core.c 174 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526
  1. /*
  2. * Performance events core code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/cpu.h>
  14. #include <linux/smp.h>
  15. #include <linux/idr.h>
  16. #include <linux/file.h>
  17. #include <linux/poll.h>
  18. #include <linux/slab.h>
  19. #include <linux/hash.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/dcache.h>
  22. #include <linux/percpu.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/reboot.h>
  25. #include <linux/vmstat.h>
  26. #include <linux/device.h>
  27. #include <linux/export.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/hardirq.h>
  30. #include <linux/rculist.h>
  31. #include <linux/uaccess.h>
  32. #include <linux/syscalls.h>
  33. #include <linux/anon_inodes.h>
  34. #include <linux/kernel_stat.h>
  35. #include <linux/perf_event.h>
  36. #include <linux/ftrace_event.h>
  37. #include <linux/hw_breakpoint.h>
  38. #include <linux/mm_types.h>
  39. #include "internal.h"
  40. #include <asm/irq_regs.h>
  41. struct remote_function_call {
  42. struct task_struct *p;
  43. int (*func)(void *info);
  44. void *info;
  45. int ret;
  46. };
  47. static void remote_function(void *data)
  48. {
  49. struct remote_function_call *tfc = data;
  50. struct task_struct *p = tfc->p;
  51. if (p) {
  52. tfc->ret = -EAGAIN;
  53. if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  54. return;
  55. }
  56. tfc->ret = tfc->func(tfc->info);
  57. }
  58. /**
  59. * task_function_call - call a function on the cpu on which a task runs
  60. * @p: the task to evaluate
  61. * @func: the function to be called
  62. * @info: the function call argument
  63. *
  64. * Calls the function @func when the task is currently running. This might
  65. * be on the current CPU, which just calls the function directly
  66. *
  67. * returns: @func return value, or
  68. * -ESRCH - when the process isn't running
  69. * -EAGAIN - when the process moved away
  70. */
  71. static int
  72. task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  73. {
  74. struct remote_function_call data = {
  75. .p = p,
  76. .func = func,
  77. .info = info,
  78. .ret = -ESRCH, /* No such (running) process */
  79. };
  80. if (task_curr(p))
  81. smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  82. return data.ret;
  83. }
  84. /**
  85. * cpu_function_call - call a function on the cpu
  86. * @func: the function to be called
  87. * @info: the function call argument
  88. *
  89. * Calls the function @func on the remote cpu.
  90. *
  91. * returns: @func return value or -ENXIO when the cpu is offline
  92. */
  93. static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
  94. {
  95. struct remote_function_call data = {
  96. .p = NULL,
  97. .func = func,
  98. .info = info,
  99. .ret = -ENXIO, /* No such CPU */
  100. };
  101. smp_call_function_single(cpu, remote_function, &data, 1);
  102. return data.ret;
  103. }
  104. #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
  105. PERF_FLAG_FD_OUTPUT |\
  106. PERF_FLAG_PID_CGROUP)
  107. /*
  108. * branch priv levels that need permission checks
  109. */
  110. #define PERF_SAMPLE_BRANCH_PERM_PLM \
  111. (PERF_SAMPLE_BRANCH_KERNEL |\
  112. PERF_SAMPLE_BRANCH_HV)
  113. enum event_type_t {
  114. EVENT_FLEXIBLE = 0x1,
  115. EVENT_PINNED = 0x2,
  116. EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
  117. };
  118. /*
  119. * perf_sched_events : >0 events exist
  120. * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
  121. */
  122. struct static_key_deferred perf_sched_events __read_mostly;
  123. static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
  124. static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
  125. static atomic_t nr_mmap_events __read_mostly;
  126. static atomic_t nr_comm_events __read_mostly;
  127. static atomic_t nr_task_events __read_mostly;
  128. static LIST_HEAD(pmus);
  129. static DEFINE_MUTEX(pmus_lock);
  130. static struct srcu_struct pmus_srcu;
  131. /*
  132. * perf event paranoia level:
  133. * -1 - not paranoid at all
  134. * 0 - disallow raw tracepoint access for unpriv
  135. * 1 - disallow cpu events for unpriv
  136. * 2 - disallow kernel profiling for unpriv
  137. */
  138. int sysctl_perf_event_paranoid __read_mostly = 1;
  139. /* Minimum for 512 kiB + 1 user control page */
  140. int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
  141. /*
  142. * max perf event sample rate
  143. */
  144. #define DEFAULT_MAX_SAMPLE_RATE 100000
  145. int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
  146. static int max_samples_per_tick __read_mostly =
  147. DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
  148. int perf_proc_update_handler(struct ctl_table *table, int write,
  149. void __user *buffer, size_t *lenp,
  150. loff_t *ppos)
  151. {
  152. int ret = proc_dointvec(table, write, buffer, lenp, ppos);
  153. if (ret || !write)
  154. return ret;
  155. max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
  156. return 0;
  157. }
  158. static atomic64_t perf_event_id;
  159. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  160. enum event_type_t event_type);
  161. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  162. enum event_type_t event_type,
  163. struct task_struct *task);
  164. static void update_context_time(struct perf_event_context *ctx);
  165. static u64 perf_event_time(struct perf_event *event);
  166. static void ring_buffer_attach(struct perf_event *event,
  167. struct ring_buffer *rb);
  168. void __weak perf_event_print_debug(void) { }
  169. extern __weak const char *perf_pmu_name(void)
  170. {
  171. return "pmu";
  172. }
  173. static inline u64 perf_clock(void)
  174. {
  175. return local_clock();
  176. }
  177. static inline struct perf_cpu_context *
  178. __get_cpu_context(struct perf_event_context *ctx)
  179. {
  180. return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
  181. }
  182. static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
  183. struct perf_event_context *ctx)
  184. {
  185. raw_spin_lock(&cpuctx->ctx.lock);
  186. if (ctx)
  187. raw_spin_lock(&ctx->lock);
  188. }
  189. static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
  190. struct perf_event_context *ctx)
  191. {
  192. if (ctx)
  193. raw_spin_unlock(&ctx->lock);
  194. raw_spin_unlock(&cpuctx->ctx.lock);
  195. }
  196. #ifdef CONFIG_CGROUP_PERF
  197. /*
  198. * Must ensure cgroup is pinned (css_get) before calling
  199. * this function. In other words, we cannot call this function
  200. * if there is no cgroup event for the current CPU context.
  201. */
  202. static inline struct perf_cgroup *
  203. perf_cgroup_from_task(struct task_struct *task)
  204. {
  205. return container_of(task_subsys_state(task, perf_subsys_id),
  206. struct perf_cgroup, css);
  207. }
  208. static inline bool
  209. perf_cgroup_match(struct perf_event *event)
  210. {
  211. struct perf_event_context *ctx = event->ctx;
  212. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  213. return !event->cgrp || event->cgrp == cpuctx->cgrp;
  214. }
  215. static inline bool perf_tryget_cgroup(struct perf_event *event)
  216. {
  217. return css_tryget(&event->cgrp->css);
  218. }
  219. static inline void perf_put_cgroup(struct perf_event *event)
  220. {
  221. css_put(&event->cgrp->css);
  222. }
  223. static inline void perf_detach_cgroup(struct perf_event *event)
  224. {
  225. perf_put_cgroup(event);
  226. event->cgrp = NULL;
  227. }
  228. static inline int is_cgroup_event(struct perf_event *event)
  229. {
  230. return event->cgrp != NULL;
  231. }
  232. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  233. {
  234. struct perf_cgroup_info *t;
  235. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  236. return t->time;
  237. }
  238. static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
  239. {
  240. struct perf_cgroup_info *info;
  241. u64 now;
  242. now = perf_clock();
  243. info = this_cpu_ptr(cgrp->info);
  244. info->time += now - info->timestamp;
  245. info->timestamp = now;
  246. }
  247. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  248. {
  249. struct perf_cgroup *cgrp_out = cpuctx->cgrp;
  250. if (cgrp_out)
  251. __update_cgrp_time(cgrp_out);
  252. }
  253. static inline void update_cgrp_time_from_event(struct perf_event *event)
  254. {
  255. struct perf_cgroup *cgrp;
  256. /*
  257. * ensure we access cgroup data only when needed and
  258. * when we know the cgroup is pinned (css_get)
  259. */
  260. if (!is_cgroup_event(event))
  261. return;
  262. cgrp = perf_cgroup_from_task(current);
  263. /*
  264. * Do not update time when cgroup is not active
  265. */
  266. if (cgrp == event->cgrp)
  267. __update_cgrp_time(event->cgrp);
  268. }
  269. static inline void
  270. perf_cgroup_set_timestamp(struct task_struct *task,
  271. struct perf_event_context *ctx)
  272. {
  273. struct perf_cgroup *cgrp;
  274. struct perf_cgroup_info *info;
  275. /*
  276. * ctx->lock held by caller
  277. * ensure we do not access cgroup data
  278. * unless we have the cgroup pinned (css_get)
  279. */
  280. if (!task || !ctx->nr_cgroups)
  281. return;
  282. cgrp = perf_cgroup_from_task(task);
  283. info = this_cpu_ptr(cgrp->info);
  284. info->timestamp = ctx->timestamp;
  285. }
  286. #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
  287. #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
  288. /*
  289. * reschedule events based on the cgroup constraint of task.
  290. *
  291. * mode SWOUT : schedule out everything
  292. * mode SWIN : schedule in based on cgroup for next
  293. */
  294. void perf_cgroup_switch(struct task_struct *task, int mode)
  295. {
  296. struct perf_cpu_context *cpuctx;
  297. struct pmu *pmu;
  298. unsigned long flags;
  299. /*
  300. * disable interrupts to avoid geting nr_cgroup
  301. * changes via __perf_event_disable(). Also
  302. * avoids preemption.
  303. */
  304. local_irq_save(flags);
  305. /*
  306. * we reschedule only in the presence of cgroup
  307. * constrained events.
  308. */
  309. rcu_read_lock();
  310. list_for_each_entry_rcu(pmu, &pmus, entry) {
  311. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  312. if (cpuctx->unique_pmu != pmu)
  313. continue; /* ensure we process each cpuctx once */
  314. /*
  315. * perf_cgroup_events says at least one
  316. * context on this CPU has cgroup events.
  317. *
  318. * ctx->nr_cgroups reports the number of cgroup
  319. * events for a context.
  320. */
  321. if (cpuctx->ctx.nr_cgroups > 0) {
  322. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  323. perf_pmu_disable(cpuctx->ctx.pmu);
  324. if (mode & PERF_CGROUP_SWOUT) {
  325. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  326. /*
  327. * must not be done before ctxswout due
  328. * to event_filter_match() in event_sched_out()
  329. */
  330. cpuctx->cgrp = NULL;
  331. }
  332. if (mode & PERF_CGROUP_SWIN) {
  333. WARN_ON_ONCE(cpuctx->cgrp);
  334. /*
  335. * set cgrp before ctxsw in to allow
  336. * event_filter_match() to not have to pass
  337. * task around
  338. */
  339. cpuctx->cgrp = perf_cgroup_from_task(task);
  340. cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
  341. }
  342. perf_pmu_enable(cpuctx->ctx.pmu);
  343. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  344. }
  345. }
  346. rcu_read_unlock();
  347. local_irq_restore(flags);
  348. }
  349. static inline void perf_cgroup_sched_out(struct task_struct *task,
  350. struct task_struct *next)
  351. {
  352. struct perf_cgroup *cgrp1;
  353. struct perf_cgroup *cgrp2 = NULL;
  354. /*
  355. * we come here when we know perf_cgroup_events > 0
  356. */
  357. cgrp1 = perf_cgroup_from_task(task);
  358. /*
  359. * next is NULL when called from perf_event_enable_on_exec()
  360. * that will systematically cause a cgroup_switch()
  361. */
  362. if (next)
  363. cgrp2 = perf_cgroup_from_task(next);
  364. /*
  365. * only schedule out current cgroup events if we know
  366. * that we are switching to a different cgroup. Otherwise,
  367. * do no touch the cgroup events.
  368. */
  369. if (cgrp1 != cgrp2)
  370. perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
  371. }
  372. static inline void perf_cgroup_sched_in(struct task_struct *prev,
  373. struct task_struct *task)
  374. {
  375. struct perf_cgroup *cgrp1;
  376. struct perf_cgroup *cgrp2 = NULL;
  377. /*
  378. * we come here when we know perf_cgroup_events > 0
  379. */
  380. cgrp1 = perf_cgroup_from_task(task);
  381. /* prev can never be NULL */
  382. cgrp2 = perf_cgroup_from_task(prev);
  383. /*
  384. * only need to schedule in cgroup events if we are changing
  385. * cgroup during ctxsw. Cgroup events were not scheduled
  386. * out of ctxsw out if that was not the case.
  387. */
  388. if (cgrp1 != cgrp2)
  389. perf_cgroup_switch(task, PERF_CGROUP_SWIN);
  390. }
  391. static inline int perf_cgroup_connect(int fd, struct perf_event *event,
  392. struct perf_event_attr *attr,
  393. struct perf_event *group_leader)
  394. {
  395. struct perf_cgroup *cgrp;
  396. struct cgroup_subsys_state *css;
  397. struct fd f = fdget(fd);
  398. int ret = 0;
  399. if (!f.file)
  400. return -EBADF;
  401. css = cgroup_css_from_dir(f.file, perf_subsys_id);
  402. if (IS_ERR(css)) {
  403. ret = PTR_ERR(css);
  404. goto out;
  405. }
  406. cgrp = container_of(css, struct perf_cgroup, css);
  407. event->cgrp = cgrp;
  408. /* must be done before we fput() the file */
  409. if (!perf_tryget_cgroup(event)) {
  410. event->cgrp = NULL;
  411. ret = -ENOENT;
  412. goto out;
  413. }
  414. /*
  415. * all events in a group must monitor
  416. * the same cgroup because a task belongs
  417. * to only one perf cgroup at a time
  418. */
  419. if (group_leader && group_leader->cgrp != cgrp) {
  420. perf_detach_cgroup(event);
  421. ret = -EINVAL;
  422. }
  423. out:
  424. fdput(f);
  425. return ret;
  426. }
  427. static inline void
  428. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  429. {
  430. struct perf_cgroup_info *t;
  431. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  432. event->shadow_ctx_time = now - t->timestamp;
  433. }
  434. static inline void
  435. perf_cgroup_defer_enabled(struct perf_event *event)
  436. {
  437. /*
  438. * when the current task's perf cgroup does not match
  439. * the event's, we need to remember to call the
  440. * perf_mark_enable() function the first time a task with
  441. * a matching perf cgroup is scheduled in.
  442. */
  443. if (is_cgroup_event(event) && !perf_cgroup_match(event))
  444. event->cgrp_defer_enabled = 1;
  445. }
  446. static inline void
  447. perf_cgroup_mark_enabled(struct perf_event *event,
  448. struct perf_event_context *ctx)
  449. {
  450. struct perf_event *sub;
  451. u64 tstamp = perf_event_time(event);
  452. if (!event->cgrp_defer_enabled)
  453. return;
  454. event->cgrp_defer_enabled = 0;
  455. event->tstamp_enabled = tstamp - event->total_time_enabled;
  456. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  457. if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
  458. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  459. sub->cgrp_defer_enabled = 0;
  460. }
  461. }
  462. }
  463. #else /* !CONFIG_CGROUP_PERF */
  464. static inline bool
  465. perf_cgroup_match(struct perf_event *event)
  466. {
  467. return true;
  468. }
  469. static inline void perf_detach_cgroup(struct perf_event *event)
  470. {}
  471. static inline int is_cgroup_event(struct perf_event *event)
  472. {
  473. return 0;
  474. }
  475. static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
  476. {
  477. return 0;
  478. }
  479. static inline void update_cgrp_time_from_event(struct perf_event *event)
  480. {
  481. }
  482. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  483. {
  484. }
  485. static inline void perf_cgroup_sched_out(struct task_struct *task,
  486. struct task_struct *next)
  487. {
  488. }
  489. static inline void perf_cgroup_sched_in(struct task_struct *prev,
  490. struct task_struct *task)
  491. {
  492. }
  493. static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
  494. struct perf_event_attr *attr,
  495. struct perf_event *group_leader)
  496. {
  497. return -EINVAL;
  498. }
  499. static inline void
  500. perf_cgroup_set_timestamp(struct task_struct *task,
  501. struct perf_event_context *ctx)
  502. {
  503. }
  504. void
  505. perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
  506. {
  507. }
  508. static inline void
  509. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  510. {
  511. }
  512. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  513. {
  514. return 0;
  515. }
  516. static inline void
  517. perf_cgroup_defer_enabled(struct perf_event *event)
  518. {
  519. }
  520. static inline void
  521. perf_cgroup_mark_enabled(struct perf_event *event,
  522. struct perf_event_context *ctx)
  523. {
  524. }
  525. #endif
  526. void perf_pmu_disable(struct pmu *pmu)
  527. {
  528. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  529. if (!(*count)++)
  530. pmu->pmu_disable(pmu);
  531. }
  532. void perf_pmu_enable(struct pmu *pmu)
  533. {
  534. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  535. if (!--(*count))
  536. pmu->pmu_enable(pmu);
  537. }
  538. static DEFINE_PER_CPU(struct list_head, rotation_list);
  539. /*
  540. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  541. * because they're strictly cpu affine and rotate_start is called with IRQs
  542. * disabled, while rotate_context is called from IRQ context.
  543. */
  544. static void perf_pmu_rotate_start(struct pmu *pmu)
  545. {
  546. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  547. struct list_head *head = &__get_cpu_var(rotation_list);
  548. WARN_ON(!irqs_disabled());
  549. if (list_empty(&cpuctx->rotation_list))
  550. list_add(&cpuctx->rotation_list, head);
  551. }
  552. static void get_ctx(struct perf_event_context *ctx)
  553. {
  554. WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
  555. }
  556. static void put_ctx(struct perf_event_context *ctx)
  557. {
  558. if (atomic_dec_and_test(&ctx->refcount)) {
  559. if (ctx->parent_ctx)
  560. put_ctx(ctx->parent_ctx);
  561. if (ctx->task)
  562. put_task_struct(ctx->task);
  563. kfree_rcu(ctx, rcu_head);
  564. }
  565. }
  566. static void unclone_ctx(struct perf_event_context *ctx)
  567. {
  568. if (ctx->parent_ctx) {
  569. put_ctx(ctx->parent_ctx);
  570. ctx->parent_ctx = NULL;
  571. }
  572. }
  573. static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
  574. {
  575. /*
  576. * only top level events have the pid namespace they were created in
  577. */
  578. if (event->parent)
  579. event = event->parent;
  580. return task_tgid_nr_ns(p, event->ns);
  581. }
  582. static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
  583. {
  584. /*
  585. * only top level events have the pid namespace they were created in
  586. */
  587. if (event->parent)
  588. event = event->parent;
  589. return task_pid_nr_ns(p, event->ns);
  590. }
  591. /*
  592. * If we inherit events we want to return the parent event id
  593. * to userspace.
  594. */
  595. static u64 primary_event_id(struct perf_event *event)
  596. {
  597. u64 id = event->id;
  598. if (event->parent)
  599. id = event->parent->id;
  600. return id;
  601. }
  602. /*
  603. * Get the perf_event_context for a task and lock it.
  604. * This has to cope with with the fact that until it is locked,
  605. * the context could get moved to another task.
  606. */
  607. static struct perf_event_context *
  608. perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
  609. {
  610. struct perf_event_context *ctx;
  611. rcu_read_lock();
  612. retry:
  613. ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
  614. if (ctx) {
  615. /*
  616. * If this context is a clone of another, it might
  617. * get swapped for another underneath us by
  618. * perf_event_task_sched_out, though the
  619. * rcu_read_lock() protects us from any context
  620. * getting freed. Lock the context and check if it
  621. * got swapped before we could get the lock, and retry
  622. * if so. If we locked the right context, then it
  623. * can't get swapped on us any more.
  624. */
  625. raw_spin_lock_irqsave(&ctx->lock, *flags);
  626. if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
  627. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  628. goto retry;
  629. }
  630. if (!atomic_inc_not_zero(&ctx->refcount)) {
  631. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  632. ctx = NULL;
  633. }
  634. }
  635. rcu_read_unlock();
  636. return ctx;
  637. }
  638. /*
  639. * Get the context for a task and increment its pin_count so it
  640. * can't get swapped to another task. This also increments its
  641. * reference count so that the context can't get freed.
  642. */
  643. static struct perf_event_context *
  644. perf_pin_task_context(struct task_struct *task, int ctxn)
  645. {
  646. struct perf_event_context *ctx;
  647. unsigned long flags;
  648. ctx = perf_lock_task_context(task, ctxn, &flags);
  649. if (ctx) {
  650. ++ctx->pin_count;
  651. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  652. }
  653. return ctx;
  654. }
  655. static void perf_unpin_context(struct perf_event_context *ctx)
  656. {
  657. unsigned long flags;
  658. raw_spin_lock_irqsave(&ctx->lock, flags);
  659. --ctx->pin_count;
  660. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  661. }
  662. /*
  663. * Update the record of the current time in a context.
  664. */
  665. static void update_context_time(struct perf_event_context *ctx)
  666. {
  667. u64 now = perf_clock();
  668. ctx->time += now - ctx->timestamp;
  669. ctx->timestamp = now;
  670. }
  671. static u64 perf_event_time(struct perf_event *event)
  672. {
  673. struct perf_event_context *ctx = event->ctx;
  674. if (is_cgroup_event(event))
  675. return perf_cgroup_event_time(event);
  676. return ctx ? ctx->time : 0;
  677. }
  678. /*
  679. * Update the total_time_enabled and total_time_running fields for a event.
  680. * The caller of this function needs to hold the ctx->lock.
  681. */
  682. static void update_event_times(struct perf_event *event)
  683. {
  684. struct perf_event_context *ctx = event->ctx;
  685. u64 run_end;
  686. if (event->state < PERF_EVENT_STATE_INACTIVE ||
  687. event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
  688. return;
  689. /*
  690. * in cgroup mode, time_enabled represents
  691. * the time the event was enabled AND active
  692. * tasks were in the monitored cgroup. This is
  693. * independent of the activity of the context as
  694. * there may be a mix of cgroup and non-cgroup events.
  695. *
  696. * That is why we treat cgroup events differently
  697. * here.
  698. */
  699. if (is_cgroup_event(event))
  700. run_end = perf_cgroup_event_time(event);
  701. else if (ctx->is_active)
  702. run_end = ctx->time;
  703. else
  704. run_end = event->tstamp_stopped;
  705. event->total_time_enabled = run_end - event->tstamp_enabled;
  706. if (event->state == PERF_EVENT_STATE_INACTIVE)
  707. run_end = event->tstamp_stopped;
  708. else
  709. run_end = perf_event_time(event);
  710. event->total_time_running = run_end - event->tstamp_running;
  711. }
  712. /*
  713. * Update total_time_enabled and total_time_running for all events in a group.
  714. */
  715. static void update_group_times(struct perf_event *leader)
  716. {
  717. struct perf_event *event;
  718. update_event_times(leader);
  719. list_for_each_entry(event, &leader->sibling_list, group_entry)
  720. update_event_times(event);
  721. }
  722. static struct list_head *
  723. ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
  724. {
  725. if (event->attr.pinned)
  726. return &ctx->pinned_groups;
  727. else
  728. return &ctx->flexible_groups;
  729. }
  730. /*
  731. * Add a event from the lists for its context.
  732. * Must be called with ctx->mutex and ctx->lock held.
  733. */
  734. static void
  735. list_add_event(struct perf_event *event, struct perf_event_context *ctx)
  736. {
  737. WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
  738. event->attach_state |= PERF_ATTACH_CONTEXT;
  739. /*
  740. * If we're a stand alone event or group leader, we go to the context
  741. * list, group events are kept attached to the group so that
  742. * perf_group_detach can, at all times, locate all siblings.
  743. */
  744. if (event->group_leader == event) {
  745. struct list_head *list;
  746. if (is_software_event(event))
  747. event->group_flags |= PERF_GROUP_SOFTWARE;
  748. list = ctx_group_list(event, ctx);
  749. list_add_tail(&event->group_entry, list);
  750. }
  751. if (is_cgroup_event(event))
  752. ctx->nr_cgroups++;
  753. if (has_branch_stack(event))
  754. ctx->nr_branch_stack++;
  755. list_add_rcu(&event->event_entry, &ctx->event_list);
  756. if (!ctx->nr_events)
  757. perf_pmu_rotate_start(ctx->pmu);
  758. ctx->nr_events++;
  759. if (event->attr.inherit_stat)
  760. ctx->nr_stat++;
  761. }
  762. /*
  763. * Initialize event state based on the perf_event_attr::disabled.
  764. */
  765. static inline void perf_event__state_init(struct perf_event *event)
  766. {
  767. event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
  768. PERF_EVENT_STATE_INACTIVE;
  769. }
  770. /*
  771. * Called at perf_event creation and when events are attached/detached from a
  772. * group.
  773. */
  774. static void perf_event__read_size(struct perf_event *event)
  775. {
  776. int entry = sizeof(u64); /* value */
  777. int size = 0;
  778. int nr = 1;
  779. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  780. size += sizeof(u64);
  781. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  782. size += sizeof(u64);
  783. if (event->attr.read_format & PERF_FORMAT_ID)
  784. entry += sizeof(u64);
  785. if (event->attr.read_format & PERF_FORMAT_GROUP) {
  786. nr += event->group_leader->nr_siblings;
  787. size += sizeof(u64);
  788. }
  789. size += entry * nr;
  790. event->read_size = size;
  791. }
  792. static void perf_event__header_size(struct perf_event *event)
  793. {
  794. struct perf_sample_data *data;
  795. u64 sample_type = event->attr.sample_type;
  796. u16 size = 0;
  797. perf_event__read_size(event);
  798. if (sample_type & PERF_SAMPLE_IP)
  799. size += sizeof(data->ip);
  800. if (sample_type & PERF_SAMPLE_ADDR)
  801. size += sizeof(data->addr);
  802. if (sample_type & PERF_SAMPLE_PERIOD)
  803. size += sizeof(data->period);
  804. if (sample_type & PERF_SAMPLE_READ)
  805. size += event->read_size;
  806. event->header_size = size;
  807. }
  808. static void perf_event__id_header_size(struct perf_event *event)
  809. {
  810. struct perf_sample_data *data;
  811. u64 sample_type = event->attr.sample_type;
  812. u16 size = 0;
  813. if (sample_type & PERF_SAMPLE_TID)
  814. size += sizeof(data->tid_entry);
  815. if (sample_type & PERF_SAMPLE_TIME)
  816. size += sizeof(data->time);
  817. if (sample_type & PERF_SAMPLE_ID)
  818. size += sizeof(data->id);
  819. if (sample_type & PERF_SAMPLE_STREAM_ID)
  820. size += sizeof(data->stream_id);
  821. if (sample_type & PERF_SAMPLE_CPU)
  822. size += sizeof(data->cpu_entry);
  823. event->id_header_size = size;
  824. }
  825. static void perf_group_attach(struct perf_event *event)
  826. {
  827. struct perf_event *group_leader = event->group_leader, *pos;
  828. /*
  829. * We can have double attach due to group movement in perf_event_open.
  830. */
  831. if (event->attach_state & PERF_ATTACH_GROUP)
  832. return;
  833. event->attach_state |= PERF_ATTACH_GROUP;
  834. if (group_leader == event)
  835. return;
  836. if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
  837. !is_software_event(event))
  838. group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
  839. list_add_tail(&event->group_entry, &group_leader->sibling_list);
  840. group_leader->nr_siblings++;
  841. perf_event__header_size(group_leader);
  842. list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
  843. perf_event__header_size(pos);
  844. }
  845. /*
  846. * Remove a event from the lists for its context.
  847. * Must be called with ctx->mutex and ctx->lock held.
  848. */
  849. static void
  850. list_del_event(struct perf_event *event, struct perf_event_context *ctx)
  851. {
  852. struct perf_cpu_context *cpuctx;
  853. /*
  854. * We can have double detach due to exit/hot-unplug + close.
