. PAGECACHE_TAG_WRITEBACK);
  2041. if (bdi_cap_account_writeback(bdi))
  2042. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  2043. }
  2044. if (!PageDirty(page))
  2045. radix_tree_tag_clear(&mapping->page_tree,
  2046. page_index(page),
  2047. PAGECACHE_TAG_DIRTY);
  2048. radix_tree_tag_clear(&mapping->page_tree,
  2049. page_index(page),
  2050. PAGECACHE_TAG_TOWRITE);
  2051. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2052. } else {
  2053. ret = TestSetPageWriteback(page);
  2054. }
  2055. if (!ret)
  2056. account_page_writeback(page);
  2057. return ret;
  2058. }
  2059. EXPORT_SYMBOL(test_set_page_writeback);
  2060. /*
  2061. * Return true if any of the pages in the mapping are marked with the
  2062. * passed tag.
  2063. */
  2064. int mapping_tagged(struct address_space *mapping, int tag)
  2065. {
  2066. return radix_tree_tagged(&mapping->page_tree, tag);
  2067. }
  2068. EXPORT_SYMBOL(mapping_tagged);
  2069. /**
  2070. * wait_for_stable_page() - wait for writeback to finish, if necessary.
  2071. * @page: The page to wait on.
  2072. *
  2073. * This function determines if the given page is related to a backing device
  2074. * that requires page contents to be held stable during writeback. If so, then
  2075. * it will wait for any pending writeback to complete.
  2076. */
  2077. void wait_for_stable_page(struct page *page)
  2078. {
  2079. struct address_space *mapping = page_mapping(page);
  2080. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2081. if (!bdi_cap_stable_pages_required(bdi))
  2082. return;
  2083. #ifdef CONFIG_NEED_BOUNCE_POOL
  2084. if (mapping->host->i_sb->s_flags & MS_SNAP_STABLE)
  2085. return;
  2086. #endif /* CONFIG_NEED_BOUNCE_POOL */
  2087. wait_on_page_writeback(page);
  2088. }
  2089. EXPORT_SYMBOL_GPL(wait_for_stable_page);