time.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/export.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/timekeeper_internal.h>
  33. #include <linux/errno.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/security.h>
  36. #include <linux/fs.h>
  37. #include <linux/math64.h>
  38. #include <linux/ptrace.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/unistd.h>
  41. #include "timeconst.h"
  42. /*
  43. * The timezone where the local system is located. Used as a default by some
  44. * programs who obtain this value by using gettimeofday.
  45. */
  46. struct timezone sys_tz;
  47. EXPORT_SYMBOL(sys_tz);
  48. #ifdef __ARCH_WANT_SYS_TIME
  49. /*
  50. * sys_time() can be implemented in user-level using
  51. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  52. * why not move it into the appropriate arch directory (for those
  53. * architectures that need it).
  54. */
  55. SYSCALL_DEFINE1(time, time_t __user *, tloc)
  56. {
  57. time_t i = get_seconds();
  58. if (tloc) {
  59. if (put_user(i,tloc))
  60. return -EFAULT;
  61. }
  62. force_successful_syscall_return();
  63. return i;
  64. }
  65. /*
  66. * sys_stime() can be implemented in user-level using
  67. * sys_settimeofday(). Is this for backwards compatibility? If so,
  68. * why not move it into the appropriate arch directory (for those
  69. * architectures that need it).
  70. */
  71. SYSCALL_DEFINE1(stime, time_t __user *, tptr)
  72. {
  73. struct timespec tv;
  74. int err;
  75. if (get_user(tv.tv_sec, tptr))
  76. return -EFAULT;
  77. tv.tv_nsec = 0;
  78. err = security_settime(&tv, NULL);
  79. if (err)
  80. return err;
  81. do_settimeofday(&tv);
  82. return 0;
  83. }
  84. #endif /* __ARCH_WANT_SYS_TIME */
  85. SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
  86. struct timezone __user *, tz)
  87. {
  88. if (likely(tv != NULL)) {
  89. struct timeval ktv;
  90. do_gettimeofday(&ktv);
  91. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  92. return -EFAULT;
  93. }
  94. if (unlikely(tz != NULL)) {
  95. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  96. return -EFAULT;
  97. }
  98. return 0;
  99. }
  100. /*
  101. * Indicates if there is an offset between the system clock and the hardware
  102. * clock/persistent clock/rtc.
  103. */
  104. int persistent_clock_is_local;
  105. /*
  106. * Adjust the time obtained from the CMOS to be UTC time instead of
  107. * local time.
  108. *
  109. * This is ugly, but preferable to the alternatives. Otherwise we
  110. * would either need to write a program to do it in /etc/rc (and risk
  111. * confusion if the program gets run more than once; it would also be
  112. * hard to make the program warp the clock precisely n hours) or
  113. * compile in the timezone information into the kernel. Bad, bad....
  114. *
  115. * - TYT, 1992-01-01
  116. *
  117. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  118. * as real UNIX machines always do it. This avoids all headaches about
  119. * daylight saving times and warping kernel clocks.
  120. */
  121. static inline void warp_clock(void)
  122. {
  123. struct timespec adjust;
  124. adjust = current_kernel_time();
  125. if (sys_tz.tz_minuteswest != 0)
  126. persistent_clock_is_local = 1;
  127. adjust.tv_sec += sys_tz.tz_minuteswest * 60;
  128. do_settimeofday(&adjust);
  129. }
  130. /*
  131. * In case for some reason the CMOS clock has not already been running
  132. * in UTC, but in some local time: The first time we set the timezone,
  133. * we will warp the clock so that it is ticking UTC time instead of
  134. * local time. Presumably, if someone is setting the timezone then we
  135. * are running in an environment where the programs understand about
  136. * timezones. This should be done at boot time in the /etc/rc script,
  137. * as soon as possible, so that the clock can be set right. Otherwise,
  138. * various programs will get confused when the clock gets warped.