  855. */
  856. if (!(event->attach_state & PERF_ATTACH_CONTEXT))
  857. return;
  858. event->attach_state &= ~PERF_ATTACH_CONTEXT;
  859. if (is_cgroup_event(event)) {
  860. ctx->nr_cgroups--;
  861. cpuctx = __get_cpu_context(ctx);
  862. /*
  863. * if there are no more cgroup events
  864. * then cler cgrp to avoid stale pointer
  865. * in update_cgrp_time_from_cpuctx()
  866. */
  867. if (!ctx->nr_cgroups)
  868. cpuctx->cgrp = NULL;
  869. }
  870. if (has_branch_stack(event))
  871. ctx->nr_branch_stack--;
  872. ctx->nr_events--;
  873. if (event->attr.inherit_stat)
  874. ctx->nr_stat--;
  875. list_del_rcu(&event->event_entry);
  876. if (event->group_leader == event)
  877. list_del_init(&event->group_entry);
  878. update_group_times(event);
  879. /*
  880. * If event was in error state, then keep it
  881. * that way, otherwise bogus counts will be
  882. * returned on read(). The only way to get out
  883. * of error state is by explicit re-enabling
  884. * of the event
  885. */
  886. if (event->state > PERF_EVENT_STATE_OFF)
  887. event->state = PERF_EVENT_STATE_OFF;
  888. }
  889. static void perf_group_detach(struct perf_event *event)
  890. {
  891. struct perf_event *sibling, *tmp;
  892. struct list_head *list = NULL;
  893. /*
  894. * We can have double detach due to exit/hot-unplug + close.
  895. */
  896. if (!(event->attach_state & PERF_ATTACH_GROUP))
  897. return;
  898. event->attach_state &= ~PERF_ATTACH_GROUP;
  899. /*
  900. * If this is a sibling, remove it from its group.
  901. */
  902. if (event->group_leader != event) {
  903. list_del_init(&event->group_entry);
  904. event->group_leader->nr_siblings--;
  905. goto out;
  906. }
  907. if (!list_empty(&event->group_entry))
  908. list = &event->group_entry;
  909. /*
  910. * If this was a group event with sibling events then
  911. * upgrade the siblings to singleton events by adding them
  912. * to whatever list we are on.
  913. */
  914. list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
  915. if (list)
  916. list_move_tail(&sibling->group_entry, list);
  917. sibling->group_leader = sibling;
  918. /* Inherit group flags from the previous leader */
  919. sibling->group_flags = event->group_flags;
  920. }
  921. out:
  922. perf_event__header_size(event->group_leader);
  923. list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
  924. perf_event__header_size(tmp);
  925. }
  926. static inline int
  927. event_filter_match(struct perf_event *event)
  928. {
  929. return (event->cpu == -1 || event->cpu == smp_processor_id())
  930. && perf_cgroup_match(event);
  931. }
  932. static void
  933. event_sched_out(struct perf_event *event,
  934. struct perf_cpu_context *cpuctx,
  935. struct perf_event_context *ctx)
  936. {
  937. u64 tstamp = perf_event_time(event);
  938. u64 delta;
  939. /*
  940. * An event which could not be activated because of
  941. * filter mismatch still needs to have its timings
  942. * maintained, otherwise bogus information is return
  943. * via read() for time_enabled, time_running:
  944. */
  945. if (event->state == PERF_EVENT_STATE_INACTIVE
  946. && !event_filter_match(event)) {
  947. delta = tstamp - event->tstamp_stopped;
  948. event->tstamp_running += delta;
  949. event->tstamp_stopped = tstamp;
  950. }
  951. if (event->state != PERF_EVENT_STATE_ACTIVE)
  952. return;
  953. event->state = PERF_EVENT_STATE_INACTIVE;
  954. if (event->pending_disable) {
  955. event->pending_disable = 0;
  956. event->state = PERF_EVENT_STATE_OFF;
  957. }
  958. event->tstamp_stopped = tstamp;
  959. event->pmu->del(event, 0);
  960. event->oncpu = -1;
  961. if (!is_software_event(event))
  962. cpuctx->active_oncpu--;
  963. ctx->nr_active--;
  964. if (event->attr.freq && event->attr.sample_freq)
  965. ctx->nr_freq--;
  966. if (event->attr.exclusive || !cpuctx->active_oncpu)
  967. cpuctx->exclusive = 0;
  968. }
  969. static void
  970. group_sched_out(struct perf_event *group_event,
  971. struct perf_cpu_context *cpuctx,
  972. struct perf_event_context *ctx)
  973. {
  974. struct perf_event *event;
  975. int state = group_event->state;
  976. event_sched_out(group_event, cpuctx, ctx);
  977. /*
  978. * Schedule out siblings (if any):
  979. */
  980. list_for_each_entry(event, &group_event->sibling_list, group_entry)
  981. event_sched_out(event, cpuctx, ctx);
  982. if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
  983. cpuctx->exclusive = 0;
  984. }
  985. /*
  986. * Cross CPU call to remove a performance event
  987. *
  988. * We disable the event on the hardware level first. After that we
  989. * remove it from the context list.
  990. */
  991. static int __perf_remove_from_context(void *info)
  992. {
  993. struct perf_event *event = info;
  994. struct perf_event_context *ctx = event->ctx;
  995. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  996. raw_spin_lock(&ctx->lock);
  997. event_sched_out(event, cpuctx, ctx);
  998. list_del_event(event, ctx);
  999. if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
  1000. ctx->is_active = 0;
  1001. cpuctx->task_ctx = NULL;
  1002. }
  1003. raw_spin_unlock(&ctx->lock);
  1004. return 0;
  1005. }
  1006. /*
  1007. * Remove the event from a task's (or a CPU's) list of events.
  1008. *
  1009. * CPU events are removed with a smp call. For task events we only
  1010. * call when the task is on a CPU.
  1011. *
  1012. * If event->ctx is a cloned context, callers must make sure that
  1013. * every task struct that event->ctx->task could possibly point to
  1014. * remains valid. This is OK when called from perf_release since
  1015. * that only calls us on the top-level context, which can't be a clone.
  1016. * When called from perf_event_exit_task, it's OK because the
  1017. * context has been detached from its task.
  1018. */
  1019. static void perf_remove_from_context(struct perf_event *event)
  1020. {
  1021. struct perf_event_context *ctx = event->ctx;
  1022. struct task_struct *task = ctx->task;
  1023. lockdep_assert_held(&ctx->mutex);
  1024. if (!task) {
  1025. /*
  1026. * Per cpu events are removed via an smp call and
  1027. * the removal is always successful.
  1028. */
  1029. cpu_function_call(event->cpu, __perf_remove_from_context, event);
  1030. return;
  1031. }
  1032. retry:
  1033. if (!task_function_call(task, __perf_remove_from_context, event))
  1034. return;
  1035. raw_spin_lock_irq(&ctx->lock);
  1036. /*
  1037. * If we failed to find a running task, but find the context active now
  1038. * that we've acquired the ctx->lock, retry.
  1039. */
  1040. if (ctx->is_active) {
  1041. raw_spin_unlock_irq(&ctx->lock);
  1042. goto retry;
  1043. }
  1044. /*
  1045. * Since the task isn't running, its safe to remove the event, us
  1046. * holding the ctx->lock ensures the task won't get scheduled in.
  1047. */
  1048. list_del_event(event, ctx);
  1049. raw_spin_unlock_irq(&ctx->lock);
  1050. }
  1051. /*
  1052. * Cross CPU call to disable a performance event
  1053. */
  1054. int __perf_event_disable(void *info)
  1055. {
  1056. struct perf_event *event = info;
  1057. struct perf_event_context *ctx = event->ctx;
  1058. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1059. /*
  1060. * If this is a per-task event, need to check whether this
  1061. * event's task is the current task on this cpu.
  1062. *
  1063. * Can trigger due to concurrent perf_event_context_sched_out()
  1064. * flipping contexts around.
  1065. */
  1066. if (ctx->task && cpuctx->task_ctx != ctx)
  1067. return -EINVAL;
  1068. raw_spin_lock(&ctx->lock);
  1069. /*
  1070. * If the event is on, turn it off.
  1071. * If it is in error state, leave it in error state.
  1072. */
  1073. if (event->state >= PERF_EVENT_STATE_INACTIVE) {
  1074. update_context_time(ctx);
  1075. update_cgrp_time_from_event(event);
  1076. update_group_times(event);
  1077. if (event == event->group_leader)
  1078. group_sched_out(event, cpuctx, ctx);
  1079. else
  1080. event_sched_out(event, cpuctx, ctx);
  1081. event->state = PERF_EVENT_STATE_OFF;
  1082. }
  1083. raw_spin_unlock(&ctx->lock);
  1084. return 0;
  1085. }
  1086. /*
  1087. * Disable a event.
  1088. *
  1089. * If event->ctx is a cloned context, callers must make sure that
  1090. * every task struct that event->ctx->task could possibly point to
  1091. * remains valid. This condition is satisifed when called through
  1092. * perf_event_for_each_child or perf_event_for_each because they
  1093. * hold the top-level event's child_mutex, so any descendant that
  1094. * goes to exit will block in sync_child_event.
  1095. * When called from perf_pending_event it's OK because event->ctx
  1096. * is the current context on this CPU and preemption is disabled,
  1097. * hence we can't get into perf_event_task_sched_out for this context.
  1098. */
  1099. void perf_event_disable(struct perf_event *event)
  1100. {
  1101. struct perf_event_context *ctx = event->ctx;
  1102. struct task_struct *task = ctx->task;
  1103. if (!task) {
  1104. /*
  1105. * Disable the event on the cpu that it's on
  1106. */
  1107. cpu_function_call(event->cpu, __perf_event_disable, event);
  1108. return;
  1109. }
  1110. retry:
  1111. if (!task_function_call(task, __perf_event_disable, event))
  1112. return;
  1113. raw_spin_lock_irq(&ctx->lock);
  1114. /*
  1115. * If the event is still active, we need to retry the cross-call.
  1116. */
  1117. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  1118. raw_spin_unlock_irq(&ctx->lock);
  1119. /*
  1120. * Reload the task pointer, it might have been changed by
  1121. * a concurrent perf_event_context_sched_out().
  1122. */
  1123. task = ctx->task;
  1124. goto retry;
  1125. }
  1126. /*
  1127. * Since we have the lock this context can't be scheduled
  1128. * in, so we can change the state safely.
  1129. */
  1130. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1131. update_group_times(event);
  1132. event->state = PERF_EVENT_STATE_OFF;
  1133. }
  1134. raw_spin_unlock_irq(&ctx->lock);
  1135. }
  1136. EXPORT_SYMBOL_GPL(perf_event_disable);
  1137. static void perf_set_shadow_time(struct perf_event *event,
  1138. struct perf_event_context *ctx,
  1139. u64 tstamp)
  1140. {
  1141. /*
  1142. * use the correct time source for the time snapshot
  1143. *
  1144. * We could get by without this by leveraging the
  1145. * fact that to get to this function, the caller
  1146. * has most likely already called update_context_time()
  1147. * and update_cgrp_time_xx() and thus both timestamp
  1148. * are identical (or very close). Given that tstamp is,
  1149. * already adjusted for cgroup, we could say that:
  1150. * tstamp - ctx->timestamp
  1151. * is equivalent to
  1152. * tstamp - cgrp->timestamp.
  1153. *
  1154. * Then, in perf_output_read(), the calculation would
  1155. * work with no changes because:
  1156. * - event is guaranteed scheduled in
  1157. * - no scheduled out in between
  1158. * - thus the timestamp would be the same
  1159. *
  1160. * But this is a bit hairy.
  1161. *
  1162. * So instead, we have an explicit cgroup call to remain
  1163. * within the time time source all along. We believe it
  1164. * is cleaner and simpler to understand.
  1165. */
  1166. if (is_cgroup_event(event))
  1167. perf_cgroup_set_shadow_time(event, tstamp);
  1168. else
  1169. event->shadow_ctx_time = tstamp - ctx->timestamp;
  1170. }
  1171. #define MAX_INTERRUPTS (~0ULL)
  1172. static void perf_log_throttle(struct perf_event *event, int enable);
  1173. static int
  1174. event_sched_in(struct perf_event *event,
  1175. struct perf_cpu_context *cpuctx,
  1176. struct perf_event_context *ctx)
  1177. {
  1178. u64 tstamp = perf_event_time(event);
  1179. if (event->state <= PERF_EVENT_STATE_OFF)
  1180. return 0;
  1181. event->state = PERF_EVENT_STATE_ACTIVE;
  1182. event->oncpu = smp_processor_id();
  1183. /*
  1184. * Unthrottle events, since we scheduled we might have missed several
  1185. * ticks already, also for a heavily scheduling task there is little
  1186. * guarantee it'll get a tick in a timely manner.
  1187. */
  1188. if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
  1189. perf_log_throttle(event, 1);
  1190. event->hw.interrupts = 0;
  1191. }
  1192. /*
  1193. * The new state must be visible before we turn it on in the hardware:
  1194. */
  1195. smp_wmb();
  1196. if (event->pmu->add(event, PERF_EF_START)) {
  1197. event->state = PERF_EVENT_STATE_INACTIVE;
  1198. event->oncpu = -1;
  1199. return -EAGAIN;
  1200. }
  1201. event->tstamp_running += tstamp - event->tstamp_stopped;
  1202. perf_set_shadow_time(event, ctx, tstamp);
  1203. if (!is_software_event(event))
  1204. cpuctx->active_oncpu++;
  1205. ctx->nr_active++;
  1206. if (event->attr.freq && event->attr.sample_freq)
  1207. ctx->nr_freq++;
  1208. if (event->attr.exclusive)
  1209. cpuctx->exclusive = 1;
  1210. return 0;
  1211. }
  1212. static int
  1213. group_sched_in(struct perf_event *group_event,
  1214. struct perf_cpu_context *cpuctx,
  1215. struct perf_event_context *ctx)
  1216. {
  1217. struct perf_event *event, *partial_group = NULL;
  1218. struct pmu *pmu = group_event->pmu;
  1219. u64 now = ctx->time;
  1220. bool simulate = false;
  1221. if (group_event->state == PERF_EVENT_STATE_OFF)
  1222. return 0;
  1223. pmu->start_txn(pmu);
  1224. if (event_sched_in(group_event, cpuctx, ctx)) {
  1225. pmu->cancel_txn(pmu);
  1226. return -EAGAIN;
  1227. }
  1228. /*
  1229. * Schedule in siblings as one group (if any):
  1230. */
  1231. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1232. if (event_sched_in(event, cpuctx, ctx)) {
  1233. partial_group = event;
  1234. goto group_error;
  1235. }
  1236. }
  1237. if (!pmu->commit_txn(pmu))
  1238. return 0;
  1239. group_error:
  1240. /*
  1241. * Groups can be scheduled in as one unit only, so undo any
  1242. * partial group before returning:
  1243. * The events up to the failed event are scheduled out normally,
  1244. * tstamp_stopped will be updated.
  1245. *
  1246. * The failed events and the remaining siblings need to have
  1247. * their timings updated as if they had gone thru event_sched_in()
  1248. * and event_sched_out(). This is required to get consistent timings
  1249. * across the group. This also takes care of the case where the group
  1250. * could never be scheduled by ensuring tstamp_stopped is set to mark
  1251. * the time the event was actually stopped, such that time delta
  1252. * calculation in update_event_times() is correct.
  1253. */
  1254. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1255. if (event == partial_group)
  1256. simulate = true;
  1257. if (simulate) {
  1258. event->tstamp_running += now - event->tstamp_stopped;
  1259. event->tstamp_stopped = now;
  1260. } else {
  1261. event_sched_out(event, cpuctx, ctx);
  1262. }
  1263. }
  1264. event_sched_out(group_event, cpuctx, ctx);
  1265. pmu->cancel_txn(pmu);
  1266. return -EAGAIN;
  1267. }
  1268. /*
  1269. * Work out whether we can put this event group on the CPU now.
  1270. */
  1271. static int group_can_go_on(struct perf_event *event,
  1272. struct perf_cpu_context *cpuctx,
  1273. int can_add_hw)
  1274. {
  1275. /*
  1276. * Groups consisting entirely of software events can always go on.
  1277. */
  1278. if (event->group_flags & PERF_GROUP_SOFTWARE)
  1279. return 1;
  1280. /*
  1281. * If an exclusive group is already on, no other hardware
  1282. * events can go on.
  1283. */
  1284. if (cpuctx->exclusive)
  1285. return 0;
  1286. /*
  1287. * If this group is exclusive and there are already
  1288. * events on the CPU, it can't go on.
  1289. */
  1290. if (event->attr.exclusive && cpuctx->active_oncpu)
  1291. return 0;
  1292. /*
  1293. * Otherwise, try to add it if all previous groups were able
  1294. * to go on.
  1295. */
  1296. return can_add_hw;
  1297. }
  1298. static void add_event_to_ctx(struct perf_event *event,
  1299. struct perf_event_context *ctx)
  1300. {
  1301. u64 tstamp = perf_event_time(event);
  1302. list_add_event(event, ctx);
  1303. perf_group_attach(event);
  1304. event->tstamp_enabled = tstamp;
  1305. event->tstamp_running = tstamp;
  1306. event->tstamp_stopped = tstamp;
  1307. }
  1308. static void task_ctx_sched_out(struct perf_event_context *ctx);
  1309. static void
  1310. ctx_sched_in(struct perf_event_context *ctx,
  1311. struct perf_cpu_context *cpuctx,
  1312. enum event_type_t event_type,
  1313. struct task_struct *task);
  1314. static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
  1315. struct perf_event_context *ctx,
  1316. struct task_struct *task)
  1317. {
  1318. cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
  1319. if (ctx)
  1320. ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
  1321. cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
  1322. if (ctx)
  1323. ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
  1324. }
  1325. /*
  1326. * Cross CPU call to install and enable a performance event
  1327. *
  1328. * Must be called with ctx->mutex held
  1329. */
  1330. static int __perf_install_in_context(void *info)
  1331. {
  1332. struct perf_event *event = info;
  1333. struct perf_event_context *ctx = event->ctx;
  1334. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1335. struct perf_event_context *task_ctx = cpuctx->task_ctx;
  1336. struct task_struct *task = current;
  1337. perf_ctx_lock(cpuctx, task_ctx);
  1338. perf_pmu_disable(cpuctx->ctx.pmu);
  1339. /*
  1340. * If there was an active task_ctx schedule it out.
  1341. */
  1342. if (task_ctx)
  1343. task_ctx_sched_out(task_ctx);
  1344. /*
  1345. * If the context we're installing events in is not the
  1346. * active task_ctx, flip them.
  1347. */
  1348. if (ctx->task && task_ctx != ctx) {
  1349. if (task_ctx)
  1350. raw_spin_unlock(&task_ctx->lock);
  1351. raw_spin_lock(&ctx->lock);
  1352. task_ctx = ctx;
  1353. }
  1354. if (task_ctx) {
  1355. cpuctx->task_ctx = task_ctx;
  1356. task = task_ctx->task;
  1357. }
  1358. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  1359. update_context_time(ctx);
  1360. /*
  1361. * update cgrp time only if current cgrp
  1362. * matches event->cgrp. Must be done before
  1363. * calling add_event_to_ctx()
  1364. */
  1365. update_cgrp_time_from_event(event);
  1366. add_event_to_ctx(event, ctx);
  1367. /*
  1368. * Schedule everything back in
  1369. */
  1370. perf_event_sched_in(cpuctx, task_ctx, task);
  1371. perf_pmu_enable(cpuctx->ctx.pmu);
  1372. perf_ctx_unlock(cpuctx, task_ctx);
  1373. return 0;
  1374. }
  1375. /*
  1376. * Attach a performance event to a context
  1377. *
  1378. * First we add the event to the list with the hardware enable bit
  1379. * in event->hw_config cleared.
  1380. *
  1381. * If the event is attached to a task which is on a CPU we use a smp
  1382. * call to enable it in the task context. The task might have been
  1383. * scheduled away, but we check this in the smp call again.
  1384. */
  1385. static void
  1386. perf_install_in_context(struct perf_event_context *ctx,
  1387. struct perf_event *event,
  1388. int cpu)
  1389. {
  1390. struct task_struct *task = ctx->task;
  1391. lockdep_assert_held(&ctx->mutex);
  1392. event->ctx = ctx;
  1393. if (event->cpu != -1)
  1394. event->cpu = cpu;
  1395. if (!task) {
  1396. /*
  1397. * Per cpu events are installed via an smp call and
  1398. * the install is always successful.
  1399. */
  1400. cpu_function_call(cpu, __perf_install_in_context, event);
  1401. return;
  1402. }
  1403. retry:
  1404. if (!task_function_call(task, __perf_install_in_context, event))
  1405. return;
  1406. raw_spin_lock_irq(&ctx->lock);
  1407. /*
  1408. * If we failed to find a running task, but find the context active now
  1409. * that we've acquired the ctx->lock, retry.
  1410. */
  1411. if (ctx->is_active) {
  1412. raw_spin_unlock_irq(&ctx->lock);
  1413. goto retry;
  1414. }
  1415. /*
  1416. * Since the task isn't running, its safe to add the event, us holding
  1417. * the ctx->lock ensures the task won't get scheduled in.
  1418. */
  1419. add_event_to_ctx(event, ctx);
  1420. raw_spin_unlock_irq(&ctx->lock);
  1421. }
  1422. /*
  1423. * Put a event into inactive state and update time fields.
  1424. * Enabling the leader of a group effectively enables all
  1425. * the group members that aren't explicitly disabled, so we
  1426. * have to update their ->tstamp_enabled also.
  1427. * Note: this works for group members as well as group leaders
  1428. * since the non-leader members' sibling_lists will be empty.
  1429. */
  1430. static void __perf_event_mark_enabled(struct perf_event *event)
  1431. {
  1432. struct perf_event *sub;
  1433. u64 tstamp = perf_event_time(event);
  1434. event->state = PERF_EVENT_STATE_INACTIVE;
  1435. event->tstamp_enabled = tstamp - event->total_time_enabled;
  1436. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  1437. if (sub->state >= PERF_EVENT_STATE_INACTIVE)
  1438. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  1439. }
  1440. }
  1441. /*
  1442. * Cross CPU call to enable a performance event
  1443. */
  1444. static int __perf_event_enable(void *info)
  1445. {
  1446. struct perf_event *event = info;
  1447. struct perf_event_context *ctx = event->ctx;
  1448. struct perf_event *leader = event->group_leader;
  1449. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1450. int err;
  1451. if (WARN_ON_ONCE(!ctx->is_active))
  1452. return -EINVAL;
  1453. raw_spin_lock(&ctx->lock);
  1454. update_context_time(ctx);
  1455. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1456. goto unlock;
  1457. /*
  1458. * set current task's cgroup time reference point
  1459. */
  1460. perf_cgroup_set_timestamp(current, ctx);
  1461. __perf_event_mark_enabled(event);
  1462. if (!event_filter_match(event)) {
  1463. if (is_cgroup_event(event))
  1464. perf_cgroup_defer_enabled(event);
  1465. goto unlock;
  1466. }
  1467. /*
  1468. * If the event is in a group and isn't the group leader,
  1469. * then don't put it on unless the group is on.
  1470. */
  1471. if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
  1472. goto unlock;
  1473. if (!group_can_go_on(event, cpuctx, 1)) {
  1474. err = -EEXIST;
  1475. } else {
  1476. if (event == leader)
  1477. err = group_sched_in(event, cpuctx, ctx);
  1478. else
  1479. err = event_sched_in(event, cpuctx, ctx);
  1480. }
  1481. if (err) {
  1482. /*
  1483. * If this event can't go on and it's part of a
  1484. * group, then the whole group has to come off.
  1485. */
  1486. if (leader != event)
  1487. group_sched_out(leader, cpuctx, ctx);
  1488. if (leader->attr.pinned) {
  1489. update_group_times(leader);
  1490. leader->state = PERF_EVENT_STATE_ERROR;
  1491. }
  1492. }
  1493. unlock:
  1494. raw_spin_unlock(&ctx->lock);
  1495. return 0;
  1496. }
  1497. /*
  1498. * Enable a event.
  1499. *
  1500. * If event->ctx is a cloned context, callers must make sure that
  1501. * every task struct that event->ctx->task could possibly point to
  1502. * remains valid. This condition is satisfied when called through
  1503. * perf_event_for_each_child or perf_event_for_each as described
  1504. * for perf_event_disable.
  1505. */
  1506. void perf_event_enable(struct perf_event *event)
  1507. {
  1508. struct perf_event_context *ctx = event->ctx;
  1509. struct task_struct *task = ctx->task;
  1510. if (!task) {
  1511. /*
  1512. * Enable the event on the cpu that it's on
  1513. */
  1514. cpu_function_call(event->cpu, __perf_event_enable, event);
  1515. return;
  1516. }
  1517. raw_spin_lock_irq(&ctx->lock);
  1518. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1519. goto out;
  1520. /*
  1521. * If the event is in error state, clear that first.
  1522. * That way, if we see the event in error state below, we
  1523. * know that it has gone back into error state, as distinct
  1524. * from the task having been scheduled away before the
  1525. * cross-call arrived.
  1526. */
  1527. if (event->state == PERF_EVENT_STATE_ERROR)
  1528. event->state = PERF_EVENT_STATE_OFF;
  1529. retry:
  1530. if (!ctx->is_active) {
  1531. __perf_event_mark_enabled(event);
  1532. goto out;
  1533. }
  1534. raw_spin_unlock_irq(&ctx->lock);
  1535. if (!task_function_call(task, __perf_event_enable, event))
  1536. return;
  1537. raw_spin_lock_irq(&ctx->lock);
  1538. /*
  1539. * If the context is active and the event is still off,
  1540. * we need to retry the cross-call.
  1541. */
  1542. if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
  1543. /*
  1544. * task could have been flipped by a concurrent
  1545. * perf_event_context_sched_out()
  1546. */
  1547. task = ctx->task;
  1548. goto retry;
  1549. }
  1550. out:
  1551. raw_spin_unlock_irq(&ctx->lock);
  1552. }
  1553. EXPORT_SYMBOL_GPL(perf_event_enable);
  1554. int perf_event_refresh(struct perf_event *event, int refresh)
  1555. {
  1556. /*
  1557. * not supported on inherited events
  1558. */
  1559. if (event->attr.inherit || !is_sampling_event(event))
  1560. return -EINVAL;
  1561. atomic_add(refresh, &event->event_limit);
  1562. perf_event_enable(event);
  1563. return 0;
  1564. }
  1565. EXPORT_SYMBOL_GPL(perf_event_refresh);
  1566. static void ctx_sched_out(struct perf_event_context *ctx,
  1567. struct perf_cpu_context *cpuctx,
  1568. enum event_type_t event_type)
  1569. {
  1570. struct perf_event *event;
  1571. int is_active = ctx->is_active;
  1572. ctx->is_active &= ~event_type;
  1573. if (likely(!ctx->nr_events))
  1574. return;
  1575. update_context_time(ctx);
  1576. update_cgrp_time_from_cpuctx(cpuctx);
  1577. if (!ctx->nr_active)
  1578. return;
  1579. perf_pmu_disable(ctx->pmu);
  1580. if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
  1581. list_for_each_entry(event, &ctx->pinned_groups, group_entry)
  1582. group_sched_out(event, cpuctx, ctx);
  1583. }
  1584. if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
  1585. list_for_each_entry(event, &ctx->flexible_groups, group_entry)
  1586. group_sched_out(event, cpuctx, ctx);
  1587. }
  1588. perf_pmu_enable(ctx->pmu);
  1589. }
  1590. /*
  1591. * Test whether two contexts are equivalent, i.e. whether they
  1592. * have both been cloned from the same version of the same context
  1593. * and they both have the same number of enabled events.
  1594. * If the number of enabled events is the same, then the set
  1595. * of enabled events should be the same, because these are both
  1596. * inherited contexts, therefore we can't access individual events
  1597. * in them directly with an fd; we can only enable/disable all
  1598. * events via prctl, or enable/disable all events in a family
  1599. * via ioctl, which will have the same effect on both contexts.
  1600. */
  1601. static int context_equiv(struct perf_event_context *ctx1,
  1602. struct perf_event_context *ctx2)
  1603. {
  1604. return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
  1605. && ctx1->parent_gen == ctx2->parent_gen
  1606. && !ctx1->pin_count && !ctx2->pin_count;
  1607. }
  1608. static void __perf_event_sync_stat(struct perf_event *event,
  1609. struct perf_event *next_event)
  1610. {
  1611. u64 value;
  1612. if (!event->attr.inherit_stat)
  1613. return;
  1614. /*
  1615. * Update the event value, we cannot use perf_event_read()
  1616. * because we're in the middle of a context switch and have IRQs
  1617. * disabled, which upsets smp_call_function_single(), however
  1618. * we know the event must be on the current CPU, therefore we
  1619. * don't need to use it.
  1620. */
  1621. switch (event->state) {
  1622. case PERF_EVENT_STATE_ACTIVE:
  1623. event->pmu->read(event);
  1624. /* fall-through */
  1625. case PERF_EVENT_STATE_INACTIVE:
  1626. update_event_times(event);
  1627. break;
  1628. default:
  1629. break;
  1630. }
  1631. /*
  1632. * In order to keep per-task stats reliable we need to flip the event
  1633. * values when we flip the contexts.
  1634. */
  1635. value = local64_read(&next_event->count);
  1636. value = local64_xchg(&event->count, value);
  1637. local64_set(&next_event->count, value);
  1638. swap(event->total_time_enabled, next_event->total_time_enabled);
  1639. swap(event->total_time_running, next_event->total_time_running);
  1640. /*
  1641. * Since we swizzled the values, update the user visible data too.
  1642. */
  1643. perf_event_update_userpage(event);
  1644. perf_event_update_userpage(next_event);
  1645. }
  1646. #define list_next_entry(pos, member) \
  1647. list_entry(pos->member.next, typeof(*pos), member)
  1648. static void perf_event_sync_stat(struct perf_event_context *ctx,
  1649. struct perf_event_context *next_ctx)
  1650. {
  1651. struct perf_event *event, *next_event;
  1652. if (!ctx->nr_stat)
  1653. return;
  1654. update_context_time(ctx);
  1655. event = list_first_entry(&ctx->event_list,
  1656. struct perf_event, event_entry);
  1657. next_event = list_first_entry(&next_ctx->event_list,
  1658. struct perf_event, event_entry);
  1659. while (&event->event_entry != &ctx->event_list &&
  1660. &next_event->event_entry != &next_ctx->event_list) {
  1661. __perf_event_sync_stat(event, next_event);
  1662. event = list_next_entry(event, event_entry);
  1663. next_event = list_next_entry(next_event, event_entry);
  1664. }
  1665. }
  1666. static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
  1667. struct task_struct *next)
  1668. {
  1669. struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
  1670. struct perf_event_context *next_ctx;
  1671. struct perf_event_context *parent;
  1672. struct perf_cpu_context *cpuctx;
  1673. int do_switch = 1;
  1674. if (likely(!ctx))
  1675. return;
  1676. cpuctx = __get_cpu_context(ctx);
  1677. if (!cpuctx->task_ctx)
  1678. return;
  1679. rcu_read_lock();
  1680. parent = rcu_dereference(ctx->parent_ctx);
  1681. next_ctx = next->perf_event_ctxp[ctxn];
  1682. if (parent && next_ctx &&
  1683. rcu_dereference(next_ctx->parent_ctx) == parent) {
  1684. /*
  1685. * Looks like the two contexts are clones, so we might be
  1686. * able to optimize the context switch. We lock both
  1687. * contexts and check that they are clones under the
  1688. * lock (including re-checking that neither has been
  1689. * uncloned in the meantime). It doesn't matter which
  1690. * order we take the locks because no other cpu could
  1691. * be trying to lock both of these tasks.
  1692. */
  1693. raw_spin_lock(&ctx->lock);
  1694. raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
  1695. if (context_equiv(ctx, next_ctx)) {
  1696. /*
  1697. * XXX do we need a memory barrier of sorts
  1698. * wrt to rcu_dereference() of perf_event_ctxp
  1699. */
  1700. task->perf_event_ctxp[ctxn] = next_ctx;
  1701. next->perf_event_ctxp[ctxn] = ctx;
  1702. ctx->task = next;
  1703. next_ctx->task = task;
  1704. do_switch = 0;
  1705. perf_event_sync_stat(ctx, next_ctx);
  1706. }
  1707. raw_spin_unlock(&next_ctx->lock);
  1708. raw_spin_unlock(&ctx->lock);
  1709. }
  1710. rcu_read_unlock();
  1711. if (do_switch) {
  1712. raw_spin_lock(&ctx->lock);
  1713. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  1714. cpuctx->task_ctx = NULL;
  1715. raw_spin_unlock(&ctx->lock);
  1716. }
  1717. }
  1718. #define for_each_task_context_nr(ctxn) \
  1719. for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
  1720. /*
  1721. * Called from scheduler to remove the events of the current task,
  1722. * with interrupts disabled.
  1723. *
  1724. * We stop each event and update the event value in event->count.
  1725. *
  1726. * This does not protect us against NMI, but disable()
  1727. * sets the disabled bit in the control field of event _before_
  1728. * accessing the event control register. If a NMI hits, then it will
  1729. * not restart the event.
  1730. */
  1731. void __perf_event_task_sched_out(struct task_struct *task,
  1732. struct task_struct *next)
  1733. {
  1734. int ctxn;
  1735. for_each_task_context_nr(ctxn)
  1736. perf_event_context_sched_out(task, ctxn, next);
  1737. /*
  1738. * if cgroup events exist on this CPU, then we need
  1739. * to check if we have to switch out PMU state.
  1740. * cgroup event are system-wide mode only
  1741. */
  1742. if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
  1743. perf_cgroup_sched_out(task, next);
  1744. }
  1745. static void task_ctx_sched_out(struct perf_event_context *ctx)
  1746. {
  1747. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1748. if (!cpuctx->task_ctx)
  1749. return;
  1750. if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
  1751. return;
  1752. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  1753. cpuctx->task_ctx = NULL;
  1754. }
  1755. /*
  1756. * Called with IRQs disabled
  1757. */
  1758. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  1759. enum event_type_t event_type)
  1760. {
  1761. ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
  1762. }
  1763. static void
  1764. ctx_pinned_sched_in(struct perf_event_context *ctx,
  1765. struct perf_cpu_context *cpuctx)
  1766. {
  1767. struct perf_event *event;
  1768. list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
  1769. if (event->state <= PERF_EVENT_STATE_OFF)
  1770. continue;
  1771. if (!event_filter_match(event))
  1772. continue;
  1773. /* may need to reset tstamp_enabled */
  1774. if (is_cgroup_event(event))
  1775. perf_cgroup_mark_enabled(event, ctx);
  1776. if (group_can_go_on(event, cpuctx, 1))
  1777. group_sched_in(event, cpuctx, ctx);
  1778. /*
  1779. * If this pinned group hasn't been scheduled,
  1780. * put it in error state.
  1781. */
  1782. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1783. update_group_times(event);
  1784. event->state = PERF_EVENT_STATE_ERROR;
  1785. }
  1786. }
  1787. }
  1788. static void
  1789. ctx_flexible_sched_in(struct perf_event_context *ctx,
  1790. struct perf_cpu_context *cpuctx)
  1791. {
  1792. struct perf_event *event;
  1793. int can_add_hw = 1;
  1794. list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
  1795. /* Ignore events in OFF or ERROR state */
  1796. if (event->state <= PERF_EVENT_STATE_OFF)
  1797. continue;
  1798. /*
  1799. * Listen to the 'cpu' scheduling filter constraint
  1800. * of events:
  1801. */
  1802. if (!event_filter_match(event))
  1803. continue;
  1804. /* may need to reset tstamp_enabled */
  1805. if (is_cgroup_event(event))
  1806. perf_cgroup_mark_enabled(event, ctx);
  1807. if (group_can_go_on(event, cpuctx, can_add_hw)) {
  1808. if (group_sched_in(event, cpuctx, ctx))
  1809. can_add_hw = 0;
  1810. }
  1811. }
  1812. }
  1813. static void
  1814. ctx_sched_in(struct perf_event_context *ctx,
  1815. struct perf_cpu_context *cpuctx,
  1816. enum event_type_t event_type,
  1817. struct task_struct *task)
  1818. {
  1819. u64 now;
  1820. int is_active = ctx->is_active;
  1821. ctx->is_active |= event_type;
  1822. if (likely(!ctx->nr_events))
  1823. return;
  1824. now = perf_clock();
  1825. ctx->timestamp = now;
  1826. perf_cgroup_set_timestamp(task, ctx);
  1827. /*
  1828. * First go through the list and put on any pinned groups
  1829. * in order to give them the best chance of going on.
  1830. */
  1831. if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
  1832. ctx_pinned_sched_in(ctx, cpuctx);
  1833. /* Then walk through the lower prio flexible groups */
  1834. if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
  1835. ctx_flexible_sched_in(ctx, cpuctx);
  1836. }
  1837. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  1838. enum event_type_t event_type,
  1839. struct task_struct *task)
  1840. {
  1841. struct perf_event_context *ctx = &cpuctx->ctx;
  1842. ctx_sched_in(ctx, cpuctx, event_type, task);
  1843. }
  1844. static void perf_event_context_sched_in(struct perf_event_context *ctx,
  1845. struct task_struct *task)
  1846. {
  1847. struct perf_cpu_context *cpuctx;
  1848. cpuctx = __get_cpu_context(ctx);
  1849. if (cpuctx->task_ctx == ctx)
  1850. return;
  1851. perf_ctx_lock(cpuctx, ctx);
  1852. perf_pmu_disable(ctx->pmu);
  1853. /*
  1854. * We want to keep the following priority order:
  1855. * cpu pinned (that don't need to move), task pinned,
  1856. * cpu flexible, task flexible.
  1857. */
  1858. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  1859. if (ctx->nr_events)
  1860. cpuctx->task_ctx = ctx;
  1861. perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
  1862. perf_pmu_enable(ctx->pmu);
  1863. perf_ctx_unlock(cpuctx, ctx);
  1864. /*
  1865. * Since these rotations are per-cpu, we need to ensure the
  1866. * cpu-context we got scheduled on is actually rotating.
  1867. */
  1868. perf_pmu_rotate_start(ctx->pmu);
  1869. }
  1870. /*
  1871. * When sampling the branck stack in system-wide, it may be necessary
  1872. * to flush the stack on context switch. This happens when the branch
  1873. * stack does not tag its entries with the pid of the current task.
  1874. * Otherwise it becomes impossible to associate a branch entry with a
  1875. * task. This ambiguity is more likely to appear when the branch stack
  1876. * supports priv level filtering and the user sets it to monitor only
  1877. * at the user level (which could be a useful measurement in system-wide
  1878. * mode). In that case, the risk is high of having a branch stack with
  1879. * branch from multiple tasks. Flushing may mean dropping the existing
  1880. * entries or stashing them somewhere in the PMU specific code layer.
  1881. *
  1882. * This function provides the context switch callback to the lower code
  1883. * layer. It is invoked ONLY when there is at least one system-wide context
  1884. * with at least one active event using taken branch sampling.
  1885. */
  1886. static void perf_branch_stack_sched_in(struct task_struct *prev,
  1887. struct task_struct *task)
  1888. {
  1889. struct perf_cpu_context *cpuctx;
  1890. struct pmu *pmu;
  1891. unsigned long flags;
  1892. /* no need to flush branch stack if not changing task */
  1893. if (prev == task)
  1894. return;
  1895. local_irq_save(flags);
  1896. rcu_read_lock();
  1897. list_for_each_entry_rcu(pmu, &pmus, entry) {
  1898. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  1899. /*
  1900. * check if the context has at least one
  1901. * event using PERF_SAMPLE_BRANCH_STACK
  1902. */
  1903. if (cpuctx->ctx.nr_branch_stack > 0
  1904. && pmu->flush_branch_stack) {
  1905. pmu = cpuctx->ctx.pmu;
  1906. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  1907. perf_pmu_disable(pmu);
  1908. pmu->flush_branch_stack();
  1909. perf_pmu_enable(pmu);
  1910. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  1911. }
  1912. }
  1913. rcu_read_unlock();
  1914. local_irq_restore(flags);
  1915. }
  1916. /*
  1917. * Called from scheduler to add the events of the current task
  1918. * with interrupts disabled.
  1919. *
  1920. * We restore the event value and then enable it.
  1921. *
  1922. * This does not protect us against NMI, but enable()
  1923. * sets the enabled bit in the control field of event _before_
  1924. * accessing the event control register. If a NMI hits, then it will
  1925. * keep the event running.
  1926. */
  1927. void __perf_event_task_sched_in(struct task_struct *prev,
  1928. struct task_struct *task)
  1929. {
  1930. struct perf_event_context *ctx;
  1931. int ctxn;
  1932. for_each_task_context_nr(ctxn) {
  1933. ctx = task->perf_event_ctxp[ctxn];
  1934. if (likely(!ctx))
  1935. continue;
  1936. perf_event_context_sched_in(ctx, task);
  1937. }
  1938. /*
  1939. * if cgroup events exist on this CPU, then we need
  1940. * to check if we have to switch in PMU state.
  1941. * cgroup event are system-wide mode only
  1942. */
  1943. if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
  1944. perf_cgroup_sched_in(prev, task);
  1945. /* check for system-wide branch_stack events */
  1946. if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
  1947. perf_branch_stack_sched_in(prev, task);
  1948. }
  1949. static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
  1950. {
  1951. u64 frequency = event->attr.sample_freq;
  1952. u64 sec = NSEC_PER_SEC;
  1953. u64 divisor, dividend;
  1954. int count_fls, nsec_fls, frequency_fls, sec_fls;
  1955. count_fls = fls64(count);
  1956. nsec_fls = fls64(nsec);
  1957. frequency_fls = fls64(frequency);
  1958. sec_fls = 30;
  1959. /*
  1960. * We got @count in @nsec, with a target of sample_freq HZ
  1961. * the target period becomes:
  1962. *
  1963. * @count * 10^9
  1964. * period = -------------------
  1965. * @nsec * sample_freq
  1966. *
  1967. */
  1968. /*
  1969. * Reduce accuracy by one bit such that @a and @b converge
  1970. * to a similar magnitude.
  1971. */
  1972. #define REDUCE_FLS(a, b) \
  1973. do { \
  1974. if (a##_fls > b##_fls) { \
  1975. a >>= 1; \
  1976. a##_fls--; \
  1977. } else { \
  1978. b >>= 1; \
  1979. b##_fls--; \
  1980. } \
  1981. } while (0)
  1982. /*
  1983. * Reduce accuracy until either term fits in a u64, then proceed with
  1984. * the other, so that finally we can do a u64/u64 division.
  1985. */
  1986. while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
  1987. REDUCE_FLS(nsec, frequency);
  1988. REDUCE_FLS(sec, count);
  1989. }
  1990. if (count_fls + sec_fls > 64) {
  1991. divisor = nsec * frequency;
  1992. while (count_fls + sec_fls > 64) {
  1993. REDUCE_FLS(count, sec);
  1994. divisor >>= 1;
  1995. }
  1996. dividend = count * sec;
  1997. } else {
  1998. dividend = count * sec;
  1999. while (nsec_fls + frequency_fls > 64) {
  2000. REDUCE_FLS(nsec, frequency);
  2001. dividend >>= 1;
  2002. }
  2003. divisor = nsec * frequency;
  2004. }
  2005. if (!divisor)
  2006. return dividend;
  2007. return div64_u64(dividend, divisor);
  2008. }
  2009. static DEFINE_PER_CPU(int, perf_throttled_count);
  2010. static DEFINE_PER_CPU(u64, perf_throttled_seq);
  2011. static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
  2012. {
  2013. struct hw_perf_event *hwc = &event->hw;
  2014. s64 period, sample_period;
  2015. s64 delta;
  2016. period = perf_calculate_period(event, nsec, count);
  2017. delta = (s64)(period - hwc->sample_period);
  2018. delta = (delta + 7) / 8; /* low pass filter */
  2019. sample_period = hwc->sample_period + delta;
  2020. if (!sample_period)
  2021. sample_period = 1;
  2022. hwc->sample_period = sample_period;
  2023. if (local64_read(&hwc->period_left) > 8*sample_period) {
  2024. if (disable)
  2025. event->pmu->stop(event, PERF_EF_UPDATE);
  2026. local64_set(&hwc->period_left, 0);
  2027. if (disable)
  2028. event->pmu->start(event, PERF_EF_RELOAD);
  2029. }
  2030. }
  2031. /*
  2032. * combine freq adjustment with unthrottling to avoid two passes over the
  2033. * events. At the same time, make sure, having freq events does not change
  2034. * the rate of unthrottling as that would introduce bias.
  2035. */
  2036. static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
  2037. int needs_unthr)
  2038. {
  2039. struct perf_event *event;
  2040. struct hw_perf_event *hwc;
  2041. u64 now, period = TICK_NSEC;
  2042. s64 delta;
  2043. /*
  2044. * only need to iterate over all events iff:
  2045. * - context have events in frequency mode (needs freq adjust)
  2046. * - there are events to unthrottle on this cpu
  2047. */
  2048. if (!(ctx->nr_freq || needs_unthr))
  2049. return;
  2050. raw_spin_lock(&ctx->lock);
  2051. perf_pmu_disable(ctx->pmu);
  2052. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2053. if (event->state != PERF_EVENT_STATE_ACTIVE)
  2054. continue;
  2055. if (!event_filter_match(event))
  2056. continue;
  2057. hwc = &event->hw;
  2058. if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
  2059. hwc->interrupts = 0;
  2060. perf_log_throttle(event, 1);
  2061. event->pmu->start(event, 0);
  2062. }
  2063. if (!event->attr.freq || !event->attr.sample_freq)
  2064. continue;
  2065. /*
  2066. * stop the event and update event->count
  2067. */
  2068. event->pmu->stop(event, PERF_EF_UPDATE);
  2069. now = local64_read(&event->count);
  2070. delta = now - hwc->freq_count_stamp;
  2071. hwc->freq_count_stamp = now;
  2072. /*
  2073. * restart the event
  2074. * reload only if value has changed
  2075. * we have stopped the event so tell that
  2076. * to perf_adjust_period() to avoid stopping it
  2077. * twice.
  2078. */
  2079. if (delta > 0)
  2080. perf_adjust_period(event, period, delta, false);
  2081. event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
  2082. }
  2083. perf_pmu_enable(ctx->pmu);
  2084. raw_spin_unlock(&ctx->lock);
  2085. }
  2086. /*
  2087. * Round-robin a context's events:
  2088. */
  2089. static void rotate_ctx(struct perf_event_context *ctx)
  2090. {
  2091. /*
  2092. * Rotate the first entry last of non-pinned groups. Rotation might be
  2093. * disabled by the inheritance code.
  2094. */
  2095. if (!ctx->rotate_disable)
  2096. list_rotate_left(&ctx->flexible_groups);
  2097. }
  2098. /*
  2099. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  2100. * because they're strictly cpu affine and rotate_start is called with IRQs
  2101. * disabled, while rotate_context is called from IRQ context.
  2102. */
  2103. static void perf_rotate_context(struct perf_cpu_context *cpuctx)
  2104. {
  2105. struct perf_event_context *ctx = NULL;
  2106. int rotate = 0, remove = 1;
  2107. if (cpuctx->ctx.nr_events) {
  2108. remove = 0;
  2109. if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
  2110. rotate = 1;
  2111. }
  2112. ctx = cpuctx->task_ctx;
  2113. if (ctx && ctx->nr_events) {
  2114. remove = 0;
  2115. if (ctx->nr_events != ctx->nr_active)
  2116. rotate = 1;
  2117. }
  2118. if (!rotate)
  2119. goto done;
  2120. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  2121. perf_pmu_disable(cpuctx->ctx.pmu);
  2122. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  2123. if (ctx)
  2124. ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
  2125. rotate_ctx(&cpuctx->ctx);
  2126. if (ctx)
  2127. rotate_ctx(ctx);
  2128. perf_event_sched_in(cpuctx, ctx, current);
  2129. perf_pmu_enable(cpuctx->ctx.pmu);
  2130. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  2131. done:
  2132. if (remove)
  2133. list_del_init(&cpuctx->rotation_list);
  2134. }
  2135. void perf_event_task_tick(void)
  2136. {
  2137. struct list_head *head = &__get_cpu_var(rotation_list);
  2138. struct perf_cpu_context *cpuctx, *tmp;
  2139. struct perf_event_context *ctx;
  2140. int throttled;
  2141. WARN_ON(!irqs_disabled());
  2142. __this_cpu_inc(perf_throttled_seq);
  2143. throttled = __this_cpu_xchg(perf_throttled_count, 0);
  2144. list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
  2145. ctx = &cpuctx->ctx;
  2146. perf_adjust_freq_unthr_context(ctx, throttled);
  2147. ctx = cpuctx->task_ctx;
  2148. if (ctx)
  2149. perf_adjust_freq_unthr_context(ctx, throttled);
  2150. if (cpuctx->jiffies_interval == 1 ||
  2151. !(jiffies % cpuctx->jiffies_interval))
  2152. perf_rotate_context(cpuctx);
  2153. }
  2154. }
  2155. static int event_enable_on_exec(struct perf_event *event,
  2156. struct perf_event_context *ctx)
  2157. {
  2158. if (!event->attr.enable_on_exec)
  2159. return 0;
  2160. event->attr.enable_on_exec = 0;
  2161. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  2162. return 0;
  2163. __perf_event_mark_enabled(event);
  2164. return 1;
  2165. }
  2166. /*
  2167. * Enable all of a task's events that have been marked enable-on-exec.
  2168. * This expects task == current.
  2169. */
  2170. static void perf_event_enable_on_exec(struct perf_event_context *ctx)
  2171. {
  2172. struct perf_event *event;
  2173. unsigned long flags;
  2174. int enabled = 0;
  2175. int ret;
  2176. local_irq_save(flags);
  2177. if (!ctx || !ctx->nr_events)
  2178. goto out;
  2179. /*
  2180. * We must ctxsw out cgroup events to avoid conflict
  2181. * when invoking perf_task_event_sched_in() later on
  2182. * in this function. Otherwise we end up trying to
  2183. * ctxswin cgroup events which are already scheduled
  2184. * in.
  2185. */
  2186. perf_cgroup_sched_out(current, NULL);
  2187. raw_spin_lock(&ctx->lock);
  2188. task_ctx_sched_out(ctx);
  2189. list_for_each_entry(event, &ctx->event_list, event_entry) {
  2190. ret = event_enable_on_exec(event, ctx);
  2191. if (ret)
  2192. enabled = 1;
  2193. }
  2194. /*
  2195. * Unclone this context if we enabled any event.
  2196. */
  2197. if (enabled)
  2198. unclone_ctx(ctx);
  2199. raw_spin_unlock(&ctx->lock);
  2200. /*
  2201. * Also calls ctxswin for cgroup events, if any:
  2202. */
  2203. perf_event_context_sched_in(ctx, ctx->task);
  2204. out:
  2205. local_irq_restore(flags);
  2206. }
  2207. /*
  2208. * Cross CPU call to read the hardware event
  2209. */
  2210. static void __perf_event_read(void *info)
  2211. {
  2212. struct perf_event *event = info;
  2213. struct perf_event_context *ctx = event->ctx;
  2214. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  2215. /*
  2216. * If this is a task context, we need to check whether it is
  2217. * the current task context of this cpu. If not it has been
  2218. * scheduled out before the smp call arrived. In that case
  2219. * event->count would have been updated to a recent sample
  2220. * when the event was scheduled out.
  2221. */
  2222. if (ctx->task && cpuctx->task_ctx != ctx)
  2223. return;
  2224. raw_spin_lock(&ctx->lock);
  2225. if (ctx->is_active) {
  2226. update_context_time(ctx);
  2227. update_cgrp_time_from_event(event);
  2228. }
  2229. update_event_times(event);
  2230. if (event->state == PERF_EVENT_STATE_ACTIVE)
  2231. event->pmu->read(event);
  2232. raw_spin_unlock(&ctx->lock);
  2233. }
  2234. static inline u64 perf_event_count(struct perf_event *event)
  2235. {
  2236. return local64_read(&event->count) + atomic64_read(&event->child_count);
  2237. }
  2238. static u64 perf_event_read(struct perf_event *event)
  2239. {
  2240. /*
  2241. * If event is enabled and currently active on a CPU, update the
  2242. * value in the event structure:
  2243. */
  2244. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  2245. smp_call_function_single(event->oncpu,
  2246. __perf_event_read, event, 1);
  2247. } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
  2248. struct perf_event_context *ctx = event->ctx;
  2249. unsigned long flags;
  2250. raw_spin_lock_irqsave(&ctx->lock, flags);
  2251. /*
  2252. * may read while context is not active
  2253. * (e.g., thread is blocked), in that case
  2254. * we cannot update context time
  2255. */
  2256. if (ctx->is_active) {
  2257. update_context_time(ctx);
  2258. update_cgrp_time_from_event(event);
  2259. }
  2260. update_event_times(event);
  2261. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2262. }
  2263. return perf_event_count(event);
  2264. }
  2265. /*
  2266. * Initialize the perf_event context in a task_struct:
  2267. */
  2268. static void __perf_event_init_context(struct perf_event_context *ctx)
  2269. {
  2270. raw_spin_lock_init(&ctx->lock);
  2271. mutex_init(&ctx->mutex);
  2272. INIT_LIST_HEAD(&ctx->pinned_groups);
  2273. INIT_LIST_HEAD(&ctx->flexible_groups);
  2274. INIT_LIST_HEAD(&ctx->event_list);
  2275. atomic_set(&ctx->refcount, 1);
  2276. }
  2277. static struct perf_event_context *
  2278. alloc_perf_context(struct pmu *pmu, struct task_struct *task)
  2279. {
  2280. struct perf_event_context *ctx;
  2281. ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  2282. if (!ctx)
  2283. return NULL;
  2284. __perf_event_init_context(ctx);
  2285. if (task) {
  2286. ctx->task = task;
  2287. get_task_struct(task);
  2288. }
  2289. ctx->pmu = pmu;
  2290. return ctx;
  2291. }
  2292. static struct task_struct *
  2293. find_lively_task_by_vpid(pid_t vpid)
  2294. {
  2295. struct task_struct *task;
  2296. int err;
  2297. rcu_read_lock();
  2298. if (!vpid)
  2299. task = current;
  2300. else
  2301. task = find_task_by_vpid(vpid);
  2302. if (task)
  2303. get_task_struct(task);
  2304. rcu_read_unlock();
  2305. if (!task)
  2306. return ERR_PTR(-ESRCH);
  2307. /* Reuse ptrace permission checks for now. */
  2308. err = -EACCES;
  2309. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  2310. goto errout;
  2311. return task;
  2312. errout:
  2313. put_task_struct(task);
  2314. return ERR_PTR(err);
  2315. }
  2316. /*
  2317. * Returns a matching context with refcount and pincount.
  2318. */
  2319. static struct perf_event_context *
  2320. find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
  2321. {
  2322. struct perf_event_context *ctx;
  2323. struct perf_cpu_context *cpuctx;
  2324. unsigned long flags;
  2325. int ctxn, err;
  2326. if (!task) {
  2327. /* Must be root to operate on a CPU event: */
  2328. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  2329. return ERR_PTR(-EACCES);
  2330. /*
  2331. * We could be clever and allow to attach a event to an
  2332. * offline CPU and activate it when the CPU comes up, but
  2333. * that's for later.
  2334. */
  2335. if (!cpu_online(cpu))
  2336. return ERR_PTR(-ENODEV);
  2337. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  2338. ctx = &cpuctx->ctx;
  2339. get_ctx(ctx);
  2340. ++ctx->pin_count;
  2341. return ctx;
  2342. }
  2343. err = -EINVAL;
  2344. ctxn = pmu->task_ctx_nr;
  2345. if (ctxn < 0)
  2346. goto errout;
  2347. retry:
  2348. ctx = perf_lock_task_context(task, ctxn, &flags);
  2349. if (ctx) {
  2350. unclone_ctx(ctx);
  2351. ++ctx->pin_count;
  2352. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2353. } else {
  2354. ctx = alloc_perf_context(pmu, task);
  2355. err = -ENOMEM;
  2356. if (!ctx)
  2357. goto errout;
  2358. err = 0;
  2359. mutex_lock(&task->perf_event_mutex);
  2360. /*
  2361. * If it has already passed perf_event_exit_task().
  2362. * we must see PF_EXITING, it takes this mutex too.