  139. */
  140. int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
  141. {
  142. static int firsttime = 1;
  143. int error = 0;
  144. if (tv && !timespec_valid(tv))
  145. return -EINVAL;
  146. error = security_settime(tv, tz);
  147. if (error)
  148. return error;
  149. if (tz) {
  150. sys_tz = *tz;
  151. update_vsyscall_tz();
  152. if (firsttime) {
  153. firsttime = 0;
  154. if (!tv)
  155. warp_clock();
  156. }
  157. }
  158. if (tv)
  159. return do_settimeofday(tv);
  160. return 0;
  161. }
  162. SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
  163. struct timezone __user *, tz)
  164. {
  165. struct timeval user_tv;
  166. struct timespec new_ts;
  167. struct timezone new_tz;
  168. if (tv) {
  169. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  170. return -EFAULT;
  171. new_ts.tv_sec = user_tv.tv_sec;
  172. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  173. }
  174. if (tz) {
  175. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  176. return -EFAULT;
  177. }
  178. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  179. }
  180. SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
  181. {
  182. struct timex txc; /* Local copy of parameter */
  183. int ret;
  184. /* Copy the user data space into the kernel copy
  185. * structure. But bear in mind that the structures
  186. * may change
  187. */
  188. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  189. return -EFAULT;
  190. ret = do_adjtimex(&txc);
  191. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  192. }
  193. /**
  194. * current_fs_time - Return FS time
  195. * @sb: Superblock.
  196. *
  197. * Return the current time truncated to the time granularity supported by
  198. * the fs.
  199. */
  200. struct timespec current_fs_time(struct super_block *sb)
  201. {
  202. struct timespec now = current_kernel_time();
  203. return timespec_trunc(now, sb->s_time_gran);
  204. }
  205. EXPORT_SYMBOL(current_fs_time);
  206. /*
  207. * Convert jiffies to milliseconds and back.
  208. *
  209. * Avoid unnecessary multiplications/divisions in the
  210. * two most common HZ cases:
  211. */
  212. unsigned int jiffies_to_msecs(const unsigned long j)
  213. {
  214. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  215. return (MSEC_PER_SEC / HZ) * j;
  216. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  217. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  218. #else
  219. # if BITS_PER_LONG == 32
  220. return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
  221. # else
  222. return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
  223. # endif
  224. #endif
  225. }
  226. EXPORT_SYMBOL(jiffies_to_msecs);
  227. unsigned int jiffies_to_usecs(const unsigned long j)
  228. {
  229. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  230. return (USEC_PER_SEC / HZ) * j;
  231. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  232. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  233. #else
  234. # if BITS_PER_LONG == 32
  235. return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  236. # else
  237. return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  238. # endif
  239. #endif
  240. }
  241. EXPORT_SYMBOL(jiffies_to_usecs);
  242. /**
  243. * timespec_trunc - Truncate timespec to a granularity
  244. * @t: Timespec
  245. * @gran: Granularity in ns.
  246. *
  247. * Truncate a timespec to a granularity. gran must be smaller than a second.
  248. * Always rounds down.
  249. *
  250. * This function should be only used for timestamps returned by
  251. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  252. * it doesn't handle the better resolution of the latter.
  253. */
  254. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  255. {
  256. /*
  257. * Division is pretty slow so avoid it for common cases.
  258. * Currently current_kernel_time() never returns better than
  259. * jiffies resolution. Exploit that.
  260. */
  261. if (gran <= jiffies_to_usecs(1) * 1000) {
  262. /* nothing */
  263. } else if (gran == 1000000000) {
  264. t.tv_nsec = 0;
  265. } else {
  266. t.tv_nsec -= t.tv_nsec % gran;
  267. }
  268. return t;
  269. }
  270. EXPORT_SYMBOL(timespec_trunc);
  271. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  272. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  273. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  274. *
  275. * [For the Julian calendar (which was used in Russia before 1917,
  276. * Britain & colonies before 1752, anywhere else before 1582,
  277. * and is still in use by some communities) leave out the
  278. * -year/100+year/400 terms, and add 10.]
  279. *
  280. * This algorithm was first published by Gauss (I think).