  2363. */
  2364. if (task->flags & PF_EXITING)
  2365. err = -ESRCH;
  2366. else if (task->perf_event_ctxp[ctxn])
  2367. err = -EAGAIN;
  2368. else {
  2369. get_ctx(ctx);
  2370. ++ctx->pin_count;
  2371. rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
  2372. }
  2373. mutex_unlock(&task->perf_event_mutex);
  2374. if (unlikely(err)) {
  2375. put_ctx(ctx);
  2376. if (err == -EAGAIN)
  2377. goto retry;
  2378. goto errout;
  2379. }
  2380. }
  2381. return ctx;
  2382. errout:
  2383. return ERR_PTR(err);
  2384. }
  2385. static void perf_event_free_filter(struct perf_event *event);
  2386. static void free_event_rcu(struct rcu_head *head)
  2387. {
  2388. struct perf_event *event;
  2389. event = container_of(head, struct perf_event, rcu_head);
  2390. if (event->ns)
  2391. put_pid_ns(event->ns);
  2392. perf_event_free_filter(event);
  2393. kfree(event);
  2394. }
  2395. static void ring_buffer_put(struct ring_buffer *rb);
  2396. static void free_event(struct perf_event *event)
  2397. {
  2398. irq_work_sync(&event->pending);
  2399. if (!event->parent) {
  2400. if (event->attach_state & PERF_ATTACH_TASK)
  2401. static_key_slow_dec_deferred(&perf_sched_events);
  2402. if (event->attr.mmap || event->attr.mmap_data)
  2403. atomic_dec(&nr_mmap_events);
  2404. if (event->attr.comm)
  2405. atomic_dec(&nr_comm_events);
  2406. if (event->attr.task)
  2407. atomic_dec(&nr_task_events);
  2408. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
  2409. put_callchain_buffers();
  2410. if (is_cgroup_event(event)) {
  2411. atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
  2412. static_key_slow_dec_deferred(&perf_sched_events);
  2413. }
  2414. if (has_branch_stack(event)) {
  2415. static_key_slow_dec_deferred(&perf_sched_events);
  2416. /* is system-wide event */
  2417. if (!(event->attach_state & PERF_ATTACH_TASK))
  2418. atomic_dec(&per_cpu(perf_branch_stack_events,
  2419. event->cpu));
  2420. }
  2421. }
  2422. if (event->rb) {
  2423. ring_buffer_put(event->rb);
  2424. event->rb = NULL;
  2425. }
  2426. if (is_cgroup_event(event))
  2427. perf_detach_cgroup(event);
  2428. if (event->destroy)
  2429. event->destroy(event);
  2430. if (event->ctx)
  2431. put_ctx(event->ctx);
  2432. call_rcu(&event->rcu_head, free_event_rcu);
  2433. }
  2434. int perf_event_release_kernel(struct perf_event *event)
  2435. {
  2436. struct perf_event_context *ctx = event->ctx;
  2437. WARN_ON_ONCE(ctx->parent_ctx);
  2438. /*
  2439. * There are two ways this annotation is useful:
  2440. *
  2441. * 1) there is a lock recursion from perf_event_exit_task
  2442. * see the comment there.
  2443. *
  2444. * 2) there is a lock-inversion with mmap_sem through
  2445. * perf_event_read_group(), which takes faults while
  2446. * holding ctx->mutex, however this is called after
  2447. * the last filedesc died, so there is no possibility
  2448. * to trigger the AB-BA case.
  2449. */
  2450. mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
  2451. raw_spin_lock_irq(&ctx->lock);
  2452. perf_group_detach(event);
  2453. raw_spin_unlock_irq(&ctx->lock);
  2454. perf_remove_from_context(event);
  2455. mutex_unlock(&ctx->mutex);
  2456. free_event(event);
  2457. return 0;
  2458. }
  2459. EXPORT_SYMBOL_GPL(perf_event_release_kernel);
  2460. /*
  2461. * Called when the last reference to the file is gone.
  2462. */
  2463. static void put_event(struct perf_event *event)
  2464. {
  2465. struct task_struct *owner;
  2466. if (!atomic_long_dec_and_test(&event->refcount))
  2467. return;
  2468. rcu_read_lock();
  2469. owner = ACCESS_ONCE(event->owner);
  2470. /*
  2471. * Matches the smp_wmb() in perf_event_exit_task(). If we observe
  2472. * !owner it means the list deletion is complete and we can indeed
  2473. * free this event, otherwise we need to serialize on
  2474. * owner->perf_event_mutex.
  2475. */
  2476. smp_read_barrier_depends();
  2477. if (owner) {
  2478. /*
  2479. * Since delayed_put_task_struct() also drops the last
  2480. * task reference we can safely take a new reference
  2481. * while holding the rcu_read_lock().
  2482. */
  2483. get_task_struct(owner);
  2484. }
  2485. rcu_read_unlock();
  2486. if (owner) {
  2487. mutex_lock(&owner->perf_event_mutex);
  2488. /*
  2489. * We have to re-check the event->owner field, if it is cleared
  2490. * we raced with perf_event_exit_task(), acquiring the mutex
  2491. * ensured they're done, and we can proceed with freeing the
  2492. * event.
  2493. */
  2494. if (event->owner)
  2495. list_del_init(&event->owner_entry);
  2496. mutex_unlock(&owner->perf_event_mutex);
  2497. put_task_struct(owner);
  2498. }
  2499. perf_event_release_kernel(event);
  2500. }
  2501. static int perf_release(struct inode *inode, struct file *file)
  2502. {
  2503. put_event(file->private_data);
  2504. return 0;
  2505. }
  2506. u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
  2507. {
  2508. struct perf_event *child;
  2509. u64 total = 0;
  2510. *enabled = 0;
  2511. *running = 0;
  2512. mutex_lock(&event->child_mutex);
  2513. total += perf_event_read(event);
  2514. *enabled += event->total_time_enabled +
  2515. atomic64_read(&event->child_total_time_enabled);
  2516. *running += event->total_time_running +
  2517. atomic64_read(&event->child_total_time_running);
  2518. list_for_each_entry(child, &event->child_list, child_list) {
  2519. total += perf_event_read(child);
  2520. *enabled += child->total_time_enabled;
  2521. *running += child->total_time_running;
  2522. }
  2523. mutex_unlock(&event->child_mutex);
  2524. return total;
  2525. }
  2526. EXPORT_SYMBOL_GPL(perf_event_read_value);
  2527. static int perf_event_read_group(struct perf_event *event,
  2528. u64 read_format, char __user *buf)
  2529. {
  2530. struct perf_event *leader = event->group_leader, *sub;
  2531. int n = 0, size = 0, ret = -EFAULT;
  2532. struct perf_event_context *ctx = leader->ctx;
  2533. u64 values[5];
  2534. u64 count, enabled, running;
  2535. mutex_lock(&ctx->mutex);
  2536. count = perf_event_read_value(leader, &enabled, &running);
  2537. values[n++] = 1 + leader->nr_siblings;
  2538. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2539. values[n++] = enabled;
  2540. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2541. values[n++] = running;
  2542. values[n++] = count;
  2543. if (read_format & PERF_FORMAT_ID)
  2544. values[n++] = primary_event_id(leader);
  2545. size = n * sizeof(u64);
  2546. if (copy_to_user(buf, values, size))
  2547. goto unlock;
  2548. ret = size;
  2549. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  2550. n = 0;
  2551. values[n++] = perf_event_read_value(sub, &enabled, &running);
  2552. if (read_format & PERF_FORMAT_ID)
  2553. values[n++] = primary_event_id(sub);
  2554. size = n * sizeof(u64);
  2555. if (copy_to_user(buf + ret, values, size)) {
  2556. ret = -EFAULT;
  2557. goto unlock;
  2558. }
  2559. ret += size;
  2560. }
  2561. unlock:
  2562. mutex_unlock(&ctx->mutex);
  2563. return ret;
  2564. }
  2565. static int perf_event_read_one(struct perf_event *event,
  2566. u64 read_format, char __user *buf)
  2567. {
  2568. u64 enabled, running;
  2569. u64 values[4];
  2570. int n = 0;
  2571. values[n++] = perf_event_read_value(event, &enabled, &running);
  2572. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2573. values[n++] = enabled;
  2574. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2575. values[n++] = running;
  2576. if (read_format & PERF_FORMAT_ID)
  2577. values[n++] = primary_event_id(event);
  2578. if (copy_to_user(buf, values, n * sizeof(u64)))
  2579. return -EFAULT;
  2580. return n * sizeof(u64);
  2581. }
  2582. /*
  2583. * Read the performance event - simple non blocking version for now
  2584. */
  2585. static ssize_t
  2586. perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
  2587. {
  2588. u64 read_format = event->attr.read_format;
  2589. int ret;
  2590. /*
  2591. * Return end-of-file for a read on a event that is in
  2592. * error state (i.e. because it was pinned but it couldn't be
  2593. * scheduled on to the CPU at some point).
  2594. */
  2595. if (event->state == PERF_EVENT_STATE_ERROR)
  2596. return 0;
  2597. if (count < event->read_size)
  2598. return -ENOSPC;
  2599. WARN_ON_ONCE(event->ctx->parent_ctx);
  2600. if (read_format & PERF_FORMAT_GROUP)
  2601. ret = perf_event_read_group(event, read_format, buf);
  2602. else
  2603. ret = perf_event_read_one(event, read_format, buf);
  2604. return ret;
  2605. }
  2606. static ssize_t
  2607. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  2608. {
  2609. struct perf_event *event = file->private_data;
  2610. return perf_read_hw(event, buf, count);
  2611. }
  2612. static unsigned int perf_poll(struct file *file, poll_table *wait)
  2613. {
  2614. struct perf_event *event = file->private_data;
  2615. struct ring_buffer *rb;
  2616. unsigned int events = POLL_HUP;
  2617. /*
  2618. * Race between perf_event_set_output() and perf_poll(): perf_poll()
  2619. * grabs the rb reference but perf_event_set_output() overrides it.
  2620. * Here is the timeline for two threads T1, T2:
  2621. * t0: T1, rb = rcu_dereference(event->rb)
  2622. * t1: T2, old_rb = event->rb
  2623. * t2: T2, event->rb = new rb
  2624. * t3: T2, ring_buffer_detach(old_rb)
  2625. * t4: T1, ring_buffer_attach(rb1)
  2626. * t5: T1, poll_wait(event->waitq)
  2627. *
  2628. * To avoid this problem, we grab mmap_mutex in perf_poll()
  2629. * thereby ensuring that the assignment of the new ring buffer
  2630. * and the detachment of the old buffer appear atomic to perf_poll()
  2631. */
  2632. mutex_lock(&event->mmap_mutex);
  2633. rcu_read_lock();
  2634. rb = rcu_dereference(event->rb);
  2635. if (rb) {
  2636. ring_buffer_attach(event, rb);
  2637. events = atomic_xchg(&rb->poll, 0);
  2638. }
  2639. rcu_read_unlock();
  2640. mutex_unlock(&event->mmap_mutex);
  2641. poll_wait(file, &event->waitq, wait);
  2642. return events;
  2643. }
  2644. static void perf_event_reset(struct perf_event *event)
  2645. {
  2646. (void)perf_event_read(event);
  2647. local64_set(&event->count, 0);
  2648. perf_event_update_userpage(event);
  2649. }
  2650. /*
  2651. * Holding the top-level event's child_mutex means that any
  2652. * descendant process that has inherited this event will block
  2653. * in sync_child_event if it goes to exit, thus satisfying the
  2654. * task existence requirements of perf_event_enable/disable.
  2655. */
  2656. static void perf_event_for_each_child(struct perf_event *event,
  2657. void (*func)(struct perf_event *))
  2658. {
  2659. struct perf_event *child;
  2660. WARN_ON_ONCE(event->ctx->parent_ctx);
  2661. mutex_lock(&event->child_mutex);
  2662. func(event);
  2663. list_for_each_entry(child, &event->child_list, child_list)
  2664. func(child);
  2665. mutex_unlock(&event->child_mutex);
  2666. }
  2667. static void perf_event_for_each(struct perf_event *event,
  2668. void (*func)(struct perf_event *))
  2669. {
  2670. struct perf_event_context *ctx = event->ctx;
  2671. struct perf_event *sibling;
  2672. WARN_ON_ONCE(ctx->parent_ctx);
  2673. mutex_lock(&ctx->mutex);
  2674. event = event->group_leader;
  2675. perf_event_for_each_child(event, func);
  2676. list_for_each_entry(sibling, &event->sibling_list, group_entry)
  2677. perf_event_for_each_child(sibling, func);
  2678. mutex_unlock(&ctx->mutex);
  2679. }
  2680. static int perf_event_period(struct perf_event *event, u64 __user *arg)
  2681. {
  2682. struct perf_event_context *ctx = event->ctx;
  2683. int ret = 0;
  2684. u64 value;
  2685. if (!is_sampling_event(event))
  2686. return -EINVAL;
  2687. if (copy_from_user(&value, arg, sizeof(value)))
  2688. return -EFAULT;
  2689. if (!value)
  2690. return -EINVAL;
  2691. raw_spin_lock_irq(&ctx->lock);
  2692. if (event->attr.freq) {
  2693. if (value > sysctl_perf_event_sample_rate) {
  2694. ret = -EINVAL;
  2695. goto unlock;
  2696. }
  2697. event->attr.sample_freq = value;
  2698. } else {
  2699. event->attr.sample_period = value;
  2700. event->hw.sample_period = value;
  2701. }
  2702. unlock:
  2703. raw_spin_unlock_irq(&ctx->lock);
  2704. return ret;
  2705. }
  2706. static const struct file_operations perf_fops;
  2707. static inline int perf_fget_light(int fd, struct fd *p)
  2708. {
  2709. struct fd f = fdget(fd);
  2710. if (!f.file)
  2711. return -EBADF;
  2712. if (f.file->f_op != &perf_fops) {
  2713. fdput(f);
  2714. return -EBADF;
  2715. }
  2716. *p = f;
  2717. return 0;
  2718. }
  2719. static int perf_event_set_output(struct perf_event *event,
  2720. struct perf_event *output_event);
  2721. static int perf_event_set_filter(struct perf_event *event, void __user *arg);
  2722. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  2723. {
  2724. struct perf_event *event = file->private_data;
  2725. void (*func)(struct perf_event *);
  2726. u32 flags = arg;
  2727. switch (cmd) {
  2728. case PERF_EVENT_IOC_ENABLE:
  2729. func = perf_event_enable;
  2730. break;
  2731. case PERF_EVENT_IOC_DISABLE:
  2732. func = perf_event_disable;
  2733. break;
  2734. case PERF_EVENT_IOC_RESET:
  2735. func = perf_event_reset;
  2736. break;
  2737. case PERF_EVENT_IOC_REFRESH:
  2738. return perf_event_refresh(event, arg);
  2739. case PERF_EVENT_IOC_PERIOD:
  2740. return perf_event_period(event, (u64 __user *)arg);
  2741. case PERF_EVENT_IOC_SET_OUTPUT:
  2742. {
  2743. int ret;
  2744. if (arg != -1) {
  2745. struct perf_event *output_event;
  2746. struct fd output;
  2747. ret = perf_fget_light(arg, &output);
  2748. if (ret)
  2749. return ret;
  2750. output_event = output.file->private_data;
  2751. ret = perf_event_set_output(event, output_event);
  2752. fdput(output);
  2753. } else {
  2754. ret = perf_event_set_output(event, NULL);
  2755. }
  2756. return ret;
  2757. }
  2758. case PERF_EVENT_IOC_SET_FILTER:
  2759. return perf_event_set_filter(event, (void __user *)arg);
  2760. default:
  2761. return -ENOTTY;
  2762. }
  2763. if (flags & PERF_IOC_FLAG_GROUP)
  2764. perf_event_for_each(event, func);
  2765. else
  2766. perf_event_for_each_child(event, func);
  2767. return 0;
  2768. }
  2769. int perf_event_task_enable(void)
  2770. {
  2771. struct perf_event *event;
  2772. mutex_lock(&current->perf_event_mutex);
  2773. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2774. perf_event_for_each_child(event, perf_event_enable);
  2775. mutex_unlock(&current->perf_event_mutex);
  2776. return 0;
  2777. }
  2778. int perf_event_task_disable(void)
  2779. {
  2780. struct perf_event *event;
  2781. mutex_lock(&current->perf_event_mutex);
  2782. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2783. perf_event_for_each_child(event, perf_event_disable);
  2784. mutex_unlock(&current->perf_event_mutex);
  2785. return 0;
  2786. }
  2787. static int perf_event_index(struct perf_event *event)
  2788. {
  2789. if (event->hw.state & PERF_HES_STOPPED)
  2790. return 0;
  2791. if (event->state != PERF_EVENT_STATE_ACTIVE)
  2792. return 0;
  2793. return event->pmu->event_idx(event);
  2794. }
  2795. static void calc_timer_values(struct perf_event *event,
  2796. u64 *now,
  2797. u64 *enabled,
  2798. u64 *running)
  2799. {
  2800. u64 ctx_time;
  2801. *now = perf_clock();
  2802. ctx_time = event->shadow_ctx_time + *now;
  2803. *enabled = ctx_time - event->tstamp_enabled;
  2804. *running = ctx_time - event->tstamp_running;
  2805. }
  2806. void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
  2807. {
  2808. }
  2809. /*
  2810. * Callers need to ensure there can be no nesting of this function, otherwise
  2811. * the seqlock logic goes bad. We can not serialize this because the arch
  2812. * code calls this from NMI context.
  2813. */
  2814. void perf_event_update_userpage(struct perf_event *event)
  2815. {
  2816. struct perf_event_mmap_page *userpg;
  2817. struct ring_buffer *rb;
  2818. u64 enabled, running, now;
  2819. rcu_read_lock();
  2820. /*
  2821. * compute total_time_enabled, total_time_running
  2822. * based on snapshot values taken when the event
  2823. * was last scheduled in.
  2824. *
  2825. * we cannot simply called update_context_time()
  2826. * because of locking issue as we can be called in
  2827. * NMI context
  2828. */
  2829. calc_timer_values(event, &now, &enabled, &running);
  2830. rb = rcu_dereference(event->rb);
  2831. if (!rb)
  2832. goto unlock;
  2833. userpg = rb->user_page;
  2834. /*
  2835. * Disable preemption so as to not let the corresponding user-space
  2836. * spin too long if we get preempted.
  2837. */
  2838. preempt_disable();
  2839. ++userpg->lock;
  2840. barrier();
  2841. userpg->index = perf_event_index(event);
  2842. userpg->offset = perf_event_count(event);
  2843. if (userpg->index)
  2844. userpg->offset -= local64_read(&event->hw.prev_count);
  2845. userpg->time_enabled = enabled +
  2846. atomic64_read(&event->child_total_time_enabled);
  2847. userpg->time_running = running +
  2848. atomic64_read(&event->child_total_time_running);
  2849. arch_perf_update_userpage(userpg, now);
  2850. barrier();
  2851. ++userpg->lock;
  2852. preempt_enable();
  2853. unlock:
  2854. rcu_read_unlock();
  2855. }
  2856. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  2857. {
  2858. struct perf_event *event = vma->vm_file->private_data;
  2859. struct ring_buffer *rb;
  2860. int ret = VM_FAULT_SIGBUS;
  2861. if (vmf->flags & FAULT_FLAG_MKWRITE) {
  2862. if (vmf->pgoff == 0)
  2863. ret = 0;
  2864. return ret;
  2865. }
  2866. rcu_read_lock();
  2867. rb = rcu_dereference(event->rb);
  2868. if (!rb)
  2869. goto unlock;
  2870. if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
  2871. goto unlock;
  2872. vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
  2873. if (!vmf->page)
  2874. goto unlock;
  2875. get_page(vmf->page);
  2876. vmf->page->mapping = vma->vm_file->f_mapping;
  2877. vmf->page->index = vmf->pgoff;
  2878. ret = 0;
  2879. unlock:
  2880. rcu_read_unlock();
  2881. return ret;
  2882. }
  2883. static void ring_buffer_attach(struct perf_event *event,
  2884. struct ring_buffer *rb)
  2885. {
  2886. unsigned long flags;
  2887. if (!list_empty(&event->rb_entry))
  2888. return;
  2889. spin_lock_irqsave(&rb->event_lock, flags);
  2890. if (!list_empty(&event->rb_entry))
  2891. goto unlock;
  2892. list_add(&event->rb_entry, &rb->event_list);
  2893. unlock:
  2894. spin_unlock_irqrestore(&rb->event_lock, flags);
  2895. }
  2896. static void ring_buffer_detach(struct perf_event *event,
  2897. struct ring_buffer *rb)
  2898. {
  2899. unsigned long flags;
  2900. if (list_empty(&event->rb_entry))
  2901. return;
  2902. spin_lock_irqsave(&rb->event_lock, flags);
  2903. list_del_init(&event->rb_entry);
  2904. wake_up_all(&event->waitq);
  2905. spin_unlock_irqrestore(&rb->event_lock, flags);
  2906. }
  2907. static void ring_buffer_wakeup(struct perf_event *event)
  2908. {
  2909. struct ring_buffer *rb;
  2910. rcu_read_lock();
  2911. rb = rcu_dereference(event->rb);
  2912. if (!rb)
  2913. goto unlock;
  2914. list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
  2915. wake_up_all(&event->waitq);
  2916. unlock:
  2917. rcu_read_unlock();
  2918. }
  2919. static void rb_free_rcu(struct rcu_head *rcu_head)
  2920. {
  2921. struct ring_buffer *rb;
  2922. rb = container_of(rcu_head, struct ring_buffer, rcu_head);
  2923. rb_free(rb);
  2924. }
  2925. static struct ring_buffer *ring_buffer_get(struct perf_event *event)
  2926. {
  2927. struct ring_buffer *rb;
  2928. rcu_read_lock();
  2929. rb = rcu_dereference(event->rb);
  2930. if (rb) {
  2931. if (!atomic_inc_not_zero(&rb->refcount))
  2932. rb = NULL;
  2933. }
  2934. rcu_read_unlock();
  2935. return rb;
  2936. }
  2937. static void ring_buffer_put(struct ring_buffer *rb)
  2938. {
  2939. struct perf_event *event, *n;
  2940. unsigned long flags;
  2941. if (!atomic_dec_and_test(&rb->refcount))
  2942. return;
  2943. spin_lock_irqsave(&rb->event_lock, flags);
  2944. list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
  2945. list_del_init(&event->rb_entry);
  2946. wake_up_all(&event->waitq);
  2947. }
  2948. spin_unlock_irqrestore(&rb->event_lock, flags);
  2949. call_rcu(&rb->rcu_head, rb_free_rcu);
  2950. }
  2951. static void perf_mmap_open(struct vm_area_struct *vma)
  2952. {
  2953. struct perf_event *event = vma->vm_file->private_data;
  2954. atomic_inc(&event->mmap_count);
  2955. }
  2956. static void perf_mmap_close(struct vm_area_struct *vma)
  2957. {
  2958. struct perf_event *event = vma->vm_file->private_data;
  2959. if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
  2960. unsigned long size = perf_data_size(event->rb);
  2961. struct user_struct *user = event->mmap_user;
  2962. struct ring_buffer *rb = event->rb;
  2963. atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
  2964. vma->vm_mm->pinned_vm -= event->mmap_locked;
  2965. rcu_assign_pointer(event->rb, NULL);
  2966. ring_buffer_detach(event, rb);
  2967. mutex_unlock(&event->mmap_mutex);
  2968. ring_buffer_put(rb);
  2969. free_uid(user);
  2970. }
  2971. }
  2972. static const struct vm_operations_struct perf_mmap_vmops = {
  2973. .open = perf_mmap_open,
  2974. .close = perf_mmap_close,
  2975. .fault = perf_mmap_fault,
  2976. .page_mkwrite = perf_mmap_fault,
  2977. };
  2978. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  2979. {
  2980. struct perf_event *event = file->private_data;
  2981. unsigned long user_locked, user_lock_limit;
  2982. struct user_struct *user = current_user();
  2983. unsigned long locked, lock_limit;
  2984. struct ring_buffer *rb;
  2985. unsigned long vma_size;
  2986. unsigned long nr_pages;
  2987. long user_extra, extra;
  2988. int ret = 0, flags = 0;
  2989. /*
  2990. * Don't allow mmap() of inherited per-task counters. This would
  2991. * create a performance issue due to all children writing to the
  2992. * same rb.
  2993. */
  2994. if (event->cpu == -1 && event->attr.inherit)
  2995. return -EINVAL;
  2996. if (!(vma->vm_flags & VM_SHARED))
  2997. return -EINVAL;
  2998. vma_size = vma->vm_end - vma->vm_start;
  2999. nr_pages = (vma_size / PAGE_SIZE) - 1;
  3000. /*
  3001. * If we have rb pages ensure they're a power-of-two number, so we
  3002. * can do bitmasks instead of modulo.
  3003. */
  3004. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  3005. return -EINVAL;
  3006. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  3007. return -EINVAL;
  3008. if (vma->vm_pgoff != 0)
  3009. return -EINVAL;
  3010. WARN_ON_ONCE(event->ctx->parent_ctx);
  3011. mutex_lock(&event->mmap_mutex);
  3012. if (event->rb) {
  3013. if (event->rb->nr_pages == nr_pages)
  3014. atomic_inc(&event->rb->refcount);
  3015. else
  3016. ret = -EINVAL;
  3017. goto unlock;
  3018. }
  3019. user_extra = nr_pages + 1;
  3020. user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
  3021. /*
  3022. * Increase the limit linearly with more CPUs:
  3023. */
  3024. user_lock_limit *= num_online_cpus();
  3025. user_locked = atomic_long_read(&user->locked_vm) + user_extra;
  3026. extra = 0;
  3027. if (user_locked > user_lock_limit)
  3028. extra = user_locked - user_lock_limit;
  3029. lock_limit = rlimit(RLIMIT_MEMLOCK);
  3030. lock_limit >>= PAGE_SHIFT;
  3031. locked = vma->vm_mm->pinned_vm + extra;
  3032. if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
  3033. !capable(CAP_IPC_LOCK)) {
  3034. ret = -EPERM;
  3035. goto unlock;
  3036. }
  3037. WARN_ON(event->rb);
  3038. if (vma->vm_flags & VM_WRITE)
  3039. flags |= RING_BUFFER_WRITABLE;
  3040. rb = rb_alloc(nr_pages,
  3041. event->attr.watermark ? event->attr.wakeup_watermark : 0,
  3042. event->cpu, flags);
  3043. if (!rb) {
  3044. ret = -ENOMEM;
  3045. goto unlock;
  3046. }
  3047. rcu_assign_pointer(event->rb, rb);
  3048. atomic_long_add(user_extra, &user->locked_vm);
  3049. event->mmap_locked = extra;
  3050. event->mmap_user = get_current_user();
  3051. vma->vm_mm->pinned_vm += event->mmap_locked;
  3052. perf_event_update_userpage(event);
  3053. unlock:
  3054. if (!ret)
  3055. atomic_inc(&event->mmap_count);
  3056. mutex_unlock(&event->mmap_mutex);
  3057. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  3058. vma->vm_ops = &perf_mmap_vmops;
  3059. return ret;
  3060. }
  3061. static int perf_fasync(int fd, struct file *filp, int on)
  3062. {
  3063. struct inode *inode = filp->f_path.dentry->d_inode;
  3064. struct perf_event *event = filp->private_data;
  3065. int retval;
  3066. mutex_lock(&inode->i_mutex);
  3067. retval = fasync_helper(fd, filp, on, &event->fasync);
  3068. mutex_unlock(&inode->i_mutex);
  3069. if (retval < 0)
  3070. return retval;
  3071. return 0;
  3072. }
  3073. static const struct file_operations perf_fops = {
  3074. .llseek = no_llseek,
  3075. .release = perf_release,
  3076. .read = perf_read,
  3077. .poll = perf_poll,
  3078. .unlocked_ioctl = perf_ioctl,
  3079. .compat_ioctl = perf_ioctl,
  3080. .mmap = perf_mmap,
  3081. .fasync = perf_fasync,
  3082. };
  3083. /*
  3084. * Perf event wakeup
  3085. *
  3086. * If there's data, ensure we set the poll() state and publish everything
  3087. * to user-space before waking everybody up.
  3088. */
  3089. void perf_event_wakeup(struct perf_event *event)
  3090. {
  3091. ring_buffer_wakeup(event);
  3092. if (event->pending_kill) {
  3093. kill_fasync(&event->fasync, SIGIO, event->pending_kill);
  3094. event->pending_kill = 0;
  3095. }
  3096. }
  3097. static void perf_pending_event(struct irq_work *entry)
  3098. {
  3099. struct perf_event *event = container_of(entry,
  3100. struct perf_event, pending);
  3101. if (event->pending_disable) {
  3102. event->pending_disable = 0;
  3103. __perf_event_disable(event);
  3104. }
  3105. if (event->pending_wakeup) {
  3106. event->pending_wakeup = 0;
  3107. perf_event_wakeup(event);
  3108. }
  3109. }
  3110. /*
  3111. * We assume there is only KVM supporting the callbacks.
  3112. * Later on, we might change it to a list if there is
  3113. * another virtualization implementation supporting the callbacks.
  3114. */
  3115. struct perf_guest_info_callbacks *perf_guest_cbs;
  3116. int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3117. {
  3118. perf_guest_cbs = cbs;
  3119. return 0;
  3120. }
  3121. EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
  3122. int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3123. {
  3124. perf_guest_cbs = NULL;
  3125. return 0;
  3126. }
  3127. EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
  3128. static void
  3129. perf_output_sample_regs(struct perf_output_handle *handle,
  3130. struct pt_regs *regs, u64 mask)
  3131. {
  3132. int bit;
  3133. for_each_set_bit(bit, (const unsigned long *) &mask,
  3134. sizeof(mask) * BITS_PER_BYTE) {
  3135. u64 val;
  3136. val = perf_reg_value(regs, bit);
  3137. perf_output_put(handle, val);
  3138. }
  3139. }
  3140. static void perf_sample_regs_user(struct perf_regs_user *regs_user,
  3141. struct pt_regs *regs)
  3142. {
  3143. if (!user_mode(regs)) {
  3144. if (current->mm)
  3145. regs = task_pt_regs(current);
  3146. else
  3147. regs = NULL;
  3148. }
  3149. if (regs) {
  3150. regs_user->regs = regs;
  3151. regs_user->abi = perf_reg_abi(current);
  3152. }
  3153. }
  3154. /*
  3155. * Get remaining task size from user stack pointer.
  3156. *
  3157. * It'd be better to take stack vma map and limit this more
  3158. * precisly, but there's no way to get it safely under interrupt,
  3159. * so using TASK_SIZE as limit.
  3160. */
  3161. static u64 perf_ustack_task_size(struct pt_regs *regs)
  3162. {
  3163. unsigned long addr = perf_user_stack_pointer(regs);
  3164. if (!addr || addr >= TASK_SIZE)
  3165. return 0;
  3166. return TASK_SIZE - addr;
  3167. }
  3168. static u16
  3169. perf_sample_ustack_size(u16 stack_size, u16 header_size,
  3170. struct pt_regs *regs)
  3171. {
  3172. u64 task_size;
  3173. /* No regs, no stack pointer, no dump. */
  3174. if (!regs)
  3175. return 0;
  3176. /*
  3177. * Check if we fit in with the requested stack size into the:
  3178. * - TASK_SIZE
  3179. * If we don't, we limit the size to the TASK_SIZE.
  3180. *
  3181. * - remaining sample size
  3182. * If we don't, we customize the stack size to
  3183. * fit in to the remaining sample size.
  3184. */
  3185. task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
  3186. stack_size = min(stack_size, (u16) task_size);
  3187. /* Current header size plus static size and dynamic size. */
  3188. header_size += 2 * sizeof(u64);
  3189. /* Do we fit in with the current stack dump size? */
  3190. if ((u16) (header_size + stack_size) < header_size) {
  3191. /*
  3192. * If we overflow the maximum size for the sample,
  3193. * we customize the stack dump size to fit in.
  3194. */
  3195. stack_size = USHRT_MAX - header_size - sizeof(u64);
  3196. stack_size = round_up(stack_size, sizeof(u64));
  3197. }
  3198. return stack_size;
  3199. }
  3200. static void
  3201. perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
  3202. struct pt_regs *regs)
  3203. {
  3204. /* Case of a kernel thread, nothing to dump */
  3205. if (!regs) {
  3206. u64 size = 0;
  3207. perf_output_put(handle, size);
  3208. } else {
  3209. unsigned long sp;
  3210. unsigned int rem;
  3211. u64 dyn_size;
  3212. /*
  3213. * We dump:
  3214. * static size
  3215. * - the size requested by user or the best one we can fit
  3216. * in to the sample max size
  3217. * data
  3218. * - user stack dump data
  3219. * dynamic size
  3220. * - the actual dumped size
  3221. */
  3222. /* Static size. */
  3223. perf_output_put(handle, dump_size);
  3224. /* Data. */
  3225. sp = perf_user_stack_pointer(regs);
  3226. rem = __output_copy_user(handle, (void *) sp, dump_size);
  3227. dyn_size = dump_size - rem;
  3228. perf_output_skip(handle, rem);
  3229. /* Dynamic size. */
  3230. perf_output_put(handle, dyn_size);
  3231. }
  3232. }
  3233. static void __perf_event_header__init_id(struct perf_event_header *header,
  3234. struct perf_sample_data *data,
  3235. struct perf_event *event)
  3236. {
  3237. u64 sample_type = event->attr.sample_type;
  3238. data->type = sample_type;
  3239. header->size += event->id_header_size;
  3240. if (sample_type & PERF_SAMPLE_TID) {
  3241. /* namespace issues */
  3242. data->tid_entry.pid = perf_event_pid(event, current);
  3243. data->tid_entry.tid = perf_event_tid(event, current);
  3244. }
  3245. if (sample_type & PERF_SAMPLE_TIME)
  3246. data->time = perf_clock();
  3247. if (sample_type & PERF_SAMPLE_ID)
  3248. data->id = primary_event_id(event);
  3249. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3250. data->stream_id = event->id;
  3251. if (sample_type & PERF_SAMPLE_CPU) {
  3252. data->cpu_entry.cpu = raw_smp_processor_id();
  3253. data->cpu_entry.reserved = 0;
  3254. }
  3255. }
  3256. void perf_event_header__init_id(struct perf_event_header *header,
  3257. struct perf_sample_data *data,
  3258. struct perf_event *event)
  3259. {
  3260. if (event->attr.sample_id_all)
  3261. __perf_event_header__init_id(header, data, event);
  3262. }
  3263. static void __perf_event__output_id_sample(struct perf_output_handle *handle,
  3264. struct perf_sample_data *data)
  3265. {
  3266. u64 sample_type = data->type;
  3267. if (sample_type & PERF_SAMPLE_TID)
  3268. perf_output_put(handle, data->tid_entry);
  3269. if (sample_type & PERF_SAMPLE_TIME)
  3270. perf_output_put(handle, data->time);
  3271. if (sample_type & PERF_SAMPLE_ID)
  3272. perf_output_put(handle, data->id);
  3273. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3274. perf_output_put(handle, data->stream_id);
  3275. if (sample_type & PERF_SAMPLE_CPU)
  3276. perf_output_put(handle, data->cpu_entry);
  3277. }
  3278. void perf_event__output_id_sample(struct perf_event *event,
  3279. struct perf_output_handle *handle,
  3280. struct perf_sample_data *sample)
  3281. {
  3282. if (event->attr.sample_id_all)
  3283. __perf_event__output_id_sample(handle, sample);
  3284. }
  3285. static void perf_output_read_one(struct perf_output_handle *handle,
  3286. struct perf_event *event,
  3287. u64 enabled, u64 running)
  3288. {
  3289. u64 read_format = event->attr.read_format;
  3290. u64 values[4];
  3291. int n = 0;
  3292. values[n++] = perf_event_count(event);
  3293. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  3294. values[n++] = enabled +
  3295. atomic64_read(&event->child_total_time_enabled);
  3296. }
  3297. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  3298. values[n++] = running +
  3299. atomic64_read(&event->child_total_time_running);
  3300. }
  3301. if (read_format & PERF_FORMAT_ID)
  3302. values[n++] = primary_event_id(event);
  3303. __output_copy(handle, values, n * sizeof(u64));
  3304. }
  3305. /*
  3306. * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
  3307. */
  3308. static void perf_output_read_group(struct perf_output_handle *handle,
  3309. struct perf_event *event,
  3310. u64 enabled, u64 running)
  3311. {
  3312. struct perf_event *leader = event->group_leader, *sub;
  3313. u64 read_format = event->attr.read_format;
  3314. u64 values[5];
  3315. int n = 0;
  3316. values[n++] = 1 + leader->nr_siblings;
  3317. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  3318. values[n++] = enabled;
  3319. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  3320. values[n++] = running;
  3321. if (leader != event)
  3322. leader->pmu->read(leader);
  3323. values[n++] = perf_event_count(leader);
  3324. if (read_format & PERF_FORMAT_ID)
  3325. values[n++] = primary_event_id(leader);
  3326. __output_copy(handle, values, n * sizeof(u64));
  3327. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  3328. n = 0;
  3329. if (sub != event)
  3330. sub->pmu->read(sub);
  3331. values[n++] = perf_event_count(sub);
  3332. if (read_format & PERF_FORMAT_ID)
  3333. values[n++] = primary_event_id(sub);
  3334. __output_copy(handle, values, n * sizeof(u64));
  3335. }
  3336. }
  3337. #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
  3338. PERF_FORMAT_TOTAL_TIME_RUNNING)
  3339. static void perf_output_read(struct perf_output_handle *handle,
  3340. struct perf_event *event)
  3341. {
  3342. u64 enabled = 0, running = 0, now;
  3343. u64 read_format = event->attr.read_format;
  3344. /*
  3345. * compute total_time_enabled, total_time_running
  3346. * based on snapshot values taken when the event
  3347. * was last scheduled in.
  3348. *
  3349. * we cannot simply called update_context_time()
  3350. * because of locking issue as we are called in
  3351. * NMI context
  3352. */
  3353. if (read_format & PERF_FORMAT_TOTAL_TIMES)
  3354. calc_timer_values(event, &now, &enabled, &running);
  3355. if (event->attr.read_format & PERF_FORMAT_GROUP)
  3356. perf_output_read_group(handle, event, enabled, running);
  3357. else
  3358. perf_output_read_one(handle, event, enabled, running);
  3359. }
  3360. void perf_output_sample(struct perf_output_handle *handle,
  3361. struct perf_event_header *header,
  3362. struct perf_sample_data *data,
  3363. struct perf_event *event)
  3364. {
  3365. u64 sample_type = data->type;
  3366. perf_output_put(handle, *header);
  3367. if (sample_type & PERF_SAMPLE_IP)
  3368. perf_output_put(handle, data->ip);
  3369. if (sample_type & PERF_SAMPLE_TID)
  3370. perf_output_put(handle, data->tid_entry);
  3371. if (sample_type & PERF_SAMPLE_TIME)
  3372. perf_output_put(handle, data->time);
  3373. if (sample_type & PERF_SAMPLE_ADDR)
  3374. perf_output_put(handle, data->addr);
  3375. if (sample_type & PERF_SAMPLE_ID)
  3376. perf_output_put(handle, data->id);
  3377. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3378. perf_output_put(handle, data->stream_id);
  3379. if (sample_type & PERF_SAMPLE_CPU)
  3380. perf_output_put(handle, data->cpu_entry);
  3381. if (sample_type & PERF_SAMPLE_PERIOD)
  3382. perf_output_put(handle, data->period);
  3383. if (sample_type & PERF_SAMPLE_READ)
  3384. perf_output_read(handle, event);
  3385. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3386. if (data->callchain) {
  3387. int size = 1;
  3388. if (data->callchain)
  3389. size += data->callchain->nr;
  3390. size *= sizeof(u64);
  3391. __output_copy(handle, data->callchain, size);
  3392. } else {
  3393. u64 nr = 0;
  3394. perf_output_put(handle, nr);
  3395. }
  3396. }
  3397. if (sample_type & PERF_SAMPLE_RAW) {
  3398. if (data->raw) {
  3399. perf_output_put(handle, data->raw->size);
  3400. __output_copy(handle, data->raw->data,
  3401. data->raw->size);
  3402. } else {
  3403. struct {
  3404. u32 size;
  3405. u32 data;
  3406. } raw = {
  3407. .size = sizeof(u32),
  3408. .data = 0,
  3409. };
  3410. perf_output_put(handle, raw);
  3411. }
  3412. }
  3413. if (!event->attr.watermark) {
  3414. int wakeup_events = event->attr.wakeup_events;
  3415. if (wakeup_events) {
  3416. struct ring_buffer *rb = handle->rb;
  3417. int events = local_inc_return(&rb->events);
  3418. if (events >= wakeup_events) {
  3419. local_sub(wakeup_events, &rb->events);
  3420. local_inc(&rb->wakeup);
  3421. }
  3422. }
  3423. }
  3424. if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
  3425. if (data->br_stack) {
  3426. size_t size;
  3427. size = data->br_stack->nr
  3428. * sizeof(struct perf_branch_entry);
  3429. perf_output_put(handle, data->br_stack->nr);
  3430. perf_output_copy(handle, data->br_stack->entries, size);
  3431. } else {
  3432. /*
  3433. * we always store at least the value of nr
  3434. */
  3435. u64 nr = 0;
  3436. perf_output_put(handle, nr);
  3437. }
  3438. }
  3439. if (sample_type & PERF_SAMPLE_REGS_USER) {
  3440. u64 abi = data->regs_user.abi;
  3441. /*
  3442. * If there are no regs to dump, notice it through
  3443. * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
  3444. */
  3445. perf_output_put(handle, abi);
  3446. if (abi) {
  3447. u64 mask = event->attr.sample_regs_user;
  3448. perf_output_sample_regs(handle,
  3449. data->regs_user.regs,
  3450. mask);
  3451. }
  3452. }
  3453. if (sample_type & PERF_SAMPLE_STACK_USER)
  3454. perf_output_sample_ustack(handle,
  3455. data->stack_user_size,
  3456. data->regs_user.regs);
  3457. }
  3458. void perf_prepare_sample(struct perf_event_header *header,
  3459. struct perf_sample_data *data,
  3460. struct perf_event *event,
  3461. struct pt_regs *regs)
  3462. {
  3463. u64 sample_type = event->attr.sample_type;
  3464. header->type = PERF_RECORD_SAMPLE;
  3465. header->size = sizeof(*header) + event->header_size;
  3466. header->misc = 0;
  3467. header->misc |= perf_misc_flags(regs);
  3468. __perf_event_header__init_id(header, data, event);
  3469. if (sample_type & PERF_SAMPLE_IP)
  3470. data->ip = perf_instruction_pointer(regs);
  3471. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3472. int size = 1;
  3473. data->callchain = perf_callchain(event, regs);
  3474. if (data->callchain)
  3475. size += data->callchain->nr;
  3476. header->size += size * sizeof(u64);
  3477. }
  3478. if (sample_type & PERF_SAMPLE_RAW) {
  3479. int size = sizeof(u32);
  3480. if (data->raw)
  3481. size += data->raw->size;
  3482. else
  3483. size += sizeof(u32);
  3484. WARN_ON_ONCE(size & (sizeof(u64)-1));
  3485. header->size += size;
  3486. }
  3487. if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
  3488. int size = sizeof(u64); /* nr */
  3489. if (data->br_stack) {
  3490. size += data->br_stack->nr
  3491. * sizeof(struct perf_branch_entry);
  3492. }
  3493. header->size += size;
  3494. }
  3495. if (sample_type & PERF_SAMPLE_REGS_USER) {
  3496. /* regs dump ABI info */
  3497. int size = sizeof(u64);
  3498. perf_sample_regs_user(&data->regs_user, regs);
  3499. if (data->regs_user.regs) {
  3500. u64 mask = event->attr.sample_regs_user;
  3501. size += hweight64(mask) * sizeof(u64);
  3502. }
  3503. header->size += size;
  3504. }
  3505. if (sample_type & PERF_SAMPLE_STACK_USER) {
  3506. /*
  3507. * Either we need PERF_SAMPLE_STACK_USER bit to be allways
  3508. * processed as the last one or have additional check added
  3509. * in case new sample type is added, because we could eat
  3510. * up the rest of the sample size.
  3511. */
  3512. struct perf_regs_user *uregs = &data->regs_user;
  3513. u16 stack_size = event->attr.sample_stack_user;
  3514. u16 size = sizeof(u64);
  3515. if (!uregs->abi)
  3516. perf_sample_regs_user(uregs, regs);
  3517. stack_size = perf_sample_ustack_size(stack_size, header->size,
  3518. uregs->regs);
  3519. /*
  3520. * If there is something to dump, add space for the dump
  3521. * itself and for the field that tells the dynamic size,
  3522. * which is how many have been actually dumped.
  3523. */
  3524. if (stack_size)
  3525. size += sizeof(u64) + stack_size;
  3526. data->stack_user_size = stack_size;
  3527. header->size += size;
  3528. }
  3529. }
  3530. static void perf_event_output(struct perf_event *event,
  3531. struct perf_sample_data *data,
  3532. struct pt_regs *regs)
  3533. {
  3534. struct perf_output_handle handle;
  3535. struct perf_event_header header;
  3536. /* protect the callchain buffers */
  3537. rcu_read_lock();
  3538. perf_prepare_sample(&header, data, event, regs);
  3539. if (perf_output_begin(&handle, event, header.size))
  3540. goto exit;
  3541. perf_output_sample(&handle, &header, data, event);
  3542. perf_output_end(&handle);
  3543. exit:
  3544. rcu_read_unlock();
  3545. }
  3546. /*
  3547. * read event_id
  3548. */
  3549. struct perf_read_event {
  3550. struct perf_event_header header;
  3551. u32 pid;
  3552. u32 tid;
  3553. };
  3554. static void
  3555. perf_event_read_event(struct perf_event *event,
  3556. struct task_struct *task)
  3557. {
  3558. struct perf_output_handle handle;
  3559. struct perf_sample_data sample;
  3560. struct perf_read_event read_event = {
  3561. .header = {
  3562. .type = PERF_RECORD_READ,
  3563. .misc = 0,
  3564. .size = sizeof(read_event) + event->read_size,
  3565. },
  3566. .pid = perf_event_pid(event, task),
  3567. .tid = perf_event_tid(event, task),
  3568. };
  3569. int ret;
  3570. perf_event_header__init_id(&read_event.header, &sample, event);
  3571. ret = perf_output_begin(&handle, event, read_event.header.size);
  3572. if (ret)
  3573. return;
  3574. perf_output_put(&handle, read_event);
  3575. perf_output_read(&handle, event);
  3576. perf_event__output_id_sample(event, &handle, &sample);
  3577. perf_output_end(&handle);
  3578. }
  3579. /*
  3580. * task tracking -- fork/exit
  3581. *
  3582. * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
  3583. */
  3584. struct perf_task_event {
  3585. struct task_struct *task;
  3586. struct perf_event_context *task_ctx;
  3587. struct {
  3588. struct perf_event_header header;
  3589. u32 pid;
  3590. u32 ppid;
  3591. u32 tid;
  3592. u32 ptid;
  3593. u64 time;
  3594. } event_id;
  3595. };
  3596. static void perf_event_task_output(struct perf_event *event,
  3597. struct perf_task_event *task_event)
  3598. {
  3599. struct perf_output_handle handle;
  3600. struct perf_sample_data sample;
  3601. struct task_struct *task = task_event->task;
  3602. int ret, size = task_event->event_id.header.size;
  3603. perf_event_header__init_id(&task_event->event_id.header, &sample, event);
  3604. ret = perf_output_begin(&handle, event,
  3605. task_event->event_id.header.size);
  3606. if (ret)
  3607. goto out;
  3608. task_event->event_id.pid = perf_event_pid(event, task);
  3609. task_event->event_id.ppid = perf_event_pid(event, current);
  3610. task_event->event_id.tid = perf_event_tid(event, task);
  3611. task_event->event_id.ptid = perf_event_tid(event, current);
  3612. perf_output_put(&handle, task_event->event_id);
  3613. perf_event__output_id_sample(event, &handle, &sample);
  3614. perf_output_end(&handle);
  3615. out:
  3616. task_event->event_id.header.size = size;
  3617. }
  3618. static int perf_event_task_match(struct perf_event *event)
  3619. {
  3620. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3621. return 0;
  3622. if (!event_filter_match(event))
  3623. return 0;
  3624. if (event->attr.comm || event->attr.mmap ||
  3625. event->attr.mmap_data || event->attr.task)
  3626. return 1;
  3627. return 0;
  3628. }
  3629. static void perf_event_task_ctx(struct perf_event_context *ctx,
  3630. struct perf_task_event *task_event)
  3631. {
  3632. struct perf_event *event;
  3633. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3634. if (perf_event_task_match(event))
  3635. perf_event_task_output(event, task_event);
  3636. }
  3637. }
  3638. static void perf_event_task_event(struct perf_task_event *task_event)
  3639. {
  3640. struct perf_cpu_context *cpuctx;
  3641. struct perf_event_context *ctx;
  3642. struct pmu *pmu;
  3643. int ctxn;
  3644. rcu_read_lock();
  3645. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3646. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3647. if (cpuctx->unique_pmu != pmu)
  3648. goto next;
  3649. perf_event_task_ctx(&cpuctx->ctx, task_event);
  3650. ctx = task_event->task_ctx;
  3651. if (!ctx) {
  3652. ctxn = pmu->task_ctx_nr;
  3653. if (ctxn < 0)
  3654. goto next;
  3655. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3656. }
  3657. if (ctx)
  3658. perf_event_task_ctx(ctx, task_event);
  3659. next:
  3660. put_cpu_ptr(pmu->pmu_cpu_context);
  3661. }
  3662. rcu_read_unlock();
  3663. }
  3664. static void perf_event_task(struct task_struct *task,
  3665. struct perf_event_context *task_ctx,
  3666. int new)
  3667. {
  3668. struct perf_task_event task_event;
  3669. if (!atomic_read(&nr_comm_events) &&
  3670. !atomic_read(&nr_mmap_events) &&
  3671. !atomic_read(&nr_task_events))
  3672. return;
  3673. task_event = (struct perf_task_event){
  3674. .task = task,
  3675. .task_ctx = task_ctx,
  3676. .event_id = {
  3677. .header = {
  3678. .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
  3679. .misc = 0,
  3680. .size = sizeof(task_event.event_id),
  3681. },
  3682. /* .pid */
  3683. /* .ppid */
  3684. /* .tid */
  3685. /* .ptid */
  3686. .time = perf_clock(),
  3687. },
  3688. };
  3689. perf_event_task_event(&task_event);
  3690. }
  3691. void perf_event_fork(struct task_struct *task)
  3692. {
  3693. perf_event_task(task, NULL, 1);
  3694. }
  3695. /*
  3696. * comm tracking
  3697. */
  3698. struct perf_comm_event {
  3699. struct task_struct *task;
  3700. char *comm;
  3701. int comm_size;
  3702. struct {
  3703. struct perf_event_header header;
  3704. u32 pid;
  3705. u32 tid;
  3706. } event_id;
  3707. };
  3708. static void perf_event_comm_output(struct perf_event *event,
  3709. struct perf_comm_event *comm_event)
  3710. {
  3711. struct perf_output_handle handle;
  3712. struct perf_sample_data sample;
  3713. int size = comm_event->event_id.header.size;
  3714. int ret;
  3715. perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
  3716. ret = perf_output_begin(&handle, event,
  3717. comm_event->event_id.header.size);
  3718. if (ret)
  3719. goto out;
  3720. comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
  3721. comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
  3722. perf_output_put(&handle, comm_event->event_id);
  3723. __output_copy(&handle, comm_event->comm,
  3724. comm_event->comm_size);
  3725. perf_event__output_id_sample(event, &handle, &sample);
  3726. perf_output_end(&handle);
  3727. out:
  3728. comm_event->event_id.header.size = size;
  3729. }
  3730. static int perf_event_comm_match(struct perf_event *event)
  3731. {
  3732. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3733. return 0;
  3734. if (!event_filter_match(event))
  3735. return 0;
  3736. if (event->attr.comm)
  3737. return 1;
  3738. return 0;
  3739. }
  3740. static void perf_event_comm_ctx(struct perf_event_context *ctx,
  3741. struct perf_comm_event *comm_event)
  3742. {
  3743. struct perf_event *event;
  3744. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3745. if (perf_event_comm_match(event))
  3746. perf_event_comm_output(event, comm_event);
  3747. }
  3748. }
  3749. static void perf_event_comm_event(struct perf_comm_event *comm_event)
  3750. {
  3751. struct perf_cpu_context *cpuctx;
  3752. struct perf_event_context *ctx;
  3753. char comm[TASK_COMM_LEN];
  3754. unsigned int size;
  3755. struct pmu *pmu;
  3756. int ctxn;
  3757. memset(comm, 0, sizeof(comm));
  3758. strlcpy(comm, comm_event->task->comm, sizeof(comm));
  3759. size = ALIGN(strlen(comm)+1, sizeof(u64));
  3760. comm_event->comm = comm;
  3761. comm_event->comm_size = size;
  3762. comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
  3763. rcu_read_lock();
  3764. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3765. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3766. if (cpuctx->unique_pmu != pmu)
  3767. goto next;
  3768. perf_event_comm_ctx(&cpuctx->ctx, comm_event);
  3769. ctxn = pmu->task_ctx_nr;
  3770. if (ctxn < 0)
  3771. goto next;
  3772. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3773. if (ctx)
  3774. perf_event_comm_ctx(ctx, comm_event);
  3775. next:
  3776. put_cpu_ptr(pmu->pmu_cpu_context);
  3777. }
  3778. rcu_read_unlock();
  3779. }
  3780. void perf_event_comm(struct task_struct *task)
  3781. {
  3782. struct perf_comm_event comm_event;
  3783. struct perf_event_context *ctx;
  3784. int ctxn;
  3785. for_each_task_context_nr(ctxn) {
  3786. ctx = task->perf_event_ctxp[ctxn];
  3787. if (!ctx)
  3788. continue;
  3789. perf_event_enable_on_exec(ctx);
  3790. }
  3791. if (!atomic_read(&nr_comm_events))
  3792. return;
  3793. comm_event = (struct perf_comm_event){
  3794. .task = task,
  3795. /* .comm */
  3796. /* .comm_size */
  3797. .event_id = {
  3798. .header = {
  3799. .type = PERF_RECORD_COMM,
  3800. .misc = 0,
  3801. /* .size */
  3802. },
  3803. /* .pid */
  3804. /* .tid */
  3805. },
  3806. };
  3807. perf_event_comm_event(&comm_event);
  3808. }
  3809. /*
  3810. * mmap tracking
  3811. */
  3812. struct perf_mmap_event {
  3813. struct vm_area_struct *vma;
  3814. const char *file_name;
  3815. int file_size;
  3816. struct {
  3817. struct perf_event_header header;
  3818. u32 pid;
  3819. u32 tid;
  3820. u64 start;
  3821. u64 len;
  3822. u64 pgoff;
  3823. } event_id;
  3824. };
  3825. static void perf_event_mmap_output(struct perf_event *event,
  3826. struct perf_mmap_event *mmap_event)
  3827. {
  3828. struct perf_output_handle handle;
  3829. struct perf_sample_data sample;
  3830. int size = mmap_event->event_id.header.size;
  3831. int ret;
  3832. perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
  3833. ret = perf_output_begin(&handle, event,
  3834. mmap_event->event_id.header.size);
  3835. if (ret)
  3836. goto out;
  3837. mmap_event->event_id.pid = perf_event_pid(event, current);
  3838. mmap_event->event_id.tid = perf_event_tid(event, current);
  3839. perf_output_put(&handle, mmap_event->event_id);
  3840. __output_copy(&handle, mmap_event->file_name,
  3841. mmap_event->file_size);
  3842. perf_event__output_id_sample(event, &handle, &sample);
  3843. perf_output_end(&handle);
  3844. out:
  3845. mmap_event->event_id.header.size = size;
  3846. }
  3847. static int perf_event_mmap_match(struct perf_event *event,
  3848. struct perf_mmap_event *mmap_event,
  3849. int executable)
  3850. {
  3851. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3852. return 0;
  3853. if (!event_filter_match(event))
  3854. return 0;
  3855. if ((!executable && event->attr.mmap_data) ||
  3856. (executable && event->attr.mmap))
  3857. return 1;
  3858. return 0;
  3859. }
  3860. static void perf_event_mmap_ctx(struct perf_event_context *ctx,
  3861. struct perf_mmap_event *mmap_event,
  3862. int executable)
  3863. {
  3864. struct perf_event *event;
  3865. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3866. if (perf_event_mmap_match(event, mmap_event, executable))
  3867. perf_event_mmap_output(event, mmap_event);
  3868. }
  3869. }
  3870. static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
  3871. {
  3872. struct perf_cpu_context *cpuctx;
  3873. struct perf_event_context *ctx;
  3874. struct vm_area_struct *vma = mmap_event->vma;
  3875. struct file *file = vma->vm_file;
  3876. unsigned int size;
  3877. char tmp[16];
  3878. char *buf = NULL;
  3879. const char *name;
  3880. struct pmu *pmu;
  3881. int ctxn;
  3882. memset(tmp, 0, sizeof(tmp));
  3883. if (file) {
  3884. /*
  3885. * d_path works from the end of the rb backwards, so we
  3886. * need to add enough zero bytes after the string to handle
  3887. * the 64bit alignment we do later.