  281. *
  282. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  283. * machines where long is 32-bit! (However, as time_t is signed, we
  284. * will already get problems at other places on 2038-01-19 03:14:08)
  285. */
  286. unsigned long
  287. mktime(const unsigned int year0, const unsigned int mon0,
  288. const unsigned int day, const unsigned int hour,
  289. const unsigned int min, const unsigned int sec)
  290. {
  291. unsigned int mon = mon0, year = year0;
  292. /* 1..12 -> 11,12,1..10 */
  293. if (0 >= (int) (mon -= 2)) {
  294. mon += 12; /* Puts Feb last since it has leap day */
  295. year -= 1;
  296. }
  297. return ((((unsigned long)
  298. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  299. year*365 - 719499
  300. )*24 + hour /* now have hours */
  301. )*60 + min /* now have minutes */
  302. )*60 + sec; /* finally seconds */
  303. }
  304. EXPORT_SYMBOL(mktime);
  305. /**
  306. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  307. *
  308. * @ts: pointer to timespec variable to be set
  309. * @sec: seconds to set
  310. * @nsec: nanoseconds to set
  311. *
  312. * Set seconds and nanoseconds field of a timespec variable and
  313. * normalize to the timespec storage format
  314. *
  315. * Note: The tv_nsec part is always in the range of
  316. * 0 <= tv_nsec < NSEC_PER_SEC
  317. * For negative values only the tv_sec field is negative !
  318. */
  319. void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
  320. {
  321. while (nsec >= NSEC_PER_SEC) {
  322. /*
  323. * The following asm() prevents the compiler from
  324. * optimising this loop into a modulo operation. See
  325. * also __iter_div_u64_rem() in include/linux/time.h
  326. */
  327. asm("" : "+rm"(nsec));
  328. nsec -= NSEC_PER_SEC;
  329. ++sec;
  330. }
  331. while (nsec < 0) {
  332. asm("" : "+rm"(nsec));
  333. nsec += NSEC_PER_SEC;
  334. --sec;
  335. }
  336. ts->tv_sec = sec;
  337. ts->tv_nsec = nsec;
  338. }
  339. EXPORT_SYMBOL(set_normalized_timespec);
  340. /**
  341. * ns_to_timespec - Convert nanoseconds to timespec
  342. * @nsec: the nanoseconds value to be converted
  343. *
  344. * Returns the timespec representation of the nsec parameter.
  345. */
  346. struct timespec ns_to_timespec(const s64 nsec)
  347. {
  348. struct timespec ts;
  349. s32 rem;
  350. if (!nsec)
  351. return (struct timespec) {0, 0};
  352. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  353. if (unlikely(rem < 0)) {
  354. ts.tv_sec--;
  355. rem += NSEC_PER_SEC;
  356. }
  357. ts.tv_nsec = rem;
  358. return ts;
  359. }
  360. EXPORT_SYMBOL(ns_to_timespec);
  361. /**
  362. * ns_to_timeval - Convert nanoseconds to timeval
  363. * @nsec: the nanoseconds value to be converted
  364. *
  365. * Returns the timeval representation of the nsec parameter.
  366. */
  367. struct timeval ns_to_timeval(const s64 nsec)
  368. {
  369. struct timespec ts = ns_to_timespec(nsec);
  370. struct timeval tv;
  371. tv.tv_sec = ts.tv_sec;
  372. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  373. return tv;
  374. }
  375. EXPORT_SYMBOL(ns_to_timeval);
  376. /*
  377. * When we convert to jiffies then we interpret incoming values
  378. * the following way:
  379. *
  380. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  381. *
  382. * - 'too large' values [that would result in larger than
  383. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  384. *
  385. * - all other values are converted to jiffies by either multiplying
  386. * the input value by a factor or dividing it with a factor
  387. *
  388. * We must also be careful about 32-bit overflows.