  3888. */
  3889. buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
  3890. if (!buf) {
  3891. name = strncpy(tmp, "//enomem", sizeof(tmp));
  3892. goto got_name;
  3893. }
  3894. name = d_path(&file->f_path, buf, PATH_MAX);
  3895. if (IS_ERR(name)) {
  3896. name = strncpy(tmp, "//toolong", sizeof(tmp));
  3897. goto got_name;
  3898. }
  3899. } else {
  3900. if (arch_vma_name(mmap_event->vma)) {
  3901. name = strncpy(tmp, arch_vma_name(mmap_event->vma),
  3902. sizeof(tmp));
  3903. goto got_name;
  3904. }
  3905. if (!vma->vm_mm) {
  3906. name = strncpy(tmp, "[vdso]", sizeof(tmp));
  3907. goto got_name;
  3908. } else if (vma->vm_start <= vma->vm_mm->start_brk &&
  3909. vma->vm_end >= vma->vm_mm->brk) {
  3910. name = strncpy(tmp, "[heap]", sizeof(tmp));
  3911. goto got_name;
  3912. } else if (vma->vm_start <= vma->vm_mm->start_stack &&
  3913. vma->vm_end >= vma->vm_mm->start_stack) {
  3914. name = strncpy(tmp, "[stack]", sizeof(tmp));
  3915. goto got_name;
  3916. }
  3917. name = strncpy(tmp, "//anon", sizeof(tmp));
  3918. goto got_name;
  3919. }
  3920. got_name:
  3921. size = ALIGN(strlen(name)+1, sizeof(u64));
  3922. mmap_event->file_name = name;
  3923. mmap_event->file_size = size;
  3924. mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
  3925. rcu_read_lock();
  3926. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3927. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3928. if (cpuctx->unique_pmu != pmu)
  3929. goto next;
  3930. perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
  3931. vma->vm_flags & VM_EXEC);
  3932. ctxn = pmu->task_ctx_nr;
  3933. if (ctxn < 0)
  3934. goto next;
  3935. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3936. if (ctx) {
  3937. perf_event_mmap_ctx(ctx, mmap_event,
  3938. vma->vm_flags & VM_EXEC);
  3939. }
  3940. next:
  3941. put_cpu_ptr(pmu->pmu_cpu_context);
  3942. }
  3943. rcu_read_unlock();
  3944. kfree(buf);
  3945. }
  3946. void perf_event_mmap(struct vm_area_struct *vma)
  3947. {
  3948. struct perf_mmap_event mmap_event;
  3949. if (!atomic_read(&nr_mmap_events))
  3950. return;
  3951. mmap_event = (struct perf_mmap_event){
  3952. .vma = vma,
  3953. /* .file_name */
  3954. /* .file_size */
  3955. .event_id = {
  3956. .header = {
  3957. .type = PERF_RECORD_MMAP,
  3958. .misc = PERF_RECORD_MISC_USER,
  3959. /* .size */
  3960. },
  3961. /* .pid */
  3962. /* .tid */
  3963. .start = vma->vm_start,
  3964. .len = vma->vm_end - vma->vm_start,
  3965. .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
  3966. },
  3967. };
  3968. perf_event_mmap_event(&mmap_event);
  3969. }
  3970. /*
  3971. * IRQ throttle logging
  3972. */
  3973. static void perf_log_throttle(struct perf_event *event, int enable)
  3974. {
  3975. struct perf_output_handle handle;
  3976. struct perf_sample_data sample;
  3977. int ret;
  3978. struct {
  3979. struct perf_event_header header;
  3980. u64 time;
  3981. u64 id;
  3982. u64 stream_id;
  3983. } throttle_event = {
  3984. .header = {
  3985. .type = PERF_RECORD_THROTTLE,
  3986. .misc = 0,
  3987. .size = sizeof(throttle_event),
  3988. },
  3989. .time = perf_clock(),
  3990. .id = primary_event_id(event),
  3991. .stream_id = event->id,
  3992. };
  3993. if (enable)
  3994. throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
  3995. perf_event_header__init_id(&throttle_event.header, &sample, event);
  3996. ret = perf_output_begin(&handle, event,
  3997. throttle_event.header.size);
  3998. if (ret)
  3999. return;
  4000. perf_output_put(&handle, throttle_event);
  4001. perf_event__output_id_sample(event, &handle, &sample);
  4002. perf_output_end(&handle);
  4003. }
  4004. /*
  4005. * Generic event overflow handling, sampling.
  4006. */
  4007. static int __perf_event_overflow(struct perf_event *event,
  4008. int throttle, struct perf_sample_data *data,
  4009. struct pt_regs *regs)
  4010. {
  4011. int events = atomic_read(&event->event_limit);
  4012. struct hw_perf_event *hwc = &event->hw;
  4013. u64 seq;
  4014. int ret = 0;
  4015. /*
  4016. * Non-sampling counters might still use the PMI to fold short
  4017. * hardware counters, ignore those.
  4018. */
  4019. if (unlikely(!is_sampling_event(event)))
  4020. return 0;
  4021. seq = __this_cpu_read(perf_throttled_seq);
  4022. if (seq != hwc->interrupts_seq) {
  4023. hwc->interrupts_seq = seq;
  4024. hwc->interrupts = 1;
  4025. } else {
  4026. hwc->interrupts++;
  4027. if (unlikely(throttle
  4028. && hwc->interrupts >= max_samples_per_tick)) {
  4029. __this_cpu_inc(perf_throttled_count);
  4030. hwc->interrupts = MAX_INTERRUPTS;
  4031. perf_log_throttle(event, 0);
  4032. ret = 1;
  4033. }
  4034. }
  4035. if (event->attr.freq) {
  4036. u64 now = perf_clock();
  4037. s64 delta = now - hwc->freq_time_stamp;
  4038. hwc->freq_time_stamp = now;
  4039. if (delta > 0 && delta < 2*TICK_NSEC)
  4040. perf_adjust_period(event, delta, hwc->last_period, true);
  4041. }
  4042. /*
  4043. * XXX event_limit might not quite work as expected on inherited
  4044. * events
  4045. */
  4046. event->pending_kill = POLL_IN;
  4047. if (events && atomic_dec_and_test(&event->event_limit)) {
  4048. ret = 1;
  4049. event->pending_kill = POLL_HUP;
  4050. event->pending_disable = 1;
  4051. irq_work_queue(&event->pending);
  4052. }
  4053. if (event->overflow_handler)
  4054. event->overflow_handler(event, data, regs);
  4055. else
  4056. perf_event_output(event, data, regs);
  4057. if (event->fasync && event->pending_kill) {
  4058. event->pending_wakeup = 1;
  4059. irq_work_queue(&event->pending);
  4060. }
  4061. return ret;
  4062. }
  4063. int perf_event_overflow(struct perf_event *event,
  4064. struct perf_sample_data *data,
  4065. struct pt_regs *regs)
  4066. {
  4067. return __perf_event_overflow(event, 1, data, regs);
  4068. }
  4069. /*
  4070. * Generic software event infrastructure
  4071. */
  4072. struct swevent_htable {
  4073. struct swevent_hlist *swevent_hlist;
  4074. struct mutex hlist_mutex;
  4075. int hlist_refcount;
  4076. /* Recursion avoidance in each contexts */
  4077. int recursion[PERF_NR_CONTEXTS];
  4078. };
  4079. static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
  4080. /*
  4081. * We directly increment event->count and keep a second value in
  4082. * event->hw.period_left to count intervals. This period event
  4083. * is kept in the range [-sample_period, 0] so that we can use the
  4084. * sign as trigger.
  4085. */
  4086. static u64 perf_swevent_set_period(struct perf_event *event)
  4087. {
  4088. struct hw_perf_event *hwc = &event->hw;
  4089. u64 period = hwc->last_period;
  4090. u64 nr, offset;
  4091. s64 old, val;
  4092. hwc->last_period = hwc->sample_period;
  4093. again:
  4094. old = val = local64_read(&hwc->period_left);
  4095. if (val < 0)
  4096. return 0;
  4097. nr = div64_u64(period + val, period);
  4098. offset = nr * period;
  4099. val -= offset;
  4100. if (local64_cmpxchg(&hwc->period_left, old, val) != old)
  4101. goto again;
  4102. return nr;
  4103. }
  4104. static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
  4105. struct perf_sample_data *data,
  4106. struct pt_regs *regs)
  4107. {
  4108. struct hw_perf_event *hwc = &event->hw;
  4109. int throttle = 0;
  4110. if (!overflow)
  4111. overflow = perf_swevent_set_period(event);
  4112. if (hwc->interrupts == MAX_INTERRUPTS)
  4113. return;
  4114. for (; overflow; overflow--) {
  4115. if (__perf_event_overflow(event, throttle,
  4116. data, regs)) {
  4117. /*
  4118. * We inhibit the overflow from happening when
  4119. * hwc->interrupts == MAX_INTERRUPTS.
  4120. */
  4121. break;
  4122. }
  4123. throttle = 1;
  4124. }
  4125. }
  4126. static void perf_swevent_event(struct perf_event *event, u64 nr,
  4127. struct perf_sample_data *data,
  4128. struct pt_regs *regs)
  4129. {
  4130. struct hw_perf_event *hwc = &event->hw;
  4131. local64_add(nr, &event->count);
  4132. if (!regs)
  4133. return;
  4134. if (!is_sampling_event(event))
  4135. return;
  4136. if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
  4137. data->period = nr;
  4138. return perf_swevent_overflow(event, 1, data, regs);
  4139. } else
  4140. data->period = event->hw.last_period;
  4141. if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
  4142. return perf_swevent_overflow(event, 1, data, regs);
  4143. if (local64_add_negative(nr, &hwc->period_left))
  4144. return;
  4145. perf_swevent_overflow(event, 0, data, regs);
  4146. }
  4147. static int perf_exclude_event(struct perf_event *event,
  4148. struct pt_regs *regs)
  4149. {
  4150. if (event->hw.state & PERF_HES_STOPPED)
  4151. return 1;
  4152. if (regs) {
  4153. if (event->attr.exclude_user && user_mode(regs))
  4154. return 1;
  4155. if (event->attr.exclude_kernel && !user_mode(regs))
  4156. return 1;
  4157. }
  4158. return 0;
  4159. }
  4160. static int perf_swevent_match(struct perf_event *event,
  4161. enum perf_type_id type,
  4162. u32 event_id,
  4163. struct perf_sample_data *data,
  4164. struct pt_regs *regs)
  4165. {
  4166. if (event->attr.type != type)
  4167. return 0;
  4168. if (event->attr.config != event_id)
  4169. return 0;
  4170. if (perf_exclude_event(event, regs))
  4171. return 0;
  4172. return 1;
  4173. }
  4174. static inline u64 swevent_hash(u64 type, u32 event_id)
  4175. {
  4176. u64 val = event_id | (type << 32);
  4177. return hash_64(val, SWEVENT_HLIST_BITS);
  4178. }
  4179. static inline struct hlist_head *
  4180. __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
  4181. {
  4182. u64 hash = swevent_hash(type, event_id);
  4183. return &hlist->heads[hash];
  4184. }
  4185. /* For the read side: events when they trigger */
  4186. static inline struct hlist_head *
  4187. find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
  4188. {
  4189. struct swevent_hlist *hlist;
  4190. hlist = rcu_dereference(swhash->swevent_hlist);
  4191. if (!hlist)
  4192. return NULL;
  4193. return __find_swevent_head(hlist, type, event_id);
  4194. }
  4195. /* For the event head insertion and removal in the hlist */
  4196. static inline struct hlist_head *
  4197. find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
  4198. {
  4199. struct swevent_hlist *hlist;
  4200. u32 event_id = event->attr.config;
  4201. u64 type = event->attr.type;
  4202. /*
  4203. * Event scheduling is always serialized against hlist allocation
  4204. * and release. Which makes the protected version suitable here.
  4205. * The context lock guarantees that.
  4206. */
  4207. hlist = rcu_dereference_protected(swhash->swevent_hlist,
  4208. lockdep_is_held(&event->ctx->lock));
  4209. if (!hlist)
  4210. return NULL;
  4211. return __find_swevent_head(hlist, type, event_id);
  4212. }
  4213. static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
  4214. u64 nr,
  4215. struct perf_sample_data *data,
  4216. struct pt_regs *regs)
  4217. {
  4218. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4219. struct perf_event *event;
  4220. struct hlist_node *node;
  4221. struct hlist_head *head;
  4222. rcu_read_lock();
  4223. head = find_swevent_head_rcu(swhash, type, event_id);
  4224. if (!head)
  4225. goto end;
  4226. hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
  4227. if (perf_swevent_match(event, type, event_id, data, regs))
  4228. perf_swevent_event(event, nr, data, regs);
  4229. }
  4230. end:
  4231. rcu_read_unlock();
  4232. }
  4233. int perf_swevent_get_recursion_context(void)
  4234. {
  4235. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4236. return get_recursion_context(swhash->recursion);
  4237. }
  4238. EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
  4239. inline void perf_swevent_put_recursion_context(int rctx)
  4240. {
  4241. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4242. put_recursion_context(swhash->recursion, rctx);
  4243. }
  4244. void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
  4245. {
  4246. struct perf_sample_data data;
  4247. int rctx;
  4248. preempt_disable_notrace();
  4249. rctx = perf_swevent_get_recursion_context();
  4250. if (rctx < 0)
  4251. return;
  4252. perf_sample_data_init(&data, addr, 0);
  4253. do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
  4254. perf_swevent_put_recursion_context(rctx);
  4255. preempt_enable_notrace();
  4256. }
  4257. static void perf_swevent_read(struct perf_event *event)
  4258. {
  4259. }
  4260. static int perf_swevent_add(struct perf_event *event, int flags)
  4261. {
  4262. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4263. struct hw_perf_event *hwc = &event->hw;
  4264. struct hlist_head *head;
  4265. if (is_sampling_event(event)) {
  4266. hwc->last_period = hwc->sample_period;
  4267. perf_swevent_set_period(event);
  4268. }
  4269. hwc->state = !(flags & PERF_EF_START);
  4270. head = find_swevent_head(swhash, event);
  4271. if (WARN_ON_ONCE(!head))
  4272. return -EINVAL;
  4273. hlist_add_head_rcu(&event->hlist_entry, head);
  4274. return 0;
  4275. }
  4276. static void perf_swevent_del(struct perf_event *event, int flags)
  4277. {
  4278. hlist_del_rcu(&event->hlist_entry);
  4279. }
  4280. static void perf_swevent_start(struct perf_event *event, int flags)
  4281. {
  4282. event->hw.state = 0;
  4283. }
  4284. static void perf_swevent_stop(struct perf_event *event, int flags)
  4285. {
  4286. event->hw.state = PERF_HES_STOPPED;
  4287. }
  4288. /* Deref the hlist from the update side */
  4289. static inline struct swevent_hlist *
  4290. swevent_hlist_deref(struct swevent_htable *swhash)
  4291. {
  4292. return rcu_dereference_protected(swhash->swevent_hlist,
  4293. lockdep_is_held(&swhash->hlist_mutex));
  4294. }
  4295. static void swevent_hlist_release(struct swevent_htable *swhash)
  4296. {
  4297. struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
  4298. if (!hlist)
  4299. return;
  4300. rcu_assign_pointer(swhash->swevent_hlist, NULL);
  4301. kfree_rcu(hlist, rcu_head);
  4302. }
  4303. static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
  4304. {
  4305. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4306. mutex_lock(&swhash->hlist_mutex);
  4307. if (!--swhash->hlist_refcount)
  4308. swevent_hlist_release(swhash);
  4309. mutex_unlock(&swhash->hlist_mutex);
  4310. }
  4311. static void swevent_hlist_put(struct perf_event *event)
  4312. {
  4313. int cpu;
  4314. if (event->cpu != -1) {
  4315. swevent_hlist_put_cpu(event, event->cpu);
  4316. return;
  4317. }
  4318. for_each_possible_cpu(cpu)
  4319. swevent_hlist_put_cpu(event, cpu);
  4320. }
  4321. static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
  4322. {
  4323. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4324. int err = 0;
  4325. mutex_lock(&swhash->hlist_mutex);
  4326. if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
  4327. struct swevent_hlist *hlist;
  4328. hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
  4329. if (!hlist) {
  4330. err = -ENOMEM;
  4331. goto exit;
  4332. }
  4333. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  4334. }
  4335. swhash->hlist_refcount++;
  4336. exit:
  4337. mutex_unlock(&swhash->hlist_mutex);
  4338. return err;
  4339. }
  4340. static int swevent_hlist_get(struct perf_event *event)
  4341. {
  4342. int err;
  4343. int cpu, failed_cpu;
  4344. if (event->cpu != -1)
  4345. return swevent_hlist_get_cpu(event, event->cpu);
  4346. get_online_cpus();
  4347. for_each_possible_cpu(cpu) {
  4348. err = swevent_hlist_get_cpu(event, cpu);
  4349. if (err) {
  4350. failed_cpu = cpu;
  4351. goto fail;
  4352. }
  4353. }
  4354. put_online_cpus();
  4355. return 0;
  4356. fail:
  4357. for_each_possible_cpu(cpu) {
  4358. if (cpu == failed_cpu)
  4359. break;
  4360. swevent_hlist_put_cpu(event, cpu);
  4361. }
  4362. put_online_cpus();
  4363. return err;
  4364. }
  4365. struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
  4366. static void sw_perf_event_destroy(struct perf_event *event)
  4367. {
  4368. u64 event_id = event->attr.config;
  4369. WARN_ON(event->parent);
  4370. static_key_slow_dec(&perf_swevent_enabled[event_id]);
  4371. swevent_hlist_put(event);
  4372. }
  4373. static int perf_swevent_init(struct perf_event *event)
  4374. {
  4375. int event_id = event->attr.config;
  4376. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4377. return -ENOENT;
  4378. /*
  4379. * no branch sampling for software events
  4380. */
  4381. if (has_branch_stack(event))
  4382. return -EOPNOTSUPP;
  4383. switch (event_id) {
  4384. case PERF_COUNT_SW_CPU_CLOCK:
  4385. case PERF_COUNT_SW_TASK_CLOCK:
  4386. return -ENOENT;
  4387. default:
  4388. break;
  4389. }
  4390. if (event_id >= PERF_COUNT_SW_MAX)
  4391. return -ENOENT;
  4392. if (!event->parent) {
  4393. int err;
  4394. err = swevent_hlist_get(event);
  4395. if (err)
  4396. return err;
  4397. static_key_slow_inc(&perf_swevent_enabled[event_id]);
  4398. event->destroy = sw_perf_event_destroy;
  4399. }
  4400. return 0;
  4401. }
  4402. static int perf_swevent_event_idx(struct perf_event *event)
  4403. {
  4404. return 0;
  4405. }
  4406. static struct pmu perf_swevent = {
  4407. .task_ctx_nr = perf_sw_context,
  4408. .event_init = perf_swevent_init,
  4409. .add = perf_swevent_add,
  4410. .del = perf_swevent_del,
  4411. .start = perf_swevent_start,
  4412. .stop = perf_swevent_stop,
  4413. .read = perf_swevent_read,
  4414. .event_idx = perf_swevent_event_idx,
  4415. };
  4416. #ifdef CONFIG_EVENT_TRACING
  4417. static int perf_tp_filter_match(struct perf_event *event,
  4418. struct perf_sample_data *data)
  4419. {
  4420. void *record = data->raw->data;
  4421. if (likely(!event->filter) || filter_match_preds(event->filter, record))
  4422. return 1;
  4423. return 0;
  4424. }
  4425. static int perf_tp_event_match(struct perf_event *event,
  4426. struct perf_sample_data *data,
  4427. struct pt_regs *regs)
  4428. {
  4429. if (event->hw.state & PERF_HES_STOPPED)
  4430. return 0;
  4431. /*
  4432. * All tracepoints are from kernel-space.
  4433. */
  4434. if (event->attr.exclude_kernel)
  4435. return 0;
  4436. if (!perf_tp_filter_match(event, data))
  4437. return 0;
  4438. return 1;
  4439. }
  4440. void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
  4441. struct pt_regs *regs, struct hlist_head *head, int rctx,
  4442. struct task_struct *task)
  4443. {
  4444. struct perf_sample_data data;
  4445. struct perf_event *event;
  4446. struct hlist_node *node;
  4447. struct perf_raw_record raw = {
  4448. .size = entry_size,
  4449. .data = record,
  4450. };
  4451. perf_sample_data_init(&data, addr, 0);
  4452. data.raw = &raw;
  4453. hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
  4454. if (perf_tp_event_match(event, &data, regs))
  4455. perf_swevent_event(event, count, &data, regs);
  4456. }
  4457. /*
  4458. * If we got specified a target task, also iterate its context and
  4459. * deliver this event there too.
  4460. */
  4461. if (task && task != current) {
  4462. struct perf_event_context *ctx;
  4463. struct trace_entry *entry = record;
  4464. rcu_read_lock();
  4465. ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
  4466. if (!ctx)
  4467. goto unlock;
  4468. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  4469. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4470. continue;
  4471. if (event->attr.config != entry->type)
  4472. continue;
  4473. if (perf_tp_event_match(event, &data, regs))
  4474. perf_swevent_event(event, count, &data, regs);
  4475. }
  4476. unlock:
  4477. rcu_read_unlock();
  4478. }
  4479. perf_swevent_put_recursion_context(rctx);
  4480. }
  4481. EXPORT_SYMBOL_GPL(perf_tp_event);
  4482. static void tp_perf_event_destroy(struct perf_event *event)
  4483. {
  4484. perf_trace_destroy(event);
  4485. }
  4486. static int perf_tp_event_init(struct perf_event *event)
  4487. {
  4488. int err;
  4489. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4490. return -ENOENT;
  4491. /*
  4492. * no branch sampling for tracepoint events
  4493. */
  4494. if (has_branch_stack(event))
  4495. return -EOPNOTSUPP;
  4496. err = perf_trace_init(event);
  4497. if (err)
  4498. return err;
  4499. event->destroy = tp_perf_event_destroy;
  4500. return 0;
  4501. }
  4502. static struct pmu perf_tracepoint = {
  4503. .task_ctx_nr = perf_sw_context,
  4504. .event_init = perf_tp_event_init,
  4505. .add = perf_trace_add,
  4506. .del = perf_trace_del,
  4507. .start = perf_swevent_start,
  4508. .stop = perf_swevent_stop,
  4509. .read = perf_swevent_read,
  4510. .event_idx = perf_swevent_event_idx,
  4511. };
  4512. static inline void perf_tp_register(void)
  4513. {
  4514. perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
  4515. }
  4516. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  4517. {
  4518. char *filter_str;
  4519. int ret;
  4520. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4521. return -EINVAL;
  4522. filter_str = strndup_user(arg, PAGE_SIZE);
  4523. if (IS_ERR(filter_str))
  4524. return PTR_ERR(filter_str);
  4525. ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
  4526. kfree(filter_str);
  4527. return ret;
  4528. }
  4529. static void perf_event_free_filter(struct perf_event *event)
  4530. {
  4531. ftrace_profile_free_filter(event);
  4532. }
  4533. #else
  4534. static inline void perf_tp_register(void)
  4535. {
  4536. }
  4537. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  4538. {
  4539. return -ENOENT;
  4540. }
  4541. static void perf_event_free_filter(struct perf_event *event)
  4542. {
  4543. }
  4544. #endif /* CONFIG_EVENT_TRACING */
  4545. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  4546. void perf_bp_event(struct perf_event *bp, void *data)
  4547. {
  4548. struct perf_sample_data sample;
  4549. struct pt_regs *regs = data;
  4550. perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
  4551. if (!bp->hw.state && !perf_exclude_event(bp, regs))
  4552. perf_swevent_event(bp, 1, &sample, regs);
  4553. }
  4554. #endif
  4555. /*
  4556. * hrtimer based swevent callback
  4557. */
  4558. static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
  4559. {
  4560. enum hrtimer_restart ret = HRTIMER_RESTART;
  4561. struct perf_sample_data data;
  4562. struct pt_regs *regs;
  4563. struct perf_event *event;
  4564. u64 period;
  4565. event = container_of(hrtimer, struct perf_event, hw.hrtimer);
  4566. if (event->state != PERF_EVENT_STATE_ACTIVE)
  4567. return HRTIMER_NORESTART;
  4568. event->pmu->read(event);
  4569. perf_sample_data_init(&data, 0, event->hw.last_period);
  4570. regs = get_irq_regs();
  4571. if (regs && !perf_exclude_event(event, regs)) {
  4572. if (!(event->attr.exclude_idle && is_idle_task(current)))
  4573. if (__perf_event_overflow(event, 1, &data, regs))
  4574. ret = HRTIMER_NORESTART;
  4575. }
  4576. period = max_t(u64, 10000, event->hw.sample_period);
  4577. hrtimer_forward_now(hrtimer, ns_to_ktime(period));
  4578. return ret;
  4579. }
  4580. static void perf_swevent_start_hrtimer(struct perf_event *event)
  4581. {
  4582. struct hw_perf_event *hwc = &event->hw;
  4583. s64 period;
  4584. if (!is_sampling_event(event))
  4585. return;
  4586. period = local64_read(&hwc->period_left);
  4587. if (period) {
  4588. if (period < 0)
  4589. period = 10000;
  4590. local64_set(&hwc->period_left, 0);
  4591. } else {
  4592. period = max_t(u64, 10000, hwc->sample_period);
  4593. }
  4594. __hrtimer_start_range_ns(&hwc->hrtimer,
  4595. ns_to_ktime(period), 0,
  4596. HRTIMER_MODE_REL_PINNED, 0);
  4597. }
  4598. static void perf_swevent_cancel_hrtimer(struct perf_event *event)
  4599. {
  4600. struct hw_perf_event *hwc = &event->hw;
  4601. if (is_sampling_event(event)) {
  4602. ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
  4603. local64_set(&hwc->period_left, ktime_to_ns(remaining));
  4604. hrtimer_cancel(&hwc->hrtimer);
  4605. }
  4606. }
  4607. static void perf_swevent_init_hrtimer(struct perf_event *event)
  4608. {
  4609. struct hw_perf_event *hwc = &event->hw;
  4610. if (!is_sampling_event(event))
  4611. return;
  4612. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  4613. hwc->hrtimer.function = perf_swevent_hrtimer;
  4614. /*
  4615. * Since hrtimers have a fixed rate, we can do a static freq->period
  4616. * mapping and avoid the whole period adjust feedback stuff.