  389. */
  390. unsigned long msecs_to_jiffies(const unsigned int m)
  391. {
  392. /*
  393. * Negative value, means infinite timeout:
  394. */
  395. if ((int)m < 0)
  396. return MAX_JIFFY_OFFSET;
  397. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  398. /*
  399. * HZ is equal to or smaller than 1000, and 1000 is a nice
  400. * round multiple of HZ, divide with the factor between them,
  401. * but round upwards:
  402. */
  403. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  404. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  405. /*
  406. * HZ is larger than 1000, and HZ is a nice round multiple of
  407. * 1000 - simply multiply with the factor between them.
  408. *
  409. * But first make sure the multiplication result cannot
  410. * overflow:
  411. */
  412. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  413. return MAX_JIFFY_OFFSET;
  414. return m * (HZ / MSEC_PER_SEC);
  415. #else
  416. /*
  417. * Generic case - multiply, round and divide. But first
  418. * check that if we are doing a net multiplication, that
  419. * we wouldn't overflow:
  420. */
  421. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  422. return MAX_JIFFY_OFFSET;
  423. return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
  424. >> MSEC_TO_HZ_SHR32;
  425. #endif
  426. }
  427. EXPORT_SYMBOL(msecs_to_jiffies);
  428. unsigned long usecs_to_jiffies(const unsigned int u)
  429. {
  430. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  431. return MAX_JIFFY_OFFSET;
  432. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  433. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  434. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  435. return u * (HZ / USEC_PER_SEC);
  436. #else
  437. return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
  438. >> USEC_TO_HZ_SHR32;
  439. #endif
  440. }
  441. EXPORT_SYMBOL(usecs_to_jiffies);
  442. /*
  443. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  444. * that a remainder subtract here would not do the right thing as the
  445. * resolution values don't fall on second boundries. I.e. the line:
  446. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  447. *
  448. * Rather, we just shift the bits off the right.
  449. *
  450. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  451. * value to a scaled second value.
  452. */
  453. unsigned long
  454. timespec_to_jiffies(const struct timespec *value)
  455. {
  456. unsigned long sec = value->tv_sec;
  457. long nsec = value->tv_nsec + TICK_NSEC - 1;
  458. if (sec >= MAX_SEC_IN_JIFFIES){
  459. sec = MAX_SEC_IN_JIFFIES;
  460. nsec = 0;
  461. }
  462. return (((u64)sec * SEC_CONVERSION) +
  463. (((u64)nsec * NSEC_CONVERSION) >>
  464. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  465. }
  466. EXPORT_SYMBOL(timespec_to_jiffies);
  467. void
  468. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  469. {
  470. /*
  471. * Convert jiffies to nanoseconds and separate with
  472. * one divide.
  473. */
  474. u32 rem;
  475. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  476. NSEC_PER_SEC, &rem);
  477. value->tv_nsec = rem;
  478. }
  479. EXPORT_SYMBOL(jiffies_to_timespec);
  480. /* Same for "timeval"
  481. *
  482. * Well, almost. The problem here is that the real system resolution is
  483. * in nanoseconds and the value being converted is in micro seconds.
  484. * Also for some machines (those that use HZ = 1024, in-particular),
  485. * there is a LARGE error in the tick size in microseconds.
  486. * The solution we use is to do the rounding AFTER we convert the
  487. * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
  488. * Instruction wise, this should cost only an additional add with carry
  489. * instruction above the way it was done above.
  490. */
  491. unsigned long
  492. timeval_to_jiffies(const struct timeval *value)
  493. {
  494. unsigned long sec = value->tv_sec;
  495. long usec = value->tv_usec;
  496. if (sec >= MAX_SEC_IN_JIFFIES){
  497. sec = MAX_SEC_IN_JIFFIES;
  498. usec = 0;
  499. }
  500. return (((u64)sec * SEC_CONVERSION) +
  501. (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
  502. (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  503. }
  504. EXPORT_SYMBOL(timeval_to_jiffies);
  505. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  506. {
  507. /*
  508. * Convert jiffies to nanoseconds and separate with
  509. * one divide.