  4617. */
  4618. if (event->attr.freq) {
  4619. long freq = event->attr.sample_freq;
  4620. event->attr.sample_period = NSEC_PER_SEC / freq;
  4621. hwc->sample_period = event->attr.sample_period;
  4622. local64_set(&hwc->period_left, hwc->sample_period);
  4623. event->attr.freq = 0;
  4624. }
  4625. }
  4626. /*
  4627. * Software event: cpu wall time clock
  4628. */
  4629. static void cpu_clock_event_update(struct perf_event *event)
  4630. {
  4631. s64 prev;
  4632. u64 now;
  4633. now = local_clock();
  4634. prev = local64_xchg(&event->hw.prev_count, now);
  4635. local64_add(now - prev, &event->count);
  4636. }
  4637. static void cpu_clock_event_start(struct perf_event *event, int flags)
  4638. {
  4639. local64_set(&event->hw.prev_count, local_clock());
  4640. perf_swevent_start_hrtimer(event);
  4641. }
  4642. static void cpu_clock_event_stop(struct perf_event *event, int flags)
  4643. {
  4644. perf_swevent_cancel_hrtimer(event);
  4645. cpu_clock_event_update(event);
  4646. }
  4647. static int cpu_clock_event_add(struct perf_event *event, int flags)
  4648. {
  4649. if (flags & PERF_EF_START)
  4650. cpu_clock_event_start(event, flags);
  4651. return 0;
  4652. }
  4653. static void cpu_clock_event_del(struct perf_event *event, int flags)
  4654. {
  4655. cpu_clock_event_stop(event, flags);
  4656. }
  4657. static void cpu_clock_event_read(struct perf_event *event)
  4658. {
  4659. cpu_clock_event_update(event);
  4660. }
  4661. static int cpu_clock_event_init(struct perf_event *event)
  4662. {
  4663. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4664. return -ENOENT;
  4665. if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
  4666. return -ENOENT;
  4667. /*
  4668. * no branch sampling for software events
  4669. */
  4670. if (has_branch_stack(event))
  4671. return -EOPNOTSUPP;
  4672. perf_swevent_init_hrtimer(event);
  4673. return 0;
  4674. }
  4675. static struct pmu perf_cpu_clock = {
  4676. .task_ctx_nr = perf_sw_context,
  4677. .event_init = cpu_clock_event_init,
  4678. .add = cpu_clock_event_add,
  4679. .del = cpu_clock_event_del,
  4680. .start = cpu_clock_event_start,
  4681. .stop = cpu_clock_event_stop,
  4682. .read = cpu_clock_event_read,
  4683. .event_idx = perf_swevent_event_idx,
  4684. };
  4685. /*
  4686. * Software event: task time clock
  4687. */
  4688. static void task_clock_event_update(struct perf_event *event, u64 now)
  4689. {
  4690. u64 prev;
  4691. s64 delta;
  4692. prev = local64_xchg(&event->hw.prev_count, now);
  4693. delta = now - prev;
  4694. local64_add(delta, &event->count);
  4695. }
  4696. static void task_clock_event_start(struct perf_event *event, int flags)
  4697. {
  4698. local64_set(&event->hw.prev_count, event->ctx->time);
  4699. perf_swevent_start_hrtimer(event);
  4700. }
  4701. static void task_clock_event_stop(struct perf_event *event, int flags)
  4702. {
  4703. perf_swevent_cancel_hrtimer(event);
  4704. task_clock_event_update(event, event->ctx->time);
  4705. }
  4706. static int task_clock_event_add(struct perf_event *event, int flags)
  4707. {
  4708. if (flags & PERF_EF_START)
  4709. task_clock_event_start(event, flags);
  4710. return 0;
  4711. }
  4712. static void task_clock_event_del(struct perf_event *event, int flags)
  4713. {
  4714. task_clock_event_stop(event, PERF_EF_UPDATE);
  4715. }
  4716. static void task_clock_event_read(struct perf_event *event)
  4717. {
  4718. u64 now = perf_clock();
  4719. u64 delta = now - event->ctx->timestamp;
  4720. u64 time = event->ctx->time + delta;
  4721. task_clock_event_update(event, time);
  4722. }
  4723. static int task_clock_event_init(struct perf_event *event)
  4724. {
  4725. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4726. return -ENOENT;
  4727. if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
  4728. return -ENOENT;
  4729. /*
  4730. * no branch sampling for software events
  4731. */
  4732. if (has_branch_stack(event))
  4733. return -EOPNOTSUPP;
  4734. perf_swevent_init_hrtimer(event);
  4735. return 0;
  4736. }
  4737. static struct pmu perf_task_clock = {
  4738. .task_ctx_nr = perf_sw_context,
  4739. .event_init = task_clock_event_init,
  4740. .add = task_clock_event_add,
  4741. .del = task_clock_event_del,
  4742. .start = task_clock_event_start,
  4743. .stop = task_clock_event_stop,
  4744. .read = task_clock_event_read,
  4745. .event_idx = perf_swevent_event_idx,
  4746. };
  4747. static void perf_pmu_nop_void(struct pmu *pmu)
  4748. {
  4749. }
  4750. static int perf_pmu_nop_int(struct pmu *pmu)
  4751. {
  4752. return 0;
  4753. }
  4754. static void perf_pmu_start_txn(struct pmu *pmu)
  4755. {
  4756. perf_pmu_disable(pmu);
  4757. }
  4758. static int perf_pmu_commit_txn(struct pmu *pmu)
  4759. {
  4760. perf_pmu_enable(pmu);
  4761. return 0;
  4762. }
  4763. static void perf_pmu_cancel_txn(struct pmu *pmu)
  4764. {
  4765. perf_pmu_enable(pmu);
  4766. }
  4767. static int perf_event_idx_default(struct perf_event *event)
  4768. {
  4769. return event->hw.idx + 1;
  4770. }
  4771. /*
  4772. * Ensures all contexts with the same task_ctx_nr have the same
  4773. * pmu_cpu_context too.
  4774. */
  4775. static void *find_pmu_context(int ctxn)
  4776. {
  4777. struct pmu *pmu;
  4778. if (ctxn < 0)
  4779. return NULL;
  4780. list_for_each_entry(pmu, &pmus, entry) {
  4781. if (pmu->task_ctx_nr == ctxn)
  4782. return pmu->pmu_cpu_context;
  4783. }
  4784. return NULL;
  4785. }
  4786. static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
  4787. {
  4788. int cpu;
  4789. for_each_possible_cpu(cpu) {
  4790. struct perf_cpu_context *cpuctx;
  4791. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4792. if (cpuctx->unique_pmu == old_pmu)
  4793. cpuctx->unique_pmu = pmu;
  4794. }
  4795. }
  4796. static void free_pmu_context(struct pmu *pmu)
  4797. {
  4798. struct pmu *i;
  4799. mutex_lock(&pmus_lock);
  4800. /*
  4801. * Like a real lame refcount.
  4802. */
  4803. list_for_each_entry(i, &pmus, entry) {
  4804. if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
  4805. update_pmu_context(i, pmu);
  4806. goto out;
  4807. }
  4808. }
  4809. free_percpu(pmu->pmu_cpu_context);
  4810. out:
  4811. mutex_unlock(&pmus_lock);
  4812. }
  4813. static struct idr pmu_idr;
  4814. static ssize_t
  4815. type_show(struct device *dev, struct device_attribute *attr, char *page)
  4816. {
  4817. struct pmu *pmu = dev_get_drvdata(dev);
  4818. return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
  4819. }
  4820. static struct device_attribute pmu_dev_attrs[] = {
  4821. __ATTR_RO(type),
  4822. __ATTR_NULL,
  4823. };
  4824. static int pmu_bus_running;
  4825. static struct bus_type pmu_bus = {
  4826. .name = "event_source",
  4827. .dev_attrs = pmu_dev_attrs,
  4828. };
  4829. static void pmu_dev_release(struct device *dev)
  4830. {
  4831. kfree(dev);
  4832. }
  4833. static int pmu_dev_alloc(struct pmu *pmu)
  4834. {
  4835. int ret = -ENOMEM;
  4836. pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  4837. if (!pmu->dev)
  4838. goto out;
  4839. pmu->dev->groups = pmu->attr_groups;
  4840. device_initialize(pmu->dev);
  4841. ret = dev_set_name(pmu->dev, "%s", pmu->name);
  4842. if (ret)
  4843. goto free_dev;
  4844. dev_set_drvdata(pmu->dev, pmu);
  4845. pmu->dev->bus = &pmu_bus;
  4846. pmu->dev->release = pmu_dev_release;
  4847. ret = device_add(pmu->dev);
  4848. if (ret)
  4849. goto free_dev;
  4850. out:
  4851. return ret;
  4852. free_dev:
  4853. put_device(pmu->dev);
  4854. goto out;
  4855. }
  4856. static struct lock_class_key cpuctx_mutex;
  4857. static struct lock_class_key cpuctx_lock;
  4858. int perf_pmu_register(struct pmu *pmu, char *name, int type)
  4859. {
  4860. int cpu, ret;
  4861. mutex_lock(&pmus_lock);
  4862. ret = -ENOMEM;
  4863. pmu->pmu_disable_count = alloc_percpu(int);
  4864. if (!pmu->pmu_disable_count)
  4865. goto unlock;
  4866. pmu->type = -1;
  4867. if (!name)
  4868. goto skip_type;
  4869. pmu->name = name;
  4870. if (type < 0) {
  4871. int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
  4872. if (!err)
  4873. goto free_pdc;
  4874. err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
  4875. if (err) {
  4876. ret = err;
  4877. goto free_pdc;
  4878. }
  4879. }
  4880. pmu->type = type;
  4881. if (pmu_bus_running) {
  4882. ret = pmu_dev_alloc(pmu);
  4883. if (ret)
  4884. goto free_idr;
  4885. }
  4886. skip_type:
  4887. pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
  4888. if (pmu->pmu_cpu_context)
  4889. goto got_cpu_context;
  4890. pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
  4891. if (!pmu->pmu_cpu_context)
  4892. goto free_dev;
  4893. for_each_possible_cpu(cpu) {
  4894. struct perf_cpu_context *cpuctx;
  4895. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4896. __perf_event_init_context(&cpuctx->ctx);
  4897. lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
  4898. lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
  4899. cpuctx->ctx.type = cpu_context;
  4900. cpuctx->ctx.pmu = pmu;
  4901. cpuctx->jiffies_interval = 1;
  4902. INIT_LIST_HEAD(&cpuctx->rotation_list);
  4903. cpuctx->unique_pmu = pmu;
  4904. }
  4905. got_cpu_context:
  4906. if (!pmu->start_txn) {
  4907. if (pmu->pmu_enable) {
  4908. /*
  4909. * If we have pmu_enable/pmu_disable calls, install
  4910. * transaction stubs that use that to try and batch
  4911. * hardware accesses.
  4912. */
  4913. pmu->start_txn = perf_pmu_start_txn;
  4914. pmu->commit_txn = perf_pmu_commit_txn;
  4915. pmu->cancel_txn = perf_pmu_cancel_txn;
  4916. } else {
  4917. pmu->start_txn = perf_pmu_nop_void;
  4918. pmu->commit_txn = perf_pmu_nop_int;
  4919. pmu->cancel_txn = perf_pmu_nop_void;
  4920. }
  4921. }
  4922. if (!pmu->pmu_enable) {
  4923. pmu->pmu_enable = perf_pmu_nop_void;
  4924. pmu->pmu_disable = perf_pmu_nop_void;
  4925. }
  4926. if (!pmu->event_idx)
  4927. pmu->event_idx = perf_event_idx_default;
  4928. list_add_rcu(&pmu->entry, &pmus);
  4929. ret = 0;
  4930. unlock:
  4931. mutex_unlock(&pmus_lock);
  4932. return ret;
  4933. free_dev:
  4934. device_del(pmu->dev);
  4935. put_device(pmu->dev);
  4936. free_idr:
  4937. if (pmu->type >= PERF_TYPE_MAX)
  4938. idr_remove(&pmu_idr, pmu->type);
  4939. free_pdc:
  4940. free_percpu(pmu->pmu_disable_count);
  4941. goto unlock;
  4942. }
  4943. void perf_pmu_unregister(struct pmu *pmu)
  4944. {
  4945. mutex_lock(&pmus_lock);
  4946. list_del_rcu(&pmu->entry);
  4947. mutex_unlock(&pmus_lock);
  4948. /*
  4949. * We dereference the pmu list under both SRCU and regular RCU, so
  4950. * synchronize against both of those.
  4951. */
  4952. synchronize_srcu(&pmus_srcu);
  4953. synchronize_rcu();
  4954. free_percpu(pmu->pmu_disable_count);
  4955. if (pmu->type >= PERF_TYPE_MAX)
  4956. idr_remove(&pmu_idr, pmu->type);
  4957. device_del(pmu->dev);
  4958. put_device(pmu->dev);
  4959. free_pmu_context(pmu);
  4960. }
  4961. struct pmu *perf_init_event(struct perf_event *event)
  4962. {
  4963. struct pmu *pmu = NULL;
  4964. int idx;
  4965. int ret;
  4966. idx = srcu_read_lock(&pmus_srcu);
  4967. rcu_read_lock();
  4968. pmu = idr_find(&pmu_idr, event->attr.type);
  4969. rcu_read_unlock();
  4970. if (pmu) {
  4971. event->pmu = pmu;
  4972. ret = pmu->event_init(event);
  4973. if (ret)
  4974. pmu = ERR_PTR(ret);
  4975. goto unlock;
  4976. }
  4977. list_for_each_entry_rcu(pmu, &pmus, entry) {
  4978. event->pmu = pmu;
  4979. ret = pmu->event_init(event);
  4980. if (!ret)
  4981. goto unlock;
  4982. if (ret != -ENOENT) {
  4983. pmu = ERR_PTR(ret);
  4984. goto unlock;
  4985. }
  4986. }
  4987. pmu = ERR_PTR(-ENOENT);
  4988. unlock:
  4989. srcu_read_unlock(&pmus_srcu, idx);
  4990. return pmu;
  4991. }
  4992. /*
  4993. * Allocate and initialize a event structure
  4994. */
  4995. static struct perf_event *
  4996. perf_event_alloc(struct perf_event_attr *attr, int cpu,
  4997. struct task_struct *task,
  4998. struct perf_event *group_leader,
  4999. struct perf_event *parent_event,
  5000. perf_overflow_handler_t overflow_handler,
  5001. void *context)
  5002. {
  5003. struct pmu *pmu;
  5004. struct perf_event *event;
  5005. struct hw_perf_event *hwc;
  5006. long err;
  5007. if ((unsigned)cpu >= nr_cpu_ids) {
  5008. if (!task || cpu != -1)
  5009. return ERR_PTR(-EINVAL);
  5010. }
  5011. event = kzalloc(sizeof(*event), GFP_KERNEL);
  5012. if (!event)
  5013. return ERR_PTR(-ENOMEM);
  5014. /*
  5015. * Single events are their own group leaders, with an
  5016. * empty sibling list:
  5017. */
  5018. if (!group_leader)
  5019. group_leader = event;
  5020. mutex_init(&event->child_mutex);
  5021. INIT_LIST_HEAD(&event->child_list);
  5022. INIT_LIST_HEAD(&event->group_entry);
  5023. INIT_LIST_HEAD(&event->event_entry);
  5024. INIT_LIST_HEAD(&event->sibling_list);
  5025. INIT_LIST_HEAD(&event->rb_entry);
  5026. init_waitqueue_head(&event->waitq);
  5027. init_irq_work(&event->pending, perf_pending_event);
  5028. mutex_init(&event->mmap_mutex);
  5029. atomic_long_set(&event->refcount, 1);
  5030. event->cpu = cpu;
  5031. event->attr = *attr;
  5032. event->group_leader = group_leader;
  5033. event->pmu = NULL;
  5034. event->oncpu = -1;
  5035. event->parent = parent_event;
  5036. event->ns = get_pid_ns(task_active_pid_ns(current));
  5037. event->id = atomic64_inc_return(&perf_event_id);
  5038. event->state = PERF_EVENT_STATE_INACTIVE;
  5039. if (task) {
  5040. event->attach_state = PERF_ATTACH_TASK;
  5041. if (attr->type == PERF_TYPE_TRACEPOINT)
  5042. event->hw.tp_target = task;
  5043. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  5044. /*
  5045. * hw_breakpoint is a bit difficult here..
  5046. */
  5047. else if (attr->type == PERF_TYPE_BREAKPOINT)
  5048. event->hw.bp_target = task;
  5049. #endif
  5050. }
  5051. if (!overflow_handler && parent_event) {
  5052. overflow_handler = parent_event->overflow_handler;
  5053. context = parent_event->overflow_handler_context;
  5054. }
  5055. event->overflow_handler = overflow_handler;
  5056. event->overflow_handler_context = context;
  5057. perf_event__state_init(event);
  5058. pmu = NULL;
  5059. hwc = &event->hw;
  5060. hwc->sample_period = attr->sample_period;
  5061. if (attr->freq && attr->sample_freq)
  5062. hwc->sample_period = 1;
  5063. hwc->last_period = hwc->sample_period;
  5064. local64_set(&hwc->period_left, hwc->sample_period);
  5065. /*
  5066. * we currently do not support PERF_FORMAT_GROUP on inherited events
  5067. */
  5068. if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
  5069. goto done;
  5070. pmu = perf_init_event(event);
  5071. done:
  5072. err = 0;
  5073. if (!pmu)
  5074. err = -EINVAL;
  5075. else if (IS_ERR(pmu))
  5076. err = PTR_ERR(pmu);
  5077. if (err) {
  5078. if (event->ns)
  5079. put_pid_ns(event->ns);
  5080. kfree(event);
  5081. return ERR_PTR(err);
  5082. }
  5083. if (!event->parent) {
  5084. if (event->attach_state & PERF_ATTACH_TASK)
  5085. static_key_slow_inc(&perf_sched_events.key);
  5086. if (event->attr.mmap || event->attr.mmap_data)
  5087. atomic_inc(&nr_mmap_events);
  5088. if (event->attr.comm)
  5089. atomic_inc(&nr_comm_events);
  5090. if (event->attr.task)
  5091. atomic_inc(&nr_task_events);
  5092. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
  5093. err = get_callchain_buffers();
  5094. if (err) {
  5095. free_event(event);
  5096. return ERR_PTR(err);
  5097. }
  5098. }
  5099. if (has_branch_stack(event)) {
  5100. static_key_slow_inc(&perf_sched_events.key);
  5101. if (!(event->attach_state & PERF_ATTACH_TASK))
  5102. atomic_inc(&per_cpu(perf_branch_stack_events,
  5103. event->cpu));
  5104. }
  5105. }
  5106. return event;
  5107. }
  5108. static int perf_copy_attr(struct perf_event_attr __user *uattr,
  5109. struct perf_event_attr *attr)
  5110. {
  5111. u32 size;
  5112. int ret;
  5113. if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
  5114. return -EFAULT;
  5115. /*
  5116. * zero the full structure, so that a short copy will be nice.
  5117. */
  5118. memset(attr, 0, sizeof(*attr));
  5119. ret = get_user(size, &uattr->size);
  5120. if (ret)
  5121. return ret;
  5122. if (size > PAGE_SIZE) /* silly large */
  5123. goto err_size;
  5124. if (!size) /* abi compat */
  5125. size = PERF_ATTR_SIZE_VER0;
  5126. if (size < PERF_ATTR_SIZE_VER0)
  5127. goto err_size;
  5128. /*
  5129. * If we're handed a bigger struct than we know of,
  5130. * ensure all the unknown bits are 0 - i.e. new
  5131. * user-space does not rely on any kernel feature
  5132. * extensions we dont know about yet.
  5133. */
  5134. if (size > sizeof(*attr)) {
  5135. unsigned char __user *addr;
  5136. unsigned char __user *end;
  5137. unsigned char val;
  5138. addr = (void __user *)uattr + sizeof(*attr);
  5139. end = (void __user *)uattr + size;
  5140. for (; addr < end; addr++) {
  5141. ret = get_user(val, addr);
  5142. if (ret)
  5143. return ret;
  5144. if (val)
  5145. goto err_size;
  5146. }
  5147. size = sizeof(*attr);
  5148. }
  5149. ret = copy_from_user(attr, uattr, size);
  5150. if (ret)
  5151. return -EFAULT;
  5152. if (attr->__reserved_1)
  5153. return -EINVAL;
  5154. if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
  5155. return -EINVAL;
  5156. if (attr->read_format & ~(PERF_FORMAT_MAX-1))
  5157. return -EINVAL;
  5158. if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
  5159. u64 mask = attr->branch_sample_type;
  5160. /* only using defined bits */
  5161. if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
  5162. return -EINVAL;
  5163. /* at least one branch bit must be set */
  5164. if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
  5165. return -EINVAL;
  5166. /* kernel level capture: check permissions */
  5167. if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
  5168. && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  5169. return -EACCES;
  5170. /* propagate priv level, when not set for branch */
  5171. if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
  5172. /* exclude_kernel checked on syscall entry */
  5173. if (!attr->exclude_kernel)
  5174. mask |= PERF_SAMPLE_BRANCH_KERNEL;
  5175. if (!attr->exclude_user)
  5176. mask |= PERF_SAMPLE_BRANCH_USER;
  5177. if (!attr->exclude_hv)
  5178. mask |= PERF_SAMPLE_BRANCH_HV;
  5179. /*
  5180. * adjust user setting (for HW filter setup)
  5181. */
  5182. attr->branch_sample_type = mask;
  5183. }
  5184. }
  5185. if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
  5186. ret = perf_reg_validate(attr->sample_regs_user);
  5187. if (ret)
  5188. return ret;
  5189. }
  5190. if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
  5191. if (!arch_perf_have_user_stack_dump())
  5192. return -ENOSYS;
  5193. /*
  5194. * We have __u32 type for the size, but so far
  5195. * we can only use __u16 as maximum due to the
  5196. * __u16 sample size limit.
  5197. */
  5198. if (attr->sample_stack_user >= USHRT_MAX)
  5199. ret = -EINVAL;
  5200. else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
  5201. ret = -EINVAL;
  5202. }
  5203. out:
  5204. return ret;
  5205. err_size:
  5206. put_user(sizeof(*attr), &uattr->size);
  5207. ret = -E2BIG;
  5208. goto out;
  5209. }
  5210. static int
  5211. perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
  5212. {
  5213. struct ring_buffer *rb = NULL, *old_rb = NULL;
  5214. int ret = -EINVAL;
  5215. if (!output_event)
  5216. goto set;
  5217. /* don't allow circular references */
  5218. if (event == output_event)
  5219. goto out;
  5220. /*
  5221. * Don't allow cross-cpu buffers
  5222. */
  5223. if (output_event->cpu != event->cpu)
  5224. goto out;
  5225. /*
  5226. * If its not a per-cpu rb, it must be the same task.
  5227. */
  5228. if (output_event->cpu == -1 && output_event->ctx != event->ctx)
  5229. goto out;
  5230. set:
  5231. mutex_lock(&event->mmap_mutex);
  5232. /* Can't redirect output if we've got an active mmap() */
  5233. if (atomic_read(&event->mmap_count))
  5234. goto unlock;
  5235. if (output_event) {
  5236. /* get the rb we want to redirect to */
  5237. rb = ring_buffer_get(output_event);
  5238. if (!rb)
  5239. goto unlock;
  5240. }
  5241. old_rb = event->rb;
  5242. rcu_assign_pointer(event->rb, rb);
  5243. if (old_rb)
  5244. ring_buffer_detach(event, old_rb);
  5245. ret = 0;
  5246. unlock:
  5247. mutex_unlock(&event->mmap_mutex);
  5248. if (old_rb)
  5249. ring_buffer_put(old_rb);
  5250. out:
  5251. return ret;
  5252. }
  5253. /**
  5254. * sys_perf_event_open - open a performance event, associate it to a task/cpu
  5255. *
  5256. * @attr_uptr: event_id type attributes for monitoring/sampling
  5257. * @pid: target pid
  5258. * @cpu: target cpu
  5259. * @group_fd: group leader event fd
  5260. */
  5261. SYSCALL_DEFINE5(perf_event_open,
  5262. struct perf_event_attr __user *, attr_uptr,
  5263. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  5264. {
  5265. struct perf_event *group_leader = NULL, *output_event = NULL;
  5266. struct perf_event *event, *sibling;
  5267. struct perf_event_attr attr;
  5268. struct perf_event_context *ctx;
  5269. struct file *event_file = NULL;
  5270. struct fd group = {NULL, 0};
  5271. struct task_struct *task = NULL;
  5272. struct pmu *pmu;
  5273. int event_fd;
  5274. int move_group = 0;
  5275. int err;
  5276. /* for future expandability... */
  5277. if (flags & ~PERF_FLAG_ALL)
  5278. return -EINVAL;
  5279. err = perf_copy_attr(attr_uptr, &attr);
  5280. if (err)
  5281. return err;
  5282. if (!attr.exclude_kernel) {
  5283. if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  5284. return -EACCES;
  5285. }
  5286. if (attr.freq) {
  5287. if (attr.sample_freq > sysctl_perf_event_sample_rate)
  5288. return -EINVAL;
  5289. }
  5290. /*
  5291. * In cgroup mode, the pid argument is used to pass the fd
  5292. * opened to the cgroup directory in cgroupfs. The cpu argument
  5293. * designates the cpu on which to monitor threads from that
  5294. * cgroup.
  5295. */
  5296. if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
  5297. return -EINVAL;
  5298. event_fd = get_unused_fd();
  5299. if (event_fd < 0)
  5300. return event_fd;
  5301. if (group_fd != -1) {
  5302. err = perf_fget_light(group_fd, &group);
  5303. if (err)
  5304. goto err_fd;
  5305. group_leader = group.file->private_data;
  5306. if (flags & PERF_FLAG_FD_OUTPUT)
  5307. output_event = group_leader;
  5308. if (flags & PERF_FLAG_FD_NO_GROUP)
  5309. group_leader = NULL;
  5310. }
  5311. if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
  5312. task = find_lively_task_by_vpid(pid);
  5313. if (IS_ERR(task)) {
  5314. err = PTR_ERR(task);
  5315. goto err_group_fd;
  5316. }
  5317. }
  5318. get_online_cpus();
  5319. event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
  5320. NULL, NULL);
  5321. if (IS_ERR(event)) {
  5322. err = PTR_ERR(event);
  5323. goto err_task;
  5324. }
  5325. if (flags & PERF_FLAG_PID_CGROUP) {
  5326. err = perf_cgroup_connect(pid, event, &attr, group_leader);
  5327. if (err)
  5328. goto err_alloc;
  5329. /*
  5330. * one more event:
  5331. * - that has cgroup constraint on event->cpu
  5332. * - that may need work on context switch
  5333. */
  5334. atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
  5335. static_key_slow_inc(&perf_sched_events.key);
  5336. }
  5337. /*
  5338. * Special case software events and allow them to be part of
  5339. * any hardware group.
  5340. */
  5341. pmu = event->pmu;
  5342. if (group_leader &&
  5343. (is_software_event(event) != is_software_event(group_leader))) {
  5344. if (is_software_event(event)) {
  5345. /*
  5346. * If event and group_leader are not both a software
  5347. * event, and event is, then group leader is not.
  5348. *
  5349. * Allow the addition of software events to !software
  5350. * groups, this is safe because software events never
  5351. * fail to schedule.
  5352. */
  5353. pmu = group_leader->pmu;
  5354. } else if (is_software_event(group_leader) &&
  5355. (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
  5356. /*
  5357. * In case the group is a pure software group, and we
  5358. * try to add a hardware event, move the whole group to
  5359. * the hardware context.
  5360. */
  5361. move_group = 1;
  5362. }
  5363. }
  5364. /*
  5365. * Get the target context (task or percpu):
  5366. */
  5367. ctx = find_get_context(pmu, task, event->cpu);
  5368. if (IS_ERR(ctx)) {
  5369. err = PTR_ERR(ctx);
  5370. goto err_alloc;
  5371. }
  5372. if (task) {
  5373. put_task_struct(task);
  5374. task = NULL;
  5375. }
  5376. /*
  5377. * Look up the group leader (we will attach this event to it):
  5378. */
  5379. if (group_leader) {
  5380. err = -EINVAL;
  5381. /*
  5382. * Do not allow a recursive hierarchy (this new sibling
  5383. * becoming part of another group-sibling):
  5384. */
  5385. if (group_leader->group_leader != group_leader)
  5386. goto err_context;
  5387. /*
  5388. * Do not allow to attach to a group in a different
  5389. * task or CPU context:
  5390. */
  5391. if (move_group) {
  5392. if (group_leader->ctx->type != ctx->type)
  5393. goto err_context;
  5394. } else {
  5395. if (group_leader->ctx != ctx)
  5396. goto err_context;
  5397. }
  5398. /*
  5399. * Only a group leader can be exclusive or pinned
  5400. */
  5401. if (attr.exclusive || attr.pinned)
  5402. goto err_context;
  5403. }
  5404. if (output_event) {
  5405. err = perf_event_set_output(event, output_event);
  5406. if (err)
  5407. goto err_context;
  5408. }
  5409. event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
  5410. if (IS_ERR(event_file)) {
  5411. err = PTR_ERR(event_file);
  5412. goto err_context;
  5413. }
  5414. if (move_group) {
  5415. struct perf_event_context *gctx = group_leader->ctx;
  5416. mutex_lock(&gctx->mutex);
  5417. perf_remove_from_context(group_leader);
  5418. /*
  5419. * Removing from the context ends up with disabled
  5420. * event. What we want here is event in the initial
  5421. * startup state, ready to be add into new context.