  510. */
  511. u32 rem;
  512. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  513. NSEC_PER_SEC, &rem);
  514. value->tv_usec = rem / NSEC_PER_USEC;
  515. }
  516. EXPORT_SYMBOL(jiffies_to_timeval);
  517. /*
  518. * Convert jiffies/jiffies_64 to clock_t and back.
  519. */
  520. clock_t jiffies_to_clock_t(unsigned long x)
  521. {
  522. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  523. # if HZ < USER_HZ
  524. return x * (USER_HZ / HZ);
  525. # else
  526. return x / (HZ / USER_HZ);
  527. # endif
  528. #else
  529. return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
  530. #endif
  531. }
  532. EXPORT_SYMBOL(jiffies_to_clock_t);
  533. unsigned long clock_t_to_jiffies(unsigned long x)
  534. {
  535. #if (HZ % USER_HZ)==0
  536. if (x >= ~0UL / (HZ / USER_HZ))
  537. return ~0UL;
  538. return x * (HZ / USER_HZ);
  539. #else
  540. /* Don't worry about loss of precision here .. */
  541. if (x >= ~0UL / HZ * USER_HZ)
  542. return ~0UL;
  543. /* .. but do try to contain it here */
  544. return div_u64((u64)x * HZ, USER_HZ);
  545. #endif
  546. }
  547. EXPORT_SYMBOL(clock_t_to_jiffies);
  548. u64 jiffies_64_to_clock_t(u64 x)
  549. {
  550. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  551. # if HZ < USER_HZ
  552. x = div_u64(x * USER_HZ, HZ);
  553. # elif HZ > USER_HZ
  554. x = div_u64(x, HZ / USER_HZ);
  555. # else
  556. /* Nothing to do */
  557. # endif
  558. #else
  559. /*
  560. * There are better ways that don't overflow early,
  561. * but even this doesn't overflow in hundreds of years
  562. * in 64 bits, so..
  563. */
  564. x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
  565. #endif
  566. return x;
  567. }
  568. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  569. u64 nsec_to_clock_t(u64 x)
  570. {
  571. #if (NSEC_PER_SEC % USER_HZ) == 0
  572. return div_u64(x, NSEC_PER_SEC / USER_HZ);
  573. #elif (USER_HZ % 512) == 0
  574. return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
  575. #else
  576. /*
  577. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  578. * overflow after 64.99 years.
  579. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  580. */
  581. return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
  582. #endif
  583. }
  584. /**
  585. * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
  586. *
  587. * @n: nsecs in u64
  588. *
  589. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  590. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  591. * for scheduler, not for use in device drivers to calculate timeout value.
  592. *
  593. * note:
  594. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  595. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  596. */
  597. u64 nsecs_to_jiffies64(u64 n)
  598. {
  599. #if (NSEC_PER_SEC % HZ) == 0
  600. /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
  601. return div_u64(n, NSEC_PER_SEC / HZ);
  602. #elif (HZ % 512) == 0
  603. /* overflow after 292 years if HZ = 1024 */
  604. return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
  605. #else
  606. /*
  607. * Generic case - optimized for cases where HZ is a multiple of 3.
  608. * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
  609. */
  610. return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
  611. #endif
  612. }
  613. /**
  614. * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
  615. *
  616. * @n: nsecs in u64
  617. *
  618. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  619. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  620. * for scheduler, not for use in device drivers to calculate timeout value.
  621. *
  622. * note:
  623. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  624. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  625. */
  626. unsigned long nsecs_to_jiffies(u64 n)
  627. {
  628. return (unsigned long)nsecs_to_jiffies64(n);
  629. }
  630. /*
  631. * Add two timespec values and do a safety check for overflow.
  632. * It's assumed that both values are valid (>= 0)
  633. */
  634. struct timespec timespec_add_safe(const struct timespec lhs,
  635. const struct timespec rhs)
  636. {
  637. struct timespec res;
  638. set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
  639. lhs.tv_nsec + rhs.tv_nsec);
  640. if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
  641. res.tv_sec = TIME_T_MAX;
  642. return res;
  643. }