  5422. */
  5423. perf_event__state_init(group_leader);
  5424. list_for_each_entry(sibling, &group_leader->sibling_list,
  5425. group_entry) {
  5426. perf_remove_from_context(sibling);
  5427. perf_event__state_init(sibling);
  5428. put_ctx(gctx);
  5429. }
  5430. mutex_unlock(&gctx->mutex);
  5431. put_ctx(gctx);
  5432. }
  5433. WARN_ON_ONCE(ctx->parent_ctx);
  5434. mutex_lock(&ctx->mutex);
  5435. if (move_group) {
  5436. synchronize_rcu();
  5437. perf_install_in_context(ctx, group_leader, event->cpu);
  5438. get_ctx(ctx);
  5439. list_for_each_entry(sibling, &group_leader->sibling_list,
  5440. group_entry) {
  5441. perf_install_in_context(ctx, sibling, event->cpu);
  5442. get_ctx(ctx);
  5443. }
  5444. }
  5445. perf_install_in_context(ctx, event, event->cpu);
  5446. ++ctx->generation;
  5447. perf_unpin_context(ctx);
  5448. mutex_unlock(&ctx->mutex);
  5449. put_online_cpus();
  5450. event->owner = current;
  5451. mutex_lock(&current->perf_event_mutex);
  5452. list_add_tail(&event->owner_entry, &current->perf_event_list);
  5453. mutex_unlock(&current->perf_event_mutex);
  5454. /*
  5455. * Precalculate sample_data sizes
  5456. */
  5457. perf_event__header_size(event);
  5458. perf_event__id_header_size(event);
  5459. /*
  5460. * Drop the reference on the group_event after placing the
  5461. * new event on the sibling_list. This ensures destruction
  5462. * of the group leader will find the pointer to itself in
  5463. * perf_group_detach().
  5464. */
  5465. fdput(group);
  5466. fd_install(event_fd, event_file);
  5467. return event_fd;
  5468. err_context:
  5469. perf_unpin_context(ctx);
  5470. put_ctx(ctx);
  5471. err_alloc:
  5472. free_event(event);
  5473. err_task:
  5474. put_online_cpus();
  5475. if (task)
  5476. put_task_struct(task);
  5477. err_group_fd:
  5478. fdput(group);
  5479. err_fd:
  5480. put_unused_fd(event_fd);
  5481. return err;
  5482. }
  5483. /**
  5484. * perf_event_create_kernel_counter
  5485. *
  5486. * @attr: attributes of the counter to create
  5487. * @cpu: cpu in which the counter is bound
  5488. * @task: task to profile (NULL for percpu)
  5489. */
  5490. struct perf_event *
  5491. perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
  5492. struct task_struct *task,
  5493. perf_overflow_handler_t overflow_handler,
  5494. void *context)
  5495. {
  5496. struct perf_event_context *ctx;
  5497. struct perf_event *event;
  5498. int err;
  5499. /*
  5500. * Get the target context (task or percpu):
  5501. */
  5502. event = perf_event_alloc(attr, cpu, task, NULL, NULL,
  5503. overflow_handler, context);
  5504. if (IS_ERR(event)) {
  5505. err = PTR_ERR(event);
  5506. goto err;
  5507. }
  5508. ctx = find_get_context(event->pmu, task, cpu);
  5509. if (IS_ERR(ctx)) {
  5510. err = PTR_ERR(ctx);
  5511. goto err_free;
  5512. }
  5513. WARN_ON_ONCE(ctx->parent_ctx);
  5514. mutex_lock(&ctx->mutex);
  5515. perf_install_in_context(ctx, event, cpu);
  5516. ++ctx->generation;
  5517. perf_unpin_context(ctx);
  5518. mutex_unlock(&ctx->mutex);
  5519. return event;
  5520. err_free:
  5521. free_event(event);
  5522. err:
  5523. return ERR_PTR(err);
  5524. }
  5525. EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
  5526. void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
  5527. {
  5528. struct perf_event_context *src_ctx;
  5529. struct perf_event_context *dst_ctx;
  5530. struct perf_event *event, *tmp;
  5531. LIST_HEAD(events);
  5532. src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
  5533. dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
  5534. mutex_lock(&src_ctx->mutex);
  5535. list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
  5536. event_entry) {
  5537. perf_remove_from_context(event);
  5538. put_ctx(src_ctx);
  5539. list_add(&event->event_entry, &events);
  5540. }
  5541. mutex_unlock(&src_ctx->mutex);
  5542. synchronize_rcu();
  5543. mutex_lock(&dst_ctx->mutex);
  5544. list_for_each_entry_safe(event, tmp, &events, event_entry) {
  5545. list_del(&event->event_entry);
  5546. if (event->state >= PERF_EVENT_STATE_OFF)
  5547. event->state = PERF_EVENT_STATE_INACTIVE;
  5548. perf_install_in_context(dst_ctx, event, dst_cpu);
  5549. get_ctx(dst_ctx);
  5550. }
  5551. mutex_unlock(&dst_ctx->mutex);
  5552. }
  5553. EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
  5554. static void sync_child_event(struct perf_event *child_event,
  5555. struct task_struct *child)
  5556. {
  5557. struct perf_event *parent_event = child_event->parent;
  5558. u64 child_val;
  5559. if (child_event->attr.inherit_stat)
  5560. perf_event_read_event(child_event, child);
  5561. child_val = perf_event_count(child_event);
  5562. /*
  5563. * Add back the child's count to the parent's count:
  5564. */
  5565. atomic64_add(child_val, &parent_event->child_count);
  5566. atomic64_add(child_event->total_time_enabled,
  5567. &parent_event->child_total_time_enabled);
  5568. atomic64_add(child_event->total_time_running,
  5569. &parent_event->child_total_time_running);
  5570. /*
  5571. * Remove this event from the parent's list
  5572. */
  5573. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  5574. mutex_lock(&parent_event->child_mutex);
  5575. list_del_init(&child_event->child_list);
  5576. mutex_unlock(&parent_event->child_mutex);
  5577. /*
  5578. * Release the parent event, if this was the last
  5579. * reference to it.
  5580. */
  5581. put_event(parent_event);
  5582. }
  5583. static void
  5584. __perf_event_exit_task(struct perf_event *child_event,
  5585. struct perf_event_context *child_ctx,
  5586. struct task_struct *child)
  5587. {
  5588. if (child_event->parent) {
  5589. raw_spin_lock_irq(&child_ctx->lock);
  5590. perf_group_detach(child_event);
  5591. raw_spin_unlock_irq(&child_ctx->lock);
  5592. }
  5593. perf_remove_from_context(child_event);
  5594. /*
  5595. * It can happen that the parent exits first, and has events
  5596. * that are still around due to the child reference. These
  5597. * events need to be zapped.
  5598. */
  5599. if (child_event->parent) {
  5600. sync_child_event(child_event, child);
  5601. free_event(child_event);
  5602. }
  5603. }
  5604. static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
  5605. {
  5606. struct perf_event *child_event, *tmp;
  5607. struct perf_event_context *child_ctx;
  5608. unsigned long flags;
  5609. if (likely(!child->perf_event_ctxp[ctxn])) {
  5610. perf_event_task(child, NULL, 0);
  5611. return;
  5612. }
  5613. local_irq_save(flags);
  5614. /*
  5615. * We can't reschedule here because interrupts are disabled,
  5616. * and either child is current or it is a task that can't be
  5617. * scheduled, so we are now safe from rescheduling changing
  5618. * our context.
  5619. */
  5620. child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
  5621. /*
  5622. * Take the context lock here so that if find_get_context is
  5623. * reading child->perf_event_ctxp, we wait until it has
  5624. * incremented the context's refcount before we do put_ctx below.
  5625. */
  5626. raw_spin_lock(&child_ctx->lock);
  5627. task_ctx_sched_out(child_ctx);
  5628. child->perf_event_ctxp[ctxn] = NULL;
  5629. /*
  5630. * If this context is a clone; unclone it so it can't get
  5631. * swapped to another process while we're removing all
  5632. * the events from it.
  5633. */
  5634. unclone_ctx(child_ctx);
  5635. update_context_time(child_ctx);
  5636. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  5637. /*
  5638. * Report the task dead after unscheduling the events so that we
  5639. * won't get any samples after PERF_RECORD_EXIT. We can however still
  5640. * get a few PERF_RECORD_READ events.
  5641. */
  5642. perf_event_task(child, child_ctx, 0);
  5643. /*
  5644. * We can recurse on the same lock type through:
  5645. *
  5646. * __perf_event_exit_task()
  5647. * sync_child_event()
  5648. * put_event()
  5649. * mutex_lock(&ctx->mutex)
  5650. *
  5651. * But since its the parent context it won't be the same instance.
  5652. */
  5653. mutex_lock(&child_ctx->mutex);
  5654. again:
  5655. list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
  5656. group_entry)
  5657. __perf_event_exit_task(child_event, child_ctx, child);
  5658. list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
  5659. group_entry)
  5660. __perf_event_exit_task(child_event, child_ctx, child);
  5661. /*
  5662. * If the last event was a group event, it will have appended all
  5663. * its siblings to the list, but we obtained 'tmp' before that which
  5664. * will still point to the list head terminating the iteration.
  5665. */
  5666. if (!list_empty(&child_ctx->pinned_groups) ||
  5667. !list_empty(&child_ctx->flexible_groups))
  5668. goto again;
  5669. mutex_unlock(&child_ctx->mutex);
  5670. put_ctx(child_ctx);
  5671. }
  5672. /*
  5673. * When a child task exits, feed back event values to parent events.
  5674. */
  5675. void perf_event_exit_task(struct task_struct *child)
  5676. {
  5677. struct perf_event *event, *tmp;
  5678. int ctxn;
  5679. mutex_lock(&child->perf_event_mutex);
  5680. list_for_each_entry_safe(event, tmp, &child->perf_event_list,
  5681. owner_entry) {
  5682. list_del_init(&event->owner_entry);
  5683. /*
  5684. * Ensure the list deletion is visible before we clear
  5685. * the owner, closes a race against perf_release() where
  5686. * we need to serialize on the owner->perf_event_mutex.
  5687. */
  5688. smp_wmb();
  5689. event->owner = NULL;
  5690. }
  5691. mutex_unlock(&child->perf_event_mutex);
  5692. for_each_task_context_nr(ctxn)
  5693. perf_event_exit_task_context(child, ctxn);
  5694. }
  5695. static void perf_free_event(struct perf_event *event,
  5696. struct perf_event_context *ctx)
  5697. {
  5698. struct perf_event *parent = event->parent;
  5699. if (WARN_ON_ONCE(!parent))
  5700. return;
  5701. mutex_lock(&parent->child_mutex);
  5702. list_del_init(&event->child_list);
  5703. mutex_unlock(&parent->child_mutex);
  5704. put_event(parent);
  5705. perf_group_detach(event);
  5706. list_del_event(event, ctx);
  5707. free_event(event);
  5708. }
  5709. /*
  5710. * free an unexposed, unused context as created by inheritance by
  5711. * perf_event_init_task below, used by fork() in case of fail.
  5712. */
  5713. void perf_event_free_task(struct task_struct *task)
  5714. {
  5715. struct perf_event_context *ctx;
  5716. struct perf_event *event, *tmp;
  5717. int ctxn;
  5718. for_each_task_context_nr(ctxn) {
  5719. ctx = task->perf_event_ctxp[ctxn];
  5720. if (!ctx)
  5721. continue;
  5722. mutex_lock(&ctx->mutex);
  5723. again:
  5724. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
  5725. group_entry)
  5726. perf_free_event(event, ctx);
  5727. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
  5728. group_entry)
  5729. perf_free_event(event, ctx);
  5730. if (!list_empty(&ctx->pinned_groups) ||
  5731. !list_empty(&ctx->flexible_groups))
  5732. goto again;
  5733. mutex_unlock(&ctx->mutex);
  5734. put_ctx(ctx);
  5735. }
  5736. }
  5737. void perf_event_delayed_put(struct task_struct *task)
  5738. {
  5739. int ctxn;
  5740. for_each_task_context_nr(ctxn)
  5741. WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
  5742. }
  5743. /*
  5744. * inherit a event from parent task to child task:
  5745. */
  5746. static struct perf_event *
  5747. inherit_event(struct perf_event *parent_event,
  5748. struct task_struct *parent,
  5749. struct perf_event_context *parent_ctx,
  5750. struct task_struct *child,
  5751. struct perf_event *group_leader,
  5752. struct perf_event_context *child_ctx)
  5753. {
  5754. struct perf_event *child_event;
  5755. unsigned long flags;
  5756. /*
  5757. * Instead of creating recursive hierarchies of events,
  5758. * we link inherited events back to the original parent,
  5759. * which has a filp for sure, which we use as the reference
  5760. * count:
  5761. */
  5762. if (parent_event->parent)
  5763. parent_event = parent_event->parent;
  5764. child_event = perf_event_alloc(&parent_event->attr,
  5765. parent_event->cpu,
  5766. child,
  5767. group_leader, parent_event,
  5768. NULL, NULL);
  5769. if (IS_ERR(child_event))
  5770. return child_event;
  5771. if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
  5772. free_event(child_event);
  5773. return NULL;
  5774. }
  5775. get_ctx(child_ctx);
  5776. /*
  5777. * Make the child state follow the state of the parent event,
  5778. * not its attr.disabled bit. We hold the parent's mutex,
  5779. * so we won't race with perf_event_{en, dis}able_family.
  5780. */
  5781. if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
  5782. child_event->state = PERF_EVENT_STATE_INACTIVE;
  5783. else
  5784. child_event->state = PERF_EVENT_STATE_OFF;
  5785. if (parent_event->attr.freq) {
  5786. u64 sample_period = parent_event->hw.sample_period;
  5787. struct hw_perf_event *hwc = &child_event->hw;
  5788. hwc->sample_period = sample_period;
  5789. hwc->last_period = sample_period;
  5790. local64_set(&hwc->period_left, sample_period);
  5791. }
  5792. child_event->ctx = child_ctx;
  5793. child_event->overflow_handler = parent_event->overflow_handler;
  5794. child_event->overflow_handler_context
  5795. = parent_event->overflow_handler_context;
  5796. /*
  5797. * Precalculate sample_data sizes
  5798. */
  5799. perf_event__header_size(child_event);
  5800. perf_event__id_header_size(child_event);
  5801. /*
  5802. * Link it up in the child's context:
  5803. */
  5804. raw_spin_lock_irqsave(&child_ctx->lock, flags);
  5805. add_event_to_ctx(child_event, child_ctx);
  5806. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  5807. /*
  5808. * Link this into the parent event's child list
  5809. */
  5810. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  5811. mutex_lock(&parent_event->child_mutex);
  5812. list_add_tail(&child_event->child_list, &parent_event->child_list);
  5813. mutex_unlock(&parent_event->child_mutex);
  5814. return child_event;
  5815. }
  5816. static int inherit_group(struct perf_event *parent_event,
  5817. struct task_struct *parent,
  5818. struct perf_event_context *parent_ctx,
  5819. struct task_struct *child,
  5820. struct perf_event_context *child_ctx)
  5821. {
  5822. struct perf_event *leader;
  5823. struct perf_event *sub;
  5824. struct perf_event *child_ctr;
  5825. leader = inherit_event(parent_event, parent, parent_ctx,
  5826. child, NULL, child_ctx);
  5827. if (IS_ERR(leader))
  5828. return PTR_ERR(leader);
  5829. list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
  5830. child_ctr = inherit_event(sub, parent, parent_ctx,
  5831. child, leader, child_ctx);
  5832. if (IS_ERR(child_ctr))
  5833. return PTR_ERR(child_ctr);
  5834. }
  5835. return 0;
  5836. }
  5837. static int
  5838. inherit_task_group(struct perf_event *event, struct task_struct *parent,
  5839. struct perf_event_context *parent_ctx,
  5840. struct task_struct *child, int ctxn,
  5841. int *inherited_all)
  5842. {
  5843. int ret;
  5844. struct perf_event_context *child_ctx;
  5845. if (!event->attr.inherit) {
  5846. *inherited_all = 0;
  5847. return 0;
  5848. }
  5849. child_ctx = child->perf_event_ctxp[ctxn];
  5850. if (!child_ctx) {
  5851. /*
  5852. * This is executed from the parent task context, so
  5853. * inherit events that have been marked for cloning.
  5854. * First allocate and initialize a context for the
  5855. * child.
  5856. */
  5857. child_ctx = alloc_perf_context(event->pmu, child);
  5858. if (!child_ctx)
  5859. return -ENOMEM;
  5860. child->perf_event_ctxp[ctxn] = child_ctx;
  5861. }
  5862. ret = inherit_group(event, parent, parent_ctx,
  5863. child, child_ctx);
  5864. if (ret)
  5865. *inherited_all = 0;
  5866. return ret;
  5867. }
  5868. /*
  5869. * Initialize the perf_event context in task_struct
  5870. */
  5871. int perf_event_init_context(struct task_struct *child, int ctxn)
  5872. {
  5873. struct perf_event_context *child_ctx, *parent_ctx;
  5874. struct perf_event_context *cloned_ctx;
  5875. struct perf_event *event;
  5876. struct task_struct *parent = current;
  5877. int inherited_all = 1;
  5878. unsigned long flags;
  5879. int ret = 0;
  5880. if (likely(!parent->perf_event_ctxp[ctxn]))
  5881. return 0;
  5882. /*
  5883. * If the parent's context is a clone, pin it so it won't get
  5884. * swapped under us.
  5885. */
  5886. parent_ctx = perf_pin_task_context(parent, ctxn);
  5887. /*
  5888. * No need to check if parent_ctx != NULL here; since we saw
  5889. * it non-NULL earlier, the only reason for it to become NULL
  5890. * is if we exit, and since we're currently in the middle of
  5891. * a fork we can't be exiting at the same time.
  5892. */
  5893. /*
  5894. * Lock the parent list. No need to lock the child - not PID
  5895. * hashed yet and not running, so nobody can access it.
  5896. */
  5897. mutex_lock(&parent_ctx->mutex);
  5898. /*
  5899. * We dont have to disable NMIs - we are only looking at
  5900. * the list, not manipulating it:
  5901. */
  5902. list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
  5903. ret = inherit_task_group(event, parent, parent_ctx,
  5904. child, ctxn, &inherited_all);
  5905. if (ret)
  5906. break;
  5907. }
  5908. /*
  5909. * We can't hold ctx->lock when iterating the ->flexible_group list due
  5910. * to allocations, but we need to prevent rotation because
  5911. * rotate_ctx() will change the list from interrupt context.
  5912. */
  5913. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5914. parent_ctx->rotate_disable = 1;
  5915. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5916. list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
  5917. ret = inherit_task_group(event, parent, parent_ctx,
  5918. child, ctxn, &inherited_all);
  5919. if (ret)
  5920. break;
  5921. }
  5922. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5923. parent_ctx->rotate_disable = 0;
  5924. child_ctx = child->perf_event_ctxp[ctxn];
  5925. if (child_ctx && inherited_all) {
  5926. /*
  5927. * Mark the child context as a clone of the parent
  5928. * context, or of whatever the parent is a clone of.
  5929. *
  5930. * Note that if the parent is a clone, the holding of
  5931. * parent_ctx->lock avoids it from being uncloned.
  5932. */
  5933. cloned_ctx = parent_ctx->parent_ctx;
  5934. if (cloned_ctx) {
  5935. child_ctx->parent_ctx = cloned_ctx;
  5936. child_ctx->parent_gen = parent_ctx->parent_gen;
  5937. } else {
  5938. child_ctx->parent_ctx = parent_ctx;
  5939. child_ctx->parent_gen = parent_ctx->generation;
  5940. }
  5941. get_ctx(child_ctx->parent_ctx);
  5942. }
  5943. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5944. mutex_unlock(&parent_ctx->mutex);
  5945. perf_unpin_context(parent_ctx);
  5946. put_ctx(parent_ctx);
  5947. return ret;
  5948. }
  5949. /*
  5950. * Initialize the perf_event context in task_struct
  5951. */
  5952. int perf_event_init_task(struct task_struct *child)
  5953. {
  5954. int ctxn, ret;
  5955. memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
  5956. mutex_init(&child->perf_event_mutex);
  5957. INIT_LIST_HEAD(&child->perf_event_list);
  5958. for_each_task_context_nr(ctxn) {
  5959. ret = perf_event_init_context(child, ctxn);
  5960. if (ret)
  5961. return ret;
  5962. }
  5963. return 0;
  5964. }
  5965. static void __init perf_event_init_all_cpus(void)
  5966. {
  5967. struct swevent_htable *swhash;
  5968. int cpu;
  5969. for_each_possible_cpu(cpu) {
  5970. swhash = &per_cpu(swevent_htable, cpu);
  5971. mutex_init(&swhash->hlist_mutex);
  5972. INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
  5973. }
  5974. }
  5975. static void __cpuinit perf_event_init_cpu(int cpu)
  5976. {
  5977. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5978. mutex_lock(&swhash->hlist_mutex);
  5979. if (swhash->hlist_refcount > 0) {
  5980. struct swevent_hlist *hlist;
  5981. hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
  5982. WARN_ON(!hlist);
  5983. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  5984. }
  5985. mutex_unlock(&swhash->hlist_mutex);
  5986. }
  5987. #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
  5988. static void perf_pmu_rotate_stop(struct pmu *pmu)
  5989. {
  5990. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  5991. WARN_ON(!irqs_disabled());
  5992. list_del_init(&cpuctx->rotation_list);
  5993. }
  5994. static void __perf_event_exit_context(void *__info)
  5995. {
  5996. struct perf_event_context *ctx = __info;
  5997. struct perf_event *event, *tmp;
  5998. perf_pmu_rotate_stop(ctx->pmu);
  5999. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
  6000. __perf_remove_from_context(event);
  6001. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
  6002. __perf_remove_from_context(event);
  6003. }
  6004. static void perf_event_exit_cpu_context(int cpu)
  6005. {
  6006. struct perf_event_context *ctx;
  6007. struct pmu *pmu;
  6008. int idx;
  6009. idx = srcu_read_lock(&pmus_srcu);
  6010. list_for_each_entry_rcu(pmu, &pmus, entry) {
  6011. ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
  6012. mutex_lock(&ctx->mutex);
  6013. smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
  6014. mutex_unlock(&ctx->mutex);
  6015. }
  6016. srcu_read_unlock(&pmus_srcu, idx);
  6017. }
  6018. static void perf_event_exit_cpu(int cpu)
  6019. {
  6020. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  6021. mutex_lock(&swhash->hlist_mutex);
  6022. swevent_hlist_release(swhash);
  6023. mutex_unlock(&swhash->hlist_mutex);
  6024. perf_event_exit_cpu_context(cpu);
  6025. }
  6026. #else
  6027. static inline void perf_event_exit_cpu(int cpu) { }
  6028. #endif
  6029. static int
  6030. perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
  6031. {
  6032. int cpu;
  6033. for_each_online_cpu(cpu)
  6034. perf_event_exit_cpu(cpu);
  6035. return NOTIFY_OK;
  6036. }
  6037. /*
  6038. * Run the perf reboot notifier at the very last possible moment so that
  6039. * the generic watchdog code runs as long as possible.
  6040. */
  6041. static struct notifier_block perf_reboot_notifier = {
  6042. .notifier_call = perf_reboot,
  6043. .priority = INT_MIN,
  6044. };
  6045. static int __cpuinit
  6046. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  6047. {
  6048. unsigned int cpu = (long)hcpu;
  6049. switch (action & ~CPU_TASKS_FROZEN) {
  6050. case CPU_UP_PREPARE:
  6051. case CPU_DOWN_FAILED:
  6052. perf_event_init_cpu(cpu);
  6053. break;
  6054. case CPU_UP_CANCELED:
  6055. case CPU_DOWN_PREPARE:
  6056. perf_event_exit_cpu(cpu);
  6057. break;
  6058. default:
  6059. break;
  6060. }
  6061. return NOTIFY_OK;
  6062. }
  6063. void __init perf_event_init(void)
  6064. {
  6065. int ret;
  6066. idr_init(&pmu_idr);
  6067. perf_event_init_all_cpus();
  6068. init_srcu_struct(&pmus_srcu);
  6069. perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
  6070. perf_pmu_register(&perf_cpu_clock, NULL, -1);
  6071. perf_pmu_register(&perf_task_clock, NULL, -1);
  6072. perf_tp_register();
  6073. perf_cpu_notifier(perf_cpu_notify);
  6074. register_reboot_notifier(&perf_reboot_notifier);
  6075. ret = init_hw_breakpoint();
  6076. WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
  6077. /* do not patch jump label more than once per second */
  6078. jump_label_rate_limit(&perf_sched_events, HZ);
  6079. /*
  6080. * Build time assertion that we keep the data_head at the intended
  6081. * location. IOW, validation we got the __reserved[] size right.
  6082. */
  6083. BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
  6084. != 1024);
  6085. }
  6086. static int __init perf_event_sysfs_init(void)
  6087. {
  6088. struct pmu *pmu;
  6089. int ret;
  6090. mutex_lock(&pmus_lock);
  6091. ret = bus_register(&pmu_bus);
  6092. if (ret)
  6093. goto unlock;
  6094. list_for_each_entry(pmu, &pmus, entry) {
  6095. if (!pmu->name || pmu->type < 0)
  6096. continue;
  6097. ret = pmu_dev_alloc(pmu);
  6098. WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
  6099. }
  6100. pmu_bus_running = 1;
  6101. ret = 0;
  6102. unlock:
  6103. mutex_unlock(&pmus_lock);
  6104. return ret;
  6105. }
  6106. device_initcall(perf_event_sysfs_init);
  6107. #ifdef CONFIG_CGROUP_PERF
  6108. static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
  6109. {
  6110. struct perf_cgroup *jc;
  6111. jc = kzalloc(sizeof(*jc), GFP_KERNEL);
  6112. if (!jc)
  6113. return ERR_PTR(-ENOMEM);
  6114. jc->info = alloc_percpu(struct perf_cgroup_info);
  6115. if (!jc->info) {
  6116. kfree(jc);
  6117. return ERR_PTR(-ENOMEM);
  6118. }
  6119. return &jc->css;
  6120. }
  6121. static void perf_cgroup_css_free(struct cgroup *cont)
  6122. {
  6123. struct perf_cgroup *jc;
  6124. jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
  6125. struct perf_cgroup, css);
  6126. free_percpu(jc->info);
  6127. kfree(jc);
  6128. }
  6129. static int __perf_cgroup_move(void *info)
  6130. {
  6131. struct task_struct *task = info;
  6132. perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
  6133. return 0;
  6134. }
  6135. static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  6136. {
  6137. struct task_struct *task;
  6138. cgroup_taskset_for_each(task, cgrp, tset)
  6139. task_function_call(task, __perf_cgroup_move, task);
  6140. }
  6141. static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6142. struct task_struct *task)
  6143. {
  6144. /*
  6145. * cgroup_exit() is called in the copy_process() failure path.
  6146. * Ignore this case since the task hasn't ran yet, this avoids
  6147. * trying to poke a half freed task state from generic code.
  6148. */
  6149. if (!(task->flags & PF_EXITING))
  6150. return;
  6151. task_function_call(task, __perf_cgroup_move, task);
  6152. }
  6153. struct cgroup_subsys perf_subsys = {
  6154. .name = "perf_event",
  6155. .subsys_id = perf_subsys_id,
  6156. .css_alloc = perf_cgroup_css_alloc,
  6157. .css_free = perf_cgroup_css_free,
  6158. .exit = perf_cgroup_exit,
  6159. .attach = perf_cgroup_attach,
  6160. /*
  6161. * perf_event cgroup doesn't handle nesting correctly.
  6162. * ctx->nr_cgroups adjustments should be propagated through the
  6163. * cgroup hierarchy. Fix it and remove the following.
  6164. */
  6165. .broken_hierarchy = true,
  6166. };
  6167. #endif /* CONFIG_CGROUP_PERF */